Université des Sciences et de la Technologie Houari Boumediène Faculté d'Electronique et d'Informatique Département d'Informatique LMD Master 1ère Année "Réseaux et Systèmes Distribués" 2010/2011 Module "Algorithmique Avancée et Complexité"

Date: 13/01/2011

Corrigé de l'interrogation

Exercice 1 (NP-complétude):

On considère le problème de décision CLIQUE suivant :

- **Description :** un graphe G et une constante entière k
- Question : G admet-il une clique de taille k ? une clique de taille k d'un graphe est un sous-graphe complet à k noeuds.

Le but de l'exercice est de trouver un algorithme polynômial de validation pour le problème CLIQUE ci-dessus. Pour ce faire, il vous est demandé de procéder comme suit :

- 1. Donnez un algorithme de validation pour le problème CLIQUE, que vous appellerez validation_c. L'algorithme, bien évidemment, doit être polynômial, la preuve de la polynômialité faisant l'objet des questions 2 et 3. Ecrivez l'algorithme sous forme d'une fonction booléenne dont il est important que vous expliquiez les paramètres.
- 2. Calculez le nombre d'opérations élémentaires de l'algorithme validation_c en fonction d'une taille n à préciser. Appelez ce nombre T(n).
- 3. Montrez que $T(n) = \Theta(n^k)$, pour une certaine constante k à préciser.
- 4. L'existence d'un algorithme polynômial de validation pour un problème de décision suffit-elle pour dire que le problème est NP-complet ? Expliquez.

Solution:

1. L'algorithme de validation est comme suit. Il est écrit sous forme d'une fonction booléenne validation_c à quatre entrées n, C, k et c. Le triplet (n,C,k) donne l'instance du problème (le nombre n de nœuds du graphe, une matrice carrée booéenne nxn représentant la matrice d'adjacence du graphe, et un entier k inférieur ou égal à n). c est un tableau de taille k d'entiers tous différents entre 1 et n (l'algorithme retourne VRAI si et seulement si le certificat valide l'instance, c'est-dire si et seulement si le sous-graphe constitué des nœuds X_{c[1]}, X_{c[2]}, ..., X_{c[k]} forme une clique de G).

Si un entier est représenté sur p bits, le quadruplet (n,C,k,c) peut être vu comme un mot de $\{0,1\}^*$ de longueur $p^*(1+n^2+1+k)$: les p premiers bits (0 ou 1) coderont le nombre n de nœuds du graphe, les p^*n^2 suivants coderont la matrice C d'adjacence du graphe, les p suivants coderont l'entier k, les p^*k derniers bits coderont le certificat c.

```
Booléen validation c(n,C,k,c)
         début
                                                                               (1)
                   pour i=1 à k faire
                             pour j=1 à k faire
                                                                               (2)
                                       \operatorname{si} C[c[i],c[i]]=0
                                                                               (3)
                                                 alors retourner FAUX
                                                                               (4)
                                       fsi
                             fait
                   fait
          retourner VRAI
                                                                               (5)
          fin
```

2. Le nombre T(k) d'opérations élémentaires dans le pire cas de l'algorithme de validation validation_c ci-dessus est calculée comme suit :

Instruction	Nombre d'opérations		Nombre de fois
(1)	3	1 addition,	K
		1 affectation,	
		1 comparaison	
(2)	3	1 addition,	\mathbf{K}^2
		1 affectation,	
		1 comparaison	
(3)	1	1 comparaison	\mathbf{K}^2
(4)	1	1 retour	1
(5)	1	1 retour	1

Donc:

$$T(k) = 3k+3K^2+k^2+1=4k^2+3k+1$$

- 3. On montre que $T(k)=\Theta(k^2)$, ce qui est équivalent à montrer que $T(k)=O(k^2)$ et $k^2=O(T(k))$.
 - a. $T(k) = O(k^2)$?

Il faut trouver c ≥ 0 et k_0 tels que pour tout $k \geq k_0 T(k) \leq c * k^2$:

$$4k^{2}+3k+1 \le c*k^{2}$$

$$4+\frac{3}{k}+\frac{1}{k^{2}} \le c$$

$$c=8 \text{ et } k_{0}=1$$

b. $k^2 = O(T(k))$?

Il faut trouver $c\ge 0$ et k_0 tels que pour tout $k\ge k_0$ $k^2\le c*T(k)$:

If faut trouver
$$c \ge 0$$
 et $k^2 \le c*(4k^2 + 3k + 1)$ $\frac{1}{c} \le 4 + \frac{3}{k} + \frac{1}{k^2}$ c et k_0 tels que $\frac{1}{c} = 4$: $c = \frac{1}{4}$ et $k_0 = 1$

4. L'existence d'un algorithme polynomial de validation pour un problème de décision ne permet pas de dire que le problème est NP-complet. Elle permet de dire que le problème est dans la classe NP.

Pour montrer que le problème est NP-complet, il faut, en plus de l'appartenance à la classe NP (existence d'un algorithme polynomial de validation), montrer que tout autre problème NP peut se ramener à ce problème via une réduction polynomiale ; ou, de façon équivalente, qu'il existe un problème NP-complet pouvant se ramener à ce problème via une réduction polynomiale.

Exercice 2 (ordre de complexité) :

Montrez que pour toute constante entière k :

- 1. $n^{k} = O(n^{k} \log n)$
- $2. \quad n^k \log n = O(n^{k+1})$

Solution 1 (notations de Landau):

1. $n^k = O(n^k \log n)$?

Il faut trouver c ≥ 0 et n_0 tels que pour tout $n\ge n_0$ $n^k\le c^*(n^klogn)$: $n^k\le c^*(n^klogn)$

 $\frac{1}{c} \le \log n$ (la fonction log est strictement croissante)

```
c et n_0 tels que \frac{1}{c}=1 (1=log10): c=1 et n_0=10

2. n^k logn=O(n^{k+1})?

Il faut trouver c≥0 et n_0 tels que pour tout n \ge n_0 n^k logn \le c * n^{k+1}: n^k logn \le c * n^{k+1}

\frac{logn}{n} \le c (la dérivée de \frac{logn}{n} est \frac{\frac{1}{ln10} - logn}{n^2}, toujours négative à partir de n=10, donc \frac{logn}{n} strictement décroissante à partir de n=10) c et n_0 tels que c = \frac{1}{10} (\frac{1}{10} = \frac{log \ 10}{10}): c = \frac{1}{10} et n_0=10
```

Solution 2 (utiliser les limites quand la taille n tend vers l'infini) :

1. $n^k=O(n^k\log n)$? vrai car $\lim_{n\to\infty}\frac{n^k}{n^k\log n}=\lim_{n\to\infty}\frac{1}{\log n}=0$ (à partir d'une certaine valeur de n, n^k est négligeable devant $n^k\log n$)

2. $n^k logn=O(n^{k+1})$? vrai car $\lim_{n\to\infty} \frac{n^k logn}{n^{k+1}} = \lim_{n\to\infty} \frac{logn}{n} = 0$ (à partir d'une certaine valeur de n, $n^k logn$ est négligeable devant n^{k+1})

Exercice 3 (Structures de données) :

Une file est une structure de données mettant en œuvre le principe « premier entré premier sorti » (FIFO : First In First Out). On considère ici le cas d'une file implémentée avec un tableau.

- 1. Une file doit être initialisée. Expliquez comment.
- 2. Ecrivez les différentes fonctions et procédures permettant la gestion d'une file.

Solution:

1. La file est implémentée avec un tableau F. On initialise la taille n de F à 100, par exemple ; la tête tête(F) de F à -1 (initialement, la file est vide) ; et la queue queue(F) de F à 1 (quand la file est vide, l'insertion d'un élément se fera à la position 1). De plus, on suppose que les éléments de la file sont indicés de 1 à 100 :

```
n=100;
tête(F)=-1;
queue(F)=1;
```

2. Les différentes fonctions et procédures permettant la gestion d'une file :

```
FILE-VIDE(F){
si tête(F)=-1
alors retourner VRAI
sinon retourner FAUX
}

INSERTION(F,x){
si [tête(F)≠-1 et queue(F)=tête(F)]
alors erreur (débordement positif)
```

```
sinon{
                F[queue(F)]=x
                queue(F)=[queue(F)+1](modulo n)
               si[tête(F)=-1] alors tête(F)=1
}
SUPPRESSION(F){
\underline{si} FILE-VIDE(F)
       alors erreur (débordement négatif)
       sinon{
               temp=F(tête(F));
               t\hat{e}te(F)=[t\hat{e}te(F)+1](modulo n);
               si[t\hat{e}te(F)=queue(F)]{
                       t\hat{e}te(F)=-1;
                       queue(F)=1;
               retourner temp;
}
```