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Abstract. — We show that up to automorphism of ]P% there are 5 homogeneous convex foliations of degree four
on ]P’é Using this result, we give a partial answer to a question posed in 2013 by D. MARIN and J. PEREIRA about
the classification of reduced convex foliations on ]P’(Z:.
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Introduction

The set F(d) of foliations of degree d on ]P% can be identified with a ZARISKI open subset of the projective

2
space Pg 2772 The group of automorphisms of JP% acts on F(d). The orbit of an element F € F(d) under

the action of Aut(PP%) = PGL3(C) will be denoted by O(F). Following [10] we will say that a foliation in
F(d) is convex if its leaves other than straight lines have no inflection points. The subset FC(d) of F(d)
consisting of all convex foliations is ZARISKI closed in F(d).

By [3, Proposition 2, page 23] every foliation of degree 0 or 1 is convex, i.e. FC(0) =F(0) and FC(1) =F(1).
For d > 2, FC(d) is a proper closed subset of F(d) and it contains the FERMAT foliation % of degree d,
defined in the affine chart (x,y) by the 1-form (see [10, page 179])

®f = (x! —x)dy — (5! — y)dx.

The closure inside F(d) of the orbit of Tod contains the foliations %d, resp. H¢, resp. Tld (necessarily
convex) defined by the 1-forms (see [4, Example 6.5] and [5, page 75])

od = (d— 1)y*de+x(x?' —dy? Hdy, resp. ©f =y?dx—x?dy, resp. ® = y?dx+ x¢(xdy — ydx).

In other words, we have the following inclusions

(0.1) O(HYUO(HYUO(F YU O(F) c O(F{) CFC(d).
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The foliations %d and ,’I-[ld are homogeneous, i.e. they are invariant by homotheties; moreover, they are
linearly conjugated for d = 2, but not for d > 3, see [4]. The dimension of the orbit of ,‘Fld is 6 [5], which is
the least possible dimension in any degree d greater or equal to 2 ([7, Proposition 2.3]). Notice (see [5]) that
this bound is also attained by the non convex foliation fzd defined by the 1-form

®9 = x“dx +y? (xdy — ydx).
The classification of the elements of FC(2) has been established by C. FAVRE and J. PEREIRA [9, Proposi-

tion 7.4]: up to automorphism of P2, the foliations }l,?, 702 and 2 are the only convex foliations of degree
2 on IP%. This classification implies that in degree 2 the inclusions (0.1) are equalities:

0.2) FC(2) = 0(%7) = O(%5) U O(F5) U O(7).

For dimensional reasons the orbits O(F?) and O(Fy) are closed; combining equalities (0.2) with [7, Theo-
rem 3], we see, in particular, that the only closed orbits in F(2) by the action of Aut(P%) are those of %2 and
F7-

Convex foliations of degree 3 has been classified by the first author in his thesis [5, Corollary C]: every
foliation F € FC(3) is linearly conjugated to one of the four foliations 7—@, 5-[13, T03 or Tﬁ. This implies that
the inclusions (0.1) for d = 3 are also equalities:

(0.3) FC(3) = O(%5) = O(H; ) U O(H) U O(F ) U O(F).

For d > 4, the classification of the elements of FC(d) modulo Aut(PP%) remains open and the topological
structure of FC(d) is not yet well understood. In the sequel we will focus on the case d = 4. Notice (see [10,
page 181]) that the set FC(4) contains the foliation ,‘FH“, called HESSE pencil of degree 4, defined by

0);‘, = (2)63 fy3 —1)ydx+ (Zy3 —x - 1)xdy ;

furthermore O(%}) # O(%y') and dim O(%;}') = dim O( ;') = 8. So that the inclusion O(%;') C FC(4) is
strict, in contrast to the previous cases of degrees 2 and 3.

In this paper we propose to classify, up to automorphism, the foliations of FC(4) which are homogeneous, i.e.
which are invariant under the C*—action (x,y) — (tx,ty). More precisely, we establish the following theorem.

Theorem A. — Up to automorphism of ]P% there are five homogeneous convex foliations of degree four
Hi, ..., s on the complex projective plane. They are respectively described in affine chart by the following
1-forms
1. o =y*dr—x*dy;
@ =y (2x = y)dx +x° (x —2y)dy;
®3 = y? (6% + dxy +y?)dx — x> (x + 4y)dy;
@y =y (dx+y)dx +x° (x + 4y)dy;
05 = y*(6x% + 4xy +y?)dx + 3x*dy.

RN W N

By [11] we know that every foliation of degree d > 1 on IF% can not have more than 3d (distinct) invariant
lines. If this bound is reached for F € F(d), then ¥ necessarily belongs to FC(d); in this case we say that
F is reduced convex. To our knowledge the only reduced convex foliations known in the literature are those
presented in [10, Table 1.1]: the FERMAT foliation fod in any degree, the HESSE pencil TH4 and the foliations
given by the 1-forms

0= DO = (V5 =2)) (y+ V5x)de — (2 = 1) (x* = (V5 —2)*) (x+ V/5y)dy,
(P =D +78° + Dydx — (x> — 1) (x> +7y° + 1)xdy,
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which have degrees 5 and 7 respectively. D. MARIN and J. PEREIRA [10, Problem 9.1] asked the following
question: are there other reduced convex foliations? The answer in degree 2, resp. 3, to this question is
negative, by [9, Proposition 7.4], resp. [4, Corollary 6.9]. Theorem A allows us to show that the answer to
[10, Problem 9.1] in degree 4 is also negative.

Theorem B. — Up to automorphism of P, the FERMAT foliation F;' and the HESSE pencil .} are the only
reduced convex foliations of degree four on ]P’(ZC.

1. Preliminaries

1.1. Singularities and inflection divisor of a foliation on the projective plane. — A degree d holomorphic
foliation ¥ on ]P’% is defined in homogeneous coordinates [x : y : z] by a 1-form

® = a(x,y,z)dx+ b(x,y,z)dy +c(x,y,2)dz,
where a, b and ¢ are homogeneous polynomials of degree d 4+ 1 without common factor and satisfying the

EULER condition ir® = 0, where R = x% + ya% + za% denotes the radial vector field and iy is the interior
product by R. The singular locus SingF of F is the projectivization of the singular locus of ®

Sing® = {(x,7,2) € C*|a(x,y,2) = b(x,3,2) = c(x,y,2) = 0}.
Let us recall some local notions attached to the pair (7 ,s), where s € Sing F . The germ of ¥ at s is defined, up
to multiplication by a unity in the local ring Oy at s, by a vector field X =A(u, V) % + B(u,V) a%. The vanishing
order v(F,s) of F ats is given by
Vv(F,s) =min{v(A,s),v(B,s)},
where v(g,s) denotes the vanishing order of the function g at s. The tangency order of F with a generic line
passing through s is the integer
©(F,s) =min{k > v(¥F,s) : det(JF X,R,) # 0},
where J¥ X denotes the k-jet of X at s and Ry is the radial vector field centered at s. The MILNOR number of
F at s is the integer
u(F,s) =dimc Os/(A,B),
where (A, B) denotes the ideal of Oy generated by A and B.
The singularity s is called radial of ordern—1if v(F,s) =1 and (¥ ,s) = n.
The singularity s is called non-degenerate if u( F ,s) = 1, or equivalently if the linear part J! X of X possesses
two non-zero eigenvalues A,u. In this case, the quantity BB(¥,s) = % + % +2 is called the BAUM-BOTT
invariant of F at s (see [2]). By [6] there is at least a germ of curve C at s which is invariant by . Up to local
diffeomorphism we can assume that s = (0,0) T,C = {u= 0} and J/ X = Xua% + (eu+puv) %, where we can
take € = 0 if A # u. The quantity CS(F, C,s) = % is called the CAMACHO-SAD index of F at s along C.

Let us also recall the notion of inflection divisor of . Let Z=F a% +F % + Ga% be a homogeneous vector

field of degree d on C? non collinear to the radial vector field describing F , i.e. such that ® = irizdx Ady Adz.
The inflection divisor of ¥, denoted by 1+, is the divisor of IP% defined by the homogeneous equation

x E Z(E)
y F Z(F) |=0.
z G Z(G)
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This divisor has been studied in [11] in a more general context. In particular, the following properties has
been proved.

1. On IP’% . Sing ¥, I ¢ coincides with the curve described by the inflection points of the leaves of ¥
2. If Cis an irreducible algebraic curve invariant by # then C C I¢ if and only if C is an invariant line;

3. Iy can be decomposed into Iy = Ii;V +1I%, where the support of I?QV consists in the set of invariant lines
of ¥ and the support of IE} is the closure of the isolated inflection points along the leaves of ¥ ;

4. The degree of the divisor I is 3d.

The foliation F will be called convex if its inflection divisor I ¢ is totally invariant by ¥, i.e. if I is a product
of invariant lines.

1.2. Geometry of homogeneous foliations. — A foliation of degree d on IP’% is said to be homogeneous
if there is an affine chart (x,y) of IP% in which it is invariant under the action of the group of homotheties
(x,y) — A(x,y), A € C*. Such a foliation # is then defined by a 1-form

® = A(x,y)dx+ B(x,y)dy,

where A and B are homogeneous polynomials of degree d without common factor. This 1-form writes in
homogeneous coordinates as

zA(x,y)dx +zB(x,y)dy — (xA(x,y) + yB(x,y)) dz.

Thus the foliation # has at most d + 2 singularities whose origin O of the affine chart z = 1 is the only
singular point of 4 which is not situated on the line at infinity L., = {z = 0}; moreover v(#,0) =d.

In the sequel we will assume that d is greater than or equal to 2. In this case the point O is the only singularity
of A having vanishing order d.

We know from [4] that the inflection divisor of # is given by zCy/Dys = 0, where Cyy = xA + yB € Clx,y]4+1

denotes the tangent cone of H at the origin O and D, = %—é %—f — 3—;‘, %—f € Clx,y]aq—2. From this we deduce that:

(i) the support of the divisor Ii;}v consists of the lines of the tangent cone C;, = 0 and the line at infinity Lo ;

(i1) the divisor It;{ decomposes as I;r{ =11, Tip"*1 for some number n < degDys = 2d — 2 of lines 7; passing
through O, p; — 1 being the inflection order of the line T;.

Proposition 1.1 ([4], Proposition 2.2). — With the previous notations, for any point s € Sing# N L.., we have
Lv(H,s)=1;
2. the line joining the origin O to the point s is invariant by H and it appears with multiplicity ©(H,s) — 1 in
the divisor Dgy =0, i.e.
H,s)—1
D, =18 J] LY
s€SingHNLe

Definition 1.2 ([4]). — Let # be a homogeneous foliation of degree d on }P’% having a certain number m <
d + 1 of radial singularities s; of order T; — 1, 2 < 1; < d for i = 1,2,...,m. The support of the divisor I;f[
consists of a certain number n < 2d — 2 of transverse inflection lines T of order p; —1, 2 < p; < d for
j=1,2,...,n. We define the type of the foliation H by

m n d—1
‘Ty_[: ZRTI'—] + Zij_l = Z(rk'Rk+tk'Tk) S Z[R],Rz,...,Rd_l,Tl,Tz,...,Td_l].
i=1 =1 k=1
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Example 1.3. — Let us consider the homogeneous foliation # of degree 5 on ]P’é defined by
o =y dx +2x° (3x2 — 5y%)dy.
A straightforward computation leads to
Cyr=xy (6x* —10x%? +)*)  and Dy = 150" (x —y) (x +).

We see that the set of radial singularities of 4 consists of the two points s; = [0:1:0] and s, = [1:0:0];
their orders of radiality are equal to 2 and 4 respectively. Moreover the support of the divisor I;r{ is the union
of the two lines x —y = 0 and x +y = 0; they are transverse inflection lines of order 1. Therefore the foliation
Hisof type Ty =1-Ro+1-Ry+2-Ty.

Following [4] to every homogeneous foliation H of degree d on IP’% is associated a rational map from the

RIEMANN sphere ]P’(lC to itself of degree d denoted by G 5 and defined as follows: if # is described by
® = A(x,y)dx+ B(x,y)dy, with A and B being homogeneous polynomials of degree d without common factor,
the image of the point [x : y] € Pl by G, is the point [—A(x,y) : B(x,y)] € PL. It is clear that this definition
does not depend on the choice of the homogeneous 1-form ® describing the foliation #. Notice that the map
G . has the following properties (see [4]):

1. the fixed points of G ot correspond to the tangent cone of # at the origin O (i.e. [a: b] € IF’(}: is fixed by
G, if and only if the line by — ax = 0 is invariant by H),

2. the point [a : b] € P¢. is a fixed critical point of G 5 if and only if the point [b: a : 0] € L., is a radial
singularity of #{. The multiplicity of the critical point [a : b] of G 5 1s exactly equal to the the radiality
order of the singularity at infinity;

3. the point [a: D] € IP’}C is a non-fixed critical point of G 5 if and only if the line by —ax = 0 is a transverse
inflection line of H. The multiplicity of the critical point [a : b] of g o is precisely equal to the inflection
order of this line.

It follows, in particular, that a homogeneous foliation # on IP% is convex if and only if its associated map G 5
has only fixed critical points; more precisely, a homogeneous foliation # of degree d on IP% is convex of
type Ty = ZZ;II re - Ry if and only if the map G 5 POSSESSES Iy, TeSP. 12, ..., TeSP. | fixed critical points of
multiplicity 1, resp. 2..., resp. d — 1, with Zz;ll kry =2d —2.

For recent results on rational self-maps of ]P’(lc with only fixed critical points, we refer to [8].

2. Proof of Theorem A

Before proving Theorem A, let us recall the next result which follows from Propositions 4.1 and 4.2 of [4]:

Proposition 2.1 ([4]). — Let #H be a convex homogeneous foliation of degree d > 3 on IP’(%:. Let v be an
integer between 1 and d — 2. Then, #{ is of type

T}[:2~Rd_1, resp. T}[ZI-RV+1~Rd_V_1+1~Rd_1,
if and only if it is linearly conjugated to the foliation ﬂ-[f, resp. II-[;I"V given by

d v
d . d .
mi’ = yddx — xddy7 resp. w?’v = Z < .)Xdlyldx - Z ( .)Xdlyld)’-
i=v+1 \! i=0 \!
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Proof of Theorem A. — Let # be a convex homogeneous foliation of degree 4 on P2, defined in the affine
chart (x,y), by the 1-form
o =A(x,y)dx+B(x,y)dy, A,Be€C[x,yls, gcd(A,B)=1.

CAMACHO-SAD index theorem implies, cf. [5, Remark 2.5], that the foliation # can not have 4 +1 =15
distinct radial singularities, in other words it can not be of type 4-R; +1-R;. We are then in one of the
following situations:

T}[ZZ'Rg,; T}[ZIR]+1R2+1R3, T}[:3'R2;
T}[:2-R1+2-R2; T}[:3-R1—|—1-R3.

o If 7, =2-Rj3, resp. Ty =1-R;+1-Ry+1-Rs3, then by [4, Propositions 4.1, 4.2], the 1-form ® is
linearly conjugated to
coj‘ = y4dx—x4dy = 0,

4 1
4 iy 4
resp. (o?’l = Z (l_)x4_’y’dx—z <z> iyidy = y?(6x% 4+ 4xy +y*)dx — 2 (x +-4y)dy = @s.
i=0

i=2
; ; 1 1 A(l,z) :
e Assume that 7, = 3-R;. This means that the rational map g% : Pe—Pg. gﬂ(z) = _B(l ) admits
e e .z
three different fixed critical points of multiplicity 2. By [8, page 79], G 5 is conjugated by a MOBIUS
X E
(2 — - :
transformation to z — —Zl(zz). As a consequence, O is linearly conjugated to
— <2

@ =y (2x —y)dx +x° (x — 2y)dy.

e Assume that 75 = 2-Rj +2-Ry. Then the rational map g possesses four fixed critical points, two of
them having multiplicity 1 and the other two having mult1p11c1ty 2. This implies, by [8, page 79], that
up to conjugation by a MOBIUS transformation, G 5 writes as

 2(2z+3cz—4c—3)
z+c
where ¢ = —3/84+/5/8. Thus, up to linear conjugation

)

3 V5
0=y (2y+3cy—dex =3 dx+ D (y+ex)dy, o= ‘gi\g[-

In both cases (¢ = —3/8 ++/5/8 or c = —3/8 —/5/8), the 1-form ® is linearly conjugated to
@4 =y’ (4x+y)dx + 2 (x4 4y)dy.
Indeed,
Wy = 3H_z(p ®, where ¢ = (2x,8cy).

e Finally, consider the last situation: ‘Z}{ =3-R; +1-R3. Up to linear conjugation we can assume that
Dy, = cx’y(y—x)(y—ox) and Cyr(0,1) = Cyr(1,0) = Cyr(1,1) = Cyp(1,0) = 0, for some ¢, € C*, ot #
1. The points co = [1:0], [0: 1], [1: 1], [1: o] € P}, are then fixed and critical for G 4 having respective
multiplicities 3,1,1, 1. By [4, Lemma 3.9], there exist constants ag,as,b € C*,a; € C such that

B(x,y) =bx*, A(x,y) = (aox* +arxy+azy?)y*, (z—1)*divides P(z), (z—a)* divides Q(z),
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where P(z) := A(1,z) + B(1,z) and O(z) := A(1,z) + aB(1,z). It follows that

P(1)=0 ap+ai+a+b=0 ap = 2a,0.
4 1
P(1)=0 a0+ 3a, +4az = 0 g = (et
= < a (2a3— 1)
O(a)=0 aro 4+ a0 +apo+b=0 b:—%
Q' () =0 4ar o +3a100+2ag =0 o—a+1=0

By replacing by a%w, we can assume that
o = y?(60u* — 4(a+ 1)xy +3y*)dx — (20— 1)x*dy, o> —a+1=0.
The 1-form ® is linearly conjugated to
5 = y*(6x% +4xy +y?)dx+ 3x*dy.

Indeed, the fact that o satisfies &> — ot + 1 = 0 implies that

W5 = (01L :%3 0*®, where @ = ((oc— 2)x,y>.
The foliations H;,i =1,...,5, are not linearly conjugated because, by construction, Ty{j # Ty foreach j #i.
This ends the proof of the theorem. UJ
A remarkable feature of the classification obtained is that all the singularities of the foliations #;,i =1,...,5,

on the line at infinity are non-degenerated. In the following section we will need the values of the CAMACHO-
SAD indices CS(#;,Lw,s), s € Sing#; N L.. For this reason, we have computed, for each i = 1,...,5, the
following polynomial (called CAMACHO-SAD polynomial of the homogeneous foliation #;)

CSy(M = J] (A—CS(#,Le,s)).

s€Sing H;NLeo

The following table summarizes the types and the CAMACHO-SAD polynomials of the foliations #4, i =
1,...,5.

i o CSs (M)

! 2-Rs (—12(A+3)}

2 3-Ry (A=1)3(A+1)2
3/1-Rj+1-Ry+1-R3 | (A— ) (;H_13+2\F)(7L+13 2\ﬁ)
4] 2Ri+2:R (A—1)*(h+3)

> 3-Ri+1-Rs (A—=1)*(A+3)

TABLE 1. Types and CAMACHO-SAD polynomials of the homogeneous foliations given by Theorem A.
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3. Proof of Theorem B

The proof of Theorem B is based on the classification of convex homogeneous foliations of degree four on
IP% given by Theorem A and on the three following results which hold in arbitrary degree.

First, notice that if ¥ is a foliation of degree d > 1 on IP% and if s is a singular point of ¥ then
o(F,s) <t(F,s)+1<d+1,

where 6( ¥ ,s) denotes the number of (distinct) invariant lines of F passing through s.
The following lemma shows that the left-hand inequality above is an equality in the case where ¥ is a reduced
convex foliation.

Lemma 3.1. — Let F be a reduced convex foliation of degree d > 1 on IP’%C. Then, through each singular
point s of F pass exactly ©(F,s) + 1 invariant lines of F, i.e. 6(F,s) =t(F,s)+ 1.

Proof. — Let s be a singular point of ¥ . Since the inflection divisor I of ¥ is totally invariant by ¥ and it
is reduced, we deduce that u(F,s) = 1 ([4, Lemma 6.8]) and the number (¥, s) coincides with the vanishing
order of I# at s. On the other hand, an elementary computation, using the equality u(F,s) = 1, shows that
the vanishing order of I ¢ at s is equal to T(F,s) + 1. Hence the lemma holds. O

The following result allows us to reduce the study of the convexity to the homogeneous framework:

Proposition 3.2. — Let F be a reduced convex foliation of degree d > 1 on ]P% and let ¢ be one of its
3d invariant lines. There is a convex homogeneous foliation H of degree d on IP% satistying the following
properties:

() H e O(F);

(ii) ¥ is invariant by H ;

(iii) SingH N = SingF N4;

(iv) Vs € SingH N, u(H,s)=1;

(v) VseSingHnl, t(H,s)=1(F,s);

(vi) Vs € SingH NL, CS(H,l,s) =CS(F,L,s).

Proof. — We take a homogeneous coordinate system [x : y : z] € P% such that £ = {z = 0}. Since ¢ is F-
invariant, ¥ is defined in the affine chart z =1 by a 1-form of the following type

d
»= Z(Ai(x,y)dx—i-Bi(Xay)dy)v
i=0

where A;, B; are homogeneous polynomials of degree i. Using the fact that every reduced convex foliation on
IP% has only non-degenerate singularities ([4, Lemma 6.8]) and arguing as in the proof of [4, Proposition 6.4],
we see that the 1-form @, = A4(x,y)dx + By(x,y)dy defines a homogeneous foliation # of degree d on P2,
and that this foliation satisfies the announced properties (i), (ii), (iii), (iv) and (vi). In particular, since ¥ is
convex by hypothesis, property (i) implies that # is also convex.
Let us show that A also satisfies property (v). Set A := SingH N{ = SingF N¥; since F possesses 3d
invariant lines, we have Yc (6(,s) — 1) =3d — 1. By Lemma 3.1, this is equivalent to Ysc A T(F ,s) =
3d — 1. By [4, Proposition 2.2] the convexity of # implies that Y ¢ A T(#,s) = 2d — 2. Moreover, the already
proved property (iv) ensures that #A = d + 1. It follows that

Y (((F,5)—1)=@d—1)—#A=2d—2=") (t(H,5)—1).

SEA SEA
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Thus, in order to see that #H satisfies property (v), it is enough to prove that T(F,s) < ©(#,s) for each
s € A. Let us fix s € A. Up to conjugating @ by a linear isomorphism of C?> = (z = 1), we can assume that
s=1[0:1: O] The foliations ¥ and # are respectively defined in the affine chart y = 1 by the 1-forms

0= Z 2 7Ai(x, 1) (zdx — xdz) — Bi(x,1)dz] and 04 =Ag(x,1)(zdx —xdz) — By (x,1)dz.
As a consequence

U(F,s) = min{k >1: Jé0’0)<ézd"35(x, 1)) ” 0} < min{k > 1: JE(Balx, 1)) # 0} — (%, 5).

O
Remark 3.3. — If F is a foliation of degree d on ]P% then (see [3])
(3.1) Y wF.s)=d*+d+1 and Y BB(#.5)=(d+2)%
seSing F seSing F
Lemma 3.4. — Every foliation of degree d > 1 on ]P’ possesses at least a non radial singularity.

This lemma follows from the formulas (3.1) and the obvious following remark: if a foliation ¥ on ]P% admits
a radial singularity s, then u(#,s) = 1 and BB(¥,s) =4

Proof of Theorem B. — Let ¥ be a reduced convex foliation of degree 4 on }P’(zc. Let us denote by X the set
of non radial singularities of #. By Lemma 3.4, X is nonempty. Since by hypothesis ¥ is reduced convex,
all its singularities have MILNOR number 1 ([4, Lemma 6.8]). The set ¥ consists then of the singularities
s € SingF such that (7 ,s) = 1. Let m be a point of £; by Lemma 3.1, through the point m pass exactly two
F -invariant lines £\ and ¢

On the other hand, for any line £ invariant by ¥, Proposition 3.2 ensures the existence of a convex homoge-
neous foliation #y of degree 4 on }P’% belonging to O(F ) and such that the line £ is #p-invariant. Therefore
Hp, and in particular each }[ , 1s linearly conjugated to one of the five homogeneous foliations given by

Theorem A. Proposition 3.2 also ensures that
(a) SingF N¥ = Sing#H; N4,
(b) Vs e SingHyNl, u(Hy,s) =1,
(¢) Vs € SingHyNl, 1(Hy,s) =1(F,s);
(0) Vs € SingHyNtl, CS(Hy,l,s) =CS(F,L,s).

Since CS(T,E( )CS(T,Km ,m) = 1, relation () implies that CS(}[EH ,Em ,m)CS(}[K(z ,sz ,m) = 1. This

m

equality and Table 1 lead to

{CS(#, ,e,,}, )cs(ﬂz), 2 om)y ={-3,-1} or CS(H

" 0D ) = CS(H o 4P m) = —1.

s b

At first let us suppose that it is possible to choose m € X so that
{CS( ‘>7£1 ) (}[5(27 m 7 )} { 3 _7}

By renumbering the 5,(,? we can assume that CS(?—[EU),KS,:),m) = —% and CS(?—[g(z),ﬁ,(,f),m) = —3. Consulting
Table 1, we see that ! :

T}[E’(’:)ZZ-R:&, T%53)€{3R1+1R3,2R]+2R2}
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Therefore, it follows from relations (a) and (c) that F possesses two radial singularities m;,m, of order 3 on
the line ff,} ) and a radial singularity m3 of order 2 or 3 on the line E,(f )

We will see that the radiality order of the singularity ms of ¥ is necessarily 3, i.e. T(F,m3) =4. By [3,
Proposition 2, page 23], the fact that T©(F,m;) +t(F ,m3) > 4+ 3 > deg F implies the invariance by ¥ of
the line ¢ = (myms3); if ©(F ,m3) were equal to 3, then relations (a), (b) and (¢), combined with the convexity
of the foliation #Hj, would imply that ‘Z}{ =1-R;+1-Ry+1-Rj3 so that (see Table 1) #; would possess a

singularity m’ on the line ¢ satisfying CS(Hy,{,m’) € {— 13+2\ﬁ, 13- 2‘F} which is not possible.

By construction, the three points m;, my and m3 are not aligned. We have thus shown that ¥ admits three
non-aligned radial singularities of order 3. By [4, Proposition 6.3] the foliation ¥ is linearly conjugated to
the FERMAT foliation %'

)stm

Let us now consider the eventuality CS(?—[EU AV ) = CS(}[ () m) = —1 for any choice of m € X.
In this case, Table 1 leads to ‘Z}{g =3-Ry for i=1,2. Then, as before by using relations (a), (b) and (¢),

m

we obtain that ¥ possesses exactly three radial smgulantles of order 2 on each line Km . Moreover, every line

joining a radial singularity of order 2 of ¥ on Em and a radial singularity of order 2 of F on ff,%) must contain
necessarily a third radial singularity of order 2 of #. We can then choose a homogeneous coordinate system
[x:y:z] €PZ so that the points m; =[0:0: 1],my =[1:0:0] and m3 =[0: 1: 0] are radial singularities
of order 2 of . Moreover, in this coordinate system the lines x = 0, y = 0, z = 0 must be invariant by F
and there exist xo, yo,z0 € C* such that the points my = [xo: 0: 1], ms =[1 : y9 : 0], mg = [0 : 1 : z9] are radial
singularities of order 2 of #. The equalities v(F,m;) = 1, T(¥,m;) = 3 and the invariance of the line z =0
by ¥ ensure that every 1-form ® defining ¥ in the affine chart z = 1 is of type

= (xdy — ydx) (y+ cox +c1y) + (0tox” + o x®y + oxy? + azy? ) dx + (Box® 4+ Brx®y + Baxy® + Bay*)dy
+ (aox* + ar®y + apx®y? + azxy® + agy)dx + (box* + b1y + box®y? + baxy® + bay*)dy,

where a;, b;, cj,04,Br € C and y € C*.
In the affine chart x = 1, resp. y = 1, the foliation ¥ is given by

0= z3(Yz+ co+c1y)dy — (0pz+oyyz+ 0y’ z+ 03y 2+ ag +ary + axy* + azy? +a4y4)dz
— (Boz+ Biyz+ Bay’z+ B3y z+bo + b1y + bay* + b3y® + bay*) (vdz — zdy),
resp. N = —2° (Yz+ cox +c1)dx — (Box’z + Bix?z + Baxz + Bsz + box* 4+ b1x® + box? 4+ byx + bs)dz

+ (00X°7 + 0 X%7 + 0oxz + 03z 4 agx* + a1 x* 4+ apx® + azx + ay) (zdx — xdz).

A straightforward computation shows that

(Jé )= G) (ydz - zdy) = —zP(y,z)dyAdz, (J(zxﬁz):(o,())n) A (zdx - xdz) =zQ(x,z)dx A dz,
(J(zxv (x0,0 (,0> A ( x—xp)dy — ydx) = xoR(x,y)dx Ady, (J(2y7z):(y0,0>9) A ((yfyo)dzfzdy) = —z8(y,2)dy A dz,

(J(zxz=010 n)/\(z 20)dx xdz)zT(x,z)dx/\dz
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with

P(y,2) = ag + a1y + 0oz +azy’ + oz,

O(x,2) = ba +b3x+ B3z + box* + Poxz,

R(x,y) = —x3 (0t + 3aoxo) + x5 (40t + 11apxo)x + (Y4 ox3 4 Boxg + 2a1xy + 3boxg )y — 2x0(30 4 Tagxo ) x>
+ (co —304x0 — 3Boxo — 5a1x% — Sb()x(z))xy + (e1 — dpxp — Prxo — agx(z) — Zblx(z))yz + (3ot + 6agxo)x’
+ (20 +3Bo + 3arxo + 6b0xo)x2y + (0 4+ 2By + asxo + 3b1xo)xy2 + B2+ ngo)y3,

S(y,2) = ao +boyo + azyg + 3asyy + bayg -+ 3bayy + (a1 +bryo — 3azyg — 8asyy — 3b3y3 — 8bayg)y
+ (alo + Boyo — 02 — 203y3 — Bayd — 2B3yi)z + (a2 + 3azyo + bayo + 6a4y3 + 3b3y2 + 6bay])y?
+ (0 + 206230 + B1yo + 303y + 2B2y2 + 3B3yd )z,

T(x,2) = —bazo — z0(as + b3 — c125 — 37z3)x + (by — B320)z — z0(a3 + ba + P1zo + 2¢02) x> + (B2 + 3c120 + 623 )xz”
+ (b3 — 0320 — Bazo — 3c125 — 8Yz5 )Xz + Baz® — z0(az + 01 20)x° + (b2 — G20 + B120 + 3c0zd)x*2,

so that the equality T(F,m;) = 3 (resp. T(F,m3) = 3, resp. T(F,mq) = 3, resp. T(F,ms) = 3, resp.
T©(F,me) = 3) implies that the polynomial P (resp. Q, resp. R, resp. S, resp. T) is identically zero. From
P=Q =0 we obtain ag = a; =ax = 0y = oy = by = b3 = by = B3 = B = 0. Next, from the equalities
R =58=T =0 we deduce that

co = 2¥yozo(Xoyozo + 1), c1=—2Y0, O =2y0%p(Xoyo0+2), 03 =-2yz, Bo="2vx0)p%,
Bi = —2vy0z(2xoy0z0 + 1), a3 = =2Yy0z5, a4 = V20, bo = —ozp, b1 =2¥V5%0,
(x0y020)* +X0y0z0 + 1 = 0.

Let us set p = xgyozo; then p? 4+ p+1 =0 and ® is of type

o= Y(xdy - ydx) (1 +2y0z0(p + 1)x — 220y> oy (yo(p ) y)dx+yz3y3 (y — 2y0x>dx

+2Yv0z5x° (yo px—(2p+ 1)y> dy +yygzx’ (Zy - yox) dy.
This 1-form is linearly conjugated to
of = (2x° —y® = 1)ydx+ (2y° —x* — 1)xdy .
Indeed, the fact that p satisfies p> +p + 1 = 0 implies that

2p+1—(p+2)x—(p+2)y (p—l)x—(2p+1)y+p+2>
3020 ’ 320 '

2
4 ALY
0, =
Tvp-1)

¢0'®, where ¢ = (
O

We thank the anonymous referee for making us the following observation concerning the end of the proof of
Theorem B.

Remark 3.5. — Once one shows that a degree 4 foliation ¥ on IP% with 12 invariant lines is such that each
line contains 3 radial singularities of order 2, it is possible to show that the foliation is Hesse’s pencil using
an argument more geometric than the lengthy computations carried out before. Indeed let £y be one of the
invariant lines. Let £; and £, be the other invariant lines intersecting £, at the two non radial singularities of
F over £y. We claim that the intersection py = ¢1 N ¥, is a non radial singularity of 4. Aiming a contradiction
assume this is not the case. As we have seen before, lines through two radial singular points of order 2 must be
invariant, therefore the lines joining po and ¢ N Sing(F) = {p1, p2,r1,r2,r3} are all invariant. Therefore pgy
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must be a radial singular point of order 4: contradiction. It follows that we can divide the 12 invariant lines of
F into 4 triangles (£oU¥; U4, is one of them) such that any two triangles have intersection equal to the 9 radial
singular points of F (the non radial singularities are the vertices). There is a pencil P of cubics containing
these four triangles, which have 12 lines in common with the foliation #. It turns out that P = ¥ because
otherwise 12 < deg Tang(¥,P) = deg F +deg P+ 1 =9 (see for instance [12, Proposition 1.3.2]). Since two
triangles intersect transversely, the general element of the pencil is smooth. Now, if we take a smooth cubic

C:

{f(x,y,2z) = 0} in the pencil then its Hessian {det(Hess(f)) = 0} is another cubic which intersect C at

its inflection points. But since ¥ is a convex foliation these points must be the 9 radial singularities of F, i.e.
the base points of the pencil. Hence ¥ is the pencil defined by a smooth cubic and its Hessian. Thus ¥ is
tangent to the Hesse pencil according to [1, Section 2].
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