CONVEX FOLIATIONS OF DEGREE 4 ON THE COMPLEX PROJECTIVE PLANE

by

Samir Bedrouni & David Marín

Abstract. — We show that up to automorphism of $\mathbb{P}^2_{\mathbb{C}}$ there are 5 homogeneous convex foliations of degree four on $\mathbb{P}^2_{\mathbb{C}}$. Using this result, we give a partial answer to a question posed in 2013 by D. MARÍN and J. PEREIRA about the classification of reduced convex foliations on $\mathbb{P}^2_{\mathbb{C}}$.

2010 Mathematics Subject Classification. — 37F75, 32S65, 32M25.

Introduction

The set $\mathbf{F}(d)$ of foliations of degree d on $\mathbb{P}^2_{\mathbb{C}}$ can be identified with a ZARISKI open subset of the projective space $\mathbb{P}^{(d+2)^2-2}_{\mathbb{C}}$. The group of automorphisms of $\mathbb{P}^2_{\mathbb{C}}$ acts on $\mathbf{F}(d)$. The orbit of an element $\mathcal{F} \in \mathbf{F}(d)$ under the action of $\mathrm{Aut}(\mathbb{P}^2_{\mathbb{C}}) = \mathrm{PGL}_3(\mathbb{C})$ will be denoted by $O(\mathcal{F})$. Following [10] we will say that a foliation in $\mathbf{F}(d)$ is *convex* if its leaves other than straight lines have no inflection points. The subset $\mathbf{FC}(d)$ of $\mathbf{F}(d)$ consisting of all convex foliations is ZARISKI closed in $\mathbf{F}(d)$.

By [3, Proposition 2, page 23] every foliation of degree 0 or 1 is convex, *i.e.* $\mathbf{FC}(0) = \mathbf{F}(0)$ and $\mathbf{FC}(1) = \mathbf{F}(1)$. For $d \ge 2$, $\mathbf{FC}(d)$ is a proper closed subset of $\mathbf{F}(d)$ and it contains the FERMAT foliation \mathcal{F}_0^d of degree d, defined in the affine chart (x,y) by the 1-form (see [10, page 179])

$$\overline{\mathbf{\omega}}_0^d = (x^d - x) \mathbf{dy} - (y^d - y) \mathbf{dx}.$$

The closure inside $\mathbf{F}(d)$ of the orbit of \mathcal{F}_0^d contains the foliations \mathcal{H}_0^d , resp. \mathcal{H}_1^d , resp. \mathcal{F}_1^d (necessarily convex) defined by the 1-forms (see [4, Example 6.5] and [5, page 75])

$$\boldsymbol{\omega}_0^d = (d-1)y^d\mathrm{d}x + x(x^{d-1}-dy^{d-1})\mathrm{d}y, \quad \text{resp. } \boldsymbol{\omega}_1^d = y^d\mathrm{d}x - x^d\mathrm{d}y, \quad \text{resp. } \boldsymbol{\overline{\omega}}_1^d = y^d\mathrm{d}x + x^d(x\mathrm{d}y - y\mathrm{d}x).$$

In other words, we have the following inclusions

$$(0.1) O(\mathcal{H}_0^d) \cup O(\mathcal{H}_1^d) \cup O(\mathcal{F}_0^d) \cup O(\mathcal{F}_1^d) \subset \overline{O(\mathcal{F}_0^d)} \subset \mathbf{FC}(d).$$

Key words and phrases. — convex foliation, homogeneous foliation, singularity, inflection divisor.

D. Marín acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through grant MTM2015-66165-P and the "María de Maeztu" Programme for Units of Excellence in R&D (MDM-2014-0445).

The foliations \mathcal{H}_0^d and \mathcal{H}_1^d are homogeneous, i.e. they are invariant by homotheties; moreover, they are linearly conjugated for d=2, but not for $d\geq 3$, see [4]. The dimension of the orbit of \mathcal{F}_1^d is 6 [5], which is the least possible dimension in any degree d greater or equal to 2 ([7, Proposition 2.3]). Notice (see [5]) that this bound is also attained by the non convex foliation \mathcal{F}_2^d defined by the 1-form

$$\overline{\omega}_2^d = x^d dx + y^d (x dy - y dx).$$

The classification of the elements of FC(2) has been established by C. FAVRE and J. PEREIRA [9, Proposition 7.4]: up to automorphism of $\mathbb{P}^2_{\mathbb{C}}$, the foliations \mathcal{H}^2_0 , \mathcal{F}^2_0 and \mathcal{F}^2_1 are the only convex foliations of degree 2 on $\mathbb{P}^2_{\mathbb{C}}$. This classification implies that in degree 2 the inclusions (0.1) are equalities:

(0.2)
$$\mathbf{FC}(2) = \overline{\mathcal{O}(\mathcal{F}_0^2)} = \mathcal{O}(\mathcal{F}_0^2) \cup \mathcal{O}(\mathcal{F}_0^2) \cup \mathcal{O}(\mathcal{F}_1^2).$$

For dimensional reasons the orbits $O(\mathcal{F}_1^d)$ and $O(\mathcal{F}_2^d)$ are closed; combining equalities (0.2) with [7, Theorem 3], we see, in particular, that the only closed orbits in $\mathbf{F}(2)$ by the action of $\mathrm{Aut}(\mathbb{P}^2_{\mathbb{C}})$ are those of \mathcal{F}^2_1 and \mathcal{F}_2^2 .

Convex foliations of degree 3 has been classified by the first author in his thesis [5, Corollary C]: every foliation $\mathcal{F} \in \mathbf{FC}(3)$ is linearly conjugated to one of the four foliations \mathcal{H}_0^3 , \mathcal{H}_1^3 , \mathcal{F}_0^3 or \mathcal{F}_1^3 . This implies that the inclusions (0.1) for d = 3 are also equalities:

(0.3)
$$\mathbf{FC}(3) = \overline{\mathcal{O}(\mathcal{F}_0^3)} = \mathcal{O}(\mathcal{H}_0^3) \cup \mathcal{O}(\mathcal{H}_1^3) \cup \mathcal{O}(\mathcal{F}_0^3) \cup \mathcal{O}(\mathcal{F}_1^3).$$

For $d \ge 4$, the classification of the elements of FC(d) modulo $Aut(\mathbb{P}^2_{\mathbb{C}})$ remains open and the topological structure of FC(d) is not yet well understood. In the sequel we will focus on the case d=4. Notice (see [10, page 181]) that the set FC(4) contains the foliation \mathcal{F}_H^4 , called HESSE pencil of degree 4, defined by

$$\omega_{H}^{4}=(2x^{3}-y^{3}-1)ydx+(2y^{3}-x^{3}-1)xdy\ ;$$

furthermore $\mathcal{O}(\mathcal{F}_H^4) \neq \mathcal{O}(\mathcal{F}_0^4)$ and $\dim \mathcal{O}(\mathcal{F}_H^4) = \dim \mathcal{O}(\mathcal{F}_0^4) = 8$. So that the inclusion $\overline{\mathcal{O}(\mathcal{F}_0^4)} \subset \mathbf{FC}(4)$ is strict, in contrast to the previous cases of degrees 2 and 3.

In this paper we propose to classify, up to automorphism, the foliations of FC(4) which are homogeneous, i.e. which are invariant under the \mathbb{C}^* -action $(x,y)\mapsto (tx,ty)$. More precisely, we establish the following theorem.

Theorem A. — Up to automorphism of $\mathbb{P}^2_{\mathbb{C}}$ there are five homogeneous convex foliations of degree four $\mathcal{H}_1, \dots, \mathcal{H}_5$ on the complex projective plane. They are respectively described in affine chart by the following 1-forms

- 1. $\omega_1 = y^4 dx x^4 dy$;
- 1. $\omega_1 = y \, dx x \, dy$, 2. $\omega_2 = y^3 (2x y) dx + x^3 (x 2y) dy$; 3. $\omega_3 = y^2 (6x^2 + 4xy + y^2) dx x^3 (x + 4y) dy$; 4. $\omega_4 = y^3 (4x + y) dx + x^3 (x + 4y) dy$; 5. $\omega_5 = y^2 (6x^2 + 4xy + y^2) dx + 3x^4 dy$.

By [11] we know that every foliation of degree $d \ge 1$ on $\mathbb{P}^2_{\mathbb{C}}$ can not have more than 3d (distinct) invariant lines. If this bound is reached for $\mathcal{F} \in \mathbf{F}(d)$, then \mathcal{F} necessarily belongs to $\mathbf{FC}(d)$; in this case we say that $\mathcal F$ is reduced convex. To our knowledge the only reduced convex foliations known in the literature are those presented in [10, Table 1.1]: the FERMAT foliation \mathcal{F}_0^d in any degree, the HESSE pencil \mathcal{F}_H^4 and the foliations given by the 1-forms

$$(y^{2}-1)(y^{2}-(\sqrt{5}-2)^{2})(y+\sqrt{5}x)dx-(x^{2}-1)(x^{2}-(\sqrt{5}-2)^{2})(x+\sqrt{5}y)dy,$$

$$(y^{3}-1)(y^{3}+7x^{3}+1)ydx-(x^{3}-1)(x^{3}+7y^{3}+1)xdy,$$

which have degrees 5 and 7 respectively. D. MARÍN and J. PEREIRA [10, Problem 9.1] asked the following question: are there other reduced convex foliations? The answer in degree 2, resp. 3, to this question is negative, by [9, Proposition 7.4], resp. [4, Corollary 6.9]. Theorem A allows us to show that the answer to [10, Problem 9.1] in degree 4 is also negative.

Theorem B. — Up to automorphism of $\mathbb{P}^2_{\mathbb{C}}$, the FERMAT foliation \mathcal{F}^4_0 and the HESSE pencil \mathcal{F}^4_H are the only reduced convex foliations of degree four on $\mathbb{P}^2_{\mathbb{C}}$.

1. Preliminaries

1.1. Singularities and inflection divisor of a foliation on the projective plane. — A degree d holomorphic foliation \mathcal{F} on $\mathbb{P}^2_{\mathbb{C}}$ is defined in homogeneous coordinates [x:y:z] by a 1-form

$$\omega = a(x, y, z)dx + b(x, y, z)dy + c(x, y, z)dz,$$

where a,b and c are homogeneous polynomials of degree d+1 without common factor and satisfying the EULER condition $i_R\omega=0$, where $R=x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}+z\frac{\partial}{\partial z}$ denotes the radial vector field and i_R is the interior product by R. The $singular\ locus\ Sing\mathcal{F}$ of \mathcal{F} is the projectivization of the singular locus of ω

Sing
$$\omega = \{(x, y, z) \in \mathbb{C}^3 | a(x, y, z) = b(x, y, z) = c(x, y, z) = 0\}$$

Let us recall some local notions attached to the pair (\mathcal{F}, s) , where $s \in \operatorname{Sing} \mathcal{F}$. The germ of \mathcal{F} at s is defined, up to multiplication by a unity in the local ring O_s at s, by a vector field $X = A(u, v) \frac{\partial}{\partial u} + B(u, v) \frac{\partial}{\partial v}$. The vanishing order $v(\mathcal{F}, s)$ of \mathcal{F} at s is given by

$$v(\mathcal{F}, s) = \min\{v(A, s), v(B, s)\},\$$

where v(g,s) denotes the vanishing order of the function g at s. The tangency order of \mathcal{F} with a generic line passing through s is the integer

$$\tau(\mathcal{F},s) = \min\{k \ge v(\mathcal{F},s) : \det(J_s^k X, R_s) \ne 0\},\$$

where $J_s^k X$ denotes the k-jet of X at s and R_s is the radial vector field centered at s. The MILNOR number of \mathcal{F} at s is the integer

$$\mu(\mathcal{F},s) = \dim_{\mathbb{C}} \mathcal{O}_s / \langle A,B \rangle$$
,

where $\langle A, B \rangle$ denotes the ideal of O_s generated by A and B.

The singularity s is called radial of order n-1 if $v(\mathcal{F},s)=1$ and $\tau(\mathcal{F},s)=n$.

The singularity s is called non-degenerate if $\mu(\mathcal{F},s)=1$, or equivalently if the linear part J_s^1X of X possesses two non-zero eigenvalues λ,μ . In this case, the quantity $BB(\mathcal{F},s)=\frac{\lambda}{\mu}+\frac{\mu}{\lambda}+2$ is called the BAUM-BOTT invariant of \mathcal{F} at s (see [2]). By [6] there is at least a germ of curve \mathcal{C} at s which is invariant by \mathcal{F} . Up to local diffeomorphism we can assume that s=(0,0) $T_s\mathcal{C}=\{u=0\}$ and $J_s^1X=\lambda u\frac{\partial}{\partial u}+(\epsilon u+\mu v)\frac{\partial}{\partial v}$, where we can take $\epsilon=0$ if $\lambda\neq\mu$. The quantity $CS(\mathcal{F},\mathcal{C},s)=\frac{\lambda}{\mu}$ is called the CAMACHO-SAD index of \mathcal{F} at s along \mathcal{C} .

Let us also recall the notion of inflection divisor of \mathcal{F} . Let $Z = E \frac{\partial}{\partial x} + F \frac{\partial}{\partial y} + G \frac{\partial}{\partial z}$ be a homogeneous vector field of degree d on \mathbb{C}^3 non collinear to the radial vector field describing \mathcal{F} , *i.e.* such that $\omega = i_R i_Z dx \wedge dy \wedge dz$. The *inflection divisor* of \mathcal{F} , denoted by $I_{\mathcal{F}}$, is the divisor of $\mathbb{P}^2_{\mathbb{C}}$ defined by the homogeneous equation

$$\begin{vmatrix} x & E & Z(E) \\ y & F & Z(F) \\ z & G & Z(G) \end{vmatrix} = 0.$$

This divisor has been studied in [11] in a more general context. In particular, the following properties has been proved.

- 1. On $\mathbb{P}^2_{\mathbb{C}} \setminus \operatorname{Sing} \mathcal{F}$, $I_{\mathcal{F}}$ coincides with the curve described by the inflection points of the leaves of \mathcal{F} ;
- 2. If C is an irreducible algebraic curve invariant by F then $C \subset I_F$ if and only if C is an invariant line;
- 3. $I_{\mathcal{F}}$ can be decomposed into $I_{\mathcal{F}} = I_{\mathcal{F}}^{inv} + I_{\mathcal{F}}^{tr}$, where the support of $I_{\mathcal{F}}^{inv}$ consists in the set of invariant lines of \mathcal{F} and the support of $I_{\mathcal{F}}^{tr}$ is the closure of the isolated inflection points along the leaves of \mathcal{F} ;
- 4. The degree of the divisor $I_{\mathcal{T}}$ is 3d.

The foliation \mathcal{F} will be called *convex* if its inflection divisor $I_{\mathcal{F}}$ is totally invariant by \mathcal{F} , *i.e.* if $I_{\mathcal{F}}$ is a product of invariant lines.

1.2. Geometry of homogeneous foliations. — A foliation of degree d on $\mathbb{P}^2_{\mathbb{C}}$ is said to be homogeneous if there is an affine chart (x,y) of $\mathbb{P}^2_{\mathbb{C}}$ in which it is invariant under the action of the group of homotheties $(x,y) \longmapsto \lambda(x,y)$, $\lambda \in \mathbb{C}^*$. Such a foliation \mathcal{H} is then defined by a 1-form

$$\omega = A(x, y) dx + B(x, y) dy$$

where A and B are homogeneous polynomials of degree d without common factor. This 1-form writes in homogeneous coordinates as

$$zA(x, y)dx + zB(x, y)dy - (xA(x, y) + yB(x, y))dz$$
.

Thus the foliation \mathcal{H} has at most d+2 singularities whose origin O of the affine chart z=1 is the only singular point of \mathcal{H} which is not situated on the line at infinity $L_{\infty} = \{z=0\}$; moreover $v(\mathcal{H},O) = d$. In the sequel we will assume that d is greater than or equal to 2. In this case the point O is the only singularity of \mathcal{H} having vanishing order d.

We know from [4] that the inflection divisor of \mathcal{H} is given by $zC_{\mathcal{H}}D_{\mathcal{H}} = 0$, where $C_{\mathcal{H}} = xA + yB \in \mathbb{C}[x,y]_{d+1}$ denotes the *tangent cone* of \mathcal{H} at the origin O and $D_{\mathcal{H}} = \frac{\partial A}{\partial x} \frac{\partial B}{\partial y} - \frac{\partial A}{\partial y} \frac{\partial B}{\partial x} \in \mathbb{C}[x,y]_{2d-2}$. From this we deduce that:

- (i) the support of the divisor $I_{\mathcal{H}}^{inv}$ consists of the lines of the tangent cone $C_{\mathcal{H}} = 0$ and the line at infinity L_{∞} ;
- (ii) the divisor $I_{\mathcal{H}}^{tr}$ decomposes as $I_{\mathcal{H}}^{tr} = \prod_{i=1}^{n} T_{i}^{\rho_{i}-1}$ for some number $n \leq \deg D_{\mathcal{H}} = 2d-2$ of lines T_{i} passing through O, $\rho_{i} 1$ being the inflection order of the line T_{i} .

Proposition 1.1 ([4], Proposition 2.2). — With the previous notations, for any point $s \in \text{Sing} \mathcal{H} \cap L_{\infty}$, we have $I. \ \nu(\mathcal{H}, s) = 1$;

2. the line joining the origin O to the point s is invariant by \mathcal{H} and it appears with multiplicity $\tau(\mathcal{H}, s) - 1$ in the divisor $D_{\mathcal{H}} = 0$, *i.e.*

$$D_{\mathcal{H}} = I_{\mathcal{H}}^{tr} \prod_{s \in \operatorname{Sing} \mathcal{H} \cap L_{\infty}} L_{s}^{\tau(\mathcal{H}, s) - 1}.$$

Definition 1.2 ([4]). — Let \mathcal{H} be a homogeneous foliation of degree d on $\mathbb{P}^2_{\mathbb{C}}$ having a certain number $m \leq d+1$ of radial singularities s_i of order τ_i-1 , $1 \leq \tau_i \leq d$ for $i=1,2,\ldots,m$. The support of the divisor $I^{\mathrm{tr}}_{\mathcal{H}}$ consists of a certain number $1 \leq 2d-2$ of transverse inflection lines $1 \leq 2d-1$ for $1 \leq 2d-1$ for $2 \leq 2d-1$ for $2 \leq 2d-1$ for $2 \leq 2d-1$ for $3 \leq 2d-$

$$\mathcal{T}_{\mathcal{H}} = \sum_{i=1}^{m} R_{\tau_i-1} + \sum_{j=1}^{n} T_{\rho_j-1} = \sum_{k=1}^{d-1} (r_k \cdot R_k + t_k \cdot T_k) \in \mathbb{Z} [R_1, R_2, \dots, R_{d-1}, T_1, T_2, \dots, T_{d-1}].$$

Example 1.3. — Let us consider the homogeneous foliation \mathcal{H} of degree 5 on $\mathbb{P}^2_{\mathbb{C}}$ defined by

$$\omega = y^5 dx + 2x^3 (3x^2 - 5y^2) dy.$$

A straightforward computation leads to

$$C_{\mathcal{H}} = xy (6x^4 - 10x^2y^2 + y^4)$$
 and $D_{\mathcal{H}} = 150x^2y^4(x - y)(x + y)$.

We see that the set of radial singularities of \mathcal{H} consists of the two points $s_1 = [0:1:0]$ and $s_2 = [1:0:0]$; their orders of radiality are equal to 2 and 4 respectively. Moreover the support of the divisor $I_{\mathcal{H}}^{tr}$ is the union of the two lines x-y=0 and x+y=0; they are transverse inflection lines of order 1. Therefore the foliation \mathcal{H} is of type $\mathcal{T}_{\mathcal{H}} = 1 \cdot R_2 + 1 \cdot R_4 + 2 \cdot T_1$.

Following [4] to every homogeneous foliation $\mathcal H$ of degree d on $\mathbb P^2_{\mathbb C}$ is associated a rational map from the RIEMANN sphere $\mathbb P^1_{\mathbb C}$ to itself of degree d denoted by $\underline{\mathcal G}_{\mathcal H}$ and defined as follows: if $\mathcal H$ is described by $\omega = A(x,y) \mathrm{d} x + B(x,y) \mathrm{d} y$, with A and B being homogeneous polynomials of degree d without common factor, the image of the point $[x:y] \in \mathbb P^1_{\mathbb C}$ by $\underline{\mathcal G}_{\mathcal H}$ is the point $[-A(x,y):B(x,y)] \in \mathbb P^1_{\mathbb C}$. It is clear that this definition does not depend on the choice of the homogeneous 1-form ω describing the foliation $\mathcal H$. Notice that the map $\mathcal G_{\mathcal H}$ has the following properties (see [4]):

- 1. the fixed points of $\underline{\mathcal{G}}_{\mathcal{H}}$ correspond to the tangent cone of \mathcal{H} at the origin O (i.e. $[a:b] \in \mathbb{P}^1_{\mathbb{C}}$ is fixed by $\underline{\mathcal{G}}_{\mathcal{H}}$ if and only if the line by ax = 0 is invariant by \mathcal{H});
- 2. the point $[a:b] \in \mathbb{P}^1_{\mathbb{C}}$ is a fixed critical point of $\underline{\mathcal{G}}_{\mathcal{H}}$ if and only if the point $[b:a:0] \in L_{\infty}$ is a radial singularity of \mathcal{H} . The multiplicity of the critical point [a:b] of $\underline{\mathcal{G}}_{\mathcal{H}}$ is exactly equal to the the radiality order of the singularity at infinity;
- 3. the point $[a:b] \in \mathbb{P}^1_{\mathbb{C}}$ is a non-fixed critical point of $\underline{\mathcal{G}}_{\mathcal{H}}$ if and only if the line by ax = 0 is a transverse inflection line of \mathcal{H} . The multiplicity of the critical point [a:b] of $\underline{\mathcal{G}}_{\mathcal{H}}$ is precisely equal to the inflection order of this line.

It follows, in particular, that a homogeneous foliation \mathcal{H} on $\mathbb{P}^2_{\mathbb{C}}$ is convex if and only if its associated map $\underline{\mathcal{G}}_{\mathcal{H}}$ has only fixed critical points; more precisely, a homogeneous foliation \mathcal{H} of degree d on $\mathbb{P}^2_{\mathbb{C}}$ is convex of type $T_{\mathcal{H}} = \sum_{k=1}^{d-1} r_k \cdot \mathbf{R}_k$ if and only if the map $\underline{\mathcal{G}}_{\mathcal{H}}$ possesses r_1 , resp. r_2, \ldots , resp. r_{d-1} fixed critical points of multiplicity 1, resp. $2 \ldots$, resp. d-1, with $\sum_{k=1}^{d-1} k r_k = 2d-2$.

For recent results on rational self-maps of $\mathbb{P}^1_{\mathbb{C}}$ with only fixed critical points, we refer to [8].

2. Proof of Theorem A

Before proving Theorem A, let us recall the next result which follows from Propositions 4.1 and 4.2 of [4]:

Proposition 2.1 ([4]). — Let \mathcal{H} be a convex homogeneous foliation of degree $d \geq 3$ on $\mathbb{P}^2_{\mathbb{C}}$. Let v be an integer between 1 and d-2. Then, \mathcal{H} is of type

$$T_{\mathcal{H}} = 2 \cdot R_{d-1},$$
 resp. $T_{\mathcal{H}} = 1 \cdot R_{\nu} + 1 \cdot R_{d-\nu-1} + 1 \cdot R_{d-1},$

if and only if it is linearly conjugated to the foliation \mathcal{H}_1^d , resp. $\mathcal{H}_3^{d,v}$ given by

$$\omega_1^d = y^d dx - x^d dy, \qquad \text{resp. } \omega_3^{d,v} = \sum_{i=v+1}^d \binom{d}{i} x^{d-i} y^i dx - \sum_{i=0}^v \binom{d}{i} x^{d-i} y^i dy.$$

Proof of Theorem A. — Let \mathcal{H} be a convex homogeneous foliation of degree 4 on $\mathbb{P}^2_{\mathbb{C}}$, defined in the affine chart (x,y), by the 1-form

$$\omega = A(x,y)dx + B(x,y)dy$$
, $A,B \in \mathbb{C}[x,y]_4$, $gcd(A,B) = 1$.

CAMACHO-SAD index theorem implies, cf. [5, Remark 2.5], that the foliation \mathcal{H} can not have 4+1=5 distinct radial singularities, in other words it can not be of type $4 \cdot R_1 + 1 \cdot R_2$. We are then in one of the following situations:

$$\begin{split} \mathcal{T}_{\mathcal{H}} &= 2 \cdot R_3 \,; & \mathcal{T}_{\mathcal{H}} &= 1 \cdot R_1 + 1 \cdot R_2 + 1 \cdot R_3 \,; & \mathcal{T}_{\mathcal{H}} &= 3 \cdot R_2 \,; \\ \mathcal{T}_{\mathcal{H}} &= 2 \cdot R_1 + 2 \cdot R_2 \,; & \mathcal{T}_{\mathcal{H}} &= 3 \cdot R_1 + 1 \cdot R_3 \,. \end{split}$$

• If $\mathcal{T}_{\mathcal{H}} = 2 \cdot R_3$, resp. $\mathcal{T}_{\mathcal{H}} = 1 \cdot R_1 + 1 \cdot R_2 + 1 \cdot R_3$, then by [4, Propositions 4.1, 4.2], the 1-form ω is linearly conjugated to

$$\omega_1^4 = y^4 dx - x^4 dy = \omega_1,$$

resp.
$$\omega_3^{4,1} = \sum_{i=2}^4 {4 \choose i} x^{4-i} y^i dx - \sum_{i=0}^1 {4 \choose i} x^{4-i} y^i dy = y^2 (6x^2 + 4xy + y^2) dx - x^3 (x+4y) dy = \omega_3.$$

• Assume that $T_{\mathcal{H}} = 3 \cdot R_2$. This means that the rational map $\underline{\mathcal{G}}_{\mathcal{H}} : \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}$, $\underline{\mathcal{G}}_{\mathcal{H}}(z) = -\frac{A(1,z)}{B(1,z)}$, admits three different fixed critical points of multiplicity 2. By [8, page 79], $\underline{\mathcal{G}}_{\mathcal{H}}$ is conjugated by a MÖBIUS transformation to $z \mapsto -\frac{z^3(2-z)}{1-2z}$. As a consequence, ω is linearly conjugated to

$$\omega_2 = y^3 (2x - y) dx + x^3 (x - 2y) dy.$$

• Assume that $T_{\mathcal{H}} = 2 \cdot R_1 + 2 \cdot R_2$. Then the rational map $\mathcal{G}_{\mathcal{H}}$ possesses four fixed critical points, two of them having multiplicity 1 and the other two having multiplicity 2. This implies, by [8, page 79], that up to conjugation by a Möbius transformation, $\mathcal{G}_{\mathcal{H}}$ writes as

$$z \mapsto -\frac{z^3(2z+3cz-4c-3)}{z+c}$$
,

where $c = -3/8 \pm \sqrt{5}/8$. Thus, up to linear conjugation

$$\omega = y^{3}(2y + 3cy - 4cx - 3x)dx + x^{3}(y + cx)dy, \qquad c = -\frac{3}{8} \pm \frac{\sqrt{5}}{8}.$$

In both cases ($c = -3/8 + \sqrt{5}/8$ or $c = -3/8 - \sqrt{5}/8$), the 1-form ω is linearly conjugated to

$$\omega_4 = y^3 (4x + y) dx + x^3 (x + 4y) dy$$
.

Indeed,

$$\omega_4 = \frac{3c+2}{2} \varphi^* \omega$$
, where $\varphi = (2x, 8cy)$.

• Finally, consider the last situation: $\mathcal{T}_{\mathcal{H}} = 3 \cdot R_1 + 1 \cdot R_3$. Up to linear conjugation we can assume that $D_{\mathcal{H}} = cx^3y(y-x)(y-\alpha x)$ and $C_{\mathcal{H}}(0,1) = C_{\mathcal{H}}(1,0) = C_{\mathcal{H}}(1,1) = C_{\mathcal{H}}(1,\alpha) = 0$, for some $c,\alpha \in \mathbb{C}^*,\alpha \neq 1$. The points $\infty = [1:0], [0:1], [1:1], [1:\alpha] \in \mathbb{P}^1_{\mathbb{C}}$ are then fixed and critical for $\underline{\mathcal{G}}_{\mathcal{H}}$, having respective multiplicities 3,1,1,1. By [4, Lemma 3.9], there exist constants $a_0,a_2,b \in \mathbb{C}^*,a_1 \in \mathbb{C}$ such that

$$B(x,y) = bx^4$$
, $A(x,y) = (a_0x^2 + a_1xy + a_2y^2)y^2$, $(z-1)^2$ divides $P(z)$, $(z-\alpha)^2$ divides $Q(z)$,

where P(z) := A(1,z) + B(1,z) and $Q(z) := A(1,z) + \alpha B(1,z)$. It follows that

$$\begin{cases} P(1) = 0 \\ P'(1) = 0 \\ Q(\alpha) = 0 \\ Q'(\alpha) = 0 \end{cases} \Leftrightarrow \begin{cases} a_0 + a_1 + a_2 + b = 0 \\ 2a_0 + 3a_1 + 4a_2 = 0 \\ a_2\alpha^3 + a_1\alpha^2 + a_0\alpha + b = 0 \\ 4a_2\alpha^2 + 3a_1\alpha + 2a_0 = 0 \end{cases} \Leftrightarrow \begin{cases} a_0 = 2a_2\alpha \\ a_1 = -\frac{4a_2(\alpha + 1)}{3} \\ b = -\frac{a_2(2\alpha - 1)}{3} \\ \alpha^2 - \alpha + 1 = 0 \end{cases}$$

By replacing ω by $\frac{3}{a_2}\omega$, we can assume that

$$\omega = y^2 (6\alpha x^2 - 4(\alpha + 1)xy + 3y^2) dx - (2\alpha - 1)x^4 dy, \qquad \alpha^2 - \alpha + 1 = 0.$$

The 1-form ω is linearly conjugated to

$$\omega_5 = y^2 (6x^2 + 4xy + y^2) dx + 3x^4 dy$$
.

Indeed, the fact that α satisfies $\alpha^2 - \alpha + 1 = 0$ implies that

$$\omega_5 = \frac{1-\alpha}{(\alpha-2)^3} \phi^* \omega, \quad \text{where } \phi = \Big((\alpha-2)x,y\Big).$$

The foliations $\mathcal{H}_i, i = 1, ..., 5$, are not linearly conjugated because, by construction, $\mathcal{T}_{\mathcal{H}_j} \neq \mathcal{T}_{\mathcal{H}_i}$ for each $j \neq i$. This ends the proof of the theorem.

A remarkable feature of the classification obtained is that all the singularities of the foliations $\mathcal{H}_i, i = 1, ..., 5$, on the line at infinity are non-degenerated. In the following section we will need the values of the CAMACHO-SAD indices $CS(\mathcal{H}_i, L_{\infty}, s)$, $s \in Sing\mathcal{H}_i \cap L_{\infty}$. For this reason, we have computed, for each i = 1, ..., 5, the following polynomial (called CAMACHO-SAD polynomial of the homogeneous foliation \mathcal{H}_i)

$$\mathrm{CS}_{\mathcal{H}_i}(\lambda) = \prod_{s \in \mathrm{Sing}\mathcal{H}_i \cap L_{\infty}} (\lambda - \mathrm{CS}(\mathcal{H}_i, L_{\infty}, s)).$$

The following table summarizes the types and the CAMACHO-SAD polynomials of the foliations \mathcal{H}_i , i = 1, ..., 5.

i	$\mathcal{T}_{\mathcal{H}_i}$	$\mathrm{CS}_{\mathcal{H}_i}(\lambda)$
1	$2 \cdot R_3$	$(\lambda-1)^2(\lambda+\tfrac{1}{3})^3$
2	$3 \cdot R_2$	$(\lambda-1)^3(\lambda+1)^2$
3	$1 \cdot R_1 + 1 \cdot R_2 + 1 \cdot R_3$	$(\lambda - 1)^3 (\lambda + \frac{13 + 2\sqrt{13}}{13})(\lambda + \frac{13 - 2\sqrt{13}}{13})$
4	$2\cdot R_1 + 2\cdot R_2$	$(\lambda-1)^4(\lambda+3)$
5	$3 \cdot R_1 + 1 \cdot R_3$	$(\lambda-1)^4(\lambda+3)$

TABLE 1. Types and CAMACHO-SAD polynomials of the homogeneous foliations given by Theorem A.

3. Proof of Theorem B

The proof of Theorem B is based on the classification of convex homogeneous foliations of degree four on $\mathbb{P}^2_{\mathbb{C}}$ given by Theorem A and on the three following results which hold in arbitrary degree.

First, notice that if \mathcal{F} is a foliation of degree $d \geq 1$ on $\mathbb{P}^2_{\mathbb{C}}$ and if s is a singular point of \mathcal{F} then

$$\sigma(\mathcal{F}, s) \le \tau(\mathcal{F}, s) + 1 \le d + 1$$
,

where $\sigma(\mathcal{F}, s)$ denotes the number of (distinct) invariant lines of \mathcal{F} passing through s.

The following lemma shows that the left-hand inequality above is an equality in the case where \mathcal{F} is a reduced convex foliation.

Lemma 3.1. — Let $\mathcal F$ be a reduced convex foliation of degree $d \geq 1$ on $\mathbb P^2_{\mathbb C}$. Then, through each singular point s of $\mathcal F$ pass exactly $\tau(\mathcal F,s)+1$ invariant lines of $\mathcal F$, i.e. $\sigma(\mathcal F,s)=\tau(\mathcal F,s)+1$.

Proof. — Let s be a singular point of \mathcal{F} . Since the inflection divisor $I_{\mathcal{F}}$ of \mathcal{F} is totally invariant by \mathcal{F} and it is reduced, we deduce that $\mu(\mathcal{F},s)=1$ ([4, Lemma 6.8]) and the number $\sigma(\mathcal{F},s)$ coincides with the vanishing order of $I_{\mathcal{F}}$ at s. On the other hand, an elementary computation, using the equality $\mu(\mathcal{F},s)=1$, shows that the vanishing order of $I_{\mathcal{F}}$ at s is equal to $\tau(\mathcal{F},s)+1$. Hence the lemma holds.

The following result allows us to reduce the study of the convexity to the homogeneous framework:

Proposition 3.2. — Let $\mathcal F$ be a reduced convex foliation of degree $d \geq 1$ on $\mathbb P^2_{\mathbb C}$ and let ℓ be one of its 3d invariant lines. There is a convex homogeneous foliation $\mathcal H$ of degree d on $\mathbb P^2_{\mathbb C}$ satisfying the following properties:

- (i) $\mathcal{H} \in \overline{\mathcal{O}(\mathcal{F})}$;
- (ii) ℓ is invariant by \mathcal{H} ;
- (iii) $\operatorname{Sing} \mathcal{H} \cap \ell = \operatorname{Sing} \mathcal{F} \cap \ell$;
- (iv) $\forall s \in \text{Sing} \mathcal{H} \cap \ell$, $\mu(\mathcal{H}, s) = 1$;
- (v) $\forall s \in \text{Sing} \mathcal{H} \cap \ell, \ \tau(\mathcal{H}, s) = \tau(\mathcal{F}, s);$
- (vi) $\forall s \in \text{Sing} \mathcal{H} \cap \ell$, $CS(\mathcal{H}, \ell, s) = CS(\mathcal{F}, \ell, s)$.

Proof. — We take a homogeneous coordinate system $[x:y:z] \in \mathbb{P}^2_{\mathbb{C}}$ such that $\ell = \{z=0\}$. Since ℓ is \mathcal{F} -invariant, \mathcal{F} is defined in the affine chart z=1 by a 1-form of the following type

$$\omega = \sum_{i=0}^{d} (A_i(x, y) dx + B_i(x, y) dy),$$

where A_i , B_i are homogeneous polynomials of degree i. Using the fact that every reduced convex foliation on $\mathbb{P}^2_{\mathbb{C}}$ has only non-degenerate singularities ([4, Lemma 6.8]) and arguing as in the proof of [4, Proposition 6.4], we see that the 1-form $\omega_d = A_d(x,y) dx + B_d(x,y) dy$ defines a homogeneous foliation \mathcal{H} of degree d on $\mathbb{P}^2_{\mathbb{C}}$, and that this foliation satisfies the announced properties (i), (ii), (iii), (iv) and (vi). In particular, since \mathcal{F} is convex by hypothesis, property (i) implies that \mathcal{H} is also convex.

Let us show that \mathcal{H} also satisfies property (v). Set $\Lambda := \operatorname{Sing} \mathcal{H} \cap \ell = \operatorname{Sing} \mathcal{F} \cap \ell$; since \mathcal{F} possesses 3d invariant lines, we have $\sum_{s \in \Lambda} \left(\sigma(\mathcal{F}, s) - 1 \right) = 3d - 1$. By Lemma 3.1, this is equivalent to $\sum_{s \in \Lambda} \tau(\mathcal{F}, s) = 3d - 1$. By [4, Proposition 2.2] the convexity of \mathcal{H} implies that $\sum_{s \in \Lambda} \tau(\mathcal{H}, s) = 2d - 2$. Moreover, the already proved property (iv) ensures that $\#\Lambda = d + 1$. It follows that

$$\sum_{s \in \Lambda} (\tau(\mathcal{F}, s) - 1) = (3d - 1) - \#\Lambda = 2d - 2 = \sum_{s \in \Lambda} (\tau(\mathcal{H}, s) - 1).$$

Thus, in order to see that \mathcal{H} satisfies property (v), it is enough to prove that $\tau(\mathcal{F}, s) \leq \tau(\mathcal{H}, s)$ for each $s \in \Lambda$. Let us fix $s \in \Lambda$. Up to conjugating ω by a linear isomorphism of $\mathbb{C}^2 = (z = 1)$, we can assume that s = [0:1:0]. The foliations \mathcal{F} and \mathcal{H} are respectively defined in the affine chart y = 1 by the 1-forms

$$\theta = \sum_{i=0}^{d} z^{d-i} [A_i(x,1)(z dx - x dz) - B_i(x,1) dz] \quad \text{and} \quad \theta_d = A_d(x,1)(z dx - x dz) - B_d(x,1) dz.$$

As a consequence

$$\tau(\mathcal{F}, s) = \min \left\{ k \ge 1 : J_{(0,0)}^k \left(\sum_{i=0}^d z^{d-i} B_i(x, 1) \right) \ne 0 \right\} \le \min \left\{ k \ge 1 : J_0^k \left(B_d(x, 1) \right) \ne 0 \right\} = \tau(\mathcal{H}, s).$$

Remark 3.3. — If \mathcal{F} is a foliation of degree d on $\mathbb{P}^2_{\mathbb{C}}$ then (see [3])

(3.1)
$$\sum_{s \in \operatorname{Sing}\mathcal{F}} \mu(\mathcal{F}, s) = d^2 + d + 1 \qquad \text{and} \qquad \sum_{s \in \operatorname{Sing}\mathcal{F}} \operatorname{BB}(\mathcal{F}, s) = (d+2)^2.$$

Lemma 3.4. — Every foliation of degree $d \ge 1$ on $\mathbb{P}^2_{\mathbb{C}}$ possesses at least a non radial singularity.

This lemma follows from the formulas (3.1) and the obvious following remark: if a foliation \mathcal{F} on $\mathbb{P}^2_{\mathbb{C}}$ admits a radial singularity s, then $\mu(\mathcal{F},s)=1$ and $\mathrm{BB}(\mathcal{F},s)=4$.

Proof of Theorem B. — Let \mathcal{F} be a reduced convex foliation of degree 4 on $\mathbb{P}^2_{\mathbb{C}}$. Let us denote by Σ the set of non radial singularities of \mathcal{F} . By Lemma 3.4, Σ is nonempty. Since by hypothesis \mathcal{F} is reduced convex, all its singularities have MILNOR number 1 ([4, Lemma 6.8]). The set Σ consists then of the singularities $s \in \operatorname{Sing} \mathcal{F}$ such that $\tau(\mathcal{F}, s) = 1$. Let m be a point of Σ ; by Lemma 3.1, through the point m pass exactly two \mathcal{F} -invariant lines $\ell_m^{(1)}$ and $\ell_m^{(2)}$.

On the other hand, for any line ℓ invariant by \mathcal{F} , Proposition 3.2 ensures the existence of a convex homogeneous foliation \mathcal{H}_{ℓ} of degree 4 on $\mathbb{P}^2_{\mathbb{C}}$ belonging to $\overline{O(\mathcal{F})}$ and such that the line ℓ is \mathcal{H}_{ℓ} -invariant. Therefore \mathcal{H}_{ℓ} , and in particular each $\mathcal{H}_{\ell^{(i)}}$, is linearly conjugated to one of the five homogeneous foliations given by Theorem A. Proposition 3.2 also ensures that

- (a) $\operatorname{Sing} \mathcal{F} \cap \ell = \operatorname{Sing} \mathcal{H}_{\ell} \cap \ell$;
- (b) $\forall s \in \text{Sing} \mathcal{H}_{\ell} \cap \ell$, $\mu(\mathcal{H}_{\ell}, s) = 1$;
- (c) $\forall s \in \text{Sing} \mathcal{H}_{\ell} \cap \ell, \ \tau(\mathcal{H}_{\ell}, s) = \tau(\mathcal{F}, s);$
- (\mathfrak{d}) $\forall s \in \operatorname{Sing} \mathcal{H}_{\ell} \cap \ell$, $\operatorname{CS}(\mathcal{H}_{\ell}, \ell, s) = \operatorname{CS}(\mathcal{F}, \ell, s)$.

Since $\mathrm{CS}(\mathcal{F},\ell_m^{(1)},m)\mathrm{CS}(\mathcal{F},\ell_m^{(2)},m)=1$, relation (3) implies that $\mathrm{CS}(\mathcal{H}_{\ell_m^{(1)}},\ell_m^{(1)},m)\mathrm{CS}(\mathcal{H}_{\ell_m^{(2)}},\ell_m^{(2)},m)=1$. This equality and Table 1 lead to

$$\{\mathrm{CS}(\mathcal{H}_{\ell_m^{(1)}},\ell_m^{(1)},m),\mathrm{CS}(\mathcal{H}_{\ell_m^{(2)}},\ell_m^{(2)},m)\} = \{-3,-\tfrac{1}{3}\} \quad \text{or} \quad \mathrm{CS}(\mathcal{H}_{\ell_m^{(1)}},\ell_m^{(1)},m) = \mathrm{CS}(\mathcal{H}_{\ell_m^{(2)}},\ell_m^{(2)},m) = -1.$$

At first let us suppose that it is possible to choose $m \in \Sigma$ so that

$$\{ CS(\mathcal{H}_{\ell_m^{(1)}}, \ell_m^{(1)}, m), CS(\mathcal{H}_{\ell_m^{(2)}}, \ell_m^{(2)}, m) \} = \{-3, -\frac{1}{3}\}.$$

By renumbering the $\ell_m^{(i)}$ we can assume that $CS(\mathcal{H}_{\ell_m^{(1)}},\ell_m^{(1)},m)=-\frac{1}{3}$ and $CS(\mathcal{H}_{\ell_m^{(2)}},\ell_m^{(2)},m)=-3$. Consulting Table 1, we see that

$$\mathcal{T}_{\mathcal{H}_{\ell_m^{(1)}}} = 2 \cdot R_3, \qquad \qquad \mathcal{T}_{\mathcal{H}_{\ell_m^{(2)}}} \in \Big\{ 3 \cdot R_1 + 1 \cdot R_3, 2 \cdot R_1 + 2 \cdot R_2 \Big\}.$$

Therefore, it follows from relations (α) and (α) that \mathcal{F} possesses two radial singularities m_1, m_2 of order 3 on the line $\ell_m^{(1)}$ and a radial singularity m_3 of order 2 or 3 on the line $\ell_m^{(2)}$.

We will see that the radiality order of the singularity m_3 of $\mathcal F$ is necessarily 3, *i.e.* $\tau(\mathcal F, m_3) = 4$. By [3, Proposition 2, page 23], the fact that $\tau(\mathcal F, m_1) + \tau(\mathcal F, m_3) \ge 4 + 3 > \deg \mathcal F$ implies the invariance by $\mathcal F$ of the line $\ell = (m_1 m_3)$; if $\tau(\mathcal F, m_3)$ were equal to 3, then relations ($\mathfrak a$), ($\mathfrak b$) and ($\mathfrak c$), combined with the convexity of the foliation $\mathcal H_\ell$, would imply that $\mathcal T_{\mathcal H_\ell} = 1 \cdot R_1 + 1 \cdot R_2 + 1 \cdot R_3$ so that (see Table 1) $\mathcal H_\ell$ would possess a

singularity m' on the line ℓ satisfying $CS(\mathcal{H}_{\ell},\ell,m') \in \{-\frac{13+2\sqrt{13}}{13},-\frac{13-2\sqrt{13}}{13}\}$ which is not possible. By construction, the three points m_1 , m_2 and m_3 are not aligned. We have thus shown that \mathcal{F} admits three non-aligned radial singularities of order 3. By [4, Proposition 6.3] the foliation \mathcal{F} is linearly conjugated to the FERMAT foliation \mathcal{F}_0^4 .

Let us now consider the eventuality $\mathrm{CS}(\mathcal{H}_{\ell_m^{(1)}},\ell_m^{(1)},m)=\mathrm{CS}(\mathcal{H}_{\ell_m^{(2)}},\ell_m^{(2)},m)=-1$ for any choice of $m\in\Sigma$. In this case, Table 1 leads to $\mathcal{T}_{\mathcal{H}_{\ell_m^{(i)}}}=3\cdot\mathrm{R}_2$ for i=1,2. Then, as before, by using relations (\mathfrak{a}) , (\mathfrak{b}) and (\mathfrak{c}) ,

we obtain that \mathcal{F} possesses exactly three radial singularities of order 2 on each line $\ell_m^{(i)}$. Moreover, every line joining a radial singularity of order 2 of \mathcal{F} on $\ell_m^{(1)}$ and a radial singularity of order 2 of \mathcal{F} on $\ell_m^{(2)}$ must contain necessarily a third radial singularity of order 2 of \mathcal{F} . We can then choose a homogeneous coordinate system $[x:y:z]\in\mathbb{P}^2_{\mathbb{C}}$ so that the points $m_1=[0:0:1], m_2=[1:0:0]$ and $m_3=[0:1:0]$ are radial singularities of order 2 of \mathcal{F} . Moreover, in this coordinate system the lines x=0, y=0, z=0 must be invariant by \mathcal{F} and there exist $x_0,y_0,z_0\in\mathbb{C}^*$ such that the points $m_4=[x_0:0:1], m_5=[1:y_0:0], m_6=[0:1:z_0]$ are radial singularities of order 2 of \mathcal{F} . The equalities $v(\mathcal{F},m_1)=1, \tau(\mathcal{F},m_1)=3$ and the invariance of the line z=0 by \mathcal{F} ensure that every 1-form ω defining \mathcal{F} in the affine chart z=1 is of type

$$\omega = (xdy - ydx)(\gamma + c_0x + c_1y) + (\alpha_0x^3 + \alpha_1x^2y + \alpha_2xy^2 + \alpha_3y^3)dx + (\beta_0x^3 + \beta_1x^2y + \beta_2xy^2 + \beta_3y^3)dy + (a_0x^4 + a_1x^3y + a_2x^2y^2 + a_3xy^3 + a_4y^4)dx + (b_0x^4 + b_1x^3y + b_2x^2y^2 + b_3xy^3 + b_4y^4)dy,$$

where $a_i, b_i, c_i, \alpha_k, \beta_k \in \mathbb{C}$ and $\gamma \in \mathbb{C}^*$.

In the affine chart x = 1, resp. y = 1, the foliation \mathcal{F} is given by

$$\theta = z^{3}(\gamma z + c_{0} + c_{1}y)dy - (\alpha_{0}z + \alpha_{1}yz + \alpha_{2}y^{2}z + \alpha_{3}y^{3}z + a_{0} + a_{1}y + a_{2}y^{2} + a_{3}y^{3} + a_{4}y^{4})dz$$

$$- (\beta_{0}z + \beta_{1}yz + \beta_{2}y^{2}z + \beta_{3}y^{3}z + b_{0} + b_{1}y + b_{2}y^{2} + b_{3}y^{3} + b_{4}y^{4})(ydz - zdy),$$
resp.
$$\eta = -z^{3}(\gamma z + c_{0}x + c_{1})dx - (\beta_{0}x^{3}z + \beta_{1}x^{2}z + \beta_{2}xz + \beta_{3}z + b_{0}x^{4} + b_{1}x^{3} + b_{2}x^{2} + b_{3}x + b_{4})dz$$

$$+ (\alpha_{0}x^{3}z + \alpha_{1}x^{2}z + \alpha_{2}xz + \alpha_{3}z + a_{0}x^{4} + a_{1}x^{3} + a_{2}x^{2} + a_{3}x + a_{4})(zdx - xdz).$$

A straightforward computation shows that

$$\begin{pmatrix} J^2_{(y,z)=(0,0)}\theta \end{pmatrix} \wedge \left(y\mathrm{d}z - z\mathrm{d}y\right) = -zP(y,z)\mathrm{d}y \wedge \mathrm{d}z, \qquad \qquad \left(J^2_{(x,z)=(0,0)}\eta\right) \wedge \left(z\mathrm{d}x - x\mathrm{d}z\right) = zQ(x,z)\mathrm{d}x \wedge \mathrm{d}z, \\ \left(J^2_{(x,y)=(x_0,0)}\omega\right) \wedge \left((x-x_0)\mathrm{d}y - y\mathrm{d}x\right) = x_0R(x,y)\mathrm{d}x \wedge \mathrm{d}y, \qquad \left(J^2_{(y,z)=(y_0,0)}\theta\right) \wedge \left((y-y_0)\mathrm{d}z - z\mathrm{d}y\right) = -zS(y,z)\mathrm{d}y \wedge \mathrm{d}z, \\ \left(J^2_{(x,z)=(0,z_0)}\eta\right) \wedge \left((z-z_0)\mathrm{d}x - x\mathrm{d}z\right) = T(x,z)\mathrm{d}x \wedge \mathrm{d}z$$

with

$$P(y,z) = a_0 + a_1 y + \alpha_0 z + a_2 y^2 + \alpha_1 yz,$$

$$Q(x,z) = b_4 + b_3x + \beta_3z + b_2x^2 + \beta_2xz,$$

$$R(x,y) = -x_0^3(\alpha_0 + 3a_0x_0) + x_0^2(4\alpha_0 + 11a_0x_0)x + (\gamma + \alpha_1x_0^2 + \beta_0x_0^2 + 2a_1x_0^3 + 3b_0x_0^3)y - 2x_0(3\alpha_0 + 7a_0x_0)x^2 + (c_0 - 3\alpha_1x_0 - 3\beta_0x_0 - 5a_1x_0^2 - 8b_0x_0^2)xy + (c_1 - \alpha_2x_0 - \beta_1x_0 - a_2x_0^2 - 2b_1x_0^2)y^2 + (3\alpha_0 + 6a_0x_0)x^3 + (2\alpha_1 + 3\beta_0 + 3a_1x_0 + 6b_0x_0)x^2y + (\alpha_2 + 2\beta_1 + a_2x_0 + 3b_1x_0)xy^2 + (\beta_2 + b_2x_0)y^3,$$

$$S(y,z) = a_0 + b_0 y_0 + a_3 y_0^3 + 3a_4 y_0^4 + b_3 y_0^4 + 3b_4 y_0^5 + (a_1 + b_1 y_0 - 3a_3 y_0^2 - 8a_4 y_0^3 - 3b_3 y_0^3 - 8b_4 y_0^4)y$$

$$+ (\alpha_0 + \beta_0 y_0 - \alpha_2 y_0^2 - 2\alpha_3 y_0^3 - \beta_2 y_0^3 - 2\beta_3 y_0^4)z + (a_2 + 3a_3 y_0 + b_2 y_0 + 6a_4 y_0^2 + 3b_3 y_0^2 + 6b_4 y_0^3)y^2$$

$$+ (\alpha_1 + 2\alpha_2 y_0 + \beta_1 y_0 + 3\alpha_3 y_0^2 + 2\beta_2 y_0^2 + 3\beta_3 y_0^3)yz,$$

$$T(x,z) = -b_4 z_0 - z_0 (a_4 + b_3 - c_1 z_0^2 - 3\gamma z_0^3) x + (b_4 - \beta_3 z_0) z - z_0 (a_3 + b_2 + \beta_1 z_0 + 2c_0 z_0^2) x^2 + (\beta_2 + 3c_1 z_0 + 6\gamma z_0^2) x z^2 + (b_3 - \alpha_3 z_0 - \beta_2 z_0 - 3c_1 z_0^2 - 8\gamma z_0^3) x z + \beta_3 z^2 - z_0 (a_2 + \alpha_1 z_0) x^3 + (b_2 - \alpha_2 z_0 + \beta_1 z_0 + 3c_0 z_0^2) x^2 z,$$

so that the equality $\tau(\mathcal{F}, m_2) = 3$ (resp. $\tau(\mathcal{F}, m_3) = 3$, resp. $\tau(\mathcal{F}, m_4) = 3$, resp. $\tau(\mathcal{F}, m_5) = 3$, resp. $\tau(\mathcal{F}, m_6) = 3$) implies that the polynomial P (resp. Q, resp. R, resp. S, resp. T) is identically zero. From P = Q = 0 we obtain $a_0 = a_1 = a_2 = \alpha_0 = \alpha_1 = b_4 = b_3 = b_2 = \beta_3 = \beta_2 = 0$. Next, from the equalities R = S = T = 0 we deduce that

$$c_0 = 2\gamma y_0 z_0 (x_0 y_0 z_0 + 1), \qquad c_1 = -2\gamma z_0, \qquad \alpha_2 = 2\gamma y_0 z_0^2 (x_0 y_0 z_0 + 2), \quad \alpha_3 = -2\gamma z_0^2, \quad \beta_0 = 2\gamma x_0 y_0^3 z_0^3, \\ \beta_1 = -2\gamma y_0 z_0^2 (2x_0 y_0 z_0 + 1), \quad a_3 = -2\gamma y_0 z_0^3, \quad a_4 = \gamma z_0^3, \qquad b_0 = -\gamma y_0^3 z_0^3, \quad b_1 = 2\gamma y_0^2 z_0^3, \\ (x_0 y_0 z_0)^2 + x_0 y_0 z_0 + 1 = 0.$$

Let us set $\rho = x_0 y_0 z_0$; then $\rho^2 + \rho + 1 = 0$ and ω is of type

$$\begin{split} \omega &= \gamma \Big(x \mathrm{d} y - y \mathrm{d} x \Big) \Big(1 + 2 y_0 z_0 (\rho + 1) x - 2 z_0 y \Big) + 2 \gamma z_0^2 y^2 \Big(y_0 (\rho + 2) x - y \Big) \mathrm{d} x + \gamma z_0^3 y^3 \Big(y - 2 y_0 x \Big) \mathrm{d} x \\ &+ 2 \gamma y_0 z_0^2 x^2 \Big(y_0 \rho x - (2 \rho + 1) y \Big) \mathrm{d} y + \gamma y_0^2 z_0^3 x^3 \Big(2 y - y_0 x \Big) \mathrm{d} y. \end{split}$$

This 1-form is linearly conjugated to

$$\omega_H^4 = (2x^3 - y^3 - 1)ydx + (2y^3 - x^3 - 1)xdy$$
.

Indeed, the fact that ρ satisfies $\rho^2 + \rho + 1 = 0$ implies that

$$\omega_H^4 = \frac{9y_0z_0^2}{\gamma(\rho - 1)}\phi^*\omega, \quad \text{where } \phi = \left(\frac{2\rho + 1 - (\rho + 2)x - (\rho + 2)y}{3y_0z_0}, \frac{(\rho - 1)x - (2\rho + 1)y + \rho + 2}{3z_0}\right).$$

We thank the anonymous referee for making us the following observation concerning the end of the proof of Theorem B.

Remark 3.5. — Once one shows that a degree 4 foliation \mathcal{F} on $\mathbb{P}^2_{\mathbb{C}}$ with 12 invariant lines is such that each line contains 3 radial singularities of order 2, it is possible to show that the foliation is Hesse's pencil using an argument more geometric than the lengthy computations carried out before. Indeed let ℓ_0 be one of the invariant lines. Let ℓ_1 and ℓ_2 be the other invariant lines intersecting ℓ_0 at the two non radial singularities of \mathcal{F} over ℓ_0 . We claim that the intersection $p_0 = \ell_1 \cap \ell_2$ is a non radial singularity of \mathcal{F} . Aiming a contradiction assume this is not the case. As we have seen before, lines through two radial singular points of order 2 must be invariant, therefore the lines joining p_0 and $\ell_0 \cap \mathrm{Sing}(\mathcal{F}) = \{p_1, p_2, r_1, r_2, r_3\}$ are all invariant. Therefore p_0

must be a radial singular point of order 4: contradiction. It follows that we can divide the 12 invariant lines of \mathcal{F} into 4 triangles ($\ell_0 \cup \ell_1 \cup \ell_2$ is one of them) such that any two triangles have intersection equal to the 9 radial singular points of \mathcal{F} (the non radial singularities are the vertices). There is a pencil \mathcal{P} of cubics containing these four triangles, which have 12 lines in common with the foliation \mathcal{F} . It turns out that $\mathcal{P} = \mathcal{F}$ because otherwise $12 \le \deg \operatorname{Tang}(\mathcal{F}, \mathcal{P}) = \deg \mathcal{F} + \deg \mathcal{P} + 1 = 9$ (see for instance [12, Proposition 1.3.2]). Since two triangles intersect transversely, the general element of the pencil is smooth. Now, if we take a smooth cubic $\mathcal{C} = \{f(x,y,z) = 0\}$ in the pencil then its Hessian $\{\det(\operatorname{Hess}(f)) = 0\}$ is another cubic which intersect \mathcal{C} at its inflection points. But since \mathcal{F} is a convex foliation these points must be the 9 radial singularities of \mathcal{F} , i.e. the base points of the pencil. Hence \mathcal{F} is the pencil defined by a smooth cubic and its Hessian. Thus \mathcal{F} is tangent to the Hesse pencil according to [1, Section 2].

References

- [1] M. Artebani and I. V. Dolgachev. The Hesse pencil of plane cubic curves. *Enseign. Math.* (2), 55(3-4):235–273, 2009.
- [2] P. Baum and R. Bott. Singularities of holomorphic foliations. J. Differential Geometry, 7:279–342, 1972.
- [3] M. Brunella. Birational geometry of foliations. IMPA Monographs, 1. Springer, Cham, 2015. xiv+130 pp.
- [4] S. Bedrouni and D. Marín. Tissus plats et feuilletages homogènes sur le plan projectif complexe. *Bull. Soc. Math. France*, 146(3):479–516, 2018.
- [5] S. Bedrouni. Feuilletages de degré trois du plan projectif complexe ayant une transformée de Legendre plate. PhD thesis, University of Sciences and Technology Houari Boumediene, 2017. Available on https://arxiv.org/abs/1712.03895.
- [6] C. Camacho and P. Sad. Invariant varieties through singularities of holomorphic vector fields. *Ann. of Math.* (2), 115(3):579–595, 1982.
- [7] D. Cerveau, J. Déserti, D. Garba Belko, and R. Meziani. Géométrie classique de certains feuilletages de degré deux. *Bull. Braz. Math. Soc.* (*N.S.*), 41(2):161–198, 2010.
- [8] K. Cordwell, S. Gilbertson, N. Nuechterlein, K. M. Pilgrim, and S. Pinella. On the classification of critically fixed rational maps. *Conform. Geom. Dyn.*, 19:51–94, 2015.
- [9] C. Favre and J. V. Pereira. Webs invariant by rational maps on surfaces. *Rend. Circ. Mat. Palermo* (2), 64(3):403–431, 2015.
- [10] D. Marín and J. V. Pereira. Rigid flat webs on the projective plane. Asian J. Math. 17(1):163–191, 2013.
- [11] J. V. Pereira. Vector fields, invariant varieties and linear systems. *Ann. Inst. Fourier (Grenoble)*, 51(5):1385–1405, 2001.
- [12] J. V. Pereira and L. Pirio. *An invitation to web geometry*. IMPA Monographs, 2. Springer, Cham, 2015. xvii+213 pp.

June 29, 2019

SAMIR BEDROUNI, Faculté de Mathématiques, USTHB, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algérie *E-mail* : sbedrouni@usthb.dz

DAVID MARÍN, BGSMath and Departament de Matemàtiques Universitat Autònoma de Barcelona E-08193 Bellaterra (Barcelona) Spain • E-mail : davidmp@mat.uab.es