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CONVEX FOLIATIONS OF DEGREE 5 ON THE

COMPLEX PROJECTIVE PLANE

Samir Bedrouni and David Maŕın

Abstract: We show that, up to automorphisms of P2
C, there are fourteen homoge-

neous convex foliations of degree 5 on P2
C. We establish some properties of the Fermat

foliation Fd
0 of degree d ≥ 2 and of the Hilbert modular foliation F5

H of degree 5.

As a consequence, we obtain that every reduced convex foliation of degree 5 on P2
C is

linearly conjugated to one of the two foliations F5
0 or F5

H , which is a partial answer
to a question posed in 2013 by D. Maŕın and J. V. Pereira. We end with two con-

jectures about the Camacho–Sad indices along the line at infinity at the non radial

singularities of the homogeneous convex foliations of degree d ≥ 2 on P2
C.
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1. Introduction and statements of results

This article is part of a series of works by the authors ([1, 2, 3])
on holomorphic foliations on the complex projective plane. For the
definitions and notations used (radial singularities, Camacho–Sad in-
dex CS(F , `, s), homogeneous foliations, etc.) we refer to [2, Sections 1
and 2].

Following [9], a foliation on the complex projective plane is said to
be convex if its leaves other than straight lines have no inflection points.
Notice (see [12]) that if F is a foliation of degree d ≥ 1 on P2

C, then
F cannot have more than 3d (distinct) invariant lines. Moreover, if this
bound is reached, then F is necessarily convex; in this case F is said to
be reduced convex.

To our knowledge the only reduced convex foliations known in the
literature are those presented in [9, Table 1.1]: the Fermat foliation Fd0
of degree d, the Hesse pencil F4

H of degree 4, the Hilbert modular fo-
liation F5

H of degree 5, and a foliation F7
H of degree 7 related to the
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extended Hesse arrangement defined in affine chart respectively by the
1-forms

ωd0 = (xd − x)dy − (yd − y)dx,

ω4
H = (2x3 − y3 − 1)ydx+ (2y3 − x3 − 1)xdy,

ω5
H = (y2 − 1)(y2 − (

√
5− 2)2)(y +

√
5x)dx

− (x2 − 1)(x2 − (
√

5− 2)2)(x+
√

5y)dy,

ω7
H = (y3 − 1)(y3 + 7x3 + 1)ydx− (x3 − 1)(x3 + 7y3 + 1)xdy.

D. Maŕın and J. V. Pereira ([9, Problem 9.1]) asked the following ques-
tion: are there other reduced convex foliations? The answer in degree 2,
resp. 3, resp. 4, to this question is negative, thanks to [8, Proposition 7.4],
resp. [2, Corollary 6.9], resp. [3, Theorem B]. In this paper we show that
the answer in degree 5 to [9, Problem 9.1] is also negative. To do this, we
follow the same approach as that described in degree 4 in [3]. It mainly
consists of using Proposition 3.2 of [3] which allows us to associate to
every pair (F , `), where F is a reduced convex foliation of degree d on P2

C
and ` an invariant line of F , a homogeneous convex foliation H`F of de-
gree d on P2

C belonging to the Zariski closure of the Aut(P2
C)-orbit of F ,

and then to study for d = 5 the set of foliations H`F where ` runs through
the invariant lines of F .

A homogeneous foliation H of degree d on P2
C is given, for a suit-

able choice of affine coordinates (x, y), by a homogeneous 1-form ω =
A(x, y)dx + B(x, y)dy, where A, B are complex homogeneous polyno-
mials of degree d with gcd(A,B) = 1. By [2] one associates to such a
foliation the rational map GH : P1

C → P1
C defined by

GH([x : y]) = [−A(x, y) : B(x, y)].

Notice (see [2]) that a homogeneous foliation H on P2
C is convex if

and only if its associated map GH is critically fixed, i.e. every critical
point of GH is a fixed point of GH. More precisely, a homogeneous folia-

tion H of degree d on P2
C is convex of type TH =

∑d−1
k=1 rk ·Rk (i.e. hav-

ing r1, resp. r2, . . . , resp. rd−1 radial singularities of order 1, resp. 2, . . . ,
resp. d− 1, the Rk’s being just symbols) if and only if the map GH pos-
sesses r1, resp. r2, . . . , resp. rd−1 fixed critical points of multiplicity 1,

resp. 2 . . . , resp. d− 1, with
∑d−1
k=1 krk = 2d− 2.

Using results of [6, pp. 79–80] on critically fixed rational maps of
degree 5 from P1

C to itself and studying the convexity of a homogeneous
foliation H of degree 5 on P2

C according to the shape of its type TH,
we obtain the classification, up to automorphisms of P2

C, of homogeneous
convex foliations of degree 5 on P2

C.



Convex Foliations of Degree 5 on the Complex Projective Plane 411

Theorem A. Up to automorphisms of P2
C there are fourteen homoge-

neous convex foliations H1, . . . ,H14 of degree 5 on the complex projec-
tive plane. They are respectively described in affine chart by the following
1-forms:

ω1 = y5dx− x5dy;

ω2 = y2(10x3 + 10x2y + 5xy2 + y3)dx− x4(x+ 5y)dy;

ω3 = y3(10x2 + 5xy + y2)dx− x3(x2 + 5xy + 10y2)dy;

ω4 = y4(5x− 3y)dx+ x4(3x− 5y)dy;

ω5 = y3(5x2 − 3y2)dx− 2x5dy;

ω6 = y3(220x2 − 165xy + 36y2)dx− 121x5dy;

ω7 = y4((5−
√

5)x− 2y)dx+ x4((7− 3
√

5)x− 2(5− 2
√

5)y)dy;

ω8 = y4(5(3−
√

21)x+ 6y)dx+x4(3(23− 5
√

21)x−10(9− 2
√

21)y)dy;

ω9 = y3(2(5 + a)x2 − (15 + a)xy + 6y2)dx− x4((1− a)x+ 2ay)dy,

where a =
√

5(4
√

61− 31);

ω10 = y3(2(5 + ib)x2 − (15 + ib)xy + 6y2)dx− x4((1− ib)x+ 2iby)dy,

where b =
√

5(4
√

61 + 31);

ω11 = y3(5x2 − y2)dx+ x3(x2 − 5y2)dy;

ω12 = y3(20x2 − 5xy − y2)dx+ x3(x2 + 5xy − 20y2)dy;

ω13 = y2(5x3 − 10x2y + 10xy2 − 4y3)dx− x5dy;

ω14 = y3(u(σ)x2 + v(σ)xy + w(σ)y2)dx

+ σx4(2σ(σ2 − σ + 1)x− (σ + 1)(3σ2 − 5σ + 3)y)dy,

where u(σ) = (σ2− 3σ+ 1)(σ2 + 5σ+ 1), v(σ) = −2(σ+ 1)(σ2− 5σ+ 1),

w(σ) = (σ2− 7σ+ 1), σ = ρ+ i
√

1
6 −

4
3ρ−

1
3ρ

2, and ρ is the unique real

number satisfying 8ρ3 − 52ρ2 + 134ρ− 15 = 0.

In the course of the proof of Theorem A we also obtain the following
dual result (see §2).

Theorem B. Up to conjugation by a Möbius transformation there are
fourteen critically fixed rational maps of degree 5 from the Riemann
sphere to itself, namely the maps GH1

, . . . ,GH14
.
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To every foliation F on P2
C and to every integer d ≥ 2, we associate

respectively the following two subsets of C \ {0, 1}:
• CS(F) is, by definition, the set of λ ∈ C \ {0, 1} for which there is

a line ` invariant by F and a non-degenerate singular point s ∈ `
of F such that CS(F , `, s) = λ;
• HCSd is defined as the set of λ ∈ C \ {0, 1} for which there exist

two homogeneous convex foliations H and H′ of degree d on P2
C

having respective singular points s and s′ on the line at infinity `∞
such that CS(H, `∞, s) = λ and CS(H′, `∞, s′) = 1

λ .

The following proposition, which will be proved in §2, motivates the
introduction of the sets CS(F) and HCSd.

Proposition C. Let F be a reduced convex foliation of degree d ≥ 2
on P2

C. Then

(i) ∅ 6= CS(F) ⊂ HCSd;
(ii) ∀λ ∈ CS(F), 1

λ ∈ CS(F).

Remark 1.1. In particular, for the foliations F5
H and Fd0 , we have

•
{
− 3

2 ±
√
5
2

}
= CS(F5

H) ⊂ HCS5, cf. [10, Theorem 2];

• {(1−d)±1} = CS(Fd0 ) ⊂ HCSd for any d ≥ 2, cf. [2, Example 6.5].

The following theorem gives equivalent conditions for a foliation of
degree d ≥ 2 on P2

C to be conjugated to the Fermat foliation Fd0 .

Theorem D. Let F be a foliation of degree d ≥ 2 on P2
C. The following

assertions are equivalent:

(i) F is linearly conjugated to the Fermat foliation Fd0 ;
(ii) F is reduced convex and CS(F) = {(1− d)±1};

(iii) F possesses three radial singularities of maximal order d− 1, nec-
essarily non-aligned.

In Theorem D, the implication (iii) ⇒ (i) is a slight generalization
of our previous result [2, Proposition 6.3], where we had obtained the
same conclusion but with the additional hypothesis that the three radial
singularities of F are not aligned.

Corollary E. If HCSd = {(1−d)±1}, then, up to automorphisms of P2
C,

the Fermat foliation Fd0 is the unique reduced convex foliation in degree d.

The following theorem gives equivalent conditions for a foliation of
degree 5 on P2

C to be conjugated to the Hilbert modular foliation F5
H .
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Theorem F. Let F be a foliation of degree 5 on P2
C. The following

assertions are equivalent:

(i) F is linearly conjugated to the Hilbert modular foliation F5
H ;

(ii) F is reduced convex and CS(F) =
{
− 3

2 ±
√
5
2

}
;

(iii) F possesses three radial singularities m1, m2, m3 of order 3 (nec-
essarily non-aligned) and two radial singularities of order 1 on each
invariant line (mjml), 1 ≤ j < l ≤ 3 (see Figure 1).

Figure 1. Arrangement of invariant lines of the Hilbert modular
foliation F5

H which possesses six radial singularities of order 3,
ten radial singularities of order 1, and fifteen non-radial singulari-

ties with Baum–Bott invariant −1. Through each radial singular-
ity of order k ≥ 1 pass k + 2 invariant lines.

Using essentially Theorems A, D, F, and Proposition C, we establish
the following theorem.

Theorem G. Up to automorphisms of P2
C the Fermat foliation F5

0 and
the Hilbert modular foliation F5

H are the only reduced convex foliations
of degree five on P2

C.

2. Proof of the main results

We need to know the numbers rij of radial singularities of order j
of the homogeneous foliations Hi, i = 1, . . . , 14, j = 1, . . . , 4, and the
values of the Camacho–Sad indices CS(Hi, `∞, s), s ∈ Sing(Hi) ∩ `∞,
i = 1, . . . , 14. For this reason, we have computed, for each i = 1, . . . , 14,
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the type THi
of Hi and the following polynomial (called Camacho–Sad

polynomial of the homogeneous foliation Hi):

CSHi
(λ) =

∏
s∈Sing(Hi)∩`∞

(λ− CS(Hi, `∞, s)).

Table 1 below summarizes the types and Camacho–Sad polynomials of
the foliations Hi, i = 1, . . . , 14.

i THi
CSHi

(λ)

1 2 · R4 (λ− 1)2
(
λ+ 1

4

)4
2 1 · R1 + 1 · R3 + 1 · R4

1
491 (λ− 1)3(491λ3 + 982λ2 + 463λ+ 64)

3 2 · R2 + 1 · R4 (λ− 1)3
(
λ+ 3

7

)2(
λ+ 8

7

)
4 1 · R2 + 2 · R3 (λ− 1)3

(
λ+ 9

11

)2(
λ+ 4

11

)
5 2 · R1 + 1 · R2 + 1 · R4 (λ− 1)4

(
λ+ 3

2

)2
6 2 · R1 + 1 · R2 + 1 · R4

1
59 (λ− 1)4(59λ2 + 177λ+ 64)

7 2 · R1 + 2 · R3 (λ− 1)4(λ2 + 3λ+ 1)

8 2 · R1 + 2 · R3 (λ− 1)4
(
λ+ 3

2

)2
9 1 · R1 + 2 · R2 + 1 · R3

1
197 (λ− 1)4(197λ2 + 591λ+ 302− 10

√
61)

10 1 · R1 + 2 · R2 + 1 · R3
1

197 (λ− 1)4(197λ2 + 591λ+ 302 + 10
√

61)

11 4 · R2 (λ− 1)4
(
λ+ 3

2

)2
12 2 · R1 + 3 · R2 (λ− 1)5(λ+ 4)

13 4 · R1 + 1 · R4 (λ− 1)5(λ+ 4)

14 3 · R1 + 1 · R2 + 1 · R3 (λ− 1)5(λ+ 4)

Table 1. Types and Camacho–Sad polynomials of the homoge-
neous foliations H1, . . . ,H14.

Proof of Theorem A: Let H be a homogeneous convex foliation of de-
gree 5 on P2

C, defined in the affine chart (x, y), by the 1-form

ω = A(x, y)dx+B(x, y)dy, A,B ∈ C[x, y]5, gcd(A,B) = 1.
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By [1, Remark 2.5] the foliation H cannot have 5 + 1 = 6 distinct radial
singularities; in other words, it cannot be of one of the two types 5 ·R1 +
1 · R3 or 4 · R1 + 2 · R2. We are then in one of the following situations:

TH = 2 · R4; TH = 1 · R1 + 1 · R3 + 1 · R4;

TH = 2 · R2 + 1 · R4; TH = 1 · R2 + 2 · R3;

TH = 2 · R1 + 1 · R2 + 1 · R4; TH = 2 · R1 + 2 · R3;

TH = 1 · R1 + 2 · R2 + 1 · R3; TH = 4 · R2;

TH = 2 · R1 + 3 · R2; TH = 4 · R1 + 1 · R4;

TH = 3 · R1 + 1 · R2 + 1 · R3.

The proof consists of analyzing these eleven possibilities, either by ap-
plying some results in [2], or else by appealing to a specific classification
taken from [6].

(1) We know from [2, Propositions 4.1 and 4.2] that if a homogeneous
convex foliation of degree d ≥ 3 on P2

C is of type 2 ·Rd−1, resp. 1 ·Rν +1 ·
Rd−ν−1+1 ·Rd−1 with ν ∈ {1, 2, . . . , d−2}, then it is linearly conjugated

to the foliation Hd1, resp. Hd,ν3 , given by

ωd1 = yddx−xddy, resp. ωd,ν3 =

d∑
i=ν+1

(
d

i

)
xd−iyidx−

ν∑
i=0

(
d

i

)
xd−iyidy.

It follows that if the foliation H is of type TH = 2 · R4, resp. TH =
1 · R1 + 1 · R3 + 1 · R4, resp. TH = 2 · R2 + 1 · R4, then the 1-form ω is
linearly conjugated to

ω5
1 = y5dx− x5dy = ω1,

resp. ω5,1
3 =

5∑
i=2

(
5

i

)
x5−iyidx−

1∑
i=0

(
5

i

)
x5−iyidy = ω2,

resp. ω5,2
3 =

5∑
i=3

(
5

i

)
x5−iyidx−

2∑
i=0

(
5

i

)
x5−iyidy = ω3.

(2) Assume that TH = 1 · R2 + 2 · R3. This means that the rational

map GH : P1
C → P1

C, GH(z) = −A(1,z)
B(1,z) , possesses three fixed critical

points, one of multiplicity 2 and two of multiplicity 3. By [6, p. 79],

GH is conjugated by a Möbius transformation to z 7→ − z
4(3z−5)
5z−3 . As a

result, ω is linearly conjugated to ω4.
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(3) Let us study the possibility TH = 2 · R1 + 1 · R2 + 1 · R4. Up to
linear conjugation we can assume that, for some α ∈ C \ {0, 1}, the
points [1 : 0 : 0], [0 : 1 : 0], [1 : 1 : 0], [1 : α : 0] ∈ P2

C are radial
singularities of H with respective orders 4, 2, 1, 1 or, equivalently, that
the points ∞ = [1 : 0], [0 : 1], [1 : 1], [1 : α] ∈ P1

C are fixed and critical
for GH with respective multiplicities 4, 2, 1, 1. By [2, Lemma 3.9], there
exist constants a0, a2, b ∈ C∗, a1 ∈ C, such that

B(x, y) = bx5, A(x, y) = (a0x
2 + a1xy + a2y

2)y3,

(z − 1)2 divides P (z), (z − α)2 divides Q(z),

where P (z) :=A(1, z)+B(1, z) and Q(z) :=A(1, z)+αB(1, z). A straight-
forward computation leads to

a0 =
5a2α

3
, a1 =−5a2(α+1)

4
, b=−a2(5α−3)

12
, (α+1)(3α2−5α+3)=0.

Replacing ω by 12
a2
ω, we reduce it to

ω = y3(20αx2 − 15(α+ 1)xy + 12y2)dx− (5α− 3)x5dy,

(α+ 1)(3α2 − 5α+ 3) = 0.

This 1-form is linearly conjugated to one of the two 1-forms ω5 or ω6.
Indeed, on the one hand, if α = −1, then ω5 = − 1

4ω. On the other hand,

if 3α2 − 5α+ 3 = 0, then

ω6 =
121(15α− 16)

81(3α− 8)5
ϕ∗ω, where ϕ = ((3α− 8)x,−3y).

(4) Assume that TH = 2 ·R1 + 2 ·R3. Then the rational map GH admits
four fixed critical points, two of multiplicity 1 and two of multiplicity 3.
This implies, by [6, p. 79], that up to conjugation by a Möbius transfor-
mation, GH can be written as

z 7→ −z
4(3z + 4cz − 5c− 4)

z + c
,

where c = −1/2 ±
√

5/10 or c = −3/10 ±
√

21/10. Thus, up to linear
conjugation,

ω=y4(3y+4cy−5cx−4x)dx+x4(y+cx)dy, c∈

{
−1

2
±
√

5

10
,− 3

10
±
√

21

10

}
.
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In the case where c = −1/2 ±
√

5/10, resp. c = −3/10 ±
√

21/10, the
1-form ω is linearly conjugated to ω7, resp. ω8. Indeed, on the one hand,
if c = −1/2+

√
5/10, resp. c = −3/10+

√
21/10, then ω7 = −2(5−2

√
5)ω,

resp. ω8 = −10(9 − 2
√

21)ω. On the other hand, if c = −1/2 −
√

5/10,

resp. c = −3/10−
√

21/10, then

ω7 = −(25 + 11
√

5)ϕ∗ω, where ϕ =
(

3−
√
5

2 x, y
)
,

resp. ω8 = 5(87 + 19
√

21)ψ∗ω, where ψ =
(√

21−5
2 x, y

)
.

(5) We know from [6, p. 79] that, up to Möbius transformation, there
are two rational maps of degree 5 from the Riemann sphere to itself
having four distinct fixed critical points, one of multiplicity 1, two of
multiplicity 2, and one of multiplicity 3. Thus, up to automorphisms
of P2

C, there are two homogeneous convex foliations of degree 5 on P2
C

having type 1 ·R1 + 2 ·R2 + 1 ·R3. Now, by Table 1, we have on the one
hand CSH9

6= CSH10
, so that the foliations H9 and H10 are not linearly

conjugated, and on the other hand TH9 = TH10 = 1 ·R1 + 2 ·R2 + 1 ·R3.
It follows that if the foliation H is of type TH = 1 · R1 + 2 · R2 + 1 · R3,
then H is linearly conjugated to one of the two foliations H9 or H10.

(6) Assume that TH = 4 · R2. The rational map GH has therefore four
different fixed critical points of multiplicity 2. By [6, p. 80], up to con-
jugation by a Möbius transformation, GH can be written as

z 7→ −z
3(z2 − 5z + 5)

5z2 − 10z + 4
.

As a consequence, up to linear conjugation

ω = y3(5x2 − 5xy + y2)dx+ x3(4x2 − 10xy + 5y2)dy.

This 1-form is linearly conjugated to

ω11 =
1

8
ϕ∗ω, where ϕ = (x+ y, 2y).

(7) Assume that TH = 2·R1+3·R2. Then the rational map GH possesses
five fixed critical points, two of multiplicity 1 and three of multiplicity 2.
By [6, p. 80], GH is conjugated by a Möbius transformation to z 7→
− z

3(z2+5z−20)
20z2−5z−1 , which implies that ω is linearly conjugated to ω12.

(8) Let us consider the eventuality TH = 4·R1+1·R4. Up to isomorphism,
we can assume that, for some α, β ∈ C \ {0, 1} with α 6= β, the points
∞ = [1 : 0], [0 : 1], [1 : 1], [1 : α], [1 : β] ∈ P1

C are fixed and critical for GH,
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with respective multiplicities 4, 1, 1, 1, 1. By [2, Lemma 3.9], there exist
constants a0, a3, b ∈ C∗, a1, a2 ∈ C, such that

B(x, y) = bx5, A(x, y) = (a0x
3 + a1x

2y + a2xy
2 + a3y

3)y2,

(z − 1)2 divides P (z), (z − α)2 divides Q(z), (z − β)2 divides R(z),

where P (z) := A(1, z)+B(1, z), Q(z) := A(1, z)+αB(1, z), and R(z) :=
A(1, z) + βB(1, z). A straightforward computation gives us

b =
a3α

2(α− 1)2

2(α2 − α+ 1)
, a0 = −a3α(α+ 1)(3α2 − 5α+ 3)

2(α2 − α+ 1)
,

a1 =
a3(α4 + 2α3 − 3α2 + 2α+ 1)

α2 − α+ 1
, β =

(α+ 1)(3α2 − 5α+ 3)

5(α2 − α+ 1)
,

a2 = −a3(α+ 1)(4α2 − 5α+ 4)

2(α2 − α+ 1)
,

(α2 − 2α+ 2)(2α2 − 2α+ 1)(α2 + 1) = 0.

Multiplying ω by 2
a3

(α2 − α+ 1), we reduce it to

ω = −y2
(
α(α+ 1)(3α2 − 5α+ 3)x3 + (α+ 1)(4α2 − 5α+ 4)xy2

− 2(α2 − α+ 1)y3
)
dx

+ 2(α4 + 2α3 − 3α2 + 2α+ 1)x2y3dx+ α2(α− 1)2x5dy,

with (α2 − 2α+ 2)(2α2 − 2α+ 1)(α2 + 1) = 0. This 1-form ω is linearly
conjugated to

ω13 = − (α+ 1)(3α2 − 5α+ 3)

5α3(α− 1)4
ϕ∗ω,

where ϕ =

(
x,

5α(α− 1)2

(α+ 1)(3α2 − 5α+ 3)
y

)
.

(9) Finally, let us examine the case TH = 3 · R1 + 1 · R2 + 1 · R3. Up
to linear conjugation we can assume that the points ∞ = [1 : 0], [0 :
1], [1 : 1], [1 : α], [1 : β] ∈ P1

C, where αβ ∈ C \ {0, 1} and α 6= β, are fixed
and critical for GH, with respective multiplicities 3, 2, 1, 1, 1. A similar
reasoning as in the previous case leads to

ω = ω(α) = y3
(
(α2 − 3α+ 1)(α2 + 5α+ 1)x2

− 2(α+ 1)(α2 − 5α+ 1)xy + (α2 − 7α+ 1)y2
)
dx

+ αx4
(
2α(α2 − α+ 1)x− (α+ 1)(3α2 − 5α+ 3)y

)
dy,



Convex Foliations of Degree 5 on the Complex Projective Plane 419

with P (α) = 0 where P (z) := 3z6−39z5+194z4−203z3+194z2−39z+3.
The 1-form ω is linearly conjugated to

ω14 = y3
(
(σ2 − 3σ + 1)(σ2 + 5σ + 1)x2

− 2(σ + 1)(σ2 − 5σ + 1)xy + (σ2 − 7σ + 1)y2
)
dx

+ σx4
(
2σ(σ2 − σ + 1)x− (σ + 1)(3σ2 − 5σ + 3)y

)
dy,

where σ = ρ+i
√

1
6 −

4
3ρ−

1
3ρ

2 and ρ is the unique real number satisfying

8ρ3 − 52ρ2 + 134ρ − 15 = 0. Indeed, on the one hand, it is easy to see
that σ is a root of the polynomial P , so that ω14 = ω(σ). On the other
hand, a straightforward computation shows that, if α1 and α2 are any
two roots of P , then

ω(α2) = − µ

21600
(13035α5

1 − 167802α4
1 + 821633α3

1 − 777667α2
1

+ 743778α1 − 76185)ϕ∗(ω(α1))

with µ = 195α4
2 − 202α3

2 + 233α2
2 − 42α2 + 3, ϕ =

(
x,− λ

43200y
)
, where

λ = (39α5
2 − 501α4

2 + 2447α3
2 − 2293α2

2 + 2343α2 − 477)

× (24α5
1 − 309α4

1 + 1510α3
1 − 1415α2

1 + 1446α1 − 21).

The foliations H1, . . . ,H14 are not linearly conjugated because we
have THi 6= THj or CSHi 6= CSHj for all i, j ∈ {1, . . . , 14} with i 6= j (see
Table 1). This ends the proof Theorem A.

Let F be a reduced convex foliation of degree d ≥ 1 on P2
C and let

` be one of its 3d invariant lines. To the pair (F , `) we can associate,
thanks to [3], a homogeneous convex foliation H`F of degree d on P2

C,
called homogeneous degeneration of F along `, as follows. Let us fix
homogeneous coordinates [x : y : z] ∈ P2

C such that ` = (z = 0). Since `
is F-invariant, F is described in the affine chart z = 1 by a 1-form ω of
type

ω =

d∑
i=0

(Ai(x, y)dx+Bi(x, y)dy),

where Ai, Bi are homogeneous polynomials of degree i. By [3, Proposi-
tion 3.2] we have gcd(Ad, Bd) = 1, which allows us to define the folia-
tion H`F by the 1-form

ωd = Ad(x, y)dx+Bd(x, y)dy.

It is easy to check that this definition is intrinsic, i.e. it does not depend
on the choice of the homogeneous coordinates [x : y : z] nor on the choice
of the 1-form ω describing F .
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The following result, taken from [3, Proposition 3.2], will be very
useful to us.

Proposition 2.1 ([3]). With the previous notations, the foliation H`F
has the following properties:

(i) H`F belongs to the Zariski closure of the Aut(P2
C)-orbit of F ;

(ii) ` is invariant by H`F ;
(iii) Sing(H`F ) ∩ ` = Sing(F) ∩ `;
(iv) every singular point of H`F on ` is non-degenerate;
(v) a point s ∈ ` is a radial singularity of order k ≤ d − 1 for H`F if

and only if it is for F ;
(vi) ∀ s ∈ Sing(H`F ) ∩ `, CS(H`F , `, s) = CS(F , `, s).

Proof of Proposition C: Since by hypothesis F is reduced convex, all
its singularities are non-degenerate ([2, Lemma 6.8]). Let ` be an in-
variant line of F . By [4, Proposition 2.3] it follows that F possesses
exactly d + 1 singularities on `. The Camacho–Sad formula (see [5])∑
s∈Sing(F)∩`

CS(F , `, s) = 1 then implies the existence of s ∈ Sing(F) ∩ `

such that CS(F , `, s) ∈ C \ {0, 1}; as a result CS(F) 6= ∅.
Let λ ∈ CS(F) ⊂ C \ {0, 1}. There is a line `1 invariant by F and

a singular point s ∈ `1 of F such that CS(F , `1, s) = λ. By [3, Lem-
ma 3.1], through the point s passes a second F-invariant line `2. Since
CS(F , `1, s)CS(F , `2, s) = 1, we have CS(F , `2, s) = 1

λ ; thus 1
λ ∈ CS(F).

Moreover, by [3, Proposition 3.2] (cf. assertion (vi) of Proposition 2.1
above), we have

CS(H`1F , `1, s)=CS(F , `1, s)=λ and CS(H`2F , `2, s)=CS(F , `2, s)=
1

λ
,

which shows that λ ∈ HCSd, and hence CS(F) ⊂ HCSd.

An immediate consequence of Table 1 is the following:

Corollary 2.2. HCS5 =
{
−4±1,− 3

2 ±
√
5
2

}
= CS(F5

0 ) ∪ CS(F5
H).

The proof of Theorem D uses Lemmas 2.3 and 2.4 stated below.

Lemma 2.3. Let F be a foliation of degree d ≥ 2 on P2
C having two

radial singularities m1, m2 of maximal order d−1. Then the line (m1m2)
cannot contain a third radial singularity of F .

Proof: Let us choose homogeneous coordinates [x : y : z] ∈ P2
C such that

m1 = [0 : 1 : 0] and m2 = [1 : 0 : 0]. Thanks to [4, Proposition 2.2] (cf. [1,
Remark 1.2]), the line ` = (m1m2) must be invariant by F . Then the
foliation F is given in the affine chart z = 1 by a 1-form ω of type
ω = ω0+ω1+· · ·+ωd, where, for 0 ≤ i ≤ d, ωi = Ai(x, y)dx+Bi(x, y)dy,
with Ai, Bi homogeneous polynomials of degree i.
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Writing explicitly that the points mj , j = 1, 2, are radial singulari-
ties of maximal order d − 1 of F (see [2, Proposition 6.3]), we obtain
that the highest degree homogeneous part ωd of ω is of the form ωd =
ayddx+ bxddy, with a, b ∈ C∗. Thus, ωd defines a homogeneous convex
foliation H of degree d on P2

C of type TH = 2 · Rd−1. If we would know
that F was a convex reduced foliation, then H = H`F for the invariant
line ` = (m1m2) and we could apply Proposition 2.1 to conclude. Any-
way, reasoning as in the proof of [2, Proposition 6.4], we see that F andH
have the same singularities on the line (m1m2) and that every singular-
ity s of F on (m1m2) distinct from m1 and m2 is non-degenerate and has
Camacho–Sad index CS(F , (m1m2), s) = CS(H, (m1m2), s) = 1

1−d 6= 1,
hence the lemma follows.

Lemma 2.4. Let H be a homogeneous convex foliation of degree d ≥ 2
on P2

C. Assume that every non radial singularity s of H on `∞ has Cama-
cho–Sad index CS(H, `∞, s) ∈ {(1− d)±1}. Denote by κ0 the number of
(distinct) radial singularities of H and by κ1 (resp. κ2) the number of sin-
gularities s∈`∞ of H such that CS(H, `∞, s)=1−d (resp. CS(H, `∞, s)=
1

1−d). Then

• either (κ0, κ1, κ2) = (d, 1, 0);
• or (κ0, κ1, κ2) = (2, 0, d− 1), in which case TH = 2 · Rd−1.

Before proving this lemma let us make two remarks:

Remark 2.5. By [7, Theorem 4.3], every homogeneous convex foliation
of degree d on the complex projective plane has exactly d+1 singularities
on the line at infinity, necessarily non-degenerate.

Remark 2.6. A straightforward computation shows that, if a homoge-
neous foliation H on P2

C possesses a non-degenerate singularity s ∈ `∞
such that CS(H, `∞, s) = 1, then s is necessarily radial. In particular,
when H is convex, a singularity s ∈ `∞ of H is radial if and only if it
has Camacho–Sad index CS(H, `∞, s) = 1.

Proof of Lemma 2.4: The Camacho–Sad formula∑
s∈Sing(H)∩`∞

CS(H, `∞, s) = 1

(see [5]) and Remarks 2.5 and 2.6 imply that

κ0 + κ1 + κ2 = d+ 1 and κ0 + (1− d)κ1 +
κ2

1− d
= 1.

From these two equations we obtain κ0 = 2 + κ1(d − 2) and κ2 = (d −
1)(1− κ1) ≥ 0, so that κ1 ∈ {0, 1}, as required.
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Proof of Theorem D: The implication (iii)⇒ (i) follows from [2, Propo-
sition 6.3] and from Lemma 2.3.

The fact that (i) implies (ii) follows from the reduced convexity of the
foliation Fd0 and from the equality CS(Fd0 ) = {(1− d)±1} (Remark 1.1).

Let us show that (ii) implies (iii). Assume that F is reduced convex
and that CS(F) = {(1 − d)±1}. Let m be a non radial singular point

of F ; through m pass exactly two F-invariant lines `
(1)
m and `

(2)
m ([3,

Lemma 3.1]). It follows that CS(F , `(i)m ,m) = (1− d)±1 for i = 1, 2. Up

to renumbering the `
(i)
m , we can assume that CS(F , `(1)m ,m) = 1

1−d and

CS(F , `(2)m ,m) = 1 − d for any choice of the non radial singularity m ∈
SingF . Moreover, according to Proposition 2.1, for any invariant line `
of F and for any non radial singularity s ∈ ` of the homogeneous degen-
eration H`F of F along `, we have CS(H`F , `, s) = CS(F , `, s) ∈ C \ {0, 1}
and therefore CS(H`F , `, s) ∈ {(1− d)±1}. It follows by Lemma 2.4 that

H`
(1)
m

F is of type 2·Rd−1. This implies, according to assertion (v) of Propo-
sition 2.1, that F possesses two radial singularities m1, m2 of maximal

order d− 1 on the line `
(1)
m . Let m′ be another non radial singular point

of F not belonging to the line `
(1)
m . As in [2, Section 1], for any s ∈ SingF

let us denote by τ(F , s) the tangency order of F with a generic line pass-
ing through s. For i = 1, 2 we have τ(F ,m′)+τ(F ,mi) = 1+d > degF ,
which implies (cf. [4, Proposition 2.2]) that the lines (m′mi) are invari-

ant by F . Thus, the line `
(1)
m′ is one of the lines (m′m1) or (m′m2) and

it contains in turn another radial singularity m3 of maximal order d− 1
of F .

The proof of Theorem F uses the following lemma for d = 5, which
we state in arbitrary degree d as it could be used in other situations. It
can be proved in the same way as in [2, Proposition 6.3].

Lemma 2.7. Let F be a foliation of degree d ≥ 3 on P2
C. Assume that

the points m1 = [0 : 0 : 1], m2 = [1 : 0 : 0], and m3 = [0 : 1 : 0] are radial
singularities of order d − 2 of F . Let ω be a 1-form defining F in the
affine chart z = 1. Then ω is of the form

ω = (xdy − ydx)(λ0,0 + λ1,0x+ λ0,1y + λ1,1xy)

+ yd−2(a1,0x+ a0,1y + a1,1xy + a0,2y
2)dx

+ xd−2(b1,0x+ b0,1y + b1,1xy + b2,0x
2)dy,

where λi,j , ai,j , bi,j ∈ C with λ0,0 6= 0.
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Proof of Theorem F: The implication (i)⇒ (ii) follows from the reduced

convexity of the foliation F5
H and from the equality CS(F5

H)=
{
− 3

2±
√
5
2

}
(Remark 1.1).

Let us show that (ii) implies (iii). Assume that F is reduced convex

and that CS(F) =
{
− 3

2 ±
√
5
2

}
. Let ` be an invariant line of F . The ho-

mogeneous foliation H`F (homogeneous degeneration of F along `), being
convex of degree 5, must be linearly conjugated to one of the fourteen
homogeneous foliations given by Theorem A. Moreover, let m be a non

radial singular point of F on `. Then we have CS(F , `,m) = − 3
2 ±

√
5
2 .

According to Proposition 2.1, the point m is also a non radial singularity

for H`F and we have CS(H`F , `,m) = CS(F , `,m) = − 3
2 ±

√
5
2 . It then

follows from Table 1 that H`F is of type 2 · R1 + 2 · R3. This implies,
according to assertion (v) of Proposition 2.1, that F has exactly four
radial singularities on the line `; two of them m1, m2 are of order 3
and the other two are of order 1. Let us consider another F-invariant
line `′ 6= ` passing through m1, whose existence is guaranteed by [3,
Lemma 3.1]. Then `′ contains another radial singularity m3 of order 3
of F and two radial singularities of order 1 of F . By [4, Proposition 2.2],
the fact that τ(F ,m2) + τ(F ,m3) = 4 + 4 > degF ensures the F-invari-
ance of the line `′′ = (m2m3). Therefore `′′ in turn contains two radial
singularities of order 1 of F .

Finally, let us prove that (iii) implies (i). Assume that (iii) holds.
Then there is a homogeneous coordinate system [x : y : z] ∈ P2

C in which
m1 = [0 : 0 : 1], m2 = [1 : 0 : 0], and m3 = [0 : 1 : 0]. Moreover, in this
coordinate system, the lines x = 0, y = 0, z = 0 must be invariant by F
and there exist x0, y0, z0, x1, y1, z1 ∈ C∗, x1 6= x0, y1 6= y0, z1 6= z0, such
that the points m4 = [x0 : 0 : 1], m5 = [1 : y0 : 0], m6 = [0 : 1 : z0], m7 =
[x1 : 0 : 1], m8 = [1 : y1 : 0], and m9 = [0 : 1 : z1] are radial singularities
of order 1 of F . Let us set ξ = x1

x0
, ρ = y1

y0
, σ = z1

z0
, w0 = x0y0z0. Then

w0 ∈ C∗, ξ, ρ, σ ∈ C \ {0, 1}, and, up to renumbering the xi, yi, zi, we
can assume that ξ, ρ, and σ are all of modulus greater than or equal to 1.
Let ω be a 1-form defining F in the affine chart z = 1. By conjugating ω
by the diagonal linear transformation (x0x, x0y0y), we reduce ourselves
to m4 = [1 : 0 : 1], m5 = [1 : 1 : 0], m6 = [0 : 1 : w0], m7 = [ξ : 0 : 1],
m8 = [1 : ρ : 0], and m9 = [0 : 1 : σw0]. Since m1, m2, and m3 are radial
singularities of order 3, ω can be written as in the expression given in
Lemma 2.7 in the case d = 5. Then, as in the proof of [3, Theorem B], by
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writing explicitly that the points mj , 4 ≤ j ≤ 9, are radial singularities

of order 1 of F we obtain that w0 = ±(
√

5− 2) and

ξ = ρ = σ =
3

2
+

√
5

2
, a1,0 = (9 + 4

√
5)(5w0 + 5− 2

√
5)a0,2,

a0,1 = −25 + 11
√

5

2
a0,2w0, a1,1 = −5 +

√
5

2
a0,2,

b1,0 =
25 + 11

√
5

2
a0,2, b0,1 = − (65 + 29

√
5)(w0 + 5− 2

√
5)

2
a0,2,

b1,1 = (5 + 2
√

5)a0,2, b2,0 = −7 + 3
√

5

2
a0,2,

λ0,0 =
47 + 21

√
5

2
a0,2, λ1,0 = −65 + 29

√
5

2
a0,2,

λ0,1 = −(85 + 38
√

5)a0,2w0, λ1,1 =
(47 + 21

√
5)(5w0 + 5− 2

√
5)

2
a0,2,

with a0,2 6= 0. Thus ω is of the form

ω =
a0,2(47 + 21

√
5)

4
(xdy − ydx)

×
(
2− (5−

√
5)x− w0(5 +

√
5)y + (10w0 + 10− 4

√
5)xy

)
+
a0,2

2
y3
(
(9 + 4

√
5)(10w0 + 10− 4

√
5)x− w0(25 + 11

√
5)y

− (5 +
√

5)xy + 2y2
)
dx

+
a0,2

2
x3
(
(25 + 11

√
5)x− (65 + 29

√
5)(w0 + 5− 2

√
5)y

− (7 + 3
√

5)x2 + (10 + 4
√

5)xy
)
dy.

The 1-form ω is linearly conjugated to

ω5
H = (y2 − 1)(y2 − (

√
5− 2)2)(y +

√
5x)dx

− (x2 − 1)(x2 − (
√

5− 2)2)(x+
√

5y)dy.

Indeed, if w0 =
√

5− 2, resp. w0 = 2−
√

5, then

ω5
H =

32(3571− 1597
√

5)

a0,2
ϕ∗1ω,

where ϕ1 =
(

3+
√
5

4 (x+ 1),− 2+
√
5

2 (y − 1)
)

,

resp. ω5
H =

32(64079− 28657
√

5)

a0,2
ϕ∗2ω,

where ϕ2 =
(

2+
√
5

2 (x+
√

5− 2),− 7+3
√
5

4 (y +
√

5− 2)
)

.
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Proof of Theorem G: Let F be a reduced convex foliation of degree 5
on P2

C. By assertion (i) of Proposition C and Corollary 2.2 we have ∅ 6=
CS(F) ⊂ HCS5 =

{
−4±1,− 3

2 ±
√
5
2

}
. Hence, according to assertion (ii)

of Proposition C, one of the following three possibilities does occur:

(i) CS(F) = {−4±1};
(ii) CS(F) =

{
− 3

2 ±
√
5
2

}
;

(iii) CS(F) =
{
−4±1,− 3

2 ±
√
5
2

}
.

In case (i) (resp. (ii)) the foliation F is linearly conjugated to F5
0

(resp. F5
H), thanks to Theorem D (resp. Theorem F). To establish the

theorem, it therefore suffices to exclude the possibility (iii). Let us as-
sume by contradiction that (iii) happens. Then F possesses two invari-
ant lines `, `′ and two non radial singularities m ∈ `, m′ ∈ `′ such that

CS(F , `,m) = − 1
4 and CS(F , `′,m′) = − 3

2 ±
√
5
2 . According to Proposi-

tion 2.1, the point m (resp. m′) is also a non radial singularity for the

homogeneous foliation H`F (resp. H`′F ) and we have

CS(H`F , `,m) = CS(F , `,m) = − 1
4 and

CS(H`
′

F , `
′,m′) = CS(F , `′,m′) = − 3

2 ±
√
5
2 .

Moreover, as in the proof of Theorem F, each of the foliations H`F
and H`′F is linearly conjugated to one of the fourteen homogeneous foli-
ations given by Theorem A. It then follows from Table 1 that H`F and

H`′F are respectively of types 2 · R4 and 2 · R1 + 2 · R3. This implies,
according to assertion (v) of Proposition 2.1, that F admits two radial
singularities of order 4 on the line ` and four radial singularities on the
line `′, two of order 1 and two of order 3. Let m1 (resp. m2) be a ra-
dial singularity of order 4 (resp. 3) of F on the line ` (resp. `′). Since
τ(F ,m1) + τ(F ,m2) = 5 + 4 > degF , the line `′′ = (m1m2) is invariant

by F (cf. [4, Proposition 2.2]). The homogeneous foliation H`′′F being
convex of degree 5, it must therefore be of type 1 · R1 + 1 · R3 + 1 · R4

so that it possesses a non radial singularity m′′ on the line `′′ satisfying
(see Table 1)

CS(H`
′′

F , `
′′,m′′) = CS(F , `′′,m′′) = λ,

with 491λ3 + 982λ2 + 463λ+ 64 = 0 which is impossible.
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3. Conjectures

The notion of convex reduced foliation has an interesting relation with
certain line arrangements in P2

C. Indeed, according to [11] we say that
an arrangement A of 3d lines in P2

C has Hirzebruch’s property if each
line of A intersects the other lines of A in exactly d + 1 points. The
3d invariant lines of a reduced convex foliation of degree d on P2

C form
a line arrangement which satisfies Hirzebruch’s property, thanks to [2,
Lemma 6.8] and [3, Lemma 3.1]. The expected conjectural picture for
the reduced convex foliations on P2

C is the following: besides the Fermat
foliations Fd0 , with CS(Fd0 ) = {(1 − d)±1}, there exist special reduced
convex foliations only for d = 4, 5 and d = 7, namely, the Hesse pencil in
degree 4, the Hilbert foliation of degree 5, and the foliation of degree 7
related to the extended Hesse arrangement presented in the introduction,
for which

CS(FdH) =


{−1} for d = 4,{
− 3

2 ±
√
5
2

}
for d = 5,{

−
(
3
4

)±1}
for d = 7,

i.e. we expect that there are no other convex reduced foliations on P2
C

and for this reason we propose:

Conjecture 3.1. We have

HCSd =

{
{(1− d)±1} for 2 ≤ d 6= 4, 5, 7,

{(1− d)±1} ∪ CS(FdH) for d = 4, 5, 7.

This conjecture, combined with Corollary E, would imply a negative
answer in degree d 6= 7 to [9, Problem 9.1] as we have already shown
for d ≤ 5.

To every rational map f : P1
C → P1

C and to every integer d ≥ 2, we
associate respectively the following subsets of C \ {0, 1}:
• M(f) is, by definition, the set of µ ∈ C \ {0, 1} such that there is

a fixed point p of f satisfying f ′(p) = µ;
• Md is defined as the set of µ ∈ C \ {0, 1} for which there exist

critically fixed rational maps f1, f2 : P1
C → P1

C of degree d having
respective fixed points p1 and p2 such that f ′1(p1) = µ and f ′2(p2) =
µ
µ−1 .

The introduction of the sets M(f) and Md is motivated by the fol-
lowing remark.
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Remark 3.2. Let H be a homogeneous foliation of degree d on P2
C. Ac-

cording to [2, Section 2], the point s = [b : a : 0] ∈ `∞ is a non-
degenerate singularity of H if and only if the point p = [a : b] ∈ P1

C
is fixed by GH with multiplier G′H(p) 6= 1, in which case the Camacho–
Sad index CS(H, `∞, s) coincides with the index ı(GH, p) of GH at the
fixed point p:

CS(H, `∞, s) = ı(GH, p) :=
1

2iπ

∫
|z−p|=ε

dz

z − GH(z)
=

1

1− G′H(p)
.

Thus, the map µ 7→ 1
1−µ sendsM(GH) (resp.Md) bijectively onto CS(H)

(resp. HCSd).
Using the above definition of the sets M(f), Theorem 4.3 of [7] can

be reformulated as follows:

Theorem 3.3 (Crane, [7]). Let f : P1
C → P1

C be a critically fixed rational
map of degree d ≥ 2. Let n ≤ d denote the number of (distinct) critical
points of f . Then

(i) f has exactly d+ 1 fixed points, of which d+ 1−n are non-critical;
(ii) the set M(f) is contained in C \

(
D (0, 1) ∪ D (1 + ρ, ρ)

)
, where

D(0, 1) denotes the closed unit disk of C and D(1 + ρ, ρ) ⊂ C the
open disk of radius ρ = 1

d+n−2 and center 1 + ρ. Moreover, µ ∈
M(f) belongs to the boundary of the disk D(1 + ρ, ρ) if and only if
n = d, in which case µ = d

d−1 .

This theorem translates in terms of homogeneous foliations as follows:

Corollary 3.4. Let H be a homogeneous convex foliation of degree d ≥ 2
on P2

C. Let n = deg TH denote the number of (distinct) radial singulari-
ties of H. Then

(i) H has exactly d + 1 singularities on the line at infinity, of which
d+ 1− n are non radial;

(ii) for any non radial singularity s ∈ `∞ of H, we have

−1

2
< −Re(CS(H, `∞, s)) ≤

d+ n

2
− 1.

This last inequality is an equality if and only if n = d, in which
case CS(H, `∞, s) = 1− d.

With the notations of Corollary 3.4, since n ≤ d we have in particular
− 1

2<−Re(CS(H, `∞, s))≤d−1. According to Remark 1.1, the value d−1
is attained by (H,s) 7→−Re(CS(H, `∞, s)). However, after having checked
many examples, we think that the lower bound − 1

2 of −Re(CS(H, `∞, s))
is not optimal and we propose the following conjecture with the value 1

d−1
which is also attained by (H, s) 7→ −Re(CS(H, `∞, s)) (Remark 1.1).
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Conjecture 3.5. If H is a homogeneous convex foliation of degree d ≥
2 on P2

C, then for any non radial singularity s ∈ `∞ of H we have
1
d−1 ≤ −Re

(
CS(H, `∞, s)

)
. Alternatively, if f : P1

C → P1
C is a critically

fixed rational map of degree d ≥ 2, then the set M(f) is contained in
the closed disk D

(
d+1
2 , d−12

)
⊂ C of center d+1

2 and radius d−1
2 (see

Figure 2).

Figure 2. The set M(f) is conjectured to be contained in the

grey region for any critically fixed rational map f : P1
C → P1

C of
degree d. It is known that it is contained in the exterior of the

union of the dashed circle and the inner white disk. The black

points from left to right are 0, 1, d
d−1

, and d. Conjecture 3.1

for 2 ≤ d 6= 4, 5, 7 is equivalent to the statementMd =
{

d
d−1

, d
}

.

This conjecture is also motivated by the following remark:

Remark 3.6. If Conjecture 3.5 is true, Conjecture 3.1 claims that in
degree 2 ≤ d 6= 4, 5, 7 the set HCSd consists of the extreme values of
−Re(CS(H, `∞, s)) when H runs through the set of homogeneous convex
foliations of degree d on P2

C and s runs through the set of non radial
singularities of H on the line `∞.

Elementary computations, using the normal forms of homogeneous
convex foliations of degree d ∈ {2, 3, 4, 5} on P2

C presented in [8, Propo-
sition 7.4], [1, Corollary C], [3, Theorem A], and in Theorem A, show
the validity of Conjecture 3.1 for d ∈ {2, 3} and Conjecture 3.5 for d ∈
{2, 3, 4, 5}. Moreover, very long computations carried out with Maple by
the first author give forty nine normal forms for homogeneous convex
foliations of degree 6 on P2

C and allow to verify the validity of Conjec-
tures 3.1 and 3.5 for d = 6. The more difficult case d = 7 is out of reach
at this moment.

References
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