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INTRODUCTION

David Marin??

Abstract

Let d > 3 be an integer. For a holomorphic d-web W on a complex surface M,
smooth along an irreducible component D of its discriminant A(W), we estab-
lish an effective criterion for the holomorphy of the curvature of W along D,
generalizing results on decomposable webs due to Marin, Pereira, and Pirio. As
an application, we deduce a complete characterization for the holomorphy of the
curvature of the Legendre transform (dual web) LegH of a homogeneous folia-
tion H of degree d on P2, generalizing some of our previous results. This then
allows us to study the flatness of the d-web LegH in the particular case where
the foliation H is Galois. When the Galois group of H is cyclic, we show that
LegH is flat if and only if H is given, up to linear conjugation, by one of the two
1-forms a)‘li = yddx — x4dy, w‘zi = x%dx — y?dy. When the Galois group of H is
noncyclic, we obtain that LegH is always flat.

KEYWORDS
curvature, Galois homogeneous foliation, Legendre transform, web

A (regular) d-web W on (C?,0) is the data of a family {F;, 7>, ..., F;} of regular holomorphic foliations on (C?, 0), which
are pairwise transverse at the origin. We say that W is the superposition of the foliations 77, ..., F; and we write W =

il K Fg.
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A (global) d-web on a complex surface M is given in a local chart (x, y) by an implicit differential equation F(x,y,y’) = 0,

where F(x,y, p) = Z?:o a;(x,y)p?~" is a (reduced) polynomial in p of degree d, having analytic coefficients a;, with a,
not identically zero. In a neighborhood of every point z, = (xy, o), such that ay(xg, ¥o)A(xg, yo) # 0, where A(x, y) is the
p-discriminant of F, the integral curves of this equation define a regular d-web on (C?, z;).

To every d-web W on M with d > 3, we can associate a meromorphic 2-form with poles along the discriminant A(W),
called the curvature of W and denoted by K(W), see Section 2.3. A web with zero curvature is called flat. When M = P2,
the flatness of a web W on Pé is characterized by the holomorphy of its curvature K(W) along the generic points of A(W).

In 2008, Pereira and Pirio [8, Theorem 7.1] established a result on the holomorphy of the curvature of a com-
pletely decomposable d-web W = F; [X] --- X F4. In 2013, Marin and Pereira [7, Theorem 1] extended this result to
decomposable webs of the form W = W, X W,_,, that is, which are the superposition of the (local) foliations of a 2-
web W, and a (d — 2)-web W,_,. In this paper, we establish an effective criterion (Theorem 2.1) for the holomorphy of
the curvature of a d-web W defined on a complex surface and smooth along an irreducible component of its discriminant
A(W), generalizing these two results (see Corollary 2.6 and Remark 2.7).

We are then interested in the foliations on Pé’ which are homogeneous, that is, which are invariant by homotheties. In
[3, section 3] we studied, for a homogeneous foliation H of degree d > 3 on [P’é, the problem of the flatness of its Legendre
transform (its dual web) LegH; it is a d-web on the dual projective plane Pé whose leaves are the tangent lines to the leaves
of H, see Section 4. Theorem 2.1 allows us to establish, for such a foliation H, a complete characterization (Theorem 3.1)
of the holomorphy of the curvature of the d-web LegH along an irreducible component of the discriminant A(LegH),
generalizing our results in [3, Theorems 3.5 and 3.8] (see Corollary 3.6 and Remark 3.7).

We finally focus on the particular case of a homogeneous foliation H of degree d > 3 on Pé, which is Galois in the sense
of [2, Definition 6.16], see Section 5. When the Galois group of H is cyclic, we prove that LegH is flat if and only if, up to
linear conjugation, H is given by one of the two 1-forms ¢ = y¢dx — x4dy, w? = x4dx — y4dy. When the Galois group
of H is noncyclic, we show that LegH is always flat, see Theorem 4.4.

1 | PRELIMINARIES
1.1 | Webs

Letd > 1beainteger. A (global) d-web W on a complex surface M is given by an open covering (U;);c; of M and a collection
of d-symmetric 1-forms w; € Symd Q}M(U,-), with isolated zeros, satisfying:

(a) there exists g;; € Oy,(U; N U;) such that w; coincides with g;jw; on U; N Ujj;
(b) for every generic point m of U;, w;(m) factors as the product of d pairwise linearly independent 1-forms.

The discriminant A(W) of W is the divisor on M defined locally by A(w;) = 0, where A(w;) is the discriminant of the
d-symmetric 1-form w; € SymdQ}VI(Ui), see [9, Chapter 1, section 1.3.4]. The support of A(W) consists of the points of M,
which do not satisfy condition (b). When d = 1, this condition is always satisfied and we recover the usual definition of a
holomorphic foliation 7 on M.

The tangent locus T,, W of W at a point m € U; \ A(W) is the union of the d kernels at m of the linear factors of w;(m).

A global d-web W on M is said to be decomposable if there are global webs W, W, on M sharing no common subwebs
such that W is the superposition of W; and W,; we then write W = W; [X W),. Otherwise W is said to be irreducible. We
say that W is completely decomposable if there exist global foliations 74, ..., F; on M such that W = F; X --- X F4. For
more details on this subject, we refer to [9].

1.2 | Characteristic surface of a web

Let W be a holomorphic d-web on a complex surface M. Let M = PT*M be the projectivization of the cotangent bundle
of M; the characteristic surface of W is the surface Sy, C M defined by

Sy 1= {(m, [n]) € M|m € M \ AOW),kern C TmW}.
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We will give a local expression of this surface. First of all, let us consider a local coordinate system (x, y) on an open subset
U of M. Denote by 7 : M — M the natural projection. We define a coordinate system on the open set 7~ (U), by denoting
by (x,y,[p : q]) the coordinates of the point (m, [qdy — pdx]) € 7~'(U), where (x, y) are the local coordinates of m in
a;(x, y)(dx)i(dy)d—, with q; € O, (U), then

U.If Wis given on U by the d-symmetric 1-form w = Z?:o

Sy Nz} (U) ={(x,y,[p : q]) € M|F(x,y,p,q) = 0},

~ d .
Where F(x7 y, p» q) = Zi:() ai(x,y)pd_lql-
In the sequel, we will work in the affine chart (U, (x,y, p)) defined by U, := 7' (U)\{g=0}and p :=[p : 1].

Setting F(x,y, p) := F(x,y,p,1) = Z?:o a;(x,y)p?~, we have
Sy N Uy ={(x,y,p) € M|F(x,y,p) = 0}.

We will denote by 7y : Syy — M the restriction of 77 to S)y. Let us introduce the following definition, which will be useful
later.

Definition 1.1. With the above notations, let D be an irreducible component of the discriminant A(W). We will say that
W is smooth along D if for every generic point m of D, the characteristic surface S,y of W is smooth at every point of the
fiber 7z, (m).

Example 1.2. On M = C?, the 2-web W given by w = (y? — x)dy? + 2 xdxdy — xdx? has discriminant A(W) = 4xy?
and its characteristic surface Sy has equation F(x,y, p) := (y*> — x)p*> + 2xp — x = 0. Note that W is smooth along the
irreducible component D; := {x = 0} C A(W). Indeed, the fiber n;\}(m) over a generic point m = (0,y) € D; isreduced to
the point m = (0, y,0), and the surface Sy, is smooth at 7, because 4, F (0, y,0) = —1 # 0. However, W is not smooth along
the irreducible component D, := {y = 0} C A(W), because, for every generic point m = (x,0) € D,, we have 7'[)_,‘)1(1’}’1) =
{(x,0,1)} and 0,F (x,0,1) =d,F (x,0,1) = 9,F (x,0,1) = 0.

1.3 | Fundamental form, curvature, and flatness of a web

We recall here the definitions of the fundamental form and the curvature of a d-web W. Let us first suppose that W is
a germ of completely decomposable d-web on (C?,0), W = F, [X --- [X| F4. For each 1 < i < d, let w; be a 1-form with at
most an isolated singularity at 0 defining the foliation F;. According to [8], for every triple (r,s,t) with1 <r <s <t <d,
we define 7,5, = n(F, X Fs X F;) as the unique meromorphic 1-form satisfying the following equalities:

d(asz wr) = Npst A 551 @y
d(8;r ws) = Dpst A Sy s (11
d(ars wt) = Npst A Ops @y

where §;; denotes the function defined by the relation w; A w; = §;; dx A dy. We call fundamental form of the web W =
Fi1 X --- X Fy the 1-form

M =9gF R RF)= Y D (12)

1<r<s<t<d
We can easily verify that n(W) is a meromorphic 1-form with poles along the discriminant A(W) of W, and that it is well

d
defined up to addition of a closed logarithmic 1-form gg with g € O*(C?,0) (cf. [3, 10]).

Now, if W is an arbitrary d-web on a complex surface M, then we can transform it into a completely decomposable
d-web by taking its pull-back by a suitable ramified Galois covering. The invariance of the fundamental form of this new
web by the action of the Galois group allows us to descend it to a global meromorphic 1-form (W) on M, with poles along
the discriminant of W (see [7]).
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The curvature of the web W is by definition the 2-form
K(W) =dn(W).

It is a meromorphic 2-form with poles along the discriminant A(W), canonically associated to W; more precisely, for any
dominant holomorphic map ¢, we have K(¢p*W) = ¢p*K(W).

A d-web W is called flat if its curvature K(W) vanishes identically.

Note that a d-web W on [P’?C is flat if and only if its curvature is holomorphic over the generic points of the irreducible
components of A(W). This follows from the definition of K(W) and the fact that there are no holomorphic 2-forms on [P’?C
other than the zero 2-form.

2 | CRITERION FOR THE HOLOMORPHY OF THE CURVATURE OF SMOOTH WEBS
In this section, we propose to establish the following theorem.

Theorem 2.1. Let W be a holomorphic d-web on a complex surface M and let D be an irreducible component of the discrim-
inant A(W). Assume that W is smooth along D. Then, the fundamental form n(W) has simple poles along D. More precisely,
choose a local coordinate system (x,y) on M such that D = {y = O} and let F(x,y,p) =0, p = j—i, be an implicit differential

n
equation defining W. Write F(x,0, p) = ag(x) [ (p — ¢(x))"* with ¢, # ¢ if a # 3. Then, the I-form

a=1

n(w) — % > e = D@a(x)(dy — pa(x)dx) + (v, — 2)dy)
a=1

is holomorphic along D = {y = 0}, where 1, is a function of the coordinate x defined, for all « € {1, ..., n} such that v, > 2,
by

9,0, F(x,0, p,(x)) >

“ vppp(x)
R0y ) 2D X

1
gba(x) = Z l(va - 2)<d - @a(x) B=1,8#a m .

In particular, the curvature K(W) is holomorphic along D if and only if
n n
(Vg = Do () (x) =0 and Z(V — l)ill) (x)=o0.
a a a ~ a dx a

a=1

Remark 2.2. When the component D C A(W) is totally invariant by W, the curvature K(W) is always holomorphic along
D.

Remark 2.3. Assume thatv, = v > 2 forall « € {1, ..., n}. The following assertions hold:

1. If v = 2 (which implies that d is even), then the curvature K(W) is always holomorphic along D.
2. If v > 3, then the curvature K(W) is holomorphic along D if and only if

> o= pu() =0 and Y Lp()=0,
a=1 a=1

9,0, F (x,0, 9 (x))
3,F (x,0,0,(x))

where po (x) 1= @q(x)
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#8
—9p

and to note that

Indeed, it suffices to set f, g = 5

¢ocfoc,,6 = Z ((Pocfoc,ﬁ + §05f‘3’a) =0

1<a<f<n

”M:

and

Z Z fap = Z (fap+foq) E—(Z) = constant.

a=1p=1B+a 1<a<f<n

The hypothesis of smoothness of W along the component D C A(W) is essential for the validity of Theorem 3.1, as the
following example shows.

Example 2.4. Let M be a complex surface and let W be the 3-web defined in local coordinates (x, y) by the differential
equation

F(x,y,p) 1= (A(x? = Dp + (x = 3)y*) (A(x* = Dp + (x + 3)y*) (A(x* — 1)p — 2xy*) =0,

where p = j—i,x € N\ {0,1},4 € C*. For this web, we have

7dx*-1)  [(2x A
A = 291615(x? — 1)8y°" d = — — —— |dy.
W) (x*=1)°% an n(w) 32— T 5 T3 )Y
We see that n(W) is closed and therefore that W is flat. Moreover, n(W) has poles of order x > 1 along the component
= {y = 0} C A(W). Note that W is not smooth along D. Indeed, the fiber n;l}(m) over a generic point m = (x,0) € D
consists of the single point 7 = (x,0,0) and the surface S)y is not smooth at 71, because 9, F (x,0,0) = 0,F (x,0,0) =
8,F (x,0,0) =0

Remark 2.5. In [5, p. 286], the author claimed that the fundamental form of a planar 3-web W has probably at most simple
poles along A(W) and he gave an argument in the particular case where W is defined by a differential equation of type
ao(x,y)p> + ay(x,y)p + as(x,y) = 0,p = j—y. Note that the 3-web given in Example 2.4 is of this type and its fundamental
form has no simple poles along y = 0if x > xl This contradicts the claim of [5, p. 286].

Corollary 2.6. Let W be a holomorphic d-web on a complex surface M and let D be an irreducible component of the

discriminant A(W). Assume that W is smooth along D. Fix a local coordinate system (x,y) on M such that D ={y =

0} and let F(x,y,p)=0, p = j—i, be an implicit differential equation defining W. Assume moreover that F(x,0,p) =
d—v

ay(X)(p = 9o (x))” TI (p — @a(x)) with @ # @q for all « € {1,...,d — v} and ¢, # ¢g if a # f. Then, the curvature K(W)

a=1
is holomorphic on D if and only if o, = 0 or ¢ = 0, where

8,0, F(x,0,9o(x)) ) Pa(X)
5,70 g ) 2 “)Z o) — paD)

P(x) = - 2)(d — ®o(x)

Remark 2.7. In a neighborhood of every generic point of D, the d-web W decomposes as W = W, X W,_,, with

d—v

b : 0111 (dy — g (x)dx) = 0.

dy —@p(x)dx =0 and Wa_y

W,,D

When v = 2, we recover the barycenter criterion, namely, Theorem 1 of [7] (see also [8, Theorem 7.1]): The curva-
ture of W = W, X W,_, is holomorphic on D if and only if D is invariant by W, or by the barycenter By, (W3_,) of
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W,_, with respect to W,. Indeed, on the one hand, the invariance of D = {y = 0} by W, translates into ¢, = 0. On the
other hand, the restriction of By, (W;_,) to D is given by

dy = po(x) + ——— dx,
Ay _ 1
d=2 2 $a()—po(x)

or equivalently, by

d-2 d-2 d-2 d-2
P (x)

1 1 1
- d d— . =y —— 4 Tl
Z Po(x) — P (x) v 2= %olx) Z ' Po(x) — %(x) Z ®o(x) — @ (x) y Z Po(x) — %(x)

a=1 a=1 a=1

so that the invariance of D by fyy,(W3_,) is characterized by Zd 2 (p% = 0 and therefore by 3 = 0, because 3 =

d2 0~ Pa
ot
020 Po—Px

The proof of Theorem 3.1 consists essentially in determining the principal part of the Laurent series of the fundamental
form 5n(W) along the component D = {y = 0} of the discriminant of W. To do this, we need the following lemma.

Lemma 2.8. The fundamental form of the 3-web W defined by the 1-forms w, = dy — A,(x,y)dx, € = 1,2, 3, is given by

8,(AA;) — 8,

o= N
(1.J,k)E(1,2,3) (A = A — Ay)

where (1,2,3) :={(1,2,3),(3,1,2),(2,3, 1}
Proof. This follows from a straightforward computation using formula (1.1). O

Proof of Theorem 2.1. In a neighborhood of every generic point m of D, the web W decomposes as W = X\ _, W,
where W, is a v,-web having a unique slope p = ¢,(x) along y = 0, thatis, W, = IE;ZIP;" and F{*[,—o * dy — @a(x)dx =
0. Then, n(W) = n; + 1, + 13, where

n vg

n n

_ aaa _ aaf Z Z apy

771_2 Z Nijk ’72_2 ZZ Mijk » = Dijk »
L 1<i<j<k<v, 1<l< Vg . k=1 1<a<f<y<n

a= a
V23 Vo

1<i<v,
a 1<j<vg
1<k<v,

Z

[\ S
™

and 77“‘;‘{"‘, resp. 7), kﬁ , Tesp. 77 k , is the fundamental form of the 3-subweb Fi“ X PJ‘." X1 FZ, resp. f’i“ X 7?;‘ X Fh , Tesp.
FAR F]. KIF], of W.

Ifa < <y, then (p, — 9p)(@s — ¢, )@, — ¢s) # 0, which implies, thanks to Lemma 2.8, that the 1-form ik “B7 has no
poles along y = 0; therefore, the same is true for the 1-form ;.

As for n; and n,, let us first fix a € {1,...,n} such that v, > 2. Then, 6,F (x,0,p,(x)) = 5pF (x,0,p,(x)) = 0; the
hypothesis of smoothness of W along D = {y = 0} implies that 0,,F (x, 0, p,(x)) # 0. Putz = p — ¢, (x) and F(x, y, 2) :
F(x, ¥,z + 9o (X)) = X0 Fa,k(x,z)yk with F . € C{x}[z]. Since F, ;(x,0) = 9,F (x,0,p.(x)) Z 0, the series ¥(y) :

Lw— f=2 42 4 ... Moreover, define U, € C{x}[z] b
Fot,l (Fot,l)3

2o Fak yk is invertible and its inverse writes as ¥~1(w) =

F,(x,0,z) = z"«U,(x, z); note that

d—vg

Ua(r,2) = ao@) [ (2 + @al) — pp(x)) ™ 2 Ui (2",
B=1,p#a
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Ua,l (x) _ az Uoc (X,O) — yﬁ
Ua,O(x) UQ(X,O) ﬁ=1,ﬁ¢0¢ goo,(x)—(olg(x)
neighborhood of (x, 0,0), the equation F,(x,y, z) = 0 is equivalent to

with

. Writing F, 1(x,z) = ZZ:O Ga,k(x)zk, with G,y Z 0, it follows that in a

ch(x’ Z) _ 21 FO(,Z(x’ Z)(Uot(x5 Z))Z
Fa,l(x9z) (Fa,l(x’ Z))3

= (‘P_l(—Fa’o))(x,z) = —z% + =Yy (x)z% + Ya’l(x)z”a“ + =1 Y, (x,2),

Ga1Uso—GanU, : .
Zal a0 Ca0 ol Z‘é’ )Z'O “l because v, > 2. Thus, we can write Y, (x,z) = (X,(x,2))"* with
a0
1

with Y, = —[G]“-O #£0 and Y, =
a0

X (x,2) = 21{21Xo(,k(x)zk,Xm1 = (Yoc,O)E % 0and i“'z = Y= Then, the series ®(z) : Zk>1 «xz¥ is invertible and

a,l VaX a0

X

its inverse is of the form ®~(w) = Yol fa,kw" with fo € C{x}, fo1 = XL and f,, = — . Therefore, the equality
- a,l

(Dtl
1 1

= (¥~1(=F,))(x,z) is equivalent to z = (®~(y*= ))(x) and therefore to p = (®~'(y*« ))(x) + Px(X). As a result, in a
neighborhood of m, the slopes p; (j = 1,..., V) of Ty yy W, are given by

k
ik — 2i
D) =2 j069) = 9a(0) + ¥ far(0)a 'y, wherel, = exp(Z7).
k>1

Note furthermore that

fa,z _ _Xor,z _ Yo _ i(Ga,l _ Uoz,l) _ i [(azFon) _ Ua,l]
(fa,1)2 Xa,l VaYa,O Vo ch,o Uoz,O Vo Foc,l z=0 Ua,O
1 9,06,F " v
=_<”°‘>’ -y G 3.1
Vo 0,Fy ) 1(3.2)=(0,0) 55 e P~ P8

1
We will now apply Lemma 2.8 to compute n“““ Setting w, = y¥«, we obtain

Oxhajc = qoa+fms°awa+fa2 Fwg + £ g wl +
0y (et ) = 55 [PalaaCh+ €D + 2 pafaa@Z + €N+ 12,80 )
+ 3(qoafa,3<§3:’ 8D+ farfan@a™ 4 6wl + ]
(i = Aa) 0k = Aerg) = WESh = EENEL = E[ 12, + FunfaalCh + €+ 26w + -+,
According to Lemma 2.8, we have 17“"“" = a;ji(x, y)dx + b;j(x, y)dy, where

(ay(/la,i/la,j) - ax/la,k) /la,k (ay(/la,k/la,j) - ax/loz,i) /Ia,i (ay(/la,i/la,k) - ax/loz,j) /101,}

Qi = — —
e (/loc,i - Aa,k)(/la,j - /101,1{) (/105 k— /101 i)(laj - /101,1') (/loc,i - loc,j)(ﬂ'a,k - Aa,j)

-1 l;1< )~ Pafur) +2 f3 = (g4l gt) ( 2,2—fa,1fa,3>wa+A_1w§]

+ Ay, with A_j,A; € C{x,w,}
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[ ay(/lor,iﬂa,j) - ax/loc,k n ay(/loc,k/loc,j) - axﬂ-oc,i " ay(/loc,i/la,k) - ax/loc,j
bk (ﬂ'a,i - Acx,k)(/lcc,j - Aoc,k) (Aa,k - /loc,i)(/loc,j - la,i) (/loc,i - loc,j)(la,k - Acx,j)
1 1 1 ; i
= ‘V_ lT <2 é,l - ¢afa,2> + 3 <§(lx + ggc + §§) (fozt,lfa,Z - 2§0afoc,1fa,3 + 2§0cxf§,2) Wy + B—lwél

oy f a,l f a,l

+Bo, with B—l’BO S C{x, wa}.

n
Sincen; = Y, Y ’757(& isauniform and meromorphic 1-form, it follows that the principal part of the Laurent

a=1,v4>3 1<i<j<k<v,

series of 7; at y = 0 is given by ey—l, where

n 2 2
61 — Z <Voc> <_§Doc(fa,1 ¢o¢fo¢,2)dx + Zfa,l ¢afa,2 dy)

3 vafa, vafa,

a=1
V>3

= % D e = D(vg — 2)<<1 - qo;f“’z >(dy — @ dx) + dy>.

a,l

a=1
V>3

It remains to determine the principal part of the Laurent series of 7, at y = 0. Again according to Lemma 2.8, we have
aaf

Do = Gijie(x, y)dx + bk (x, y)dy, where
G = — (ay(}la,i/loc,j) - ax/lﬁ,k) Aﬁ,k _ (ay(/lﬁ,kla,j) - ax/loc,i) /loc,i _ (ay(/lcx,i/lﬁ,k) - ax/lcc,j) /loc,j
vk (Aai = Ag g )(Aej — g 1) Qg — Aa,i)Ae,j — A i) Aai = A, ) A — A j)
| ogps () (@a—00)fan—F2))0aPs atv)kedfa
=—|—+ > w, + S—wg + -
Vo) | Pu — Pp (Pa — Pp)*fa V(P — ®p)
+ Ay, with Ay € C{x,wy, wg}
and
ay(lcx,iﬂ'a,j) - ax/lﬁ,k ay(ﬂ'ﬁ,klcc,j) - axﬂ'cx,i ay(/loc,ilﬁ,k) - ax/lc:c,j

by = +
P Qi = 200y = 2810 Agr = Aq) ) = Aai) i = A ) Ag s = Age))

1 ®3 N (;:x + gé) (goﬁ((pa - goﬁ)fa,Z - %fé,l) ((Zch + Vﬁ)¢o{ - Vocgoﬁ) glgfﬁ,l
VY | P — 98 (Pa = 9B fan “ Vp(Pa — Pp)?

w/3+

+ By, with BOEC{x,wa,wﬁ}.

Thel-form, = ELMazz 2 <j<r, EZ=1, fota Zzﬁz 1 nf‘jiﬁ being uniform and meromorphic, it follows that the principal

part of the Laurent series of 7, at y = 0 is given by Gy_z’ where

o= 2(5) 2ol 2ot - i)
2 P\ vl — 2p) Vo(@a — $p)

=1
22 fa

NS
5

n n
1 VePp
=—2 Y (= Dy — podx) ¥ ——.
> 2, (= DAy - 9 )2%_%

a=1 B=1
VaZ2 B#a
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As a consequence, the principal part of the Laurent series of n(W) at y = 0 is given by 9, where
y

0=06,+6,= % > (v - 1){ (Vg — 2)<1 = go;{“’z) -3y @:ﬁf‘;ﬁ (dy — @ dx) + (v, — 2)dy}.
p=1

a=1 a’l
V22 Bta

Thanks to (3.1), the 1-form 6 can be rewritten as

n n
1 P azayFoz> > V,@((Va —2)pq — 3vcc§0ﬁ)
6=- -1 21— —=| —— + dy — ¢, dx) + —2)d .
Y ){ 0= 2(1= 2 (T ) ) + 2 e e+ e =2y

a=1 B=1
V22

Now, we have

2 vp (Ve — 2)pu — 3V405) oy "
8 fod o aPB 1 B8PB
=" (Ve =2)(d —vy) —2(vg + 1) E —qoa 2 | because d = E vg.

”) —

i a (gooc §05) « o 8 =1
B#a B#a

Therefore,

Wy -1 2|, —2)(d - 020y Fe ‘ — 20 +1)Zn: Y58 Ny — p.dx) + (v, — 2)d
a Vo o Pa 3,F, .2)=(0,0) a P — P8 Y = Pa a y

y
B=1
pra

()}
Il
AN =
<
fvli M3
%

(Ve = D(@a(dy — 9odx) + (v — 2)dy),

Il
N =
M=

1

Q
Il

hence the theorem follows. O

3 | HOLOMORPHY OF THE CURVATURE OF THE DUAL WEB OF A HOMOGENEOUS
FOLIATION ON I]J’é

Following [3, Definition 2.1], a homogeneous foliation H of degree d on [P’f: is given, in a suitable choice of affine coordinates
(x,y), by a homogeneous 1-form w = A(x, y)dx + B(x, y)dy, where A, B € C[x, y]; and gcd(A,B) = 1.

The tangent lines to the leaves of M are the leaves of a d-web on the dual projective plane P2, called the Legendre
transform (or dual web) of H, and denoted by LegH. More precisely, let (p, q) be the affine chart of [Iﬁ% corresponding to
the line{y = px —q} C Pé; then, LegH is given by the implicit differential equation (see [7])

_d9

A(x,px —q)+ pB(x,px —q) =0, with x = i 4.1)

The Gauss map of H is the rational map Gy, : [P% > [Ivj’é defined at every regular point m of H by G;,(m) = T\, H, where
TV H denotes the tangent line to the leaf of 1 passing through m. According to [3, Lemma 3.2], the discriminant of LegH
decomposes as

A(LegH) = G;(I%) UZRI U O,
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where I;fl is the transverse inflection divisor of H, 2;301 is the set of lines dual to the radial singularities of H, and finally
O is the dual line of the origin of the affine chart (x, y). For precise definitions of radial singularities and the inflection
divisor of a foliation on IP’?C, we refer to [3, section 1.3].

To the homogeneous foliation H, we can also associate the rational map gH : [P’dl: - IP’}: defined by

G,y : x]) = [=A(x,y) : B(x, )],
which allows us to completely determine the divisor I;fl and the set ng (see [3, section 2]):

D Z;f;d consistsof [b : a : 0] € L, such that[a : b] € [P’ql2 is a fixed critical point of QH;
2) I;; =11 Ti"", where T; = (b;y —a;x =0)and [q; : b;] € I]J’%3 is a nonfixed critical point of QH of multiplicity n;.
l, Z

We know from [1, Lemma 3.1] that if the curvature of LegH is holomorphic on [I5>?C \ O, then LegH is flat. The follow-
ing theorem is an effective criterion for the holomorphy of the curvature of LegH along an irreducible component D of
A(LegH) \ O.

Theorem 3.1. Let H be a homogeneous foliation of degree d > 3 on [P’?C defined by the I-form
w = A(x,y)dx + B(x,y)dy, A,Be C[x,yly, gcd(A,B)=1.

Let (p, q) be the affine chart of[]ﬁ’é associated to the line{y = px — q} C [P’é andletD = {p = p,} be an irreducible component
of A(LegH) \ O. Write g;{l([po 1) ={lay : byl,...,[a, : b,]} and denote by v; the ramification index ong at the point
[a; : bl e I]:"Qlt. Fori €{1,...,n}, define the polynomials P; € C|x, yl4_,, and Q; € C[x, ylrq—,—1 by

A(x,y) Alb,a)

B agx,y)
B(x, ) B bi,ai) 2. B
Pi(x,y;a;,b;) 1= Y ( and Q;(x,y;a;,b;) :=(v; —2) 9B o4 Pi(x,y;a;,b;) +2(v; + 1) .
(byy — a;x)i ox 0dy oP;
a_ B(xr y)
y
Then, the curvature of LegH is holomorphic on D if and only if
i <1 B l) (pobi — a)Qi(bi, ais ai, bi) _ 4.2)
~ vi) Pi(b;, a;;a;,b)B(b;, ;)

Remark 3.2. In particular, if D C i;jd \ QH(IZ), or equivalently, if all the critical points of QH in the fiber g;ll([ Do - 1])are
fixed, then the curvature K(LegH) is always holomorphic on D; indeed, we then have pyb; — a; = 0 if v; > 2.

Combining this remark with [1, Lemma 3.1], we recover Theorem 3.1 of [3]: The d-web LegH is flat if and only if its
curvature K(LegH ) is holomorphic on Gy (I;S).

Remark 3.3. Assume thatv; = v > 2foralli € {1, ..., n}. The following assertions hold:

(1) When v = 2 (which implies that d is even), the curvature of LegH is always holomorphic on D.
(2) When v > 3, the curvature of LegH is holomorphic on D if and only if

L (pob; — a;)(8xB(b;, a;) — 8, A(b;, ay)) _
Z B(or.a) =0

i=1
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In particular, if the fiber g;([po : 1]) contains a single nonfixed critical point of QH, say [a : b], then

(1) either g;l([po : 1)) ={[a : b]}, in which case v = d;

(2) or #g;{l([ Do . 1]) = 2, in which case d is necessarily even, d = 2k, and v = k.

In both cases, the curvature of LegH is holomorphic on D if and only if the 2-form dw vanishes on the line T = (by — ax =
0), which is the transverse inflection line of H associated to the nonfixed critical point [a : b] of QH.

Example 3.4. Consider the homogeneous foliation H of even degree 2k > 4 on I]J’é defined by the 1-form
w =Yy —x)kdx + (y = 1 x)*(y — ux)kdy, whered,u € C\{0,1}.

In the affine chart (p,q) of P associated to the line {y = px — g} C PZ, the web LegH is implicitly described by the
equation

d
(px — @ (px —q =)+ p(px =g = Ax)(px —q—ux) =0,  with x= é.
We see that LegH has a single slope x = —q along D := {p = 0}, so that D C A(LegH). Moreover, the map QH is given,
for any [x : y] € P, by
G, ([x o yD) =[x (x = p) 1 (x = 29)(x —uy)F.
In particular, the fiber g;([o : 1]) consists of the two points [0 : 1] and [1 : 1]: The point [0 : 1] (resp. [1 : 1]) is critical
and fixed (resp. nonfixed) for QH of multiplicity k — 1. From Remark 3.3, we deduce the following:

(1) If k = 2, then the curvature of LegH is holomorphic on D.
(2) If k > 2, then the curvature of LegH is holomorphic on D if and only if

0=dw| =-k(—-11(u—-1D %21+ u—21w)dx Ady,
y=x

that is, if and only if 1 and u satisfy the equation A + u — 24 u = 0.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.5. Let f : [F'>q1: - quj be a rational map of degree d; f(z) = % where a and b are polynomials without common
z

factor and max(deg a,degb) = d. Let w, € C and write f~ (wy) = {z1, 23, ... , Z,}. Suppose that z; # co foralli € {1,...,n}

and let v; denote the ramification index of f at the point z;. Then, there exists c € C* such that a(z) = wyb(z) + ¢ Hl.n:l(z -

Zi)vi.

Proof. According to [3, Lemma 3.9], for every i € {1, ..., n}, there exists a polynomial ¢; € C[z] of degree < d — v; sat-

isfying ¢;(z;) # 0 and such that a(z) = wyb(z) + ¢;(z)(z — z;)"i. This implies that for all i, j € {1, ..., n}, ¢;(z)(z — z;)"

¢;(2)(z — z;)", so that for any j # i, (z — z;)"/ divides ¢;. As a result, ¢; € C[z] has degree d — v; and writes as ¢;(z)
n

¢ [ (z—2z;)" forsomec € C*, hence the statement is proved. O
j=Lj#i

Proof of Theorem 3.1. Let § € C be such that b; — a;6 # Oforalli = 1,..., n. Up to conjugating w by the linear transforma-
tion (x + 6 y,y), we can assume that none of the lines L; = (b;y — a;x = 0) are vertical, thatis, b; # 0 for alli =1, ..., n.
A(,2)

B(1,z)’

Setting r; := %, we have g:( Dpo) = {r1, ..., 1} with QH(Z) =— According to Lemma 3.5, there exists a constant
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¢ € C* such that

—A(Q1,z) = ppB(1,2) —c H(z — V.
i=1

Moreover, the d-web LegH is given by Equation (4.1); since A, B € C[x, y],, this equation can then be rewritten as

0=xd[A(1,p—%>+pB(1,p—%)]=xd l(p—pO)B<1,p—%)+cﬁ(p—%—ri)vi , with x=§—z.
i=1

av
Set X :=q, Yy:=p—py, and p := d—z = %; in these new coordinates, D = {y = 0} and LegH is described by the

differential equation

n
F(%,,p) :=YBQ, ¥+ py— p%) + ¢ [J& + po — px =) = 0.
i=1
We have F(%,0, p) = c(—x)4 Hinzl(p — @;(X))"i, where g;(X) = % Note thatifv; > 2, then 0y F (X,0, ¢;(X)) = B(1,r;) #
0; since 95 F (X,0, p;(X)) # 0ifv; = 1, it follows that the surface S gy, is smooth along D = {y = 0}. Furthermore, if v; > 3,
then 030, F (X, 0, ;(X)) = —%0,B(1, r;). Thus, by Theorem 3.1, the curvature of LegH is holomorphicon D = {y = 0}ifand
only if Z?zl(vi — Do;(X)y; = 0where, for alli € {1, ..., n} such that v; > 2,

1 dyB(1,r;) o Vilpo—r))
Y= — l(vi -2) <d +(po—r)—F—— | +2v + 1) — |-
Vi B(l,rl-) J;,j?éi ry — }’j
We note that
& vi(po— 1)) Loy fir)
Z %=d—vi+(l?o—”i)z r__Jr_=d—Vi+(Po—ri)l—l,
j=Lj#i T j=Ljei P fi(ry)
n A(,z) + pyB(1, P;(1,z;r;,1
where fi(z) :=c [[ (z—r)" = (1,2) + po _( 2) = (L2 ).Therefore,
J=Lj# (z—r)m B(1,77)
axPi(l’ri;ri’ 1) A(la ri)
S vipo—ry) 9,Pi(1,r;;r;,1)  |9,Pi(L,r5r,1)  B(1,1;)
> =y —d-vitpo-r) : =3 > : :
j=1,j#i i J i(lyriirial) (1’ri) l'(l,ri’rl" 1)
A(l,ri) , . .
because p, = QH(ri) = _B(l ) and (d —v)P;(1,r;;r;,1) = 0, Py(1,ri513, 1) + r;0,Pi(1, 14513, 1) (Euler’s identity).
Z T

On the other hand, let us fix i € {1, ..., n} such that v; > 2; from the equalities p, = QH(rl-) and Q/H(ri) = 0, we deduce
that p,8,B(1,r;) = —3,A(1,r;), so that

dB(1,r;) + (po — r)0,B(1,r;) = dB(1,r;) — ri0,B(1,1;) — 3,A(1,r;) = 0, B(1,1;) — 3,A(L, 1),
thanks to Euler’s identity.

Qi(1,r;r;, 1)
viPi(la ri; ri, 1)B(15 ri)

It follows that for alli € {1, ..., n}such thatv; > 2,9; = . As a consequence, K(LegH) is holomor-

phic on D = {y = 0} if and only if

li l—l (Po—ri)Qi(l,"i;Vi,l):O
X v; ) Pi(L,r;r, DB(Lr)
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which ends the proof of the theorem. O

Corollary 3.6. Let H be a homogeneous foliation of degree d > 3 on [P’é defined by the 1-form
w = A(x,y)dx + B(x,y)dy, A,B € C[x,ylq, gcd(A,B)=1.

Assume that H possesses a transverse inflection line T = (ax + by = 0) of order v — 1. Suppose moreover that [—a : b] € [P’}C
is the only nonfixed critical point of QH in its fiber g;{l (gH([—a : b])). Then, the curvature of LegH is holomorphicon T' =
Gy (T) if and only if Q(b, —a; a, b) = 0, where

A(x,y) A(b,—a)

op A(x,y)
’ B(x9 ) B(b’ _a)
Q(x,y;a,b) :=(v—=2) _6B - _6A P(x,y;a,b)+2(v+1) ox and P(x,y;a,b) := Y

dy

Remark 3.7. When the line T = (ax + by = 0) is of minimal inflection order 1 (i.e., if v = 2) and under the more restrictive
hypothesis that the point [—a : b] is the only critical point of QH in its fiber, we recover [3, Theorem 3.5]. When T is of
maximal inflection order d — 1 (i.e., if v = d), we recover [3, Theorem 3.8].

Proof. Up to linear conjugation, we can assume that T” is not the line at infinity of [Ivj’é; then, T’ has the equation p = p,,

;‘Es’:Zi.Write 6. (po : 1) ={lay : by),...,[a, : bylj with [a; : by] = [—a : b]. Denoting by v; the rami-

fication index of gH at the point [a;, b;], we have v; = v and, by application of Theorem 3.1, the holomorphy of K(LegH)

where p, = —

along T’ is characterized by Equation (4.2). Now, the point [a; : b;] being not fixed by QH, we have pyb; — a; # 0.
Moreover, the hypothesis that [a; : b;] is the only nonfixed critical point of QH in the fiber Q:([po : 1]) ensures

that pob; — a; = 0 for all i € {2,...,n} such that v; > 2. It follows that K(LegH) is holomorphic on T’ if and only if
0 = Q(by,ay;ay,by) = Q(b, —a; a, b). Hence, the corollary is proved. O

4 | GALOIS HOMOGENEOUS FOLIATIONS HAVING A FLAT LEGENDRE TRANSFORM

Following [2, Definition 6.16] a foliation F of degree d on []3’(2: is said to be Galois if there is a Zariski open subset U of Pé
such that the Gauss map Gr : [P’é > [IVD?C, defined by m & SingF — T%F, induces a Galois covering from U onto Gr(U),
necessarily of degree d. This is equivalent to the existence of a subgroup G of order d of the group Bir([P’f:) of birational
transformations of I]:D?C such that for all y € G, we have Groy = Gr.

In particular, if 7 is homogeneous, then its associated map G _ : [P’qlz - [P’GI: is a ramified covering of degree d. Moreover,
F is Galois if and only if G is Galois [2, Proposition 6.19], or equivalently, if and only if 97? has the same ramification
indices at all the points of the same fiber [2, Theorem A].

Let us note that if f : [P’Ql2 - [F"ql: is Galois, then ¢ofop : [P’ql: - [P’ql: is also Galois for any ¢ and p belonging to the
automorphism group Aut([P’é). Recall the following result, due to Klein [6, Part I, Chapter IT] (see also [2, Theorem 4.18]),
classifying the ramified Galois coverings f : [F"q1: - [P’é up to the left-right action f — ¢ofop, where (¢, p) € Aut([P’qu) X
Aut(Py).

Theorem 4.1. Let f : P{. — P_ be a ramified Galois covering of degree d. Up to the left-right action of Aut(P.) X Aut(Pp),
f is of one of the following types:

1 f1=zd;
k 2

2. f2=(z4+k1) ifd is even, d = 2k;
Z'

3 fi= (—Z4+2i\/§zz+l>3 ifd = 12;

z4-2i\/322+1
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(zg+14z4+1)3 . .
4. = —71 d = 245
J4 108z4(z4—1)4 /
20_ 15 10 5.1}
5 fs= (220-2282'5+494210+2282°+1) if d = 60.

—1728z5(210+1125—1)S
Moreover, the Galois group of f is cyclic if and only if f is left-right conjugate to f.

Definition 4.2. Let f : [}3’%3 - qu: be a rational map of degree d. We call associated foliation to f the homogeneous
foliation #Z'(f) of I]J’é whose associated rational map me) is precisely f.

Note that if f is defined by f([x : y]) = [A(x,Yy) : B(x,y)], where A,B € C[x,y]; and gcd(A,B) =1, then #(f) is
given by the 1-form w = A(y, x)dx — B(y, x)dy.
According to [2, Proposition 6.19], Theorem 4.1 translates in terms of homogeneous foliations as follows:

Theorem 4.3. Let H be a Galois homogeneous foliation on [P’?C. Then, there exist i €{1,..,5} and ¢,p €
Aut(Pp) such that H = % (€ o f;0p).

The following theorem is the main result of this section.

Theorem 4.4. Let H be a Galois homogeneous foliation of degree d > 3 on [P’é Denote by Gal(gH) the Galois group of the
covering gH. We have the following dichotomy:

D If Gal(gH) is cyclic, then the d-web LegH is flat if and only if H is linearly conjugate to one of the two foliations H{ and
Hg defined, respectively, by the 1-forms
d

cof = yddx — x%dy and w; = xddx — yddy.

Q) If Gal(gH) is noncyclic, then the d-web LegH is flat.
To prove this theorem, we need the following lemma.
Lemma 4.5. Let f : P — P_ be a rational map of degree d defined, for any [x : y] € P, by

f(x : yD) =[A(x,y) : B(x,y)]. A,B€C[x,ylg, ged(A,B)=1.

Let py € C U {0} bea critical value of f and write f~'(py) = {[a; : b1],...,[a, : b,]}. Suppose that the ramification indices
of f at the points [qa; : b;] are all equal to each other and let v be their common value. For h € Aut([P’ql:), denote by H;, =
# (ho f) the homogeneous foliation associated to the rational map hof. Let (p, q) be the affine chart of I]% corresponding to
theline{y = px —q} C [P’é and let Dy, :={p = h(py)} C A(LegH}).

(D Ifv = 2, then the curvature of LegH, is holomorphic on Dy, forall h € Aut(l]:"dl:).
(2) Ifv >3and p, € C, then the curvature of LegH), is holomorphic on Dy, forall h € Aut([P’}:) if and only if

i b3, B(a;, b;) o, z”: b;d,B(a;, b;) — a;0,B(a;, b;) —o, i M —o. (5.1)
B(a;, b;) B(a;, b)) B(ay, bi)

i=1 i=1 i=1

(3) Ifv >3and py = o, then the curvature of LegH, is holomorphic on Dy, forall h € Aut([P’qu) ifand only if

i b;ioA(a;, b;) _o, i b;d,A(a;, b;) — a;0,A(a;, b;) o, i a;0,A(a;, b;) _o. (52)
A(a;, by) Ala;, by) A(a;, by)

i=1 i=1 i=1
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+8

ot where «, 3,7,6 € C with ad — By # 0. Then, the

Proof. Let h : P{ — P be an automorphism of P¢; h(z) =

foliation M, is given by
wp = (@ Ay, x) + BB(y, x))dx — (y A(y, x) + 6 B(y, x))dy.
Moreover, we have
(hof)™'(h(po)) = 7 (po) ={lay : bil,...[ay © bul}

since by hypothesis the ramification indices of f at the points [a; : b;] are all equal to each other and equal to v, the same
is true for the ramification indices of ho f at these points, because h € Aut(IP’ ). According to Remark 3.3, it follows that:

i. Ifv = 2, then K(LegH},) is holomorphic on D), for all h € Aut(l]:"1 ).
ii. If v > 3, then K(LegH,) is holomorphic on D, forall h € Aut([P’ ) if and only if

i (h(po)b; — a;)(ad,A(a;, by) + B3, B(a;, b)) + yd,A(a;, b;) + 68,B(a;, b;)) _ (5.3)

v A(a;, b;) + 6 B(a;, b;)

i=1

ii.1. If pg € C, then, from f([qa; : b;]) = [py : 1] and the fact that [a; : b;] are critical points of f, we deduce the equalities
A(ai, bl) = pOB(ai, bi)’ 5xA(ai, bl) = poaxB(aiy bi), and ayA(ai: bl) = poayB(ai, bi), so that (53) can be rewritten as

b;0,B(a;, b;) — a;0,B(a;, b;) B i a;0yB(a;, b;)
B(a;, b;) - B(a;, b;)

i=1

b;0, , b;
h(p )22 PRI 0)2

As aresult, K(LegH},) is holomorphic on Dy, for all h € Aut([P’qlt) if and only if the system (5.1) is satisfied.
ii.2. If py = oo, then B(a;, b;) = 0, B(a;, b;) = d,B(a;, b;) = 0 and (5.3) becomes

b;d,A(a;, b;) — a;0,A(a;, b;) i a;0,A(a;, b;)
A(a;, by) 4 Aa;,b)

i=1

b, A(a;, b;
hp )22 PO ke 0)2

As a consequence, K(LegH),) is holomorphic on Dy, for all h € Aut([P> ) if and only if the system (5.2) is satisfied.
Hence, the lemma is proved. O

Proof of Theorem 4.4. i. Suppose that Gal(gH) is cyclic. Then, by Theorem 4.1, gH is left-right conjugate to f; = z9. Since
f1 has exactly two critical points (namely 0 and o0), the same is true for QH' This implies, according to [3, Proposition 4.1],
that the d-web LegH is flat if and only if  is linearly conjugate to one of the two foliations H¢, Hd

ii. Suppose that Gal(gH) is noncyclic. According to Theorem 4.1, there existi € {2,...,5}and ¢,p € Aut([P’ ) such that
gH = tof;opand therefore H = # (£ o f;op). In particular, thereexisti € {2, ...,5}and h € Aut([P’C) such that H islinearly

conjugate to the foliation HS) := # (hof;); indeed, it suffices to take h = pot, because ho f; = po(fof;op)opt. To show

that the d-web LegH is flat, it suffices therefore to show that for alli € {2,...,5}and all h € Aut(lP’}C), the d-web LegHg) is
flat. Now, for all i € {2, ..., 5}, the map f; being a ramified Galois covering of IP’}: by itself, [2, Theorem A] implies that the
ramification indices of f; at the points of the same fiber f l.‘l(po) have the same value, which we will denote by v(f;, po)-
Thanks to [3, Theorem 3.1], it suffices again to apply Lemma 4.5 to each of the f; and to show that for every critical value
Do € IF" of f;, the curvature of LegHS) is holomorphic on the component Dg)(po) :={p = h(py)} of A(LegHs)) for all
he Aut([P’ ).

First of all a straightforward computation shows that each of the f;,i = 2, ..., 5, has as critical values 0, 1, and oo.

The case of the crltlcal value py = 1 is immediate. Indeed, it is easy to verify that foralli € {2,..., 5}, v(f;, 1) = 2, so that
the curvature of LegH )is holomorphic on D(l (1) foralli € {2,...,5}and all h € Aut([P’ ) (Lemma 4.5).
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The case where i = 2 and p, = 0 is also immediate. Indeed, we have v(f,,0) = 2, which implies that K(Leng)) is

holomorphic on D;Z)(O) forallh e Aut([P’}C).
Let us consider the case where i = 2 and p, = o0. The map f, is defined in homogeneous coordinates by

f2 i [x iyl e [Ay(x,) @ By(x, )], where Ay(x,y) = (x* + y)?and By(x,y) = 4x*y*.

Moreover, the fiber f5 (c0) consists of the two points 0 = [0 : 1] and oo = [1 : 0]; in particular, v(f,, ) = k. If k =
2, then K(Leng)) is holomorphic on D;z)(oo) forallh e Aut([P’}C). Suppose k > 3. We have

Z bd,Ax(a,b)  8,4,(0,1) _ 0 Z bdyAx(a,b) — adsAy(a.b)  3,A(0.1)  5,4,(1,0) _
Ay(a,b)  Ay0,1) A,(a,b) T A,0,1) A,(1,0)

la:blef;" (o) la:blef;" (o)

adyAx(a.b) _ 3,A>(1,0) _
Ay(a,b) Ay(1,0) ’

[a:blef; " (00)

it follows, by Lemma 4.5, that K (Lenglz)) is holomorphic on D;lz)(oo) forall h € Aut(P}:).
Let us study the case where i = 5 and p, = 0. Consider the polynomials

P(w) = w* — 228w + 494w? + 228w + 1 and Q(w) = —V1728(w? + 11w — 1);

the map f5 is given, for any [x : y] € IP’ql:,byfs([x :y]) =[As(x,y) : Bs(x,y)], where

S\ S\
As(x,y) = <yzop<ﬁ>> and Bs(x,y) = <xy11Q<ﬁ>> .
The polynomial P(w) has as roots the real numbers
wy =57 —25v/5+ 51/255 — 114V/5,  w, = 57 — 25/5— 51/255 = 114y/5, w; = 57 + 25V/5 + 51/255 + 1141/5,
wy = 57 +25V/5 — 51/255 + 1141/5;
by setting ¢ = exp(ZiT”) andu; = {/w; €R, j =1,...,4, we have
f3H0) = {[gluj (1] | j= 1,...,4,l=0,...,4}.

In particular, f 5_1(0) has cardinality 20 and therefore v(f5,0) = 60/20 = 3. Furthermore, by a straightforward computa-
tion, we obtain the following equalities:

bd,Bs(a,b) _ ol 1 N s5w; Q" (w;) ad,Bs(a,b)
Bs(a,b) l@b)=¢lu;n) uj - wQwy) J°
bd,Bs(a,b) — ad,Bs(a, b)
BS(aa b)

=5¢tu;| 11— ——— |,
Bs(a,b) la.b)=(¢tu;.1) Q(w;)

= g(w)),

(@b)=(¢hu;.1)

50(x2+1)

where g : x — —
x2+11x—1

, so that
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bd,Bs(a, b) — ad,Bs(a, b)
Bs(a,b) (@b)=¢luz1)

4
(@b)=Cluy1) Z

]=1 =0

@b=Cup)
because Z? 0§ = b= Z? N -l =0 and ijl g(w;) = 0. Thus, we deduce from Lemma 4.5 that K(Leng’) ) is holomorphic
on D(S)(O) forallh € Aut([P’ ).

Let us examine the case where i = 5 and py = 0. Set 0} =
(the w; are the two roots of Q(w) and &; = {/w;). Then,

2——2 , 1= ,andﬁz=

—11454/5 T = —11-54/5 T = —1+4/5 —1-4/5
2 2 2

F7l(0) = {[o D10, [1: 0], [ c 1] | j=1,2,l=0,...,4};

in particular, # f 5_1(00) = 12 and consequently v(fs, 00) = 60/12 = 5. Moreover, a straightforward computation leads to

b3, As(a, b) _ ad,As(a,b) _ bd,As(a,b) - ad,As(a,b) B
As(a,b) lab=01)  —~  As(a,b) l@b=01 As(a,b) @h=0n
b3, As(a, b) _ ad,As(a,b) 3 bd,As(a,b) — ad, As(a,b) B
As(a,b) labh=00 ~  As(a,b) l@b=0 As(a, b) (@h)=(1,0)
baxA5(a, b) _ 15§S_ILUjP,(L5j) aayAS(a, b) §l~ LUJP’(LUJ)
As(a,b) l@b=¢ti; ) upw;) ' As(a,b) l@bh=¢m;, n P@;) )
b3, As(a, b) — adyAs(a, b) _ @)
As(a, b) b=y ST

60(x*—114x3-114x—1)

where g : x — —
x4—228 x3+494 x2+228 x+1

. Therefore, we have

¥ b3, As(a,b) i 15@,P'(w;) i{s‘l % ¥ ad,As(a,b) il < _ L’Jj.pf(@)) ifl o
aviersie As@D) i HP@) i3 la:blef3" (e0) S Asab) P(@;)
bd,As(a,b) — ad,As(a,b)
AS(a’ b)

2
=5 ) &@)) =0.
[a:blef5 (o) j=1

According to Lemma 4.5, it follows that K (LegH(S)) is holomorphic on D(S)(oo) forallh € Aut([P’ ).

The remaining cases (those where i € {3,4} and p, € {0, }) are treated 51m11arly O

Remark 4.6. For d > 3, denote by FP(d) the algebraic set consisting of foliations of degree d on [P’é with a flat Legendre
transform. In [4, Theorem D], we showed that FP(3) has exactly 12 irreducible components, each of them is rigid in the
sense that it is the closure of the orbit under the action of Aut([lj> ) of a foliation on [IJ’2 Theorem 4.4 shows that in any
even degree d, the algebraic set FP(d) always contains nonrigid 1rredu01ble components
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