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Abstract
Let 𝑑 ≥ 3 be an integer. For a holomorphic 𝑑-web  on a complex surface 𝑀,
smooth along an irreducible component 𝐷 of its discriminant Δ(), we estab-
lish an effective criterion for the holomorphy of the curvature of  along 𝐷,
generalizing results on decomposable webs due to Marín, Pereira, and Pirio. As
an application, we deduce a complete characterization for the holomorphy of the
curvature of the Legendre transform (dual web) Leg of a homogeneous folia-
tion  of degree 𝑑 on ℙ2

ℂ
, generalizing some of our previous results. This then

allows us to study the flatness of the 𝑑-web Leg in the particular case where
the foliation  is Galois. When the Galois group of  is cyclic, we show that
Leg is flat if and only if is given, up to linear conjugation, by one of the two
1-forms 𝜔𝑑

1
= 𝑦𝑑d𝑥 − 𝑥𝑑d𝑦, 𝜔𝑑

2
= 𝑥𝑑d𝑥 − 𝑦𝑑d𝑦. When the Galois group of  is

noncyclic, we obtain that Leg is always flat.

KEYWORDS
curvature, Galois homogeneous foliation, Legendre transform, web

INTRODUCTION

A (regular) 𝑑-web on (ℂ2, 0) is the data of a family {1,2, … ,𝑑} of regular holomorphic foliations on (ℂ2, 0), which
are pairwise transverse at the origin. We say that  is the superposition of the foliations 1, … ,𝑑 and we write  =

1 ⊠⋯⊠ 𝑑.
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A(global)𝑑-web on a complex surface𝑀 is given in a local chart (𝑥, 𝑦)by an implicit differential equation𝐹(𝑥, 𝑦, 𝑦′) = 0,
where 𝐹(𝑥, 𝑦, 𝑝) =

∑𝑑

𝑖=0
𝑎𝑖(𝑥, 𝑦)𝑝

𝑑−𝑖 is a (reduced) polynomial in 𝑝 of degree 𝑑, having analytic coefficients 𝑎𝑖 , with 𝑎0
not identically zero. In a neighborhood of every point 𝑧0 = (𝑥0, 𝑦0), such that 𝑎0(𝑥0, 𝑦0)Δ(𝑥0, 𝑦0) ≠ 0, where Δ(𝑥, 𝑦) is the
𝑝-discriminant of 𝐹, the integral curves of this equation define a regular 𝑑-web on (ℂ2, 𝑧0).
To every 𝑑-web on𝑀 with 𝑑 ≥ 3, we can associate a meromorphic 2-form with poles along the discriminant Δ(),

called the curvature of and denoted by 𝐾(), see Section 2.3. A web with zero curvature is called flat. When𝑀 = ℙ2
ℂ
,

the flatness of a web onℙ2
ℂ
is characterized by the holomorphy of its curvature𝐾() along the generic points ofΔ().

In 2008, Pereira and Pirio [8, Theorem 7.1] established a result on the holomorphy of the curvature of a com-
pletely decomposable 𝑑-web  = 1 ⊠⋯⊠ 𝑑. In 2013, Marín and Pereira [7, Theorem 1] extended this result to
decomposable webs of the form  = 2 ⊠𝑑−2, that is, which are the superposition of the (local) foliations of a 2-
web 2 and a (𝑑 − 2)-web 𝑑−2. In this paper, we establish an effective criterion (Theorem 2.1) for the holomorphy of
the curvature of a 𝑑-web defined on a complex surface and smooth along an irreducible component of its discriminant
Δ(), generalizing these two results (see Corollary 2.6 and Remark 2.7).
We are then interested in the foliations on ℙ2

ℂ
, which are homogeneous, that is, which are invariant by homotheties. In

[3, section 3] we studied, for a homogeneous foliation of degree 𝑑 ≥ 3 onℙ2
ℂ
, the problem of the flatness of its Legendre

transform (its dual web) Leg; it is a 𝑑-web on the dual projective plane ℙ̌2
ℂ
whose leaves are the tangent lines to the leaves

of, see Section 4. Theorem 2.1 allows us to establish, for such a foliation, a complete characterization (Theorem 3.1)
of the holomorphy of the curvature of the 𝑑-web Leg along an irreducible component of the discriminant Δ(Leg),
generalizing our results in [3, Theorems 3.5 and 3.8] (see Corollary 3.6 and Remark 3.7).
We finally focus on the particular case of a homogeneous foliation of degree 𝑑 ≥ 3 onℙ2

ℂ
, which is Galois in the sense

of [2, Definition 6.16], see Section 5. When the Galois group of is cyclic, we prove that Leg is flat if and only if, up to
linear conjugation,  is given by one of the two 1-forms 𝜔𝑑

1
= 𝑦𝑑d𝑥 − 𝑥𝑑d𝑦, 𝜔𝑑

2
= 𝑥𝑑d𝑥 − 𝑦𝑑d𝑦. When the Galois group

of is noncyclic, we show that Leg is always flat, see Theorem 4.4.

1 PRELIMINARIES

1.1 Webs

Let𝑑 ≥ 1 be a integer. A (global)𝑑-web on a complex surface𝑀 is given by an open covering (𝑈𝑖)𝑖∈𝐼 of𝑀 and a collection
of 𝑑-symmetric 1-forms 𝜔𝑖 ∈ Sym𝑑Ω1

𝑀(𝑈𝑖), with isolated zeros, satisfying:

(𝔞) there exists 𝑔𝑖𝑗 ∈ ∗
𝑀(𝑈𝑖 ∩ 𝑈𝑗) such that 𝜔𝑖 coincides with 𝑔𝑖𝑗𝜔𝑗 on 𝑈𝑖 ∩ 𝑈𝑗;

(𝔟) for every generic point𝑚 of 𝑈𝑖 , 𝜔𝑖(𝑚) factors as the product of 𝑑 pairwise linearly independent 1-forms.

The discriminant Δ() of is the divisor on 𝑀 defined locally by Δ(𝜔𝑖) = 0, where Δ(𝜔𝑖) is the discriminant of the
𝑑-symmetric 1-form 𝜔𝑖 ∈ Sym𝑑Ω1

𝑀(𝑈𝑖), see [9, Chapter 1, section 1.3.4]. The support of Δ() consists of the points of𝑀,
which do not satisfy condition (𝔟). When 𝑑 = 1, this condition is always satisfied and we recover the usual definition of a
holomorphic foliation  on𝑀.
The tangent locus T𝑚 of at a point𝑚 ∈ 𝑈𝑖 ⧵ Δ() is the union of the 𝑑 kernels at𝑚 of the linear factors of 𝜔𝑖(𝑚).
A global 𝑑-web on𝑀 is said to be decomposable if there are global webs1,2 on𝑀 sharing no common subwebs

such that is the superposition of1 and2; we then write = 1 ⊠2. Otherwise is said to be irreducible. We
say that  is completely decomposable if there exist global foliations 1, … ,𝑑 on 𝑀 such that  = 1 ⊠⋯⊠ 𝑑. For
more details on this subject, we refer to [9].

1.2 Characteristic surface of a web

Let be a holomorphic 𝑑-web on a complex surface𝑀. Let �̃� = ℙT∗𝑀 be the projectivization of the cotangent bundle
of𝑀; the characteristic surface of is the surface 𝑆 ⊂ �̃� defined by

𝑆 ∶=
{
(𝑚, [𝜂]) ∈ �̃�||𝑚 ∈ 𝑀 ⧵ Δ(), ker 𝜂 ⊂ T𝑚

}
.
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Wewill give a local expression of this surface. First of all, let us consider a local coordinate system (𝑥, 𝑦) on an open subset
𝑈 of𝑀. Denote by 𝜋 ∶ �̃� → 𝑀 the natural projection.We define a coordinate system on the open set 𝜋−1(𝑈), by denoting
by (𝑥, 𝑦, [𝑝 ∶ 𝑞]) the coordinates of the point (𝑚, [𝑞d𝑦 − 𝑝d𝑥]) ∈ 𝜋−1(𝑈), where (𝑥, 𝑦) are the local coordinates of 𝑚 in
𝑈. If is given on 𝑈 by the 𝑑-symmetric 1-form 𝜔 =

∑𝑑

𝑖=0
𝑎𝑖(𝑥, 𝑦)(d𝑥)

𝑖(d𝑦)𝑑−𝑖, with 𝑎𝑖 ∈ 𝑀(𝑈), then

𝑆 ∩ 𝜋−1(𝑈) = {(𝑥, 𝑦, [𝑝 ∶ 𝑞]) ∈ �̃�|𝐹(𝑥, 𝑦, 𝑝, 𝑞) = 0},

where 𝐹(𝑥, 𝑦, 𝑝, 𝑞) =
∑𝑑

𝑖=0
𝑎𝑖(𝑥, 𝑦)𝑝

𝑑−𝑖𝑞𝑖 .
In the sequel, we will work in the affine chart (𝑈𝑞, (𝑥, 𝑦, 𝑝)) defined by 𝑈𝑞 ∶= 𝜋−1(𝑈) ⧵ {𝑞 = 0} and 𝑝 ∶= [𝑝 ∶ 1].

Setting 𝐹(𝑥, 𝑦, 𝑝) ∶= 𝐹(𝑥, 𝑦, 𝑝, 1) =
∑𝑑

𝑖=0
𝑎𝑖(𝑥, 𝑦)𝑝

𝑑−𝑖, we have

𝑆 ∩ 𝑈𝑞 = {(𝑥, 𝑦, 𝑝) ∈ �̃�|𝐹(𝑥, 𝑦, 𝑝) = 0}.

Wewill denote by 𝜋 ∶ 𝑆 → 𝑀 the restriction of 𝜋 to 𝑆 . Let us introduce the following definition, which will be useful
later.

Definition 1.1. With the above notations, let 𝐷 be an irreducible component of the discriminant Δ(). We will say that
 is smooth along 𝐷 if for every generic point𝑚 of 𝐷, the characteristic surface 𝑆 of is smooth at every point of the
fiber 𝜋−1


(𝑚).

Example 1.2. On 𝑀 = ℂ2, the 2-web  given by 𝜔 = (𝑦2 − 𝑥)d𝑦2 + 2 𝑥d𝑥d𝑦 − 𝑥d𝑥2 has discriminant Δ() = 4𝑥𝑦2

and its characteristic surface 𝑆 has equation 𝐹(𝑥, 𝑦, 𝑝) ∶= (𝑦2 − 𝑥)𝑝2 + 2 𝑥𝑝 − 𝑥 = 0. Note that is smooth along the
irreducible component𝐷1 ∶= {𝑥 = 0} ⊂ Δ(). Indeed, the fiber𝜋−1


(𝑚) over a generic point𝑚 = (0, 𝑦) ∈ 𝐷1 is reduced to

the point �̃� = (0, 𝑦, 0), and the surface 𝑆 is smooth at �̃�, because 𝜕𝑥𝐹 (0, 𝑦, 0) = −1 ≠ 0. However, is not smooth along
the irreducible component 𝐷2 ∶= {𝑦 = 0} ⊂ Δ(), because, for every generic point 𝑚 = (𝑥, 0) ∈ 𝐷2, we have 𝜋−1


(𝑚) =

{(𝑥, 0, 1)} and 𝜕𝑥𝐹 (𝑥, 0, 1) ≡ 𝜕𝑦𝐹 (𝑥, 0, 1) ≡ 𝜕𝑝𝐹 (𝑥, 0, 1) ≡ 0.

1.3 Fundamental form, curvature, and flatness of a web

We recall here the definitions of the fundamental form and the curvature of a 𝑑-web  . Let us first suppose that  is
a germ of completely decomposable 𝑑-web on (ℂ2, 0), = 1 ⊠⋯⊠ 𝑑. For each 1 ≤ 𝑖 ≤ 𝑑, let 𝜔𝑖 be a 1-form with at
most an isolated singularity at 0 defining the foliation 𝑖 . According to [8], for every triple (𝑟, 𝑠, 𝑡) with 1 ≤ 𝑟 < 𝑠 < 𝑡 ≤ 𝑑,
we define 𝜂𝑟𝑠𝑡 = 𝜂(𝑟 ⊠ 𝑠 ⊠ 𝑡) as the unique meromorphic 1-form satisfying the following equalities:

⎧⎪⎨⎪⎩
d(𝛿𝑠𝑡 𝜔𝑟) = 𝜂𝑟𝑠𝑡 ∧ 𝛿𝑠𝑡 𝜔𝑟

d(𝛿𝑡𝑟 𝜔𝑠) = 𝜂𝑟𝑠𝑡 ∧ 𝛿𝑡𝑟 𝜔𝑠

d(𝛿𝑟𝑠 𝜔𝑡) = 𝜂𝑟𝑠𝑡 ∧ 𝛿𝑟𝑠 𝜔𝑡,

(1.1)

where 𝛿𝑖𝑗 denotes the function defined by the relation 𝜔𝑖 ∧ 𝜔𝑗 = 𝛿𝑖𝑗 d𝑥 ∧ d𝑦. We call fundamental form of the web =

1 ⊠⋯⊠ 𝑑 the 1-form

𝜂() = 𝜂(1 ⊠⋯⊠ 𝑑) =
∑

1≤𝑟<𝑠<𝑡≤𝑑

𝜂𝑟𝑠𝑡. (1.2)

We can easily verify that 𝜂() is a meromorphic 1-form with poles along the discriminant Δ() of , and that it is well

defined up to addition of a closed logarithmic 1-form
d𝑔

𝑔
with 𝑔 ∈ ∗(ℂ2, 0) (cf. [3, 10]).

Now, if  is an arbitrary 𝑑-web on a complex surface 𝑀, then we can transform it into a completely decomposable
𝑑-web by taking its pull-back by a suitable ramified Galois covering. The invariance of the fundamental form of this new
web by the action of the Galois group allows us to descend it to a global meromorphic 1-form 𝜂() on𝑀, with poles along
the discriminant of (see [7]).
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The curvature of the web is by definition the 2-form

𝐾() = d 𝜂().

It is a meromorphic 2-form with poles along the discriminant Δ(), canonically associated to ; more precisely, for any
dominant holomorphic map 𝜑, we have 𝐾(𝜑∗) = 𝜑∗𝐾().
A 𝑑-web is called flat if its curvature 𝐾() vanishes identically.
Note that a 𝑑-web on ℙ2

ℂ
is flat if and only if its curvature is holomorphic over the generic points of the irreducible

components of Δ(). This follows from the definition of 𝐾() and the fact that there are no holomorphic 2-forms on ℙ2
ℂ

other than the zero 2-form.

2 CRITERION FOR THE HOLOMORPHY OF THE CURVATURE OF SMOOTHWEBS

In this section, we propose to establish the following theorem.

Theorem 2.1. Let be a holomorphic 𝑑-web on a complex surface𝑀 and let𝐷 be an irreducible component of the discrim-
inant Δ(). Assume that is smooth along 𝐷. Then, the fundamental form 𝜂() has simple poles along 𝐷. More precisely,
choose a local coordinate system (𝑥, 𝑦) on𝑀 such that 𝐷 = {𝑦 = 0} and let 𝐹(𝑥, 𝑦, 𝑝) = 0, 𝑝 =

d𝑦

d𝑥
, be an implicit differential

equation defining . Write 𝐹(𝑥, 0, 𝑝) = 𝑎0(𝑥)
𝑛∏

𝛼=1
(𝑝 − 𝜑𝛼(𝑥))

𝜈𝛼 with 𝜑𝛼 ≢ 𝜑𝛽 if 𝛼 ≠ 𝛽. Then, the 1-form

𝜂() −
1

6𝑦

𝑛∑
𝛼=1

(𝜈𝛼 − 1)(𝜓𝛼(𝑥)(d𝑦 − 𝜑𝛼(𝑥)d𝑥) + (𝜈𝛼 − 2)d𝑦)

is holomorphic along 𝐷 = {𝑦 = 0}, where 𝜓𝛼 is a function of the coordinate 𝑥 defined, for all 𝛼 ∈ {1, … , 𝑛} such that 𝜈𝛼 ≥ 2,
by

𝜓𝛼(𝑥) =
1

𝜈𝛼

[
(𝜈𝛼 − 2)

(
𝑑 − 𝜑𝛼(𝑥)

𝜕𝑝𝜕𝑦𝐹(𝑥, 0, 𝜑𝛼(𝑥))

𝜕𝑦𝐹(𝑥, 0, 𝜑𝛼(𝑥))

)
− 2(𝜈𝛼 + 1)

𝑛∑
𝛽=1,𝛽≠𝛼

𝜈𝛽𝜑𝛽(𝑥)

𝜑𝛼(𝑥) − 𝜑𝛽(𝑥)

]
.

In particular, the curvature 𝐾() is holomorphic along 𝐷 if and only if

𝑛∑
𝛼=1

(𝜈𝛼 − 1)𝜑𝛼(𝑥)𝜓𝛼(𝑥) ≡ 0 and
𝑛∑

𝛼=1

(𝜈𝛼 − 1)
d

d𝑥
𝜓𝛼(𝑥) ≡ 0.

Remark 2.2. When the component 𝐷 ⊂ Δ() is totally invariant by , the curvature 𝐾() is always holomorphic along
𝐷.

Remark 2.3. Assume that 𝜈𝛼 = 𝜈 ≥ 2 for all 𝛼 ∈ {1, … , 𝑛}. The following assertions hold:

1. If 𝜈 = 2 (which implies that 𝑑 is even), then the curvature 𝐾() is always holomorphic along 𝐷.
2. If 𝜈 ≥ 3, then the curvature 𝐾() is holomorphic along 𝐷 if and only if

𝑛∑
𝛼=1

𝜑𝛼(𝑥)(𝑑 − 𝜌𝛼(𝑥)) ≡ 0 and
𝑛∑

𝛼=1

d

d𝑥
𝜌𝛼(𝑥) ≡ 0,

where 𝜌𝛼(𝑥) ∶= 𝜑𝛼(𝑥)
𝜕𝑝𝜕𝑦𝐹 (𝑥, 0, 𝜑𝛼(𝑥))

𝜕𝑦𝐹 (𝑥, 0, 𝜑𝛼(𝑥))
.
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Indeed, it suffices to set 𝑓𝛼,𝛽 =
𝜑𝛽

𝜑𝛼−𝜑𝛽
and to note that

𝑛∑
𝛼=1

𝑛∑
𝛽=1,𝛽≠𝛼

𝜑𝛼𝑓𝛼,𝛽 =
∑

1≤𝛼<𝛽≤𝑛

(
𝜑𝛼𝑓𝛼,𝛽 + 𝜑𝛽𝑓𝛽,𝛼

)
≡ 0

and

𝑛∑
𝛼=1

𝑛∑
𝛽=1,𝛽≠𝛼

𝑓𝛼,𝛽 =
∑

1≤𝛼<𝛽≤𝑛

(
𝑓𝛼,𝛽 + 𝑓𝛽,𝛼

)
≡ −

(𝑛
2

)
≡ constant.

The hypothesis of smoothness of along the component 𝐷 ⊂ Δ() is essential for the validity of Theorem 3.1, as the
following example shows.

Example 2.4. Let𝑀 be a complex surface and let be the 3-web defined in local coordinates (𝑥, 𝑦) by the differential
equation

𝐹(𝑥, 𝑦, 𝑝) ∶=
(
𝜆(𝑥2 − 1)𝑝 + (𝑥 − 3)𝑦𝜅

)(
𝜆(𝑥2 − 1)𝑝 + (𝑥 + 3)𝑦𝜅

)(
𝜆(𝑥2 − 1)𝑝 − 2𝑥𝑦𝜅

)
= 0,

where 𝑝 =
d𝑦

d𝑥
, 𝜅 ∈ ℕ ⧵ {0, 1}, 𝜆 ∈ ℂ∗. For this web, we have

Δ() = 2916𝜆6(𝑥2 − 1)8𝑦6𝜅 and 𝜂() =
7d(𝑥2 − 1)

3(𝑥2 − 1)
+

(
2𝜅

𝑦
−

𝜆

3𝑦𝜅

)
d𝑦.

We see that 𝜂() is closed and therefore that  is flat. Moreover, 𝜂() has poles of order 𝜅 > 1 along the component
𝐷 ∶= {𝑦 = 0} ⊂ Δ(). Note that is not smooth along 𝐷. Indeed, the fiber 𝜋−1


(𝑚) over a generic point𝑚 = (𝑥, 0) ∈ 𝐷

consists of the single point �̃� = (𝑥, 0, 0) and the surface 𝑆 is not smooth at �̃�, because 𝜕𝑥𝐹 (𝑥, 0, 0) ≡ 𝜕𝑦𝐹 (𝑥, 0, 0) ≡

𝜕𝑝𝐹 (𝑥, 0, 0) ≡ 0.

Remark 2.5. In [5, p. 286], the author claimed that the fundamental form of a planar 3-web has probably at most simple
poles along Δ() and he gave an argument in the particular case where is defined by a differential equation of type
𝑎0(𝑥, 𝑦)𝑝

3 + 𝑎2(𝑥, 𝑦)𝑝 + 𝑎3(𝑥, 𝑦) = 0, 𝑝 =
d𝑦

d𝑥
. Note that the 3-web given in Example 2.4 is of this type and its fundamental

form has no simple poles along 𝑦 = 0 if 𝜅 > 1. This contradicts the claim of [5, p. 286].

Corollary 2.6. Let  be a holomorphic 𝑑-web on a complex surface 𝑀 and let 𝐷 be an irreducible component of the
discriminant Δ(). Assume that  is smooth along 𝐷. Fix a local coordinate system (𝑥, 𝑦) on 𝑀 such that 𝐷 = {𝑦 =

0} and let 𝐹(𝑥, 𝑦, 𝑝) = 0, 𝑝 =
d𝑦

d𝑥
, be an implicit differential equation defining  . Assume moreover that 𝐹(𝑥, 0, 𝑝) =

𝑎0(𝑥)(𝑝 − 𝜑0(𝑥))
𝜈
𝑑−𝜈∏
𝛼=1

(𝑝 − 𝜑𝛼(𝑥)) with 𝜑𝛼 ≠ 𝜑0 for all 𝛼 ∈ {1, … , 𝑑 − 𝜈} and 𝜑𝛼 ≢ 𝜑𝛽 if 𝛼 ≠ 𝛽. Then, the curvature 𝐾()

is holomorphic on 𝐷 if and only if 𝜑0 ≡ 0 or 𝜓 ≡ 0, where

𝜓(𝑥) = (𝜈 − 2)

(
𝑑 − 𝜑0(𝑥)

𝜕𝑝𝜕𝑦𝐹(𝑥, 0, 𝜑0(𝑥))

𝜕𝑦𝐹(𝑥, 0, 𝜑0(𝑥))

)
− 2(𝜈 + 1)

𝑑−𝜈∑
𝛼=1

𝜑𝛼(𝑥)

𝜑0(𝑥) − 𝜑𝛼(𝑥)
.

Remark 2.7. In a neighborhood of every generic point of 𝐷, the 𝑑-web decomposes as = 𝜈 ⊠𝑑−𝜈 with

𝜈
|||𝐷 ∶ d𝑦 − 𝜑0(𝑥)d𝑥 = 0 and 𝑑−𝜈

|||𝐷 ∶

𝑑−𝜈∏
𝛼=1

(d𝑦 − 𝜑𝛼(𝑥)d𝑥) = 0.

When 𝜈 = 2, we recover the barycenter criterion, namely, Theorem 1 of [7] (see also [8, Theorem 7.1]): The curva-
ture of  = 2 ⊠𝑑−2 is holomorphic on 𝐷 if and only if 𝐷 is invariant by 2 or by the barycenter 𝛽2

(𝑑−2) of
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𝑑−2 with respect to 2. Indeed, on the one hand, the invariance of 𝐷 = {𝑦 = 0} by 2 translates into 𝜑0 ≡ 0. On the
other hand, the restriction of 𝛽2

(𝑑−2) to 𝐷 is given by

d𝑦 −

⎡⎢⎢⎢⎢⎣
𝜑0(𝑥) +

1

1

𝑑−2

𝑑−2∑
𝛼=1

1

𝜑𝛼(𝑥)−𝜑0(𝑥)

⎤⎥⎥⎥⎥⎦
d𝑥,

or equivalently, by

𝑑−2∑
𝛼=1

1

𝜑0(𝑥) − 𝜑𝛼(𝑥)
d𝑦 +

[
𝑑 − 2 − 𝜑0(𝑥)

𝑑−2∑
𝛼=1

1

𝜑0(𝑥) − 𝜑𝛼(𝑥)

]
d𝑥 =

𝑑−2∑
𝛼=1

1

𝜑0(𝑥) − 𝜑𝛼(𝑥)
d𝑦 −

𝑑−2∑
𝛼=1

𝜑𝛼(𝑥)

𝜑0(𝑥) − 𝜑𝛼(𝑥)
d𝑥,

so that the invariance of 𝐷 by 𝛽2
(𝑑−2) is characterized by

∑𝑑−2

𝛼=1

𝜑𝛼

𝜑0−𝜑𝛼
≡ 0 and therefore by 𝜓 ≡ 0, because 𝜓 =

−6
∑𝑑−2

𝛼=1

𝜑𝛼

𝜑0−𝜑𝛼
.

The proof of Theorem 3.1 consists essentially in determining the principal part of the Laurent series of the fundamental
form 𝜂() along the component 𝐷 = {𝑦 = 0} of the discriminant of . To do this, we need the following lemma.

Lemma 2.8. The fundamental form of the 3-web defined by the 1-forms 𝜔𝓁 = d𝑦 − 𝜆𝓁(𝑥, 𝑦)d𝑥, 𝓁 = 1, 2, 3, is given by

𝜂() =
∑

(𝑖,𝑗,𝑘)∈⟨1,2,3⟩
𝜕𝑦(𝜆𝑖𝜆𝑗) − 𝜕𝑥𝜆𝑘

(𝜆𝑖 − 𝜆𝑘)(𝜆𝑗 − 𝜆𝑘)
(d𝑦 − 𝜆𝑘d𝑥),

where ⟨1, 2, 3⟩ ∶= {(1, 2, 3), (3, 1, 2), (2, 3, 1)}.

Proof. This follows from a straightforward computation using formula (1.1). □

Proof of Theorem 2.1. In a neighborhood of every generic point 𝑚 of 𝐷, the web  decomposes as  = ⊠𝑛
𝛼=1

𝛼,
where𝛼 is a 𝜈𝛼-web having a unique slope 𝑝 = 𝜑𝛼(𝑥) along 𝑦 = 0, that is,𝛼 = ⊠

𝜈𝛼
𝑖=1

𝛼
𝑖
and 𝛼

𝑖
|𝑦=0 ∶ d𝑦 − 𝜑𝛼(𝑥)d𝑥 =

0. Then, 𝜂() = 𝜂1 + 𝜂2 + 𝜂3, where

𝜂1 =

𝑛∑
𝛼=1
𝜈𝛼≥3

∑
1≤𝑖<𝑗<𝑘≤𝜈𝛼

𝜂𝛼𝛼𝛼
𝑖𝑗𝑘

, 𝜂2 =

𝑛∑
𝛼=1
𝜈𝛼≥2

∑
1≤𝑖<𝑗≤𝜈𝛼

𝑛∑
𝛽=1

𝛽≠𝛼

𝜈𝛽∑
𝑘=1

𝜂
𝛼𝛼𝛽

𝑖𝑗𝑘
, 𝜂3 =

∑
1≤𝛼<𝛽<𝛾≤𝑛

∑
1≤𝑖≤𝜈𝛼
1≤𝑗≤𝜈𝛽
1≤𝑘≤𝜈𝛾

𝜂
𝛼𝛽𝛾

𝑖𝑗𝑘
,

and 𝜂𝛼𝛼𝛼
𝑖𝑗𝑘

, resp. 𝜂𝛼𝛼𝛽
𝑖𝑗𝑘

, resp. 𝜂𝛼𝛽𝛾
𝑖𝑗𝑘

, is the fundamental form of the 3-subweb 𝛼
𝑖
⊠ 𝛼

𝑗
⊠ 𝛼

𝑘
, resp. 𝛼

𝑖
⊠ 𝛼

𝑗
⊠ 

𝛽

𝑘
, resp.

𝛼
𝑖
⊠ 

𝛽

𝑗
⊠ 

𝛾

𝑘
, of .

If 𝛼 < 𝛽 < 𝛾, then (𝜑𝛼 − 𝜑𝛽)(𝜑𝛽 − 𝜑𝛾)(𝜑𝛾 − 𝜑𝛼) ≢ 0, which implies, thanks to Lemma 2.8, that the 1-form 𝜂
𝛼𝛽𝛾

𝑖𝑗𝑘
has no

poles along 𝑦 = 0; therefore, the same is true for the 1-form 𝜂3.
As for 𝜂1 and 𝜂2, let us first fix 𝛼 ∈ {1, … , 𝑛} such that 𝜈𝛼 ≥ 2. Then, 𝜕𝑥𝐹 (𝑥, 0, 𝜑𝛼(𝑥)) ≡ 𝜕𝑝𝐹 (𝑥, 0, 𝜑𝛼(𝑥)) ≡ 0; the

hypothesis of smoothness of along𝐷 = {𝑦 = 0} implies that 𝜕𝑦𝐹 (𝑥, 0, 𝜑𝛼(𝑥)) ≢ 0. Put 𝑧 = 𝑝 − 𝜑𝛼(𝑥) and 𝐹𝛼(𝑥, 𝑦, 𝑧) ∶=
𝐹(𝑥, 𝑦, 𝑧 + 𝜑𝛼(𝑥)) =

∑
𝑘≥0

𝐹𝛼,𝑘(𝑥, 𝑧)𝑦
𝑘 with 𝐹𝛼,𝑘 ∈ ℂ{𝑥}[𝑧]. Since 𝐹𝛼,1(𝑥, 0) = 𝜕𝑦𝐹 (𝑥, 0, 𝜑𝛼(𝑥)) ≢ 0, the series Ψ(𝑦) ∶=∑

𝑘≥1
𝐹𝛼,𝑘𝑦

𝑘 is invertible and its inverse writes as Ψ−1(𝑤) =
1

𝐹𝛼,1
𝑤 −

𝐹𝛼,2

(𝐹𝛼,1)3
𝑤2 +⋯. Moreover, define 𝑈𝛼 ∈ ℂ{𝑥}[𝑧] by

𝐹𝛼(𝑥, 0, 𝑧) = 𝑧𝜈𝛼𝑈𝛼(𝑥, 𝑧); note that

𝑈𝛼(𝑥, 𝑧) = 𝑎0(𝑥)

𝑛∏
𝛽=1,𝛽≠𝛼

(
𝑧 + 𝜑𝛼(𝑥) − 𝜑𝛽(𝑥)

)𝜈𝛽
=

𝑑−𝜈𝛼∑
𝑘=0

𝑈𝛼,𝑘(𝑥)𝑧
𝑘,
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with 𝑈𝛼,1(𝑥)

𝑈𝛼,0(𝑥)
=

𝜕𝑧𝑈𝛼(𝑥,0)

𝑈𝛼(𝑥,0)
=

𝑛∑
𝛽=1,𝛽≠𝛼

𝜈𝛽

𝜑𝛼(𝑥)−𝜑𝛽(𝑥)
. Writing 𝐹𝛼,1(𝑥, 𝑧) =

∑𝑑

𝑘=0
𝐺𝛼,𝑘(𝑥)𝑧

𝑘, with 𝐺𝛼,0 ≢ 0, it follows that in a

neighborhood of (𝑥, 0, 0), the equation 𝐹𝛼(𝑥, 𝑦, 𝑧) = 0 is equivalent to

𝑦 = (Ψ−1(−𝐹𝛼,0))(𝑥, 𝑧) = −𝑧𝜈𝛼
𝑈𝛼(𝑥, 𝑧)

𝐹𝛼,1(𝑥, 𝑧)
− 𝑧2𝜈𝛼

𝐹𝛼,2(𝑥, 𝑧)(𝑈𝛼(𝑥, 𝑧))
2

(𝐹𝛼,1(𝑥, 𝑧))3
+⋯ = 𝑌𝛼,0(𝑥)𝑧

𝜈𝛼 + 𝑌𝛼,1(𝑥)𝑧
𝜈𝛼+1 +⋯ =∶ 𝑌𝛼(𝑥, 𝑧),

with 𝑌𝛼,0 = −
𝑈𝛼,0

𝐺𝛼,0

≢ 0 and 𝑌𝛼,1 =
𝐺𝛼,1𝑈𝛼,0−𝐺𝛼,0𝑈𝛼,1

(𝐺𝛼,0)2
because 𝜈𝛼 ≥ 2. Thus, we can write 𝑌𝛼(𝑥, 𝑧) = (𝑋𝛼(𝑥, 𝑧))

𝜈𝛼 with

𝑋𝛼(𝑥, 𝑧) =
∑

𝑘≥1
𝑋𝛼,𝑘(𝑥)𝑧

𝑘,𝑋𝛼,1 =
(
𝑌𝛼,0

) 1

𝜈𝛼 ≢ 0 and 𝑋𝛼,2

𝑋𝛼,1

=
𝑌𝛼,1

𝜈𝛼𝑌𝛼,0

. Then, the seriesΦ(𝑧) ∶=
∑

𝑘≥1
𝑋𝛼,𝑘𝑧

𝑘 is invertible and

its inverse is of the form Φ−1(𝑤) =
∑

𝑘≥1
𝑓𝛼,𝑘𝑤

𝑘 with 𝑓𝛼,𝑘 ∈ ℂ{𝑥}, 𝑓𝛼,1 =
1

𝑋𝛼,1

and 𝑓𝛼,2 = −
𝑋𝛼,2

(𝑋𝛼,1)3
. Therefore, the equality

𝑦 = (Ψ−1(−𝐹𝛼,0))(𝑥, 𝑧) is equivalent to 𝑧 = (Φ−1(𝑦
1

𝜈𝛼 ))(𝑥) and therefore to 𝑝 = (Φ−1(𝑦
1

𝜈𝛼 ))(𝑥) + 𝜑𝛼(𝑥). As a result, in a
neighborhood of𝑚, the slopes 𝑝𝑗 (𝑗 = 1,… , 𝜈𝛼) of T(𝑥,𝑦)𝛼 are given by

𝑝𝑗 = 𝜆𝛼,𝑗(𝑥, 𝑦) ∶= 𝜑𝛼(𝑥) +
∑
𝑘≥1

𝑓𝛼,𝑘(𝑥)𝜁
𝑗𝑘
𝛼 𝑦

𝑘

𝜈𝛼 , whereζα = exp(
2i𝜋

𝜈𝛼
).

Note furthermore that

𝑓𝛼,2

(𝑓𝛼,1)2
= −

𝑋𝛼,2

𝑋𝛼,1
= −

𝑌𝛼,1

𝜈𝛼𝑌𝛼,0
=

1

𝜈𝛼

(
𝐺𝛼,1

𝐺𝛼,0
−

𝑈𝛼,1

𝑈𝛼,0

)
=

1

𝜈𝛼

[(
𝜕𝑧𝐹𝛼,1

𝐹𝛼,1

)|||𝑧=0 − 𝑈𝛼,1

𝑈𝛼,0

]

=
1

𝜈𝛼

[(
𝜕𝑧𝜕𝑦𝐹𝛼

𝜕𝑦𝐹𝛼

)|||(𝑦,𝑧)=(0,0) − 𝑛∑
𝛽=1,𝛽≠𝛼

𝜈𝛽

𝜑𝛼 − 𝜑𝛽

]
. (3.1)

We will now apply Lemma 2.8 to compute 𝜂𝛼𝛼𝛼
𝑖𝑗𝑘

. Setting 𝑤𝛼 = 𝑦
1

𝜈𝛼 , we obtain

𝜕𝑥𝜆𝛼,𝑘 = 𝜑
′

𝛼 + 𝑓
′

𝛼,1
𝜁𝑘𝛼𝑤𝛼 + 𝑓

′

𝛼,2
𝜁2𝑘𝛼 𝑤2

𝛼 + 𝑓
′

𝛼,3
𝜁3𝑘𝛼 𝑤3

𝛼 +⋯ ,

𝜕𝑦(𝜆𝛼,𝑖𝜆𝛼,𝑗) =
𝑤𝛼

𝜈𝛼𝑦

[
𝜑𝛼𝑓𝛼,1(𝜁

𝑖
𝛼 + 𝜁

𝑗
𝛼) + 2

(
𝜑𝛼𝑓𝛼,2(𝜁

2𝑖
𝛼 + 𝜁

2𝑗
𝛼 ) + 𝑓2

𝛼,1
𝜁
𝑖+𝑗
𝛼

)
𝑤𝛼

+ 3
(
𝜑𝛼𝑓𝛼,3(𝜁

3𝑖
𝛼 + 𝜁

3𝑗
𝛼 ) + 𝑓𝛼,1𝑓𝛼,2(𝜁

2𝑖+𝑗
𝛼 + 𝜁

𝑖+2𝑗
𝛼 )

)
𝑤2
𝛼 +⋯

]
,

(𝜆𝛼,𝑖 − 𝜆𝛼,𝑘)(𝜆𝛼,𝑗 − 𝜆𝛼,𝑘) = 𝑤2
𝛼(𝜁

𝑖
𝛼 − 𝜁𝑘𝛼)(𝜁

𝑗
𝛼 − 𝜁𝑘𝛼)

[
𝑓2
𝛼,1

+ 𝑓𝛼,1𝑓𝛼,2(𝜁
𝑖
𝛼 + 𝜁

𝑗
𝛼 + 2𝜁𝑘𝛼)𝑤𝛼 +⋯

]
.

According to Lemma 2.8, we have 𝜂𝛼𝛼𝛼
𝑖𝑗𝑘

= 𝑎𝑖𝑗𝑘(𝑥, 𝑦)d𝑥 + 𝑏𝑖𝑗𝑘(𝑥, 𝑦)d𝑦, where

𝑎ijk = −

(
𝜕𝑦(𝜆𝛼,𝑖𝜆𝛼,𝑗) − 𝜕𝑥𝜆𝛼,𝑘

)
𝜆𝛼,𝑘

(𝜆𝛼,𝑖 − 𝜆𝛼,𝑘)(𝜆𝛼,𝑗 − 𝜆𝛼,𝑘)
−

(
𝜕𝑦(𝜆𝛼,𝑘𝜆𝛼,𝑗) − 𝜕𝑥𝜆𝛼,𝑖

)
𝜆𝛼,𝑖

(𝜆𝛼,𝑘 − 𝜆𝛼,𝑖)(𝜆𝛼,𝑗 − 𝜆𝛼,𝑖)
−

(
𝜕𝑦(𝜆𝛼,𝑖𝜆𝛼,𝑘) − 𝜕𝑥𝜆𝛼,𝑗

)
𝜆𝛼,𝑗

(𝜆𝛼,𝑖 − 𝜆𝛼,𝑗)(𝜆𝛼,𝑘 − 𝜆𝛼,𝑗)

= −
1

𝜈𝛼𝑦

[
𝜑𝛼

𝑓2
𝛼,1

(
𝑓2
𝛼,1

− 𝜑𝛼𝑓𝛼,2

)
+ 2

𝜑2𝛼

𝑓3
𝛼,1

(
𝜁𝑖𝛼 + 𝜁

𝑗
𝛼 + 𝜁𝑘𝛼

)(
𝑓2
𝛼,2

− 𝑓𝛼,1𝑓𝛼,3

)
𝑤𝛼 + 𝐴−1𝑤

2
𝛼

]
+ 𝐴0, with 𝐴−1, 𝐴0 ∈ ℂ { 𝑥,𝑤𝛼}
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and

𝑏ijk =
𝜕𝑦(𝜆𝛼,𝑖𝜆𝛼,𝑗) − 𝜕𝑥𝜆𝛼,𝑘

(𝜆𝛼,𝑖 − 𝜆𝛼,𝑘)(𝜆𝛼,𝑗 − 𝜆𝛼,𝑘)
+

𝜕𝑦(𝜆𝛼,𝑘𝜆𝛼,𝑗) − 𝜕𝑥𝜆𝛼,𝑖

(𝜆𝛼,𝑘 − 𝜆𝛼,𝑖)(𝜆𝛼,𝑗 − 𝜆𝛼,𝑖)
+

𝜕𝑦(𝜆𝛼,𝑖𝜆𝛼,𝑘) − 𝜕𝑥𝜆𝛼,𝑗

(𝜆𝛼,𝑖 − 𝜆𝛼,𝑗)(𝜆𝛼,𝑘 − 𝜆𝛼,𝑗)

=
1

𝜈𝛼𝑦

[
1

𝑓2
𝛼,1

(
2𝑓2

𝛼,1
− 𝜑𝛼𝑓𝛼,2

)
+

1

𝑓3
𝛼,1

(
𝜁𝑖𝛼 + 𝜁

𝑗
𝛼 + 𝜁𝑘𝛼

)(
𝑓2
𝛼,1

𝑓𝛼,2 − 2𝜑𝛼𝑓𝛼,1𝑓𝛼,3 + 2𝜑𝛼𝑓
2
𝛼,2

)
𝑤𝛼 + 𝐵−1𝑤

2
𝛼

]
+ 𝐵0, with 𝐵−1, 𝐵0 ∈ ℂ { 𝑥,𝑤𝛼}.

Since 𝜂1 =
𝑛∑

𝛼=1,𝜈𝛼≥3

∑
1≤𝑖<𝑗<𝑘≤𝜈𝛼

𝜂𝛼𝛼𝛼
𝑖𝑗𝑘

is a uniformandmeromorphic 1-form, it follows that the principal part of the Laurent

series of 𝜂1 at 𝑦 = 0 is given by 𝜃1

𝑦
, where

𝜃1 =

𝑛∑
𝛼=1
𝜈𝛼≥3

(𝜈𝛼
3

)(
−
𝜑𝛼(𝑓

2
𝛼,1

− 𝜑𝛼𝑓𝛼,2)

𝜈𝛼𝑓
2
𝛼,1

d𝑥 +
2𝑓2

𝛼,1
− 𝜑𝛼𝑓𝛼,2

𝜈𝛼𝑓
2
𝛼,1

d𝑦

)

=
1

6

𝑛∑
𝛼=1
𝜈𝛼≥3

(𝜈𝛼 − 1)(𝜈𝛼 − 2)

((
1 −

𝜑𝛼𝑓𝛼,2

𝑓2
𝛼,1

)
(d𝑦 − 𝜑𝛼d𝑥) + d𝑦

)
.

It remains to determine the principal part of the Laurent series of 𝜂2 at 𝑦 = 0. Again according to Lemma 2.8, we have
𝜂
𝛼𝛼𝛽

𝑖𝑗𝑘
= 𝑎𝑖𝑗𝑘(𝑥, 𝑦)d𝑥 + 𝑏𝑖𝑗𝑘(𝑥, 𝑦)d𝑦, where

�̃�ijk = −

(
𝜕𝑦(𝜆𝛼,𝑖𝜆𝛼,𝑗) − 𝜕𝑥𝜆𝛽,𝑘

)
𝜆𝛽,𝑘

(𝜆𝛼,𝑖 − 𝜆𝛽,𝑘)(𝜆𝛼,𝑗 − 𝜆𝛽,𝑘)
−

(
𝜕𝑦(𝜆𝛽,𝑘𝜆𝛼,𝑗) − 𝜕𝑥𝜆𝛼,𝑖

)
𝜆𝛼,𝑖

(𝜆𝛽,𝑘 − 𝜆𝛼,𝑖)(𝜆𝛼,𝑗 − 𝜆𝛼,𝑖)
−

(
𝜕𝑦(𝜆𝛼,𝑖𝜆𝛽,𝑘) − 𝜕𝑥𝜆𝛼,𝑗

)
𝜆𝛼,𝑗

(𝜆𝛼,𝑖 − 𝜆𝛼,𝑗)(𝜆𝛽,𝑘 − 𝜆𝛼,𝑗)

=
1

𝜈𝛼𝑦

⎡⎢⎢⎢⎣
𝜑𝛼𝜑𝛽

𝜑𝛼 − 𝜑𝛽
+

(
𝜁𝑖𝛼 + 𝜁

𝑗
𝛼

)(
(𝜑𝛼 − 𝜑𝛽)𝑓𝛼,2 − 𝑓2

𝛼,1

)
𝜑𝛼𝜑𝛽

(𝜑𝛼 − 𝜑𝛽)2𝑓𝛼,1
𝑤𝛼 +

(𝜈𝛼 + 𝜈𝛽)𝜁
𝑘
𝛽
𝜑2𝛼𝑓𝛽,1

𝜈𝛽(𝜑𝛼 − 𝜑𝛽)2
𝑤𝛽 +⋯

⎤⎥⎥⎥⎦
+ �̃�0, with �̃�0 ∈ ℂ { 𝑥,𝑤𝛼, 𝑤𝛽}

and

�̃�ijk =
𝜕𝑦(𝜆𝛼,𝑖𝜆𝛼,𝑗) − 𝜕𝑥𝜆𝛽,𝑘

(𝜆𝛼,𝑖 − 𝜆𝛽,𝑘)(𝜆𝛼,𝑗 − 𝜆𝛽,𝑘)
+

𝜕𝑦(𝜆𝛽,𝑘𝜆𝛼,𝑗) − 𝜕𝑥𝜆𝛼,𝑖

(𝜆𝛽,𝑘 − 𝜆𝛼,𝑖)(𝜆𝛼,𝑗 − 𝜆𝛼,𝑖)
+

𝜕𝑦(𝜆𝛼,𝑖𝜆𝛽,𝑘) − 𝜕𝑥𝜆𝛼,𝑗

(𝜆𝛼,𝑖 − 𝜆𝛼,𝑗)(𝜆𝛽,𝑘 − 𝜆𝛼,𝑗)

= −
1

𝜈𝛼𝑦

⎡⎢⎢⎢⎣
𝜑𝛽

𝜑𝛼 − 𝜑𝛽
+

(
𝜁𝑖𝛼 + 𝜁

𝑗
𝛼

)(
𝜑𝛽(𝜑𝛼 − 𝜑𝛽)𝑓𝛼,2 − 𝜑𝛼𝑓

2
𝛼,1

)
(𝜑𝛼 − 𝜑𝛽)2𝑓𝛼,1

𝑤𝛼 +

(
(2𝜈𝛼 + 𝜈𝛽)𝜑𝛼 − 𝜈𝛼𝜑𝛽

)
𝜁𝑘
𝛽
𝑓𝛽,1

𝜈𝛽(𝜑𝛼 − 𝜑𝛽)2
𝑤𝛽 +⋯

⎤⎥⎥⎥⎦
+ �̃�0, with �̃�0 ∈ ℂ { 𝑥,𝑤𝛼, 𝑤𝛽}.

The 1-form 𝜂2 =
∑𝑛

𝛼=1,𝜈𝛼≥2

∑
1≤𝑖<𝑗≤𝜈𝛼

∑𝑛

𝛽=1,𝛽≠𝛼

∑𝜈𝛽
𝑘=1

𝜂
𝛼𝛼𝛽

𝑖𝑗𝑘
being uniformandmeromorphic, it follows that the principal

part of the Laurent series of 𝜂2 at 𝑦 = 0 is given by 𝜃2

𝑦
, where

𝜃2 =

𝑛∑
𝛼=1
𝜈𝛼≥2

(𝜈𝛼
2

) 𝑛∑
𝛽=1

𝛽≠𝛼

𝜈𝛽

(
𝜑𝛼𝜑𝛽

𝜈𝛼(𝜑𝛼 − 𝜑𝛽)
d𝑥 −

𝜑𝛽

𝜈𝛼(𝜑𝛼 − 𝜑𝛽)
d𝑦

)

= −
1

2

𝑛∑
𝛼=1
𝜈𝛼≥2

(𝜈𝛼 − 1)(d𝑦 − 𝜑𝛼d𝑥)

𝑛∑
𝛽=1

𝛽≠𝛼

𝜈𝛽𝜑𝛽

𝜑𝛼 − 𝜑𝛽
.
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As a consequence, the principal part of the Laurent series of 𝜂() at 𝑦 = 0 is given by 𝜃

𝑦
, where

𝜃 = 𝜃1 + 𝜃2 =
1

6

𝑛∑
𝛼=1
𝜈𝛼≥2

(𝜈𝛼 − 1)

{⎡⎢⎢⎢⎢⎣
(𝜈𝛼 − 2)

(
1 −

𝜑𝛼𝑓𝛼,2

𝑓2
𝛼,1

)
− 3

𝑛∑
𝛽=1

𝛽≠𝛼

𝜈𝛽𝜑𝛽

𝜑𝛼 − 𝜑𝛽

⎤⎥⎥⎥⎥⎦
(d𝑦 − 𝜑𝛼d𝑥) + (𝜈𝛼 − 2)d𝑦

}
.

Thanks to (3.1), the 1-form 𝜃 can be rewritten as

𝜃 =
1

6

𝑛∑
𝛼=1
𝜈𝛼≥2

(𝜈𝛼 − 1)

{⎡⎢⎢⎢⎢⎣
(𝜈𝛼 − 2)

(
1 −

𝜑𝛼
𝜈𝛼

(
𝜕𝑧𝜕𝑦𝐹𝛼

𝜕𝑦𝐹𝛼

)|||(𝑦,𝑧)=(0,0)
)
+

𝑛∑
𝛽=1

𝛽≠𝛼

𝜈𝛽
(
(𝜈𝛼 − 2)𝜑𝛼 − 3𝜈𝛼𝜑𝛽

)
𝜈𝛼

(
𝜑𝛼 − 𝜑𝛽

)
⎤⎥⎥⎥⎥⎦
(d𝑦 − 𝜑𝛼d𝑥) + (𝜈𝛼 − 2)d𝑦

}
.

Now, we have

𝑛∑
𝛽=1

𝛽≠𝛼

𝜈𝛽
(
(𝜈𝛼 − 2)𝜑𝛼 − 3𝜈𝛼𝜑𝛽

)
𝜈𝛼

(
𝜑𝛼 − 𝜑𝛽

) =
1

𝜈𝛼

⎡⎢⎢⎢⎢⎣
(𝜈𝛼 − 2)(𝑑 − 𝜈𝛼) − 2(𝜈𝛼 + 1)

𝑛∑
𝛽=1

𝛽≠𝛼

𝜈𝛽𝜑𝛽

𝜑𝛼 − 𝜑𝛽

⎤⎥⎥⎥⎥⎦
, because 𝑑 =

𝑛∑
𝛽=1

𝜈𝛽.

Therefore,

𝜃 =
1

6

𝑛∑
𝛼=1
𝜈𝛼≥2

(𝜈𝛼 − 1)

{
1

𝜈𝛼

⎡⎢⎢⎢⎢⎣
(𝜈𝛼 − 2)

(
𝑑 − 𝜑𝛼

(
𝜕𝑧𝜕𝑦𝐹𝛼

𝜕𝑦𝐹𝛼

)|||(𝑦,𝑧)=(0,0)
)
− 2(𝜈𝛼 + 1)

𝑛∑
𝛽=1

𝛽≠𝛼

𝜈𝛽𝜑𝛽

𝜑𝛼 − 𝜑𝛽

⎤⎥⎥⎥⎥⎦
(d𝑦 − 𝜑𝛼d𝑥) + (𝜈𝛼 − 2)d𝑦

}

=
1

6

𝑛∑
𝛼=1

(𝜈𝛼 − 1)(𝜓𝛼(d𝑦 − 𝜑𝛼d𝑥) + (𝜈𝛼 − 2)d𝑦),

hence the theorem follows. □

3 HOLOMORPHY OF THE CURVATURE OF THE DUALWEB OF A HOMOGENEOUS
FOLIATION ON ℙ𝟐

ℂ

Following [3, Definition 2.1], ahomogeneous foliation of degree𝑑 onℙ2
ℂ
is given, in a suitable choice of affine coordinates

(𝑥, 𝑦), by a homogeneous 1-form 𝜔 = 𝐴(𝑥, 𝑦)d𝑥 + 𝐵(𝑥, 𝑦)d𝑦, where 𝐴, 𝐵 ∈ ℂ[𝑥, 𝑦]𝑑 and gcd(𝐴, 𝐵) = 1.
The tangent lines to the leaves of  are the leaves of a 𝑑-web on the dual projective plane ℙ̌2

ℂ
, called the Legendre

transform (or dual web) of , and denoted by Leg. More precisely, let (𝑝, 𝑞) be the affine chart of ℙ̌2
ℂ
corresponding to

the line {𝑦 = 𝑝𝑥 − 𝑞} ⊂ ℙ2
ℂ
; then, Leg is given by the implicit differential equation (see [7])

𝐴(𝑥, 𝑝𝑥 − 𝑞) + 𝑝𝐵(𝑥, 𝑝𝑥 − 𝑞) = 0, with 𝑥 =
d𝑞

d𝑝
. (4.1)

The Gauss map of is the rational map  ∶ ℙ2
ℂ
⤏ ℙ̌2

ℂ
defined at every regular point𝑚 of by (𝑚) = Tℙ𝑚, where

Tℙ𝑚 denotes the tangent line to the leaf of passing through𝑚. According to [3, Lemma 3.2], the discriminant of Leg
decomposes as

Δ(Leg) = (I
tr

) ∪ Σ̌rad


∪ �̌�,
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where Itr

is the transverse inflection divisor of , Σ̌rad


is the set of lines dual to the radial singularities of , and finally

�̌� is the dual line of the origin of the affine chart (𝑥, 𝑦). For precise definitions of radial singularities and the inflection
divisor of a foliation on ℙ2

ℂ
, we refer to [3, section 1.3].

To the homogeneous foliation, we can also associate the rational map 

∶ ℙ1

ℂ
→ ℙ1

ℂ
defined by



([𝑦 ∶ 𝑥]) = [−𝐴(𝑥, 𝑦) ∶ 𝐵(𝑥, 𝑦)],

which allows us to completely determine the divisor Itr

and the set Σrad


(see [3, section 2]):

(1) Σrad


consists of [𝑏 ∶ 𝑎 ∶ 0] ∈ 𝐿∞ such that [𝑎 ∶ 𝑏] ∈ ℙ1
ℂ
is a fixed critical point of 


;

(2) Itr

=

∏
𝑖
𝑇
𝑛𝑖
𝑖
, where 𝑇𝑖 = (𝑏𝑖𝑦 − 𝑎𝑖𝑥 = 0) and [𝑎𝑖 ∶ 𝑏𝑖] ∈ ℙ1

ℂ
is a nonfixed critical point of 


of multiplicity 𝑛𝑖 .

We know from [1, Lemma 3.1] that if the curvature of Leg is holomorphic on ℙ̌2
ℂ
⧵ �̌�, then Leg is flat. The follow-

ing theorem is an effective criterion for the holomorphy of the curvature of Leg along an irreducible component 𝐷 of
Δ(Leg) ⧵ �̌�.

Theorem 3.1. Let be a homogeneous foliation of degree 𝑑 ≥ 3 on ℙ2
ℂ
defined by the 1-form

𝜔 = 𝐴(𝑥, 𝑦)d𝑥 + 𝐵(𝑥, 𝑦)d𝑦, 𝐴, 𝐵 ∈ ℂ[𝑥, 𝑦]𝑑, gcd(𝐴, 𝐵) = 1.

Let (𝑝, 𝑞) be the affine chart of ℙ̌2
ℂ
associated to the line {𝑦 = 𝑝𝑥 − 𝑞} ⊂ ℙ2

ℂ
and let𝐷 = {𝑝 = 𝑝0} be an irreducible component

of Δ(Leg) ⧵ �̌�. Write −1

([𝑝0 ∶ 1]) = {[𝑎1 ∶ 𝑏1], … , [𝑎𝑛 ∶ 𝑏𝑛]} and denote by 𝜈𝑖 the ramification index of 


at the point

[𝑎𝑖 ∶ 𝑏𝑖] ∈ ℙ1
ℂ
. For 𝑖 ∈ {1, … , 𝑛}, define the polynomials 𝑃𝑖 ∈ ℂ[𝑥, 𝑦]𝑑−𝜈𝑖 and 𝑄𝑖 ∈ ℂ[𝑥, 𝑦]2𝑑−𝜈𝑖−1 by

𝑃𝑖(𝑥, 𝑦; 𝑎𝑖, 𝑏𝑖) ∶=

|||||𝐴(𝑥, 𝑦) 𝐴(𝑏𝑖, 𝑎𝑖)

𝐵(𝑥, 𝑦) 𝐵(𝑏𝑖, 𝑎𝑖)

|||||
(𝑏𝑖𝑦 − 𝑎𝑖𝑥)𝜈𝑖

and 𝑄𝑖(𝑥, 𝑦; 𝑎𝑖, 𝑏𝑖) ∶= (𝜈𝑖 − 2)

(
𝜕𝐵

𝜕𝑥
−

𝜕𝐴

𝜕𝑦

)
𝑃𝑖(𝑥, 𝑦; 𝑎𝑖, 𝑏𝑖) + 2(𝜈𝑖 + 1)

|||||||||
𝜕𝑃𝑖
𝜕𝑥

𝐴(𝑥, 𝑦)

𝜕𝑃𝑖
𝜕𝑦

𝐵(𝑥, 𝑦)

|||||||||
.

Then, the curvature of Leg is holomorphic on 𝐷 if and only if

𝑛∑
𝑖=1

(
1 −

1

𝜈𝑖

)
(𝑝0𝑏𝑖 − 𝑎𝑖)𝑄𝑖(𝑏𝑖, 𝑎𝑖; 𝑎𝑖, 𝑏𝑖)

𝑃𝑖(𝑏𝑖, 𝑎𝑖; 𝑎𝑖, 𝑏𝑖)𝐵(𝑏𝑖, 𝑎𝑖)
= 0. (4.2)

Remark 3.2. In particular, if𝐷 ⊂ Σ̌rad


⧵ (I
tr

), or equivalently, if all the critical points of 


in the fiber −1


([𝑝0 ∶ 1]) are

fixed, then the curvature 𝐾(Leg) is always holomorphic on 𝐷; indeed, we then have 𝑝0𝑏𝑖 − 𝑎𝑖 = 0 if 𝜈𝑖 ≥ 2.

Combining this remark with [1, Lemma 3.1], we recover Theorem 3.1 of [3]: The 𝑑-web Leg is flat if and only if its
curvature 𝐾(Leg) is holomorphic on (I

tr

).

Remark 3.3. Assume that 𝜈𝑖 = 𝜈 ≥ 2 for all 𝑖 ∈ {1, … , 𝑛}. The following assertions hold:

(1) When 𝜈 = 2 (which implies that 𝑑 is even), the curvature of Leg is always holomorphic on 𝐷.
(2) When 𝜈 ≥ 3, the curvature of Leg is holomorphic on 𝐷 if and only if

𝑛∑
𝑖=1

(𝑝0𝑏𝑖 − 𝑎𝑖)
(
𝜕𝑥𝐵(𝑏𝑖, 𝑎𝑖) − 𝜕𝑦𝐴(𝑏𝑖, 𝑎𝑖)

)
𝐵(𝑏𝑖, 𝑎𝑖)

= 0.
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In particular, if the fiber −1

([𝑝0 ∶ 1]) contains a single nonfixed critical point of 


, say [𝑎 ∶ 𝑏], then

(1) either −1

([𝑝0 ∶ 1]) = {[𝑎 ∶ 𝑏]}, in which case 𝜈 = 𝑑;

(2) or #−1

([𝑝0 ∶ 1]) = 2, in which case 𝑑 is necessarily even, 𝑑 = 2𝑘, and 𝜈 = 𝑘.

In both cases, the curvature of Leg is holomorphic on𝐷 if and only if the 2-form d𝜔 vanishes on the line 𝑇 = (𝑏𝑦 − 𝑎𝑥 =

0), which is the transverse inflection line of associated to the nonfixed critical point [𝑎 ∶ 𝑏] of 

.

Example 3.4. Consider the homogeneous foliation of even degree 2𝑘 ≥ 4 on ℙ2
ℂ
defined by the 1-form

𝜔 = 𝑦𝑘(𝑦 − 𝑥)𝑘d𝑥 + (𝑦 − 𝜆 𝑥)𝑘(𝑦 − 𝜇 𝑥)𝑘d𝑦, where 𝜆, 𝜇 ∈ ℂ ⧵ {0, 1}.

In the affine chart (𝑝, 𝑞) of ℙ̌2
ℂ
associated to the line {𝑦 = 𝑝𝑥 − 𝑞} ⊂ ℙ2

ℂ
, the web Leg is implicitly described by the

equation

(𝑝𝑥 − 𝑞)𝑘(𝑝𝑥 − 𝑞 − 𝑥)𝑘 + 𝑝(𝑝𝑥 − 𝑞 − 𝜆 𝑥)𝑘(𝑝𝑥 − 𝑞 − 𝜇 𝑥)𝑘 = 0, with 𝑥 =
d𝑞

d𝑝
.

We see that Leg has a single slope 𝑥 = −𝑞 along 𝐷 ∶= {𝑝 = 0}, so that 𝐷 ⊂ Δ(Leg). Moreover, the map 

is given,

for any [𝑥 ∶ 𝑦] ∈ ℙ1
ℂ
, by



([𝑥 ∶ 𝑦]) = [−𝑥𝑘(𝑥 − 𝑦)𝑘 ∶ (𝑥 − 𝜆 𝑦)𝑘(𝑥 − 𝜇 𝑦)𝑘].

In particular, the fiber −1

([0 ∶ 1]) consists of the two points [0 ∶ 1] and [1 ∶ 1]: The point [0 ∶ 1] (resp. [1 ∶ 1]) is critical

and fixed (resp. nonfixed) for 

of multiplicity 𝑘 − 1. From Remark 3.3, we deduce the following:

(1) If 𝑘 = 2, then the curvature of Leg is holomorphic on 𝐷.
(2) If 𝑘 > 2, then the curvature of Leg is holomorphic on 𝐷 if and only if

0 ≡ d𝜔
|||𝑦=𝑥 = −𝑘(𝜆 − 1)𝑘−1(𝜇 − 1)𝑘−1𝑥2𝑘−1(𝜆 + 𝜇 − 2𝜆 𝜇)d𝑥 ∧ d𝑦,

that is, if and only if 𝜆 and 𝜇 satisfy the equation 𝜆 + 𝜇 − 2𝜆 𝜇 = 0.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.5. Let 𝑓 ∶ ℙ1
ℂ
→ ℙ1

ℂ
be a rational map of degree 𝑑; 𝑓(𝑧) =

𝑎(𝑧)

𝑏(𝑧)
where 𝑎 and 𝑏 are polynomials without common

factor andmax(deg 𝑎, deg 𝑏) = 𝑑. Let 𝑤0 ∈ ℂ and write 𝑓−1(𝑤0) = {𝑧1, 𝑧2, … , 𝑧𝑛}. Suppose that 𝑧𝑖 ≠ ∞ for all 𝑖 ∈ {1, … , 𝑛}

and let 𝜈𝑖 denote the ramification index of 𝑓 at the point 𝑧𝑖 . Then, there exists 𝑐 ∈ ℂ∗ such that 𝑎(𝑧) = 𝑤0𝑏(𝑧) + 𝑐
∏𝑛

𝑖=1
(𝑧 −

𝑧𝑖)
𝜈𝑖 .

Proof. According to [3, Lemma 3.9], for every 𝑖 ∈ {1, … , 𝑛}, there exists a polynomial 𝜙𝑖 ∈ ℂ[𝑧] of degree ≤ 𝑑 − 𝜈𝑖 sat-
isfying 𝜙𝑖(𝑧𝑖) ≠ 0 and such that 𝑎(𝑧) = 𝑤0𝑏(𝑧) + 𝜙𝑖(𝑧)(𝑧 − 𝑧𝑖)

𝜈𝑖 . This implies that for all 𝑖, 𝑗 ∈ {1, … , 𝑛}, 𝜙𝑖(𝑧)(𝑧 − 𝑧𝑖)
𝜈𝑖 =

𝜙𝑗(𝑧)(𝑧 − 𝑧𝑗)
𝜈𝑗 , so that for any 𝑗 ≠ 𝑖, (𝑧 − 𝑧𝑗)

𝜈𝑗 divides 𝜙𝑖 . As a result, 𝜙𝑖 ∈ ℂ[𝑧] has degree 𝑑 − 𝜈𝑖 and writes as 𝜙𝑖(𝑧) =

𝑐
𝑛∏

𝑗=1,𝑗≠𝑖
(𝑧 − 𝑧𝑗)

𝜈𝑗 for some 𝑐 ∈ ℂ∗, hence the statement is proved. □

Proof of Theorem 3.1. Let 𝛿 ∈ ℂ be such that 𝑏𝑖 − 𝑎𝑖𝛿 ≠ 0 for all 𝑖 = 1, … , 𝑛. Up to conjugating 𝜔 by the linear transforma-
tion (𝑥 + 𝛿 𝑦, 𝑦), we can assume that none of the lines 𝐿𝑖 = (𝑏𝑖𝑦 − 𝑎𝑖𝑥 = 0) are vertical, that is, 𝑏𝑖 ≠ 0 for all 𝑖 = 1, … , 𝑛.

Setting 𝑟𝑖 ∶=
𝑎𝑖

𝑏𝑖
, we have −1


(𝑝0) = {𝑟1, … , 𝑟𝑛} with 


(𝑧) = −

𝐴(1, 𝑧)

𝐵(1, 𝑧)
. According to Lemma 3.5, there exists a constant
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𝑐 ∈ ℂ∗ such that

−𝐴(1, 𝑧) = 𝑝0𝐵(1, 𝑧) − 𝑐

𝑛∏
𝑖=1

(𝑧 − 𝑟𝑖)
𝜈𝑖 .

Moreover, the 𝑑-web Leg is given by Equation (4.1); since 𝐴, 𝐵 ∈ ℂ[𝑥, 𝑦]𝑑, this equation can then be rewritten as

0 = 𝑥𝑑
[
𝐴
(
1, 𝑝 −

𝑞

𝑥

)
+ pB

(
1, 𝑝 −

𝑞

𝑥

)]
= 𝑥𝑑

[
(𝑝 − 𝑝0)𝐵

(
1, 𝑝 −

𝑞

𝑥

)
+ 𝑐

𝑛∏
𝑖=1

(𝑝 −
𝑞

𝑥
− 𝑟𝑖)𝜈

𝑖

]
, with 𝑥 =

d𝑞

d𝑝
.

Set �̌� ∶= 𝑞, �̌� ∶= 𝑝 − 𝑝0, and �̌� ∶=
d�̌�

d�̌�
=

1

𝑥
; in these new coordinates, 𝐷 = {�̌� = 0} and Leg is described by the

differential equation

𝐹(�̌�, �̌�, �̌�) ∶= �̌�𝐵(1, �̌� + 𝑝0 − �̌��̌�) + 𝑐

𝑛∏
𝑖=1

(�̌� + 𝑝0 − �̌��̌� − 𝑟𝑖)
𝜈𝑖 = 0.

We have 𝐹(�̌�, 0, �̌�) = 𝑐(−�̌�)𝑑
∏𝑛

𝑖=1
(�̌� − 𝜑𝑖(�̌�))

𝜈𝑖 , where 𝜑𝑖(�̌�) =
𝑝0−𝑟𝑖

�̌�
. Note that if 𝜈𝑖 ≥ 2, then 𝜕�̌�𝐹 (�̌�, 0, 𝜑𝑖(�̌�)) = 𝐵(1, 𝑟𝑖) ≠

0; since 𝜕�̌�𝐹 (�̌�, 0, 𝜑𝑖(�̌�)) ≢ 0 if 𝜈𝑖 = 1, it follows that the surface 𝑆Leg is smooth along𝐷 = {�̌� = 0}. Furthermore, if 𝜈𝑖 ≥ 3,
then 𝜕�̌�𝜕�̌�𝐹 (�̌�, 0, 𝜑𝑖(�̌�)) = −�̌�𝜕𝑦𝐵(1, 𝑟𝑖). Thus, by Theorem 3.1, the curvature ofLeg is holomorphic on𝐷 = {�̌� = 0} if and
only if

∑𝑛

𝑖=1
(𝜈𝑖 − 1)𝜑𝑖(�̌�)𝜓𝑖 ≡ 0 where, for all 𝑖 ∈ {1, … , 𝑛} such that 𝜈𝑖 ≥ 2,

𝜓𝑖 =
1

𝜈𝑖

[
(𝜈𝑖 − 2)

(
𝑑 + (𝑝0 − 𝑟𝑖)

𝜕𝑦𝐵(1, 𝑟𝑖)

𝐵(1, 𝑟𝑖)

)
+ 2(𝜈𝑖 + 1)

𝑛∑
𝑗=1,𝑗≠𝑖

𝜈𝑗(𝑝0 − 𝑟𝑗)

𝑟𝑖 − 𝑟𝑗

]
.

We note that

𝑛∑
𝑗=1,𝑗≠𝑖

𝜈𝑗(𝑝0 − 𝑟𝑗)

𝑟𝑖 − 𝑟𝑗
= 𝑑 − 𝜈𝑖 + (𝑝0 − 𝑟𝑖)

𝑛∑
𝑗=1,𝑗≠𝑖

𝜈𝑗

𝑟𝑖 − 𝑟𝑗
= 𝑑 − 𝜈𝑖 + (𝑝0 − 𝑟𝑖)

𝑓
′

𝑖
(𝑟𝑖)

𝑓𝑖(𝑟𝑖)
,

where 𝑓𝑖(𝑧) ∶= 𝑐
𝑛∏

𝑗=1,𝑗≠𝑖
(𝑧 − 𝑟𝑗)

𝜈𝑗 =
𝐴(1, 𝑧) + 𝑝0𝐵(1, 𝑧)

(𝑧 − 𝑟𝑖)
𝜈𝑖

=
𝑃𝑖(1, 𝑧; 𝑟𝑖, 1)

𝐵(1, 𝑟𝑖)
. Therefore,

𝑛∑
𝑗=1,𝑗≠𝑖

𝜈𝑗(𝑝0 − 𝑟𝑗)

𝑟𝑖 − 𝑟𝑗
= 𝑑 − 𝜈𝑖 + (𝑝0 − 𝑟𝑖)

𝜕𝑦𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1)

𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1)
=

||||||
𝜕𝑥𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1) 𝐴(1, 𝑟𝑖)

𝜕𝑦𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1) 𝐵(1, 𝑟𝑖)

||||||
𝐵(1, 𝑟𝑖)𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1)

,

because 𝑝0 = 

(𝑟𝑖) = −

𝐴(1, 𝑟𝑖)

𝐵(1, 𝑟𝑖)
and (𝑑 − 𝜈𝑖)𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1) = 𝜕𝑥𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1) + 𝑟𝑖𝜕𝑦𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1) (Euler’s identity).

On the other hand, let us fix 𝑖 ∈ {1, … , 𝑛} such that 𝜈𝑖 ≥ 2; from the equalities 𝑝0 = 

(𝑟𝑖) and 

′


(𝑟𝑖) = 0, we deduce

that 𝑝0𝜕𝑦𝐵(1, 𝑟𝑖) = −𝜕𝑦𝐴(1, 𝑟𝑖), so that

𝑑𝐵(1, 𝑟𝑖) + (𝑝0 − 𝑟𝑖)𝜕𝑦𝐵(1, 𝑟𝑖) = 𝑑𝐵(1, 𝑟𝑖) − 𝑟𝑖𝜕𝑦𝐵(1, 𝑟𝑖) − 𝜕𝑦𝐴(1, 𝑟𝑖) = 𝜕𝑥𝐵(1, 𝑟𝑖) − 𝜕𝑦𝐴(1, 𝑟𝑖),

thanks to Euler’s identity.

It follows that for all 𝑖 ∈ {1, … , 𝑛} such that 𝜈𝑖 ≥ 2, 𝜓𝑖 =
𝑄𝑖(1, 𝑟𝑖; 𝑟𝑖, 1)

𝜈𝑖𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1)𝐵(1, 𝑟𝑖)
. As a consequence,𝐾(Leg) is holomor-

phic on 𝐷 = {�̌� = 0} if and only if

1

�̌�

𝑛∑
𝑖=1

(
1 −

1

𝜈𝑖

)
(𝑝0 − 𝑟𝑖)𝑄𝑖(1, 𝑟𝑖; 𝑟𝑖, 1)

𝑃𝑖(1, 𝑟𝑖; 𝑟𝑖, 1)𝐵(1, 𝑟𝑖)
≡ 0,
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which ends the proof of the theorem. □

Corollary 3.6. Let be a homogeneous foliation of degree 𝑑 ≥ 3 on ℙ2
ℂ
defined by the 1-form

𝜔 = 𝐴(𝑥, 𝑦)d𝑥 + 𝐵(𝑥, 𝑦)d𝑦, 𝐴, 𝐵 ∈ ℂ[𝑥, 𝑦]𝑑, gcd(𝐴, 𝐵) = 1.

Assume that possesses a transverse inflection line 𝑇 = (𝑎𝑥 + 𝑏𝑦 = 0) of order 𝜈 − 1. Suppose moreover that [−𝑎 ∶ 𝑏] ∈ ℙ1
ℂ

is the only nonfixed critical point of 

in its fiber −1


(


([−𝑎 ∶ 𝑏])). Then, the curvature of Leg is holomorphic on 𝑇′ =

(𝑇) if and only if 𝑄(𝑏, −𝑎; 𝑎, 𝑏) = 0, where

𝑄(𝑥, 𝑦; 𝑎, 𝑏) ∶= (𝜈 − 2)

(
𝜕𝐵

𝜕𝑥
−

𝜕𝐴

𝜕𝑦

)
𝑃(𝑥, 𝑦; 𝑎, 𝑏) + 2(𝜈 + 1)

||||||||
𝜕𝑃

𝜕𝑥
𝐴(𝑥, 𝑦)

𝜕𝑃

𝜕𝑦
𝐵(𝑥, 𝑦)

|||||||| and 𝑃(𝑥, 𝑦; 𝑎, 𝑏) ∶=

|||||𝐴(𝑥, 𝑦) 𝐴(𝑏, −𝑎)

𝐵(𝑥, 𝑦) 𝐵(𝑏, −𝑎)

|||||
(𝑎𝑥 + 𝑏𝑦)𝜈

.

Remark 3.7. When the line 𝑇 = (𝑎𝑥 + 𝑏𝑦 = 0) is of minimal inflection order 1 (i.e., if 𝜈 = 2) and under themore restrictive
hypothesis that the point [−𝑎 ∶ 𝑏] is the only critical point of 


in its fiber, we recover [3, Theorem 3.5]. When 𝑇 is of

maximal inflection order 𝑑 − 1 (i.e., if 𝜈 = 𝑑), we recover [3, Theorem 3.8].

Proof. Up to linear conjugation, we can assume that 𝑇′ is not the line at infinity of ℙ̌2
ℂ
; then, 𝑇′ has the equation 𝑝 = 𝑝0,

where 𝑝0 = −
𝐴(𝑏,−𝑎)

𝐵(𝑏,−𝑎)
. Write −1


([𝑝0 ∶ 1]) = {[𝑎1 ∶ 𝑏1], … , [𝑎𝑛 ∶ 𝑏𝑛]} with [𝑎1 ∶ 𝑏1] = [−𝑎 ∶ 𝑏]. Denoting by 𝜈𝑖 the rami-

fication index of 

at the point [𝑎𝑖, 𝑏𝑖], we have 𝜈1 = 𝜈 and, by application of Theorem 3.1, the holomorphy of 𝐾(Leg)

along 𝑇′ is characterized by Equation (4.2). Now, the point [𝑎1 ∶ 𝑏1] being not fixed by 

, we have 𝑝0𝑏1 − 𝑎1 ≠ 0.

Moreover, the hypothesis that [𝑎1 ∶ 𝑏1] is the only nonfixed critical point of 

in the fiber 

−1


([𝑝0 ∶ 1]) ensures

that 𝑝0𝑏𝑖 − 𝑎𝑖 = 0 for all 𝑖 ∈ {2, … , 𝑛} such that 𝜈𝑖 ≥ 2. It follows that 𝐾(Leg) is holomorphic on 𝑇′ if and only if
0 = 𝑄1(𝑏1, 𝑎1; 𝑎1, 𝑏1) = 𝑄(𝑏, −𝑎; 𝑎, 𝑏). Hence, the corollary is proved. □

4 GALOIS HOMOGENEOUS FOLIATIONS HAVING A FLAT LEGENDRE TRANSFORM

Following [2, Definition 6.16] a foliation  of degree 𝑑 on ℙ2
ℂ
is said to be Galois if there is a Zariski open subset 𝑈 of ℙ2

ℂ

such that the Gauss map  ∶ ℙ2
ℂ
⤏ ℙ̌2

ℂ
, defined by 𝑚 ∉ Sing ↦ Tℙ𝑚 , induces a Galois covering from 𝑈 onto  (𝑈),

necessarily of degree 𝑑. This is equivalent to the existence of a subgroup 𝐺 of order 𝑑 of the group Bir(ℙ2
ℂ
) of birational

transformations of ℙ2
ℂ
such that for all 𝛾 ∈ 𝐺, we have ◦𝛾 =  .

In particular, if  is homogeneous, then its associated map 

∶ ℙ1

ℂ
→ ℙ1

ℂ
is a ramified covering of degree 𝑑. Moreover,

 is Galois if and only if 

is Galois [2, Proposition 6.19], or equivalently, if and only if 


has the same ramification

indices at all the points of the same fiber [2, Theorem A].
Let us note that if 𝑓 ∶ ℙ1

ℂ
→ ℙ1

ℂ
is Galois, then 𝓁◦𝑓◦𝜌 ∶ ℙ1

ℂ
→ ℙ1

ℂ
is also Galois for any 𝓁 and 𝜌 belonging to the

automorphism groupAut(ℙ1
ℂ
). Recall the following result, due to Klein [6, Part I, Chapter II] (see also [2, Theorem 4.18]),

classifying the ramified Galois coverings 𝑓 ∶ ℙ1
ℂ
→ ℙ1

ℂ
up to the left–right action 𝑓 ↦ 𝓁◦𝑓◦𝜌, where (𝓁, 𝜌) ∈ Aut(ℙ1

ℂ
) ×

Aut(ℙ1
ℂ
).

Theorem 4.1. Let 𝑓 ∶ ℙ1
ℂ
→ ℙ1

ℂ
be a ramified Galois covering of degree 𝑑. Up to the left–right action ofAut(ℙ1

ℂ
) × Aut(ℙ1

ℂ
),

𝑓 is of one of the following types:

1. 𝑓1 = 𝑧𝑑;
2. 𝑓2 =

(𝑧𝑘+1)2

4𝑧𝑘
if 𝑑 is even, 𝑑 = 2𝑘;

3. 𝑓3 =
(

𝑧4+2i
√
3𝑧2+1

𝑧4−2i
√
3𝑧2+1

)3

if 𝑑 = 12;
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4. 𝑓4 =
(𝑧8+14𝑧4+1)

3

108𝑧4(𝑧4−1)
4 if 𝑑 = 24;

5. 𝑓5 =
(𝑧20−228𝑧15+494𝑧10+228𝑧5+1)

3

−1728𝑧5(𝑧10+11𝑧5−1)
5 if 𝑑 = 60.

Moreover, the Galois group of 𝑓 is cyclic if and only if 𝑓 is left–right conjugate to 𝑓1.

Definition 4.2. Let 𝑓 ∶ ℙ1
ℂ
→ ℙ1

ℂ
be a rational map of degree 𝑑. We call associated foliation to 𝑓 the homogeneous

foliationℋ(𝑓) of ℙ2
ℂ
whose associated rational map 

ℋ(𝑓)
is precisely 𝑓.

Note that if 𝑓 is defined by 𝑓([𝑥 ∶ 𝑦]) = [𝐴(𝑥, 𝑦) ∶ 𝐵(𝑥, 𝑦)], where 𝐴, 𝐵 ∈ ℂ[𝑥, 𝑦]𝑑 and gcd(𝐴, 𝐵) = 1, then ℋ(𝑓) is
given by the 1-form 𝜔 = 𝐴(𝑦, 𝑥)d𝑥 − 𝐵(𝑦, 𝑥)d𝑦.
According to [2, Proposition 6.19], Theorem 4.1 translates in terms of homogeneous foliations as follows:

Theorem 4.3. Let  be a Galois homogeneous foliation on ℙ2
ℂ
. Then, there exist 𝑖 ∈ {1, … , 5} and 𝓁, 𝜌 ∈

Aut(ℙ1
ℂ
) such that = ℋ(𝓁◦𝑓𝑖◦𝜌).

The following theorem is the main result of this section.

Theorem 4.4. Let be a Galois homogeneous foliation of degree 𝑑 ≥ 3 on ℙ2
ℂ
. Denote by Gal(


) the Galois group of the

covering 

. We have the following dichotomy:

(1) If Gal(

) is cyclic, then the 𝑑-web Leg is flat if and only if is linearly conjugate to one of the two foliations𝑑

1
and

𝑑
2
defined, respectively, by the 1-forms

𝜔𝑑
1
= 𝑦𝑑d𝑥 − 𝑥𝑑d𝑦 and 𝜔𝑑

2
= 𝑥𝑑d𝑥 − 𝑦𝑑d𝑦.

(2) If Gal(

) is noncyclic, then the 𝑑-web Leg is flat.

To prove this theorem, we need the following lemma.

Lemma 4.5. Let 𝑓 ∶ ℙ1
ℂ
→ ℙ1

ℂ
be a rational map of degree 𝑑 defined, for any [𝑥 ∶ 𝑦] ∈ ℙ1

ℂ
, by

𝑓([𝑥 ∶ 𝑦]) = [𝐴(𝑥, 𝑦) ∶ 𝐵(𝑥, 𝑦)], 𝐴, 𝐵 ∈ ℂ[𝑥, 𝑦]𝑑, gcd(𝐴, 𝐵) = 1.

Let 𝑝0 ∈ ℂ ∪ {∞} be a critical value of 𝑓 and write 𝑓−1(𝑝0) = {[𝑎1 ∶ 𝑏1], … , [𝑎𝑛 ∶ 𝑏𝑛]}. Suppose that the ramification indices
of 𝑓 at the points [𝑎𝑖 ∶ 𝑏𝑖] are all equal to each other and let 𝜈 be their common value. For ℎ ∈ Aut(ℙ1

ℂ
), denote by ℎ =

ℋ(ℎ◦𝑓) the homogeneous foliation associated to the rational map ℎ◦𝑓. Let (𝑝, 𝑞) be the affine chart of ℙ̌2
ℂ
corresponding to

the line {𝑦 = 𝑝𝑥 − 𝑞} ⊂ ℙ2
ℂ
and let 𝐷ℎ ∶= {𝑝 = ℎ(𝑝0)} ⊂ Δ(Legℎ).

(1) If 𝜈 = 2, then the curvature of Legℎ is holomorphic on 𝐷ℎ for all ℎ ∈ Aut(ℙ1
ℂ
).

(2) If 𝜈 ≥ 3 and 𝑝0 ∈ ℂ, then the curvature of Legℎ is holomorphic on 𝐷ℎ for all ℎ ∈ Aut(ℙ1
ℂ
) if and only if

𝑛∑
𝑖=1

𝑏𝑖𝜕𝑥𝐵(𝑎𝑖, 𝑏𝑖)

𝐵(𝑎𝑖, 𝑏𝑖)
= 0,

𝑛∑
𝑖=1

𝑏𝑖𝜕𝑦𝐵(𝑎𝑖, 𝑏𝑖) − 𝑎𝑖𝜕𝑥𝐵(𝑎𝑖, 𝑏𝑖)

𝐵(𝑎𝑖, 𝑏𝑖)
= 0,

𝑛∑
𝑖=1

𝑎𝑖𝜕𝑦𝐵(𝑎𝑖, 𝑏𝑖)

𝐵(𝑎𝑖, 𝑏𝑖)
= 0. (5.1)

(3) If 𝜈 ≥ 3 and 𝑝0 = ∞, then the curvature of Legℎ is holomorphic on 𝐷ℎ for all ℎ ∈ Aut(ℙ1
ℂ
) if and only if

𝑛∑
𝑖=1

𝑏𝑖𝜕𝑥𝐴(𝑎𝑖, 𝑏𝑖)

𝐴(𝑎𝑖, 𝑏𝑖)
= 0,

𝑛∑
𝑖=1

𝑏𝑖𝜕𝑦𝐴(𝑎𝑖, 𝑏𝑖) − 𝑎𝑖𝜕𝑥𝐴(𝑎𝑖, 𝑏𝑖)

𝐴(𝑎𝑖, 𝑏𝑖)
= 0,

𝑛∑
𝑖=1

𝑎𝑖𝜕𝑦𝐴(𝑎𝑖, 𝑏𝑖)

𝐴(𝑎𝑖, 𝑏𝑖)
= 0. (5.2)
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Proof. Let ℎ ∶ ℙ1
ℂ
→ ℙ1

ℂ
be an automorphism of ℙ1

ℂ
; ℎ(𝑧) =

𝛼𝑧 + 𝛽

𝛾𝑧 + 𝛿
, where 𝛼, 𝛽, 𝛾, 𝛿 ∈ ℂ with 𝛼𝛿 − 𝛽𝛾 ≠ 0. Then, the

foliationℎ is given by

𝜔ℎ = (𝛼 𝐴(𝑦, 𝑥) + 𝛽 𝐵(𝑦, 𝑥))d𝑥 − (𝛾 𝐴(𝑦, 𝑥) + 𝛿 𝐵(𝑦, 𝑥))d𝑦.

Moreover, we have

(ℎ◦𝑓)−1(ℎ(𝑝0)) = 𝑓−1(𝑝0) = {[𝑎1 ∶ 𝑏1], … , [𝑎𝑛 ∶ 𝑏𝑛]};

since by hypothesis the ramification indices of 𝑓 at the points [𝑎𝑖 ∶ 𝑏𝑖] are all equal to each other and equal to 𝜈, the same
is true for the ramification indices of ℎ◦𝑓 at these points, because ℎ ∈ Aut(ℙ1

ℂ
). According to Remark 3.3, it follows that:

i. If 𝜈 = 2, then 𝐾(Legℎ) is holomorphic on 𝐷ℎ for all ℎ ∈ Aut(ℙ1
ℂ
).

ii. If 𝜈 ≥ 3, then 𝐾(Legℎ) is holomorphic on 𝐷ℎ for all ℎ ∈ Aut(ℙ1
ℂ
) if and only if

𝑛∑
𝑖=1

(ℎ(𝑝0)𝑏𝑖 − 𝑎𝑖)
(
𝛼𝜕𝑥𝐴(𝑎𝑖, 𝑏𝑖) + 𝛽𝜕𝑥𝐵(𝑎𝑖, 𝑏𝑖) + 𝛾𝜕𝑦𝐴(𝑎𝑖, 𝑏𝑖) + 𝛿𝜕𝑦𝐵(𝑎𝑖, 𝑏𝑖)

)
𝛾 𝐴(𝑎𝑖, 𝑏𝑖) + 𝛿 𝐵(𝑎𝑖, 𝑏𝑖)

= 0. (5.3)

ii.1. If 𝑝0 ∈ ℂ, then, from 𝑓([𝑎𝑖 ∶ 𝑏𝑖]) = [𝑝0 ∶ 1] and the fact that [𝑎𝑖 ∶ 𝑏𝑖] are critical points of 𝑓, we deduce the equalities
𝐴(𝑎𝑖, 𝑏𝑖) = 𝑝0𝐵(𝑎𝑖, 𝑏𝑖), 𝜕𝑥𝐴(𝑎𝑖, 𝑏𝑖) = 𝑝0𝜕𝑥𝐵(𝑎𝑖, 𝑏𝑖), and 𝜕𝑦𝐴(𝑎𝑖, 𝑏𝑖) = 𝑝0𝜕𝑦𝐵(𝑎𝑖, 𝑏𝑖), so that (5.3) can be rewritten as

ℎ(𝑝0)
2

𝑛∑
𝑖=1

𝑏𝑖𝜕𝑥𝐵(𝑎𝑖, 𝑏𝑖)

𝐵(𝑎𝑖, 𝑏𝑖)
+ ℎ(𝑝0)

𝑛∑
𝑖=1

𝑏𝑖𝜕𝑦𝐵(𝑎𝑖, 𝑏𝑖) − 𝑎𝑖𝜕𝑥𝐵(𝑎𝑖, 𝑏𝑖)

𝐵(𝑎𝑖, 𝑏𝑖)
−

𝑛∑
𝑖=1

𝑎𝑖𝜕𝑦𝐵(𝑎𝑖, 𝑏𝑖)

𝐵(𝑎𝑖, 𝑏𝑖)
= 0.

As a result, 𝐾(Legℎ) is holomorphic on 𝐷ℎ for all ℎ ∈ Aut(ℙ1
ℂ
) if and only if the system (5.1) is satisfied.

ii.2. If 𝑝0 = ∞, then 𝐵(𝑎𝑖, 𝑏𝑖) = 𝜕𝑥𝐵(𝑎𝑖, 𝑏𝑖) = 𝜕𝑦𝐵(𝑎𝑖, 𝑏𝑖) = 0 and (5.3) becomes

ℎ(𝑝0)
2

𝑛∑
𝑖=1

𝑏𝑖𝜕𝑥𝐴(𝑎𝑖, 𝑏𝑖)

𝐴(𝑎𝑖, 𝑏𝑖)
+ ℎ(𝑝0)

𝑛∑
𝑖=1

𝑏𝑖𝜕𝑦𝐴(𝑎𝑖, 𝑏𝑖) − 𝑎𝑖𝜕𝑥𝐴(𝑎𝑖, 𝑏𝑖)

𝐴(𝑎𝑖, 𝑏𝑖)
−

𝑛∑
𝑖=1

𝑎𝑖𝜕𝑦𝐴(𝑎𝑖, 𝑏𝑖)

𝐴(𝑎𝑖, 𝑏𝑖)
= 0.

As a consequence, 𝐾(Legℎ) is holomorphic on 𝐷ℎ for all ℎ ∈ Aut(ℙ1
ℂ
) if and only if the system (5.2) is satisfied.

Hence, the lemma is proved. □

Proof of Theorem 4.4. i. Suppose that Gal(

) is cyclic. Then, by Theorem 4.1, 


is left–right conjugate to 𝑓1 = 𝑧𝑑. Since

𝑓1 has exactly two critical points (namely 0 and∞), the same is true for 

. This implies, according to [3, Proposition 4.1],

that the 𝑑-web Leg is flat if and only if is linearly conjugate to one of the two foliations𝑑
1
,𝑑

2
.

ii. Suppose that Gal(

) is noncyclic. According to Theorem 4.1, there exist 𝑖 ∈ {2, … , 5} and 𝓁, 𝜌 ∈ Aut(ℙ1

ℂ
) such that



= 𝓁◦𝑓𝑖◦𝜌 and therefore = ℋ(𝓁◦𝑓𝑖◦𝜌). In particular, there exist 𝑖 ∈ {2, … , 5} andℎ ∈ Aut(ℙ1

ℂ
) such that is linearly

conjugate to the foliation
(𝑖)

ℎ
∶= ℋ(ℎ◦𝑓𝑖); indeed, it suffices to take ℎ = 𝜌◦𝓁, because ℎ◦𝑓𝑖 = 𝜌◦(𝓁◦𝑓𝑖◦𝜌)◦𝜌

−1. To show
that the 𝑑-web Leg is flat, it suffices therefore to show that for all 𝑖 ∈ {2, … , 5} and all ℎ ∈ Aut(ℙ1

ℂ
), the 𝑑-web Leg(𝑖)

ℎ
is

flat. Now, for all 𝑖 ∈ {2, … , 5}, the map 𝑓𝑖 being a ramified Galois covering of ℙ1
ℂ
by itself, [2, Theorem A] implies that the

ramification indices of 𝑓𝑖 at the points of the same fiber 𝑓−1
𝑖
(𝑝0) have the same value, which we will denote by 𝜈(𝑓𝑖, 𝑝0).

Thanks to [3, Theorem 3.1], it suffices again to apply Lemma 4.5 to each of the 𝑓𝑖 and to show that for every critical value
𝑝0 ∈ ℙ1

ℂ
of 𝑓𝑖 , the curvature of Leg

(𝑖)

ℎ
is holomorphic on the component 𝐷(𝑖)

ℎ
(𝑝0) ∶= {𝑝 = ℎ(𝑝0)} of Δ(Leg

(𝑖)

ℎ
) for all

ℎ ∈ Aut(ℙ1
ℂ
).

First of all, a straightforward computation shows that each of the 𝑓𝑖, 𝑖 = 2, … , 5, has as critical values 0, 1, and∞.
The case of the critical value 𝑝0 = 1 is immediate. Indeed, it is easy to verify that for all 𝑖 ∈ {2, … , 5}, 𝜈(𝑓𝑖, 1) = 2, so that

the curvature of Leg(𝑖)

ℎ
is holomorphic on 𝐷

(𝑖)

ℎ
(1) for all 𝑖 ∈ {2, … , 5} and all ℎ ∈ Aut(ℙ1

ℂ
) (Lemma 4.5).
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The case where 𝑖 = 2 and 𝑝0 = 0 is also immediate. Indeed, we have 𝜈(𝑓2, 0) = 2, which implies that 𝐾(Leg(2)

ℎ
) is

holomorphic on 𝐷
(2)

ℎ
(0) for all ℎ ∈ Aut(ℙ1

ℂ
).

Let us consider the case where 𝑖 = 2 and 𝑝0 = ∞. The map 𝑓2 is defined in homogeneous coordinates by

𝑓2 ∶ [𝑥 ∶ 𝑦] ↦ [𝐴2(𝑥, 𝑦) ∶ 𝐵2(𝑥, 𝑦)], where 𝐴2(𝑥, 𝑦) = (𝑥𝑘 + 𝑦𝑘)2and 𝐵2(𝑥, 𝑦) = 4𝑥𝑘𝑦𝑘.

Moreover, the fiber 𝑓−1
2
(∞) consists of the two points 0 = [0 ∶ 1] and ∞ = [1 ∶ 0]; in particular, 𝜈(𝑓2,∞) = 𝑘. If 𝑘 =

2, then 𝐾(Leg
(2)

ℎ
) is holomorphic on 𝐷

(2)

ℎ
(∞) for all ℎ ∈ Aut(ℙ1

ℂ
). Suppose 𝑘 ≥ 3. We have

∑
[𝑎∶𝑏]∈𝑓−1

2
(∞)

𝑏𝜕𝑥𝐴2(𝑎, 𝑏)

𝐴2(𝑎, 𝑏)
=

𝜕𝑥𝐴2(0, 1)

𝐴2(0, 1)
= 0,

∑
[𝑎∶𝑏]∈𝑓−1

2
(∞)

𝑏𝜕𝑦𝐴2(𝑎, 𝑏) − 𝑎𝜕𝑥𝐴2(𝑎, 𝑏)

𝐴2(𝑎, 𝑏)
=

𝜕𝑦𝐴2(0, 1)

𝐴2(0, 1)
−

𝜕𝑥𝐴2(1, 0)

𝐴2(1, 0)
= 0,

∑
[𝑎∶𝑏]∈𝑓−1

2
(∞)

𝑎𝜕𝑦𝐴2(𝑎, 𝑏)

𝐴2(𝑎, 𝑏)
=

𝜕𝑦𝐴2(1, 0)

𝐴2(1, 0)
= 0 ;

it follows, by Lemma 4.5, that 𝐾(Leg(2)

ℎ
) is holomorphic on 𝐷

(2)

ℎ
(∞) for all ℎ ∈ Aut(ℙ1

ℂ
).

Let us study the case where 𝑖 = 5 and 𝑝0 = 0. Consider the polynomials

𝑃(𝑤) = 𝑤4 − 228𝑤3 + 494𝑤2 + 228𝑤 + 1 and 𝑄(𝑤) = −
5
√
1728(𝑤2 + 11𝑤 − 1) ;

the map 𝑓5 is given, for any [𝑥 ∶ 𝑦] ∈ ℙ1
ℂ
, by 𝑓5([𝑥 ∶ 𝑦]) = [𝐴5(𝑥, 𝑦) ∶ 𝐵5(𝑥, 𝑦)], where

𝐴5(𝑥, 𝑦) =

(
𝑦20𝑃

(
𝑥5

𝑦5

))3

and 𝐵5(𝑥, 𝑦) =

(
𝑥𝑦11𝑄

(
𝑥5

𝑦5

))5

.

The polynomial 𝑃(𝑤) has as roots the real numbers

𝑤1 = 57 − 25
√
5 + 5

√
255 − 114

√
5, 𝑤2 = 57 − 25

√
5 − 5

√
255 − 114

√
5, 𝑤3 = 57 + 25

√
5 + 5

√
255 + 114

√
5,

𝑤4 = 57 + 25
√
5 − 5

√
255 + 114

√
5 ;

by setting 𝜁 = exp(
2i𝜋

5
) and 𝑢𝑗 = 5

√
𝑤𝑗 ∈ ℝ, 𝑗 = 1,… , 4, we have

𝑓−1
5 (0) =

{
[𝜁𝑙𝑢𝑗 ∶ 1] || 𝑗 = 1,… , 4, 𝑙 = 0, … , 4

}
.

In particular, 𝑓−1
5 (0) has cardinality 20 and therefore 𝜈(𝑓5, 0) = 60∕20 = 3. Furthermore, by a straightforward computa-

tion, we obtain the following equalities:

𝑏𝜕𝑥𝐵5(𝑎, 𝑏)

𝐵5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 5𝜁5−𝑙

(
1

𝑢𝑗
+

5𝑤𝑗𝑄
′(𝑤𝑗)

𝑢𝑗𝑄(𝑤𝑗)

)
,

𝑎𝜕𝑦𝐵5(𝑎, 𝑏)

𝐵5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 5𝜁𝑙𝑢𝑗

(
11 −

5𝑤𝑗𝑄
′(𝑤𝑗)

𝑄(𝑤𝑗)

)
,

𝑏𝜕𝑦𝐵5(𝑎, 𝑏) − 𝑎𝜕𝑥𝐵5(𝑎, 𝑏)

𝐵5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 𝑔(𝑤𝑗),

where 𝑔 ∶ 𝑥 ↦ −
50(𝑥2+1)

𝑥2+11𝑥−1
, so that
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4∑
𝑗=1

4∑
𝑙=0

𝑏𝜕𝑥𝐵5(𝑎, 𝑏)

𝐵5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 0,

4∑
𝑗=1

4∑
𝑙=0

𝑏𝜕𝑦𝐵5(𝑎, 𝑏) − 𝑎𝜕𝑥𝐵5(𝑎, 𝑏)

𝐵5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 0,

4∑
𝑗=1

4∑
𝑙=0

𝑎𝜕𝑦𝐵5(𝑎, 𝑏)

𝐵5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 0,

because
∑4

𝑙=0
𝜁𝑙 =

∑4

𝑙=0
𝜁5−𝑙 = 0 and

∑4

𝑗=1
𝑔(𝑤𝑗) = 0. Thus, we deduce from Lemma 4.5 that 𝐾(Leg(5)

ℎ
) is holomorphic

on 𝐷
(5)

ℎ
(0) for all ℎ ∈ Aut(ℙ1

ℂ
).

Let us examine the case where 𝑖 = 5 and 𝑝0 = ∞. Set 𝑤1 =
−11+5

√
5

2
, 𝑤2 =

−11−5
√
5

2
, 𝑢1 =

−1+
√
5

2
, and 𝑢2 =

−1−
√
5

2

(the 𝑤𝑗 are the two roots of 𝑄(𝑤) and 𝑢𝑗 = 5
√
𝑤𝑗). Then,

𝑓−1
5 (∞) =

{
[0 ∶ 1], [1 ∶ 0], [𝜁𝑙𝑢𝑗 ∶ 1] || 𝑗 = 1, 2, 𝑙 = 0, … , 4

}
;

in particular, #𝑓−1
5 (∞) = 12 and consequently 𝜈(𝑓5,∞) = 60∕12 = 5. Moreover, a straightforward computation leads to

𝑏𝜕𝑥𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(0,1) = 0,
𝑎𝜕𝑦𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(0,1) = 0,
𝑏𝜕𝑦𝐴5(𝑎, 𝑏) − 𝑎𝜕𝑥𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(0,1) = 60,

𝑏𝜕𝑥𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(1,0) = 0,
𝑎𝜕𝑦𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(1,0) = 0,
𝑏𝜕𝑦𝐴5(𝑎, 𝑏) − 𝑎𝜕𝑥𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(1,0) = −60,

𝑏𝜕𝑥𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 15𝜁5−𝑙𝑤𝑗𝑃
′(𝑤𝑗)

𝑢𝑗𝑃(𝑤𝑗)
,

𝑎𝜕𝑦𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 15𝜁𝑙𝑢𝑗

(
4 −

𝑤𝑗𝑃
′(𝑤𝑗)

𝑃(𝑤𝑗)

)
,

𝑏𝜕𝑦𝐴5(𝑎, 𝑏) − 𝑎𝜕𝑥𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)

|||(𝑎,𝑏)=(𝜁𝑙𝑢𝑗,1) = 𝑔(𝑤𝑗),

where 𝑔 ∶ 𝑥 ↦ −
60(𝑥4−114 𝑥3−114 𝑥−1)

𝑥4−228 𝑥3+494 𝑥2+228 𝑥+1
. Therefore, we have

∑
[𝑎∶𝑏]∈𝑓−1

5 (∞)

𝑏𝜕𝑥𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)
=

2∑
𝑗=1

15𝑤𝑗𝑃
′(𝑤𝑗)

𝑢𝑗𝑃(𝑤𝑗)

4∑
𝑙=0

𝜁5−𝑙 = 0,
∑

[𝑎∶𝑏]∈𝑓−1
5 (∞)

𝑎𝜕𝑦𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)
=

2∑
𝑗=1

15𝑢𝑗

(
4 −

𝑤𝑗𝑃
′(𝑤𝑗)

𝑃(𝑤𝑗)

) 4∑
𝑙=0

𝜁𝑙 = 0,

∑
[𝑎∶𝑏]∈𝑓−1

5 (∞)

𝑏𝜕𝑦𝐴5(𝑎, 𝑏) − 𝑎𝜕𝑥𝐴5(𝑎, 𝑏)

𝐴5(𝑎, 𝑏)
= 5

2∑
𝑗=1

𝑔(𝑤𝑗) = 0.

According to Lemma 4.5, it follows that 𝐾(Leg(5)

ℎ
) is holomorphic on 𝐷

(5)

ℎ
(∞) for all ℎ ∈ Aut(ℙ1

ℂ
).

The remaining cases (those where 𝑖 ∈ {3, 4} and 𝑝0 ∈ {0,∞}) are treated similarly. □

Remark 4.6. For 𝑑 ≥ 3, denote by 𝐅𝐏(𝑑) the algebraic set consisting of foliations of degree 𝑑 on ℙ2
ℂ
with a flat Legendre

transform. In [4, Theorem D], we showed that 𝐅𝐏(3) has exactly 12 irreducible components, each of them is rigid in the
sense that it is the closure of the orbit under the action of Aut(ℙ2

ℂ
) of a foliation on ℙ2

ℂ
. Theorem 4.4 shows that in any

even degree 𝑑, the algebraic set 𝐅𝐏(𝑑) always contains nonrigid irreducible components.
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