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Abstract

A holomorphic pre-foliation .# = ¢ X F of co-degree 1 and degree d on IF% is the data of a
line € of IP% and a holomorphic foliation F on IP% of degree d — 1. We study pre-foliations of
co-degree 1 on IP% with a flat Legendre transform (dual web). After having established some
general results on the flatness of the dual d-web of a homogeneous pre-foliation of co-degree
1 and degree d, we describe some explicit examples and we show that up to automorphism of
IP% there are two families and six examples of homogeneous pre-foliations of co-degree 1 and
degree 3 on IP% with a flat dual web. This allows us to prove an analogue for pre-foliations of
co-degree 1 and degree 3 of a result, obtained in collaboration with D. Marin, on foliations
of degree 3 with non-degenerate singularities and a flat Legendre transform. We also show
that the dual web of a reduced convex pre-foliation of co-degree 1 on ]P’% is flat. This is an
analogue of a result on foliations of IF’%C due to D. Marin and J. V. Pereira.
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Abbreviations

Leg.7 LEGENDRE transform of the pre-foliation .7
AW) Discriminant of the web W

T Type of the homogeneous foliation H
now) Fundamental form of the web W

KW) Curvature of the web W

gr GAUSS map associated to the foliation F
Sing F Singular locus of the foliation F

It} Transverse part of the inflection divisor .=
k(W) Rank of the web W

Sw Characteristic surface of the web W

Cx Tangent cone at the origin of the homogeneous foliation H
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Lr Inflection divisor of the foliation F

G Invariant part of the inflection divisor I~

wi ™! d—2)y"Mdx +x (x¥72 — (@ — 1)y97%)dy
wgfl y(og xd-2 _ yd_z)dx + x(oy4 y"_2 — xd_z)dy
wz_i yd=ldx — x4 1dy

@f " O ) Ty hdx 4 (et =y hdy
d—1 d—1 d—1 d—1
w3 (M) (x 4+ oy Hdx + x4 Hdy
CS(F, C,s) CAMACHO- SAD index of the foliation F at the point s along the curve C

T(F,s) Tangency order of the foliation F with a generic line passing through the point
s
O(F) Orbit of the pre-foliation .%# under the action of Aut(IP%C)

W(F,s) MILNOR number of the foliation F at the singular point s
BB(F,s) BAUM-BOTT invariant of the foliation F at the singular point s

Introduction

This article is a continuation of a series of joint works with D. MARIN [4—7] on holomorphic
foliations on the complex projective plane. For the definitions and notations used (web,
discriminant A (W), homogeneous foliation, inflection divisor I £, radial singularity, etc.) we
refer to [4, Sections 1 and 2].

We begin by introducing the following definition, where the terminology «pre-foliation »
is taken from [9].

Definition A Let 0 < k < d be integers. A holomorphic pre-foliation .7 on Pé of co-degree
k and degree d, or simply of type (k, d), is the data of a reduced complex projective curve
CcC IP% of degree k and a holomorphic foliation F on IP’% of degree d —k. We write . = CXF
and call C (resp. F) the associated curve (resp. the associated foliation) to .%.

Such a pre-foliation is given in homogeneous coordinates [x : y : z] € ]P’%C by a I-form of
type Q = F(x, y, 2)Q0, where C[x, y, zlx  F(x, y, z) = 0is a homogeneous equation of
the curve C and ¢ is a homogeneous 1-form of degree d — k + 1 defining the foliation F,
ie.

Qo =a(x,y, z)dx +b(x,y, z)dy + c(x, y, z)dz,

where a, b and ¢ are homogeneous polynomials of degree d — k + 1 without common factor
and satisfying the EULER condition ir®w = 0, where R = x % +y % +z d% denotes the radial
vector field and iR is the interior product by R.

We will denote the set of pre-foliations of type (k, d) on IF% by F(k, d). It can be naturally
identified with a ZARISKI open subset of the space IP’g I x sz, where N1 = @ and
Ny = (d —k +2)% — 2. The set F(0, d) describes precisely the set of foliations of degree d
on ]P’é.

By [13], to every pre-foliation .# = C X F of degree d > 1 and co-degree k < d on
IP’% we can associate a d-web of degree 1 on the dual projective plane If"é, called LEGENDRE
transform (or dual web) of .% and denoted by Leg.7; if .# is given in an affine chart (x, y)
of IP% by a I-form w = f(x, y) (A(x, y)dx + B(x, y)dy) then, in the affine chart (p, q) of
If’% associated to the line {y = px — ¢} C P%, Leg.Z is described by the implicit differential
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equation

_ Y
dp

When k > 1, Leg.# decomposes as Leg# = LegC K LegF, where LegC is the algebraic k-

web on IF% defined by the equation f'(x, px —q) = 0 and LegF is the irreducible (d —k)-web

of degree 1 on ]f”é givenby A(x, px —q) + pB(x, px —q) =0.

F(p,q,x):= f(x, px —q) (A(x, px —q) + pB(x, px —q)) =0, with x

Conversely, every decomposable d-web of degree 1 on I?% is necessarily the LEGENDRE
transform of a certain pre-foliation on IF’% of type (k,d), with 1 <k < d.

The curvature of a web WV on IP% is a meromorphic 2-form with poles along the discrim-
inant A(W). A web with zero curvature is called flat. The flatness of a web WV on ]P% is
characterized by the holomorphy of its curvature K (JV) along the generic points of A(V),
see §1.

The subset FP(k, d) of F(k, d) consisting of .# € F(k, d) such that Leg.7 is flatis ZARISKI
closed in F(k, d).

Problem 1 Let d and k be integers such that d > 3 and 0 < k < d. Describe certain
irreducible components of FP(k, d).

This problem is inspired by a part of Problem 9.3 of [13] which consists in the description
of certain irreducible components of the space of flat d-webs of degree 1 on IF% The first case
(k,d) = (0, 3) has been completely treated in [6]. In fact, the author and MARIN (see [4, Sec-
tions 3-0]) first studied the flatness of dual webs of homogeneous foliations of }P’é, and they
showed that it is possible to reduce the study of the flatness of dual webs of certain inhomoge-
neous foliations to the homogeneous framework. This work ( [4, Theorems 5.1 and 6.1]) then
allowed to show that FP(0, 3) has exactly 12 irreducible components, see [6, Theorem D]. In
what follows we are interested in pre-foliations of co-degree 1, i.e. whose associated curve is
a line. We will not look for irreducible components of FP(1, d), but will adapt the approach
of [4] to co-degree one pre-foliations.

Definition B A pre-foliation on IP% is said to be homogeneous if there is an affine chart
(x, y) of RZC in which it is invariant under the action of the group of homotheties (x, y) —>
Ax, ), v eCh

A homogeneous pre-foliation 7# of type (1, d) on Pé is then of the form 7 = ¢ K H,
where H is a homogeneous foliation of degree d — 1 on Pé and where ¢ is a line passing
through the origin O or £ = L.

Theorem 3.1 of [4] states that the web LegH is flat if and only if its curvature is holomorphic
on the transverse part of its discriminant A(LegH). We prove in Section §3 a similar result
(Theorem 3.7) for the web Leg.7#.

When ¢ passes through the origin, we establish effective criteria for the holomorphy of the
curvature of Leg.7Z” on certain irreducible components of the discriminant A (Leg.7¢’) (Theo-
rems 3.13 and 3.18). In fact, Theorems 3.7, 3.13 and 3.18 provide a complete characterization
of the flatness of Leg. 7.

When ¢ = Lo, we show (Theorem 3.1) that the webs LegH and Leg.7# have the same
curvature; in particular the flatness of Leg.7# is equivalent to that of Leg’H. More particularly,
in degree d = 3 the web Leg.7 is flat (Corollary 3.2).

Recall (see [13]) that a holomorphic foliation on IF’% is said to be convex if its leaves
other than straight lines have no inflection points. Note (see [14]) that if F is a foliation of
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degree d > 1 on P2, then F cannot have more than 3d (distinct) invariant lines. Moreover,
if this bound is reached, then F is necessarily convex; in this case F is said to be reduced
convex. We naturally extend the notions of convexity and reduced convexity of foliations to
pre-foliations by putting:

Definition C Let.# = CX.F be a pre-foliation on IP%. We say that .% is convex (resp. reduced
convex) if the foliation F is convex (resp. reduced convex) and if moreover the curve C is
invariant by F.

From this definition and Theorem 3.7 we will deduce the following corollary, which is an
analogue of Corollary 3.4 of [4].

Corollary D (Corollary 3.11) The dual web of a homogeneous convex pre-foliation of co-
degree 1 on IE% is flat.

In §4 we give an application of the results of §3 to homogeneous pre-foliations 7 =
£ X H of co-degree 1 such that the degree of type of H is equal to 2, i.e. deg7y = 2
(see [4, Definition 2.3] for the definitions of the type 77y and the degree of type deg 7).
More precisely, we describe, up to automorphism of IF%, all homogeneous pre-foliations
A = LXH of co-degree 1 and degreed > 3 suchthatdeg 77y = 2 and the d-web Leg.77 is flat
(Proposition 4.4). We obtain in particular, for d = 3, the classification up to automorphism of
homogeneous pre-foliations of type (1, 3) on IP% whose dual 3-web is flat: up to automorphism
of IP%, there are two families and six examples of homogeneous pre-foliations of co-degree
1 and degree 3 on ]P% with a flat LEGENDRE transform, see Corollary 4.5.

In 2013 MARIN and PEREIRA [13, Theorem 4.2] proved that the dual web of a reduced
convex foliation on Pé is flat. We show in §5 the following analogous result for co-degree
one pre-foliations.

TheoremE Let % = ¢ X F be a reduced convex pre-foliation of co-degree 1 and degree
d >3 on IP%. Then the d-web Leg.7 is flat.

The following problem then arises.

Problem 2 Let F be a reduced convex foliation of degree greater than or equal to 2 on IP’%:
and let £ be a line of IP% which is not invariant by F. Determine the relative position of the
line ¢ with respect to the invariant lines of F such that the dual web of the pre-foliation £ X F
is flat.

To our knowledge the only reduced convex foliations known in the literature are those
presented in [13, Table 1.1]: the FERMAT foliation ]-‘(‘)1 “lof degree d — 1, the HESSE foliation
.7-"3 of degree 4, the HILBERT modular foliation .7-"115, of degree 5 and the HESSE foliation .7-'13
of degree 7 defined in affine chart respectively by the 1-forms

6371 = xdy — ydx 4+ y?~ldx — x4 1dy,
wh = y@2x® —y® — Ddx + x(2y° — x* — dy,
0y = (* = DO = (V5 -2H (0 + V50)dx — (2 = D2 = (V5 - 2)2)(x + V5y)dy,
ol = =D +7x° 4+ Dydx — (3 = D + 7y + Dxdy.

The following two propositions, which will be proved in §5, give an answer to Problem 2
in the case of the FERMAT foliation ]-'(‘)Z ~! and the HESSE foliation ]:13 .
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Proposition F Letd > 3 be an integer and let £ be a line ofIP%. Assume that ¢ is not invariant
by the FERMAT foliation 7 ' and that the d-web Leg(¢ X F{ ") is flat. Thend € {3, 4}

and the line ¢ joins two (resp. three) singularities (necessarily non-radial) of J-'(‘)l “lifd =3
(resp. ifd = 4).

7 < 7

d=3 d=4
Relative positions of the line £ (in blue) with respect to the invariant lines (in red) of the FERMAT foliations
F2 and F3. The foliation 73 (d = 3) has 4 radial singularities (red points) and 3 non-radial singularities
(blue points) with BAUM-BOTT invariant 0. The foliation }'g (d = 4) admits 7 radial singularities, 4 of

order one (orange points) and 3 of order two (red points), and 6 non-radial singularities with BAUM-BOTT
invariant — %

Proposition G Let ¢ be a line oﬂ% which is not invariant by the HESSE foliation f:. Assume
that the 5-web Leg(¢{X ]-'Ij ) is flat. Then the line £ passes through four (necessarily non-radial)
singularities of }"Ij .

The idea of the proofs of Propositions F and G will be to reduce to the homogeneous case,
by showing that the closures of the Aut(IP%)-orbits of the pre-foliations £ X }"g “lande¢X }':
contain homogeneous pre-foliations.

Theorem 6.1 of [4] says that every foliation of degree 3 on ]P’% with non-degenerate
singularities and a flat LEGENDRE transform is linearly conjugate to the FERMAT foliation
_7-"8 . We prove in §6 the following similar result for pre-foliations of co-degree 1 and degree
3.

TheoremH Let.% = ¢ X F be a pre-foliation of co-degree 1 and degree 3 on IP’%. Assume
that the foliation F has only non-degenerate singularities and that the 3-web Leg.7 is flat.
Then F is linearly conjugate to the FERMAT foliation 72, and the line € is either invariant
by F or it joins two non-radial singularities of F.

The proof of this theorem will essentially use the classification of homogeneous pre-
foliations of type (1, 3) on IP% whose dual web is flat (Corollary 4.5).

1 Reminders on the fundamental form and curvature of a web

In this section, we briefly recall the definitions of the fundamental form and the curvature of a
d-web W. Let us first assume that W is a germ of completely decomposable d-web on (CZ, 0),
W=FK...KF;. Fori =1,...,d, let w; be a 1-form with an isolated singularity at O
defining the foliation ;. Following [15], for each triple (r, s, t) with1 <r <s <t < d, one
defines M,; = N(F, X Fs X F;) as the unique meromorphic 1-form satistying the following
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equalities:

Ay ®r) = Npgy A 85
A ©5) = Npgs A 8¢ O (11)
d(?)rx (”t) = Npst A drs ©f

where §;; denotes the function defined by w; A w; = §;; dx A dy. One calls fundamental
form of the web W = F; X - - - K F, the 1-form

NV =NFER-RE)= Y N (12)

1<r<s<t<d

One can easily check that 1()V) is a meromorphic 1-form with poles along the discriminant
d

A(W) of W, and that it is well-defined up to addition of a closed logarithmic 1-form 7f
with f € O*(C2, 0) (cf. [4, 17]). '

Now, if W is a (not necessarily completely decomposable) d-web on a complex surface
M then its pull-back by a suitable ramified GALOIS covering is completely decomposable.
The invariance of the fundamental form of this new web by the action of the GALOIS group
allows us to descend it to a global meromorphic 1-form N(WW) on M, with poles along the
discriminant of W (see [13]).

The curvature of the web W is by definition the 2-form

KOW) =dnW).

It is a meromorphic 2-form with poles along the discriminant A(V) of W, canonically
associated to WW. More precisely, for any dominant holomorphic map ¢, one has K (¢*W) =
P*K(W).

A d-web W is said to be flat if its curvature K (VW) vanishes identically.

Let us finally note that a d-web W on IF’?C is flat if and only if its curvature is holomorphic
over the generic points of the irreducible components of A(W). This follows from the holo-
morphy of K (VW) on }P’% \ A(W) and from the fact that there are no holomorphic 2-forms
on ]P’é other than the zero 2-form.

2 Discriminant of the dual web of a co-degree one pre-foliation

Recall that if F is a foliation on IP%, the GAUSS map of F is the rational map G : ]P% - ]f”%
defined at every regular point m of F by Gr(m) = TE F, where TB}' denotes the tangent
line to the leaf of F passing through m. If C is a curve on IP% passing through some singular
points of F, one defines G(C) as the closure of G~ (C \ SingF).

Lemma2.1 Let.# = £ X F be a pre-foliation of co-degree 1 on ]P%.
1. If the line ¢ is invariant by F, then

A(LegZ) = A(LegF) U T4,

where fg_- denotes the set of lines dual to the points of 2‘} = SingF N L.
2. If the line ¢ is not invariant by F, then

A(LegZ) = A(LegF) UGr(£) U Tk
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Proof We have
A(Leg#) = A(LegF) U Tang(Legt, LegF).
When £ is not invariant by F, we obtain by an argument of [1, page 33] that
Tang(Legt, LegF) = Gr(£) U X5

Let us assume that ¢ is invariant by F and show that Tang(Legl, LegF) = Evlff Let
s € Zg_-. The fact that s € £ (resp. s € SingF) implies that the line § dual to s is invariant
by Legl (resp. by LegF). Thus s C Tang(Leg?, LegF), hence f)fm- C Tang(Legl, LegF).
Conversely, let C be an irreducible component of Tang(Leg?, LegF). Let us show that C is
invariant by LegF. Assume by contradiction that C is transverse to LegF. Let m be a generic

v

point of C. Denote by ¢ € IP’%C the dual point of ¢; then the line (£m) is not invariant by

LegF and is tangent to LegF at m. Since ¢ is F-invariant, the point lis singular for LegF;
it is therefore also a tangency point between LegF and (Evm). The number of tangency points
between LegF and (¢m) is then > 2, which contradicts the equality deg(LegF) = 1. Hence
the invariance of C by LegF is proved. Then C is also invariant by Legf and is therefore a
line passing through £. There therefore exists s € SingF such that C = s; since lecC we
have s € ¢ and therefore s € Eé-. Consequently, C C ig_- m}

We will now apply the above lemma to the case of ahomogeneous pre-foliation .77 = {X'H
of co-degree 1 on IP’?C. If deg »# = d, the homogeneous foliation 7 is given, for a suitable
choice of affine coordinates (x, y), by a homogeneous 1-form

o = A(x, y)dx + B(x, y)dy, where A, B € C[x, ylg—1 with gcd(A, B) = 1.
If ¢ = L then £ is invariant by H and Lemma 2.1 ensures that
A(Legst) = A(LegH) U 357,

where i;’f denotes the set of lines dual to the points of X7 := SingH N L.

Assume that £ passes through the origin. If £ is not invariant by H, then, according to [4,
Proposition 2.2], we have »¢ = {0}. Since the line O dual to O is contained in A(LegH)
by [4, Lemma 3.2], it follows from Lemma 2.1 that

A(Leg#) = A(LegH) U Gy (£).

If ¢ is invariant by H, then the point s := Ly, N £ is singular for H and, by [4, Propo-
sition 2.2], we have 251 = {0, s}. Denoting by s the dual line of the point s, the inclusion

0cC A(LegH) and Lemma 2.1 imply that
A(Legs#) = A(LegH) Us.
According to [4, Lemma 3.2], the discriminant of LegH decomposes as
A(LegH) = Gn(I5) U U O,

where I‘r denotes the transverse inflection divisor of H and E”‘d is the set of lines dual to the
radial smgulantles of H (see [4, §1.3] for precise definitions of these notions). Recall however
that to the homogeneous foliation 7 one can also associate the rational map G, : PL — PL.
defined by

Gy(ly 12D = [A(x. y) : B, p)].
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and that this map allows us to completely determine the divisor I}, and the set ng‘ld (see [4,
Section 2]):

° Z;jd consists of [b : a : 0] € Lo such that [a : b] € ]P’(lC is a fixed critical point of G
° Itf{ =171 T;”, where T; = (bjy —a;jx = 0) and [q; : b;] € IP’(IC is a non-fixed critical

l
point of G, of multiplicity ;.
From the above considerations, we deduce the following lemma.

Lemma 2.2 Let 5# = £ X 'H be a homogeneous pre-foliation of co-degree 1 on ]P%.
1. If { = L then

A(Leg) = A(LegH) U 3% = G (I%) U U O.
2. If the line ¢ passes through the origin, then
A(Leg ) = A(LegH) U Dy = Gy (I5,) USRI U O U Dy,

where the component Dy is defined as follows. If ¢ is invariant by H, then D, := 5 is the
dual line of the point s = Lo, N € € SingH. If € is not invariant by H, then D, := Gy (€).

3 Flatness of the dual web of a co-degree one homogeneous
pre-foliation

Our first result shows that, for a homogeneous foliation  on P2, the webs LegH and
Leg(L« X H) have the same curvature, so that we have equivalence between the flatness of
LegH and that of Leg(Ls X H).

Theorem 3.1 Letd > 3 be an integer and let H be a homogeneous foliation of degree d — 1
on IP%. Then

K (Leg(Loo XH)) = K (LegH).
In particular, the d-web Leg(L~, X H) is flat if and only if the (d — 1)-web LegH is flat.

Corollary 3.2 Let’H be ahomogeneous foliation of degree?2 on IP% . Then the3-webLeg(L -oX
'H) is flat.

To establish Theorem 3.1, we will need the following definition and theorem.

Definition 3.3 ([12]) Let W = F; K- .- ¥ Fy be a regular d-web on (C2, 0). A transverse
symmetry of W is a germ of vector field X which is transverse to the foliations F; (i =
1, ..., d) and whose local flow exp(zX) preserves the F;’s.

Theorem 3.4 Letd > 3 be an integer and let W;_| be a regular (d — 1)-web on (CZ,0)
which admits a transverse symmetry X. Denote by Fx the foliation defined by X. Then

K(FxXWi-1) = KWg-1).

In particular, the d-web Fx X W;_ is flat if and only if the (d — 1)-web W, _1 is flat.
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Before proving this theorem, let us briefly recall the definition of the rank rk(W) of a
regular d-web W = F; X .- - X F; on ((C2, 0). For 1 <i <d, let w; be a 1-form defining
the foliation ;. One defines the C-vector space .A(WV) of abelian relations of VW by

AW) = {(m,...,nd) e @' C%0)?|Vi=1,...,d, dn; =0, N; Aw; =0 and

d
Zni = O}.
i=1

Then rk(W) := dim¢ .A(WV). One has the following optimal bound (cf. [16, Chapter 2]):
_@d-Dd-2)
= > .

Recall also that every d-web of maximal rank (i.e. of rank m;) is necessarily flat by
MIHAILEANU’s criterion (cf. [16, Theorem 6.3.4]).

In fact, Theorem 3.4 is an analogue for flat webs of a result on webs of maximal rank, due
to MARIN-PEREIRA-PIRIO, namely:

k(W) <my:

Theorem 3.5 ([12], Theorem 1) With the notations of Theorem 3.4, one has
tk(Fx B Wg—1) = tkWy-1) + (d = 2).
In particular, Fx X W,;_ is of maximal rank if and only if W;_ is of maximal rank.
The proof of Theorem 3.4 consists essentially in applying this result for d = 3.
Proof of Theorem 3.4 Writing Wy_; = F; X - - - X F4_1, we have
KFxBWe)=KWa)+ Y. KO,

l<i<j<d—1
where W;J = Fx X F; K F;. Moreover, since X is a transverse symmetry of the 2-
web F; X F; and since every 2-web is of maximal rank, equal to 0, Theorem 1 of [12]
(cf. Theorem 3.5 above) implies that the 3-web W;’j is of maximal rank, equal to 1, so that
K (W;” ) = 0, hence the announced equality holds. O

Proof of Theorem 3.1 By [4, Section 2], we can locally decompose the d-web Leg(L oo X H)
as

Leg(Loo XH) = Leg(Loo) X W1,

where Wy_1 = Fi X --- X Fy_; and, forany i € {1,...,d — 1}, F; is given by &; :=
Ni(p)dg — qdp, with \;(p) = p — pi(p) and {pi(p)} = Q;{l (p). Now, the vector field
X = qai defines the radial foliation Leg(L) and is a transverse symmetry of the web
W,—1. Therefore, K (Leg(Lo X 'H)) = K (LegH) by Theorem 3.4. O

Remark 3.6 We can also prove Theorem 3.1 directly, without using results on webs of max-
imal rank. Indeed, putting Wé’f i=Leg(Loo) W F; ¥ Fj, foralli, j € {l,...,d — 1} with
i # j, we have

K(Leg(Lo BH)) = K(Leg) + > KOW).

I<i<j<d—1

The foliation Leg(L ) being defined by &g := dp, a direct computation using formula (1.1)
shows that
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d(0r®) g
NP g
so that K OV;7) = dn(Wy7) = 0, hence K (Leg(Loo ¥ H)) = K (LegH).

WYy =

’

The following theorem gives an important characterization of the flatness of the dual web
of a co-degree one homogeneous pre-foliation.

Theorem 3.7 Let s# = £ X H be a homogeneous pre-foliation of type (1,d) on ]P}QC with
d > 3. If the line ¢ is invariant (resp. not invariant) by H, then the d-web Leg.s7 is flat if
and only if its curvature K (Leg.’) is holomorphic on Gy (I},) (resp. on G(I},) U Dy =
G115, U L)),

To prove this theorem, we will need the following lemma, which is a reformulation in terms
of homogeneous pre-foliations of Lemma 3.1 of [2] formulated in terms of homogeneous
foliations not necessarily saturated.

Lemma 3.8 ([2],Lemma 3.1) Let .7 be a homogeneous pre-foliation on IP’%. If the curvature
of Leg.7Z is holomorphic on ]IVD%C \ O, then Leg.77 is flat.

We will also need the following proposition, which has its own interest.

Proposition 3.9 Let W, be a germ of v-web on (C2%,0) with v > 2. Assume that AOW,)
has an irreducible component C totally invariant by W, and of minimal multiplicity v — 1.
Let F be a germ of foliation on (C?,0) leaving C invariant and let W;_,_1 be a germ
of regular (d — v — 1)-web on (C2,0) transverse to C. Then the curvature of the d-web
W =F KW, ®W,_,_ is holomorphic along C.

Proof As in the beginning of the proof of [13, Proposition 2.6], we choose a local coordinate
system (U, (x, y)) suchthat CNU = {y =0}, TF|y = {dy + yh(x, y)dx = 0},

™T™hiy = {d}‘v + y(aV7l(xﬂ YdyYldx + -+ ag(x, y)dx”) = 0} and
d—v—1
™Wavotlu =1 [] @x+g ndy)=0¢.

=1
Then, by passing to the ramified covering & : (x, y) — (x, y"), we obtain that 7*F = Fy,
W, =R Frand mWy_y = @flz_lv_lfu+1, where
Fo rdy + Lyh(x,y")dx =0,
Fi o dx + "2 f(x, Fy)gRdy =0,
Fogr 1 dx +vy" g (x, y")dy =0,
with T = exp(ZiT”). Therefore we have
K@@ W) =K(@m* W RBWa))+ Y. KFRRFERF)).
l<i<j<d—1

Now, on the one hand, [13, Proposition 2.6] ensures that K OV, X W,;_,,_1) is holomorphic
along {y = 0}; therefore so is K(n*(WU X Wd,,,,l)) = n*(K(WU X Wd,v,l)). On the
other hand, since {y = 0} is invariant by ¥y and {y = 0} ¢ Tang(Fy, F; X F;), then
K (Fo X F; X F;) is holomorphic on {y = 0} by applying [13, Theorem 1], see also [2,
Theorem 1.1] or [3, Corollary 1.30]. It follows that 7*K (W) = K (x*W) is holomorphic
on {y = 0}. As a consequence K (W) is holomorphic along C. O
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Remark 3.10 Similarly, we obtain an analogue of Proposition 3.9 by replacing the foliation
F by a2-web W, = F; K F, leaving the component C C A(W),) totally invariant.

Proof of Theorem 3.7 i. First assume that £ = L. Then Theorem 3.1 ensures that
K (Leg#) = K (LegH). Now, we know from [4, Theorem 3.1] that the flatness of the web
LegH is characterized by the holomorphy of its curvature K (LegH) on Gy (I%,). Therefore
the same is true for the web Leg 7, i.e. Leg ¢ is flatif and only if K (Leg.s#’) is holomorphic
along Gy (I5,).

ii. Now assume that £ passes through the origin. Let us fix s € X27 and describe the d-web
Legs# in a neighborhood of a generic point m of the line § dual to s. Denote by v — 1 > 0
the radiality order of s; by [13, Proposition 3.3], in a neighborhood of m, we can decompose
Legs# as

Legs# = Legt W, X Wy_,_1, 3.1)

where W), is an irreducible v-web leaving § invariant and whose discriminant A(W),) has
minimal multiplicity v — 1 along §, and where W,;_,_1 is a (d — v — 1)-web transverse to
5. More explicitly, up to linear conjugation, we can write £ = (y = ax),s = [l : p : 0],

s={p=1p},m=(p,q)and g;_(l(P) ={p,r1,...,rqg—y—1}, so that (see [4, Section 2])

Legl : (p —a)dg —gdp =0, W, c :dp =0, Wd,v,l‘ :

§

d—v—1
((P —rj)dg — qdp) =0.
i=1
We deduce, in particular, the two following properties:

(a) if S ¢ Gx (I‘{_(), the web W,;_,_1 is regular in a neighborhood of m, because we then
have r; #rjifi # j;
(b) if § # D¢ = {p = G,,(0)}, then Leg is transverse to § and § ¢ Tang(Legl, Wa—v—1).

Ifs e Z%d is such that s ¢ Gy (I;r_t) U Dy, then properties (a) and (b) ensure that the
(d — v)-web Wy_, := Legl X Wj;_,_ is transverse to § and is regular in a neighborhood
of m. Therefore the curvature of Leg.7# = W, X W;_, is holomorphic in a neighborhood
of m by applying [13, Proposition 2.6]. It follows that K (Leg.7#’) is holomorphic on i;f‘(d \
(QH(I?{) U Dy). Thus, according to the second assertion of Lemma 2.2 and Lemma 3.8,
Legs# is flat if and only if K (Leg.#) is holomorphic along G, (I},) U Dy.

Let us show that in the particular case where ¢ is invariant by H, the flatness of Leg.7Z is
equivalent to the holomorphy of K (Leg.7#) on G3,(I},). From the above discussion, it suffices
to prove that if Dy is not contained in G (I%r{), then K (Leg.7#) is holomorphic on D,. The
invariance of £ by 7 implies the existence of s € X37 such that £ = (Os); then Dy = § is
invariant by the radial foliation Legl. Moreover, the condition Dy ¢ Gy (I%) implies that
W,—y—1 is regular in a neighborhood of every generic point m of D, (property (a)). By
applying Theorem 1 of [13] if v = 1 and Proposition 3.9 if v > 2, we deduce that K (Leg.s¢)
is holomorphic along Dy . O

From Theorem 3.7 we deduce the two following corollaries.

Corollary 3.11 Let J# be a homogeneous convex pre-foliation of co-degree 1 and degree
d >3 on IP%. Then the d-web Leg.s is flat.

Corollary 3.12 Let s# = ¢ X 'H be a homogeneous pre-foliation of co-degree 1 and degree
d > 3 on ]P)%C. Assume that the homogeneous foliation H is convex and that the line ¢ is
not invariant by ‘H. Then the d-web LegsZ is flat if and only if its curvature K (LegJ¢) is
holomorphic on Dy = G (£).
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The following theorem is an effective criterion for the holomorphy of the curvature of the
web dual to a homogeneous pre-foliation 2 = £ X H (with O € £) along an irreducible
component of A(LegH) \ (D¢ U O).

Theorem 3.13 Let s# = ¢ X 'H be a homogeneous pre-foliation of co-degree 1 and degree
d > 3 on P, defined by the 1-form

ow=(ax+py) (A(x, y)dx + B(x, y)dy), A,B e Clx, yls—1, gcd(A, B) = 1.

Let (p, q) be the affine chart of If% associated to the line {y = px — q} C IP’% and let
D = {p = po} be an irreducible component of A(LegH) \ (D¢ U é). Write g;ﬁ (Lpo :
1) = {la1 : b1l,...,lan : b,]} and denote by v; the ramification index of QH at the
point [a; : b;] € IP’(IC. Fori e {1,...,n}, define the polynomials P; € Clx, ylg—v,—1
and Q; € Clx, ylog—v,—3 by

A(x,y) Ab;,a;)
B(x,y) B(b;,a;)

P;(x, y;a;,b;) == and
i (x, vy ai, bi) iy —ax)V
O Ax.y)
B dA - A,y
Q;(x,y;ai,b;) = (v; = 2) (* - *) Pi(x,y;a;,bi) +2(v; +1) adig- . (3.2)
dx oy 81 B(x,y)
y

Then the curvature of Legs¢ is holomorphic on D if and only if

- 1 Qi(bi,a;; a;, b;) 3vi(a+ poP)
Z( Vi><p0 a)(B(bi,ai)Pi(bi,ai;ai,bi)+ ab; +Ba;

i=1

The proof of this theorem is based on the criterion of [7, Theorem 2.1] for the holomorphy
of the curvature of smooth webs. To do this, let us first recall the definition of the characteristic
surface of a web and the definition of smooth web along an irreducible component of its
discriminant. Let WV be a holomorphic web on a complex surface M. Let M = PT*M be the
projectivization of the cotangent bundle of M the characteristic surface of W is the surface
Syy C M defined by

Sy = {(m, M) e M | me M\ AW), kern C TmW}

(see [7, §1.2] for a local expression of this surface). Denote by 7 : M — M the natural
projection and by myy : Syy — M the restriction of 7 to Syy. Let D be an irreducible
component of the discriminant A(V). Following [7, Definition 1.1], the web W is said to
be smooth along D if for every generic point m of D, the characteristic surface Syy of W is
smooth at every point of the fiber n;\}l (m).

Proof Let § € C be such that B + a8 # 0 and b; — ;8§ # Oforalli = 1,...,n. Up to
conjugating w by the linear transformation (x +§ y, y), we can assume that none of the lines
£ = (ox+Py=0)and L; = (b;y — a;x = 0) is vertical, i.e. that § # 0 and b; #~ 0 for all

i=1,...,n.Letus then put p := —% and r; 1= Z—j; we have Q;{l(po) ={r1,...,ry} with

_ A(l, z)
9y (@) = _B(l,z)
such that

. According to [7, Lemma 3.5], there therefore exists a constant ¢ € C*

—A(,2) = poB(1,2) —c[ [z —ri)".
i=1
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Moreover, the d-web Leg.Z is given in the affine chart (p, ¢) by the differential equation

d
((p —P)x — q) (A(x, px —q)+ pB(x, px — q)) =0, with x = ﬁ; 3.3)
since A, B € C[x, y]s—1, this equation can then be rewritten as
0=x""'((p =¥ —q) (4. p =)+ pBL.p— %))
. d
=x/(p=2L—0) (- p0BU P +c]"[<p —Lomt),  with =L
by dp
. . oo_dy 1. . .
Putx :=¢, y := p— po and p := — = —; in these new coordinates D = {y = 0} and

dx X
Legs7 is described by the differential equation

n
F@ 3, py=(3+po = p¥ = 0) (¥BA. 3+ po = p0)+¢ [[G + po = & = r)" ) =0.
i=1

We have F(%, 0, p) = c(=H)"(p = 0@) [TiZy (p — ¢:())". where ¢o(¥) = P i

Po —

and ¢;(X) = ; the hypothesis that D # Dy = {p = G,,(P)} translates into

X

the fact that, for all i € {1,...,n}, ri # P and therefore ¢; # ¢y. Note that if
vi > 2, then d5F (X, 0, w,(x)) = (i — B 1) # 0; since 93F(X,0, 9o(X)) # 0
and 93 F (x 0, ¢; (x)) # 0 if v; = 1, we deduce that the surface

Stegr = | (%3, ) € PT'BL | F(E. 3, ) = 0
is smooth along D = {y = 0}. Thus, according to [7, Theorem 2.1], the curvature of

Legs# is holomorphic on D = {y = 0} if and only if Y 1, (vi — D®; (*){;(X) = 0 and
Z;’Zl(vi - 1)%%(%) = 0, where, foralli € {1, ..., n} such that v; > 2,

B 3505 F (X, 0, ¢; (X))
Ui (¥) = ” |:(Vz 2) (d i (X) 0 F (7.0, 9 () )

n

Qo (X) Z v;i@;(X)

—2(Ui +1) ‘Pi()z) _ gpo()}) m

j=Li#i

Now, if v; = 3 then 9505 F (¥, 0, ¢(9)) = —£(B(1, ) + (5 = 0)a,B(1, 7). It follows
that

V(X)) = ;= vi, |:(vi —2) (d+ <p0 —r,-)(B(l,r,-)+(r,- B p)a)’B(l’ri)>)

(ri = P)B(1,71;)

+2(v; 4+ 1) + Z M .
j=t# 0T
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Therefore K (Leg.%#) is holomorphic on D = {y = O} ifandonly if Y ', (v; — )¢; () ; =
0. On the other hand, arguing as in the proof of [7, Theorem 3.1], we obtain that
O Pi(L, risri, 1) A(L, ry)
X": vi(po—r;) |dyPi(l,risri, 1) B(1,1i)
ri—r;  B(Lr)Pi(lLriir, 1)

j=Lj#i
and that, foralli € {1, ..., n} such that v; > 2,
(d—=1DBA,r)+ (po—ri)dyB(1,r;) =0 B(1,r;) —dyA(1, 1y),

so that

L[ (po—p 0B, r)—d,Al,r)
\lji - Vi [(Vz 2) ( o — o + B(l, ri) )

O Pi(1,risri, 1) AL 1)

— dyPi(1,ri;ri, 1) B(1,r;
2 + 1) po— P 'y (1, ri5 i, 1) B(1, 1)
ri —p B, r)Pi(1, 151, 1)

0i(L,rizr, 1) 3(po—P)

T B P ) =
As aresult, K (Leg.7#) is holomorphic along D = {y = 0} if and only if

1 ¢ 1 (i 1 3vi(po —
LS (1 L) ) (2l =),
X3 Vi B, rj) Pi(1,ri;ri, 1) ri—p

hence the theorem follows. m]

Remark 3.14 (i) We recover the fact (c¢f. step ii. of the proof of Theorem 3.7) that the cur-
vature of Legs# is always holomorphic along fl;f‘[d \ (Gn (I;r_é) U Dy). Indeed, if D is
contained in f%d \ (Gn (p}r{) U Dy), then the fiber g;j ([po : 1]) does not contain any
non-fixed critical point of gH, so that we have pob; —a; = 0 if v; > 2, which implies
(Theorem 3.13) that K (Leg.»#’) is holomorphic on D.

(i) We know from [7, Theorem 3.1] that the curvature of LegH is holomorphic on D if
and only if

Xn: (1 - i) (pobi —ai) Qi(bi, aiz ai, bi) _
i—1 vi ) B(bi,a;)Pi(bi,a;; a;, b;) :

From this result and Theorem 3.13, we deduce the following properties:

— If the curvature of LegH is holomorphic on D, then the curvature of Legs# is
holomorphic on D if and only if

i — D(pobi —a;)
ab; +Ba;

=0.

@+ poB) Y
i=1

— In particular, when d = 3 the fiber g;j([ po : 1]) is reduced to a single point,
say [a : b], and the holomorphy of the curvature of Leg.##” on D is equivalent to
(e~ poB)(pob —a) =0,ie toa+ pop =0or[a: b] =[po: 1], and therefore to
(1, po) € L or [pg : 1] is fixed by QH.
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— If (1, po) € € then we have equivalence between the holomorphy on D of K (Leg.s#)
and that of K (LegH).

(iii) Assume that v; = v > 2 for all i € {1,...,n}. Then the curvature of Leg.# is
holomorphic on D if and only if

S by — ) ((v —2)(3:B(bi, ai) — 0,A(bi, @) v+ po B)) o
i=1

B(b;, a;) ab; +PBa;

Indeed, in the above proof, put §; ; = %
l J

> ((v— D) Y V(po_rj)) = V(v);_ : Y b= V(vi_ .

i=1 j=tjzi 1T i1 j=1, i
D Gij+8.)=0.

I<i<j<n

and note that

In particular, if the fiber %1 ([po : 1]) contains a single non-fixed critical point of P
say [a : b], then

— either gﬁ,_il([po : 1) = {[a : b]}, in which case v =d — 1;

— or #g;tl ([po : 1) = 2, in which case d is necessarily odd, d = 2k + 1, and v = k.

In both cases, the curvature of Leg.7# is holomorphic on D if and only if
(v —2)(ab+ ﬁa)(&xB(b, a) — 8, A(b, a)) 430+ poP)B(b, a) = 0.

Example 3.15 Let us consider the homogeneous pre-foliation .7 = ¢ X ‘H of co-degree 1
and odd degree 2k + 1 > 5 on ]P’%C defined by the 1-form

w=@x-1Y) (yk(y —0fdx + (y =2 0* —MX)kdy),
where ), u € C\ {0,1} and 7 € C\ {1}.

We know from [7, Example 3.4] that D := {p = 0} C A(LegH) and that the fiber g;{‘ ([0 :
1]) consists of the two points [0 : 1] and [1 : 1]: the point [0 : 1] (resp. [1 : 1]) is critical
and fixed (resp. non-fixed) for G, with multiplicity k — 1. Moreover, since T # 1, we have
[1:7]¢ 97_{1([0 :1]), sothat D # Dy = {[p 1] = gH([l : r])}. From Remark 3.14 (iii),
we deduce that the curvature of Leg.7# is holomorphic along D if and only if

0=(k—2)(1— r)(axB(l, 1) — dyAl, 1)) £3kB(1, 1) = k(1 — 051 — o)k

(k—2)(x — D)0+t — 2040)
3),
X( G-De—1 +)

i.e. if and only if the quadruple (k, '\, i, T) satisfies the equation (k —2)(r — 1)(n +p —22u) +
3(x — 1)(n — 1) = 0. Note that, according to [7, Example 3.4], the holomorphy of the curvature
of LegH along D is characterized by the equation (k —2)(\ + & — 2).t) = 0. It follows, in
particular, that if the curvature of LegH is holomorphic on D, then the curvature of Leg. 7
is not holomorphic on D.

Corollary 3.16 Let .# = ¢ X 'H be a homogeneous pre-foliation of co-degree 1 and degree
d >3 on IP’%:, defined by the 1-form

o= (ax+py) (A, y)dx + B(x, y)dy), A,B € C[x,ylg—1, gcd(A, B) = 1.

@ Springer



10  Page 16 of 39 Geometriae Dedicata (2025) 219:10

Assume that the foliation H has a transverse inflection line T = (ax + by = 0) of order
v — 1. Assume moreover that [—a : b] € Pé: is the only non-fixed critical point of G, in
its fiber g;l (Gyl—a: b)) and that [—a : B] ¢ g;l (Gyl—a: b))). Then the curvature of
Legs? is holomorphic on T" = G3((T) if and only if

(b —Ba)Qb, —a: a, b) + 3v(oc B(b, —a) — B A(b, —a))P(b, —a:a,b) =0,

where
P
9B 9A oo Al Y)
Q(x,y;a,b):=(v—2) (* - 7) P(x,y;a,b)+200+ 1| §p
x 9y “— B(x.y)
ay
and
‘A(X,y) A, —a)
B(x,y) B(b, —
Plx. yia,b) = 125V BO—a)|

(ax + by)Y

Proof Up to linear conjugation, we can assume that 7/ # Ly; then T’ has the equation
p = po, where py = —QEZ’:Z;. According to Theorem 3.13, the curvature of LegJs# is

holomorphic on T’ if and only if

(l—%)(pob—&-a)( O, —aia,b) +3V(u+PoB)):0_

B(b, —a)P (b, —a; a, b) ab—Pa

Now, the hypothesis that the point [—a : b] is not fixed by QH translates into pob 4+ a # 0.
It follows that K (Leg.7#) is holomorphic on T’ if and only if

Q(b, —a;a,b)  3v(aB(b,—a) — B A(b, —a))
P(b, —a;a,b) ab—PBa

hence the corollary holds. O
In particular, we have:

Corollary 3.17 Let s# = £ X 'H be a homogeneous pre-foliation of co-degree 1 and degree
d >3 on IE%, defined by the 1-form

o= (x+py) (Alx,y)dx + B(x, y)dy), A, B € Clx, yls—1, gcd(A, B) = 1.

Assume that H admits a transverse inflection line T = (ax + by = 0) of maximal order
d — 2 and that T # (. Then the curvature of Legs# is holomorphic along T' = Gy(T) if
and only if

d —3)(ab— Ba)(axB(b, —a) — 3,A(b, —a)) +30d - 1)(0( B(b, —a) — p A(b, —a)) —0.

The following theorem is an effective criterion for the holomorphy of the curvature of the web
dual to a homogeneous pre-foliation .7 = £ X H (with O € £) along the component Dy C
A(Legs?).

Theorem 3.18 Let s# = ¢ X 'H be a homogeneous pre-foliation of co-degree 1 and degree
d > 3 on P, defined by the 1-form

ow=(ax+py) (Alx, y)dx + B(x, y)dy), A,B e Clx, yls—1, gcd(A, B) = 1.
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Write g;{‘ (G- BD) = {[—a : B, [a1 : b1], ..., [an : b,]} and denote by v; (resp. vp)
the ramification index of gH at the point [a; : b;] (resp. [—a : B]). Define the polynomials
Py € Clx, ylg—vy—1 and Qo € C[x, yloa—vy—3 by

‘A(x, y) AP, —)
B(x,y) BB, —w)

Py(x,y;o,p)i=m —————— and
0(x, y; o, B) X T By
Py
dB  JA — A, y)
dx
Qo(x,y;0,B) := (o = | o= — == ) Pox, y; 0, ) + Cvo + 1) | §'p; .
9y 5, By
y

Assume that QH([ o : PB]) # oo and let pg € C be such that [pg : 1] = QH([ a:BD.
Then the curvature of Leg.s# is holomorphic on D, if and only if

1\ @+ poB)Qo®. —a:a.B) | 1
<1+%> B(®, —a) Po(B, — o, B) +;<1_E> (ot —)

< Qi(bi, a3 ai, b;) 3Vi(°l+P0f5)>_0

B(b;, a;) P (b, a;; aj, b;) ab;+Ba; )

where the P;’s and the Q;’s (i = 1, ..., n) are the polynomials given by (3.2).

Note that the d-web Leg.#” = Legl X LegH is not smooth along the component D, C
Tang(Legl, LegH) and therefore we cannot apply Theorem 2.1 of [7] to Legs# as we did
in the proof of Theorem 3.13. To prove Theorem 3.18, we will first establish, for a foliation
F and a web W smooth along an irreducible component D of Tang(F, W), an effective
criterion for the holomorphy of the curvature of 7 X W along D.

Theorem 3.19 Let W be a holomorphic (d — 1)-web on a complex surface M. Let F be a
holomorphic foliation on M. Assume that VW is smooth along an irreducible component D
of Tang(F, W). Then the fundamental form NW(F X W) has simple poles along D. More
precisely, choose a Iocal coordinate system (x,y) on M such that D = {y = 0} and let
F(x,y, p) =0,p= d , be an implicit differential equation defining WW. Write F (x, 0, p) =

ap(x) ]_[ (p — Pa(x))™, with ¢4 # @ if & # B, and assume that F is given by a 1-

=1
form w of type w = dy — (¢1(x) + yf (x, y)) dx. Define Q(x, p) by F(x,0, p) = (p —
@1 (x)" Q(x, p) and put

h(x) = [(Ul -D < — ¢1(x)

Vo P (X)
“enth Z <0100 — %(x)]

(where §,, 2 = 1 if vy = 2 and 0 otherwise). Let \, be a function of the coordinate x
defined, for alla € {1, ..., n} such that vy, > 2, by

0pdy F(x,0, 91(x)) + 280, 2 f (x, 0) O(x, ‘Pl(x)))
0y F(x,0, 91(x))

o 38y F (x,0, 9g(x))
Py (x) = a|:(vu 2) (d 1 — $qg(x) 8yF(X7O’(P°‘(x))>

. vpPp (x)
e Y
b1 pota Po(x) — Pg(x)
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Then the 1-form n(F X W) — 6% is holomorphic along D = {y = 0}, where
6= 1 + ) [h(0)(dy = 01 @)dx) + w1 = Dy

S 3¢1(x) B B
+u§2(va -1 [(ufu(x) S (x)) (dy — 9o (x)dx) + (va 2>dy].

In particular, the curvature K (F X W) is holomorphic along D if and only if

3¢1(x) > _

W1+ DO + D (v — Da(x) <%(x) t =%

a=2

and
q n 3¢01(x) =
= ((vl + Dh(x) + g(vu -1 (wa(x) + W)) =0

Proof In a neighborhood of a generic point m of D, the web W decomposes as W =
X!, Wa, where Wy = K% F* and F|y—o : dy — ¢g(x)dx = 0. Then n(F X W)
NOV) + Ny + M2 + N3 + N4, where

n
M= Y NWFRARF M=) Y NWFRARFY,

I<i<j<v a=2 1<i<v|
I1<j<vaq
n
m=Y ¥ wWEFEMHL= Y Y warEs).
a=2 1<i<j<vy 2=<a<Ps=n 1<i<vy
I<j<wg

According to [7, Theorem 2.1], the principal part of the LAURENT series of N(W) aty = 0
is given by 97?, where

.l n
0= ¢ 2 (= 1) b (dy = @ax)dx) + (v — 2)dy].

6 a=1
As for the 1-forms My, ..., N4, first note that, as in the proof of [7, Theorem 2.1], the slope
pi (j=1,...,vy) of T(x,y)f;?‘ can be written as

jk &
P =a (X, ) 1= 9u(x) + Y fur(x)5 y, where fur € Clx},
k>1

with fo 1 #0and ¢, = exp(%). Moreover, for o = 1, if v; > 2, then

Ay F(x,0, 91 (x))

(fra@)™ = — 349
! Q(x, ¢1(x))
and, for all @ € {1, ..., n} such that v, > 2, we have

Jo2(x) _ 1 BpayF(x, 0, (Pa(x)) - vg

N — _— . 3.5
Far )2~ va | 9,F(x, 0, 9a(x)) Bzzw#asoa(n—%(x) G-
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Put ho(x, y) = ¢1(x) + yf(x, y); according to [7, Lemma 2.8], we have n(F X F} &F}) =
a;j,j(x, y)dx + b; j(x, y)dy, where .

(ByOu1,in1,j) — 9xh0) Xo B (ByOu1,in0) = dxnn,j) My (FyOur,jh0) — v ki) M

(1,0 = 20)(M1,j — o) 1,0 = N1, )0 — X1, ) (1, — M1,0) (0 — M1,i)

aj,j =

and
b s = dy(n1,in1,j) — 9xho dy(n1,ih0) — Ox A1, j Oy (h1,j20) — Oxhii
YT O =000 —20) O — AL D00 — A1) O — L) 0o — A

1
Writing f(x, y) = Y 4~0 fo.x(x) y¥ and putting w; = y"1, a straightforward computation
leads to the following equalities:

A Lo 4 ;2 :
By Oin) =B = [ +ehorfiam +2(67 721 + @ +6D)01 712 = 8, 297 ) wi

+oe1

1 ; . /
Oy (n1,iho) =3k j = 0 [§’1<P1f1,1w1 +2(§%Z‘P1f1,2 + (@1 0.0 — <P1)8u1,2) w? +]

L et ians
i =20 (M1, — X)) = cﬁ*’fﬁlw% + (@fﬂ -l-C'l+ DA fiaw) +- .

b v i i)
O = a1 00 = n1 ) = 6 =t 2 jwd (@6 = =) £ - 28, 2000) 0

oo

These equalities allow us to check that a; ; and b; ; can be written as

@1 (‘Pl fi2— fﬁl — 8,291 fo,o) +wiA;;
Vlyfﬁl

o 2fﬁl = @1f1.2 + 8,291 /0,0 + w1 B;

" oty |

aj,j =

)

where A; j, B; j € C{x, w;}. Since M; is a uniform and meromorphic 1-form, we deduce
that the principal part of the LAURENT series of Nj at y = 0 is given by %‘, where

dx

o\ [(@1O(91 A1) = f11007 = 8y 291 () fo,0())
01 =
: <2> v fi,1(0)2

2£1,10)% = 91(0) f1,2(x) + 8y 291 () fo,0(x) )
+ dy

v f1,1(0)2

o1 v1.2/0,00)  fi,2(x) B _
=30 1)[¢1(X)< fi1(x)? fl,l(X)2>(dy 91()dx) +2dy (pl(x)dx]'

Thanks to (3.4), (3.5) and the equality fo o(x) = f(x, 0), the I-form 6; can be rewritten as

_ 1 1 BI,B)VF(x,O,(Pl(x))+28vl,2f(x,0)Q(x, P1(x))
=3 <1 ) (d B 9y F(x,0, 01 (x))

5 ve¥alx) 1
+a2:; 7({)1()() — ‘Pa(x)> (d} - ‘Pl(x)dx) + E(U] — 1)dy.

V1

_L
Letusnow passto . Putwg,; = y"1'*;againby [7, Lemma 2.8], we haven(]-'ﬁ]-'i] @]—'}?‘) =
affj(x, y)dx + bﬁj(x, y)dy, where
o (3y(}n1,i>\(x$j) _ax}\O) Y] _ (3)'()\1$i}\0) _3x)\ot,j) )\Ot,j (a)r()\u,j)\o) - a)c)\l,i)’}\l,i

a; . = —
" i = 20)(ha,j — 20) i = Na, )0 — ha,j) (ha,j = 21,0000 — X1,i)
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1 1P
= < 1¥a +wa,]A?€j>

vy \ 9] — @
and
o _ dy(h1,iha, j) — Oxho Ay (n1,ih0) — Oxha,j Ay (e, jN0) — Ox N1,
SO = k) ey j = M0) (i = R )0 = hay i) (e j — ML) (M0 — ML)
1 o M
= B .
1y ((Pl Zgy Tl "])’
where Aﬁ I Blf’f j € C{x, wq,1}. The 1-form M, being uniform and meromorphic, it follows
that the principal part of the LAURENT series of N, at y = 0 is given by 9}—?, where
n
P Y P
6= v < 1) Pa) o (X) dy)
= V1 (P1(x) — Pu(x)) vy (P1(x) — Palx))
n
Vg P (X)
= —(dy — ¢1(x)dx) _
' ZZ; 910 — Palx)

1
Similarly, putting we = y* and using [7, Lemma 2.8], we obtain that

o L [( 910)%al)
NFRFRTD = oy [( @1 (x) — Po(x)

@1(x) o
+ (7({3] @) — a®) + wq Bi,j(x’ wa)) dyi| s

+ wq Aﬁj(x, wu)) dx

where A? I

is given by %?, where

() (1)) 1 (x)
=2 <2> < o @10 = o) St @10 — %(x))dy)

a=2

Bff ;€ C{x, wy}, so that the principal part of the LAURENT series of Nz aty = 0

_! Z (Vo = D91 (x) (dy — 9u(x)dx)
25 @1 (x) — Pu(x) '

Finally, since (91 — 9o)(Pa — 98)(9p — ¢1) # O forall p > a > 2, [7, Lemma 2.8] implies
that the 1-form n(F X F* X .7-"?) has no poles along y = 0; therefore the same is true for the
1-form ng4. R

As aresult, the principal part of the LAURENT series of N(F X W) at y = 0 is given by %,
where

D=60+601+62+63

! Dh 1 d d ! hd
= (01 + DA = 01 = DI @) (dy = 01 (0)dx) + 51 = Dy

1 n
+< El (v — 1)|:\lf(x(x)(dy — @a()dx) + (v — 2)dy:|

1 & (v — D1 (x) (dy — P (x)dx)
+ 2DLZ_:2 Q1(x) — Py (x)

:é(ul +1 [h(x)(dy - <P1(x)dx) Ty — l)dy]
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Ly 3¢1(x)
T5 ugz(w -1 |:<‘lf0t()6) + m) (dy — 9o (x)dx) + (vo — Z)dy]

hence the theorem follows. O

Proof of Theorem 3.18 As in the proof of Theorem 3.13, up to linear conjugation, we can
assume that  # Oand b; # O foralli € {1, ..., n}. Then, by putting ro := —% andr; = %ﬁ
fori € {1,...,n}, [7, Lemma 3.5] implies the existence of a constant ¢ € C* such that

—A(,2) = poB(1,2) —c[ (e —r)".
i=0

Since A, B € C[x, yls—1, the differential equation (3.3) describing Leg.7Z in the affine
chart (p, g) then becomes

n
xd(p—%—ro)((p—po)B(l,p—%)—i—cil:!)(p—%—ri)”‘):0, with x:j—i.

di

1
Putx := ¢,y := p—po and p := —; inthis new coordinate system Dy = {y = 0} and

Leg# = Leg¢XLegH is given by the dlfferentlal equation (y+ po— pxX—ro) F (X, y
where

n
F(¥, 3, p) =B, 3+ po— p¥) + ¢ [ [ + po — p¥ — )"
i=0
We have F(¥,0, p) = c(=)4 1], (p — 9:(¥))", where 9;(X) = P2 Furthermore
the radial foliation Leg¢ is described by @y = dy — (9o () + 1 )dx in pamcular we have
Dy C Tang(Legt, LegH). Note that if v; > 2, then 05 F (X, 0, ¢; (x)) = B(1, r;) # 0; since
BI;F()E, 0, ¢; ()E)) # 0 if v; = 1, it follows that the surface
Stegr = { (5.3, ) € PTBL | F(E. 3, 5) = 0)
is smooth along D; = {y = 0}. Therefore, according to Theorem 3.19, the curvature of
Leg.## is holomorphic on D, = {y = 0} if and only if
T , . 3¢9 (x)
1 i — Do; ; — | =
(v + ><Po<x>h(x)+i§<v, )i (¥) <¢,<x>+ P m) 0

and
d 5 n 4 s 3¢0(X) _
o ((vo + Dh(X) +i§(u, -1 (\Jz,(x) + w)) =0,

where

3595 F(¥,0, 99(F)) — 2¢8, 2(=0)4 2T, (9o () — @ (%))
hE) = 1 [(v01)< 1= ) 2T (X 0(X)) = 2¢8yy,2(—X% [T}21 (90() — ;1)) )
vo

3 F(%,0,90(0))

vi®; (x)
,(2vo+l)z % (x) (P](x):|
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and, foralli € {1, ..., n} such thatv; > 2,

o 1 ‘ e 3[;3§F(/\V7,0, QP,()Z)) ‘ ” v](Pl(/\v’)
Y (X) = ; |:(Vt -2) (d —1—=9;x) B;F(i,o, ‘Pl()z)) = 2(v; + 1) j:ZOj#l @ (F) — (PJ(/%) .

n .

Now, if vi = 2 then 0;05F (¥, 0, 91(%) = =5 (8, B(1Lr) + 2e8y2 1 (ri=1r))").
J=0,j#i

From this we deduce that

B = ho = | (o= 1) <d 1y P00 B T0) rm) NN ALt
Vo B(1,rg) o ro—rj

and

e (o —ri)dyB(L i) , L v —r))
LII,(x)—LIIl.—v[|:(v, 2)(:1’ 1+W>+2(W+1)Z AL SRR

v rj
j=0g# Tt

Thus K (Leg.s#) is holomorphic along Dy = {y = 0} if and only if

(v0 + 1)(po — rodho + (v = D(po — 1) (W; + 22500 ) =,

i=1
Moreover, we have (cf. proof of [7, Theorem 3.1])
dx Po(1, ro; —ro, 1) A(1,r0)

dy Po(1, ro; —ro, 1) B(1,10)

Z vj(po —rj) _
o T B(1, o) Po(l, ro; —ro, 1)

n

. Ox P (1, risr, 1) A(L, ry)
v —rj oy Pi(1,risri, 1) B(1,r;
Z /(PO j)= y i (Lrisri, 1) B(1,rp) (fOri: ,,,,, n)
=0, j#i ri —7rj B(,rj)Pi(1,ri;ri, 1)

and, foralli € {0, ..., n} such thatv; > 2,
(d—1)B(,r)+ (po—ri)dyB(1,r;) = 0xB(1,r;) — 9,A(1, 1y).
By the definition of the polynomials Q;’s, it follows that

Qo(1, ro; —rop, 1) O, risri, 1)
ho = and U; = .
voB(1,r9) Po(1, ro; —ro, 1) viB(, r) Pi(1, ris 1, 1)

As a consequence, K (Legs#) is holomorphic on Dy = {y = 0} if and only if
1\ (o —r0)Qo(.ro: —ro0. 1) | ¥ ( 1 )
1+ — + - — -
( vo) BT o0 T2y ) w0

O;(1,ri5r, 1) 3vi(po —ro)\ _
x + =0.
B, r)Pi(1,risri, 1) ri — 1o

This ends the proof of the theorem. O

Corollary 3.20 Let s# = £ X 'H be a homogeneous pre-foliation of co-degree 1 and degree
d >3 on Pé, defined by the 1-form

o= (ax+py) (Alx,y)dx + B(x, y)dy), A,B eClx, ylg—1, gcd(A, B) =1.

@ Springer



Geometriae Dedicata (2025) 219:10 Page230f39 10

Assume that the line £ is not invariant by H and that the fiber g;{‘ (G4, ([—a : B])) does not
contain any non-fixed critical point of G, . Then the curvature of Leg7¢" is holomorphic on
Dy = Gr(€) if and only if Q(B, —a; o, B) = 0, where

P
P A(B5 _OL)
O, yia,B) = | §p
87 B(B’ _OL)
y
and
A(x,y) AP, —)
P(x,y; o, p) = Bx.y) BB~ | (3.6)

ax+py

Remark 3.21 In particular, in degree d = 3, the curvature of Leg.## is holomorphic along
Dy if and only if the line with equation A(B, —a)x + B(B, —a)y = 0 is invariant by H, or
equivalently, if and only if 9y (gH([—oc : B])) =Gy ([—a: BD.

Indeed, putting a = A(B, —a), b = BB, —a) and P(x, y; o, B) = f(a,P)x + g(a, B)y
we obtain

Q(B? —asa, B) = f(OL7 B)b - g(u9 B)a = P(bs —a;a, B)

_ bA(b, —a) —aB(b, —a) _ Cx (b, —a)
T Ba—ab T CuB. -’

where C1y = x A 4+ yB denotes the tangent cone of H at the origin O, see [4, Section 2].
Combining Corollaries 3.12 and 3.20, we obtain:

Corollary 3.22 Let s# = ¢ X 'H be a homogeneous pre-foliation of co-degree 1 and degree
d >3 on ]P’é, defined by the 1-form

o= (ax+py) (A, y)dx + B(x, y)dy), A, B € Clx, yls—1, gcd(A, B) = 1.

Assume that the homogeneous foliation H is convex and that the line € is not invariant by H.
Then the d-web Leg s is flat if and only if Q(B, —a; a, ) = 0, where Q is the polynomial
given by (3.6).

Here are two examples that will be useful in Section §5.

Example 3.23 Let us consider the homogeneous foliation Hg_l defined in the affine chart
z = 1 by the 1-form

oog_l =(d - 2)yd71dx +x (xd72 —(d — 1)yd72> dy.

We know from [4, Example 6.5] that Hg_l is convex, of type 1 - Ry_> + (d —2) - Ry and
with inflection divisor

inv — —(d _ 1)(d _ 2)xzyd—l(yd—2 _ xd—2)2.

IHS—I = I’HE{_]

If ¢ is one of the invariant lines of Hgil, ie. ifl € {xyz(y — Ckx) =0,k=0,...,d -3},
where § = exp (%) , then the d-web Leg(¢ X H‘Oifl) is flat by Corollary 3.11.

@ Springer



10  Page240of 39 Geometriae Dedicata (2025) 219:10

If ¢ = (y — px = 0) is not invariant by Hg_l, then the d-web Leg(¢ &Hg_]) is flat if and
only if p?=2 = ﬁ i.e if and only if £ € {y — potfx =0, k =0,....d — 3}, where

d—=2

Po = 5i=3 d . Indeed, with the notations of Corollary 3.20, we have

ap P
Q(x,y;fp,1)=(17(d7 ned=2) 27 N

and

a—1 _ d—1
PG yi=p ) =~(d~2) ((d— Doy - X )
y—Px

=—(d—-2) ((d—l)(Py)d2 sz i d—2— 1)’

so that, according to Corollary 3.22, the flatness of Leg(¢ X Hg_l) is characterized by

1

=0(,0,—-p,1) = %(d —1)(d —2)%p?2 (pd*Z - 1) ((Zd —4pd=2 — 1) = pl2 = s

In all cases, for any line £ C ]P’é such that O € € or £ = Lo, the d-web Leg(¢{ X ’Hg_l)
is flat if and only if, up to linear conjugation, { = Ly, or £ € {xy(y — x)(y — Pox) = 0}.
Indeed, putting ¢(x, y) = (x, Ck y), we have

(( ck ) wd— 1) _§2k( x)wgfl
and

o (( pock ) wd— 1) _ c2k( pox)wgfl.

Example 3.24 For d > 4, let Hi_l be the homogeneous foliation defined in the affine chart
z = 1 by the 1-form

d-2

wg_l = y(ogx — yd_z)dx + x(oy yd_2 — xd_z)dy, where o6y = 1 + ﬁ.

This foliation is convex of type (d — 2) - Rp; indeed, a straightforward computation shows
that

i _ 23
a1 = 1;2271 = 0q(oq — Dxyz(x?72 + y*72)°.

Let£bealine ofIP% suchthat O € £or{ = L. If £ isinvariant by Hﬁf‘l , then Corollary 3.11
ensures thatLeg(E&HZﬁl)isﬂat, andwehave ¢ € {xyz(y—igzk+1 x)=0,k=0,...,d-3},

).
If £ is not invariant by Hff*l, then £ = {y — px = 0} with p(pY~2 + 1) # 0; by applying
Corollary 3.22, we obtain that the d-web Leg(¢ X Hff_l) is flat if and only if

where £ = exp ( dif

0= Q(la p7 _p, 1) = —()'d(d — 2)(pd—2 + I)Z(pd—z _ 1)7

hence if and only if p¢~2 = 1, which is equivalent to £ € {y —£*x =0, k =0, ..., d —3}.

Note that, in all cases, the d-web Leg(¢{ X Hifl) is flat if and only if, up to linear
conjugation, £ = Lo orf € {x(y — x)(y — &x) = 0} . Indeed, putting ¢(x, y) = (y, x) and
V(x, y) = (x,§%y), we have

(p*(ngfl):xwifl,w* (( E2/< ) wd= l)_E4k( )04717

@ Springer



Geometriae Dedicata (2025) 219:10 Page250f39 10

o ((y _ §2k+l x)wifl) _ E4k(y _ Ex)wffil.

Corollary 3.25 Letd > 3 be an integer and let H be a homogeneous foliation of degree d — 1
on ]P’é defined by the 1-form

o= A(x,y)dx + B(x,y)dy, A,B e Cl[x,ylg—1, gcd(A, B) =1.

Assume that H admits a transverse inflection line £ = (ax + By = 0) of order v — 1.
Assume moreover that [—a : B] € IP’(%: is the only non-fixed critical point of G, in its fiber
g;{l (G- B1)). Put 57 := £ X 'H. Then the curvature of Leg.s is holomorphic along
Dy if and only if Q(B, —a; o, B) = 0, where

P
9B A —— Alx,y)
O, yia,B) == (v—1) (5 - 5) P(x,y;a,B)+ Qv+ 1)| §% and
3y Bew

Ax,y) AP, —)
B(x,y) BB, —)

(ax +By)Y

Px,yia,p) =

Corollary 3.26 Letd > 3 be an integer and let H be a homogeneous foliation of degree d — 1
on IP% defined by the 1-form

o= A(x,y)dx + B(x, y)dy, A, B e€Clx, ylgs—1, gcd(A, B)=1.

Assume that H has a transverse inflection line £ = (o x + f y = 0) of maximal order d — 2.
Put 7 := £ X 'H. Then the curvature of Leg.s# is holomorphic along D, if and only if the
2-form dw vanishes on the line ¢.

Remark 3.27 When d > 4 the condition «dw vanishes on the line £» also expresses the
holomorphy of the curvature of LegH along Dy, thanks to [4, Theorem 3.8]. Thus Corol-
lary 3.26 establishes the equivalence between the holomorphy on D, of K (Leg.s#) and that
of K (LegH).

4 Flatness and homogeneous pre-foliations £ X H of co-degree 1 such
thatdeg 73, =2

In this section we propose to classify, up to automorphism of P2, all homogeneous pre-
foliations .2 = £ X H of co-degree 1 and degree d > 3 on ]P’%C such that deg 73y = 2 and
the d-web Legs# is flat. The equality deg 77, = 2 holds if and only if the type 77; of H is of
one of the following three forms: 2 - Rg_2,2 - Tg—2, 1 - Rg_2 + 1 - T4_>. According to [4,
Proposition 4.1], every homogeneous foliation of type 2 - R;_» is linearly conjugate to the
convex foliation H‘f_l defined by the 1-form

wa = yd_ldx — xd_ldy.
The homogeneous foliations of type 2- Ty_», resp. 1 - Rg_» 4+ 1-T4_», are given, up to linear
conjugation, by

I yd_])dy, where )\, u € C, with

@@ o = 7 oy Ddx + (ux?
e #E -1,

resp. wdﬁl()\) = ()cd_1 + Xyd_l)dx +xd_1dy, where \ € C*,
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cf- proof of [4, Proposition 4.1]. We will denote by Hg_l (., ), resp. Hg_] (), the foliation
defined by u)‘zlfl (\, ), resp. m?’l ).
In the following three lemmas, £ denotes a line of IP’%: such that O € L or £ = L.

Lemma 4.1 Thed-webLeg(¢XHY ") is flat if and only if, up to linear conjugation, £ = L
ort € {x(y —x)(y — £x) = 0}, where £ = exp (d”jz).

Proof Note first of all that the foliation Hﬁl_l has inflection divisor

IH,I,,, = IEZI’“ = (d— l)zxd_lyd_l(yd_z B xd_z)_

i. If € is invariant by 1™, then ¢ € {xyz(y —£%*x) =0, k = 0,...,d — 3} and the
d-web Leg({ X H‘ll_l) is flat (Corollary 3.11).

ii. Assume that £ is not invariant by H‘lifl; then £ = (y — px = 0) with p(p?=2 — 1) # 0.
According to Corollary 3.22, the d-web Leg (¢ XH‘IFI) isflatifand only if Q(1, p; —p, 1) =
0, where

P dP
O(x, y; —p, 1) = —— — pd=122
ax Ay

d—1 d—1 d-2

— (Px . .

P(x,y;—p, 1) = _yy# ==Y plxlyd=
i=0

and

Thus Q(1, p; —p, 1) = 1(d — 1)(d —2)p?~2(p?~2 + 1), and the flatness of Leg(¢ I H< ™)
is equivalent to p4=2 = —1 and therefore to £ € {y — 22k+1x =0,k=0,...,d —3}.

In the two cases considered, Leg({ X Hfﬁl) is flat if and only if, up to conjugation,
=Ly :=(z=0)orf e {x(y —x)(y —&x) = 0}. Indeed, putting ¢;(x, y) = (y, x) and
Pr(x,y) = (x, EZky), we have

d—1 d—1
(PT()’(DI ):_x“)l s

95 (0 - ool ™) g% - g0,

93 (0= 0w ") = g% —nwf

m}

Lemma4.2 The d-web Leg(¢ & H4 ' (), 10)) is flat if and only if, up to linear conjugation,
one of the following cases occurs:
(i) £ = Lo andd = 3;

(ii) { = Loo,d>4and )\ = u=0;

(iii) £ = (x=0)and \ = u =0;

(iv) t=(y—x=0),d=>4and (h, p) = (3,-3);

) L=(y—&x=0),d>4and O, n) = (37/, —(%), where £ = exp (17”)

Proof We have w‘zl_l(}\, w) = A(x, y)dx+B(x, y)dy, where A(x, y) = x4~ 42y~ land B(x, y) =

uxd=1 — yd=1: an immediate computation shows that
inv _iud d—1 d—1 _ d
Hgfl(x’m—z(x +ux® Ty + Ay y9)
and
o — 42,42
HE o) Y
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1. If £ = Lo and d = 3, then the web Leg(¢ X H%(x, w)) is flat by Corollary 3.2.

2. Assume that £ = Lo, and d > 4. Then, according to [4, Theorem 3.1 and 3.8], the
web Leg(H‘QFl (n, w)) is flat if and only if d((x)L2171 O, ,u)) vanishes on the two lines xy = 0.
Now,

d(wf' (o, u))‘ ,= =D 4 2dx Ady
x=
and
a3 0. m)| = @~ Dux'2ax nay.
Therefore Leg(H‘zlfl()\, w)) is flat if and only if . = pw = 0; hence the same holds for
Leg(¢ M HS ™' (0, 1)) (Theorem 3.1).

3. Let us consider the case where ¢ € {xy = 0}. Up to permuting the coordinates x and y,

we can assume that £ = (x = 0). According to Theorem 3.7, the d-web Leg(ZIZng (N, 1)

is flat if and only if its curvature is holomorphic on gng o H)({xy = 0}). Now, on the

one hand, K (Leg(¢ X H‘zi_l()\, ())) is holomorphic on Dy = gHg_l(x 0 (¢) if and only if
d(mg_](x, M)) vanishes on £ = (x = 0) (Corollary 3.26), i.e. if and only if X = 0. On
the other hand, according to Corollary 3.17, K(Leg(¢{ X Hg_l (N, w))) is holomorphic on

gng(x’m({y = 0}) if and only if

0=(d—3)(3:B(1,0) — 8yA(1,0)) +3(d — DB(1,0) = d(d — )pw <= pu =0.

It follows that Leg(¢ 5 H4 ' (3, w)) is flat if and only if A = 1 = 0.
4. Let us examine the case where £ = (y — px = 0) with p # 0. By Corollary 3.17,

K (Leg(¢ X H‘éil (%, 1)) is holomorphic on ngzl—l o) ({xy = 0}) if and only if

0=~ -3)(8xBO, ~1) = 8,40, ~D) =3 = D(A©. 1) + pBO, - 1))
= (=1)4(d — 1)(dn — 3p)
0=—pd— 3)(axB(1, 0) — dyA(l, 0)) —3d - 1)(A(1, 0) + PB(I, 0)) = —(d — D)(dpp +3),

i.e. if and only if \ = \o = %, n =g := —dip and d # 3, because \pu # —1. We now
distinguish two cases according to whether or not £ is invariant by Hg_l (N0, M0)-
4.1. Assume that ¢ is invariant by H‘;*l (%0, 10). Then the dual web of £ H371 (N0, 10)

: : inv _ (3 _ d _ d i i

is flat by Theorem 3.7. Since IH‘;’I(XO.MO) o = (3 =1)(p? = 1)zx9, the invari

ance of ¢ by Hg_l()\o, o) is equivalent to pd = 1;as a consequence (P, ho, [Lo) €
2k . .

[(57. %%, —3x) k =0.....d =1} Up to conjugation, (0, %0, o) = (1.3, 3

indeed, putting ¢(x, y) = (x, £?*y) we have
_ 3 2k _
o (0 =)o (5 ) ) =€ 0 -0 ef T (3. -D).

4.2. Assume that £ is not invariant by H‘;*l (%0, o). Then, by Theorem 3.7 and Corol-
lary 3.20, the flatness of Leg(¢ X H‘zl_l()\o, o)) translates into Q(1, p; —p, 1) = 0, where

O(x,y;—p, 1) = (uo _ pd_l) %’ _ (Xopd—l N 1) E%’

and
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(oo + 1 (¥4 = (o) ~1)

s 0\0/’«0"‘1)29’[‘12[

i=0

P(x,y;—p, 1) =

2
Hence Q(1,0;—0,1) = %(% _ 1) (% + 1) (d — )(d — 20?3 ¢ + 1), and consequently
Leg(¢ X Hgfl()\o, o)) is flat if and only if p¢ = —1, hence if and only if (0, Lo, ro) €
[(E’zkH, e , dE’Zk“) k=0,...,d — 1} or equivalently, if and only if, up to conju-

d
gation, (P, o, o) = (E/, 35 i dE’)’ because

d—1 (382! wd-1(3
(p*<(y_2/2k+lx)w2 (Ed ’_ﬁ))zgak(y £'x) ol (;_d%/)

Lemma4.3 The d-web Leg(f X Hg_l ()\)) is flat if and only if one of the following cases
holds:
(i) ¢ = Ly andd = 3;
. (=D —3)a’"?
(ii)) L =(dy+3x=0),d >4 and) = Y ;

(—=D4(d + 3)d4~2
3d—1 :

(i) € = (dy +3x = 0) and \ =

Proof We have w ()\) = A(x, y)dx + B(x, y)dy, where A(x, y) = x?~1 4+ 3y?~! and
B(x,y) = x?"1; : an immediate computation leads to

I;:Z{ 1(}\) =zx d 1( d—1 +xd—2y+)\yd—])
and

tr _.d=2

L1y =7

1. Assume that £ = L. If d = 3, then the web Leg(¢ K H%()\)) is flat, thanks to

Corollary 3.2. For d > 4, the webs Leg(Hgl_l()\)) and Leg(¢ X Hgl_l()\)) have the same
curvature (Theorem 3.1) and cannot be flat. Indeed, we have

d(f™ )|, = @ - Dx"dx ndy £ 0

this implies, according to [4, Theorem 3.8], that K (Leg(H‘;_1 ()\))) cannot be holomorphic
along gﬁgf.m({y =0}).

2. If £ = (y = 0), then the fact that d(o\)g_l()\)) does not vanish on ¢ implies, by
Corollary 3.26, that K (Leg(¢ X Hg_l (%)) cannot be holomorphic on g,}_‘%l—] 0 (¢), so that
Leg(¢ X Hgi_l ())) cannot be flat.

3. Assumethat ¢ = (x—py = 0), where p € C. By Corollary 3.17, K(Leg(li@?—(‘;_l )

is holomorphic on ng{" m({y = 0}) if and only if

0=(d=3)(9xB(1,0) = 9,A01,0)) +3d = D(BA,0) + PAU1,0)) = (d ~ H30 +d),

hence if and only if p = —%, which is equivalent to £ = £o where £y = (dy + 3x = 0).
Then we have to distinguish two cases:
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3.1. If £y is invariant by Hg_l (\), then Theorem 3.7 ensures that the d-web Leg(£o X
H’;*l (n)) is flat; since

. 2d—-2
[inv :_ddfl Yy -1 d3d71 — (-3 dd72 i
He o le=—1, ¢ (3) (=093 h - @ - 3at?)

(=D?(d —3)a’>
3d—1

the invariance of £( by Hgl_l (\) is characterized by X = and d # 3,

because N # 0.
3.2. Assume that £ is not invariant by ng_l()\). Then, according to Theorem 3.7 and
Corollary 3.20, the d-web Leg(fo X H4~' (%)) is flat if and only if Q(d, —3;3,d) = 0,

where
P P
yidd) = ad 10 (g1 4 (—ayd—1y) 28
O(x,y ) o ( +(=3) x) 2y
and

n (@it = (30d-t) a2

_ 30y (dy)d—2i
dy + 3x %i;)( 0 (dy)

P(x,y;3,d) =

Thus Q(d, —3;3,d) = —1u(d — 1)(d - 2)(3d)? 2 (3d—lx — (=1 + 3)dd—2) and the flatness of

(=D +3)a’"?

3d—1 o

Leg(¢o X H‘;_l () translates into ) =

Lemmas 4.1, 4.2 and 4.3 imply the following proposition.

Proposition 4.4 Let 57 = { XI'H be a homogeneous pre-foliation of co-degree 1 and degree
d > 3on }P%. Assume that deg Ty, = 2, or equivalently that the map G, has exactly two
critical points. Then, for d > 4 the web Leg.7 is flat if and only if 5 is linearly conjugate
to one of the ten following pre-foliations

1. A = Lo RHITY;
2. 48 ={x =0} KN
3. 48 =y —x =0} RHI;
4. %jd ={y—&x=0} @H‘lifl, where & = exp (di%z);
5. A8 ={x =0} RHI0,0); o
6. A ={dy+3x =0} KH] ' (o). where ng = S-UEIE
d d—2
7. A = {dy +3x = ) R HI (n1), where y = CLEDI,
8. A8 = Lo ®RHITI(0,0);
9. A ={y —x =01 RH (], =) |
10. jfl‘é ={y—¢&x=0} XHgfl(%, —d%,), where &' = exp ().
Ford = 3 the web Leg77 is flat if and only if, up to linear conjugation, either ¢ is one
of the six pre-foliations I3, jff, o, jf?, or ¢ is of one of the following two types

11. A7 (W) = Loc X H3(2), where ) € C*;
12. %3()\, n) = Lo X H%(x, w), where \, u € C with \pu # —1.

Combining Proposition 4.4 with the fact that every homogeneous foliation of degree 2 on IP’(%:
has degree of type 2, we obtain the classification, up to automorphism of Pé, of homogeneous
pre-foliations of type (1, 3) on IP% whose dual web is flat.
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Table 1 Types and
CAMACHO- SAD polynomials of " T ESr

iati 2 2
theszhanomH"Hz(o’ Oand 3.2 2R, = D200+ 1)
32 2 1,3
HZ(O, 0) 2-T1 ()\_ j)
H3(-2) 1Ry +1-Ty =D —Ho+ D

Corollary 4.5 Up to automorphism of P%, there are six examples and two families of homo-
geneous pre-foliations of co-degree 1 and degree 3 on ]P’%C with a flat LEGENDRE transform,
namely:

. AP = Loo MH3;

A = {x = 0} KWH3;

A ={y—x=0}®H§;

AP =y +x =0 KH:;

A2 = {x = 0} K H3(0, 0);

AP = {y+x =0} KHHI(-2);

H(\) = Log ®H3(0), where ) € C*;

HE (O, W) = Lo ®HZ(0, 1), where k, € C withhp # —1.

O Ny W R

In Section §6 we will need, for 1 € {H7, H3(0, 0), H3(—2)}, the values of the CAMACHO-
SAD indices CS(H, Loo, 5), s € SingH N L. For this, we have computed, for each of
these three foliations, the following polynomial (called CAMACHO- SAD polynomial of the
homogeneous foliation H)

S = [ O—CS(H, Lo, 5)).
seSingHNL o

The following table summarizes the types and the CAMACHO- SAD polynomials of the foli-
ations H?, H3(0, 0) and H3(—2).

5 Pre-foliations of co-degree 1 whose associated foliation is reduced
convex

We now give the proofs of Theorem E and Propositions F and G stated in the Introduction.

Proof of Theorem E Since by hypothesis F is reduced convex, all its singularities are non-
degenerate ( [4, Lemma 6.8]). According to [2, Lemma 2.2], the discriminant of LegF then
consists of the lines dual to the radial singularities of F. The first assertion of Lemma 2.1
therefore implies that

A(Leg7) = 22U EE.

To show that the curvature of Leg.# is identically zero, it suffices therefore to show that it
is holomorphic along the dual line of every point of Z}‘_id U E‘}-. Let s be an arbitrary point
of E}‘}d U ZZF. Denote by v = t(F, s) the tangency order of F with a generic line passing
through s; then v — 1 denotes the radiality order of s, and s € E?jld if and only if v > 2,
see [4, §1.3]. By [13, Proposition 3.3], locally near the line § dual to s, we can decompose
LegF as LegF = W, KW,_,_1, where W, is an irreducible v-web leaving § invariant and
whose discriminant A (W, has minimal multiplicity v — 1 along s, and where W;_,_1 is a
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(d — v — 1)-web transverse to 5. Furthermore, the convexity of F implies, by an argument
of the proof of [13, Theorem 4.2], that the web W,_,_ is regular near s, i.e. that through a
generic point of § pass (d — v — 1) distinct tangent lines to W;_,_1.

Thus, near the line §, we have the decomposition

LegZ7 = Legt XW, K W,;_,_1. 5.1

We now distinguish two cases:

1. If s € ¢ then § is invariant by Leg¢; by applying Theorem 1 of [13] if v = 1 and
Proposition 3.9 if v > 2, it follows that K (Leg.%) is holomorphic along s.

2. Assumethats ¢ £;thens € ¥ ;fld \Z g_- In this case the radial foliation Leg/ is transverse
to §. From the above discussion, the (d — v)-web Wy_, := Legl X W,;_,_ is therefore
also transverse to § and we have Leg.# = W, K W, _,. Moreover, since ¢ is F-invariant,
Tang(Legt, LegF) = ffc (cf. proof of Lemma 2.1); in particular, Tang(Legl, W;_,—1) C
Evlg_- and therefore § ¢ Tang(Legt, Wy—_,—1). It follows that the web W, _,, is regular near s,
because W,_,_1 is so. As a consequence the curvature of Leg.# is holomorphic along § by
applying [13, Proposition 2.6]. O

The following proposition plays an important role in the proofs of Propositions F and G.

Proposition 5.1 Let F be a reduced convex foliation of degree d — 1 on IP’% withd > 3. Let
£ be a line of]P% which is not invariant by F. Assume that G () is equal to the dual line of a
singularity s of F (necessarily s ¢ £) such that t(F,s) = d —2. Then the d-web Leg(¢ X F)
is flat.

Remark 5.2 Ford = 3 (resp.d > 3), the equality 7 (F, s) = d — 2 means that the singularity
s of F is non-radial (resp. radial of order d — 3).

The proof of Proposition 5.1 is based on the following two results.

Theorem 5.3 Let .# = £ X F be a pre-foliation of co-degree 1 and degree d > 3 on ]P%.
Assume that the foliation F is reduced convex and that the line ¢ is not invariant by F. Then,
the curvature of Leg.% is holomorphic on If% \ G (€). In particular, the d-web Leg.% is flat
if and only if K (Leg.%#) is holomorphic along Gr({).

Proof It suffices to argue as in the proof of Theorem E. Indeed, first, the equality A(LegF) =
E;fid and the second assertion of Lemma 2.1 ensure that

A(LegZ) = 22U SL UGE®).

Then, lets € E;‘_ﬁdUZ‘}- besuchthats ¢ G (¢)andletv := t(F, s);neartheline 5, the d-web
Leg.# canbe decomposed into the form (5.1).If s € £, we can argue as in the case 1. to deduce
that K (Leg.%) is holomorphic along 5. If s ¢ ¢, thens ¢ Gr(£)U Zl} = Tang(Legl, LegF)
and we can argue as in the case 2. to deduce the same conclusion. It follows that K (Leg.%)
is holomorphic on (i;fld U flg_-) \Gr) = A(Leg.%)\ G£(£) and therefore on ﬁ’% \Gr().

O

Proposition 5.4 LetW,;_, be a germ of (d — 2)-web on (C2,0). Assume that A(W,_») has
an irreducible component C totally invariant by Wy_;. Let W, be a germ of a 2-web on
(CZ, 0) transverse to C. Then, the curvature of the d-web W = Wy_» KW is holomorphic
along C if and only if the curvature of the (d — 2)-web W,;_» is holomorphic along C.
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Proof Locally, in a neighborhood of a generic point of C, we can write Wy_» = F1 K- -- X
Fa—2 and Wy = F| K F,, where each F; is a foliation leaving C invariant, and 7| and 7,
are foliations transverse to C. We have

d—2 2
KOV) = KWa-) + Y KFERW) + K(F RF;RF).
i=1 k=11<i<j<d-2

Now, K (F; KW») and K(F; K F; K F, 1;) are holomorphic along C by applying [13, Theo-
rem 1]. Hence, K (VW) is holomorphic on C if and only if K (W,;_>) is so. ]

Proof of Proposition5.1 According to Theorem 5.3, it suffices to prove that the curvature
of Leg(¢ X F) is holomorphic on Gr(¢) = §. By [13, Proposition 3.3] and the equality
T(F,s) = d — 2, near the line §, we can decompose the web LegF as LegF = W,;_» XKW,
where W, is a (d — 2)-web having s as a totally invariant curve with mult(A(W;_3), §) =
d — 3, and W is a foliation transverse to s. Thus, Leg(¢{ X F) = Wy_» X W), where
W := Legl X W is transverse to §, because s ¢ £. By [13, Proposition 2.6], K (W,;_3) is
holomorphic on §, and by Proposition 5.4, the same is true for K (Leg({ X F)). O

Proof of Proposition F The FERMAT foliation fg ~1is given in homogeneous coordinates by
the 1-form
5371 = x9N (ydz — zdy) + y? " (zdx — xdz) + 297 (xdy — ydx).
It has the following 3(d — 1) invariant lines:
x=0,y=02z=0,y=_0%y=1czx =t
where

ke{07-~-7d—3}and§=exp(%)_

Since the coordinates x, y and z play a symmetric role and since £ is not invariant by .7-'(‘)1 -1

we can assume that £ = {ax + By — z = 0} with § # 0. Then O(¢ K ]-'(‘)1_1) contains the
following homogeneous pre-foliations:

A=y —ax=0)RH" =y —px=0)RHI",

A ={x—(@+py=0}=HI".
Indeed, ¢ &fg_l is described in the affine chart z = 1 by w = (ax +fy — l)ag_l; putting
o) = (g, )2) @ = (% ;i) and @3 = (ﬂ X), we obtain that

x ’x
lim e_lyd"'z(PTw =(y— le)u)‘]i_l, lim s_ly‘H'th;w =PBx— y)u)‘li_l,
e—0 £—0
lim sflxd+2tp§m = ((a +B)y — x)wgfl.
e—0 N

The hypothesis that Leg(¢ X _7-"(‘)171) is flat implies that the webs Leg.7# (i = 1, 2, 3) are also
flat. Let us show that the flatness of Leg.7#{ and Leg.7% implies that, up to linear conjugation,

@B € Ei={0.8,0,1.0,8. €85], wheret=exp(;%).
First of all, the d-web Leg.74], resp. Leg.743, is flat if and only if (cf. proof of Lemma 4.1)

a@=2 = @24+ 1) =0, resp. (B2 = DE 2+ 1) =0,
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ie.ifand only if a € {0,¢%, &85, k =0,...,d — 3}, resp. p € {¢F, t%, k=0,...,d — 3.
If a = 0 then B # ¢¥, because otherwise £ would be invariant by fg ~1 It follows that

(@, B) e {(0, £ch), @k, ¢y, @k, &dd), &k, ), &k g, kK =0,....d - 3}.
If, fork, k' € {0, ...,d — 3},

(@.B) = ©.&h). resp. (o, B) € { 5,2, @t 5¢¥), et &) |,
resp.(a. B) = (5", ).

i i Y LA Yy ox
then by conjugating w by (x, C")’ resp. (C"’ {k/>, resp. (C"" C"/)’ we reduce ourselves to
(a,B) = (0,8), resp. (a,B) € {(1, 1), (1,8), (§,8)}, resp. (¢, B) = (1,§). Thus, up to

conjugation, (a, ) belongs to E.
Moreover, according to Example 3.23, the flatness of Leg.773 is equivalent to

0=@+B)(@+p*2—1)(@+p*? -2 -2)) = fale.P).
Since

F£00,8) =28(2d —3) £ 0, f4(1, D =429 2 - )24 3 —d+2) =0 = d e (3,4},
fa6,8) =264 + D292 424 —4) #£0,
F10LE) = (& + 1)(@ +1yd2 1)((5 + 142 _24 —2)) —0e=d=3,

we deduce that d € {3, 4} and, up to conjugation,
(o, ) e {(1, D, d, -D}ifd =3 and (,py=(1,1) ifd =4,

ie,puttingl) ={x+y—z=0}and €, ={x —y—z =0}, wehave £ € {{1,£r}ifd =3
and £ = ¢ ifd = 4.

Even in the case d = 3, we can take { = ¢, because ¢; X fg_l and ¢r X .7-"61_1
are conjugate, via ¢ = [z : y : x]. Note that £; = (s1s5253), where s = [1 : 0 : 1],
so =1[0:1:1]and s3 = [—1 : 1 : O]: the points 51 and s, are singular for ]—'gil, and
53 € Singfg ~1if and only if d is even; in particular the point s3 is singular for ]-'8 but not
for .7-'3.

Finally, a straightforward computation shows that G 72 (£1) =s54and G 73 (£1) = 55, where
s4 = [1 :1:0]is anon-radial singularity of}"g and s5 = [—1 : —1 : 1]is aradial singularity
of order 1 of ]-'3 . We can then apply Proposition 5.1 to conclude that the webs Leg(¢; X ]-'g)
and Leg(¢; X fg) are flat. m]

Proof of Proposition G The HESSE foliation .7-'13 is described in homogeneous coordinates by
the 1-form

Q‘,t, = yZ(Z)c3 - y3 — )dx + xz(Zy3 —x3= z3)dy + )cy(2z3 —x3 - y3)dz.
Its 12 invariant lines are given by
I+ Y+ DCx+ Y+ DE+Ey+ D+ Y+ +y +2)

CH+Py+ D4y +PDEx+y +DCx + Py +2) =0,
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where ¢ = exp(%’). As above, we can assume that £ = {ax +fy — z = 0} with § # 0.
Then the closure of the Aut(Pé)—orbit of ¢ X ]-'13 contains the following three homogeneous
pre-foliations:

HM={y—ax=0KH], B={y—Px=0KHj 4={ax+by=0}RHj,
where a = a + B — 1 and b = o + ¢2p — . Indeed, in the affine chart z = 1, the pre-
foliation ¢ X1 7+ is given by o = (ax + By — 1)w; putting |, = (“}1, %), Py = (%, f)

and ry = (=2 248 ) 3 straightforward computation shows that
3=\ v 0+ ) g p

P I VT A 4
lim & w=(aux —y)w,, lim & o=_Px—yow,,
Jim &y ¥ ( y)wy Jim ™"y L2 Bx—y)wy

lim e '(x +¢y + 8)71|;§‘m = —9(ax + by)wi.
e—0

Since the 5-web Leg(¢ X _7-":) is flat by hypothesis, so are the 5-webs Leg#, i = 1, 2, 3.

Now, according to Example 3.24, for any line ¢( passing through the origin, Leg(¢o X Hi)
is flat if and only if £g = {x = 0} or {9 = {y — Px = 0} with P> —D(EP3+1) =0,
ie.p e E :=1{0,ck —tk k =0, 1,2}. Therefore, the flatness of Leg.s# (resp. Leg.s%) is
equivalent to o € E (resp. B € E \ {0} because f # 0). Note that (a, ) # (=tk, —Ck/), for
otherwise ¢ would be invariant by ]-'Ij . As aresult

(@,B) € [(0, ), 0, =g, @&, &), &, =), (=5, &), kK =0,1, 2].
If, for k, k' € {0, 1, 2},

(@) € {065, 0. =t |, resp.(a B) € {5, ¢¥), @, —¢)},
resp.(a, B) = (—¢¥, ¢,

then by conjugating ® by (x, CL")’ resp. (;‘7, %), resp. (37, %), we reduce ourselves to

(0(, B) € {(Oa ]), (0» _l)}» resp. (OL, B) € {(1a ])a (15 _1)}» resp. (0(, B) = (15 _]) It follows
that, up to linear conjugation,

(a,B) € F:={0,1),(0, -1, (1, 1), (1, =D}.

Now, for (o, B) € F, Legs73 is flatif and only if («, ) = (0, 1), since putting t(a, f) = —%,
we have

0, )=0cE, 10,-)=2¢E t(,)=%¢E t(,-)=1¢E

Therefore, up to conjugation, (o, B) = (0, 1), i.e. £ = £o := {y — z = 0}, this line passes
through four singular points of FA, namely the points sy = [1 : 0: 0], s, = [1 : 1 : 1],
ss=[c:1:1]andss = [¢%:1:1].

Finally, itis easy to check that gfé (o) isequal to the dual line of the pointss = [0 : —1 : 1]
which is a radial singularity of order 2 of .7-",‘1‘ . This implies, by Proposition 5.1, that the 5-web
Leg(to X ;) is flat. o

@ Springer



Geometriae Dedicata (2025) 219:10 Page350f39 10

6 Pre-foliations of type (1, 3) whose associated foliation has only
non-degenerate singularities

In this section, we prove Theorem H stated in the Introduction. To do this, we need two
preliminary results, the first of which holds in any degree.

Let us first recall that in §5 we have proved Propositions F and G by reducing to the
homogeneous case; in fact this argument is implicitly based on the following proposition.

Proposition 6.1 Let .# = ¢ X F be a pre-foliation of co-degree 1 and degree d > 2 on
IP’%. Assume that the foliation F has an invariant line D and that all its singularities on D

are non-degenerate. There is a homogeneous pre-foliation 7 = £y X 'H of co-degree 1 and
degree d on IP% such that:

(i) # € O(F) and H € O(F);
(ii) if £ = D (resp. £ # D), then £y = L (resp. £y # Lo);
(iii) D is invariant by H;
(iv) SingH N D = SingF N D;
(v) Vs € SingHN D, w(H,s) =1 and CS(H, D,s) = CS(F, D, s).

If, moreover, Leg.Z (resp. LegF) is flat, then Leg.7 (resp. LegH) is also flat.

This proposition is an analogue for co-degree one pre-foliations of Proposition 6.4 of [4]
on foliations of IP%.

Proof Choose a homogeneous coordinate system [x : y : z] € IP’?C such that D = Ly, =
(z = 0). Since D is F-invariant, F is defined in the affine chart z = 1 by a I-form w of type

d—1
o =Y (Ai(x, y)dx + B (x, y)dy),
i=0
where A;, B; are homogeneous polynomials of degree i. According to [4, Proposition 6.4],
since all the singularities of F on D are non-degenerate, the 1-form wy_; = Agz_1(x, y)dx +
Bg—1(x, y)dy defines a homogeneous foliation  of degree d — 1 on P% belonging to O(F)
and satisfying the stated properties (iii), (iv) and (v).

Now, write £ = {ox + By + Y z = 0}; in homogeneous coordinates, .#, resp. H, is given
by

d—1

Qi1 = (@x + By +v2) 3 277 (A, 1) (zdx = xd2) + Bi(x, »)(zdy — ydo) ),
i=0

resp.Qq = Ag—1(x, y)(zdx — xdz) + Bg—1(x, y)(zdy — ydz).
Putting ¢ = ¢ = [% : £ : z], we see that if (&, B) = (0, 0), resp. (at, B) # (0, 0), then

lim ey ¢*Qui1 = 24, resp. lin}J T *Qui1 = (ax + By)S2q.
E—>

e—0

It follows that the closure of the Aut (]P’%)-orbit of .% contains the homogeneous pre-foliation
H =Ly X H, where £y = Lo if £ = D and g = {oox + By =0} # Loo if £ # D. O

The following technical lemma is an analogue for pre-foliations of type (1,3) of
Lemma 6.7 of [4] on foliations of degree 3. It plays a key role in the proof of Theorem H.
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Lemma 6.2 Let.# = ¢ X F be a pre-foliation of co-degree 1 and degree 3 on Pé. Assume
that the 3-web Leg.# is flat and that the foliation F has a non-degenerate singularity m
satistying BB(F, m) # 4. Then, through the point m pass exactly two F-invariant lines.

Proof The hypotheses (F, m) = 1 and BB(F, m) # 4 ensure the existence of an affine
chart (x, y) of ]P% in which m = (0,0) and F is defined by a 1-form wq of type wg =
wp,1 + w2 + wg 3, where

2 2
0,1 = rydx + pxdy, w2 = (Z aixz_iyi) dx + (Z bixz_iyi) dy,
i=0

i=0
2 . .
wo3 = | Y cix? ™y | (xdy — ydx),
i=0

with hpu(n + ) # 0.

The only lines passing through m and which can be invariant by F are (x = 0) and (y = 0).
Indeed, denote by R = x % +y % the radial vector field centered at m; if L = (ux +vy = 0)
is F-invariant, then ux + vy must divide the tangent cone Cy; := w,1(R) = (. + w)xy,
sothatu =0orv =0.

We will show that indeed (x = 0) and (y = 0) are invariant by F, which will establish
the lemma. We have to prove that ag = by = 0, since the invariance by F of (x = 0), resp.
(y = 0), is equivalent to the vanishing of b, resp. ap.

If £ = {ax 4+ B y + VY = 0} then, in the affine chart (p, ¢) of IF% corresponding to the line
{y = px — g} C P%4, the 3-web Leg.Z is described by the symmetric 3-form

&= ((v=PBq)dp+ (@+B p)dg)wp,
where

dg = p pdpdq + (ag + bop + coq)dg® + (x dp+(a; +bip+ 61q)dq)(pdq —qdp)
2
+ (az +byp+ czq)(pdq - qdp) .

Assume by contradiction that ap # 0. Consider the family of automorphisms ¢ = ¢, =
(ape p, ape?q). We see that if Y # 0, resp. Y = 0and a # 0, resp. Y = a = 0, then

6,—1 —4

lim s_sy_la()_4<P*(I) =@M, resp. lir%a_ a” ©*® = 9oM,
£—

a
e—0 0

resp. lim e~/ ay S 9% % = 637,
e—0
where
61 =dp, 62=dq, 63=pdg—qdp, N=—rqgdp®+ (n+wpdpdg +dg’.

Fori = 1,2, 3, put Wéi) = Fi X W,, where W, (resp. F;) denotes the 2-web (resp. the
foliation) defined by M (resp. by ;). It follows that if ¥ % 0, resp. ¥ = 0 and o # 0, resp.
Y = a = 0, then the closure of the Aut(]P’?C)-orbit of Leg.# contains the 3-web wib, resp.
sz) , resp. W§3) . Now, since Leg.7 is flat by hypothesis, every 3-web belonging to O(Leg.%)
is also flat. Therefore, to obtain a contradiction, it suffices to show that for everyi = 1, 2, 3,
Wé’) is not flat. Since A(M) = f(p,q) := 4ng + O + M)zpz, it suffices again to show
that for every i = 1,2, 3, the curvature of W3(l) is not holomorphic along the component
C={f(p,q) =0} C AOW,), which is a parabola, because \(\ + ) # 0.
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First of all, let us note that C is not invariant by W, since putting Ng = (A + ) pdp+2dg,
we have

2
n
M|, = (%’) and NoAdf =—4u(n+ p)pdp Adg # 0.
Let us consider the case where i € {1, 2}. Since
o A6l =—2dpAdg £0 and N A6 = 0.+ wpdp Adg #0

we have C ¢ Tang(W,, F;). Therefore, according to [13, Theorem 1] (¢f. [2, Theorem 1.1]),
the curvature K (Wé’)) is holomorphic on C if and only if C is invariant by F;, which is
impossible, because each F; is a pencil of lines and hence cannot admit a parabola as an
invariant curve.

Let us now examine the case where i = 3. In this case C C Tang(W», F3) if and only if
A = W, because

1
”0A63‘6=X(X—M)(MLM)pzdpAdq504:>x:u.

If X\ # W, then, as above, we can apply Theorem 1 of [13] and assert that K (W3(3) ) cannot
be holomorphic on C.

We therefore assume that ). = w and prove that K (W§3)) # 0. The pull-back of W3(3)

by the rational map V(p, q) = (p, u(g> — p*)) writes as \b*WéS) = AVK }"3(2) = FD,
where

Fi (07 +¢Mdp —2pqdg =0, 7 : (p+q)dp — 2qdg =0,
3
.7-'3( ). (p—¢q)dp —2gdg = 0.
Using formula (1.1), a direct computation leads to

dp 4dg d(p?—q42
_p2p+7q+(p q°)

3)
N Ws™) =
3 q p2 _ q2

so that

2
mww%zwwmﬁh—ﬁwAw¢a

hence YK W) = K (W*W5Y) # 0 and therefore K (W) # 0.

We have thus shown that ap = 0, which means that the line (y = 0) is invariant by F.
Exchanging the roles of the coordinates x and y, the same argument shows that b, = 0, i.e.
that the line (x = 0) is also invariant by F. O

Before starting the proof of Theorem H, let us recall (c¢f. [8]) that if F is a foliation of
degree d on P% then

Z W(F, s)=d>+d+1 and Z BB(F,s) = (d + 2)°. (6.1)
seSing F seSing F

Proof of Theorem H Write SingF = X! U X2, where

$! = (s € SingF : BB(F, 5) = 4} and »? = SingF \ =\
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Fori = 1,2, put x; = # X', By hypothesis, we have deg F = 2 and, for any s € SingF,
w(F,s) = 1. Formulas (6.1) then give

#SingF =k +k2 =7 and 4k1 + Z BB(F,s) = 16. (6.2)

sex?

It follows that X2 is non-empty. Let m be a point of £2; by Lemma 6.2 through the point
m pass exactly two F-invariant lines D,(n1 ) and D,(,f) Then, for i = 1, 2, Proposition 6.1
ensures the existence of a homogeneous pre-foliation %;,E” = K(l) X H(l) of type (1, 3) on
IP’Z belonging to O(.#) and such that the line D(’) is H{ -invariant. Since Leg.7 is flat by
hypothesis, so are Legjf,,gl) and Legjf,,gz). Therefore, 7 (i = 1,2) is linearly conjugate
to one of the eight models of Corollary 4.5. Fori = 1, 2, Proposition 6.1 also ensures that

(@) if € # D, then €, # Loos
(b) SingF N Dy, = SingHy, N Dyy: . ‘
(©) Vs e SingH N DY, w(H, s)=1 and CSHY, DY, s) = CS(F, D, s).

Since CS(F, D(l) m)CS(F, D,(nz), m) = 1, we have
cS(H®P, DV, m)CSHP, DP m) = 1. (6.3)

m

Let us first assume that £ # D,(,';) fori = 1, 2; this is obviously the case if ¢ is not invariant by
F. Then, by (a), we have E,(,i) # Lo fori = 1, 2. Therefore, each of the jf(l) is conjugate to
one of the five pre-foliations Jf 3 j=2,...,6, so that each of the H,(,? is conjugate to one

of the three foliations H?2, HZ(O 0), Hz( 2) (Corollary 4.5). Consulting Table 1 and using
equality (6.3) as well as relatlons (6) and (c), we see that

cS(HP, DV my = cSHP, D2 my = 1,4 n Dy =#(=! n @) =2,
£20 00 = 520 0@ — m). (6.4)

Let us now assume that the line € is equal to one of the lines Df,';), say £ = D,Sf ) Let us show
that equalities (6.4) still hold. Since £ # D,(n1 ), H D is conjugate to one of the foliations Hl,
H3(0, 0), H3(—2). Moreover £ N DY = {m};indeed, if 2N D}, contained another point
m’ # m, we would have £ # D(') fori = 1,2, so that {m’} = 2N D(') 220D >
{m, m’}, which is impossible. From Table 1, we deduce that

CS(HP, DV, m) = CS(HP, ¢,m) = —1 and #='nbpP)=2

m >’

hence
CS(F, DV, m) = CS(F, £, m) = —

Since these equalities are valid for any choice of m € £? N ¢ and since every line of IP’%:
cannot contain more than deg F + 1 = 3 singular points of F, the CAMACHO-SAD formula
(see [10]) ZseSing]—'ﬂl CS(F, £,s) = 1 implies that

#Z'ne =2 and 22N = {m).

Equalities (6.4) are thus established in all cases. It follows in particular that BB(F, m) = 0.
The pointm € X2 being arbitrary, 2 consists of s € SingF such that BB(F, s) = 0. System
(6.2) then rewrites as k1 + k> = 7 and 4kx; = 16, whose unique solution is (k1, x2) = (4, 3),
thatis SingF = X!UX2, #3! =4 and #X2 = 3.Since 22N (DY UDY) = [m}, F
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has 3 - 2 = 6 invariant lines, which means that F is reduced convex. It then follows from the
classification of convex foliations of degree two (cf. [11, Proposition 7.4] or [5, Theorem A])
that F is linearly conjugate to the FERMAT foliation ]-'g . We conclude by noting that if
the line ¢ is not invariant by F, the flatness of Leg.# and Proposition F imply that £ must
join two non-radial singularities of F. O
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