
Available online at www.sciencedirect.com
Applied Mathematics and Computation 196 (2008) 318–332

www.elsevier.com/locate/amc
3D object indexing and recognition
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Abstract

In this paper, we address the problem of 3D object recognition from a single 2D image using models database. We pro-
pose a method based on geometric quasi-invariant features of the 2D images. We index the 2D images in a model base
using a modified quad-tree technique that enhance the research process. The final vote that matches the 2D object image
to the 3D object of the database is solved by a vector approximation file which overcomes the difficulties of high dimen-
sionality by following not the data partitioning approach of conventional index methods, but rather as filter based
approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

An easy way to recognize an object in an image is to find the more reassembling object in database models.
This problem can be considered as an indexing problem which consists in calculating an index key from a set
of image features and comparing these keys to find similar images. The keys comparison gives a global sim-
ilarity between images and the rate of matching images. Several image features can compose image index. We
are interested in geometric ones.

It exists a large number of contributions to the indexing problem [1–4] with geometric features. Segments
are particularly interesting features because of their robustness to noise and their connectedness constraint
that reduces the possibility of false matches, since it is based on a topological reality in the image. They also
have the properties to vary slightly with a small change in the viewpoint, and to be invariant under similarity
transform of the image [13–22].

Since these features are used to match objects, we needed to use geometric invariant features. We consid-
ered therefore as 2D image features the intersecting segments and transformed them to couples of quasi-invar-
iants features (q,h) [11]. The set of (q,h) couples find in the image are to be the object indexes.
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Our aim is to develop a complete recognition system based on matching geometric quasi-invariant indexes
[8]. This induces that recognition and indexing is restricted to 2D–2D matching and recognition. Instead of
directly interpreting 3D object information, we stored several 2D features (quasi-invariant) of a 3D object,
and perform the object retrieval in the 2D indexes representation space [7]. Once the object has been identified,
it is easy to backtrack the 3D information. To enhance the search process, the quad-tree algorithm [5] is
adopted to code these indexes instead of the hashing table.

When a request image is to be compared to the images of the image base, this is done by comparing the
request object indexes to those in the geometric model base. The method we propose begins by extracting
the request image geometric features, and build the object indexes (quasi-invariants). We then search in the
geometric model base the nearest indexes. A final vote step will identify the best matching object from the geo-
metric model base (Fig. 1). This last step is performed by a vector approximation file [6] which overcomes the
difficulties of high dimensionality by following not the data partitioning approaches of conventional index
methods, but rather act as a filter based approach.
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2. Indexes analysis

2.1. Quasi-invariants and similarity

Intersecting segments are extracted for each image of the image base by a derivative operator. Intersecting
segments are the geometric configuration used to calculate the quasi-invariants parameters for which a set of
similarities are defined.

2.1.1. Geometric quasi-invariants

The quasi-invariants (q,h) are defined as: the angle h between the intersecting segments, and the segments
length ratio q [9]:
q ¼ a0a1
��!
a0a2
��! h ¼ arccos

a0a1
��! � a0a2

��!
ka0a1
��!k � ka0a2

��!k :

The (q,h) couples find in each image are the image indices (Fig. 2). They vary slightly with a small change in
the viewpoint, and are invariant under similarity transform of the image [12].

2.1.2. Similarity

The similarity ðk; a; T
!Þ is composed by a homothety k, rotation a and translation T

!
. When considering two

geometric configurations (Fig. 3), the similarity is expressed [10]:
k ¼ 1

2

l01
l1

þ l02
l2

� �
;

a ¼ jh00 � h0j þ
1

2
ðh0 � hÞ;

T ¼
xb � kðxa cos a� ya sin aÞ
yb � kðxa sin aþ ya cos aÞ

� �
:

2.2. Geometric indices composition

The indices used to build the geometric model base are composed by a set of geometric configurations
parameters: quasi-invariant (q,h), intersecting segments length and the image identifier (Fig. 4).
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The indices are built in a way that two adjacent segments can not have the same indices. They express the
similarity between two segments configurations.

2.3. Geometric indexes composition

In order to determine the indexing structure of such indices, we first analyzed the distribution of major indi-
ces component (h,q).

2.3.1. (h,q) distribution

Fig. 5 shows the h distribution. The h value equal to p/2 is a value frequently encountered in the geometric
indices.

Fig. 6 shows a non-uniform distribution of the indices number in regard to the component q.
To perform a better indexing, the indices components have to follow a uniform distribution [4]. Therefore,

a logarithmic function is considered ln(q). Fig. 7 shows that values beyond the bound [�4,+4] are not to be
considered because the indices are not relevant.

2.3.2. Indexes

The geometric indices are composed as follows, and the geometric model base indexes are ln(q) and h.

For each image in the image base, sets if geometric indices are calculated to build the geometric model base

indexes.
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3. Geometric models database

Building the geometric model base is an indexing process which is an off line process. On the other hand, the
retrieval process is an on line process which good performances is much more of our concern. Therefore, the
geometric model base is designed to fulfill the retrieval process needs: velocity and accuracy.

For efficient query processing in large data sets, it is necessary to build an index structure that reduces the size
of the retrieved set needed to answer a query. The general approach is to prune the search space and eliminate
irrelevant data objects without accessing the corresponding features subspace. To achieve that, the data set is
organized such that only a partial representation (e.g. 2 out of d dimensions) of each object is examined. This
had lead to several index structures proposed in the literature. Examples include Kdb-tree [29,30], hb-tree [28],
R-tree [26], R*-tree [23], SS-tree [30], Tv-tree [27], X-tree [24], Pyramid Technique [5], Hybrid technique [25]. Var-
ious algorithms for similarity searching have been developed in conjunction with these indexing mechanisms.

In our case, the geometric features lead to a two-dimensional indexes space. Therefore, we have chosen an
adapted quad-tree indexing structure.

3.1. Indexes quad-tree structure

The quad-tree indexing consists in splitting the index bidimensional space in equal squares. Each tree level
corresponds to a split part. The tree nodes correspond to index space split point. The indexes space can be split
in sub spaces of different sizes which is adapted to non-uniform data (Fig. 8).
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S. Aouat et al. / Applied Mathematics and Computation 196 (2008) 318–332 323
To improve the retrieval process, we create four structures for indexes storage:

• A structure composed by the quad-tree leaves.
• A structure composed by the quad-tree nodes.
• A structure composed by the objects models.
• A structure composed by the different object aspects.
3.2. Building geometric model base

The geometric model base is meant to represent polyhedric objects. For each object, several images of dif-
ferent points of view are considered. For each image, we extract points and segments that provide the adjacent
segment configurations needed to calculate the quasi-invariants and therefore, the geometric indices, for each
of which the indexes are calculated and added to the geometric model base structure.

The indices are stored in two structures. The indexes are in the quad-tree structure (primary memory) and
the indices features in a secondary memory. The quad-tree nodes contain only the indexes, which make the
model base access for retrieval process faster.
Fig. 9. Split processes.
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We wanted to fill the quad-tree structure in a way that avoids empty leaves. It is well known that for each
leave split, when adding data in the structure, the splitting process create four new leaves from the initial one,
leading to bad data distribution in the leaves. This misdistribution will again lead to another split in the new
leaves with dense data. To avoid such situation, the split process has to create new leaves with equivalent data
distribution. Therefore, we propose, instead of the conventional split in four processes to a gravity center dri-
ven split process (Fig. 9).

Fig. 10 shows that the center driven split process, regardless to the indices number, improve the quad-tree
composition and the ‘‘partitions’’ are balanced. This improves the retrieval process time.

4. Retrieval process

The retrieval process is a two step process. In the first one, the 3D object image is processed in the same
way done for the images of the image base. The request image indices are then compared to the ones in
the geometrical model base to find the 3D object they refer to. The second step is then a match step. The
matched indices from the geometric model base lead to the images of 3D objects that can be represented in
the request image.

To match the request image indices with those in the geometric model base, we calculate similarities of each
request indices with its neighbors in the indices space.

4.1. Comparing indices – similarity estimation

The similarity is calculated for each request indices neighbors. To do so, a recursive search process in the
tree structure is needed. The usual search zone is elliptical. When going down in the tree, we look for the
square ‘‘partition’’ included in the ellipse (Fig. 11). In this ‘‘partition’’ lie the most similar indices to the request
indices. To improve the request access time, we used, instead of the elliptic zone, a square zone.

At the end of this search process, we obtain a list of possible matches between request image indices and
databases indices. The corresponding similarities forms clusters in the four-dimensional representation space.
By analyzing these clusters, we find the best request match by a vote step process.

4.2. Vote and VA-file

The vote step is used to eliminate all not matching objects of the geometric model base. The vote is per-
formed in the similarity representation space. Due to quasi-invariants properties, dense clusters in represen-
tation space represent the good matches. The best match is the one with the higher density cluster.

Finding the dense clusters is a search for neighboring data. Conventional approach to nearest-neighbor
search uses some form of multidimensional access method (such as quad-tree). In these methods work the data
space according is used for search queries.

Unfortunately, while these methods perform well for a low dimensionality, performance degrades as dimen-
sionality increases. To overcome this well known ‘‘dimensional curse’’, we used to analyze the clusters density,
a vector approximation file descriptor (VA-file) [6]. The VA-file is an array of compact geometric approxima-
Fig. 11. Square and elliptic research zones.
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tions to data points. Each approximation determines a lower and an upper bound on the distance between its
data point and the query. These bounds are sufficient to filter most of the vectors from the search.

Therefore, the VA-file is composed of two sets of data: one for indexes and one for their approximations.
The last one is kept in the primary memory to keep a quick access.

While creating the index (Section 2), the VA-file geometric approximation split in 2 each data space dimen-
sion di (this is coded on di bits). In the same way, the d space dimension are split in 2b hypercubes (b =

P
di).

The indexes are then sequentially approximate by the VA-file approach. The index approximation is deter-
mined by the bounds it lies between. The approximation corresponds to number of the interval it lies in.
To avoid poor or empty partitions, intervals with less than one index are ignored (Fig. 12).

During the retrieval process, the request image indexes are approximate by the same process. The VA-file
answering request seeks then for the closest hypercubes to the request. A distance is measured in between
hypercubes, and those for which the distance is bigger then a predefined e value are rejected (Fig. 13). This
step is more like a filter that eliminates all non-suitable hypercubes. This improves the request process regard-
ing to the sequential one used in tree research.

Our vote process is a three steps process:

• Initialization: for each request image, an empty hypercube counters list, labeled with hypercube numbers, is
created.

• For each similarity, we determine the interval number it lies in (ième dimension that contain its j ème com-
ponent). This gives us the hypercube number that contains these similarity parameters.

• If the hypercube number already appears in the initial list, its counter is incremented. Other wise, the hyper-
cube number is added to the list and it counter set to 1.

When all the similarities have been treated, the matched indexes refer the more resembling 3D objects in the
geometric model base. The corresponding images (of the image base) are selected and sort out by the vote
number.
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5. Evaluation

5.1. Image base

We considered 28 polyhydric objects and several images (856 images) of each object taken under different
points of view (average object rotation is 20�). Identical views have been eliminated of the image base to avoid
redundancy (Fig. 14). We then extract the geometric features: the intersecting segments.

5.2. Geometric model base

When indexing the geometric model base, several tests have been conducted. In particular, we were con-
cerned by the leaves composition.

5.2.1. Leaf fullness

We conducted this test first on the hole base (49764 indexes), and then on half the base (24380 indexes), and
finally on the third of the base (16652 indexes). Leaves composed by more than 400 indexes present the best
fullness rate (Fig. 15).
Fig. 14. Objects used in experimentation.
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Fig. 15. Leaf fullness.
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5.2.2. Leaf size versus request time

We tested the request response (Fig. 16) by considering a request composed of 100 images (long request
index).

In our experiment, the number of indexes in a leaf (size of a leaf) which gives the worst time request is
around 100. On the other hand, over 400 indexes, the request time is quite equal. Therefore, we used leaves
of 400 indexes.

5.3. Indexes similarity analysis

We analyze the similarities so to determine the similarities values of interest regarding the request indexes
(Fig. 17). The index is composed by the quasi-invariant: ln(q) and h.
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Fig. 16. Time request.
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The tests were performed on 24 images couple of the same object. For each image couple, we analyze iden-
tical geometric configurations and evaluate the difference in between the quasi-invariants we extracted from
90% of these couples show (Fig. 16) a quasi-invariant distance inferior to: ln(q) = 0.23; h = 18.61�.

Half these values are the threshold we consider in accepting or not a quasi-invariant as similar to the
request process one: (ln(q),h)( (0.14, 11.2).

5.4. VA-file parameters

In the VA-file process, the similarities representation space is split into 2b hypercubes, and each dimension
is divides in 2bi intervals, with the condition:
b ¼
X4

i¼1

bi:
The VA-file parameters are the hypercubes bounds and the intervals number bi. They are defined in regard
to the similarities variations. In our case, the similarities are homothety k, rotation a, and translation over X-
and Y-axis.

The homothety distribution (Fig. 18) resembles the length ratio q distribution (non-uniform distribution)
(see Figs. 19–21). In the same way, we use a logarithmic function to ensure a uniform distribution (Fig. 22).

The interval numbers for each dimension is determined by the existing similarities. We use image couples,
and analyze identical geometric configurations. We evaluate the difference in between each similarity. The
average similarity distance is then evaluate and leads to these intervals numbers:
bk ¼ 6; ba ¼ 6; bx ¼ 8; by ¼ 8:
Theoretically [3], the wrong similarities distribution can be approximate by a uniform distribution. In real
cases, this is not verified. We had then to split the similarities representation space in a way we can get close to
the uniform distribution (needed by the vote).

We build the interval of parameters variation in a two step process. First, each dimension is split in 2bi equal
intervals. In second, each dimension is split in 2bi intervals with the same similarities number. This is per-
formed by classifying, in a increasing order, each parameter of the similarities, and then by splitting each
parameter variation interval in 2bi intervals, with the same numbers of similarities each.

5.5. Results

The request image has an average of 55 indexes. The response of the request from the geometric model base
gives an average of 241 similarities for each request index.
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We evaluate the retrieval rate with two types of images: images of object of the image base, and image of
unknown object.

For each image, we used two space representation split methods: one that guaranty the uniform distribu-
tion (uniformity split), and one that creates hypercubes of same volume (equal interval split).
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5.5.1. Matching rates for an image in the image base

For the two split approaches, the matching rates are equivalent. The rate is around 98%. The few fail cases
are for ambiguous images of objects due the point of view they were looked through.

5.5.2. Matching rates for an unknown request image

In the uniformity split case, the matching rate is 63%. In the fail case, the request image is matched with the
right object with 58% vote rate and with wrong objects with 22% vote rate.

In the equal interval split case, the matching rate is 69%. In the fail case, the request image is matched with
the right object with 56% vote rate and with wrong objects with 37% vote rate.

The two split procedure give quite similar results. Furthermore, the uniformity split method did not
improve the matching rate but made request time longer.

5.5.3. Request time

The representation space equal split shows good matching rate and request time. More than 40% of the
request images have a request time lower then the average request time for the image issued from the image
base. Most of the request time (94%) is for the vote process step (see Fig. 23).

In the case of representation space uniform split, the request time increases of 40%.

5.5.4. Test image

We show below a 3D object request image (Fig. 24) and the best matched images in the image database
(Fig. 25). The object, a disk, is well identified even if two different objects are looked similar. This vote rate
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Fig. 23. Image distribution.
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Fig. 25. Best matched images.
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is due to a non-complete description of the object. The quasi-invariant features used to describe and identify
objects from images needs do not provide a unique description. We propose in a future work a new geometric
description that insures uniqueness of the description.

6. Conclusion

We have presented a method to index and efficiently retrieve an object in the presence of a geometric model
base. We developed a method for coding the indexes and their similarities so to improve the request time. We
tested our approach with images of polyhydric objects taken with different points of view. The improving in
the time request and matching rate shows the efficiency of the method proposed.

The indexes used the geometric quasi-invariants features. These features can be extracted from several
images regardless to the way they have been taken and without any information on the point’s view (no cal-
ibration parameters are needed). Indexes can in the future be a combination of geometric and photometric
features. This combination will be used during the vote process to reject indexes which geometric similarities
that leads to false matching.
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