USTHB - Faculté d'Informatique

Master 2 "Ingénierie du Logiciel" 2022/2023

Module Représentation des Connaissances

Corrigé du TD 1 : Logique des Propositions

Exercice 3:

Montrez que pour toute formule p, $(f \supset P)$ est un théorème.

Solution:

Pour toute formule p, $(f \supset P)$ est un théorème. En voici une preuve :

 $X[1] : (a \supset (b \supset a)) : axiome (A1)$

 $X[2]: (f \supset ((p \supset f) \supset f)): X[2]$ appartient à R1([X1]). On l'obtient avec la substitution remplaçant toutes les occurrences du symbole non logique a par la formule f et les occurrences du symbole non logique b par la formule $(p \supset f)$

 $X[3] : (((a \supset f) \supset f) \supset a) : axiome (A3)$

 $X[4]: (((p \supset f) \supset f) \supset p): X[4]$ appartient à R1(X[3]). On l'obtient avec la substituion remplaçant toutes les occurrences du symbole non logique a par la formule p.

 $X[5]: (f \supset P): X[5]$ est l'unique formule de R3(X[2], X[4]).

La séquence (X[1], X[2],..., X[5]) est la preuve recherchée.

(R3) : R3 est une règle d'inférence dérivée qui correspond à la transitivité de l'implication :

Si X a la forme $(p \supset q)$

et Y a la forme $(q \supset r)$

alors R3(X,Y) est l'ensemble contenant l'unique formule $(p \supset r)$.

Exercice 4:

Base de connaissances BC construite à partir de quatre propositions atomiques :

- P: « Pierre vient ».
- J: « Jean vient ».
- C: «On joue aux cartes ».
- D: «Il y a dispute ».

Formule traduisant la connaissance « si pierre vient, on joue aux cartes » : $(P \supset C)$.

Formule traduisant la connaissance « Si Pierre et Jean viennent, il y a des disputes » : $(P \land J \supset D)$.

Formule traduisant la connaissance « Si on ne joue pas aux cartes, il n'y a pas de disputes » : $(\neg C \supset \neg D)$.

Formule traduisant la connaissance « Pierre ne vient pas » : $\neg P$.

Ainsi donc, BC = {
$$P \supset C$$
, $P \land J \supset D$, $\neg C \supset \neg D$, $\neg P$ }.

Démontrer qu'il n'y aura pas de dispute, revient à démontrer que $\neg D$ est une conséquence logique de la base de connaissances BC, c'est-à-dire, que tous les modèles de BC satisfont $\neg D$.

L'interprétation (P,J,D,C)=(faux,vrai,vrai,vrai) est un modèle de BC qui satisfait D, qui ne satisfait donc pas ¬D. Par conséquent, on ne peut pas garantir qu'il n'y aura pas de dispute : ¬D n'est pas une conséquence logique de la base de connaissances BC.