Exercice	1											1	1	1		:
LYGICICE						•	٠	•	٠	•	٠	•/		1	•	,

A] Pour chacun des cas suivants, on désire choisir le fenêtrage adéquat permettant d'analyser le contenu fréquentiel (fe=1,N=20):

1. $x(n)=2 \exp(2\pi i f_0 n) + \exp(2\pi i f_1 n) f_0=0.3 f_1=0.36$

Fenêtre: Cechangulaire

Justification: /f1-fo/ > LAF

2. $x(n) = \exp(2\pi i f_0 n) + \exp(2\pi i f_1 n) f_0 = 0.3 f_1 = 0.46$

= fe/N= 0.05

Fenêtre: Blackman

Justification: $\int f_2 f_0 / y = \frac{3}{2} f_0 / w = 0.15$ 3. $x(n)=2 \exp(2\pi j f_0 n) +0.2 \exp(2\pi j f_1 n) f_0=0.3 f_1=0.42$ Fenêtre: $\frac{1}{2} f_0 n = 0.42$

Fenêtre: Hamming

Justification: $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ Ham $\frac{1}{3}$ $\frac{1}{3}$ On désire choisir, dans chacun des cas suivants, la meilleure approche de synthèse de filtres numériques RII

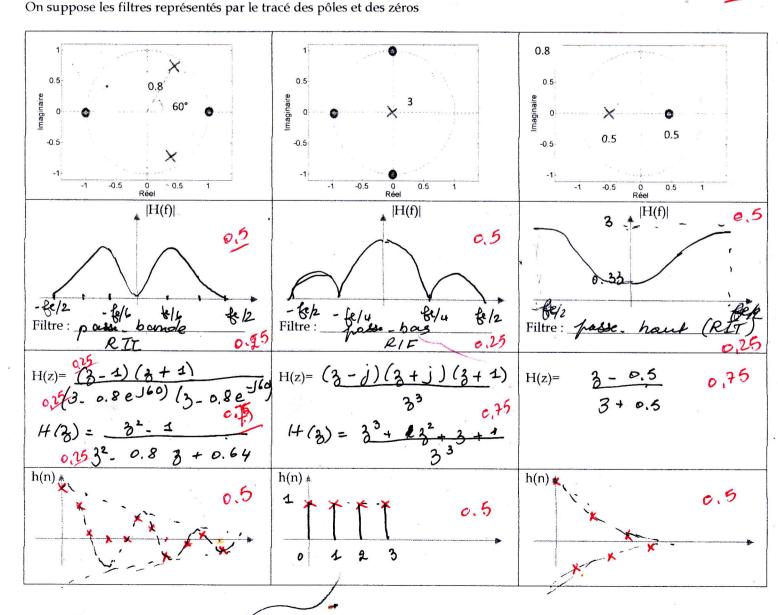
1. Filtre passe-haut (fc=200Hz, fe=1kHz), approche: Tranform alon Bitineaire

Justification: passe hout to Invariance impulsion hell, poles zeros of

2. Filtre rejecteur (fc=400Hz, fe=1kHz), approche: poles et géros

Justification: N'bre de coeff = 5 / autres méthodes + pas d'oscillations

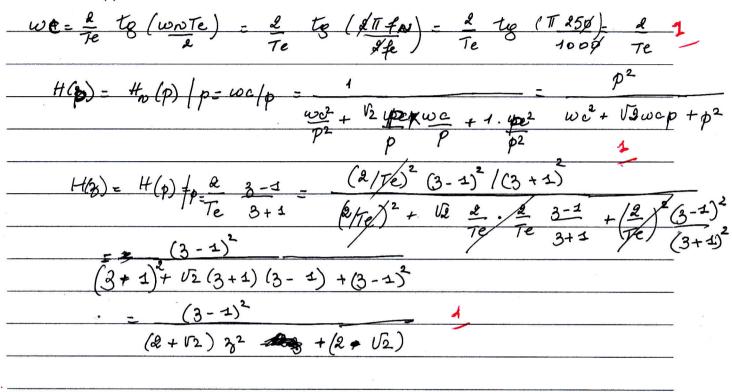
3. Filtre passe-bas (fc=450Hz, fe=1kHz), approche: In variana Impelsion velle



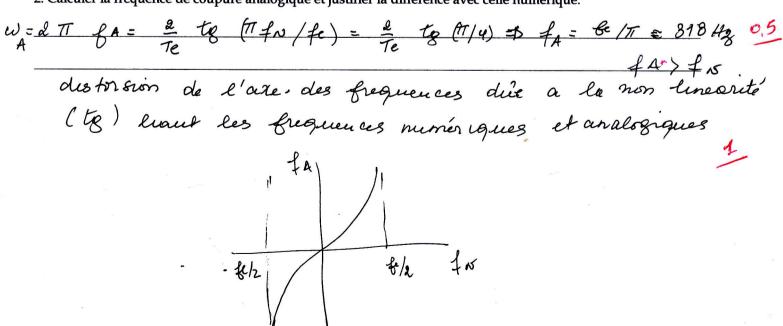
En employant un filtre de Butterworth passe-bas de second ordre, concevoir un filtre numérique correspondant passe-haut en utilisant la transformation bilinéaire. La fréquence de coupure désirée est f_c =250 Hz et la fréquence d'échantillonnage f_c vaut 1kHz.

$$H_N(p) = \frac{1}{p^2 + \sqrt{2} p + 1}$$

1. Déterminer H(z)



2. Calculer la fréquence de coupure analogique et justifier la différence avec celle numérique.



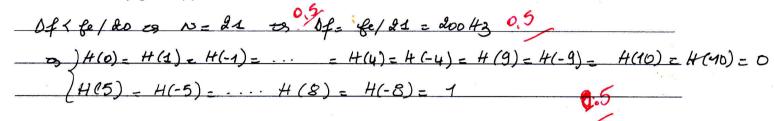
Exercice 4:/5

On suppose le filtre h(n) dont le module du spectre H(f) est donné ci-dessous :



On veut déterminer le filtre numérique h(n) équivalent par la méthode de l'échantillonnage fréquentiel. Le filtre doit répondre aux spécifications suivantes $f_{c1}=f_e/5$, $f_{c2}=2$ f_{c1} et une largeur de transition $\Delta f < f_e/20$. Prendre $f_e=4,2$ Khz

1. Déterminer N, Δf puis H(k) et donner son tracé



2. Déterminer h(n)

$$\frac{h(n) = \frac{1}{N} \left(H(0) + 2 \frac{1}{N} \cos \left(\frac{2\pi n e}{N} \right) = \frac{1}{21} \left[\frac{1}{21} \cos \frac{10\pi n}{21} + \frac{1}{21} \cos \frac{12\pi n}{21} + \frac{1}{200} \cos \frac{14\pi n}{21} + \frac{1}{200} \cos \frac{16\pi n}{21} \right]}{21}$$

3. Si on utilise la méthode des fenêtres avec une atténuation en bande atténuée Aa>40 db et une zone de transition de $\Delta f=fe/7$ donner l'expression de h(n) exacte (avec application numérique)

Fenche Hamming (Aa:41) as
$$20f/g = 60/a$$
 $N = 21.7 = N = 23$

$$\frac{6c_{4}n - 26c_{4}/f_{6}}{6c_{4}n - 26c_{4}/f_{6}} = \frac{2c_{4}}{6c_{4}n - 26c_{4}/f_{6}} = 0.8$$

$$\frac{6c_{4}n - 26c_{4}/f_{6}}{6c_{4}n - 26c_{4}/f_{6}} = \frac{2c_{4}}{6c_{4}n - 26c_{4}/f_{6}} = 0.8$$

$$\frac{6c_{4}n - 26c_{4}/f_{6}}{6c_{4}n - 26c_{4}/f_{6}} = \frac{2c_{4}}{6c_{4}n - 26c_{4}/f_{6}} = 0.8$$

$$\frac{6c_{4}n - 26c_{4}/f_{6}}{6c_{4}n - 26c_{4}/f_{6}} = 0.8$$

$$\frac{6c_{4}n - 26c_{4}/f_{6}}{6c_{4}/f_{6}} = 0.8$$

$$\frac{6c_{4}n - 26c_{4}/f_{$$

4. Calculer h(0) dans chacun des 2 cas owauf trauslation

$$h(0) = \frac{1}{2} \frac{1}{2120.38} h'(0) = h(0) \cdot \omega(0) = 0.4$$
 0.5 Ech. Freq Fen