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Preface 
This book concerns digital communication. Specifically, we treat the transport of bit 

streams from one geographical location to another over various physical media, such as wire 
pairs, coaxial cable, optical fiber, and radio. We also treat multiple-access channels, where 
there are potentially multiple transmitters and receivers sharing a common medium. 

Ten years have elapsed since the Second Edition, and there have been remarkable 
advances in wireless communication, including cellular telephony and wireless local-area 
networks. This Third Edition expands treatment of communication theories underlying 
wireless, and especially advanced techniques involving multiple antennas, which tum the 
traditional single-input single-output channel into a multiple-input multiple-output (MIMO) 
channel. This is more than a trivial advance, as it stimulates many advanced techniques such as 
adaptive antennas and coding techniques that take advantage of space as well as time. This is 
reflected in the addition of two new chapters, one on the theory of MIMO channels, and the 
other on diversity techniques for mitigating fading. The field of error-control coding has 
similarly undergone tremendous changes in the past decade, brought on by the invention of 
turbo codes in 1993 and the subsequent rediscovery of Gallager's low-density parity-check 
codes. Our treatment of error-control coding has been rewritten to reflect the current state of 
the art. Other materials have been reorganized and reworked, and three chapters from the 
previous edition have been moved to the book's Web site to make room. For this third edition 
we have added a third author, John Barry, who carried the major burden of these revisions. 

The general approach of this book is to extract the common principles underlying a range 
of media and applications and present them in a unified framework. It is relevant to the design 
of a variety of systems, including voice and video digital cellular telephone, digital CATV 
distribution, wireless LANs, digital subscriber loop, metallic ethernet, voiceband data 
modems, and satellite communication systems. 

This book is intended for designers and would-be designers of digital communication 
systems. To limit the length we have been selective in topics covered and in the depth of 
coverage. For example, the coverage of advanced information, coding, and detection theory is 
limited to those aspects directly relevant to the design of digital communication systems. This 



xiv 

emphasis on topics important to designers results in more detailed treatment of some topics 
than is traditional in academic textbooks, for example in our coverage of synchronization 
(timing and carrier recovery). 

This book is suitable as a first-year graduate textbook, and should also be of interest to 
many industry professionals. We have attempted to make the book attractive to both audiences 
through the inclusion of many practical examples and a practical flavor in the choice of topics. 
In addition, we have increased the readability by relegating many of the more detailed 
derivations to appendices and exercise solutions, both of which are included in the book. 

The book has a Web site at http://www.ece.gatech.eduJ-barry/digitall, where the reader 
may find the chapters "Physical Media and Channels," "Spectrum Control," and "Echo 
Cancellation" from the Second Edition, other supplementary materials, useful links, a problem 
solutions manual, and errata. 

For this third edition, we owe a debt of gratitude to Abdallah Said AI-Ahmari, Anuj Batra, 
Richard T. Causey, Elizabeth Chesnutt, Arumugam Kannan, Piya Kovintavewat, Renato da 
Rocha Lopes, Aravind R. Nayak, Faith Nilo, Joon Hyun Sung, Badri Varadarajan, Deric 
Waters, and to several anonymous reviewers. In addition we gratefully acknowledge the many 
people who helped shape the first two editions. Any remaining errors are the full responsibility 
of the authors. 

We hope the result is a readable and useful book, and always appreciate comments and 
suggestions from the readers. 

John R. Barry 
Edward A. Lee 
David G. Messerschmitt 

Atlanta, Georgia 
Berkeley, California 
June 10, 2003 



Changes from the 
Second Edition 

The Third Edition differs from the Second Edition in three significant ways. First, chapters 
6 through 9 from the Second Edition have been reorganized and streamlined to highlight 
pulse-amplitude modulation, becoming the new chapters 5 through 7. Second, new material on 
recent advances in wireless communications, error-control coding, and multiuser 
communications has been added. As a result, two new chapters have been added. Finally, the 
three chapters "Physical Media and Channels," "Spectrum Control," and "Echo Cancellation" 
from the Second Edition have been moved to the book Web site. 

Here is a chapter-by-chapter summary of the major changes for this Third Edition: 

Chapter 2. The up converter, downconverter, and complex envelope are defined in 
mathematical terms for later use. More details of linear waveform spaces, including 
orthonormal bases and the Gram-Schmidt procedure, are added. 

Chapter 5. This chapter focuses exclusively on pulse-amplitude modulation (PAM), both 
passband and baseband. It consolidates material that was previously spread across four 
different chapters. The new organization retains the intuitive flow that characterized the 
Second Edition, with initial emphasis on the deterministic features of PAM systems. The 
minimum-distance receiver is proposed, first for an isolated pulse and then for dispersive 
channels with intersymbol interference, which leads to such concepts as the correlator, 
matched filter, whitened-matched filter and the Viterbi algorithm. The statistics of the noise do 
not enter into the picture until the very end, where we analyze the performance of various 
PAM techniques with minimum-distance detection in the presence of white Gaussian noise. 
Separating PAM like this offers two key advantages. First, PAM and its derivatives (like 
multicarrier modulation) are a preferred choice for many emerging applications, making PAM 
a worthy topic of study in its own right. A practicing engineer may wish to study PAM only, 
and the new organization makes this easy to do. Second, focusing on PAM allows us to 
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introduce important concepts (such as minimum-distance detection and power-bandwidth 
trade-offs) in a highly focused and motivated setting. In a sense, we use PAM as a case study, 
which facilitates the generalization to arbitrary M-ary modulation schemes that follows. 

Chapter 6. This chapter moves beyond PAM to examine advanced modulation techniques 
such as orthogonal modulation and orthogonal pulse-amplitude modulation, which includes 
code-division multiple access and multicarrier modulation (such as OFDM) as special cases. 
Also covered are advanced topics such as modulation with memory, the relationship between 
bandwidth and dimensionality, and the normalized SNR as a means for comparing modulation 
to Shannon capacity. 

Chapter 7. This chapter adopts a probabilistic approach to the detection problem, thus 
expanding our scope beyond white-Gaussian noise. The Viterbi algorithm is formulated in 
probabilistic terms, and it is related to the forward-backward (or BCJR) algorithm for a 
posteriori-probability detection, which plays a key role in turbo decoding. 

Chapter 10. This new chapter examines the fundamentals of multiple-input multiple
output communications, with particular emphasis on the detection problem, also known as the 
multiuser detection problem. 

Chapter 11. This new chapter describes diversity techniques for mitigating multipath 
fading, which exploit antenna arrays at either the transmitter or the receiver (or both). We 
examine beamforming and combining techniques as well as space-time codes and spatial 
multiplexing. 

Chapter 12. New material on low-density parity-check codes has been added, including 
Tanner graphs, message-passing decoding, and density evolution. We also describe parallel
concatenated and serial-concatenated turbo codes and turbo-decoding algorithms, with repeat
accumulate codes and turbo equalization treated as special cases. 



Notes to an Instructor 
This book can be used as a textbook for advanced undergraduates, or for a first course in 

digital communication for graduate students. We presume a working knowledge oftransfonns, 
linear systems, and random processes, and review these topics in chapters 2 and 3 at a depth 
suitable only for establishing notation. This treatment also serves to delimit the background 
assumed in the remainder of the book, or with more advanced students can be omitted or made 
optional. We include a more detailed treatment of basic topics important to digital 
communication but which may not be familiar to a first-year graduate student, including signal 
space (chapter 2), Markov chains and their analysis (chapter 3), Poisson processes and shot 
noise (chapter 3), the basic boundaries of communication from infonnation theory (chapter 4), 
and maximum-likelihood detection and the Viterbi algorithm (chapter 7). These treatments are 
self-contained and assume only the basic background mentioned earlier. These basic topics 
can be covered at the beginning of the course, or delayed until the first time they are used. Our 
own preference is the latter, since the immediate application of the techniques serves as useful 
reinforcement. 

The core of book is the treatment modulation, detection and equalization (chapters 5 
through 9), MIMO channels (chapters 10 and 11), coding (chapters 12 and 13), and 
synchronization (chapters 14 through 16). These topics are covered in considerable depth. 
After completing a course based on this book, students should be highly motivated to take 
advanced courses in infonnation theory, algebraic coding, detection and estimation theory, and 
communication networks, and will have a prior appreciation of the utility of these topics. 

There is sufficient material for two semesters, although it can easily be used for a single
semester course by selectively covering topics. At Georgia Tech we use this book for a one
semester graduate course that has as prerequisites undergraduate courses in systems and 
transfonns and probability and random processes. We do not presume any prior exposure to 
signal space, Markov chains, or the Poisson process. In this course we rely on the students to 
review Chapters 1 through 4, and we cover Chapters 5 through 8 and Chapter 10 and 11 in 
lecture. Chapters 9, 12 and 13 are skipped because adaptive filtering and error-control coding 
techniques are covered in other courses. 



1 
Introduction 

But let your communication be, Yea, yea; Nay, nay: 
for whatever is more than these, cometh of evil. 

- The Gospel According to St. Matthew (5:37) 

Digital transmission of information has sufficiently overwhelming advantages that it 
increasingly dominates communication systems, and certainly all new designs. In computer
to-computer communication, the information to be transported is inherently digital. But 
information that at its source is inherently continuous time (or continuous space) and 
continuous amplitude, like voice, music, pictures, and video, can be represented, not exactly 
but accurately, by a collection of bits. Why does it make sense to do so? 

• The encoding of analog signals in digital form has benefited from advances in 
compression algorithms, which reduce dramatically the bit rate while maintaining high 
perceptual accuracy. 

• Signal processing and coding techniques have dramatically increased the bit rate that 
can be supported by physical channels like wire pairs or radio. 

• Integrated circuits make complex signal processing and coding functions cost effective. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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• Optical fiber has reduced the cost of transmitting high bit rates over long distances. 

As a result of the happy convergence of these elements, virtually all communication is either 
digital or in the process of being converted to digital. An essential element is the transmission 
of higher and higher bit rates over a given physical transmission medium, the subject of this 
book. 

1.1. Applications of Digital Communication 

Digital communication is used for signals that are inherently analog and continuous-time, 
such as speech and images, and signals that are inherently digital, such as text files. The 
demands placed on a communication system are, however, different. Modem communication 
networks support a mixture of services, and hence must take into account the demands of all. 

1.1.1. Continuous-Time Signals 

It is common in modem practice to convert analog continuous-time and continuous
amplitude signals such as voice, music, pictures, and video to digital form for communication. 
The first step is digitization, and the second step is compression. The digitization step is shown 
in Fig. 1-1. The continuous-time signal is first sampled at a rate fs Hz (or samples / sec), which 
must be greater than twice the highest frequency component in the signal (see Section 2.3). 
Often this sampling operation is preceded by a lowpass filter, not shown, which ensures that 
the signal is properly bandlimited. Each sample is then converted to an n-bit binary word by an 
analog-to-digital converter (AID). The output is a bit stream with a bit rate of nfs bits per 
second (often written b I s or bps). Before actual transmission or storage, the digitized signal is 
usually compressed by various algorithms that remove redundancy or perceptually 
insignificant information (familiar examples include MP3 for music, JPEG for pictures, and 
MPEG for video). After reception, the compression can be reversed and the resulting digitized 
representation converted back to continuous time and amplitude using a digital-to-analog 
converter (DI A) and a reconstruction low-pass filter. 

Fig. 1-1. A continuous-time Signal sent across a digital transmission system. 
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From the viewpoint of the signals or data being transmitted over a digital network, the 
digital transmission links in that network can be abstracted and adequately characterized by 
four parameters: 

• the bit rate, 

• the propagation and processing delay, 

• the probability of error, which indicates how likely the bits arriving at the destination 
are to differ from the transmitted bits, and 

• the timing jitter in the arriving bit stream (variation from a uniform rate of arrival). 

Both bit errors and timing jitter can cause some degradation in the quality of a recovered 
continuous-time signal, and excessive delay can cause subjective impairment in interactive 
applications like telephony, video conferencing, or interactive data retrieval, so the designer of 
the digital communication system must control these impairments. 

Another application of digital communication techniques is storage systems using 
magnetic or optical media. In this case the objective is not transmission "from here to there" 
but rather "from now to then." These media have unique impairments, different from those in 
transmission media, but many of the same basic techniques apply. 

1.1.2. Data 
The Internet has greatly increased the importance of data transmitted from one computer 

to another, and uses a general technique called packet switching to accommodate a variety of 
different information sources and media such as word processing files, email messages, and 
Web pages. 

1.2. Digital Networks 

A digital communication link is able to transmit data from one geographical location to 
another, but this rarely suffices by itself. It is impractical to provision communication links 
from every location to every other location (except over limited geographic areas using 
wireless). This problem is addressed by building a digital network that includes not only 
communication links but also switches that route data from one edge terminal to another. A 
network supports many simultaneous connections between many pairs of terminals. 

Some networks are specialized to particular applications and media, like telephony and 
video distribution, and others are specialized to data. Increasingly, data networks like the 
Internet have been adapted to the conversion and transmission of continuous-time signals (this 
is often called continuous-media streaming). 

Telecommunication networks are often classified according to geographical extent. Local
area networks are designed to communicate at very high bit rates over a small geographical 
area (on the order of one km in extent) using wireless, wire pair, or optical fiber. Metropolitan
area networks cover a larger area (approximately 50 km) using optical fiber. Wide-area 
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networks like the Internet encompass the world using a optical fiber (for high density uses) and 
satellite (for areas with light traffic) to cover large distances, including over or under the 
oceans. 

Often different types of network applications share common digital transmission facilities. 
Beyond this, there is a trend toward not only common transmission facilities, but also a single 
network supporting all these types of applications. This so-called integrated network can 
support computer-to-computer communications, telephony, video distribution and video on 
demand, and other applications. 

While some earlier networks (like the telephone network) use circuit switching, data 
networks and integrated networks use packet switching. In circuit switching, the network 
connects a constant-rate bit stream to the destination for a relatively long period of time (of the 
order of minutes or longer). (This first arose in the context of voice networks, where the circuit 
is formed for the duration of one telephone call.) In packet switching, the data is encapsulated 
into packets, which are collections of bits to which a header (with destination address and 
other information meaningful to the network itself) is appended. Each packet can be routed 
through the network by the switches based on the header information. One advantage of 
packet switching is that the bit stream between source and destination can have a variable bit 
rate - this is accomplished by generating only the needed packets. This leads to greater 
efficiency for sources of data that have a large ratio of peak to average bit rate, and for 
connections that are very short-lived. 

1.3. Digital vs. Analog Communications 

Given that the world got along with mostly analog transmission for many decades (and it 
is still used in some applications like broadcast radio), it is useful to review why digital 
communication has become so prevalent. There are some important advantages. 

Interface Abstraction 

Digital communication links are relatively simple to characterize from a user perspective. 
This is in contrast to analog communication, where there are many more and more complex 
ways in which a transmission can be degraded. For example, the signal-to-noise ratio may be 
poor, or the signal may suffer second or third order intermodulation distortion, or crosstalk 
from one user to another, or the system may clip the input signal. A digital communication 
system has only four parameters important to users mentioned earlier. The impairments of the 
physical medium (which may be quite severe) are largely hidden from the user, as are 
implementation details. This property we call an interface abstraction. The power of this 
abstraction was perhaps first appreciated by Claude Shannon in his classic 1948 paper which 
started the field of information theory (Chapter 4). He showed that theoretically there is 
nothing lost by defining the interface between the signal to be transmitted and the transmission 
system to be a bit stream, regardless of whether the signal is analog or digital. 
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The Regenerative Effect 

Consider the challenge of transporting a bit stream over a long distance. The degradation 
of an uninterrupted physical medium, such as a cable or optical fiber, may be unacceptable. 
The digital solution is to place regenerative repeaters at periodic intervals in the physical 
medium, as shown in Fig. 1-2. Each ofthese repeaters includes a r~ceiver, which detects the 
bit stream (just as at the eventual destination), and a re-transmitter similar to the one at the 
origination. In the absence of transmission bit errors, the bit stream that is regenerated in this 
repeater is identical to the one that was originally transmitted. Any effects due to noise and 
distortion on the physical medium have been completely removed by the regenerative repeater 
(except insofar as they cause occasional bit errors). Contrast this to analog transmission, where 
the equivalent repeaters consist basically of amplifiers, and the noise and distortion cannot be 
removed and accumulates as the distance increases. 

In practice, the digital communication system will introduce some bit errors in the 
detection of the bit stream. When the probability of error at each repeater is low, the total 
probability of error for m repeaters is approximately m times the probability of error for a 
single repeater. Assuming a maximum number of repeaters, we can derive from an overall 
probability of error objective and reference this to a bit-error requirement for a single repeater. 
We can then meet this latter objective by adjusting the design of the repeater, the design of the 
signal, and the spacing between repeaters (closer spacing will result in a lower error rate for a 
given physical medium of transmission). 

The same regenerative effect applies to the storage of signals. Consider for example the 
high quality possible with digital audio (like CD, DVD Audio, or MP3). Part of the reason for 
this is that each time the audio is copied onto a new medium (for example from a CD to a 
computer hard disk to a portable device), its digital representation is regenerated, and any 
degradations peculiar to the original or intermediate physical media are removed. 

Economics of Implementation 

We have seen that digital communication has some powerful technical advantages. What 
are the relative economics of digital and analog communication? Digital communication 
receivers are internally logically much more complex than analog. In the technologies 
available before the integrated circuit (vacuum tubes and transistors), this complexity would 
have been prohibitively expensive. However, decades of Moore's law have improved the cost
performance characteristics of semiconductor technology to the point that remarkable amounts 

DEGRADATION 

REGENERATIVE 
REPEATERS 

DEGRADATION DEGRADATION 

Fig. 1-2. A chain of regenerative repeaters reduces the effect of cascaded degradations by 
regenerating the digital signal at intermediate points in the transmission. 
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of complexity and remarkably high processing rates can be achieved at modest cost, even 
subject to the limitations of battery powered portable devices. Further, the semiconductor 
technologies favor a digital implementation, as digital circuits are easier to design and 
manufacture and test. Software implementations (also intrinsically digital) have compelling 
advantages where they are economical, because they allow a variety of functions from a single 
piece of hardware, are relatively easy to design, and can be modified and upgraded even in the 
field. 

Communication systems incorporate a physical channel, which is intrinsically analog. 
Thus, all communication systems require analog as well as digital circuitry. At the high bit
rate end, fiber optics transmitters and receivers are largely analog and logically relatively 
simple. At the low bit-rate end, and particularly for wireless channels, the transmitters and 
receivers are logically quite complex, and the trend is toward reducing the analog circuitry to 
the bare minimum (basically the radio-frequency amplifiers, modulators, and the digitization 
function). 

1.4. Plan of the Book 

This book concentrates on the techniques that are used to design a digital communication 
system starting with any of the common physical media. Our concern is thus with how to get a 
bit stream from one location to another, and not so much with how this bit stream is used. In 
the particular context of a digital network, this aspect of the system is called the physical layer. 
We also address the problems of multiple bit streams sharing a common medium, called 
multiple access. 

In Chapters 2-4 some basics required for the understanding of later material are covered. 
Many readers will have a prior background in many of these basics, in which case only a 
superficial reading to pick up notation is required. We have also covered some basic topics 
with which the reader may not be so familiar. These include spectral factorization of rational 
transfer functions (Chapter 2), signal space (Chapter 2), Markov chains and Poisson processes 
(Chapter 3), and information-theoretic bounds (Chapter 4). 

Chapters 5-13 cover the theory of modulation, detection, and coding that is necessary to 
understand how a single bit stream is transported over a physical medium. The need for this 
theory arises because all physical media are analog and continuous-time in nature. It is ironic 
that much of the design of a digital communication system is inevitably related to the analog 
and continuous-time nature of the medium, even though this is not evident at the abstracted 
interface to the user. 

The design of a digital communication system or network raises many difficult 
synchronization issues that are covered in Chapters 14-16. Often a large part of the effort in 
the design of a digital communication system involves phase-locked loops, timing, and carrier 
recovery. 
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A complete telecommunication network requires that many bit streams originating with 
many different users be transported simultaneously while sharing facilities and media. This 
leads to the important topic of multiple access of more than one user to a single physical 
medium for transmission. This is covered in Chapter 17. 

1.5. Further Reading 

There are a number of excellent books on digital communication. While these books have 
a somewhat different emphasis from this one, they provide very useful supplementary 
material. The books by Roden [1], Benedetto, Biglieri, and Castellani [2], and Gitlin, Hayes, 
and Weinstein [3], cover similar material to this one, perhaps with a bit less practical 
emphasis. The books by Blahut [4], and Bingham [5] are valued for their practical orientation. 
Two texts provide additional detail on topics in this book: the recent book by Proakis [6] is an 
excellent treatise on applied information theory and advanced topics such as coding, spread 
spectrum, and multipath channels; the book by Viterbi and Omura [7] gives a detailed 
treatment of source and channel coding as applied to digital communication, as does Biglieri, 
Divsalar, McLane, and Simon [8]. The recent book by Wilson provides excellent coverage of 
digital modulation and coding [9]. An excellent treatment of the statistical communication 
theory as applied to digital communication is given by Schwartz [10]. On the topics of 
modulation, equalization, and coding the book by Lucky, Salz, and Weldon is somewhat dated 
but still recommended reading [11]. The same applies to the book by Wozencraft and Jacobs, 
which emphasizes principles of detection [12]. Books by Keiser and Strange [13] and Bellamy 
[14] give broad coverage of digital transmission at a descriptive level. Practical details of 
digital transmission can be found in a book published by AT&T Technologies [15], in the book 
by Bylanski and Ingram [16], and in the book by Cattermole [17]. A couple of books expand 
on our brief description of digital switching, including McDonald [18] and Pearce [19]. For 
the information theory background that gives a solid theoretical foundation for digital 
communication, the books by Gallager [20], Cover and Thomas [21], Blahut [22], and 
McEliece [23] are recommended. Schwartz [24] and Bertsekas and Gallager [25] are 
recommended comprehensive texts on computer networks. There are also many elementary 
texts that cover both digital and analog communication, as well as the basic systems, 
transforms, and random process theory. Simulation techniques for communication systems are 
covered comprehensively in Jeruchim, Balaban, Shanmugan [26]. 
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Problems 

Problem 1-1. For an A/D converter, define a signal-to-error ratio as the signal power divided by the 
quantization error power, expressed in dB. A unifonn quantizer, which has equally-spaced thresholds, 
has two parameters: the number of bits n and the step size 6.. 

(a) If we were to increase n by one, to n + 1, for the same input signal, what would be the 
appropriate change to 6.? 

(b) Without doing a detailed analysis, what do you suppose would be the effect on signal-to-error 
ratio of increasing from n to n + 1 bits/sample? 

(c) What effect will this same change have on the bit rate? 

(d) Using the prior results, what is the farm of the relationship between signal-to-error ratio and the 
bit rate? (You may have unknown constants in your equation.) 

Problem 1-2. An analog signal is transmitted using the system of Fig. 1-1. Discuss qualitatively the 
effects of bit errors on the recovered analog signal. 

Problem 1-3. Discuss qualitatively the sources of delay that you would expect in a digital system like 
the one shown in Fig. 1-1. 

Problem 1-4. Suppose you have a source of data that outputs a bit stream with a bit rate that varies 
with time, but also has a peak or maximum bit rate. Describe qualitatively how you might transmit this 
bit stream over a link that provides a constant bit rate. 
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2 

Deterministic 
Signal Processing 

In this chapter we review some basic concepts in order to establish the notation used in the 
remainder of the book. In addition, we cover in more detail several specific topics that some 
readers may not be familiar with, including complex signals and systems, the convergence of 
bilateral Z-transforms, and signal-space geometry. The latter allows simple geometric 
interpretation of many signal processing operations, and demonstrates relationships among 
many seemingly disparate topics. 

2.1. Signals 

A continuous-time signal is a function x(t) of the real-valued variable t, usually denoting 
time. A discrete-time signal is a sequence {Xk}, where k usually indexes a discrete progression 
in time. Throughout this book we will see systems containing both continuous-time and 
discrete-time signals. Often a discrete-time signal results from sampling a continuous-time 
signal; this is written Xk = x(kT), where T is the sampling interval, and liT is the sampling 
frequency. The sampling operation can be represented as 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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Xk = x(kT) = [X(1:)8(1: - kT) d1: , (2.1) 

where 8(1:) is the Dirac delta/unction or continuous-time impulse. The discrete-time signal Xk 

has a continuous-time pulse-amplitude modulation (PAM) representation 

x( t) = L; = ~ Xk 8(t - kT) , (2.2) 

in terms of impulses. 

A continuous-time signal can be constructed from a discrete-time signal as represented 
symbolically in Fig. 2-1. A discrete-time input to a continuous-time system implies first the 
generation of the continuous-time impulse train in (2.2), and then its application to a 
continuous-time filter G(f), yielding 

(2.3) 

In some applications get) is said to be an interpolation filter, but more often in this book it is 
said to be a pulse-shaping filter. 

2.1.1. Complex-Valued Signals 
In digital communication systems, complex-valued signals are often a convenient 

mathematical representation for a pair of real-valued signals. A complex-valued signal 
consists of a real signal and an imaginary signal, which may be visualized as two voltages 
induced across two resistors, or as two sequences of numbers. 

Example 2-1. 
A complex-valued signal we encounter frequently is the complex exponential, 

Xk = e -jffik = cos(rok) - jsin(rok) , 

X( t) = e -j21r.ft = cos(2rtft) - jsin(2rtft) . (2.4) 

We consistently use j to represent.r-:i . 

Fig. 2-1. Construction of a continuous-time signal from a discrete-time signal. When we show a 
discrete-time input to a continuous-time system, we imply first the generation of the impulse train in 
(2.2). An example is shown above the system. 
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Complex-valued signals are processed just as real-valued signals are, except that the rules of 
complex arithmetic are followed. 

Exercise 2-1. 
Draw diagrams specifying the addition and multiplication of two complex-valued continuous-time 
signals in terms of real-valued additions and multiplications. 

(The reader is reminded that the solution to this and all exercises can be found at the back of 
the book.) 

The real part of the signal x(t) is written Re{x(t)} and the imaginary part Im{x(t)}. 
Furthermore, we write the complex conjugate of a signal x(t) as x*(t), and the squared 
modulus as 1 x( t) 12 = x( t )x*( t). We don't use any special notation to distinguish real-valued 
from complex-valued signals because it will generally be clear from the context. 

2.1.2. Energy and Power 

The energy of a signal x( t) or {xk} is defined to be 

(2.5) 

The average power is 

1 It lim 2,. _ 1 x( t) 12 dt , 
,.~ 00 t 

lim 2KIILK_ IXkI2. 
K~oo + k --K 

(2.6) 

2.2. LTI Systems and Fourier Transforms 

The Fourier transform is valuable in the analysis of modulation systems and linear time
invariant systems. For the convenience of the reader, the properties of both discrete and 
continuous-time Fourier transforms are summarized in Appendix 2-A. In this section we 
establish notation and review a few basic facts. 

2.2.1. Linear Time-Invariant (LTI) Systems 

If a system is linear and time invariant (LTI) , then it is characterized by its impulse 
response hk (for a discrete-time system) or h( t) (for a continuous-time system). The output of 
the LTI system can be expressed in terms of the input and impulse response as a convolution; 
for the discrete-time case, 

(2.7) 

and the continuous-time case, 
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y(t) = x(t) * h( t) = f~ x('t)h(t - 't)d't . (2.8) 

An LTI system is real if its impulse response is real-valued, and complex if its impulse 
response is complex-valued. 

Exercise 2-2. 
Show that if a complex system has a real-valued input it can be implemented using two real systems 
and sketch the configuration. Show that the same is true if a real system has a complex-valued 
input, and again sketch the configuration. 

Exercise 2-3. 
The notion of linearity extends to complex LTI systems. Demonstrate that if the four real systems 
required to implement a complex system are linear, then the resulting complex system is linear. It 
follows immediately that real-valued LTI systems are linear with respect to complex-valued inputs. 

2.2.2. The Fourier Transform 

The Fourier transform pair for a continuous-time signal x( t) is 

XU) = f 00 x( t )e-j21tft dt , 
-J>O 

x( t) = f 00 X( ne121tft df, 
-00 

(2.9) 

while the discrete-time Fourier transform (DTFT) pair for Xk is 

)(!(e j8 ) = ~~ x e-jk8 x = -.!.. f1l: X(ej8)ejk8 de 
kJk = -J>O k 'k 21t_11: 

(2.10) 

The notation X(e js ) deserves some explanation. X(e js ) is the Z-transform X(z), defined as 

(2.11 ) 

evaluated at z = ejs . Furthermore, the argument of the function, ejS, IS periodic in e, 
emphasizing that the DTFT itself is periodic in e with period 21t. 

Re{x(t)} 
.::........,r----.j 

Im{x( t)} 
.::........,~-.j 

(a) 

x(t)~y(t) 

~ 
(b) 

Fig. 2-2. A complex-valued LTI system with a complex-valued input and output. 
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If h( t) is the impulse response of a continuous-time system, then the Laplace transfonn 
H(s) is called the transfer function, and the Fourier transfonn H(f) is called the frequency 
response. Correspondingly, for a discrete-time impulse response hk' the transfer function is 
H(z) and the frequency response is H(e j8 ). Discrete-time and continuous-time systems will 
often be distinguished only by the fonn of the argument of their transfer function or frequency 
response. 

Exercise 2-4. 
Starting with the convolution, show that the Fourier transform ofthe output of an LTI system is 

Y(f) = H(f)X(f) , (2.12) 

for the continuous-time and discrete-time cases, respectively, where X(f) and X(e j8 ) are the 
Fourier transforms of the input signals. 

The magnitude of the frequency response I H(f) I or I H(e j8 ) I is called the magnitude 
response. The argument of the frequency response L(H(f» or L(H(e j8» is called the phase 
response. The reason for these tenns is explored in Problem 2-2. 

A fundamental result allows us to analyze any system with a combination of continuous
time and discrete-time signals. 

Exercise 2-5. 
Given the definition (2.2) of a continuous-time PAM signal x( t) derived from a discrete-time 
signal xk, show that for all f 

X(f) = X(e j21tfT ) • (2.13) 

In words, the continuous-time Fourier transform of a PAM representation of a discrete-time signal 
is equal to the DTFT ofthe discrete-time signal evaluated at 8 = 21tfT. 

2.3. The Nyquist Sampling Theorem 

Suppose that we sample a continuous-time signal x( t) to get 

Xk =x(kT). 

From (2.2) we obtain 

(2.14) 

(2.15) 

Multiplication in the time-domain corresponds to convolution in the frequency domain, so 

, 1 00 

X(f) =X(f) * rLm =-00 o(f - miT) 

= ~ J': X(v)L: = -00 8(f - v - miT) dv 
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Fig. 2-3. A discrete-time system using a continuous-time filter. 

1 00 

=-~ X(f-mIT). 
T 4Im =--00 

(2.16) 

Combining this with (2.13) we get the very important relation 

X(ei21tfl') =..!. ~ 00 X(f - miT). 
T 4Im =--00 

(2.17) 

This fundamental sampling theorem relates the signals x( t) and Xk in the frequency domain. 
Systems with both discrete and continuous-time signals can now be handled easily. 

Exercise 2-6. 
Use (2.17) to show that the frequency response of a completely discrete-time system equivalent to 
that in Fig. 2-3 is 

G(ei21tfl') =..!. ~oo G(f - miT) . 
T 4Im =--00 

(2.18) 

Notice that in (2.17) a component of XU) at any f = fo is indistinguishable in the sampled 
version from a component at fo + miT for any integer m. This phenomenon is called aliasing. 

Example2-2. ------------------------------------------------------
Given a signal x( t) with Fourier transform XU) shown in Fig. 2-4(a), the Fourier transform of the 
sampled signal XU) = X(e i21tfl') is shown in Fig.2-4(b). The overlap evident in Fig.2-4(b), 
called aliasing distortion, makes it very difficult to recover x( t) from its samples. 

Exercise 2-7. (Nyquist sampling theorem.) 
Show that, from (2.17), a continuous-time signal can be reconstructed from its samples if it is 
sampled at a rate at least twice its highest frequency component. More precisely, if a signal x( t) 
with Fourier transform X( f) is sampled at frequency 1/ T Hz, then x( t) can be reconstructed from 
the samples if X( f) = 0 for all I f I > 1/ (2T). 

(._)_ .... ~~_t-Xi-(f-) .p..--+I_' f 
-1 1 1 
2T 2T 't 

~ ...... ... ....... ... ...... ... ... -- ... 
(b)~. 

-3 -1 -1 3 f 
2T 2T 2T 2T 

Fig. 2-4. The Fourier transform of a continuous-time signal (a) and its sampled version (b), where the 
sample rate is 11 T. 
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The sampling theorem gives a sufficient but not necessary condition for reconstructing a signal 
from its samples. In the absence of aliasing distortion, a lowpass signal can be reconstructed 
from its samples using an ideal low-pass filter with cutofffrequency 1I(2T), 

x(t)=x(t)* [sin(1ttlT)] =~oo xm [Sin[1t(t-mT)/Tl]. 
1ttlI' m = ~ 1t(t - mT)/T 

(2.19) 

2.4. Downconversion and Complex Envelopes 

Real-valued signals may be represented in terms of a complex signal called a complex 
envelope, which is defined in terms of a building block called a down converter. These ideas 
playa central role in the analysis and implementation of many communication systems. In this 
section we define the downconverter in terms of a phase splitter and a Hilbert transformer, and 
then summarize how to convert back and forth between a signal and its complex envelope. 

2.4.1. Downconversion, Phase Splitters, and the Hilbert Transform 

A real-valued signal whose Fourier transform is concentrated at high frequencies (away 
from d.c.) is said to be passband, while a signal whose Fourier transform is concentrated at 
low frequencies (near d.c.) is said to be baseband. The first step a receiver often takes is to 
convert a real-valued passband signal into an equivalent low-frequency baseband signal that is 
complex valued, a process known as downconversion. A down converter is a system that 
performs downconversion in a mathematically precise manner, as shown in Fig. 2-5(a). Let 
s( t) denote the downconverter input; by assumption, it is always real valued. The 
downconverter first applies s( t) to a phase splitter, and then mUltiplies by a complex 
exponentiaL These two steps are detailed below. 

The phase splitter of Fig.2-5(a) is a filter with impulse response <1>( t) and transfer 
function cP (f) = u(f), or: 

-Ie 

DOoYNCONVERTER uPCOtN£R.TEA 

5(1)~S(I) 
~ T 

8(1) ~ Re{ ~ 5(1) 

r 
./2e -j'l:lt/,t ./2e l J:rtl,t 

S(f) . d 
(0) ~) (0) 

o Ie o 

Fig. 2-5. A downconverter (a) consists of a phase splitter, which passes positive frequencies and 
eliminates negative frequencies, followed by a complex exponential, which scaled the spectrum by J2 
and shifts it to the left by fe· The downconverter of (a) is reversed by the upconverter of (b). 
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ct>(f) = { 1, 
0, 

1>0 

1<0 

CHAP. 2 

(2.20) 

This filter is most often applied to passband signals with no d.c. content, in which case its d.c. 
gain is irrelevant. For those rare instances where it matters, however, we define the phase 
splitter d.c. gain to be ct>(0) = 112. The filter passes positive frequencies and rejects negative 
frequencies. Clearly, since ct>(f) does not display complex-conjugate symmetry, the impulse 
response cj)( t) is complex valued. Regardless of the input to a phase splitter, the output will not 
have any negative frequency components. A signal with only nonnegative frequency 
components is said to be analytic. Such a signal must be complex-valued in the time domain. 

It is often convenient to decompose the phase splitter into its even and odd parts, yielding: 

ct>(f) = ~ (1 + jH(f» , (2.21) 

where the filter 

H( f) = -j sign( f) (2.22) 

is called a Hilbert transformer. The Hilbert transform of a real signal s( t) is denoted by s( t ), 
and is defined as the output of a Hilbert transformer when s( t) is the input. Because H( f) has 
complex-conjugate symmetry, the impulse response of a Hilbert transformer is real valued, 
and hence the Hilbert transform s ( t) will also be real valued. A Hilbert transformer does not 
modify the magnitude spectrum of the input, but does give a -1t phase shift at all frequencies. 
From (2.21) it is evident that the time-domain output of a phase splitter can be written as: 

~(s(t) + js(t») . (2.23) 

Thus, the real part of the phase-splitter output is half of the input, and the imaginary part is 
half of the Hilbert transform of the input. 

Referring again to Fig. 2-5(a), the downconverter multiplies the phase splitter output by 
the complex exponential ./2e-j21tfct , where the carrier frequency tc is a free parameter that 
must be specified in order to fully characterize a downconverter. 

2.4.2. The Complex Envelope 

The complex envelope s ( t) of a real signal s( t) with respect to the carrier tc is defined 
simply as the output of a downconverter with carrier tc. The relationship between s( t) and 
s( t) is thus defined by the downconverter of Fig. 2-5(a). Equivalently, given (2.23), the 

complex envelope may be defined mathematically by: 

s( t) = ~( s( t) + js(t») e -j21tfct . (2.24) 

Taking the Fourier transform yields the equivalent frequency-domain relationship: 
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S(f) = J2 u(f + fc)S(f + fc) . (2.25) 

Exercise 2-8. 
Show that energy of a complex envelope s( t) is precisely equal to that of s( t ). This equal-energy 
property is important when we deal with noise and signal-to-noise ratios. 

A crucial feature of the downconverter is that it is reversible. The complex envelope 
uniquely defines a signal, regardless of both its spectral content and the choice for the carrier 
frequency parameter. Specifically, any real signal s( t) may be recovered from its complex 
envelope through the equation 

s(t) = J2Re{ s(t)e j27tfct }. (2.26) 

This equation defines the complex-envelope representation of a real signal s( t) with respect to 
fc. It is easily verified by substituting (2.24) into (2.26). Any real-valued signal can be written 
in this form. Not surprisingly, (2.26) defines what is called an upconverter, because it reverses 
the downconversion process. A block diagram of an upconverter is shown in Fig. 2-5(b). 

While complex envelopes may be defined for any real signal, they are most useful for 
passband signals s( t) with a spectrum concentrated in the vicinity of f = fc. Since s( t) is real
valued, its spectrum contains energy near -fc as well as fc. The phase splitter discards the 
negative frequency components, and mUltiplying the resulting analytic signal by J2 e -j27tfct 

shifts the remaining positive frequency components to near d.c., yielding the complex 
envelope s(t). The benefit of downconversion in this case stems from the fact that s(t) is a 
baseband or low-pass signal, meaning that its energy is concentrated near d.c. This simplifies 
subsequent receiver processing, be it analog or digital. 

The discontinuity of the phase splitter and Hilbert transformer at d.c. would make the 
downconverter difficult to implement in practice. Fortunately, however, the implementation is 
much easier when the input is a passband signal, because then the transfer function in the 
vicinity of d.c. does not matter. 

Two alternative representations of a real signal are derivatives of the complex envelope 
representation. The real and imaginary parts of the complex envelope s ( t) are referred to as 
the in-phase and quadrature components of s( t) with respect to fc' respectively, and are 
denoted sJ< t) = Re{ s (t)} and sQ( t) = 1m { s (t)}, respectively. Substituting s( t) = sJ< t) + 
j sQ( t) into (2.26) defines the in-phase and quadrature representation of a real signal s( t) with 
respect to fc: 

s( t) = J2 Re{ (sJ< t) + jSQ(t) ) ej27tfct} 

= J2sJ< t )cos(21tfct) - J2sQ( t )sin(21tfct) . (2.27) 

Alternatively, define the envelope e( t) = J21 s ( t ) I and phase 9( t ) = L s ( t), so that we 
may write J2s(t) = e(t)e j9(t). Substituting these definitions into (2.26), we arrive at the 
envelope and phase representation of a real signal: 
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0\JA0RA.l\JR;£ O£MOOUlATOR OUA.OIlAT\JRE ~TOR 

si( t) 5/(1) 

s( t) 
./2cos(21tfetl 

s( t) 
-./2sin(21tfet ) 

SQ(tl SQ( t) 

(a) (b) 

Fig. 2-6. A quadrature (a) demodulator and (b) modulator. These are usually interchangeable with the 
down converter and upconverter of Fig. 2-5. The two low-pass filters (LPF) are identical and ideal with a 
gain of unity and a cutoff frequency equal to the carrier frequency Ie. 

= e( t )cos( 21tfct + 8( t») . (2.28) 

Example2-3. ------------------------------------------------------
The complex envelope of J2 cos(2001tt) with respect to a 100 Hz carrier frequency is I, which 
implies that its in-phase and quadrature components are the constants I and 0, respectively. The 
answers change when we change the carrier frequency. For example, the complex envelope of 
J2 cos(2001tt) with respect to a 99 Hz carrier frequency is e j21tt. In this case, its in-phase and 
quadrature components are cos(21tt) and sin(21tt), respectively. Observe that the real envelope 
e( t) =J2 I s (t) I = J2 is the same for both carrier frequencies, as one might expect from an 
intuitive interpretation of the term envelope. 

Exercise 2-9. 
Show that the envelope e( t) of any real signal s( t) is independent of the carrier frequency !c. 

The downconverter of Fig.2-5(a) first filters, then shifts the spectrum. In many 
circumstances the order can be reversed, and the downconverter of Fig.2-5(a) may be 
substituted by the quadrature demodulator shown in Fig. 2-6(a). The input is first multiplied 
by a pair of sinusoids which differ in phase by 1t/2, and the results are then filtered by 
identical ideal low-pass filters with unity gain and bandwidth equal to the carrier frequency fc. 

The only time this substitution is invalid is when the bandwidth of the input exceeds twice the 
carrier frequency (Problem 2-12), a condition rarely met in practice. Thus, a phase splitter is 
often not necessary to perform downconversion.The quadrature modulator of Fig. 2-6(b) is a 
direct implementation of the in-phase and quadrature representation (2.27), and hence it 
always reverses the downconverter of Fig. 2-5(a). It also reverses the quadrature demodulator 
of Fig. 2-6(a) when the downconverter input is bandlimited to twice the carrier frequency. 

The impact of filtering a real signal can be modeled by filtering its complex envelope. 
Suppose a real signal s( t) is filtered by a real LTI system with impulse response h( t), 
producing the real output r( t) = s( t) * h( t ). By definition, the complex envelope of the output 
has Fourier transform R(f) = J2 u(f + fc)R(f + fc), which using R(f) = S(f)H(f) reduces to: 

(2.29) 
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= S (f)H(f + Ie) 

= ~ S (f) J2 u(f + le)H(f + Ie) 

=~S(f)iI(f) . 

21 

(2.30) 

(2.31) 

(2.32) 

From (2.30) we see that the complex envelope of the filter input is modified according to the 
frequency response of the passband channel near the carrier frequency, which makes intuitive 
sense. Converting (2.32) back to the time domain, we see that the filter input and output 
complex envelopes are related by r( t) = s( t) * h( t) / J2 . Thus, to convert a real system to an 
equivalent complex system, simply replace all signals by their complex envelopes, and replace 
all filter impulse responses by their complex envelopes divided by J2 . 

2.5. Z Transforms and Rational Transfer Functions 

The Z transform, which is closely related to the DTFT, is particularly useful in the study of 
rational transfer functions. The Z transform of a sequence {hk} is defined as 

(2.33) 

where z is a complex variable. As pointed out before, the DTFT is the Z transform evaluated at 
z = e j8, or on the unit circle in the z plane, as shown in Fig. 2-7. This justifies the notation 
H(e j8 ) for the DTFT. When {hk } is the impulse response of a discrete-time LTI system, then 
H(z) is called the transfer function of the system. The transfer function on the unit circle is 
called the frequency response. 

2.5.1. One-Sided Sequences 

A causal sequence {hk} has hk = 0 for k < o. An anticausal sequence has hk = 0 for k > O. 
A right-sided sequence is one for which, for some K, hk = 0 for k < K. A left-sided sequence 
correspondingly has hk = 0 for k > K for some K. When hk is the impulse response of an LTI 

Im{z} 

--t----!<'-...1--t---+ Re{z} 

Fig. 2-7. The Fourier transform of a discrete-time signal is the Z transform evaluated on the unit circle. 
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system, that system is causal (anticausal) if the impulse response is right-sided (left-sided) for 
K = o. While physically realizable real-time LTI systems are causal, we will frequently find it 
useful to model systems as non-causal. 

Example24. ------------------------------------------------------
Assume a communication channel has the impulse response shown in Fig. 2-8(a). We can think of 
this channel as having a flat propagation delay of M samples in addition to the non-causal response 
{hk } as shown in Fig. 2-8(b). Often the flat delay will not be an essential feature of the channel, in 
which case we ignore it. 

Example2-5. ------------------------------------------------------
Suppose we come up with a non-causal filter H(z) in a theoretical development. This need not 
concern us too much, since such a filter can be approximated by a causal filter G(z) together with 
an additional flat delay z-M. This extra flat delay which did not arise in the theoretical development 
will often not harm the system. 

A particularly important class of causal or anticausal sequences have a unity-valued 
sample at time zero (ho = 1). These sequences are said to be monic. A similar terminology is 
used for polynomials, which are monic if the constant term is unity. It is easy to see from 
(2.33) that H(z) is the Z transform of a causal and monic sequence if and only if H(oo) = 1. 
Similarly, it is anticausal and monic if and only if H(O) = 1. When a sequence {hk } is monic, 
then H(z), as a polynomial in z or z-l, is also monic. 

The region of convergence (ROC) of the Z transform is the region of the z plane where the 
series in (2.33) is absolutely summable, 

(2.34) 

Note that for any z E ROC, I H(z) 1<00, because the triangle inequality implies that 

(2.35) 

Since the Fourier transform is the Z transform evaluated on the unit circle, for signals with a 
Fourier transform the ROC includes the unit circle. 

A bounded-input bounded-output (BIBO) stable system has the property that any bounded 
input sequence with I Xk 1< L produces a bounded output sequence with I Yk I < K. We will 
often use the term "stable" to denote "BIBO stable." 

r • • • • I I I • • I • • • • • , . I r; • • • 
0 

, 
M -M 0 

Ca) Cb) 

Fig. 2-8. Illustration of the usefulness of a non-causal channel model. (a) Actual channel impulse 
response. (b) A non-causal version of the impulse response where the flat propagation delay is ignored. 
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Exercise 2-10. 
Show that a system with impulse response {hk } is BIBO stable if and only if 

(2.36) 

A consequence of this is that a system is BIBO stable if and only if the ROC includes the unit 
circle. To see this, note that (2.34) can be rewritten as 

(2.37) 

On the unit circle, I z 1= 1, so this sum equals S in (2.36). By analogy with BIBO stable 
systems, a sequence {hk } (not necessarily an impulse response) is said to be stable if it is 
absolutely summable, as in (2.36). 

It is evident from (2.3 7) that the ROC depends only on I z I ; that is, it is of the form of an 
annulus or doughnut-shaped region. For a causal sequence, the ROC will be of the form 
I z I > R for some constant R. In words, the ROC will be the region outside a circle of radius R. 
If the sequence is also stable, then R < 1, as shown in Fig. 2-9(a). To see this, note that for a 
causal sequence, the summation in (2.37) becomes 

(2.38) 

All the terms in the summation are positive powers of I z 1-1, and hence get smaller as I z I gets 
larger. Thus, if absolute convergence occurs for some I zl I > R, it will occur for all z such that 
Izl ~ IZll. 

If the sequence is right-sided but not causal, (2.37) becomes 

~~ Ihkllzl-k < 00, 
L.Jk = K 

(2.39) 

for some K < O. The positive powers of I z I do not converge at z = 00, but do converge at all 
other z. Thus, the ROC cannot include I z 1=00, and should be written R < I z 1<00. Similar 
results apply to left-sided sequences. 

Exercise 2-11. 

(a) Show that the ROC of a left-sided stable sequence is of the form 0 < I z I < R for R > 1. 

(b) Show that a left-sided sequence is anticausal if and only if its ROC includes the origin, 
o ::; I z I < R, as shown in Fig. 2-9(b). 

To summarize, a right-sided sequence has an ROC consisting of the region outside a 
circle. That region includes I z I = 00 if and only if the sequence is causal. A left-sided 
sequence has an ROC consisting of the inside of a circle. That region includes z = 0 if and only 
if the sequence is anticausal. In all cases, the ROC includes the unit circle if and only if the 
sequence is stable. 
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Im{z} 

(a) (b) 

Fig. 2-9. The ROC of the Z transform of a stable sequence must include the unit circle. Three cases of 
stable sequences are illustrated: (a) A right-sided, (b) left-sided, and (c) two-sided sequence. The ROC 
includes I z I = 00 in (a) ifthe sequence is causal. It includes z = 0 in (b) ifthe sequence is anticausal. 

2.5.2. Rational Transfer Functions 
A rational transfer jUnction can be written in any of the forms 

r 'L~=obkZ-k nr-=1(1-ckZ-1) m nr-=l(Z-Ck) 
H(z) = z . = A . z· = A· z . (2.40) 

'Lf=Oakz-k nk'= 1(1-dkz-1) nk'= l(z-dk) , 

where A = bOI ao and m = N - M + r. Notice that in the middle form, the numerator and 
denominator polynomials are both monic. The ratio of two such monic polynomials is also 
monic (as can be verified by carrying out the long division). 

The system has M zeros (roots of the numerator) at {Cl' ... , CM}, and N poles (roots of the 
denominator) at {d1, ... , dN }. The factor zm represents merely an advance or delay in the 
impulse response. If m > 0 this factor introduces m zeros at the origin and m poles at I z I = 00 

(conversely for m < 0). If hk is real valued, then H(z) in (2.40) has real-valued coefficients, 
and the zeros and poles are always either real valued or come in complex-conjugate pairs 
(Problem 2-25). 

Including poles and zeros at z = 0 and I z I = 00, every rational transfer function has the 
same number of poles and zeros. This will be illustrated by two examples. 

Example2-6. ------------------------------------------------------
The causal FIR transfer function H(z) = 1- 0.5z-1 has one zero at z = 1/2 and one pole at z = O. 
The only possible ROC is I z I > 0, which is a degenerate case of Fig. 2-9(a). 

Example2-7. ------------------------------------------------------
The anticausal FIR transfer function H(z) = 1 - 0.5z has one zero at z = 2 and one pole at 
I z I = 00. The only possible ROC is I z I < 00, which is a degenerate case of Fig. 2-9(b). 
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The ROC cannot include any of the poles, since H(z) is unbounded there. Moreover, for 
rational transfer functions, the ROC is bordered by poles. Referring to Fig. 2-9, for a causal 
and stable H(z), all poles must be inside the unit circle. For an anticausal and stable H(z), all 
poles must be outside the unit circle. No stable H(z) can have poles on the unit circle, although 
it can certainly have zeros on the unit circle. 

Exercise 2-12. 
LTI systems that can actually be implemented with computational hardware can be represented by 
linear constant-coefficient difference equations with zero initial conditions. Show that the system 
represented by 

1 ( M N) 
Yk= a o L/=ob/Xk-/- L/=la/Yk-/ (2.41) 

has transfer function given by (2.40) with r = O. 

When the denominator in (2.40) is unity (N = 0), the system has afinite impulse response 
(FIR), otherwise it has an infinite impulse response (IIR). FIR systems are always stable, and 
are often a good approximation to physical systems. They can have poles only at z = 0 and 
I z I = 00, and the ROC therefore includes the entire z plane with the possible exception of z = 0 
and I z 1=00. If an FIR system is causal, it has no poles at I z 1=00. If it is anticausal, it has no 
poles at z = o. 

Example2-8. ------------------------------------------------------
Physical channels, such as a coaxial cable, usually do not have, strictly speaking, a rational transfer 
function. However, they can be adequately approximated by a rational transfer function. Often the 
simplest approximation is FIR, obtained by simply truncating the actual impulse response for 
sufficiently large M. Alternatively, it may be possible to approximate the response with fewer 
parameters using an IIR transfer function. 

2.5.3. Reflected Transfer Functions 
Given a transfer function H(z), we define the ref/ected transfer function to be H*(l /z *). It 

has impulse response h~k' as is easy to verify. (A filter with such an impulse response will be 
called a matched filter in Chapter 5.) For a rational transfer function in the second form of 
(2.40), the reflected transfer function can be written 

rrr-l(l-cZz) 
H*(lIz*) =A* . z-r .='''''---------

rrf=l(l-dZz) . 
(2.42) 

The zeros Ck of H(z) become zeros at the conjugate-reciprocal locations 11 Ck* in H*(lIz *). 
The poles are similarly reflected through the unit circle, which explains the term reflected. If 
H(z) is stable and causal (all poles are inside the unit circle) then H*(l /z*) is stable and 
anticausal (all poles are outside the unit circle). Zeros of H(z) on the unit circle have 
corresponding zeros of H*(l/z *) at identical locations on the unit circle. 
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To see the relationship between the frequency response of H(z) and H*(1 / z *), just 
evaluate them at z = ej9 , getting H(e j9 ) and H*(e j9 ). Hence the frequency response of a 
reflected transfer function is simply the complex-conjugate of the original frequency response. 
That is, any transfer function and its reflected transfer function have the same magnitude 
frequency response, and their phase responses are the negative of one another. 

2.5.4. Allpass Transfer Functions 

An allpass transfer function is any transfer function where the magnitude frequency 
response is unity for all e, 

This can be written as 

A(e j9)A*(e j9 ) = 1 . 

Applying the inverse DTFT, we get 

ak * a*"'k = Ok, 

where ak is the impulse response of A(e j9). Taking Z transforms we see that 

A(z)A*(lIz*) = 1. 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

For rational Z transforms, (2.46) implies that every pole of A(z) is cancelled by a zero of 
A *(1/ z*). Therefore, if A(z) has a pole at z = b, then A *(1/ z*) has a zero at z = b. The latter 
implies that A(z) has a zero at z = 1/ b*. Therefore, any zero or pole must be accompanied by 
a matching pole or zero at the conjugate-reciprocal location. 

Example 2-9. -------------------------
A first-order allpass transfer function is given by 

Z-l_ b* 
A(z) = l' 1-bz-

(2.47) 

The pole-zero plot is shown in Fig. 2-10. Note that the pole and zero fonn a conjugate-reciprocal 
pair. For the value of c shown in the figure, the impulse response will be complex valued. 

Observe that b and 1/ b* have the same angle in the Z plane, but their magnitudes are the 
reciprocal of one another, as shown in Fig. 2-10. 

Example 2-10. -------------------------
Since H(z) and H*(l /z *) have the same magnitude response, the ratio H(z) / H*(l/z*) defines 
an allpass system, regardless of H(z). 

Even stronger, every rational allpass transfer function can be written as the ratio of one 
FIR transfer function to its reflection, up to a constant and a delay. Specifically, consider a 
transfer function of the form 
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Im{z} 
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Fig. 2-10. The pole-zero plot for a first-order all pass filter. 

(2.48) 

This can be rewritten as 

A(z) = e jU B(z) 
zN-MB*(lIz*) , 

(2.49) 

Such a transfer function is allpass, 

IA(e j9) I = I B(ej8 ) I = 1 . 
ej(N - M)8 B* (e j8 ) 

(2.50) 

Note that if N::?! M, the tenn zeN - M) in the denominator contributes N - M poles at z = 0 and 
N - M zeros at I z 1= 00, the conjugate-reciprocal of o. If N < M, then this tenn puts zeros z = 0 
and poles at I z 1=00. Thus, poles and zeros at zero and infinity also come in conjugate
reciprocal pairs. Since poles and zeros must come in conjugate-reciprocal pairs, any rational 
allpass transfer function can be written in the fonn of (2.49). 

2.5.5. Minimum and Maximum-Phase Transfer Functions 
A rational transfer function is said to be strictly minimum-phase when all its poles and 

zeros are inside the unit circle. See Problem 2-28 for the intuition behind the tenn "minimum 
phase." A rational transfer function is strictly maximum-phase when all poles and zeros are 
outside the unit circle. Neither strictly minimum-phase nor strictly maximum-phase transfer 
functions are allowed to have zeros on the unit circle itself. If they have zeros on the unit 
circle, then we call them loosely minimum-phase or loosely maximum-phase. 

A minimum-phase transfer function is both causal and stable. To see why, observe that 
there can be no poles at z = 00, which is clearly outside the unit circle, and hence the transfer 
function H(z) = Lk hkz-k cannot contain any positive powers of z. This implies that the 
sequence hk is causal, a special case of right-sided, which implies that the ROC is outside the 
outennost pole. Finally, since the outennost pole is still inside the unit circle, the ROC must 
include the unit circle, which implies stability. 
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The importance of minimum-phase filters stems largely from the property that, of all 
transfer functions with a given magnitude response, only a minimum-phase transfer function 
can be inverted by a causal and stable (and hence physically realizable) filter. This is because 
zeros of the transfer function become poles of the inverse, and for a strictly minimum-phase 
transfer function, all such poles will end up inside the unit circle. (A loosely minimum-phase 
transfer function does not necessarily have a BIBO stable inverse, but it is still useful because 
it may display a mild form of instability.) If H(z) is minimum-phase and monic, then its 
reflection H*(lIz *) is maximum-phase and monic, and vice versa. 

A minimum-phase sequence is defined as the impulse response of a minimum-phase 
transfer function. Such sequences have useful properties. As noted above, a minimum-phase 
sequence is both causal and stable. Furthermore, a minimum-phase sequence must be nonzero 
at time zero, to prevent a zero at z = 00. Another property heavily exploited by linear prediction 
(Chapter 3) and decision-feedback equalization (Chapter 8) is that, of all sequences with a 
given magnitude response, a minimum-phase sequence has its energy maximally concentrated 
in the vicinity of time zero (see Problem 2-28). 

Any causal and stable rational transfer function can be factored as 

H(z) =A(z)Hmin(z)Hzero(z) , (2.51 ) 

where A(z) is causal, stable, and allpass, Hmin(z) is strictly minimum phase, and Hzero(z) is 
FIR with only zeros on the unit circle and corresponding poles at z = O. The construction of 
this factorization, illustrated in Fig. 2-11, is straightforward. All zeros of H(z) on the unit 
circle are assigned to Hzero(z). To ensure that Hzero(z) is causal, it is given a pole at z = 0 for 
each zero on the unit circle. Such poles may be canceled by zeros at z = 0 in Hmin(z), if 
necessary. All remaining poles in H(z), which must lie inside the unit circle, are assigned to 
Hmin(z). All zeros that lie inside the unit circle are also assigned to Hmin(z). Each zero outside 
the unit circle is assigned to A(z). To make sure A(z) is allpass, it is assigned a pole at the 
conjugate-reciprocal location of each such zero. That pole will be inside the unit circle, 
ensuring that A(z) is causal and stable. To cancel the effect of that pole, a zero at the same 
location is assigned to Hmin(z). When all is done, Hmin(z) should have an equal number of 
poles and zeros, all inside the unit circle. 

o 
H(z) 

o 
A(z) 

Fig. 2-11. Factorization of a causal and stable rational transfer function into an allpass transfer function, 
a strictly minimum-phase transfer function, and a causal transfer function with only zeros on the unit 
circle. Notice that the number of poles at z = 0 is chosen so that there are no poles at z = 00, ensuring 
that each transfer function is causal. 
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We can develop another useful factorization of a stable (not necessarily causal) rational 
transfer function by dividing poles and zeros into four classes: those inside, on, and outside the 
unit circle, plus some zeros at the origin. The factorization is 

(2.52) 

where Hmin(z) is a strictly minimum-phase transfer function containing all the poles and zeros 
inside the unit circle, except possibly for some zeros at the origin, while Hmax(z) is a strictly 
maximum-phase transfer function containing all the poles and zeros outside the unit circle. 
Hzero(z) is an FIR transfer function containing all the zeros on the unit circle (stability rules 
out poles on the unit circle) with corresponding poles at the origin. In addition, we choose 
constants Band L so that Hmin(z) and Hzero(z) are causal and monic (Hmin(oo) = Hzero(oo) = 
1), and Hmax(z) is anticausal and monic (Hmax(O) = 1). 

With these constraints, the factorization is unique. In particular, the terms can always be 
written in the form 

nr= 1(1- ckz-1) 
Hmin(z)=nN ,ICkl <1, Idkl <1, 

k = 1(1-dkz-1) 

Hzero(z)=nf=l(1-ekz-l) , lekl =1, 

nL l(l-h z ) 
Hmax(z) = n J ' Ihl < 1, Igkl < 1. 

k=l(l-gkz) 
(2.53) 

An example will serve to illustrate how we turn a general rational transfer function into this 
canonical form. 

Example2-11. -----------------------------------------------------
Given the rational transfer function 

Hz _(1-0.5z-1)(1-z-1) 
( ) - 1 - 1.25z-1 ' 

(2.54) 

we can write 

H(z) = -0.8z(1- 0.5z-1) 1 _ ~.8z (1 - z-l) . (2.55) 

We can identify B = -0.8, L = 1, and 

Hmin(z) = 1 - 0.5z -1, Hmax(z) = 1- ~.8z' Hzero(z) = 1 - z-l . (2.56) 

Given a transfer function in the second or third form of (2.40), the factorization in (2.52) is simple 
to obtain. 
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2.5.6. Transfer Functions that are Real and Nonnegative 

In the study of random processes, transfer functions S(z) that are real and nonnegative on 
the unit circle, satisfying S(eJ9 ) ~ 0 for all e, arise frequently. (We will see in Chapter 3 that 
such transfer functions are valid power spectral densities.) In this subsection, we study the 
deterministic properties of such transfer functions. 

Arithmetic and Geometric Means 

We will frequently encounter the arithmetic and geometric means of a real nonnegative 
function S(eJ9 ). The arithmetic mean of S(eJ9 ) is defined as 

(S)A = 1.- r S(eJ9 )d9, 
2n -1t 

(2.57) 

which has the interpretation as the average value of S(eJ9 ). Similarly, the geometric mean is 
defined as 

(2.58) 

The base of the exponential and logarithm must agree but otherwise do not affect the value of 
the geometric mean. The geometric mean is a generalization of the more familiar two-variable 
mean Jab or three-variable mean (abc)1/3 to a continuum of variables; it can be derived by 
taking N uniformly spaced samples of S(eJ9 ) over the interval [-n, n), raising the product of 
these N samples to 1 IN, then letting N go to infinity. 

The integral form of the geometric mean does not always behave as expected. For 
example, although the geometric mean of a finite set of numbers will be zero whenever one of 
the numbers is zero, the geometric mean of a rational function S(eJ9 ) will never be zero, even 
if there are several values ofe for which S(eJ9 ) = O. (This fact is a consequence of Theorem 2-
1 below.) 

Example2-12. -----------------------------------------------------
The geometric mean of S(eJ9 ) = 2 - 2sin(e) is unity, despite the fact that this function is zero at 
e = n12. The arithmetic mean is two. 

The arithmetic and geometric means have several useful properties. Jensen's inequality 
implies that 

(2.59) 

with equality if and only if S(eJ9 ) is constant for all e. In this case, both means reduce to the 
constant itself, 

(2.60) 

Similarly, 

( a . S )0 = a . ( S )0 . (2.61) 
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Im{z} 0l/c* 
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(2) 

Fig. 2-12. An example of a pole zero plot for an S(z) that is real valued on the unit circle. 

Let S(e j9 ), p(ej9 ), and Q(ej9 ) all be nonnegative real. Then the arithmetic mean also obeys the 
distributive law, 

(2.62) 

but the geometric mean does not. Conversely, the geometric mean obeys the multiplicative law 

( SP) = (S)a(P)a 
Q a (Q)a' 

(2.63) 

which the arithmetic mean does not. 

Spectral Factorization 

Example2-13. ----------------------------
The product of any transfer function and its reflection, 

S(z) = H(z)H*(lIz*) , (2.64) 

is always real and nonnegative, regardless of H(z), since: 

(2.65) 

Furthennore, observe that: 

S(z) = S*(lIz*). (2.66) 

Obviously, the right-hand side in this equation is zero (or infinity) whenever the left-hand side is 
zero (or infinity). This implies that, a zero (or pole) of S(z) at Zo must be accompanied by a zero 
( or pole) at 11 zo. Hence, the zeros ( and poles) come in conjugate-reciprocal pairs. 

Example 2-14. --------------------------
An example pole-zero plot fora transfer function of the fonn (2.64) is shown in Fig. 2-12. The zero 
at z = c has a matching zero at z = 11 c*. The pole at z = d also has a matching pole. The double 
zero at z = 1 illustrates another implication of (2.64); any zero on the unit circle must be double. 
The pole at z = 0 has a matching pole at I z 1=00. Although the latter pole is not explicitly shown, 
it is implied because only three poles are shown, compared to four zeros. Note that the impulse 
response sk is not real for this example, but nonetheless the frequency response S(e j9) is. 
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The conjugate-reciprocal symmetry of (2.66) is not the same as that found for allpass filters. 
Rather than having zeros inside the unit circle matched by zeros outside, and poles inside 
matched by poles outside, as shown in Fig. 2-12, an allpass filter has poles matching zeros, 
and zeros matching poles. While allpass filters can be causal, only a trivial (constant) non
negative real transfer function in the form of (2.64) can be causal. 

The above examples show that multiplying a rational transfer function by its reflection 
produces a rational transfer function that is real and nonnegative. In fact, every such transfer 
function can be written in this way, and the decomposition is unique when one of the factors is 
constrained to be monic and loosely minimum phase. 

Theorem 2-1. (Spectral Factorization Theorem.) Any rational S(z) that is real and nonne
gative on the unit circle can be factored uniquely as 

S(z) =rM(z)M*(llz*) , (2.67) 

where M(z) is a monic and loosely minimum-phase rational transfer function, 

I1£'f= 1 (1- ckz- 1) 
M(z) = I1N ' I Ck I :5 1, I dk I < 1 , (2.68) 

k=1(1-dkz-1) 

and where r = ( S)G is the geometric mean of S(ej9 ), 

(2.69) 

Equation (2.67) is the monic minimum-phase spectral factorization of S(z). It is obtained 
from S(z) by accumulating within M(z) all the poles and zeros of S(z) within the unit circle, 
plus half of each of the zeros of S(z) on the unit circle. This factorization is illustrated in 
Fig. 2-13, where we have, from left to right, the original S(z), the loosely minimum-phase 
term (poles and zeros inside or on the unit circle), and its reflected transfer function. It is a 
remarkable fact that the constant r, which is real and positive and was ostensibly chosen to 
allow M(z) to be monic, is equal to the geometric mean of S(e j9 ). 

S(z) M(z) M*(l/z*) 

o 

Fig. 2-13. Spectral factorization of a transfer function S(z). which is non-negative real on the unit circle. 
The zero at z = 1 has multiplicity two (in general its multiplicity could be any even integer). These two 
zeros on the unit circle are split between M(z) and M"(l / z"). 
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The spectral factorization theorem is proved in Appendix 2-B for rational spectra. 
Nevertheless, the theorem applies to nonrational spectra as well, provided that the geometric 
mean in (2.69) is nonzero and finite, which implies that S(z) satisfies the Paley-Wiener 
condition [8]. 

2.6. Signals as Vectors 

It is possible to abstractly represent the signals in a digital communication system as 
vectors in a linear space or vector space, much like the familiar three-dimensional vectors in 
our physical world. This representation does not allow us to solve any problems that cannot be 
solved by other methods, but it gives valuable intuition. 

2.6.1. Linear Spaces and Subspaces 

A linear space or vector space is a set of elements called vectors together with two 
operators, addition of vectors and multiplication by a scalar. 

Example 2-15. -------------------------
Ordinary Euclidean space is the most familiar example of a linear space. In n-dimensional 
Euclidean space, a vector is specified by its n coordinates, 

(2.70) 

where the superscript ( . )T denotes a transpose. There are rules for adding two vectors (sum the 
individual components) and multiplying a vector by a scalar (multiply each of the components by 
that scalar). 

Example 2-16. -------------------------
A space of some importance in this book is the Euclidean space of complex-valued vectors. Vectors 
in this space are identical to (2.70) except that the components xk of the vector are complex-valued. 
Ordinary (real) Euclidean space is a special case, in which the imaginary parts of the vectors are 
zero. 

More abstract linear spaces may be defined, as long as the addition and scalar 
multiplication operations satisfy certain constraints. The addition rule must produce a new 
vector X + Y that must be in the linear space. Addition must obey familiar rules of arithmetic, 
such as the commutative and associative laws, 

X+y=y+X, X+(Y+Z)=(X+Y)+ Z. (2.71) 

The direct sum of two vectors has the interpretation illustrated in Fig. 2-14(a) for the two
dimensional Euclidean space. A linear space must include a zero vector 0, and every vector 
must have an additive inverse, denoted -X, such that 

O+X=X, X+(-X)=O. (2.72) 

Multiplication by a scalar a produces a new vector a· X that must be in the vector space. 
Multiplications must obey the associative law, 
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a·([3·X) = (a[3)·X (2.73) 

and also follow the rules 

l·X=X, O·X=O. (2.74) 

The geometric interpretation of multiplying a vector by a scalar is shown in Fig.2-14(b). 
Finally, addition and multiplication must obey the distributive laws, 

a·(X+Y) =a·X + a·Y, (a + [3)·X = a·X + [3-X. (2.75) 

Real linear spaces are defined in terms of real-valued scalars, while complex linear spaces have 
complex-valued scalars. We will encounter both types. 

Euclidean space as defined earlier meets all of these requirements, and is therefore a linear 
space. There are less obvious examples. 

Example 2-17. 
The set of all complex-valued discrete-time signals of the form {Yk} that have finite energy, so that, 

(2.76) 

is a linear space; it can be viewed as a generalization of the n-dimensional Euclidean space of 
(2.70) to the case in which the number of components is infinite. Scalar multiplication and vector 
addition are the same as for Euclidean spaces. 

Example2-18. -----------------------------------------------------
The set of complex-valued continuous-time signals y( t) that have finite energy, 

(2.77) 

is a linear space. We can think of this space as a strange Euclidean space with a continuum of 
coordinates. The definition of multiplication of a signal vector by a scalar and the addition of two 
signal vectors are the natural and obvious, and the definition of a zero vector is the zero-valued 
signal. 

X+Y 

(a) 

Fig. 2-14. Elementary operations in a two-dimensional linear space. 
(a) Sum of two vectors. (b) Multiplication of a vector by a scalar. 

2·X 
x 

(b) 
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Fig. 2-15. Subspaces in three-dimensional Euclidean space. 
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A subspace of a linear space is a subset of the linear space that is itself a linear space. 
Roughly speaking this means that the sum of any two vectors in the subspace must also be in 
the subspace, and the product of any vector in the subspace by any scalar must also be in the 
subspace. 

Example 2-19. -------------------------
An example of a subspace in three-dimensional Euclidean space is either a line or a plane in the 
space, where in either case the vector 0 must be in the subspace. 

Example 2-20. -------------------------
A more general subspace is the set of vectors obtained by forming all possible weighted linear 
combinations of n vectors Xl> ... , Xn. The subspace so formed is said to be spanned by the set of 
n vectors. This is illustrated in Fig. 2-15 for three-dimensional Euclidean space. In Fig. 2-15(a), the 
subspace spanned by X is the dashed line, which is infinite in length and co-linear with the vector 
X. Any vector on this line can be obtained by multiplying X by the appropriate scalar. In 
Fig. 2-15(b), the subspace spanned by X and Y is the plane of infinite extent (depicted by the 
dashed lines) that is determined by the two vectors. Any vector in this plane can be formed as a 
linear combination of the two vectors multiplied by appropriate scalars. 

The most famous subspace encountered in digital communications is called signal space, 
and is defined in the context of a digital transmitter that transmits one of M possible signals 
{Sl(t), S2(t), ... sM<t)}. In this setting, the signal space S is defined as the span of the M 
signals: 

(2.78) 

In other words, S is the set of all signals that can be expressed as a linear combination of 
{Sl(t), S2(t), ... sM<t)}. 

Example 2-21. -------------------------
Given a binary signal set with sl (t) and s2( t) shown in Fig. 2-16(a), the signal spaceS contains an 
uncountably infinite number of signals, four examples of which are shown in Fig. 2-16(b). Because 
adding any two signals inS produces another signal inS, it is itself a linear space. 
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(b) 

(a) 

Fig. 2-16. (a) Two signals sl(t). s2(t); (b) four examples of signals that are in S = span{sl(t), s2(t)}. 

2.6.2. Inner Products 
The definition of a linear space does not capture the most important properties of 

Euclidean space; namely, its geometric structure. This structure includes such concepts as the 
length of a vector, the distance between two vectors, and the angle between two vectors. All 
these properties of Euclidean space can be deduced from the definition of an inner product of 
two vectors, defined for n-dimensional Euclidean space by 

( X, Y) = L7 = 1 Xi Yi* 

=Y*X, (2.79) 

where Yi* is the complex conjugate of the scalar Yi, and y* is the conjugate transpose ofthe 
vector Y. The squared length of the vector is denoted II X 112, and is defined by II X 112 = 
(X,X) =X*X=L7= llXi 12. 

The inner product as applied to Euclidean space can be generalized to the other linear 
spaces of interest. The important consequence is that the geometric concepts familiar in 
Euclidean space can be applied to these spaces as well. Let X and Y be elements of a linear 
space; they might represent vectors (Example 2-15), or discrete-time sequences 
(Example 2-15), or continuous-time waveforms (Example 2-15). Then the inner product 
(X, Y) is a mapping from two elements of the linear space to a scalar (real or complex, 
depending on the scalar field associated with the linear space), and it must obey the rules 

(X + Y, Z) = (X, Z) + (Y, Z) 
(a·X,Y) = a(X, Y), (X, Y)= (Y,X)* 

(X,X) > 0, forX:;cO. (2.80) 

We again adopt the shorthand notation II X 112 = ( X, X ), where" X" is called the norm ofX. 
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These rules are all obeyed by the familiar Euclidean space inner product of (2.79), as can 
be easily verified. For the other linear spaces of interest, analogous definitions of the inner 
product satisfying the rules can be made. In particular, for discrete-time signals, the inner 
product and norm are defined by 

(2.81) 

which is a natural extension of the finite-dimensional case. For continuous-time signals, the 
summation becomes an integral, and the inner product is defined as 

(x(t),y(t»=[ x(t)y*(t)dt, II X(t) 112 = [ Ix(t) 12 dt. (2.82) 

Exercise 2-13. 
Verify that the definitions of inner product of (2.81) and (2.82) satisfy the properties of (2.80). 

All valid inner products satisfy the Schwarz inequality, which bounds their magnitudes: 

Exercise 2-14. 
(The Schwarz Inequality.) Show that for two elements X and Y of an inner product space, 

I(X, Y)I :=;IIXII·IIYII, (2.83) 

with equality if and only if X = K· Y for some scalar K. 

In the context of continuous-time signals, the inner product (2.82) is also called the 
correlation of x( t) with y( t), and its computation arises frequently. Intuitively, the correlation 
measures how closely the two signals resemble one another. At one extreme, when x( t) and 
y( t) are identical, the correlation reduces to the energy J 1 x( t) 12 dt. At the other extreme, the 
two signals are said to be orthogonal when the correlation is zero, (x( t ), y( t) ) = 0, which is 
sometimes written as x( t) -L y( t). In general, two element signals or vectors X and Y are said 
to be orthogonal whenever ( X, Y ) = 0, in which case the shorthand X -L Y is used. 

The geometric properties are so important that the special name inner-product space is 
given to a linear space on which an inner product is defined. Thus, both Example 2-17 and 
Example 2-18 defined earlier are inner-product spaces. If the inner product space has the 
additional property of completeness, then it is defined to be a Hilbert space. Intuitively the 
notion of completeness means that there are no "missing" vectors that are arbitrarily close to 
vectors in the space but are not themselves in the space. Since the spaces used in this book are 
all complete and hence formally Hilbert spaces, we will not dwell on this property further. 

2.6.3. Projection onto a Subspace 
Let J{ be a Hilbert space, and let S be a subspace of Jf. We are often interested in finding 

an element of S that best matches a given element of'Jl We define the projection on S of any 
X E J{ as the unique element XES that is "closest" to X, satisfying 
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IIX-XII = minllX- YII· (2.84) 
YeS 

The projection theorem, which is proven in [1], states that XES is the projection if and only if 
the projection error X - X is orthogonal to the subspace onto which X is being projected. 

Theorem 2-2. (Projection Theorem.) Let 9lbe a Hilbert space, and let Sbe a subspace 
of 9f. Then the projection XES of X onto S satisfies (2.84) if and only if 

(X-X) 1. Y, for all Y ES. (2.85) 

It is instructive to show how this orthogonality condition implies (2.84). Because X E!J{ and 
YES, we can decompose the difference X - Y as the sum of X-X 1. S and X - YES; this 
decomposition is illustrated below: 

As a consequence, we have 

II X - Y 112= II X - X + X _ Y 112 

= IIX- XI12 + II X - Y 112 + 2Re{(X- X, X- Y)}. (2.86) 

The projection theorem guarantees that X - YES is orthogonal to the projection error, so that 
the last term is zero, yielding: 

(2.87) 

This is a Pythagorean theorem: the left-hand side is the squared hypotenuse of a right-angle 
triangle, and the right-hand side adds the squared height to the squared base. The squared 
height is independent of YES. Clearly, therefore, the sum is minimized by choosing Y = X, 
which collapses the base to zero, thus implying (2.84). 

Example 2-22. -------------------------
A projection is illustrated in Fig. 2-17 for three-dimensional Euclidean space, where the subspaceS 
is the plane formed by the x-axis and y-axis and X is an arbitrary vector. The projection is the result 
of dropping a perpendicular line from X down to the plane (this is the dashed line). The resulting 
vector (X-X) is the vector shown parallel to the dashed line. It is orthogonal to the plane S, and 
hence to every vector in S. 

Example 2-23. -------------------------
Let S= span{sl(t), S2(t)} be the linear subspace spanned by two rectangular waveforms of 
Example 2-21. Then the projection r( t) of a truncated sinusoid r( t) onto S is sketched in 
Fig. 2-18. 



Sect. 2.6 Signals as Vectors 39 

x 

S 

Fig. 2·17. The vector inS closest toX is evidently X; any other vector inS is farther from X. 

Fig. 2·18. The projection of a sinusoid onto the subspace spanned by two rectangular pulses. 

2.6.4. Projection onto the Signal Space 
When a digital transmitter transmits one of M signals {SI (t), ... S M t)}, it is common for 

the receiver to project the received signal r( t) onto the signal space spanned by the M signals. 
(The motivation for this projection will be explained in later chapters.) In concept this 
projection can be found by searching in a brute-force manner the subspace for the signal 
closest to the r( t), but in practice it is much more efficient to project r( t) onto a collection of 
one-dimensional subspaces and combine the results, as described below. 

A set of functions {«PI (t), «P2( t), ... } is said to be orthonormal when each signal has unit 
energy, and distinct signals are orthogonal, so that: 

(2.88) 

An orthonormal basis for the signal space S= span{SI(t), ... sMt)} is a minimal set of N 
orthonormal functions {«PI (t), ... «PM t)} with the property that every element s( t) E S can be 
expressed as a linear combination of basis functions: 

N 
s( t) = Li = 1 Si«Pi( t) . (2.89) 

Any signal r( t) can now be expressed as a sum r( t) = r( t) + e( t), where 
r( t) = L~= {ieM t) is the projection of r( t) onto S, and e( t) = r( t) - r( t) is the projection 
error. The j-th expansion coefficient rj of the projection is found by taking the inner product of 
r( t) with the j-th basis function: 
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[r(t)~l(t)dt = (r(t), ~it» 

= ( r( t) + e( t), ~j( t) ) 

= ( r( t), ~i t» + (e( t), ~i t) ) 

= ( Lf= 1ri~i(t), ~it» + 0 

(2.90) 

The second equality follows from the fact that the projection error e( t) is orthogonal to 
everything in S, including ~i t). 

Since the k-th signal sk( t) is an element of S, it too can be expanded in terms of a basis: 

N 
sk(t) = ~. Sk i~i(t) . 

LJ,= 1 ' 
(2.91) 

This expansion is most useful when the number of basis functions is smaller than the size of 
the original signal set, or N < M. 

Example 2-24. -------------------------
A brute force implementation of an M-ary transmitter might consist of a bank of M waveform 
generators, one for each waveform, with a switch connecting the selected waveform to the 
transmission medium. This is very inefficient when M is large (and Mas high as 256 is not 
uncommon). In contrast, a transmitter that generates siC t) using the expansion (2.91) would need 
only N waveform generators. 

Naturally, there are two pertinent questions: How small can N be? And what are the 
corresponding Nbasis functions? The answers to both questions can be found using the Gram
Schmidt orthonormalization procedure. 

The Gram-Schmidt Orthonormalization Procedure 

The Gram-Schmidt orthonormalization procedure is a systematic method for converting a 
set of Mwaveforms {Sl(t), ... sM<t)} into an orthonormal basis {~1(t), ... ~Mt)} of size N 
for their span, with N as small as possible. Let the first basis function be: 

sl (t) 
~1 (t) = IIs 1 (t)11 ' (2.92) 

where the denominator is the square root of the energy of sl(t). (The signals may have to be 
reordered to ensure that this energy is nonzero.) This defines a one-dimensional subspace 
Sl = span{~l(t)}. If we let s2(t) denote the projection of s2(t) onto this subspace, then the 
projection error will be orthogonal to Sl; in particular, S2(t) -s2(t) 1. ~l(t). Thus, if we 
normalize the projection error to have unit energy, we produce a second basis function: 

(2.93) 
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Now (I>! (t) and <Jl2( t) are unit-energy and orthogonal. But what if the denominator in (2.93) is 
zero? This would imply that already S2( t) E S1> and so the projection error is zero. In this case 
we do not use (2.93), but instead we move s2( t) to the end of the list and renumber the signals 
so that s2(t) becomes the new sM<t), s3(t) becomes the new s2(t), s4(t) becomes the new 
S3( t), etc. 

The Gram-Schmidt procedure repeats the above process M times. Let sk( t) denote the 
projection of sk( t) onto the span of {<Jll (t), ... <Jlk _ l( t)} for k E {2, ... , M}. Ifthe projection 
error sk( t) - sk( t) is zero, renumber the signals by moving Sk( t) to the end of the list. 
Otherwise, the k-th basis function can be found by normalizing the k-th projection error: 

(2.94) 

The Gram-Schmidt orthonormalization procedure is defined by the recursion (2.94), together 
with the initialization (2.92) and the renumbering strategy. If all M - 1 of the projection errors 
are nonzero, then the signals are linearly independent and the final number of basis functions 
N will be the same as the number of signals, N = M. Each zero projection error would 
decrease the number of basis functions by one, yielding N < M. The dimension of S is the 
number N of basis functions. The basis functions themselves are not unique; reordering the 
signals {Si( t )} will generally lead to a different basis. However, the dimension N is fixed and 
independent of the basis. 

Example2-25. -----------------------------------------------------
Recall the signal space S spanned by the two rectangular pulses of Fig. 2-16(a). There are an 
infinite number of possible bases for this space. Three examples are shown below: 

I I ~l(t). [=-=J . ~l(t)1 I I. 

~2(t)D . 
~ -&-

The basis on the left is found by nonnalizing sl (t) and S2( t), since they are already orthogonal. 
However, this basis is by no means unique. We may apply the Gram-Schmidt procedure to any pair 
of linearly independent signals in S to find a basis. For example, applying the procedure to the first 
two signals in Fig. 2-16(b) yields the middle basis shown above, and applying the procedure to the 
same two signals but in reverse order yields the last basis shown above. 

2.6.5. The Geometry of Signal Space 

Once we find an orthonormal basis {<Jl1 (t), ... <JlN< t)} for the signal space S spanned by 
{sl (t), '" sM< t)}, the k-th signal sk( t) may be expressed as a linear combination of basis 
functions according to (2.91), where the coefficients are given by: 
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Sk,i = [sk(t)lI>i(t)dt. (2.95) 

Hence, in the context of a basis {1I>1 (t), ... II>N< t)}, the k-th signal is uniquely specified by the 
N expansion coefficients. Thus, we may associate with each signal Sk( t) E S the vector 

8k = [Sk,l> sk,2, ... Sk,N]T, 

which uniquely specifies the signal. 

(2.96) 

A remarkable consequence is that operations on sl(t) ... sM<t) can be interpreted as like 
operations on the signal vectors 81 ... SM. In particular, observe that: 

( si< t), Sk( t» = r si< t )Sk( t )dt 
-00 

(2.97) 

Hence, the inner product between two signals in S is identical to the inner product of the 
corresponding coefficient vectors in N-dimensional complex Euclidean space. Furthermore, as 
a special case of (2.97) when j = k, we have: 

(2.98) 

In words, the energy of the signal is the squared length of its corresponding vector. Finally, if 
we apply this result to the difference between two signals, we find that: 

II si< t) - Sk( t) 112 = r 1 si< t) - Sk( t) 12 dt = II Sr Sk 112 . (2.99) 
-00 

Hence, the energy in the error between two signals is equal to the squared distance between 
the two corresponding vectors. 

Observe that (2.98) is a form of Parseval's relationship: the energy of a signal in one 
domain (the time domain) is equal to its energy in another. For this reason, (2.97) may be 
viewed as a generalized Parseval's relationship: the inner product in one domain is equal to the 
inner product in another. See Problem 2-4 and Problem 2-5. 
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(x,y) = IIx lillY IIcos(a) 

Fig. 2-19. Geometrical interpretation of inner product. illustrated in the plane spanned by x and y. 

The implication of the equivalence (2.97) is that, by equating signals with their vector 
counterparts in Euclidean space, we can now adopt geometric intuition when thinking about 
continuous-time signals. The power of this tool stems from our considerable experience and 
intuition regarding Euclidean space. For example, we may think of signals as being close to 
one another when the distance between their vectors is small, i.e., when the energy of the error 
is small. Or we may think of two signals as being orthogonal, or at right angles, when their 
correlation is zero. 

When the signals are real, the signal vectors {81' ... 8M} live in real Euclidean space of N 
dimensions. In this case, the inner product defines the angle between two signals. Consider the 
correlation between two signals x(t) and y(t); as illustrated in Fig. 2-19, the correlation is 
equal to the product of the length of the first vector, the length of the second vector, and the 
cosine of the angle between the vectors. The angle 0 between two signals x( t) and y( t) is the 
angle between the two signal vectors x and y. Note that II x IIc08(O) is the length of the 
component of x in the direction of y. Hence we get a particularly useful interpretation of 
correlation: t x( t )y(t) dtl(J:' Iy( t) 12dt )112 = (x( t), y( t) )/1IY(t) II is the length of the 
component of x( t) in the drrection of y( t), and (y( t), x( t) ) III x( t) II is the length of the 
component of y( t) in the direction of x( t). Here, the length of a signal is the square root of its 
energy. 

Example 2-26. -------------------------
Consider 81 (t) and 82( t) as defined in Fig. 2-16(a), and define 83( t) through 86( t) as the four 
signals in Fig. 2-16(b) from top to bottom. Given a basis for the span S of these signals, each can be 
represented as a two-dimensional vector of expansion coefficients. For example, in terms of the first 
basis of Example 2-25, the vectors 81 through 86 corresponding to 81 (t) through 86( t) are shown 
in Fig. 2-20(a). Fig. 2-20(b) shows how the same signals map to vectors when the second basis of 
Example 2-25 is used. Finally, Fig. 2-20(c) corresponds to the last basis of Example 2-25. Observe 
that the picture in (b) is a reflected and rotated version of that in (a), while the picture in (c) is a 
rotated version (by about 34°) ofthat in (a). As a result, the geometric relationships between signals 
is invariant to the choice of the basis: the distance between 82 and 83 (for example, or the angle 
between 84 and 85) is the same regardless of which basis is chosen. This invariance is a general 
result that follows from the generalized Parseval's relationship of (2.97): since the left-hand side of 
(2.97) is clearly independent of the basis, the right-hand side must be as well. 
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Fig. 2·20. A geometric representation of the six waveforms of Fig. 2·16. Regardless of whether basis 
(a), basis (b), or basis (c) is used, the geometric relationships between the different signal vectors 
remain the same. 

Further Reading 

~ 

Many textbooks cover the topics of this chapter in a more introductory and complete 
fashion than we do here. McGillem and Cooper [2], Oppenheim and Willsky [3], and Ziemer, 
Tranter, and Fannin [4] are useful for techniques applicable to both continuous and discrete
time systems. For discrete-time techniques only, the texts by Oppenheim and Schafer [5] and 
Jackson [6] are recommended. For continuous-time systems, with some discussion of discrete
time systems, we recommend Schwarz and Friedland [7]. To explore the Fourier transform in 
more mathematical depth, we recommend Papoulis [8] and Bracewell [9]. 

Appendix 2-A. 
Properties of the Fourier Transform 

The properties of both discrete and continuous-time Fourier transforms are summarized in 
this appendix. We define the even part fee x) and odd part foe x) of a function f( x) to be 

so for example, 

fe(x) = ~ [((x) + f*(-x)] , 

fo(x) = ~ [((x) - f*(-x)] , 

XeCei9 ) = ~ [X(e j9 ) + Xe *(e -j9)]. 

(2.100) 
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We define the rectangular function as follows, 

rect(t, T) = ' {
I. 

0, 

It I :::; T 
It I >T' 

and the unit step function for continuous-time and discrete-time signals as 

{
I. 

u(x) = ' 
0, 

x~O 

x<O' 
uk= ' {

I. 

0, 

k~O 

k<O 

45 

(2.101) 

(2.102) 
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Table 2-1. Fourier Transform Symmetries. 

Continuous time Discrete time 

x(t) B X(f) Xk B X(eJ"fJ) 

x(-t) B X(-f) x-k B X(e-fo ) 

x*(t) B X"( -f) X*k B X"(e-J"fJ) 

x*(-t) B X"(f) x*-k B X*(e j9) 

Re{x(t)} B X.(f) Re{xk} B Xe(eJ"fJ) 

}lm{x(t)} B Xc,(f) jlm{xk} B Xo(e j9) 

xe(t) B Re{X(f)} x •• k B Re{X(e j9)} 

xo(t) B jlm{X(f)} xo.k B jlm{X(ej~} 

Table 2-2. Fourier Transform Properties. 

Continuous time Discrete time 

ax(t) + by(t) B aX(f) + bY(f) axk+ bYk B aX(eJ"fJ) + b Y(e i9) 

x(t) * yet) B X(f)Y(f) Xk * Yk B x(eJ"fJ) Y(e fo) 

x(t)y(t) B X(f) * Y(f) xkYk B ..!.. r X(e i C1.) Y(e j(9 - C1.»da 
2n -:It 

x(at) B ~x(~ 
x(t -'t) B e -j21tftX( f) xk-N B e -iNf!X(eJ"fJ) 

ej21tfotx( t ) B X(f -fO> ej90kxk B X(ej(e - eol) 

cos(21tfot)x( t) 1 1 cos(9ok)xk ! X(ej(e - 9ol) + ! X(e j(9 + 9ol) B 2X(f -fO> + 2X(f + fo) B 
2 2 

dOl 
dtm x(t) B (j21tf)mX(f) 

(-j21tt)mx( t) B 
dOl 
d{mX(f) 

[x(t)d't B 1 1 r j21t{X({) + 2S({) _ x(t) d't 
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Table 2-3. Fourier Transform Pairs 1 

ej21tfot H a(f - fo) e j80k H 21ta( 9 - 90> 

a(t - to) H e-j21tfto ak-d H e-jd8 

cos(21tfot) H ~ S(f - fo) + ~ a(f + fo) cos(90k) H 1[a(9 - 90) + 1[a(9 + 90) 

sin(21tfot) H b a(f - fo) - b a(f + fo) sin(90k) H ~a(9-90>- ~a(9+90) 
} } 

sin1tWI 1 W sinWkT 
;T rect( 9, W) ltWt H W rect(f, "2) WkT 

H 

e-atu( t) T7--; Re{a} > 0 r-kuk H 
1 

H 
1- r-ie-iO } 1t +a 

L:=_a(t-mT) H .!. L~ a(f -!) L~ ak-mN H ~L~ a(a_ 21tk) 
T k=- T m=....oo N k=_ N 

rect(t, T) H 
2Tsin1tfT 

1tfT 

1. 
1t1 H -jsign(f) 

I. The discrete-time Fourier transform expressions X(e j8 ) in the right column are valid only in the range 
-1[ $; 9 < 1[. To extend this range, the given expression should be repeated periodically. 

Appendix 2-8. 
Spectral Factorization 
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The derivation of the spectral factorization theorem (2.67) is straightforward, relying 
almost entirely on two facts: If 8(z) is real and nonnegative on the unit circle, then 

(i) its poles and zeros must come in conjugate-reciprocal pairs; and 
(ii) any zeros on the unit circle must be of even order. 

To prove (i), observe that if 8(e j9 ) is real (but not necessarily nonnegative) then 
8(e j9 ) = 8*(e j9 ) for all 8. Taking the inverse DTFT yields Sk = s:'k> and taking the Z 
transform yields 8(z) = 8*(1Iz*). Since the right-hand side is zero whenever the left-hand 
side is zero, it follows that a zero (or pole) of 8(z) at Zo must be accompanied by a zero (or 
pole) at 1/ Z6. Hence, the zeros (and poles) come in conjugate-reciprocal pairs. 
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The result (i) eXj,loits only the real nature of S(eje ), and hence it does not rule out the 
possibility that See) ) might change sign at one or more values of 9. When S(e)e) cannot 
change sign, we find that the zeros of S(z) are further constrained such that any zeros on the 
unit circle must be of even order. This is fact (ii). 

The proof of fact (ii) is by contradiction; any zeros of odd order would imply that S(eje ) 
changes sign. Specifically, suppose zo = ejeo is a zero of order k, so that S(z) can be factored 
as 

(2.103) 

where S(z) is what remains after all zeros at zo have been factored out, so that S(zo) ;f::. O. To 
compare the sign of S(e je ) just before and just after 90, consider the ratio: 

S(e j (80 H» = (ej(90+E)_ej90)k S(ej (80 H» 

S(ej (80 -E» ej (90 -E) _ ej80 S(ej (80 -E» 

= ( ejE _ l)k ~(ej(90 H» 
e-)E -1 S(e)(80 -E» 

_ k jkE S( e j (90 H» 
- (-1) e - '(8 ) . 

See) O-E) 
(2.104) 

This ratio will be negative when S(e je ) has a different sign at 90 - £ than at 90 + £, and will be 
positive when the sign is the same. In the limit as £ ~ 0, the sign of the ratio determines 
whether or not S(eje ) changes sign as 9 passes through 90, But 

k 'k S(ej (90 H» 
= (-1) lim e) E-=-_~.-:-:---,,-:. 

E--70 S(e)(80 -E) 

= (_l)k, (2.105) 

whereS(ej (8oH»IS(e j (80-E») ~ 1 as £ ~ 0 follows from the continuity of rational 
functions. It is thus clear that if S(e je ) does not change sign at 90 then the order k of the zero 
must be even. 

Having proven (i) and (ii), the spectral factorization theorem now follows by construction. 
First, assign all poles and zeros that are inside the unit circle to M(z). Second, assign half of 
each of the zeros that are on the unit circle to M(z). Together, (i) and (ii) imply that M*(lIz*) 
will automatically account for all remaining poles and zeros. Finally, choose the constant y2 so 
that M(z) is monic. 

Before we derive y2, we must establish the following fact: 

(2.106) 

In other words, the geometric mean of 1 M(e je ) 12 is unity for any first-order filter M(z) that is 
monic and loosely minimum phase. To see why, write b in polar form, b = aej<p with 0 < a ~ l. 
Then the logarithm of the geometric mean reduces to 
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21 (log 11- aej$e -j8 12 de = ! (IOg(l + a2 - 2acos(e» de, 0 < a ~ 1 . 
1t -1t 1t 0 

(2.107) 

Note that the angle <I> ofthe zero does not affect the integra1. Integral (2.107) can be found in 
standard integral tables, which show that it evaluates to zero, thus establishing (2.106). 

To derive y2, replace z by e j8 in (2.68) to get 

nM 11 -j81
2 j8 _ 2 k = 1 - cke 

See ) - Y nN I -'81 2 ' 
k = 1 1- dke J 

(2.108) 

Taking the geometric mean of both sides, and using (2.63) and (2.106), yields 

nM I '81 2 S - 2 k=l(l-cke-J )G 
()G-(Y)GnN (I d -'812) 

k = 1 1- ke J G 

= y2. (2.109) 

This establishes (2.69). 

Problems 

Problem 2-1. A system with a complex-valued input and output can be described in terms of systems 
with real-valued inputs and outputs, as shown in Fig. 2-2. Show that if the impulse response of the 
system is real-valued, then there is no crosstalk (or cross-coupling) between the real and imaginary 
parts, whereas if the impulse response is complex-valued then there is crosstalk. 

Problem 2-2. 

(a) Show that ej21tft is an eigenfonction of a continuous-time LTI system with impulse response 
h( t), meaning that the response to this input is the same complex exponential multiplied by a 
complex constant called the eigenvalue. 

(b) Show that e j21tfkT is an eigenfunction of a discrete-time LTI system with impulse response hk . 

(c) Show that for a fixed f the eigenvalue in (b) is the Fourier transform H(ej21tfT) of the discrete
time impulse response hk. Specifically, show that when the input is e j21tfkr, the output can be 
written 

(2.110) 

Hence that magnitude response 1 H(e j21tfF) 1 gives the gain of the system at each frequency, and 
the phase response L(H(e j21tfF» gives the phase change, 
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Fig. 2-21. The mixed continuous and discrete-time system of Problem 2-3. 

Problem 2-3. Consider the mixed discrete and continuous-time system in Fig. 2-21. The impulse 
generator converts wk to its PAM representation w( t), according to (2.2). The rate is the same as that of 
the sampler, namely 11 T. 

(a) Find the Fourier transform of y( t). 

(b) Is the system linear? Justify. 

(c) Find conditions on G(f), H(ej2nfI), and/or F(f) such that the system is time invariant. 

Problem 2-4. Derive Parseval's relationships for the energy of a signal: 

Problem 2-5. Derive the generalized Parseval's relationships: 

[x(t)y*(t) dt = [X(f)Y*(f) df, 

(2.111) 

(2.112) 

Problem 2-6. Given that a discrete-time signal xk is obtained from a continuous-time signal x( t) by 
sampling, can you relate the energy of the discrete-time signal to the energy of the continuous-time 
signal? What if the continuous-time signal is known to be properly bandlimited? 

Problem 2-7. Given a discrete-time system with impulse response hk = Dk + Dk _ h what is its transfer 
function and frequency response? If the input is hk = cos(8ok) what is the output? Show that the system 
has a phase response that is piecewise linear in frequency. 

Problem 2-8. Show that the phase response <1>( f) = L(H( f) of a real system is anti symmetric. 

Problem 2-9. What is the impulse response of a real system that produces a constant phase shift of <I> 

and unity gain at all frequencies? Such a system is called a phase shifter. 

Problem 2-10. Find the Fourier transform of 

) Loo 1 
x t = . . ( m=-ooJ(t-mT)+a 

Problem 2-11. Show that the output of an LTI system cannot contain frequencies not present in the 
input. 

Problem 2-12. Show that the quadrature demodulator outputs sJ< t) and sQ( t) of Fig. 2-6(a) combine 
to give the complex envelope s( t) =sJ< t) + jSQ( t) if and only ifthe real input is bandlirnited to twice 
the carrier frequency, so that the Fourier transform S(f) satisfies S(f) = 0 for f > fc. 
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Problem 2-13. Consider a Hilbert transformer, which is a linear filter with impulse response and 
transfer function given as 

1 
h(t) =-

nt' 
H(f) = -jsign( f) = { j.; 

-); 

f<O 
f~O 

(2.113) 

Show that if x(t) = cos(2nfot) is the input, then y(t) = sin(2nfot) is the output. Show further that if 
x(t) = sin(2nfot) is the input, theny(t) = --cos(2nfot) is the output. Any sinusoidal input experiences 
a 90 degree phase change. 

Problem 2-14. Suppose a complex signal z(t) = Re{z(t)} + jlm{z(t)} is analytic, so that its Fourier 
transform is zero for negative frequencies. 

(a) Show that Im{z(t)} can be obtained from Re{z(t)} by filtering Re{z(t)} with the Hilbert 
transformer of Problem 2-13. In other words, 

Im{z(t)} = 1. * Re{z(t)}. 
nt 

(b) Show that -Re{z(t)} can be obtained from Im{z(t)} using the same filter. 

(2.114) 

Problem 2-15. Show that if h(t) = 0 for t > 0 (i.e. h(t) is anticausal), then the real and imaginary 
parts are related by a Hilbert transform in the frequency domain 

Im{H(f)} = :f * Re{H(f)}. (2.115) 

Problem 2-16. Consider a discrete-time signal zk = Re{zk} + jlm{zk} satisfying 

Z(e j21tfI') =0 for fe[-1I(21), 0), 

where T is the sampling interval. An example is shown in the following figure: 

i i J7\ i .. f 
-liT -1/(27) o 11(27) liT 

By analogy, such signals are called discrete-time analytic signals, although the term "analytic" does not 
mathematically apply to sequences. Show that Im{zk} can be obtained by filtering Re{zk} with the 
discrete-time Hilbert transformer 

H(e j21tfI) = {j;. -l/(2T) ~f < 0 
-); 0 ~f < l/(2T) 

The impulse response is hk = 2sin2~~k/2) , k:t 0, with ho = 0, as shown in Fig. 2-22. 

(2.116) 
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1/3 

-7 -5 -3 -1 

k 

-1 

Fig. 2-22. The impulse response of the discrete-time Hilbert transformer. 

Problem 2-17. Assume you are given a discrete-time signal xk with sample interval T and the 
discrete-time Fourier transform as shown in the following figure: 

-1 
2T 

lx<e j2XfT) 

~ 

Suppose you are told it is the real part of a discrete-time analytic signal zk. 

1 
2T 

f 

(a) Show that Im{zk} is the result of filtering xk with the real filter hk with frequency response 
given in the following figure: 

-1 
2T 

I 

fc 1 
2T 

f 

(b) Assume you are given a practical FIR low pass filter gk approximating the ideal low pass filter 
transfer function shown below: 

l }"('-' [ 
I I 

-1 fc -w 0 w fc 1 f 

2T 2T 

Design a practical filter hk approximating the filter in part (a). 

Problem 2-18. 

(a) Using (2.7), show that for any complex number z, the sequence zk is an eigenfunction of a 
discrete-time LTI system. That is, the response to this signal is 

Yk =H(z)zk. (2.117) 

(b) How is this related to the frequency response result discussed in Problem 2-2, part (c)? 

Problem 2-19. Repeat Problem 2-18 using only the definition of a discrete-time LTI system and not 
using the convolution sum. (Hint: Note that:zk + m = :zkzm.) 

Problem 2-20. Calculate the Z transform of xk = akuk, where Uk is the unit step of (2.1 02). 
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Problem 2-21. Show that for any complex number z, i is an eigenfunction of any continuous-time 
LTI system. Also show that for any z there exists an s such that est = i. Relate the eigenvalue of the 
system for a fixed z to the Laplace transform 

HL(s) = r e-Bth(t)dt. 
-CO 

The Fourier transform is the Laplace transform evaluated at s = j2nf, or H(f) = HL(j2nf). 

Problem 2-22. 

(a) Show that the signals xk = akuk and Yk = -akU_k_l have the same Z transform. 

(b) What are the ROC for the two cases? 

(c) Under what conditions are the two signals stable? Relate this to the ROC. 

(2.1 IS) 

Problem 2-23. Let X(z) = z ~ a' and find the time domain signals for both possible ROC. Do this 
directly without using the results of Problem 2-22. 

2 
Problem 2-24. Given X(z) = 2 z where 1 a 1 < 1 < 1 b I, find the corresponding 

z -(a+b)z+ab 
time-domain signal for the following two cases: 

(a) The time domain signal is known to be causal. 

(b) The time domain signal is known to be neither causal nor anticausal. 

(c) Comment on whether the signal is stable in each case, and state your reasons. 

Problem 2-25. Show that when the transfer function H(z) given in (2.40) has real-valued coefficients, 
the zeros and poles are always either real valued or come in complex-conjugate pairs. 

Problem 2-26. Given a transfer function in the middle form of (2.40) with r = 0, A = 1, zeros at 
~ e ±jlt/4 and ij, and poles at ~ e ±jlt/S, Find all the terms in the factorization (2.52). Write them in 
terms of polynomials with real-valued coefficients. 

Problem 2-27. Give an example of a transfer function S(z) that is real and nonnegative on the unit 
circle, and whose arithmetic and geometric means on the unit circle are 3 and 1, respectively. Sketch the 
pole-zero plot for this S(z). 

Problem 2-28. 

(a) Let hk be a causal strictly minimum-phase sequence with a rational Z transform, and let gk be 
another causal sequence obtained by taking a zero of H(z) at c and replacing it with a zero at 
II c*. Show that IH(e j9) 1 = 1 G(e j9) I. Hint: Find a transfer function A(z) that when 
multiplied by H(z) yields G(z). 

(b) Show that 

(2.119) 

for all N? O. Hint: Define F(z) = H(z)/(I- cz-1) and write gk and hk in terms offk. 
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(c) Show that for any two ration~l transfer functions H(z) and G(z) such that H(z) is minimum 
phase and I H(e JB) I = I G(e JB) I, (2.119) is true for all N? O. Thus, among all sequences with 
the same magnitude response, minimum-phase sequences are maximally concentrated near k = 0 
in the mean-square sense. From Parseval's formula plus the unit magnitude of an allpass filter, 
clearly both sides of (2.119) approach one another as N ---7 00. 

Problem 2-29. Pass a causal input signal xk through a first-order stable causal allpass filter such as that 
in Example 2-9 to yield a causal output signal Yk. Show that for any N? 0 

(2.120) 

and hence the allpass filter is dispersive in the sense that it reduces the signal energy in the first N 
samples while keeping the total signal energy the same (since it has unit magnitude frequency 
response). Hint: Consider a solution method similar to Problem 2-28. 

Problem 2-30. Use (2.52) and Example 2-10 to derive the factorization in (2.51). 

Problem 2-31. A filter with impulse response g( t) = h*(-t) is said to be matched to h( t). What is 
the frequency response G( f) of the matched filter? 

Problem 2-32. Given three signals sl (t), s2( t), and s5( t): 

1 1\ 1 L2 
o 51(t) 1 0 52(1) d ' 

(a) Find the norm of sl (t) and S2( t) and the inner product of these two signals in a linear space. 
What is the angle between the two signals? 

(b) Find the norm ofthe signal sl (t) + S2( t). 

(c) Find a signal s3(t) that is orthogonal to both S1(t) and S2(t). 

(d) Find a signal s4( t) that is in the subspace spanned by sl (t) and s2( t) and is orthogonal to Sl (t). 

(e) Find the signal in the subspace spanned by sl (t) and S2( t) that is closest to s5( t). 

Problem 2-33. Consider the set B of all finite-energy continuous-time signals that are bandlimited to 
Ifl$WHz. 

( a) Show that this set of signals B is a subspace of the set of all finite-energy continuous-time signals 
that have no bandwidth constraint. 

(b) Characterize the subspace consisting of all signals orthogonal to every signal in B. 
(c) Find the projection of the signal 8 1 in Problem 2-32 on B for W = 1 Hz. 

Problem 2-34. Two subspaces Sl and 5.2 of a Hilbert space are said to be orthogonal if every vector in 
Sl is orthogonal to every vector in S2. The sum of the two subspaces Sl Et> S2 is the subspace consisting 
of vectors that can be expressed as the sum of a vector in Sl and a vector in S2. Given two orthogonal 
subspaces Sl and S2 of a Hilbert space J{ and an arbitrary vector X E :H, show that the projection X of 
X onto Sl Et> S2 can be expressed uniquely as 

(2.121) 
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where Xl is the projection of X onto S1> and X2 is the projection of X onto.)2. 

Problem 2-35. Given a transmitted pulse h( t) it is useful to define an autocorrelation function 

Ph(k) = [ h( t)h *(t - kT) dt 

I Ph(k) I ~ Ph(O), 

(2.122) 

Show that (2.123) 

or in words, the autocorrelation function of a pulse can never be larger than the energy of the pulse. 
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3 

Stochastic 
Signal Processing 

Although modulation and demodulation are detenninistic, the infonnation to be 
transmitted, as well as the noise encountered in the physical transmission medium, is random 
or stochastic. These phenomena cannot be predicted in advance, but they have certain 
predictable characteristics which can be summarized in a random process model. The design 
of a digital communication system heavily exploits these characteristics. 

In this chapter we review the notation that will be used for random variables and 
processes, and cover several topics in detail that may be new to some readers and are 
particularly important in the sequel. These include Chemoffbounding techniques, Bayes' rule, 
and mixtures of discrete-time and continuous-time random processes. Markov chains are 
discussed in Section 3.3, and will be used in a diverse set of applications in Chapters 7, 8, 13, 
and 17. Section 3.4, on Poisson processes, uses the Markov chain results to describe Poisson 
processes and shot noise, which are important to the understanding of optical fiber systems. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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3.1. Random Variables 

Before reviewing the theory of the stochastic process, we review some theory and notation 
associated with random variables. In digital communication it is common to encounter 
combinations of discrete and continuous-valued random variables, so this will be emphasized. 

We denote a random variable by a capital letter, such as X, and an outcome of the random 
variable by a lower-case letter, such as x. The random variable is a real or complex-valued 
function defined on the sample space Q of all possible outcomes. An event E is a set of 
possible outcomes and is assigned a probability, written Pr[E], where 0 :::; Pr[E] :::; 1. Since an 
event is a set, we can define the union of two events, El U E2 or the intersection of events 
El n E2. The basic formula 

(3.1) 

leads to the very useful union bound, 

Pr[E1 U E2l :::; Pr[E1l + Pr[E2l . (3.2) 

The cumulative distribution function (c.df) of a real valued random variable X is the 
probability of the event X:::; x , 

FX<x) = Pr[X:::; xl. (3.3) 

Where there can be no confusion, we often omit the subscript, writing the c.d.f. as F( x). For a 
complex-valued random variable Y, the c.d.f. is 

Fy(y) = Pr[Re{Y}:::; Re{y}, Im{Y}:::; Im{y}l . (3.4) 

Here and elsewhere, we adopt the shorthand Pr[A, Bl for Pr[A n Bl. For a continuous real
valued random variable, the probability density function (P.df) fX< x) is defined such that for 
any interval I ~ 9\, 

Pr[X Ell = f fX<x) dx. (3.5) 
I 

For a complex-valued random variable, I is a region in the complex plane. For a real-valued 
random variable X, 

d 
fX<x) = dxFX<x) , (3.6) 

where the derivative exists. We will often use the generalized derivative, so that when the c.d.f. 
includes a step function the corresponding p.d.f. has a Dirac delta function. 
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Example 3-1. -------------------------
For the c.d.f. shown below, 

1~ 'l,) , 

----~l---+_--------+. o 

the p.d.f. consists exclusively of Dirac delta functions, 

{(x) = ~O(x) + ~O(x-l). 

Such a density is characteristic of a discrete random variable. 

(3.7) 

For a discrete-valued random variable X, we will denote the probability of an outcome x E Q 

as 

px<x) =Pr[X=x], (3.8) 

where we will again omit the subscript where there can be no confusion. The p.d.f. can be 
written as 

{X<x) = L px<y)O(x-y). (3.9) 
yE Q x 

The expected value or mean of X is defined as 

E[X] = [x{x<x)dx, or E[X] = L x,pX<x), 
yE Q x 

(3.10) 

for continuous-valued and discrete-valued random variables, respectively. For a complex
valued random variable Y, we integrate over the complex plane, 

E[Y] = 1:[ (x + jz){y(x + jz)dxdz. (3.11) 

The fundamental theorem of expectation states that if g( . ) is any function defined on the 
sample space of X, then 

E[g(X)] = [g(X){X<X)dx. 

Especially important expectations are the mean Il and variance ai, defined as 

Il = E[X], 

For complex-valued random variables, the variance is defined similarly as 

ai = E[IX- E[X] 12] = E[IXI 2] - 1 E[X] 12 . 

(3.12) 

(3.13) 

(3.14) 
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The joint c.d! of two real-valued random variables X and Y is 

Fx,y(x, y) = Pr[X~ x, Y~y] = L[,fx,y(a,~) da d~, (3.15) 

where fx,Y(x, y) is the joint p.d! The joint p.d.f. can be written in terms of the joint c.d.f. as 

a2 
f(x,y) =axayF(x,y) , (3.16) 

where we have omitted the subscripts as before. The marginal density fx( x) of a random 
variable X can be found from the joint p.d.f. using 

fx(x) = [fx,y(x,y)dy . (3.17) 

The random variables X and Yare independent or statistically independent if for all intervals I 
andJ, 

Pr[XEIIl YEJ] =Pr[XEl]Pr[YEJ], (3.18) 

which is equivalent to 

fx. y(x,y) =fx(x)fy(y) or Fx, y(x,y) = Fx(x)Fy(y) . (3.19) 

Independence implies that the correlation reduces to the product of the means, or 

E[XY] = E[X]E[Y] . (3.20) 

When (3.20) is satisfied, the random variables are said to be un correlated. Two random 
variables can be uncorrelated and yet not be independent. 

3.1.1. Moment Generating Function and Chernoff Bound 

The characteristic function of X is defined as 

<Px(s) =E[~l = C eSXfx(x)dx, (3.21) 

for a complex variable s. This is the Laplace transform of tx( x) evaluated at -so When s is real
valued, which will suffice for applications in this book, (3.21) is called the moment generating 
function. 

Exercise 3-1. 
If X and Yare independent and Z = X + Y, show that 

<Pz(s) = <Px(s)<Py(s) . (3.22) 
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Exercise 3-2. 
Show that 

a 
E[X] = as <I>.x( s )Is = 0' 
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and (3.23) 

The Chernoff bound, based on the moment generating function, is very useful for 
bounding the tail probability for a random variable where an exact evaluation is intractable. 

Exercise 3-3. 

(a) Show that the probability of event X > x is bounded by 

1 - F x( x) = Pr[X > x] ::; e -sx<I>x(s) (3.24) 

for any real-valued s ~ O. This establishes that the tail of the p.d.£. decreases at least 
exponentially for any distribution for which the moment generating function exists. (Hint: Write 
the probability as the integral against a step function, and bound the step function by an 
exponential.) 

(b) Find the similar bound 

(3.25) 

fors ~ O. 

(c) Show that the s that minimizes the bound (makes it tightest) in (a) and (b) must satisfy 

a a 
x<l>x( s) = as <Ilx ( s), -x<l>x(-s) = as <Ilx(-s) , (3.26) 

respectively. 

3.1.2. Conditional Probabilities and Bayes' Rule 

The conditional probability that a continuous-valued random variable X is in the interval I 
given that Y is in the interval J is defined for all J such that Pr[Y E J] :f. 0 to be 

Pr[XElnYEJ] 
Pr[X Ell YEJ] = Pr[YEJ] , (3.27) 

where Pr[Y E J] is called a marginal probability because it does not consider the possible 
effects of X on Y. For complex or vector-valued random variables, I and J are regions or 
volumes, rather than intervals. If X and Yare independent, then Pr[X E I lYE J] = Pr[X E 1]. 
The joint probability can be written in terms of the conditional probabilities, 

Pr[XEI n YEJ] =Pr[XEII YEJ]Pr[YEJ]. (3.28) 

Equivalently, 

(3.29) 
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where h(y) is called a marginal density. The conditional density (XI y(x Iy) is well defined 
only for y such that (y{y) -::I; o. Since (X y(x, y) = fr, x(y, x), (3.29) implies that 

(XIY(x Iy)h(y) =hlx(Y Ix){x(x) , (3.30) 

which is a form of Bayes' rule. 

It is common in digital communication systems to encounter both discrete-valued and 
continuous-valued random variables in the same system. In this case, (3.30) has Dirac delta 
functions. 

Exercise 3-4. 
Suppose that Y is discrete-valued and X is continuous-valued. Show that by integrating (3.30) over 
small intervals about y, we get the mixed form of Bayes' rule, 

(3.31) 

This involves both probabilities and probability density functions. It has no delta functions as long 
as X is continuous-valued. If X is also discrete-valued, show that then 

(3.32) 

which has only discrete probabilities. 

For discrete-valued distributions, the marginal probability can be written in terms of the 
conditional probabilities as 

py(y) = L PYIX(y Ix)px(x):= L pY,X(y, x) , (3.33) 
XE Q XE Q 

where Q is the countable sample space for X. This relation shows us how to obtain the 
marginal probabilities of a random variable given only joint probabilities, or given only 
conditional probabilities and the marginal probabilities of the other random variable. Using 
this relation, we can write the conditional probability of X given Y in terms of the conditional 
probability of Y given X and the marginal probability of X 

PYlx(ylx)px(x) 
PXIY(x Iy) = -~----L PYlx(ylx)px(x) 

XEQ 

(3.34) 

This relation is known as Bayes' theorem. The analogous Bayes' theorem for continuous
valued random variables is 

(Ylx(ylx){ x(x) 
(XI y(x Iy) = ---'------f {Ylx(ylx){x(x)dx 

(3.35) 

XE Q 
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3.1.3. Gaussian Random Variables and the Central Limit Theorem 

A Gaussian or normal random variable has the p.d.f. 

fx(x) = _1_e-(x-Il)2/(2cr2), 

J21tcr2 
(3.36) 

where 0 2 is the variance and)..l. is the mean. As a shorthand notation, we use X - 9{()..I., 0 2) to 
specify X as a random variable with the above p.d.f. The c.d.f. can be expressed only as an 
integral, 

(3.37) 

for which there is no closed-form expression. The standard Gaussian random variable is a 
zero-mean Gaussian random variable U with unit variance 0 2 = 1, i.e., U - 9{(O, 1). The 
complementary distribution function of this standard Gaussian is denoted by the special 
notation Q( x), 

1 00 

Q(x)=Pr[U>x]=l-Fu(x)= rn::f e- t2I2 dt. 
.,,21t x 

(3.38) 

Q( x), therefore, is the integral of the tail of the Gaussian density. It is plotted in Fig. 3-1 using 
a log scale for probability. The function is related to the well-tabulated error function erf( x) 
and the complementary error function erfc( x) by 

Q(x)= ~erfc(x42) = Hl-erf(x42»). (3.39) 

Exercise 3-5. 
Show that for a Gaussian random variable X with mean )..I. and variance 0 2, 

Pr[X>x] = Q(X~Il). (3.40) 

Although Q( . ) can only be tabulated or numerically determined, a useful bound follows from 
the Chernoff bound of Exercise 3-3. 

Exercise 3-6. 

(a) Show that the moment generating function of a Gaussian random variable with mean )..I. and 
variance 0 2 is 

log<I> x(s) = J..I.s + 02s2/2 . 

(b) Show from the Chemoffbound (Exercise 3-3) that 

1- FX(x)::; e-(x-Il)2l(2cr2), 

and thus that 

(3.41) 

(3.42) 
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Q( x) :::; e-x2/ 2 . (3.43) 

Tighter bounds are derived in Problem 3-3 and plotted in Fig. 3-1. 

Use of the Gaussian distribution for modeling noise phenomena can be justified on 
physical grounds by the centra/limit theorem. It states, roughly, that the Gaussian distribution 
is a good model for the cumulative effect of a large number of independent random variables, 
regardless of the nature of their individual distributions. More precisely, let {Y1, ... , Y N} 

denote a set of N statistically independent zero-mean random variables, each with the same 
p.d.f. f(y) and finite variance 0 2. That is, the random variables are independent and identically 
distributed (i.i.d.). Define a random variable Zthat is a normalized sum of the {Yi }, 

10-4 

10-6 

10-7 

10-10 L-__ -'-__ -'-__ .....L... __ -L.. __ ----'-__ ---''--....... .l...-:'--+ x 
o 2 3 4 5 7 

Fig. 3-1. The probability Q( x) that a zero-mean, unit-variance Gaussian random variable X (the 
standard Gaussian) exceeds x, plotted on a log scale. 
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1 N 
Z= m~. Yi · .;NL.J1 = 1 

(3.44) 

Then the distribution function of Z approaches Gaussian, (1 - Q(zlcr», as N ~ 00. If each 
random variable Yi represents some individual physical phenomenon, and Z is the cumulative 
effect of these phenomena, then as N gets large, the distribution of Z becomes Gaussian, 
regardless of the distribution of each li. 

In view of this theorem, it is hardly surprising that the sum of independent Gaussian 
random variables is Gaussian. 

Exercise 3-7. 
For an arbitrary linear combination of N zero mean independent Gaussian random variables Xi, 
each with variance cr2, 

(3.45) 

use the moment generating function to show that Z is itself zero-mean Gaussian with variance 

2_( 2 2) 2 crz - al + ... +aN cr . (3.46) 

Two zero-mean Gaussian random variables with variance cr2 are jointly Gaussian if and 
only if their joint p.d.f. can be expressed as 

fx. y(x, y) = r::-.<J2 e 
21t(j2...J1-p~ 

1 
x2 -2pxy + y2 

2cr2( 1 _ p2) 

for some constant p. The parameter p is called the correlation coefficient, because 

_ E[XY] 
P---2-' (j 

Note that -1 ::; p ::; 1, and if X and Yare uncorrelated then p = o. 
Exercise 3-8. 

(3.47) 

(3.48) 

Show that two jointly Gaussian random variables are statistically independent if and only if they are 
uncorrelated. 

This definition can be extended to N > 2 jointly Gaussian random variables. If a random vector 
X has components that are jointly zero-mean independent Gaussian random variables with the 
same variance cr2, then the joint p.d.f. is 

fx(x) = 1 e -llxI12/(2cr2) 
(21t(j2)N/2 ' 

(3.49) 

where N is the number of components in the vector and II x II is the Euclidean norm of the 
vector. When X is complex-valued with independent real and imaginary parts, (3.49) still 
holds. Any linear combination of jointly Gaussian random variables is Gaussian (as we saw in 
Exercise 3-7 for independent zero-mean Gaussian random variables). 
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This can be further generalized. A vector X with N jointly Gaussian real-valued random 
variables has p.d.f. 

1 1 - -(x-mVC-l{x-m) 
I. (x) - e 2 
IX - (21t)NI21C1 112 (3.50) 

where 

C = E[(X - m)(X - m)T] (3.51) 

is the covariance matrix, I C I is its determinant, and m = E[X] is the vector mean. In the 
special case that the vector mean is zero and elements of the random vector are independent 
with equal variances, C becomes diagonal and (3.50) reduces to (3.49). An important 
observation from (3.50) is that the p.d.f. of a Gaussian random vector is completely specified 
by the vector mean and the pairwise covariances contained in the covariance matrix. 
Consequently, these two sets of parameters completely specify all the statistical properties of a 
Gaussian random vector. 

Circularly Symmetric Gaussian Random Variables 

Let X and Y be real-valued zero-mean Gaussian random variables, and let us create a 
complex-valued random variable according to: 

Z=(X+ jY). (3.52) 

Consider the mean of the square of Z: 

E[z2] = E[.x2] - E[y2] + 2jE[XY] . (3.53) 

Observe that X and Yare identically distributed (have the same variance) and independent 
(E[XY] = 0) if and only if the following condition holds: 

E[z2] = O. (3.54) 

A complex-valued Gaussian random variable Z is circularly symmetric if E[Z2] = 0 [14][15]. 
Based on the above observation, this is equivalent to saying that the real and imaginary parts 
are independent and identically distributed. The source of the terminology is that the 
probability density function of Z = X + jY is circularly symmetric, or 

Px y(x y) = _1_e-{x2 + y2)/{2a2) 
, '21to2 ' 

(3.55) 

where (J2 is the variance of the real and imaginary parts. In other words, Z and rJ9Z have the 
same distribution for any angle e. We use Z - c:N.(0, 2(J2) as shorthand for identifying Z as 
having the above pdf, so that the real and imaginary parts of Z are i.i.d. - ?(O, (J2). 

3.1.4. Geometric Interpretation 

Random variables can be interpreted geometrically using the linear-space approach of 
Section 2.6. In particular, consider the set of all complex-valued random variables X with 
bounded second moments, E[ IX 12] < 00. 
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Exercise 3-9. 
Make reasonable definitions for the operations of addition of random variables, multiplication by a 
scalar, the vector element, and the additive inverse. Show that the set of such vectors form a linear 
space (Section 2.6.1). 

An inner product on this space can be defined as 

<x, Y) = E[XY*] . (3.56) 

Exercise 3-10. 
Show that (3.56) is a legitimate inner product (Section 2.6.2). 

This geometric interpretation pays dividends in understanding the results of linear prediction 
theory (Section 3.2.3). 

3.2. Random Processes 

A discrete-time random process {Xk} is a sequence of random variables indexed by 
integers k, while a continuous-time random process X( t) is indexed by a real variable t. We 
write an outcome of {Xk} or {X(t)} as the lower case deterministic signal {xk} or {x( t)}. 
When there can be no confusion between a signal and a sample of the signal, we omit the 
braces { . }. Each random sample Xk or X( t) may be complex, vector-valued, or real-valued. 

Example 3-2. --------------------------
A real-valued random process X( t) is a Gaussian random process if its samples {X(t 1), 

X(tN)} are jointly Gaussian random variables for any Nand forany {tb ... , tN}' 

The first and second moments of the random process are the mean 

m(t) =E[X(t)] (3.57) 

and the autocorrelation 

Rxx(k, i) = E[XIXi*l , (3.58) 

where X* is the complex conjugate of X. 

Example3-3. --------------------------
Consider a real-valued, zero-mean Gaussian random process. A random vector X can be 
constructed from some arbitrary set of samples. For such a vector, the covariance matrix of (3.51 ) 
can be obtained from the autocorrelation function (3.58). Consequently, the joint p.d.f. (3.50) of 
any set of samples can be obtained from the autocorrelation function. Thus, the statistical properties 
of a zero-mean real-valued Gaussian random process are completely specified by its 
autocorrelation function. 

A random process is strict-sense stationary if the p.d.f. for any sample is independent of 
the time index of the sample, and the joint p.d.f. of any set of samples depends only on the 
time differences between samples, and not on the absolute time of any sample. It is wide-sense 
stationary (WSS) if its mean is independent of the time index, and its autocorrelation depends 
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only on the time difference between samples, and not on the absolute time. In other words, mk 

or m( t) must be constant and Rxx(k, i) or RXX(tl' t2) must be a function only of the 
difference k - i or tl - t2. Strict sense stationarity implies wide-sense stationarity, but not the 
reverse, unless the process is Gaussian. 

Example34. ---------------------------------------------------
A real-valued WSS Gaussian random process is also strict-sense stationary. The autocorrelation 
function and mean of such a process can be used to construct the covariance matrix (3.51) for any 
set of samples. Since the process is WSS, the entries in the matrix will be independent of the 
absolute time index of the samples, and will depend instead only on the time differences between 
samples. Consequently, the joint p.d.f. (3.50) of any set of samples will depend only on these time 
differences. Hence the process is strict-sense stationary. 

For a WSS random process the autocorrelation function can be written in terms of the time 
difference between samples, m = k - i or't = tl - t2, yielding the simpler notation 

Rxx( 't) = E[X(t + 't )X( t )*] . (3.59) 

When there is no ambiguity we sometimes use only a single subscript, writing Rx( . ) instead. 
Observe that R x(O) is the second moment of the samples 

(3.60) 

and can be interpreted as the power of a random process. For a WSS random process, the 
power spectral density or power spectrum is the Fourier transform of the autocorrelation 
function, 

S x(f) = [ R x( 't)e -j2nft d't . (3.61) 

The power therefore is the integral of the power spectrum, 

RX(O) = [ SX(f) df· (3.62) 

The power spectrum is real-valued since the autocorrelation function is conjugate symmetric, 
Rx(-m) = Rx*(m) or Rx(-'t) = Rx*( 't). It is also non-negative (see Problem 3-9). 
Furthermore, if Xk or X( t) is real-valued, then the power spectrum is symmetric about zero 
frequency. We can also write the power spectrum as a Z transform or a Laplace transform, 

Sx(z) = I: = -00 Rx(m)z -m , (3.63) 

Evaluating Sx(z) on the unit circle or Sx(s) on the imaginary axis yields (3.61). 

Example3-5. ------------------------------------------------------
Consider a zero-mean random process {Xk } where the samples Xk are all independent and 
identically distributed (i.i.d.) zero-mean random variables with variance crx2. In this case Rx(k) = 
crx28k and the power spectrum is a constant, Sx(ej8 ) =crx2, independent of the frequency, with 
power RX(O) = crx2. 
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Any zero-mean process with a constant power spectrum is said to be a white random process. 
This mayor may not imply that the samples of the random process are independent, although 
for the important Gaussian case they are. 

Example 3-6. -----------------------------------------------------
As in Example 3-5, consider a continuous-time random process {X(t)} with the autocorrelation 
function 

Rx('t) = ~o b( 't). (3.64) 

The power spectrum of this process is a constant, SxU) = No/2, so {XC t)} is white. The power 
RX(O) of this continuous-time white process is infinite. So we immediately run into mathematical 
difficulties for the continuous-time case that we did not encounter in the discrete-time case. 

Although the continuous-time white random process of Example 3-6 leads to the non-physical 
condition that the power is infinite (or undefined), it is an extremely important model. It would 
appear from the fact that Rx('t) = 0 for all 't * 0 that any two distinct samples of a continuous
time white random process are uncorrelated, but, unfortunately, this makes no mathematical or 
physical sense. Sampling a continuous-time white random process is an ill-defined concept. 
Roughly speaking, a continuous-time white random process varies so quickly that it is not 
possible to determine its characteristics at any instant in time. 

In spite of these mathematical difficulties, the continuous-time white random processes is 
useful as a model for noise which has an approximately constant power spectrum over a 
bandwidth larger than the bandwidth of the system we are considering. In such a system we 
will always band-limit the noise to eliminate any out-of-band component. In this event, it 
makes no difference if we start with a white noise or a more accurate model; the result will be 
very nearly the same. But using the white noise model results in significantly simpler algebraic 
manipulation. In this book we will often use the white noise model, and take care to always 
band-limit this noise process prior to other operations such as sampling. After band-limiting, 
we obtain a well-behaved process with finite power. 

Example3-7. --------------------------------------------------------
Thermal or Johnson noise in electrical resistors has a power spectrum that is flat to more than 1012 

Hz, a bandwidth much greater than most systems of interest (see [1]). Thus, we can safely use 
white noise as a model for this thermal noise without compromising accuracy. The noise in the 
model at frequencies greater than 1012 Hz will always be filtered out at the input to our system 
anyway. By contrast, in optical systems, thermal noise is generally insignificant at optical 
frequencies. Thermal noise is modeled as a Gaussian random process, from the central limit 
theorem, since it is comprised of the superposition of many independent events (thermal 
fluctuations of individual electrons). 

3.2.1. Cross-Correlation and Complex Processes 

Given two random processes X( t ) and Y( t), we can define a cross-correlation function, 

(3.65) 
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If X( t) and Y( t) are each wide-sense stationary, then they are jointly wide-sense stationary if 
Rxy{tl' t2) is a function only of tl - t2. 

A complex-valued random process X( t) is defined as 

X( t) = Re{X(t)} + jlm{X(t)} , (3.66) 

where Re{X(t)} and Im{X(t)} are real-valued random processes. The second order statistics 
of such a process consist of the two autocorrelation functions of the real and imaginary parts, 
as well as their cross-correlation functions. Complex Gaussian random processes are very 
important in digital communication systems; they have some special properties that are 
considered in detail in Section 3.2.7. 

3.2.2. Filtered Random Processes 

A particular outcome Xk or x( t) of a random process is a signal, and therefore may be 
filtered or otherwise processed. We can also talk about filtering the random process Xk or X( t) 
itself, rather than an outcome. Then we get a new random process with a sample space that is 
obtained by applying every element of the sample space of the original random process to the 
input of the filter. 

Example 3-8. --------------------------
A filtered Gaussian random process is a Gaussian random process. Intuitively, this is true because 
filtering is linear, and any linear combination of jointly Gaussian random variables is a Gaussian 
random variable. 

Consider the two continuous-time LTI systems shown in Fig. 3-2 with WSS continuous
time random process inputs. 

Exercise 3-11. 
Show that the output of the filter h( t) is WSS, and that its autocorrelation function and power 
spectrum are given by 

Rw('r) =h('r:) * h*(-'t:) * RX<'t:), Sw(f) = SX<f) IH(f) 12, 

Sw(s) =Sx<s)H(s)H*(-s*) . 

y(t) J 1 g(t) 

'-----' 

X(t) J 1 h( t) 

'-----' 

W(t) 

Fig. 3-2. Two linear systems with WSS random process inputs. 

U( t) 

(3.67) 

(3.68) 
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Exercise 3-12. 
Show that if a WSS discrete-time random process Xk is filtered by a filter that has impulse response 
hk' and the result is Wk, then Wk is WSS and 

Rw(m) = hm * h*-m * Rx.{m) , 

Sw(z) = Sx.{z)H(z)H*(l/z*) . 

(3.69) 

(3.70) 

The cross-spectral density of two jointly WSS random processes at the filter inputs in 
Fig. 3-2 is defined as the Fourier transform of the cross-correlation function, 

SXY<f) = [ Rx-r( r:)e -j2rr.jt dr: , RXY< 1:) = E[X(t + 1:) Y*( t)] . (3.71) 

Exercise 3-13. 
Show that the cross-power spectrum of the outputs in Fig. 3-2 is 

Swu(f) = H(f)G*(f)SXY<f) . (3.72) 

3.2.3. The Innovations Process 

Given a wide-sense stationary random process {Xk} with power spectrum Sx.{ejf), a 
natural innovations representation of that random process follows from the monic minimum
phase spectral factorization of Sx.{z) (see (2.67) in Section 2.5.6). In particular, since Sx.{z) is 
real-valued and non-negative on the unit circle, it can be decomposed as 

(3.73) 

where Mx(z) is a monic loosely minimum-phase causal filter, and Yx2 is a constant to be 
interpreted shortly. If Sx.{z) has no zeros on the unit circle (Sx.{e j8 ) > 0 for all 9), then Mx(z) is 
strictly minimum phase. In this case, its inverse filter Mx-1(z) is stable, and is also a monic 
minimum-phase causal filter. If we filter the process Xk with the filter Mx-1(z), as shown in 
Fig. 3-3, then from (3.70), the output Ik is a white random process with power spectrum Sfz) 
=yt The random process {lk} is called the innovations process. Its power is y}. 

The innovations process and the filter Mx(z) can be used to generate the random process 
Xk, as shown in Fig. 3-3. This helps to explain the terminology. Since Ik is white, each new 
sample is uncorrelated with previous samples. Thus each new sample brings new information 
(an "innovation") about the random process Xk . Viewed another way, the whitening filter 
Arl(z) removes redundant information from Xk by removing correlated components in the 

Fig. 3-3. Generation of the innovations Ik from Xk• and the recovery of Xk from its innovations. 
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samples. What is left has only uncorrelated samples. Thus we can think of Xk as having two 
components; the innovation is the new or "random" part, while the remainder is a linear 
combination of past innovations. 

3.2.4. Linear Prediction 

A linear predictor forms an estimate of the current sample of a discrete-time random 
process by exploiting the correlation between present and past samples. Specifically, if Xk is 
the random sequence to be predicted, a linear predictor generates an estimate Xk of Xk at time 
k by forming a linear combination of the past: 

(3.74) 

This estimate can be viewed as the output of an LTI prediction filter whose transfer function 
P(z) is causal, 

P(z) =~~ Pnz-n. 
L.Jn = 1 

(3.75) 

A strictly causal prediction filter ensures that only past samples are used in constructing the 
prediction. A well-designed linear predictor would choose p(z) so that Xk matches Xk as 
closely as possible. A convenient measure of closeness is the mean-square error (MSE), 
defined by MSE = E[ I Xk-XkI2j. The prediction filter that minimizes MSE is closely linked 
to the spectral factorization theorem. 

Theorem 3-1. Given a random process Xk with PSD Sx.(z) = Yx2 Mx(z)Mx *(1/ z*) factored 
according to the spectral factorization theorem of Section 2.5.6, the optimal linear prediction 
filter (minimizing MSE) is 

1 
P(z)=I- -

Mx(z) 

The resulting minimal MSE is Yx2 . 

(3.76) 

This result is easy to prove. The prediction error Ek = Xk - Xk may be generated by 
passing the random sequence Xk through a prediction-error filter with transfer function 

D(z) = I-P(z) . (3.77) 

To be a legitimate prediction-error filter, D(z) must be monic, causal, and stable. The PSD of 
the prediction error can now be written as 

Sp;(z) = Sx.(z)D(z)D*(lIz*) 

= Yx2 Mx(z)Mx *(1/ z*)D(z)D*(1 / z*) 

= Yx2 B(z)B*(1 / z*) , (3.78) 

where we have introduced B(z) = Mx(z)D(z). Since both Mx(z) and D(z) are monic and causal 
(Mx(oo) = D(oo) = 1), it follows that B(z) must also be monic and causal (B(oo) = 1), with 
impulse response bk satisfying bk = 0 for k < 0 and bo = 1. The goal is to minimize: 
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MSE = E[IEkI2] =RE(O) 

= ..!. r SE(ejf) d6 
2n -It 

= yt"L; = -00 I bk 12 

=Yx2 (1+ "L;=1Ibk I2 ), 

73 

(3.79) 

where the fourth line follows from Parseval's relationship, and the last line from the monic and 
causal property of bk • Clearly, the MSE is minimized by choosing b1 = b2 = b3 = ... = 0, or 
equivalently by choosing B(z) = 1, yielding a minimum MSE of Yx2 . But since B(z) = 
Mx(z)D(z), it follows that the optinIal prediction-error filter is D(z) = Mx-1(z). Finally, solving 
D(z) = 1- p(z) for P(z) yields (3.76). 

The prediction error Ek for the optimal predictor is precisely the innovation Ik, and the 
resulting prediction error variance is Yx2 , which is the geometric mean (Sx)G of the PSD of 
Xk. In contrast, the variance of Xk (before linear prediction) is the arithmetic mean of its PDF, 
( S x) A. From the arithmetic-geometric inequality, the variance after linear prediction is always 
less than the variance before, unless Xk was a white random process to begin with. Linear 
prediction reduces variance by the ratio (Sx)G I( Sx )A. 

Example 3-9. S 
uppose the PSD of Xk is Sx<eif) = 25 - 24cos(8), which has arithmetic mean 25 and geometric 
mean 16. Therefore, optimal linear prediction would reduce the variance of Xk by a factor of 
16/25. 

The optinIal prediction-error filter D(z) = Mx-1(z) is said to be a whiteningfilter because 
its output is white. The whitening property of the optimal prediction-error filter is not 
surprising, given that the predictor is exploiting the correlation of input samples. Intuitively, if 
the prediction error were not white, there would still be correlation left to further exploit. 
However, this intuitive explanation is incomplete. The optimal prediction-error filter does 
more than just whiten its output. Indeed, there are many monic and causal whitening filters, 
but only one that minimizes MSE. This is explored in the following exercise. 

Exercise 3-14. 
Let A(z) be a causal aUpass filter with ao *" 0, and let its impulse response length be greater than 
one (thus ruling out trivial filters ofthe form A(z) = eia. for constant a). Then A(z)/ ao is monic 
and causal, and its magnitude response is a constant 111 ao I. Show that I ao 1< l. 

We can thus multiply the optimal prediction-error filter by the monic and causal filter A(z)/ ao, 
thus producing another valid (monic and causal) prediction-error filter that is also a whitener. 
However, because of Exercise 3-14, the resulting MSE Yx2 II ao 12 would be strictly greater 
than the minimal MSE Yx2 . 
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This exercise is instructive, because it shows that any nontrivial causal and monic filter 
with a flat frequency response will amplifY its inputs. The optimal prediction error filter 
Mx -l(z) thus has two key properties: it is a whitening filter, resulting in a white prediction 
error, and it is minimum phase. The whitening-filter property of the prediction-error filter (if 
not the minimum-phase property) can also be demonstrated by orthogonality arguments (see 
Problem 3-5), and has a simple geometric interpretation (see Problem 3-6). 

3.2.5. Sampling a Random Process 
A finite power continuous-time random process X( t ) can be sampled, yielding a discrete

time random process Yk = X(kT). Since we will be performing this sampling operation often in 
digital communication systems, it is important to relate the statistics of the continuous-time 
random processes with those of the discrete-time random process obtained by sampling it. 
Assuming X( t) is WSS, 

Rn<k, i) = E[X(kT)X*(iT)] = Rx<.mT) , (3.80) 

where m = k - i, so the sampled process is WSS with autocorrelation equal to a sampled 
version of the autocorrelation Rx<.'t) of the original continuous-time signal. From (2.17), the 
power spectrum of the continuous-time random process and its sampled discrete-time process 
are related by 

J·27tfl' 1 Loo m Sy(e ) = - S x(f - -) . T m=-oo T 
(3.81) 

As in the deterministic case, aliasing distortion results when the bandwidth is greater than 1/2 

the sampling rate, where bandwidth in this case is defined in terms of the power spectrum. 

Using the techniques discussed so far, we should have no difficulty considering systems 
that mix discrete and continuous-time random processes as well as deterministic signals. 
However, there are some subtleties. Consider a discrete-time random process Xk filtered by a 
continuous-time filter with impulse response h( t) in the sense defined in Section 2.1. The 
output can be written 

(3.82) 

This is pulse-amplitude modulation (PAM), described in detail in Chapter 5. 

Example 3-10. -------------------------
The transmission of a discrete-time sequence of data symbols Xm over a continuous-time channel 
often takes the fonn of the random process in (3.82). Suppose that h( t) is as shown in Fig. 3-4(a) 
and that Xk is a random sequence with i.i.d. samples taking values ±1 with equal probability. A 
possible outcome is shown in Fig. 3-4(b). The first important observation is that the process Y( t ) is 
not wide-sense stationary because E[Y(t + 't) Y( t)] is not independent of t. For example, 

E[Y(T /4) Y(O)] = E[X02] = 1 *" E[Y(T) Y(3T /4)] = O. 
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Fig. 3-4. (a) An example of a pulse shape for transmitting bits. (b) An example of a waveform using this 
pulse shape. 
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This process is actually cyclostationary, a weaker fonn of stationarity. Since this process is not 
wide-sense stationary, its power spectrum is not defined. 

The fact that Y( t) in (3.82) is not wide-sense stationary is a major inconvenience. A common 
gimmick changes our random process into a wide-sense stationary process. Define the random 
variable 8, called a random phase epoch, that is uniformly distributed on [0, 1') and 
independent of {Xk }. Then define the new random process 

Z(t) = Y(t - 8) = L~ =-00 Xkh(t - kT- 8). (3.83) 

This process has a random phase which is constant over time but chosen randomly at the 
beginning of time. Physically, this new process reflects our uncertainty about the phase of the 
signal; the origin in the time axis is of course arbitrary. This redefined process is wide-sense 
stationary, as shown in Appendix 3-A, with power spectrum 

(3.84) 

Note the dependence on the power spectrum of the discrete-time process and the magnitude
squared spectrum of the pulse h( t). 

Example 3-11. -------------------------
Consider transmission of a random sequence of uncorrelated random variables X k with equally 
probable values ±1 using a pulse shape h( t). The sequence Xk is white and the variance is unity, so 
the power spectrum of the data sequence is 

Sx<e j2nfT) = 1, (3.85) 

and the power spectrum of the random phase transmitted signal is 

(3.86) 

With a white data sequence, the power spectrum has the shape of the magnitude squared of the 
Fourier transfonn of the pulse. 
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3.2.6. Reconstruction of Sampled Signal 

It might appear that (3.81) establishes the conditions under which a random process can be 
recovered from its samples, just as (2.17) does for deterministic signals. However, this 
appearance is deceiving because two random processes can have the same power spectrum and 
not be "equal" in any sense. The power spectrum is merely a second-order statistic, not a full 
characterization of the process. By a derivation similar to that in Appendix 3-A, we can 
investigate the recovery of the original continuous-time random process from its samples. A 
method of sampling and recovering a random process analogous to the deterministic case is 
shown in Fig. 3-5. We first filter the random process using an antialiasing filter F(f), then 
sample, and finally recover using recovery filter H(f) to yield the random process Y( t). To 
make Y( t) WSS we must again introduce a random phase. The way to tell whether the system 
recovers the input random process is not to calculate the output power spectrum, but rather to 
investigate the error signal between input and output. In particular, define 

E( t) = X(t - 8) - Y(t - 8) , (3.87) 

where 8 is uniformly distributed over [0, 1). We would conclude that the recovery is exact (in 
a mean-square sense) if 

(3.88) 

This is not the same as showing that E( t) = 0, which cannot be shown using second order 
statistics only. However, (3.88) is just as good for engineering purposes. The conditions under 
which (3.88) is valid can be inferred from the following exercise, which can be solved using 
similar techniques to those used in Appendix 3-A. 

Exercise 3-15. 
Show that the power spectrum of E( t ) is 

Examining (3.89), the first term is aliasing distortion resulting from a signal at the output of 
the antialiasing filter, if it is not sufficiently bandlimited. In particular, if H(f) = ° and 
F(f) = ° for I f I ~ 11 (21) then this term is identically zero. The second term is in-band 
distortion due to an improper reconstruction filter H( f) and also distortion due to band
limiting of the input prior to sampling. For an ideal reconstruction filter, 

H(f)F(f) = T, If I ~ 1/(21), (3.90) 

in which case the error signal has power spectrum 

X(t) -1 F(f) H(f) ~Y(t) 

Fig. 3-5. Sampling and recovery of a random process using anlialiasing filler F(f) and recovery filter 
H(f). 
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{a, If I < 1/(2T) 
SE(f) = Sx(f), If I ~ 1/(2T)' (3.91 ) 

and the total error power is 

E[ 1 E( t) 12] = 2f= SX<f) d{. 
1/(2T) 

(3.92) 

The fact that the reconstruction error is just the error in initially band-limiting X( t) is not 
surprising, and corresponds to the deterministic signal case. 

The results of this subsection are important not only for their implications to the recovery 
of sampled random processes, but also in the techniques used. We will find the need for similar 
techniques in the optimization problems of Chapter 7. 

3.2.7. Complex-Valued Gaussian Processes 
At the beginning of Section 3.2, the real-valued Gaussian random process was defined as a 

process for which any arbitrary set of samples is jointly Gaussian. A complex-valued Gaussian 

random process consists of two jointly Gaussian real-valued processes, a real part and an 
imaginary part. By jointly Gaussian, we mean that any arbitrary set of samples of the real and 
imaginary parts is a jointly Gaussian set of random variables. Such processes are important in 
digital communications in modeling the complex envelope of noise. Complex-valued 
processes have some special properties that distinguish them from real-valued processes. 

Let Z( t) be a zero-mean complex-valued Gaussian process. Since Z( t) is complex
valued, it consists of two real-valued processes, 

R( t) = Re{ Z( t)} , I(t) = Im{Z(t)} . (3.93) 

By assumption both R( t) and I( t) are zero-mean Gaussian processes. To fully characterize 
the statistics of Z( t), we must specify the joint statistics of R( t) and I( t). Because they are 
Gaussian and zero-mean, R( t) and I( t) are fully characterized by their second order statistics, 

RR( 't) = E[R(t + 't)R( t)] , R.z( 't) = E[I(t + 't)I( t)], RR.z( 't) = E[R(t + 't)I( t)]. (3.94) 

The complex-valued process Z( t) is strictly stationary if R( t) and I( t) are jointly wide-sense 
stationary, and hence jointly strictly stationary (since they are Gaussian). R( t) and I( t) are 
jointly wide-sense stationary if the correlation functions E[R(t + 't)R( t)], E{I(t + 't)I( t )], and 
E[R(t+'t)I( t)] are not functions of t, as indicated in (3.94). 

According to the definition, the complex process Z( t) is wide-sense stationary if the 
autocorrelation function 

Rz{ 't) = E[Z(t + 't)Z*( t)] , (3.95) 

is not a function of t. This is not the same as saying that the real and imaginary parts are jointly 
wide-sense stationary. Clearly, Rz{ 't) could not by itself contain information equivalent to 
RR( 't), R.z( 't), and RR.z( 't), since (3.94) constitutes three functions of't, while Rz{ 't) specifies 
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only two functions of't, its real and imaginary parts. Thus, we require more than Rz( 't) to 
fully specify the statistics of Z( t). In addition to Rz( 't), it suffices to know the complementary 
autocorrelation junction, defined as 

Rz('t) = E[Z(t + 't)Z(t)] (3.96) 

Again, since Rz('t) can be expressed in terms of RR( 't), Rz{ 't), and RRz{ 't), it must not be a 
function of t if Z( t) is to be strict-sense stationary. 

Using the relations 2R( t) = Z( t) + Z*( t) and 2jJ( t) = Z( t) - Z*( t), it is easy to show 
that 

2Rz{ 't) = Re{Rz( 't)} - Re{ Rz ( 't)} , 

(3.97) 

For the special case of a real-valued Z( t), Rz{ 't) = RRz{ 't) = 0, and Rz( 't) =Rz ( 't). Given 
both the autocorrelation and complementary autocorrelation functions, (3.97) allows us to 
determine the full complement of joint statistics of R( t) and J( t). Conversely, neither the 
autocorrelation nor the complementary autocorrelation function is sufficient by itself to fully 
specify the statistics of Z( t). 

Z( t) is wide-sense stationary if it has an autocorrelation function E[Z(t + 't)Z*( t)] = 

R z( 't) that is independent of t. In that case, its power spectrum S z( f) is the Fourier transform 
of Rz( 't). However, in the case of complex Gaussian processes, wide-sense stationarity does 
not imply strict sense stationarity, because even for a wide-sense stationary process 
E[Z(t + 't)Z( t)] may be a function of t. However, (3.97) implies that if a Gaussian process is 
wide-sense stationary, and in addition E[Z(t + 't)Z( t)] is not a function of t, then the real and 
imaginary parts are jointly wide-sense stationary, and Z( t) is strictly stationary. 

Based on these considerations, there are two important differences between real-valued 
and complex-valued Gaussian processes: 

• A complex-valued zero-mean Gaussian process is fully specified by both the 
autocorrelation and complementary autocorrelation functions, but not by either one 
alone. In particular, it is not fully characterized by its power spectrum. In contrast, a 
real-valued zero-mean Gaussian process requires only the autocorrelation function, and 
is thus fully characterized by its power spectrum. 

• A wide-sense stationary complex-valued zero-mean Gaussian process is not necessarily 
strictly stationary, but it is strictly stationary if both the autocorrelation and 
complementary autocorrelation functions are not functions of t. In contrast, a real
valued zero-mean Gaussian process is strictly stationary if and only if it is wide-sense 
stationary. 

Although there are significant differences between real-valued and complex-valued Gaussian 
processes, there is an important special case, considered next, where the two have similar 
properties. 
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3.2.8. Circularly Symmetric Gaussian Processes 

In Section 3.1.3 we saw that a zero-mean Gaussian random variable is circularly 
symmetric if and only if E[Z2] = o. We now generalize to random processes. A complex
valued zero-mean Gaussian process is circularly symmetric if 

E[Z(t + 't)Z( t)] = 0 , for all t and 't . (3.98) 

Such processes have a number of important simplifying properties, and further, most Gaussian 
processes encountered in digital communication are circularly symmetric. Note that a nonzero 
real-valued process cannot be circularly symmetric since for such a process Rz( 't) =R z( 't). 

First of all, a circularly symmetric Gaussian process is strictly stationary if and only if it is 
wide-sense stationary, since then the real and imaginary parts are jointly wide-sense stationary. 
For a wide-sense stationary circularly symmetric Gaussian process, (3.97) simplifies to 

2RR< 't) = Re{Rz( 't)}, 2R.z{'t) = Re{Rz('t)}, 2RRl(.'t) =-Im{Rz('t)}. (3.99) 

Based on (3.99), circularly symmetric Gaussian processes have several nice properties: 

• The real and imaginary parts individually have identical statistics, by virtue of having 
the same autocorrelation function 1/2Re{ R z( 't )}. 

• Since Rz(O) must be real valued, Im{Rz(O)} = RRl(O) = O. This implies that for any 
given time t, R( t) and I( t) are uncorrelated and hence statistically independent, 
although they are not necessarily uncorrelated nor independent when sampled at 
different times. 

• Circularly symmetric processes with a real-valued autocorrelation function R z( 't) have 
a real and imaginary part that are independent at all times, since RR1( 't) = O. (Note that 
a real-valued Rz( 't) does not imply that the process is real-valued. In fact, a circularly 
symmetric Z( t) with real-valued Rz( 't) cannot be a real-valued process!) Rz( 't) is real
valued when the power spectrum of the process (which is always real-valued) has even 
symmetry about f = O. 

Circular symmetry is preserved by linear time-invariant filtering. That is, if we apply a 
circularly symmetric Gaussian process Z( t) to a linear time-invariant system with impulse 
response h( t), then the output is given by a convolution 

V( t) = [ h( 't )Z(t - 't) d't , (3.100) 

and 

E[V(t + 't)V( t)] = [[ h(u)h(v)E[Z(t + 't - u)Z(t - v)]dudv = 0, (3.101) 

since the integrand is identically zero. More generally, the circularly symmetric property is 
preserved by time-varying linear systems, such as modulators. 

Example 3-12. -------------------------
Assume that V( t) is a circularly symmetric stationary zero-mean Gaussian random process, and 
define Z( t) = ej21tfctV( t). Z( t) is also stationary and circularly symmetric, since 
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Rz( 't) = E[Z(t + 't)Z*( t)] = ei21tfc"tRv( 't) , 

Rz ( 't) = ei21tfc(2t +T:)E[V(t + 't) V( t)] = 0 . 

CHAP. 3 

(3.102) 

(3.103) 

Further, the power spectrum of Z(t) is Sv(f-fc). Re{Z(t+'t)} and Im{Z(t)} are thus 
independent for all 't if and only if Sv(f) is symmetric about fc; that is, Sv(fc + !:If) = Sv(fc - !:If) 
for all !:If. If V( t) is a narrowband process, this implies that V( t) has only positive-frequency 
components in its power spectrum. 

A complex-valued Gaussian process obtained from a real-valued Gaussian process by 
modulating a complex exponential is neither stationary nor circularly symmetric, as illustrated 
by the following example. 

Example 3-13. -------------------------
Let N( t) be a real-valued zero-mean Gaussian random process. Thus, N( t) cannot be circularly 
symmetric, and, not surprisingly, neither is Z( t) = ei21tfct N( t). In particular, 

Rz{ 't) = E[Z(t + 't)Z*( t)] = ei21tfc"tRN< 't) , 

E[Z(t +'t)Z(t)] =ei21tfc(2t+T:)RN<'t). 

(3.104) 

(3.105) 

Z( t) is wide-sense stationary, but it is neither strictly stationary nor circularly symmetric. That 
Z( t) is non-stationary is not surprising, since at certain times (the zero-crossings of the carrier) the 
real part of Z( t) is identically zero, and similarly for the imaginary part. That Z( t ) is wide-sense 
stationary in spite of not being strictly stationary is perhaps surprising to those accustomed to real
valued Gaussian processes. 

Discrete-Time Gaussian Processes 

All the properties we have described carry over to discrete-time zero-mean Gaussian 
random processes. In particular, such a complex-valued process Zk is fully characterized by 
Rz{m) and Rz(m). By definition, it is circularly symmetric if 

E[Zk + mZk] = 0, for all m and k . (3.106) 

If Zk = Z(kT) is obtained by sampling a circularly symmetric continuous-time process, it will 
itself be circularly symmetric. If Zk is circularly symmetric, its real and imaginary parts have 
the same variance, and are independent at a given time t. Further, the real and imaginary parts 
are statistically independent for all time if and only if the autocorrelation Rz( k) is real-valued. 
As in continuous time, circular symmetry is preserved by linear time-invariant filtering, and 
more generally by linear operations. 

White Gaussian Processes 

An important subclass of zero-mean complex Gaussian processes are white. Such 
processes have an autocorrelation function 

(3.107) 

for continuous and discrete time respectively. The convention is that 0 2 = No/2 is the variance 
of the real part or the imaginary part, so that 202 = No is the variance of the complex process. 
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For real-valued processes, in continuous time the white property implies that Z(t + 't) and 
Z( t) are uncorrelated and hence independent for all 't =I- 0, and for discrete time, Z(k + m) and 
Z(k) are uncorrelated and hence independent for all m =I- O. 

A white complex-valued Gaussian process is not necessarily strict-sense stationary. 
However, if the process is both white and circularly symmetric, then the following properties 
hold: 

• The real and imaginary parts of the process are identically distributed, and are each 
white real-valued Gaussian processes. 

• The real and imaginary parts are independent of one another, since the autocorrelation 
function is real-valued. 

Thus, circularly symmetric zero-mean white complex Gaussian processes are maximally 
random, in the sense that (a) the samples of the process are mutually independent and (b) the 
real and imaginary parts are independent. 

Another important observation is that any Gaussian process obtained by a time-invariant 
linear filtering of a circularly symmetric white Gaussian process is itself circularly symmetric, 
although in general it will not be white (unless the filter is allpass). 

The Complex Envelope of White Gaussian Noise 

In this section we characterize the statistics of the complex envelope of white-Gaussian 
noise. In other words, we characterize the output of a downconverter when the input is white 
and Gaussian. We will see that the complex envelope is a circularly symmetric Gaussian 
random process that is almost white. The results have important implications in later chapters. 

Consider a real-valued white Gaussian random process N( t) with power spectrum No/2 
at the input to a downconverter, as shown below: 

N(t)~Z(t) 

PSD No/2 L:.:..:.J r 'n_f • 

../2e -j21tfct 

The output V( t) of the phase splitter is clearly complex-valued, since the phase-splitter 
frequency response is not Hermitian symmetric, and V( t) is also a Gaussian random process, 
since filtering preserves Gaussianity. But is V( t) circularly symmetric? 

The answer is yes, because V( t) can be decomposed according to (2.23), namely: 

V( t) = M N( t) + j N(t ») , (3.108) 

where N( t) is the Hilbert transform of N( t), namely N( t) = N( t) * h( t) where h( t) = 1.. is 
the Hilbert transform impulse response, with frequency response H(f) = -sign(f). Theref~re: 

E[V( t + 't)V(t)] = ~ E[( N( t + 't) + jN(t + 't») [( N(t) + jN( t»)] 
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= ~ (RN('t) - RN('t) ) + j~ (RNN('t) - RNN(-'t) ). (3.109) 

Since the Hilbert transformer has unity magnitude response (I H(f) 12 = 1), both fv(t) and 
N( t) have the same power spectrum. Therefore, the real part above is zero. Furthermore, from 
Exercise 3-13, the cross-spectrum between the Hilbert transform output and input is: 

(3.110) 

which implies that the crosscorrelation is RNN('t) = (No/2)h( 't) = No/(2m). In particular 
RNN('t) is an odd function, so that the imaginary part of(3.109) is also zero. Since the phase
splitter output V(t) is complex Gaussian and (3.109) is zero, we conclude that V(t) is 
circularly symmetric. Clearly, the power spectrum of V( t) is Sv(f) = (No/2)u(f). 

We have already seen (Example 3-13) that circular symmetry is invariant to modulation by 
a complex exponential. Therefore, since the phase-splitter output V( t) is circularly symmetric, 
so too is the downconverter output Z( t) = .j2e-j21tfctV( t). Furthermore, the resulting power 
spectrum is: 

Sz(f) = 2Sv(f + fc) = Nou(f + fc) . (3.111) 

The bottom line is that the complex envelope of real white Gaussian noise is complex 
circularly symmetric Gaussian noise with a power spectrum given by (3.111). In some 
circumstances the power spectrum of the complex envelope beyond the carrier frequency is 
irrelevant. This would be the case, for example, when the complex envelope is applied to a 
filter that is strictly bandlimited to 1 fI < fc. In such circumstances we may model the complex 
envelope of white noise as being white. 

3.3. Markov Chains 

A discrete-time Markov process {'I' k} is a random process that satisfies 

P('IIk+II'llk, 'Ilk-I' ... ) = P('IIk+II'llw . (3.112) 

In words, the future sample 'I'k+l is independent of past samples 'I'k-I,'I'k- 2, ... if the present 
sample 'I' k = 'Ilk is known. The particular case of a Markov process where the samples take on 
values from a discrete and countable set Q is called a Markov chain. In this section, we will 
often take Q to be a set of integers. Markov chains are a useful model of a finite state machine 
with a random input, where the samples of the random input are statistically independent of 
one another. Since any digital circuit with internal memory (flip flops, registers, or RAMs) is a 
finite state machine, most digital communication systems contain finite state machines. 
Markov chains are useful signal generation models for digital communication systems with 
intersymbol interference or convolutional coding (Chapters 5, 12, and 13). Markov chain 
theory is also useful in the analysis of error propagation in decision-feedback equalizers 
(Chapter 8) and in the calculation of the power spectrum of line codes. The following 
treatment uses Z-transform techniques familiar to the readers of this book. Sections 3.3.2 
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through 3.3.4, as well as Appendix 3-B, can be skipped on a first reading, since the techniques 

are not used until Chapter 8. 

3.3.1. State Transition Diagrams 

Consider a random process 'P k (real, complex, or vector valued) whose sample outcomes 
are members of a finite or countably infinite set Q of values. The random process 'P k is a 
Markov chain if (3.112) is satisfied. The next sample 'P k + 1 of a Markov chain is independent 
of the past samples 'I' k _ 1> 'P k _ 2, ... given the present sample 'P k. Furthermore, all future 
samples of the Markov chain are independent of the past given knowledge of the present, as 
shown in the following exercise. 

Exercise 3-16. 
Let 'P k be a Markov chain and show that for any n > 0, 

(3.113) 

Since knowledge of the current sample 'P k makes the past samples irrelevant, 'P k is all we need to 
predict the future behavior of the Markov chain. For this reason, 'I' k is said to be the state of the 
Markov chain at time k, and Q is the set of all possible states. 

Example 3-14. -----------------------------------------------------
A shift register process is shown in Fig. 3-6. If X k is a random sequence that is independent of its 
distant past Xk _ M _ 1, Xk _ M _ 2, ... and if we define the vector 

(3.114) 

where M is the memory of the system, then the Markov property (3.112) is satisfied. This follows 
since 'Pk + 1 is a function of Xk + 1 and 'Pk only. Hence {'Pk} is a vector-valued discrete-time 
Markov process. If the inputs Xk are discrete-valued, then it is also a Markov chain. 

A Markov chain can be described graphically by a state transition diagram. This graph 
displays each state of the Markov chain as a node, and also displays the input and output or 
some other relevant properties for the transitions between states. 

Example3-15. -----------------------------------------------------
The parity of a bit stream X k is defined to be the accumulated modulo-two summation of the bits, 
and is computed by the circuit in Fig. 3-7(a). This circuit is also known as a binary accumulator. It 
is sufficient for the input bits to be independent for the random process 'P k = Yk _ 1 to be Markov. 
It is easily seen from the diagram that 'P k + 1 depends only on the current state 'P k and the current 
input Xk . 'P k has a finite sample space Q = {O, I}, so the parity checker can be represented by the 

'Pk 
~-----------------JA~----------------~ ( ~ 

... ~-M 

Fig. 3-6. A shift register process with independent inputs Xkis a Markov chain with state '¥ k. 
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state transition diagram Fig. 3-7(b), where the arcs are labeled with the input that stimulates the 
state transition and the output resulting from the transition. The arcs of such a state diagram can 
alternatively be labeled with the transition probabilities, if the transition probabilities are 
independent of time. 

A Markov chain 'I' k is called homogeneous if the conditional probability p(\jI k I \jI k _ 1) is 
not a function of k. Homogeneity is therefore a kind of stationarity or time invariance. A 
homogeneous Markov chain can be characterized by its state transition probabilities, which 
we write with the shorthand 

for i, jEll 

Example 3-16. 

(3.115) 

If in the previous example the incoming bits are not only independent but also identically 
distributed, then the Markov chain is homogeneous. If furthermore the incoming bits are equally 
likely to be one and zero, then the state transition probabilities are all 0.5. 

It is often convenient to define a random process that is some real-valued function of the 
state trajectory of a Markov chain, 

(3.116) 

This is encountered in the modeling of modulation with memory such as continuous-phase 
modulation. The transmitted power spectrum is an important property of such techniques, and 
thus we need to calculate the power spectrum of (3.116). This problem is considered in 
Appendix 3-B. 

3.3.2. Transient Response of a Markov Chain 

For a homogeneous Markov chain, we can find a relation for the evolution of the state 
probabilities with time. Using (3.33) we write 

Pk+l (j) = L. p(j I i)Pk( i) 
iE Q 

(3.117) 

for all j E Q, where we have defined a notation for the probability of being in state i at time k, 

X'~j STATE INPUT 
(1,1) ~ 

(0,0) 
(0,1) 

'Pk 
z-l 

(1,0) t (a) (b) 
OUTPUT 

Fig. 3-7. (a) A circuit that computes the parity of the bit stream Xn. (b) The state transition diagram of 
the corresponding Markov chain. 
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Pk( i) = Pr['¥k = i]. (3.118) 

The new notation emphasizes that Pk( i) is a discrete-time sequence. In applications we often 
want to determine the probability of being in a certain state j at a certain time k given a set of 
probabilities for being in those states at initial time k = o. We can accomplish this by analyzing 
(3.117), a system of time-invariant difference equations, using Z-transform techniques. If we 
define Pk(j) = 0 for k < 0, then the Z-transform of the state probability for state j is 

Exercise 3-17. 
Take the Z-transform of both sides of (3.117) to show that 

Piz) = Po(j) + L p(j Il)Z-lPi(z) . 
iE Q 

(3.119) 

(3.120) 

If there are N states, (3.120) gives us N equations with Nunknowns Piz). These equations can 
be solved and the inverse Z-transform calculated to determine the state probability Pk( i). 

Example 3-17. -----------------------------------------------------
Continuing Example 3-15, the parity check circuit, suppose that the initial state is equally likely to 
be either zero or one, so 

PoCO) = Po(l) = 1/2. (3.121) 

Suppose further that the incoming bits Xk are equally likely to be zero or one, so the transition 
probabilities are all 112. Then (3.120) becomes 

Po(z) = ~ + ~z-lpO(z) + ~z-lpl(Z), 

P1(z) = ~ + ~z-lpl(Z) + ~z-lpO(z). (3.122) 

Solving this set of two simultaneous equations, the Z-transforms of the state probabilities are equal, 

112 
Po(z) =P1(z) =--. 

1-z-1 

Using the Z-transform pair in (2.15) we can invert the Z-transform to get 

(3.123) 

(3.124) 

where Uk is the unit step function. The chain is therefore equally likely to be in either state at any 
point in time beginning at k = O. A Markov chain in which the state probabilities are independent 
of time is called stationary. 
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3.3.3. Signal Flow Graph Analysis 

Translation of a state diagram into a set of equations to be solved is often made easier 
using signal flow graphs. A signal flow graph is a graphical representation of a linear equation, 
and in particular can represent the system of equations given by (3.120). Its value lies in the 
fact that the state diagram can be directly translated into a topologically equivalent signal flow 
graph representing the equations. In fact, the experienced can write down the signal flow graph 
directly without ever generating a state diagram. The idea of a graph representing linear 
equations is illustrated by the following simple example. 

Example 3-18. -------------------------
The equation w = au + bx can be represented by the signal flow graph shown in Fig. 3-8(a). The 
nodes of the graph represent the variables u, w, and x, while the two arcs represent the 
multiplication of the variables by constants, and also the addition. The signal flow graph in 
Fig. 3-8(b) represents the recursive equation x = au + bw + ex. 

In general, a node in a signal flow graph represents a variable that is equal to the sum of the 
incoming arcs. A weight on an arc is a multiplicative factor. Our interest is in signal flow 
graphs in which the variables are all Z-transforms. 

Example3-19. ---------------------------
The signal flow graph in Fig. 3-8( c) represents a dynamical system described by the equations X(z) 
=z-ly(z) + W(z) and Y(z) =z-lW(z). 

From the last example, it is clear that the equations (3.120) can be represented using a 
signal flow graph for any given Markov chain, as shown in Fig. 3-9. Shown are just two of the 
states, i and j. Each of the states is represented by two nodes of the graph, one for the Z
transform of the state probability sequence, Pi(z), and the other for the initial probability of 
that state Po(i) (the latter is not a variable in the equations, but a constant). In many cases the 
initial probability is zero so the corresponding node can be omitted. 

Example3-20. ----------------------------
Returning to the parity check example of Example 3-15, the equations (3.122) are represented by 
the signal flow graph in Fig. 3-10. Note that this one figure takes the place of the state diagram of 
Fig. 3-7 and the set of equations of (3.122). 

~ 
~ 

(a) 

(c) 

c 

_ a 0 b _ 

~ 
(b) 

Fig. 3-8. Several signal flow graphs representing linear equations. 
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In retrospect, the signal flow graph is intuitive. Each state transition has a delay operator z-l 

corresponding to the time it takes for that transition to occur, as well as the probability of that 
transition. The arcs from the initial state probabilities have no such delay since the 
initialization is instantaneous, and we can think of that transition as occurring only once at k = 
O. For Markov chains that start in a particular state, there will only be one such node 
corresponding to the starting state. 

Once we have a signal flow graph, we can easily write down the set of equations and then 
solve them for the Z-transforrn of the state probabilities. For some problems, a shortcut known 
as Mason's gain formula allows us to solve these equations directly by inspection of the signal 
flow graph [2][3][4][5]. 

3.3.4. First Passage Problem 
When Markov chains are used to model the behavior of framing recovery circuits or error 

propagation (Chapter 8), we would like to calculate the average first passage time for an 
absorption state of the chain. An absorption state is defined as a state with an entry but no exit, 

Fig. 3-9. A signal flow graph representation of the Markov chain dynamical equations (3.120). 

0.5z-1 

0.5z-1 0.5z-1 

0.5z-1 

Fig. 3-10. A Signal flow graph representation of the system of state probabilities for the parity examples. 

Fig. 3-11. A part of a signal flow graph for a Markov chain in which state N is an absorption state, with 
only one entry from the outside, namely from state N-1. 
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SO that the steady-state probability of that state is unity. This is illustrated in Fig. 3-11 for the 
case where the absorption state is N. An absorption state must have a self-loop with gain z-l 
indicating that the chain stays in that state forever. The figure also assumes that there is only 
one way to get to the absorption state, from state N - 1, although that is not necessary for the 
following analysis. 

What we are often interested in is the first passage time to state N, which is defined as the 
time-index of the first time we enter that state. Define the probability of entering state N at 
time k as qk(N). Then we have that 

(3.125) 

or in words, the probability of being in state N at time k is equal to the probability of being in 
that state at time k - 1 plus the probability of first entry into that state at time k. This relation 
follows from the fact that there are only two mutually exclusive ways to be in state N at time k 
- either we were there before or else we entered the state at time k. From (3.125) we can 
relate the first passage probability to the state probability that has already been calculated. 
Assuming that Po(N) = 0, taking the Z transform of (3.125) we get 

(3.l26) 

Since PN<z) is an absorption state, it turns out that it will always have a factor of (1 - z-l) in 
the denominator which will be canceled, resulting in a QN<z) which is simpler than the PN<z) 
that we started with. 

Ifwe define the average or expected time for first entry into state N as tN, then it turns out 
that we can find this time without the need to take the inverse Z-transform of QN<z). 

Exercise 3-18. 
Show that the mean first passage time is 

a 
tN=--QN<Z)j . az Z= 1 

(3.127) 

Example3-21. ----------------------------------------------------
If we toss a fair coin, what is the average number of tosses until we have seen two heads in a row? 
The signal flow graph for this example is shown below: 

The numbering of states is the number of heads in a row. We assume that we start with zero heads 
in a row. At each toss the number of heads in a row increases by one with probability 1/2, or goes 
back to zero with probability % (that is, we get a tail). We define state two (two heads in a row) as 
an absorption state so that we can calculate the first passage time. Solving the linear equations, we 
get 
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(3.128) 

Finally, 

fN = - ~ ( 1 ) I = 6. az 4z4 - 2z - 1 z = 1 
(3.129) 

3.4. The Poisson Process and Queueing 

There was a time when no random processes could challenge the Gaussian process for the 
attention of communication theorists. However, the Poisson process, and its generalization, the 
birth and death process can reasonably claim to hold that distinction. The question often arises 
in communications as to the distribution for the times of discrete events, such as the arrivals of 
messages at a digital communication multiplex, or the arrivals of photons in a light beam at an 
optical detector in an optical communication system. The Poisson process models the most 
random such distribution, and is an excellent model for many of these situations. 

To proceed, we need to define the notion of random points in time, where a point in time 
might denote the arrival of a message from a random source or a photon at a photodetector. 
Defining some notation, let the time of the k-th arrival be denoted by tk, where of course tk ~ tj 

for k > j. Further, define a continuous-time random process N( t) that equals the number of 
arrivals from some starting time to to the current time t. We call N( t) a counting process since 
it counts the accumulated number of random points in time. Thus, N( t) assumes only non
negative integer values, has initial condition NCto) = 0, and at each random point in time tk, 

N( t) increases by one. Such a counting process is pictured in Fig. 3-12(a), where the arrival 
times and the value of the counting process are pictured for one typical outcome. 

(a) (b) 

Fig. 3-12. Typical outcomes from a counting process N(t). (a) A counting process which is monotone 
increasing. (b) A counting process, which has both arrivals and departures and hence can increase or 
decrease. 
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In some situations there are only arrivals, so that a counting process of the type pictured in 
Fig. 3-l2(a) is the appropriate model. In other situations, there are departures as well as 
arrivals. A typical situation is the queue pictured in Fig. 3-13. We can define a counting 
process N( t) to be the difference between the accumulated number of arrivals and the 
accumulated number of departures. 

Example3-22. -----------------------------------------------------
Consider a computer communication system that stores arriving messages in a buffer before 
retransmitting them to some other location. N( t) gives a current count of the number of messages 
in the system at time t. A typical outcome of such a process is pictured in Fig. 3-l2(b), where it 
should be noted that the process can never go below zero (since nothing can depart if there is 
nothing in the buffer). 

In many instances of practical importance, the count N( t ) at time t is all we need to know 
to predict the future evolution of the system after time t. The manner in which system reached 
N( t) is irrelevant in terms of predicting the future. For this case, the counting process denotes 
the state of the system in the same sense as Markov chains in the last section. In particular, we 
say that the system is in state j at time t if N( t) = j. This is similar to a Markov chain with one 
important distinction - a Markov chain can only change states at discrete points in time, 
whereas we now allow the state to change at any continuous point in time. Like Markov 
chains, a sample of the counting process N(to) is a discrete-valued random variable. Just as for 
Markov chains (3.118), we define a probability of being in state j at time t as 

(3.130) 

This notation emphasizes that this probability is a continuous-time function. The only real 
distinction between (3.118) and (3.130) is that the latter is defined for continuous-time and the 
former for discrete-time. 

In the following subsections, we analyze a counting process under the specific conditions 
appropriate for optical communication (Section 3.4.3) and statistical multiplexing 
(Section 3.4.2). 

3.4.1. Birth and Death Process 

The cases of interest to us are subsumed by a general process called a birth and death 
process, which is a mathematician's macabre terminology for a counting process with both 
arrivals and departures. This analysis is given in this section. 

QUEUE 

ARRIVALS ----,--,--,--,,111 ~' 

Fig. 3-13. A queueing system, which models among other things the status of a buffer in a 
communication system. 
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We have to somehow model the evolution of the system from one state to another. The 
approach for the Markov chain in (3.115) is inappropriate, since the probability of transition 
between any two states at any point in time t is most likely zero! While we cannot characterize 
the probability of transition, what we can characterize is the rate of transition between two 
states. Suppose for two particular states, the rate of transitions between one state and the other 
is a constant R. What we mean by this is that in a time Ot we can expect an average Rot 
transitions. If ot is very small, then Rot is a number much smaller than unity, and the 
probability of more than one transition in time Ot is vanishingly small. Under these conditions, 
we can think of Rot as the probability of one transition in time ot, and (1 - ROt) as the 
probability of no transition. 

This logic leads us to a transition diagram and associated set of differential equations. The 
transition diagram in Fig. 3-14 associates a node with each state, and within that node we put 
the probability of being in that state at time t, which we denote Qj( t). Each transition in the 
diagram is labeled with the rate at which that transition occurs, where the rates in the general 
case are allowed to be time-varying (non-homogeneous). Each rate is labeled with a subscript 
indicating the state in which it originates, where 1.( t) is the rate for transitions corresponding 
to births or arrivals and Il( t) corresponds to deaths or departures. Reiterating, the 
interpretation of these rates is as follows: for a very small time interval Ot, the probability of a 
particular transition is equal to the rate times the time interval. 

The set of differential equations which describe the evolution of the birth and death 
process are 

dqjCt) . 
(it = Aj -1 (t )qj -1 (t) + Ilj + 1 (t)Qj + 1 (t) -. [Aj (t) + Il/ t )]q/ t), ) ~ 0 , (3.131) 

with initialization q-1 (t) = o. These equations can be derived rigorously from fundamental 
principles [6], but for our purposes they are evident from intuitive considerations. The 
equations say that the rate of increase of a probability with time for state j is equal to the rate at 
which transitions into that state from states j -1 and j + 1 are occurring (times the current 
probability of those states) minus the rate at which transitions out of state j are occurring 
(times the current probability of state j). 

We must also specify an initial condition, which for our purposes specifies that the process 
starts in state zero (no arrivals) at time to, 

Ao(t) Al (t) A2( t) 

~ 
• =s= • 
~ 

• =: ... 
~ ~ ~ 

111 (t) 112(t ) 113( t) 

Fig. 3-14. State transition diagram for a birth and death process. 
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(3.132) 

The first order differential equations can be solved for many special cases. 

Example 3-23. -------------------------
Consider the important case of a pure birth process in which Ili t) = 0. Also assume the birth rates 
are all the same and a constant with time, Ai t) = A. The transition diagram for this model is shown 
in Fig. 3-15. This corresponds to the important case where the arrival rate does not depend on the 
state of the system, the usual case in the problems that we will encounter. Then (3.131) becomes 

(3.133) 

which is a simple first order differential equation with constant coefficients. Assume that the initial 
condition is 

(3.134) 

implying that the initial count at t = ° is 0. We can solve this using very similar techniques to our 
solution of the Markov chain, but use the Laplace transform in place of the Z-transform. In analogy 
to (3.119), defining the Laplace transform of the state probability, 

Qis) = r qi t )e-st dt . 
o 

Taking the Laplace transform of both sides of (3.133), 

sQis) - qiO) + AQis) = AQj _ 1 (s) 

Using (3.132), with to = 0, this becomes 

1 
Qo(s) = S+A' 

(3.135) 

(3.136) 

(3.137) 

This set of iterative equations for the state probability Laplace transform is easily solved by 
iteration, 

(3.138) 

and taking the inverse Laplace transform, we find that for t ~ ° andj ~ 0, 

Fig. 3-15. State transition diagram for a constant-rate pure birth process. 
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(3.139) 

This is the well-known Poisson distribution with parameter At. For this reason, the pure birth 
process N( t) we have just analyzed is called a Poisson process with constant rate. We will 
generalize this to a variable rate in the next subsection. 

The Poisson distribution is an important one in the theory of birth and death processes, so we 
summarize its properties in the following exercise. 

Exercise 3-19. 
Consider a Poisson distribution with parameter a, 

(a) Show that the mean and variance of this distribution are 

E[N] = a, Var[N] = a . 

(Hint: Form a power series for ea and differentiate it twice.) 

(b) Show that the moment generating function is given by 

109{PMS) = a(eS - 1) . 

The last example can be generalized with respect to the initial condition. 

Exercise 3-20. 
Show that if N(to) = k (there have been k counts up to time to), then 

_ (A(t-to»j-k -A(t-to) .> > 
qj(t) - (j _ k)! e , } - k, L to . 

(3.140) 

(3.141) 

(3.142) 

(3.143) 

This result implies that the number of counts starting at t = to is a Poisson distribution with 
parameter A(t - to), which is the expected number of arrivals since the start time. Furthermore, 
index j - k of the Poisson distribution is the number of counts since the start time. The 
important conclusion is that the number of arrivals in the interval starting at t = to has a 
distribution which does not depend in any way on what happened prior to to. This is roughly 
the definition of a Markov process, and a Poisson counting process is in fact a Markov process. 
For such a process, the number of arrivals in the interval [to, t] is statistically independent of 
the number of arrivals in any other nonoverlapping interval of time. It is in this sense that the 
Poisson process is the most random among all monotone non-decreasing counting processes. 

Exercise 3-21. (Pure death process.) For A;{ t) = 0, consider the case where departures from the 
system are proportional to the state index, Il;{ t) = jll. This is an appropriate model for a system in 
which the departure or death rate is proportional to the size of the population, as in a human 
population. Further, assume that the initial state at t = 0 is n. Draw the state transition diagram and 
show that the state probabilities obey a binomial distribution, 
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(3.144) 

Now we give an example of a problem in which both births and deaths occur. This is an 
example of a queueing problem, and it is appropriate at this point to define some terminology 
used in queueing, particularly as it relates to digital communication. A queue is a buffer or 
memory which stores messages. There is some mechanism which clears messages from the 
queue, which is usually the transmission of the message to another location. This mechanism 
is called the server to the queue. Assume a server can process only one message at a time, so 
that if more than one message is being processed (there are multiple communication channels 
for transmission of messages), then there are an equivalent number of servers. Typically the 
buffer contains space for a maximum number of messages to wait for service, and the number 
of messages that can be waiting at any time is called the number of waiting positions. The state 
of the system, which naturally tracks a counting process, is the number of messages waiting for 
service plus the number of messages currently being served. Messages arrive at the queue 
(births) at random times, and they depart from the queue (deaths) due to the completion of 
service. 

Exercise 3-22. 
(Queue with one server and no waiting positions.) Assume that a queue has constant arrival rate A, 
a single server which clears a message being served at rate Il, and no waiting positions. If a 
message arrives while the server is busy then since there are no waiting positions that arrival is lost 
and leaves the system permanently. Draw the state transition diagram for the system and show that 
the probability that the server is not busy is 

(3.145) 

The differential equation approach we have described is capable of describing the 
transient response of a system starting with any initial condition. Often, however, it is 
sufficient to know what the state probabilities are in the steady state. There is no such steady 
state distribution for a Poisson process, since the state grows without bound. However, for 
queueing systems where the service rate is always guaranteed to be higher than the arrival rate, 
and where all the rates are independent of time, there will be a steady state distribution. This 
distribution can be obtained by letting t~ 00 in the transient solution we have obtained, or can 
be obtained much more simply by setting the time derivatives in the differential equations to 
zero and solving for the resulting probabilities. 

Example 3-24. -------------------------
Continuing Exercise 3-22, letting t ~ 00 in (3.145), the steady state probability is 

(3.146) 

We can get this same result without solving the differential equation by setting the derivative in 
(3.131) to zero. 
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In the following two sections we will specialize the general birth and death process to two 
situations of particular interest to us. 

3.4.2. M/M/1 Queue 

Consider the following queueing model which characterizes a single server queue with the 
most mathematically tractable assumptions. This model is actually a combination of the pure 
birth process of Example 3-23 and a pure death process (Exercise 3-21). Assume arrivals 
occur at a constant rate A independent of the number of waiting positions occupied, there are 
an infinite number of waiting positions so that no arrival ever encounters a full buffer, arrivals 
wait indefinitely for service, and there is a single server with service rate ~. The departure rate 
is independent of the number of messages waiting in the queue, as long as there is at least one. 
The state transition diagram for this queueing model is shown in Fig. 3-16. 

As in most queueing problems, we are content to know the steady state distribution of 
states. This distribution will only exist if the service rate ~ is greater than the arrival rate A, 
because otherwise the buffer size will grow to infinity. Making that assumption, the 
differential equations governing the queue are 

dqP) 
(It = Aqj_1(t) + ~qj+ l(t) - (A + ~)q/t), j> 0, 

dqo(t) 
([t = ~q1 ( t ) - Aqo( t ) 

with initial condition (assuming there are no positions occupied at time t = 0), 

q/O) =8j . 

(3.147) 

(3.148) 

We could attempt to solve this system of differential equations, but since we are content with 
the steady state solution, set the derivatives to zero, 

o = Aqj -1 + ~qj+ 1 - (A + ~)qj , j> 0 , 
o = Ilql - Aqo ' (3.149) 

where we have also taken the liberty of suppressing the time dependence since we are looking 
only at the steady state. These equations are easily solved. 

Exercise 3-23. 
Show that the solution to (3.149) is 

A A A 

~ 
) 

~ 
) 

~ 
) :: ... 

~ ~ ~ 

!l !l !l 

Fig. 3-16. The state transition diagram for the Single server queue with an infinite number of waiting 
positions. 
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(3.150) 

where p is called the offered load, 

P=A/~ (3.151) 

and is less than unity by assumption. Note from (3.150) that the probability that the single server is 
busy is 1 - qo = p, which is obvious since the server has more "capacity" than the arrivals require 
by a factor of ~/A. Thus, p is also called the server utilization. 

In many queueing problems the most critical parameter is the delay that a new arrival 
experiences before being served. This is also called the queueing delay, and represents a 
significant impairment in communication systems that utilize a buffer delay discipline to 
increase the capacity of a communication link (Chapter 17). A related parameter is the waiting 
time, which is defined to be the queueing delay plus the service time. The calculation of the 
delay is a little more complicated than what we have done heretofore, so we will simply state 
the results [6]. The mean delay is given by 

D= P 
~(1- p) 

(3.152) 

Note that as the offered load or server utilization approaches unity, the mean delay grows 
without bound; conversely, as the utilization approaches zero, the lightly loaded queue, the 
delay approaches zero. The mean queueing delay is equal to the average service time 1 / ~ for 
a utilization of p = 1/2, 

3.4.3. Poisson Process With Time-Varying Rate 
In optical communication systems, the counting process which gives the accumulated 

number of arrival times for photons is a Poisson process. The Poisson process is a pure birth 
process where the arrival rate is independent of the state of the system, and we have already 
been exposed to it in Example 3-23 for a constant arrival rate. In optical communication, the 
arrival rate is actually signal dependent, so in this section we discuss that case. 

The Poisson process with time-varying rate is the pure birth process in which the 
incoming rate A( t ) is independent of the state of the system. Thus, the system is governed by a 
first-order differential equation with time-varying coefficients, 

dq .(t) 
+,+A(t)qit) =A(t)qj_l(t) , q-l(t) =0, (3.153) 

and we assume the system starts at time to in state j = O. Because of the time-varying 
coefficients, the Laplace transform is of no help, and we must resort to solving the differential 
equation directly. This is straightforward (since it is a first order equation), but tedious, so the 
solution is relegated to Appendix 3-C. Define 

A(t) = r A(u) du , 
to 

(3.154) 
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which has the interpretation as the average total number of arrivals in the interval [to, t]. Then 
the probability of n arrivals in the interval [to, t] is governed by a Poisson distribution with 
parameter A( t ), 

(3.155) 

This reduces to the solution given in Example 3-23 for the constant rate case. 

As a reminder, (3.155) specifies the number N(t) of arrivals during the time interval 
[to, t]. This random number of arrivals is Poisson distributed with parameter A( t), and hence 
has mean and variance 

E[N( t)] = A( t) , CfXr(t) = A( t) . (3.156) 

As in the constant rate case, it can be shown that the number of arrivals in any two non
overlapping intervals are statistically independent. 

3.4.4. Shot Noise 

In optical communication, a waveform is generated in the photodetector by generating 
impulses at times corresponding to random arrival times of photons and then filtering these 
impulses. This is known as afiltered Poisson process, or a shot noise process. 

If a Poisson process is characterized by a set of arrival times tk for the k-th arrival, and 
given a filter with impulse response h( t), then a shot noise process is a continuous-time 
random process X( t ) with outcome 

(3.157) 

An outcome of this random process is illustrated in Fig. 3-17 for a particular impulse response. 
In this figure, it is assumed that qualitatively the duration of the impulse response is short 

I~~ (b) 

)O( )( )( )O( • t 

• t 

L' (c) 

1 ~~d' ~ • t • t 

Fig. 3-17. Illustration of an outcome of a shot noise process. (a) The average arrival rate vs. time. (b) 
The random actual times of arrival, where arrivals occur at the average rate given in (a). (c) The impulse 
response of the filter. (d) The corresponding outcome. 
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relative to the average time between arrivals. If the impulse response were long, this would 
have an averaging effect resulting in a much smoother outcome. 

It is shown in Appendix 3-D that the moment generating function of the shot noise process 
at time t is 

log<l>x( t)(s) = 1..( t) * (esh( t) - 1) . (3.158) 

The mean and variance of shot noise are easily derived from (3.158). 

Exercise 3-24. 
Show that the mean value of shot noise is the convolution of the filter impulse response with the 
arrival rate, 

mX<t) = E[X(t)] =A.(t) * h(t) (3.159) 

and that the variance is the convolution of the square of the filter impulse response with the arrival 
rate, 

(3.160) 

These relations are known as Campbell's theorem. 

3.4.5. High-Intensity Shot Noise 

When the intensity of shot noise is high, the statistics become that of a Gaussian random 
process. The intuition behind this is that X( t) is the sum of a large number of independent 
events, and hence approaches a Gaussian by the central limit theorem. To demonstrate this 
more rigorously, we will show that the moment generating function of shot noise approaches a 
Gaussian moment generating function in the limit of high intensity. 

In order to avoid an infinitely large power of shot noise, as the intensity grows we need to 
scale the size of the impulse response h( t) also. Therefore, let us use a scaling constant 13, 
which we will allow to grow to infinity, and let 

(3.161) 

With this scaling, we get from Campbell's theorem that 

m x< t) = Ji3 A.o( t) * hoe t) , (3.162) 

Hence, as the scaling factor 13 grows, the variance of the process stays constant and the mean 
value grows without bound. We cannot help this, because as the intensity grows the variance 
becomes a smaller fraction of the mean. In this sense high-intensity shot noise approaches a 
deterministic signal m x< t) as the intensity grows. 

Only two terms in the moment generating function are important as the scaling constant 13 
grows. 



Sect. 3.5 Further Reading 99 

Exercise 3-25. 
Show that for large ~ the only significant tenns in the moment generating function of (3.158) are 

(3.163) 

Comparing this with the Gaussian moment generating function of (3.41), we see that high 
intensity shot noise is approximately Gaussian with mean and variance given by (3.162). 

3.4.6. Random-Multiplier Shot Noise 

In optical communication systems, it is sometimes appropriate to introduce a random 
multiplier into the shot noise process, viz. 

(3.164) 

where Gk is a sequence of mutually statistically independent identically distributed random 
variables which are also statistically independent ofthe arrival times tj for allj. 

Exercise 3-26. 
Use Campbell's theorem and the assumptions to show that the mean-value of(3.164) is 

mX<t) =E[GjA(t) * h(t), (3.165) 

and the variance is 

(3.166) 

where E[G] and E[G2] are the mean-value and second moment of the random multiplier Gk for all 
k. 

3.5. Further Reading 

For a general introduction to random variables and processes, Papoulis [7], Stark and 
Woods [8], and Ross [9] are recommended. Papoulis has more of an engineering perspective. 
Both books have comprehensive treatments of Markov chains and Poisson and shot noise 
processes. An excellent introduction to Poisson processes can be found in Ross [10]. There are 
a number of books that give comprehensive treatment to the application of Poisson and birth 
and death processes to queueing models, such as Cooper [6], Hayes [II], and Kleinrock [12]. 
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Appendix 3-A. 
Power Spectrum of A Cyclostationary Process 

In this appendix we determine the power spectrum of the PAM random process with a 
random phase epoch (3.83). Calculating the autocorrelation function of (3.83), 

Assuming we can interchange expectation and summation, we use the fact that 9 is 
independent of Xk to get 

The first expected value is simply the autocorrelation function Rx.(m - n). The second 
expected value can be computed using the definition of expectation and the p.d.f. of the 
uniform random variable 9 

JT 1 
E[h(t +1: - mT- 9)h*(t - nT- 9)] = 0 'l'h(t +1:- mT- e)h*(t - nT- e) de. (3.169) 

Changing variables, letting i = m - n, using (3.169), and exchanging summations, we get 

(3.170) 

The second summation is the sum of integrals with adjoining limits, so it can be replaced with 
a single infinite integral 

(3.171) 

which is independent of t, so the process Z( t) is wide sense stationary. To get the power 
spectrum, we take the Fourier transform with 1: as the time index 

Sz{f) = .!. L.~ Rx.(i)[f. h*(a.)e i21tf(a.-iT)da. ] . 
T '=-00 -00 

(3.172) 

The expression in brackets is e-j21tfiTH*(f), getting 

Sz{f) = .!. H(f)H*(f) ~~ Rx.(i)e-i21tfiT. 
T £oJ, =-00 

(3.173) 

The summation is simply the discrete-time Fourier transform Sx.(e i21tfT) of the autocorrelation 
function. The final result is 

(3.174) 
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Appendix 3-B. 
Power Spectrum of A Markov Chain 

In this appendix we solve the problem of finding the power spectrum of the random 
process (3.116). The power spectrum only exists if the random process is wide sense 
stationary. Strictly speaking, this requires that the Markov chain be running over all time, 
although we can interpret the results as indicative of the power spectrum for a chain that was 
initialized but has been running long enough to be in the steady-state. We approach this by 
assuming that the initial probability of each state is the same as its steady-state probability, so 
that the state probability is in fact constant with time (a stationary Markov chain). 

We first determine the autocorrelation function of (3 .116), 

(3.175) 

assuming f( . ) is a real-valued function. Assuming wide-sense stationarity, we can take k = 0 
and this can be written 

Rx<n) = L L f( i)f(j)Po,n(i, J). (3.176) 
ie Qje Q 

where by Bayes' rule 

Po,n(i, J) = Pn I oV I ~)Po( i) (3.177) 

is the joint probability of being in state i at time 0 and state j at time n. Assuming we have 
already calculated the steady-state state probabilities p(i) for the chain, br the stationarity 
assumption we can write 

p( i) = Po(i). (3.178) 

One way to think of this is as forcing the initial state probability to equal the steady-state 
probability, thus suppressing any transient solution. Finally, we must carefully note the d.c. 
component of the random process, since it contributes a delta-function to the power spectrum 
that can easily be lost if we are not careful. Specifically, the d.c. component is 

~x = L f(i)p(i). (3.179) 
ie Q 

The power spectrum is simply the Z transform of the autocorrelation function (see (3.61)). 
Rather than calculate the Z transform 8X<z) directly, let us first concentrate on the quantity 

(3.180) 

that includes only the positive index terms in the summation making up the Z transform. From 
(3.176), (3.177), and (3.178), this can be written as 



102 STOCHASTIC SIGNAL PROCESSING CHAP. 3 

Sx+(Z) = L L f(i)f(j)p(i)· Pj1i(Z) (3.181) 
iE QjE Q 

where 

Pj I i(z) = L: = OPn I o(i I i)z-n . (3.182) 

This latter quantity can be interpreted as the Z-transform of Pn lo(i I i), which is in turn the 
probability of being in state j at time n given that we started (with probability one) in state i at 
time o. This quantity is easy to calculate using the techniques we have previously displayed, 
since it is simply the Z-transform of a transient solution starting with probability one in a 
particular state. The signal flow graph for this solution is shown in Fig. 3-18, where only the 
states i andj are shown. This signal flow graph must be solved for Pj I i(Z) for all (i, J) for which 
f(i)f(j) is non-zero in (3.181). 

Example 3-25. -------------------------
Again returning to the parity check circuit of Example 3-15, let us compute Sx+(z). In this case 
f( i) = i, so that the random process Xk = fcY k> = ':P k assumes the values 0 and 1. For that case, we 
only need evaluate one term in (3.176), corresponding to i = j = 1, and all the others are zero. This 
term is shown by the signal flow graph in Fig. 3-18. Solving this flow graph, we get 

1- O.5z-1 
P111(Z) = -1' 

1-z 
(3.183) 

Fig. 3-18. Signal flow graph representation of equations that must be solved to find Pj I i(z). 

0.5z-1 

Fig.3·19. Signal flow graph for the parity check circuit. 
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Sx+(z) = 0.51 - 0.5~-1 , 
1-z-
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(3.184) 

since there is only one term in the sum and p(O) = p(1) = 1/2. Inverting the Z transform, we find that 

Rx<n) = {112, n = 0 
114, n>O 

(3.185) 

This result says that the power of the process is %, which is obvious, and that the process has a d.c. 
component of % since the autocorrelation function approaches 1/4 for large n, which is also 
obvious. 

We have determined the one-sided terms in the power spectrum, and we must generate the 
two-sided spectrum SX<z). However, before doing this, we must first remove any d.c. 
component, since that d.c. component can be represented by the one-sided transform but is 
problematic in the two-sided transform. This is simple, since we only need to replace Sx+(z) 

by 

2 
+ I!x 

Sx (z)---
1-z-1 

(3.186) 

to remove this d.c. component. Alternatively we could have defined a new random process 
with the d.c. component removed, although that method is often harder. 

Example 3-26. -------------------------
For the parity check circuit of Example 3-15, the d.c. component is I! X = %, and subtracting the 
appropriate term from (3.184), 

2 
+ I!x 1 

Sx (z)- --=-. 
1- z-l 4 

(3.187) 

Note that for this process this result would have been much more difficult to obtain if we had 
defined a d.c. free random process, since then we would have to evaluate all four terms in (3.181) 
rather than just one. 

We must now tum the one-sided version of the power spectrum into a two-sided version. The 
Z transform of the autocorrelation function can be written 

SX<z) = ~~ RX<m)z-m = ~~ Rx(m)z-m + ~~ RX<m)zm -Rx(O) , 
~m=O ~m=O ~m=O 

(3.188) 

where we have used the symmetry of the autocorrelation function. Noting that Rx(O) = Sx+(oo) , 
we get finally 

(3.189) 
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Example 3-27. -------------------------
To finish with the parity check example of Example 3-15, 

1 1 1 1 
Sx<.z) =- + - - - = -

4 4 4 4' 
(3.190) 

and the process is white with power 1/4, However, recall that this power spectrum does not include 
the d.c. term, so that in fact 

(3.191) 

The area ofthe delta function has been chosen to be 1/4, the power of the d.c. component. 

Appendix 3-C. 
Derivation of a Poisson Process 

In this appendix we show that the Poisson distribution for the accumulated number of 
arrivals as given by (3.155) is valid. To begin with, we need the solution to a first-order 
differential equation, which is given in the following exercise [13]. 

Exercise 3-27. 
Consider the following first order differential equation, 

x( t) + a( t )x( t) = b( t) . 

(a) Let A (t) = a( t) and show that 

!£[eA(t)x(t)] = b(t)~(t) dt . 

(b) Integrate both sides of (3.193) to obtain the solution for x( t) 

t 
A( t) = J a(v) dv. 

to 

Returning to the Poisson process, identify 

a( t) =A(t) , 

Therefore, given the definition of (3.154) for A( t), 

t 
qi t) = qito)e -A( t) + e -A( t) J A(u)% -1 (u)e -A(u) duo 

to 

The solution follows immediately for j = 0 using the initial condition of (3.153), 

qo(t) =e-A(t), 

(3.192) 

(3.193) 

(3.194) 

(3.195) 

(3.196) 

(3.197) 
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and the rest is easy! 

Exercise 3-28. 
Verify the validity of(3.155) by induction on (3.196). 

Appendix 3-0. 
Moment Generating Function of Shot Noise 

In this appendix we derive the moment generating function of a shot noise process X( t) 
corresponding to impulse response h( t). A sample function of such a process is given by 
(3.157). 

To find the moment generating function, divide the time axis into small intervals of length 
St, where the k-th interval is [(k - %) . St, (k + %) . St]. Group all the arrivals in the k-th 
interval together into a single impulse of height Nk located at time k . St, where Nk is the 
number of arrivals in the k-th interval. Thus, the shot noise of (3.157) becomes approximately 

(3.198) 

where this equation becomes increasingly accurate as St ~ O. 

Since the intervals are non-overlapping, the Nk are independent Poisson random variables 
with parameter A(k . St) . St, the average number of arrivals in the interval. The moment 
generating function of Nk is therefore 

log<PNk(S) =A(k· St)· St (eS -1), 

and the moment generating function of (3.198) is 

<PX(t)(S) = E[exp{s L~ = ~Nkh(t - k· St)}] = II E[exp{sNkh(t - k· Stn] 
k=~ 

= II <PNk(S h(t - k . St» . 
k=~ 

Taking the logarithm of the moment generating function, and substituting from (3.199), 

log<Px( t )(s) = L~ = -00 A(k . St)(esh(t - k· Ot) - 1)· St , 

and as St ~ 0 this approaches the integral 

log<Px( t )(s) = [ACt )(esh(t - 1:) - 1) d't , 

(3.199) 

(3.200) 

(3.201) 

(3.202) 
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which we recognize as the convolution of(3.158). 

Problems 

Problem 3-1. Use the moment generating function of (3.41) to show that the mean of the Gaussian 
distribution is J..l and the variance (}"2. 

Problem 3-2. Show that the marginal p.d.f.s of X and Yin (3.47) are those of a zero-mean Gaussian 
random variable with variance (}"2. 

Problem 3-3. Show that for y > 0 

_1_e-y2/2(1_ 1:.) < Q(y) < _1_e-y2/2. 
y~ y2 y~ 

(3.203) 

These bounds are plotted in Fig. 3-1. Hint: Write the definition of Q( . ) from (3.38) and integrate by 
parts. 

Problem 3-4. Let X and Ybe two complex-valued random variables. 

(a) Form an estimate of X as X = a . Y for some complex number a. Find the a that minimizes the 
mean-square error E[ 1 X - X 12]. 

(b) Reformulate the problem of ( a) in terms of linear space and inner products. 

(c) Re-solve the problem of (a) using the projection theorem of Section 2.6.3. 

Problem 3-5. Let Ek be a prediction error generated by filter E(z) such that 

m>O, 

and let E'k be the output generated by any other causal and monic filter. 

(a) Show that 

thus establishing that the output MSE is minimized when E'k = Ek. 

(3.204) 

(3.205) 

(b) Show that it follows from the orthogonality property of (3.204) that RE(m) = 0 for all m "::t 0, 
and hence the optimal prediction error must be white. 

Problem 3-6. 

(a) Restate the results of Problem 3-5 in geometric terms, using the interpretation of Section 3.l.4. 

(b) Re-derive the results of Problem 3-5 using the projection theorem of Section 2.6.3. 

Problem 3-7. Given a WSS random process X( t) with power R X<O), show that the sampled random 
process Yk = X(k1) has the same power, 
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E[ 1 Yk 12] = Ry(O) = Rx(O) . (3.206) 

Problem 3-8. Given a sequence of i.i.d. random variables Ak which take on values ±l with equal 
probability, find an expression for E[ApAqA,As]. 

Problem 3-9. Consider a random process X( t) filtered by an ideal bandpass filter with frequency 
response 

H(f) = {I, 
0, otherwise 

Let Y( t) be the output of the filter. Show that 

Ry(O) = f'b Sx(f) d{. 
f. 

Use this to show that Sx(f) ~ 0 for all f. 

Problem 3-10. Extending Exercise 2-6 to random signals, assume the input to the possibly complex
valued LTI system shown in Fig. 2-3 is a wide sense stationary complex-valued discrete-time random 
process with power spectral density Sx(e i21tfI) = No. Show that the autocorrelation ofthe output is 

* ~ * Ry(k) = No {(kI) * { (-kI) = No £.J {(mI){ «m - k)I) . 
m 

(3.207) 

Problem 3-11. Show that the cross-correlation function has symmetry 

(3.208) 

Is the cross-spectral density of two random processes necessarily real-valued? 

Problem 3-12. Where a Markov chain has unique steady-state probabilities Pk( i) = p( i), they can be 
found from the condition that the state probabilities will not change with one time increment. Assume 
Q = {O, ... , M}, define the matrix of state transition probabilities P to contain pU Il) in its (i, JYh entry, 
and define the vector 1t = [P(O), ... , p(M)] to contain the steady-state probabilities, if they exist. Show 
that the steady-state probabilities can be obtained by solving the system of equations 1t = 1tP with the 
constraint 

(3.209) 

Problem 3-13. Assume you toss a coin that is not fair, where p is the probability of a tail and q = 1 -
P is the probability of a head. 

(a) Draw a signal flow graph representation for a Markov chain representing the number of heads 
tossed in a row. Define N as an absorption state, since in part (c) we will be interested in the first 
passage time to state N. 

(b) Show that 
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PN<z) = aNz(z-q) 
(z-l)(zN+ 1_ zN + pqN)' 

(3.210) 

( c) Show that the first passage time to N heads in a row is 

fN= l_qN. 
pqN 

(3.211) 

(d) Interpret this equation for p "" 1 and Nlarge. 

Problem 3-14. Show that for a Markov chain '¥k, 

p('lfo,'lfv" .,'lfn> = P('lfn I 'lfn - 1)P('lfn -1 l'lfn - 2) ". P('lf1 l'lfo)p('lfo)· 

In words, show that the joint probability of the states at times zero through n is the product of 
the initial state probability p('lfo) and the transition probabilities p('lf k l'lfk - 1)' 

Problem 3-15. Show that for a Markov chain'¥ k 

(3.212) 

In words, show that a Markov chain is also Markov when time is reversed. 

Problem 3-16. Show that for the Markov chain '¥ k, the future is independent of the past if the present 
is known. In other words, for any n > r > s, 

Problem 3-17. Consider the parity checker example in Fig. 3-7. Suppose that the initial state is zero, 
PoCO) = 1. Sketch the signal flow graph describing the state probabilities. Compute Pk(O) and Pk(l) as a 
function of k. Sketch these functions. Is the Markov chain stationary? 

Problem 3-18. Consider.tossing a fair coin. We are interested in the probability that at the kth toss we 
have seen at least two heads in a row. Define the random process '¥ k to have value two if there have 
been two heads in a row, to have value one if not and the last toss was heads, and to have value zero 
otherwise. 

(a) Show that the random process '¥k is Markov and sketch the state diagram of the Markov chain. 

(b) Sketch the signal flow graph describing the state probabilities. Assume that the coin is fair. 

(c) Solve for the probability that at the kth toss we have seen at least two heads in a row. You may 
leave the solution in the Z domain. 

Problem 3-19. Using the results of Exercise 3-3, show that the Chernoff bounds on the distribution 
function for a Poisson random variable N with parameter a are 

(3.213) 

Problem 3-20. Find the mean and variance at time to of a Poisson process N( t) with constant rate A. 
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Problem 3-21. Show that if tl < t2 then 

Problem 3-22. Consider a pure birth process in which the birth rate is proportional to the state (Al t) 
= p ... ), as might model the growth of a biological population. Assume the initial condition is ql (0) = 1, 
that is we start with a population of one. Find Q/s) for anj. 

Problem 3-23. Shot noise can be generated from a Poisson process by linear filters as shown in 
Fig. 3-20. Assume without further justification that expectation and differentiation can be interchanged; 
that is, the mean value of dN( t)/ dt is dE[N( t )]/ dt. 

(a) For N( t) a Poisson process, show that the mean value of dN( t)/ dt is A( t). 

(b) Similarly show that the mean value of X( t) is given by (3.159). 

(c) For a random process N( t), show that the derivative of this process IV (t) has autocorrelation 

d2RNN(t l , t 2 ) 
RNfPl,t2) = dt l dt2 

(3.214) 

(d) Consider a linear time-invariant system with input W( t) and output X( t), where W( t) has 
autocorrelation function RwwCtl, t2)' Show that 

RWX<tl , t2) = RwwCtlh) * h(t2) , Rxx(.tv t2) = RWX<tv t2) * h(tl) . (3.215) 

Problem 3-24. For the Poisson process N( t) in Fig. 3-20, consider two times 0< tl < t2, and note the 
statistical independence of (N(tl) - N(O» and (N(t0 - N(tl»' Using this fact, and assuming N(O) = 0, 
show that 

where A( t) is defined in (3.154). Exchange the role of tl and t2 to show that 

~ 
d 

h(t) 
N( t) dt 

w(t) = Lmli(t - tm) x(t) 

POISSON 
COUNTING PROCESS 

RANDOM DELTA 
FUNCTIONS 

SHOT NOISE 

Fig. 3·20. The generation of the shot noise from a Poisson counting process. 

(3.216) 

(3.217) 
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Problem 3-25. Using the results of Problem 3-23 and Problem 3-24, show that the autocorrelation of 
shot noise is 

(3.218) 

and evaluating at t1 = t2 = t, 

(3.219) 

thereby establishing Campbell's theorem (3.160) by a different method. 

Problem 3-26. For the constant rate case (A( t) = A), the shot noise process is wide-sense stationary. 
Find the autocorrelation and power spectrum. 

Problem 3-27. Let a Poisson process have rate 

{
O, 

A(t) = A 
0' 

t< 0 
t ~ O· 

Show that a shot noise with this rate has mean value proportional to the step function ofthe system. 

Problem 3-28. Consider a shot noise with rate function 

A( t) = AO + A1 cos(2nh t). 

Find the mean value of this shot noise. 

Problem 3-29. Show that the power spectrum of the output of the parity checker of Fig. 3-7 when the 
input bits are not equally probable is 

8x.(z) p(1- p) , 
(1-(1- 2p)z-1)(1-(1- 2p)z) 

(3.220) 

where p is the probability of a one-bit. 
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4 
Limits of 

Communication 

In the late 1940's, Claude Shannon of Bell Laboratories developed a mathematical theory 
of information that profoundly altered our basic thinking about communication, and 
stimulated considerable intellectual activity, both practical and theoretical. This theory, among 
other things, gives us some fundamental boundaries within which communication can take 
place. Often we can gain considerable insight by comparing the performance of a digital 
communication system design with these limits. 

Information theory provides profound insights into the situation pictured in Fig. 4-1, in 
which a source is communicating over a channel to a sink. The source and channel are both 
modeled statistically. The objective is to provide the source information to the sink with the 

Fig. 4-1. A general picture of a source communicating over a channel using source and channel coding. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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greatest fidelity. To that end, Shannon introduced the general idea of coding. The objective of 
source coding is to minimize the bit rate required for representation of the source at the output 
of a source coder, subject to a constraint on fidelity. Shannon showed that the interface 
between the source coder and channel coder can be, without loss of generality, a bit stream, 
regardless of the nature of the source and channel. The objective of channel coding is to 
maximize the information rate that the channel can convey sufficiently reliably (where 
reliability is normally measured as a bit error probability). Our primary focus in this book will 
be on the channel and the associated channel coder, although understanding source coding will 
also be helpful. 

Given the statistics of a source, modeled as a discrete-time random process, the minimum 
number of bits per unit time required to represent it at the output of the source coder with some 
specified distortion can be determined. The source coding theorem is the key result of this rate 
distortion theory (see for example [1]). This theory offers considerable insight into the bit rates 
required for digital communication of an analog signal (Chapter 1). 

Example4-1. ------------------------------------------------------
We limit our attention here to the simple special case of a discrete-time discrete-valued random 
process {Xk } with independent and identically distributed (i.i.d.) samples. Because the process is 
discrete-valued, it is possible to encode the signal as a bit stream with perfect fidelity. In fact, the 
minimum average number of bits required to represent each sample without distortion is equal to 
the entropy of X, defined to be 

H(X) = E[-log2Px(X)] = - L. px(x)log2Px(x) , (4.1) 
XE Q 

where Q is the alphabet (sample space) of X. This result is developed in Section 4.1. 

Since the entropy determines the number of bits required to represent a sample at the output of 
the source coder, it is said to determine the amount of information in the sample, measured in 
bits. This concept is explained in Section 4.1. 

A second concept due to Shannon is the capacity of a noisy communication channel, 
defined as the maximum bit rate that can be transmitted over that channel with a vanishingly 
small error rate. The various forms of the channel coding theorem specify the capacity. The 
fact that an error rate approaching zero can be achieved was very surprising at the time, and it 
motivated the practical forms of channel coding to be discussed in Chapters 12 and 13. 

Example4-2. -----------------------------------------------------
Consider transmitting a random process {Xk}' with similar characteristics to Example 4-1, over a 
noisy discrete-time memoryless channel, defined as one for which the current output Yk is 
dependent on only the current input Xk. Because the channel is memoryless, the samples Yk are 
also independent and identically distributed. The capacity of this channel can be obtained from the 
mutual information between the input random variable X and the output random variable Y, 

leX, Y) =H(X)-H(XIY), (4.2) 
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where H(X I Y) is the conditional entropy. The channel capacity equals the mutual information 
maximized over all possible probability distributions for the input X. This result is developed 
in Section 4.2. 

The result of Example 4-2 can also be used to determine the channel capacity of a bandlimited 
continuous-time channel using the Nyquist sampling theorem, as will be discussed in 
Section 4.3. 

4.1. Just Enough Information About Entropy 

Intuitively, observing the outcome of a random variable gives us information. Rare events 
carry more information than common events. 

Example4-3. ------------------------------------------------------
You learn very little ifI tell you that the sun rose this morning, but you learn considerably more ifI 
tell you that San Francisco was destroyed by an earthquake this morning. The reason the latter 
observation carries more information is that it has a lower prior probability. 

In 1928 Hartley proposed a logarithmic measure of information that reflects this intuition. 
Consider a random variable X with sample space Q = {aI, a2, ... , aK}. The self-information in 
an outcome am is defined to be 

(4.3) 

The self-information of a rare event is greater than the self-information of a common event, 
conforming with intuition. Furthermore, the self-information is non-negative. But why the 
logarithm? One intuitive justification arises from considering two independent random 
variables X and Y, where Q = {bI' b2, ... , bN}. The information in the joint events am and bn 
intuitively should be the sum of the information in each. The self information defined in (4.3) 
has this property, 

h(am, bn) = -log2Px,Y(am, bJ = -log2Px(am) -log2Py(bJ 
= h(am> + h(bJ . (4.4) 

The average information H(X) in X, defined in (4.1), is also called the entropy of X 
because of its formal similarity to thermodynamic entropy. Equivalent interpretations of H(X) 
are 

• the average information obtained by observing an outcome, 

• the average uncertainty about Xbefore it is observed, and 

• the average uncertainty removed by observing X. 

Because of the base-two logarithm in (4.1), information is measured in bits. 

Example44. -----------------------------------------------------
Consider a binary random variable X with alphabet Q = {a, I}. Suppose that q = px(l), so 

H(X) = -qlog2q - (1 - q)log2(1 - q) . (4.5) 
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This is plotted as a function of q in Fig. 4-2. Notice that the entropy peaks at 1 bit when q = 1/2 and 
goes to zero when q = 0 or q = 1. This agrees with our intuition that there is no information in 
certain events. 

Although the intuitive justification given so far may seem adequate, the key to the 
interpretation of entropy as an infonnation measure lies in the asymptotic equipartition 
theorem, which is further justified in Appendix 4-A. Define the random vector X = (Xl' ... , 
Xn) where Xi are independent trials of a discrete random variable X with entropy H(X). 
Define the vector x to be an outcome of the random vector X. The theorem says that 
asymptotically as n ~ 00, there is a set of "typical" outcomes S for which 

px(x) '" 2-nH(X) , xeS, (4.6) 

and the total probability that the outcome is in S is very close to unity. Since the "typical" 
outcomes all have approximately the same probability, there must be approximately 2nH(X) 

outcomes in S. This approximation becomes more accurate as n gets large. 

We can now conceptually design a source coder as follows. This source coder will assign 
to each outcome x a binary word, called the code. If n is large, we can assign binary words 
only to the "typical" outcomes, and ignore the "nontypical" ones. If we use nH(X)-bit code 
words, we can encode each of the 2nH(X) typical outcomes with a unique binary word, for an 
average of H(X) bits per component of the vector x. Since each outcome of the component 
random variable X requires on average H(X) bits, H(X) is the average infonnation obtained 
from the observation. It is important to note, however, that this argument applies only if we 
encode a large number of components collectively, and not each component separately. The 
statement that H(X) is the average number of bits required to encode a component X applies 
only to an average of n components, not to an individual component. 

We will now state (but not prove) the source coding theorem for discrete-amplitude 
discrete-time sources. If a source can be modeled as repeated independent trials of a random 
variable X at r trials per second, we define the rate of the source to be R = rH(X). The source 
can be encoded by a source coder into a bit stream with bit rate less than R + E for any E > o. 

Constructing practical codes that come close to R is difficult, but constructing good 
suboptimal codes is often easy. 

H(X) 
1 

o 112 I 
q 

Fig. 4-2. The entropy of a binary random variable as a function of the probability q = pX<I). 
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ExampIe4-5. ------------------------------------------------------
For the source of Example 4-4, if q = 1/2 then H(X) = 1. This implies that to encode repeated 
outcomes of X we need one bit per outcome, on average. In this case, this is also adequate for each 
sample, not just on average, since the source is binary. A source coder that achieves rate R just 
transmits outcomes of X unaltered. 

Example 4-6. --------------------------------
When q = 0.1 in Example 4-4, 

H(X) = -O.1·log2(0.1) - 0.9·log2(0.9) '" 0.47 , (4.7) 

implying that less than half a bit per outcome is required, on average. This is not so intuitive; 
however, there are coding schemes in which the average number of bits per outcome will be lower 
than unity but greater than 0.47. One simple coding scheme takes a pair of outcomes and assigns 
them bits according to the following table. 

outcomes bits ------
0,0 ° 0,1 10 
1,0 110 
1,1 111 

A bit stream fonned by repeated trials can be easily decoded. The average number of bits produced 
by this coder is 0.645 bits per trial. But note that the pair of trials (1, 1) requires three bits, or 1.5 
bits per trial. This emphasizes that the entropy is an average quantity. 

Example4-7. ------------------------------------------------------
Consider a particularly unfair coin that always comes up heads. Then 

H(X) =0, (4.8) 

using the identity Olog2 0 = O. This says that no bits are required to specify the outcome, which is 
valid. 

Exercise 4-1. 
It is clear from the definition of entropy that H(X) ~ O. Use the inequality log( x) ~ x-I to show 
that 

H(X) ~ 10gzK , (4.9) 

where K is the size of the alphabet of X, with equality if and only if the outcomes of X are equally 
likely. 

The conclusion of Exercise 4-1 is that log2Kbits always suffices to specify the outcomes, as is 
obvious since 21og2K = K possible outcomes can be encoded by a straightforward assignment, 
at least when K is a power of two. The less obvious conclusion is that the maximum number of 
bits, log2K, is required only when the outcomes are equally likely. 
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4.2. Capacity of Discrete-Time Channels 

The concept of entropy and information can be extended to channels, yielding 
considerable information about their fundamental limits. This section considers discrete-time 
channels, deferring continuous-time channels to Section 4.3. We consider three different types 
of discrete-time channels: discrete-valued inputs and outputs, discrete-valued inputs and 
continuous-valued outputs, and continuous-valued inputs and outputs. 

4.2.1. Discrete-Valued Inputs and Outputs 

Consider a discrete-time channel with input random process {Xk} and output {Yk}. We 
consider here only memoryless channels for which the current output Yk is independent of all 
inputs except Xk. Such a channel is fully characterized by the conditional probabilities 
PYIX(Y Ix) for all x EQxandy EQ}' 

Example~8. ----------------------------------------------------
Consider a channel with input and output alphabet Qx = Q y = {O, I} such that PYIX(O 11) = 
PYIX(1 10) = p. This binary symmetric channel (BSC) offers a useful model of a channel that 
introduces independent random errors with probability p. The transition probabilities may be 
illustrated by a diagram: 

x=o I-p y=o 

X=l~Y=l 1 p 

If the input samples are independent, the information per sample at the input is H(X) and the 
information per n samples is nH(X). The question is how much of this information gets 
through the channel. We can answer this question by finding the uncertainty in X after 
observing the output of the channel Y. Suppose that y is an outcome of Y. Then the uncertainty 
in X given the event Y = y is 

H(Xly) =E[-log2PXly(Xly)] =- L PXly(xly)log2PXly(xly). (4.10) 
XE U x 

To find the average uncertainty in X after observing Y, we must average this over the 
distribution of Y, yielding a quantity called the conditional entropy, 

H(XIy)= L H(Xly)py(y)=- L L PX,y(x,y)log2PXly(xly). (4.11) 
y E u y Y E u y x E Ux 

This conditional entropy, on a channel such as the BSC, is a measure of the average 
uncertainty about the input of the channel after observing the output. 

The uncertainty about X must be larger before observing Y than after; the difference is a 
measure of the information passed through the channel on average. Thus we define 

J(X, Y) = H(X) - H(XI Y) (4.12) 
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as the average mutual information (as in (4.2». In other words, I(X, Y) is interpreted as the 
uncertainty about X that is removed by observing Y, or the information about X in Y. 

Exercise 4-2. 

(a) Show that I(X, Y) can be written directly in tenns ofthe transition probabilities (channel) and the 
input distribution (input) as 

[ 
PYlx(Yix) ] 

I(X,Y) = L px(x) L PYIX(Y ix)log2 L . 
XE Q x yE Q y XE Qxpx(x)PYlx(yix) 

(4.13) 

(b) Show that (4.12) can be written alternatively as 

I(X, Y) =H(Y)-H(YiX) =I(Y,X). (4.14) 

Thus, the infonnation about X in Y is the same as the infonnation about Y in X. 

The transition probabilities are fixed by the channel. The input probabilities are under our 
control through the design of the channel coder. The mutual information (information 
conveyed through the channel) is a function of both transition and input probabilities. It makes 
intuitive sense that we would want to choose the input probabilities so as to maximize this 
mutual information. The channel capacity per symbol is defined as the maximum information 
conveyed over all possible input probability distributions, 

Cs = maxI(X, Y). 
px<x) 

(4.15) 

This capacity is in bits/ symbol, where a symbol is one sample of X. If the channel is used s 
times per second, then the channel capacity in bits per second is 

Exercise 4-3. 
For the BSe of Example 4-8, let the probability of the two inputs be q and 1 - q. 

(a) Show that the mutual infonnation is 

I(X, Y) = H( Y) + plog2P + (1 - P)log2(1 - p) . 

(b) By maximizing over q, show that the channel capacity per symbol is 

Cs = 1 + plog2P + (1 - P)log2(1- p) . 

(4.16) 

(4.17) 

(4.18) 

The capacity is zero if P = 1/2, since then the channel inputs and outputs are independent, and is 
unity when P = 0 or P = 1, since then the channel is binary and noiseless. 

Using the channel capacity theorem and the source coding theorem, we will now state (but not 
prove) a general channel capacity theorem. Given a source with rate R = rH(X) bits/second, 
and a channel with capacity C = sCs bits/sec, then if R < C there exists a combination of 
source and channel coders such that the source can be communicated over the channel with 
fidelity arbitrarily close to perfect. If the source is a bit stream, the channel coder can achieve 
arbitrarily low probability of error if the bit rate is below the channel capacity. In practice, 
achieving vanishingly small error probability requires arbitrarily large computational 
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complexity and processing delay. Nevertheless, the channel capacity result is very useful as an 
ideal against which to compare practical modulation and coding systems. 

4.2.2. Discrete Inputs and Continuous Outputs 

Another useful channel model is a discrete-time channel with a discrete-valued input and a 
continuous-valued output. 

Example4-9. ------------------------------------------------------
In an additive noise channel, the output is 

Y=X+N (4.19) 

where X is a discrete random input to the channel and N is a continuous noise variable. This model 
arises often in this book in the situation where a discrete data symbol taking on a finite number of 
possible values is transmitted over a channel with additive Gaussian noise (i.e. N is Gaussian). 

This model is useful because most communications media have continuous-valued outputs, 
due to thermal noise, whereas digital signals are discrete-valued. 

The previous definitions of entropy carry over to continuous-valued random variables, if 
we are careful about replacing summations with integrals. For example, the entropy of a 
continuous-valued random variable Y is defined as 

H(Y) = E[-log2fy(Y)] = - f (y(y)log2fy(y) dy. (4.20) 
Q y 

Just as with discrete-valued random variables, it is possible to bound the entropy of a 
continuous-valued random variable. 

Exercise 4-4. 
Show that if Yhas zero mean and variance 0 2, then 

(4.21) 

with equality if and only if Y is Gaussian. Hint: Show that 

H( Y) ~ - [(y(y )log2B"(Y) dy (4.22) 

for any probability density function g(y), using the inequality log( x) ~ x - 1. Then substitute a 
Gaussian p.d.f. for g(y). 

It is important to note that we have constrained the variance of the random variable in this 
exercise. A different constraint would lead to a different bound; or, no constraint could lead to 
unbounded entropy. 

The conditional entropy is a little trickier because it involves both discrete and continuous
valued random variables. Following the second expression in (4.11), we can define 
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H(YIX) = L px(x) J {YIX(Y Ix)log2i"YIX(Y Ix) dy. (4.23) 
XE nx ny 

Exercise 4-5. 
Consider the additive Gaussian noise of Example 4-9. Show that H(Y I X) = H( N). This result is 
intuitive, since after observing the outcome of X, the uncertainty in Y is precisely the entropy of the 
noise. 

The mutual information and capacity are defined as before, in (4.12) and (4.15). 

Exercise 4-6. 
Following (4.13), the mutual information can be written in terms of the channel transition 
probability fYlx(Y Ix) and the probability distribution of the inputpx(x), 

J [ fYlx(YIX)] 
I(X, Y) = L px(x) fnx(y Ix)log2 L dy. 

XE nx ny XE nxpx(x)fYIX(Ylx) 
(4.24) 

Derive this from (4.20) and (4.11). 

The channel capacity for the continuous-output channel depends on the values in the discrete 
input Qx. For example, on an additive noise channel, we would expect the capacity of a 
channel with inputs ±IOO to be larger than the capacity with inputs ±l when the noise is the 
same. The set Q X of channel inputs is called the input alphabet. 

Example 4-10. 
Some common channel alphabets that we will encounter in Chapter 5 are shown in Fig. 4-3. The 
M-PAM alphabets are real-valued, containing M equally spaced points centered at the origin. The 
remaining alphabets are complex-valued, as appropriate for complex-valued discrete-time 
channels. The noise in this case is assumed to be complex white Gaussian noise, where the real and 
imaginary parts have the same power but are independent of one another and ofthe channel input. 

2-PAM 

• I • 
4-PAM 

• • • III • • • 
8-PAM 

II ••••• III ••••••• 

16-PAM 

+ - -4-QAM 

+--
• • • • 
• • • • 
• • • • 

16-QAM 

•••••••• • ••••••• •••••••• • ••••••• •••••••• • ••••••• 
•••••••• •••••••• 

64-QAM 

Fig. 4-3. Some real-valued and complex-valued channel alphabets for a discrete-valued channel input. 
The acronyms refer to signaling methods that will be discussed in Chapter 5. 
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One approach to calculating channel capacity would be not to constrain the alphabet at all; this 
is done in Section 4.2.3. Another approach is to choose an input alphabet, getting the discrete
input channel model of this subsection, and then determine the capacity by maximizing the 
mutual information over the probabilities of the inputs using (4.24). Going one step further, we 
can assume a particular distribution for the input alphabet, and then find the information 
leX, Y) conveyed by the channel. In a classic paper that is credited with establishing the 
practical importance of trellis coding (Chapter 13), Ungerboeck makes this calculation 
assuming that the input symbols in the alphabet are equally likely and that the channel adds 
independent Gaussian noise [2]. He computes the information conveyed by the channel as a 
function of the signal-to-noise ratio (SNR) for the input alphabets in Fig. 4-3. The results are 
shown in Fig. 4-4. 

::J" o 
In 
:2 
>
(f) 

...J 

U) 
a: 
a: w 
0.. 
CIl r 
§. 

Fig. 4-4. Bounds on the information conveyed by a real-valued discrete-time channel with additive white 
Gaussian noise as a function of SNR for input alphabets of the type defined in Fig. 4-3. It is assumed 
that the symbols in the alphabet are equally likely. Also shown is the channel capacity without any 
constraint on the channel inputs. The points labeled 10-6 indicate the SNR at which a probability of error 
of 10-6 is achieved with direct techniques (no coding). The significance of these points will be discussed 
further in Chapter 13. The SNR is defined by the ratio of the symbol variance to the noise variance, 
whether the symbols be real or complex. (After Ungerboeck [2].) 
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Example4-11. -----------------------------------------------------
Consider the curve corresponding to 4-PAM. As the signal to noise ratio increases, the infonnation 
conveyed approaches two bits per symbol. This is intuitive because ifthe noise is small, nearly two 
bits per symbol can be sent with an alphabet off our symbols with low probability of error. For each 
input alphabet Q X with size I Q X I, the infonnation conveyed asymptotically approaches 
10g2 I Q X I as the signal to noise ratio increases. While a capacity of two bits per symbol is not 
achievable with 4-PAM, it is achievable with 8-PAM for an SNR as low as 13 dB. Furthennore, 
using 16-PAM to transmit two bits per symbol does not gain much noise immunity. This suggests 
that there is very little lost if we use 8-PAM to transmit two bits per symbol. This observation is 
exploited in Chapter 13, where we discuss trellis coding. 

4.2.3. Continuous-Valued Inputs and Outputs 

The question arises as to what is lost by choosing a specific discrete alphabet at the 
channel input. We can answer this question by determining the capacity with a continuous
valued input, which is an infinite alphabet. For the additive Gaussian channel considered in 
Example 4-9, for any given SNR, we lose very little in capacity by choosing a discrete input 
alphabet, as long as the alphabet is sufficiently large (the higher the SNR, the larger the 
required alphabet). This result is important in that it justifies many of the digital 
communication techniques used in practice (Chapter 5). 

Let X be a continuous-valued random variable. The entropy of Y is still given by (4.20), 
but the summation over x in the conditional entropy (4.23) must be replaced by an integral, 

H(Y I X) = f fx( x) f fYI x(y I x)log2fYI x(y I x) dy. (4.25) 
Qx Q y 

We obtain the channel capacity by maximizing J(X,Y) over fx(x). 

Scalar Additive Gaussian Noise Channel 

Assume an additive Gaussian noise channel, Y = X + N where N is an independent zero
mean Gaussian random variable with variance 0'2. What is the capacity under the constraint 
that the variance of X is 0' x2? The result of Exercise 4-5 is trivially extended to get H(Y I X) = 
H(N), which is not a function of the input distribution, so the channel capacity is obtained by 
maximizing H( Y). The variance of Y is constrained to be cri + cr2, so from (4.21), 

(4.26) 

with equality if and only if Y is Gaussian. Fortunately, Y is Gaussian if X is Gaussian, so the 
bound can in fact be achieved. Therefore channel capacity is achieved with a Gaussian input, 
and from (4.14), 

(4.27) 

in bits per symbol. This channel capacity is plotted in both Fig. 4-4, where SNR = cri / cr2. 
Note that this capacity is very similar to the capacity for any particular discrete alphabet at low 
SNR, and diverges significantly at large SNR. 
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The conclusion is that for the Gaussian channel and any particular SNR, there is a 
sufficiently large discrete input alphabet that has a capacity close to the continuous-input 
capacity. (At very high SNR there is an asymptotic penalty of 1.53 dB with uniform discrete 
inputs relative to the unconstrained capacity; this penalty is examined in Chapter 13.) This 
result gives a solid theoretical underpinning to the practical use of discrete input alphabets, 
which are also very convenient for implementation (Chapter 5). 

Capacity of Vector Additive Gaussian Noise Channel 

These results for the additive Gaussian channel are easily extended to a vector channel 
model. This extension will prove to be critically important in Chapter 7, where we consider 
continuous-time bandlimited Gaussian channels. We will show there that, for a given finite 
time interval, such a channel can be reduced to a vector Gaussian channel. Consider a channel 
modeled by 

Y=X+N (4.28) 

where X, Y, and N are N-dimensional vectors, X and N are independent, and the components 
ofN are independent Gaussian random variables each with variance 0 2. It is easily shown, as a 
generalization of Exercise 4-5, that 

I(X,y) = H(Y) - H(Y IX) = H(Y) - H(N) (4.29) 

and that 

(4.30) 

The entropy of a random vector is the same as that of a scalar random variable, (4.1) or (4.20), 
except that the sample space has vector-valued members. The noise entropy is proportional to 
the dimension N because each component of the noise contributes the same entropy as in the 
scalar case. All that remains, then, is to find the maximum of H(Y) over all input distributions 
fx(x). 

Exercise 4-7. 

(a) Generalize (4.22) to show that 

H(Y) ~ - f fy(y )log2B(Y) dy, (4.31) 
Q y 

for any probability density function g(y). 

(b) Substitute a vector Gaussian density with independent components with mean zero and variance 
(02+ 0;, n) for the n-th component to obtain 

1 ~N 2 2 
H(Y) ~ 2 £.In = 11og2[2ne(a + ax,n)] ' (4.32) 

and thus show that 
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1 N crx n ( 2) 
J(X, Y) ~ 2 Ln = 11og2 1 + ;2 ' (4.33) 

with equality ifY is Gaussian with independent zero-mean components. Fortunately, this upper 
bound can be achieved if the input vector X is chosen to have independent Gaussian components, 
each with mean zero and with variance cr;'n for the n-th component. 

(c) Using the inequality log(x) $ (x -1), show that if the variance of X is constrained to some cr;, 

2-LN 2 crx - crx n' 
n=l ' 

(4.34) 

then 

(4.35) 

with equality if and only if all the components of X have equal variance. 

The conclusion is that the capacity of the vector Gaussian channel with input variance 
constrained to Em X 112] = cr; is given by 

(4.36) 

and the input distribution that achieves capacity is a zero-mean Gaussian vector with 
independent components, each with variance cr;/ N. The interpretation of this result is that the 
capacity is N, the number of degrees of freedom, times 0.5 . 10g2(1 + SNR), where the signal 
to noise ratio SNR = cr;/ Ncr2 is the total input signal power divided by the total noise power. 
Equivalently, the SNR can be interpreted as the signal power per dimension divided by the 
noise power dimension. 

4.3. Further Reading 

Abramson [3] gives a short elementary introduction to information theory, particularly the 
channel coding theorem. Gallager [4] has long been a standard advanced text and includes an 
extensive discussion of continuous-time channels. McEliece [5] provides a readable 
introduction with qualitative sections devoted to describing the more advanced work in the 
field. An excellent text is by Cover and Thomas [6]. Also recommended is the text by Blahut 
[7]. A collection of key historical papers, edited by Slepian [8] provides an easy way to access 
the most important historical papers, including twelve by Shannon. "A Mathematical Theory 
of Communication" and "Communication in the Presence of Noise," two of Shannon's best 
known papers, are highly recommended reading, for their lucidity, relevance, and historical 
value. Especially interesting, and mandatory reading for anyone with an interest in the subject, 
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Shannon gives an axiomatic justification of entropy as a measure of infonnation. He simply 
assumes three properties that a reasonable measure of infonnation should have, and derives 
entropy as the only measure that has these properties [9] [10]. Viterbi and Omura [11] provide 
an encyclopedic coverage of infonnation theory, with an emphasis throughout on 
convolutional codes. Finally, Wolfowitz [12] gives a variety of generalizations of the channel 
coding theorem. 

Appendix 4-A. 
Asymptotic Equipartition Theorem 

In this appendix we give a non-rigorous derivation of the asymptotic equipartition theorem 
that gives a great deal of insight. Define a random process Yk in which each sample is an 
independent trial of the random variable Ywith alphabet Q = {b I , ... , bK }. Let there be n trials, 
and define ni to be the number of outcomes equal to bi. The relative-frequency interpretation 
of probabilities tells us that if n is large, then with high probability, 

n· 
-2 "" py(bi). n 

(4.37) 

(A rigorous development depends mainly on defining precisely what we mean by "high 
probability." One approach is to show that given any E > 0, the probability that [py(bi) -
E] < niln <[py(bi) + E] approaches unity as n gets large.) Suppose that we are interested in 

the product of the n observations. We can write the product as 

K n· n 

[ 1:. -"IOg2 b,] = 2 .=1 n (4.38) 

Then using (4.37), 

K n n - [21:. - py( b,)log2 b, ] - [2 E [log2 Y] ] YI ... Yn - ._1 - , (4.39) 

with high probability. A rigorous proof is left to Problem 4-16. Since (4.39) is true for any 
discrete-valued random variable Y, it is certainly true for a random variable 

Y=f(X) , (4.40) 

where f is any function defined on the alphabet Q x of X. Define f(x) = px(x) = Pr[X = x] for 
all x EQx, certainly a legitimate function defined on the alphabet of X. Then (4.39) implies 
that for large n 
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n n 

Yl"'Yn = {(Xl)"/(X,J = n ((xi) = n Px!..Xi) 
i= 1 i = 1 

(4.41) 

with high probability. Since the Xi are independent, 

. 
PX(X) = npx!..xi) , (4.42) 

i=l 

so with high probability (4.6) holds. 

Problems 

Problem 4-1. Consider an unfair coin that produces heads with probability 1/4. What is the entropy 
of the coin flip outcome? Suppose the coin is flipped once per second. What is the rate in this source? 
Devise a coder to encode successive coin flips outcomes so that the average number of bits per flip is 
less than one. How does your coder compare with the rate of the source? 

Problem 4-2. Consider a random variable X with alphabet Q x = {av a2, a3, a4} and probabilities 

px!..av = 1/4, px!..a3) = 118, px!..a~ = 118 . (4.43) 

Find the entropy of the random variable. Suppose independent trials of the random variable occur at rate 
r = 100 trials 1 second. What is the rate of the source? Devise a coder that exactly achieves the rate of 
the source. 

Problem 4-3. The well known Jensen's inequality from probability theory implies that 

Use this to prove the p-q inequality: Given Pi and qi, both strictly positive and defined for 
i E {I, 2, ... , M} such that 

and LM -. q. -a. > 0 
1=1 I 

(so Pi could be a probability distribution) then 

with equality if and only if qi = o.Pi for all i. 

Problem 4-4. For a discrete-valued random variable X, use the p-q inequality of Problem 4-3 to give 
another derivation of the results in Exercise 4-1. 
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Problem 4-5. Let X denote a vector of n i.i.d. random variables each taking the value zero or one. 
Show that 

H(X) ~n (4.44) 

with equality if and only if the two outcomes have equal probability. 

Problem 4-6. Consider the following discrete memol)'less channel, where all transition probabilities 
are 1/3: 

:~: 
(a) Find the two conditional entropies and the mutual information in terms of the input and output 

entropies. 

(b) Find the channel capacity. 

Problem 4-7. Repeat Problem 4-6 for the following channel: 

o ceO 

1 c c 1 

Problem 4-8. Repeat Problem 4-6 for the so-called binary erasure channel, shown below: 

~
- 0 

o p 1 
1 p 

1 - p 2 

(Answer to (b): Cs = 1 - p.) 

Problem 4-9. 

(a) Show that when Pi and qi are probability distributions, 

- LiPilog2Pi ~ - LiPilog2qi . 

(b) Use (4.45) to establish the result of Exercise 4-1. 

(4.45) 

Problem 4-10. Consider a cascade of L BSC's each with the same transition probability, where the 
output of each BSC is connected to the input of the next. 

(a) Show that the resulting overall channel is a BSC. 

(b) Find the error probability of the overall channel as a function of L. 

(c) What happens as L -7 oo? 

Problem 4-11. Consider a distribution {Pi, 1 ~ i ~ K}, where PI> P2' Further define a second 
distribution {qi, 1 ~ i ~ K}, where ql = PI - 0 and q2 = P2 + 0 and qi = Pi, i > 2, where 0> O. 
Show that the second distribution has larger entropy. Hint: Use the results of Problem 4-9. 

Problem 4-12. Consider a continuous-valued random variable X uniformly distributed on the interval 
[-a, al: 
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(a) What is its entropy? 

(b) How does its entropy compare to that of a Gaussian distribution with the same variance? 

Problem 4-13. Use the p-q inequality of Problem 4-3 to show the following. 

(a) For any two discrete-valued random variables X and y, leX, Y) ~ O. 

(b) H(X) ~ H(XI y) 

(c) H(X) + H(Y) ~ H(X,Y) 

(d) When are these inequalities equalities? 

129 

Problem 4-14. Show that by replacing the summations in (4.24) with integrals, the mutual information 
of two continuous-valued random variables can be written 

f f Ix y(x,y) 
leX, Y) = Ix,Y(x, y)log2 I (x)1 ( ) dy dx. 

QxQy X Y Y 
(4.46) 

Problem 4-15. Investigate the capacity of the vector Gaussian channel of (4.36) as the number of 
degrees of freedom N increases. Interpret the result. 

Problem 4-16. Consider a random process {Xk }, where the components are independent observations 
of a random variable X. The law of large numbers for sums of random variables states that for any 
E >0, 

(4.47) 

Use this to prove (4.39). 

Problem 4-17. Consider the following betting game. You bet $100 and toss a die. If a six comes up, 
you win $500, otherwise you win $20. Next you bet your $500 or $20 and the game is repeated with the 
same rate of return. In other words, on the n-th iteration, you bet Mn dollars (your previous winnings) 
and win 5Mn if a six comes up and Mn /5 otherwise. What is the expected value of the money you have 
after n flips? Show that with high probability, Mn goes to zero for large n. Would you play this game? 

Problem 4-18. Consider an analog continuous-time communication circuit with cascaded amplifiers. 
Suppose that the amplifiers have random gain, each independently taken from the same distribution. If 
the number of amplifiers is large, which is a better estimate of the gain of the system, (a) the expected 
value of the product of the gains of the amplifiers, or (b) the expected value of the sum of the gains 
expressed in dB? 
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5 
Pulse-Amplitude 

Modulation 

An infonnation-bearing signal must confonn to the limitations of its channel. While the 
bit streams we wish to transmit are inherently discrete-time, all physical media are continuous
time in nature. Hence, we need to represent the bit stream as a continuous-time signal for 
transmission, a process called modulation. 

Rather than examine the modulation process in full generality, this chapter specializes to a 
special class of modulation techniques called pulse-amplitude modulation (PAM). There are 
two reasons for this restriction. First, PAM is widely used in a variety of applications and is an 
extremely important technique in its own right. Second, the simplicity of PAM facilitates our 
development of the basic principles of receiver design. The main results of this chapter will be 
generalized to arbitrary modulation schemes in Chapter 6. 

We start with baseband PAM, in which a sequence of time-translates of a basic pulse is 
amplitude-modulated by a sequence of data symbols. Baseband PAM is commonly used for 
metallic media, such as wire pairs, where the signal spectrum is allowed to extend down to 
zero frequency (d.c.). We then extend PAM to passband transmission by introducing a 
sinusoidal carrier signal. Passband PAM is commonly used on media with highly constrained 
bandwidth, such as radio. It uses two sinusoidal carriers of the same frequency (with a ninety 

J. R. Barry et al., Digital Communication
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degree phase difference) which are modulated by the real and imaginary parts of a complex
valued baseband signal. Special cases of passband PAM are the commonly used phase-shift 
keying (PSK), amplitude and phase modulation (AM-PM) and quadrature amplitude 
modulation (QAM). By treating these techniques as special cases of passband PAM we avoid 
the alphabet soup that pervades most comprehensive treatments of digital communications, 
where every minor variation is given a new acronym and treated as a separate topic. 

We then shift our focus to the receiver, where we study the problem of receiver design. In 
particular, this chapter proposes the minimum-distance strategy for receiver design that has 
many advantages: it is easy to describe and intuitively reasonable; it leads to many important 
receiver structures (such as correlators, matched filters, whitened-matched filters, folded 
spectra, and even the Viterbi algorithm); and it turns out to be optimal under certain constraints 
on the statistics of the noise. The precise conditions under which the minimum-distance 
criterion is optimal will be established later, in Chapter 7. For now, we just consider 
minimizing distance for its own sake. We do not consider the noise statistics until the last 
section, when we analyze the error-probability performance of PAM with minimum-distance 
receivers when the noise happens to be white and Gaussian. 

The choice of modulation scheme depends on the characteristics of the medium. Many 
channels can be approximated as either baseband or passband; a baseband channel has the 
frequency response of a low-pass filter, while a passband channel has the frequency response 
of a bandpass filter, as sketched below: 

r I 
-w W 

BASEBAND: 

--------------~~~~----------~~~f 

PASSBAND: 

tB(f) 

-WI WI 
----~~--~----~----~----~----~~ f 

-W2 W2 

A baseband channel calls for a form of PAM called baseband PAM, as described in 
Section 5.1. A passband channel calls for passband PAM, which is described in Section 5.2. 

5.1. Baseband PAM 

A baseband PAM transmitter sends information by modulating the amplitudes of a series 
of pulses, so that the transmitted signal is: 

(5.1 ) 

where 1/ T is the symbol rate, where g( t) is the pulse shape, and where the set of amplitudes 
{ak} are referred to as symbols. This signal can be interpreted as a sequence of possibly 
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overlapping pulses with the amplitude of the k-th pulse detennined by the k-th symbol. Such 
signals are tenned pulse-amplitude modulated (PAM) signals, regardless of the pulse shape. 
PAM and its generalization to passband are by far the most common signaling methods in 
digital communications. There is a confusing array of techniques (e.g., QAM, PSK, BPSK, 
PRK., QPSK, DPSK, and AM-PM) which are all special cases of passband PAM, perhaps with 
some special coding. 

ExampleS-t. ------------------------------------------------------
A PAM transmitter is usually represented schematically as shown in Fig. 5-1, where a sequence of 
source bits is mapped to a sequence of symbols {ak}, which in turn drives a transmit filter with 
impulse response g( t). Also shown is a sketch of the resulting transmitted signal for the special 
case of a rectangular pulse shape. In practice, however, the large bandwidth of the rectangular pulse 
makes it iII-suited to bandlimited channels. 

As shown in Fig. 5-1, an incoming bit stream is converted to the modulating symbol 
stream by a mapper. In practice, the symbols are restricted to a finite alphabet .9l, so that 
ak E Yl.. It is particularly convenient when the size of this alphabet is a power of two, I Yl.1 = 2b 
for some integer b, since then each symbol can be uniquely associated with a block of b source 
bits. 

Example 5-2. 
The simplest mapper translates the bits into symbols with the same values, so the alphabet is 
{O, I}. A slightly more complicated mapper might use alphabet {-I, I} so that the symbols have 
zero mean if the bits are equally likely to be "0" and" 1". A more complicated mapper might map 
pairs of bits from the set {00, 01, 10, II} to one of four levels from the alphabet {-3, -I, I, 3}. All 
of these mappers are used in practice. 

Since the mapper may map multiple bits into a single data symbol, we must make a distinction 
between the symbol rate and the bit rate. The symbol rate is also called the baud rate, after the 
French telegraph engineer Baudot. 

+3 

~, 
-3 

/ \ Ib.., 
OTt 

b; ak s(t) = l.mamg(t - mT) 
MAPPER g(t) 

BITS SYMBOLS 

TRANSMIT FILTER 

Fig. 5-1. A PAM transmitter with a rectangular transmit pulse shape. The symbol rate is 1/ T symbols 
per second. A sample symbol sequence and corresponding continuous-time signal are also shown. 
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Example5-3. ------------------------------------------------------
If the mapper maps two bits into a symbol with an alphabet size off our, the symbol rate is half the 
bit rate. 

In the examples thus far, there is a one-to-one mapping between blocks of input bits and 
the alphabet. A mapper may also increase the alphabet size, usually in order to introduce 
redundancy. In such cases, the mapper is no longer memoryless but contains memory, and is 
more generally referred to as a coder. For example, the coder might convert an input bit into a 
symbol from an alphabet of size three. Alternatively, the coder could convert an input bit into a 
sequence of two or more symbols, in which case the symbol rate would be higher than the bit 
rate. These possibilities are discussed in Chapters 12 and 13, where it is shown that 
redundancy can be used to reduce errors. For the purposes of this chapter, we will assume that 
the mapper does not introduce redundancy. Specifically, we will usually assume that the 
symbols coming from the mapper are independent and identically distributed, forming a white 
discrete-time random process. 

5.1.1. Nyquist Pulse Shapes 

The job of a receiver is to recover the transmitted symbols from a continuous-time PAM 
signal that has been distorted by a noisy channel, but let us consider for a moment the 
noiseless PAM signal of (5.1). The noiseless case is sufficient to explore the relationship 
between bandwidth and symbol rate, which is a primary objective of this section. To recover 
the symbols {ak} from s(t), one might try sampling s(t) at multiples of the symbol period, so 
that the k-th sample is given by: 

s(kT) = L.: =_00 amg(kT- mT) 

= ak * g(k'I') , (5.2) 

which can be interpreted as a discrete-time convolution of the symbol sequence with a 
sampled version of the pulse shape. Decomposing the convolution sum into two parts yields: 

s(k'I') = g(O)ak + Lm *" ka~(kT - m T) , (5.3) 

where the first term is desired, and the second term represents interference from neighboring 
symbols, or intersymbol interference (lSI). Under what conditions will the k-th sample 
reproduce the k-th symbol exactly, so that s(k'I') = ak? In other words, when is there no lSI? 
Clearly, only when the second term in (5.3) is zero, so that the sampled pulse shape reduces to 
a delta function: 

g(k'I') = Ok . (5.4) 

Equivalently, taking the Fourier transform of each side of (5.4) and using (2.17) we have 

1 00 (m) -L. G {-- =1. T m=-oo T 
(5.5) 
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This is called the Nyquist criterion. A pulse satisfying (5.5) (and thus also (5.4)) is said to be a 
Nyquist pulse. It does not induce lSI when sampled properly. 

The Nyquist criterion is the key that ties symbol rate to bandwidth. Specifically, the 
Nyquist criterion implies the existence of a minimum bandwidth for transmitting at a certain 
symbol rate with no lSI. Alternatively, given a certain bandwidth, there is a maximum symbol 
rate for avoiding lSI. 

Example 5-4. 
The following plot shows ~Lm G(f - ¥) for a particular pulse shape get) whose bandwidth W is 
less than 1/(21): 

···00 
o Wt! ~ f -2 

T 
-1 

T T T 
1 

2T 

The effect of sampling is to place an image of G(j) at each multiple of the sampling rate. 
Regardless of the shape of G(j), it is clear that there will always be a gap between images 
whenever the pulse shape bandwidth is less than half the symbol rate. Such gaps prevent the images 
from adding to a constant, as required by the Nyquist criterion (5.5). 

From the previous example it is clear that the minimum bandwidth required to avoid lSI is 
half the symbol rate, 1/(2T). But not just any pulse with this bandwidth will do. A bandwidth 
of 1/(2T) eliminates the gap between aliases, but to ensure that the aliases add to a constant, 
each alias must itself have a rectangular shape, so that G( f) is as sketched below: 

-1 
2T 

o 
( 
1 .. f 

2T 

Thus, taking the inverse Fourier transform, we conclude that the minimum-bandwidth pulse 
satisfying (5.5) is the sinc function: 

(t)= sin(ntlT) 
g ntlT' (5.6) 

as sketched below: 

Observe that the pulse has zero crossings at all multiples of T except at t = 0, where g(O) = 1. 
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Example>5. ----------------------------------------------------
Consider two successive symbols with values ao = 1 and al = 2 and pulse shape (5.6). The 
contribution of these two symbols to the signal (5.1) is shown below: 

Sampling at times 0 and T recovers ao and at> respectively. Even though the neighboring pulses 
overlap, they do not interfere with one another at the proper sampling times; i.e., there is no lSI. 

The Nyquist criterion also implies a maximum symbol rate for a given bandwidth. 
Specifically, if we are constrained to frequencies I f I < W, the maximum symbol rate that can 
be achieved with zero lSI is 1/ T = 2 W. 

Minimum bandwidth is desirable, but the ideal bandlimited pulse is impractical. The 
bandwidth W of a practical pulse is larger than its minimum value by a factor of 1 + a: 

W=1+u 
2T ' (5.7) 

where a is called the excess-bandwidth parameter. Usually excess bandwidth is expressed as a 
percentage; for example, 100% excess bandwidth corresponds to a = 1 and a bandwidth of 
1/ T, or twice the minimum. Practical systems usually have an excess bandwidth in the range 
of 10% to 100%. Increasing the excess bandwidth simplifies implementation (simpler filtering 
and timing recovery), but of course requires more channel bandwidth. 

The zero-excess-bandwidth pulse is unique - the ideal bandlimited pulse. With non-zero 
excess bandwidth, the pulse shape is no longer unique. Commonly used pulses with nonzero 
excess bandwidth that satisfy the Nyquist criterion are the raised-cosine pulses, given by 

(t) = (Sin(7ttlT»)( COS(U7ttlT») 
g 7ttlT 1- (2utlT)2 ' 

which have Fourier transforms 

IfI <l-a 
- 2T 

I-a Ifl<l+a 
2T < - 2T 

12+Ta < Ifl 

(5.8) 

(5.9) 
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FiIJ. 5-3. The Fourier transform of some pulses that satisfy the Nyquist criterion. 

These pulses and their Fourier transfonns are plotted in Fig. 5-2 for a few values of a. For 
a = 0, the pulse is identical to the ideally bandlimited pulse (5.6). For other values of a, the 
energy rolls off more gradually with increasing frequency, so a is also called the roll-ojJfactor. 
The shape of the roll-off is that of a cosine raised above the abscissa, which explains the name. 
The pulse for a = 0 is the pulse with the smallest bandwidth that has zero crossings at 
multiples of T, larger values of a require excess bandwidth varying from 0% to 100% as a 
varies from 0 to 1. In the time domain, the tails of the pulses are infinite in extent. However, as 
a increases, the size of the tails diminishes. For this reason, these pulses can be practically 
approximated using FIR filters by truncating the pulse at some multiple of T. 

There are an infinite number of pulses that satisfy the Nyquist criterion and hence have 
zero crossings at nonzero multiples of T. Some examples are shown in Fig. 5-3. 

5.1.2. The Impact of Filtering on PAM 

To make our above discussion on Nyquist pulses more realistic, we must consider the 
impact of a channel. Many important channels of interest are adequately modeled as a linear 
time-invariant filter with impulse response b( t) and additive noise n( t), as shown below: 

n( t) 

Glf) 

a= 1 
a= 0.75 
a=0.5 
a=O 

-1 0 1 f 
2T 2T 

Fig. 5-2. A family of pulses with zero crossings at multiples of T, for four values of n, the roll-off factor. 
The Fourier transform of the pulses is also shown. Note the raised-cosine shape, and the excess 
bandwidth that increases with a from 0% to 100%. 
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(Major exceptions to the linearity assumption are the microwave radio and magnetic recording 
channels. A major exception to the additive noise model is the signal shot noise encountered in 
optical fiber channels. These channels therefore require special techniques, to be described 
separately. ) 

If we take the PAM signal of (5.4) as the transmitted signal, and apply it to a linear channel 
with impulse response b( t) and additive noise n( t), the received signal will be: 

This can be rewritten as 

r( t) = ~: = -00 amh(t - mT) + n( t), 

where h( t ) = g( t) * b( t) is the convolution of g( t) with b( t ), 

h( t) = [g(-r)b(t - -r)d't 

(5.10) 

(5.11) 

(5.12) 

and is called the received pulse. The key point here is that when the transmitted signal is PAM, 
so too is the received signal, but with a different pulse shape and with added noise. 

The design of a good receiver, one that minimizes the probability of error, is important and 
complicated enough to dominate the design effort as well as this book. For now we will simply 
point out that, given a received signal of the form (5.11), a typical receiver front end consists 
ofa receivefilter f(t) followed by a sampler, as illustrated in Fig. 5-4. 

The receive filter can perform several functions, such as compensating for the distortion of 
the channel and diminishing the effect of additive noise. Roughly speaking, the receive filter 
conditions the received signal before sampling. For example, if the bandwidth of the additive 
noise is wider than that of the transmitted signal, the receive filter can reject the out-of-band 
noise. Furthermore, the receive filter might be chosen to avoid lSI after sampling. (The 
optimal design of the receive filter is examined in Section 5.4.) In Chapter 9, adaptive 
techniques are described, in which the receive filter transfer function is adaptively adjusted to 
learn an unknown channel or to track changing channel responses. Adaptive filtering allows a 
modem to be designed without knowledge of the specific channel over which it will operate, 
since an adaptive receiver can learn the channel characteristics after it is deployed in the field. 

The output of the receive filter - and thus the input to the sampler - will be: 

(TO DECISION DEVICE) 

Fig. 5-4. The fronl-end of a typical baseband PAM receiver consists of a receive filter and a sampler. 
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y( t) = L.: = -00 amP(t - mT) + n'( t) , (5.13) 

where p( t ) = g( t ) * b( t ) * f( t ) is called the overall pulse shape, representing the cascade of 
the transmit pulse shape, the channel impulse response, and the receive filter. Alternatively, 
since the received pulse is h( t ) = g( t ) * b( t ), the overall pulse shape can be thought of as the 
output of the receive filter when the received pulse h( t) is the input. The noise n'( t) is a 
filtered version of the received noise n( t ). From (5.13) we see that the receive filter output is 
another PAM signal, but one whose pulse shape has been modified to p( t ) = 
g( t ) * b( t ) * f( t ), and with added noise. 

To avoid lSI using the receiver of Fig. 5-4, the overall pulse shape 
p( t ) = g( t ) * b( t ) * f( t ) must be Nyquist, not the transmit pulse shape g( t ). In other words, 
according to (5.4) and (5.5), we must have p(kT) = bk, or equivalently LmP(f - ¥) = T. When 
this condition is satisfied, the k-th sample y(kT) reduces to ak plus noise, with no interference 
from {az * k}. Since P(f) = G(f)B(f)F(f), a bandwidth limitation on the channel necessarily 
leads to the same bandwidth limitation on the overall pulse shape. Thus, it is the channel 
bandwidth Wthat determines the maximum symbol rate, namely IIT= 2W. 

Example 5-6. -------------------------
Consider a channel bandlimited to Ifl:51500 Hz. The absolute maximum PAM symbol rate is 
3000 symbols per second. If we use a pulse with 100% excess bandwidth, then the maximum 
symbol rate is 1500 symbols per second. 

5.1.3. lSI and Eye Diagrams 

In a baseband PAM system, we are free to design the transmit and receiver filters (g( t) and 
f( t )), but not the channel b( t). The impulse responses g( t) and f( t) can be chosen to force the 
lSI to zero, so that the overall pulse shape satisfies the Nyquist criterion. One difficulty with 
such a strategy is that the channel is rarely known at the time the filters are designed. 
Furthermore, even when the channel is known, the filters required to exactly satisfy the 
Nyquist criterion may be difficult or expensive to realize. In practice, the overall pulse shape is 
rarely Nyquist. 

With suboptimal filtering, it is useful to quantify the degradation of the signal. A useful 
graphical illustration of the degradation is the eye diagram, so called because its shape is 
similar to that of the human eye. An eye diagram is easily generated using an oscilloscope to 
observe the output of the receive filter, where the symbol timing serves as the trigger. Such 
displays have historically served as a quick check of the performance of a modem in the field. 
The eye diagram is also a useful design tool during the analytical and simulation design phase 
of the system. 

An eye diagram consists of many overlaid traces of small sections of a signal, as shown in 
Fig. 5-5. If the data symbols are random and independent, it summarizes visually all possible 
intersymbol interference waveforms. It summarizes several features of the signal, as shown in 
Fig. 5-6. In the presence of intersymbol interference, when the pulse shape does not satisfy the 
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Nyquist criterion, the eye diagram will tend to close vertically. For error-free transmission in 
the absence of noise, the eye must maintain some vertical opening, since otherwise there are 
intersymbol interference waveforms that will cause errors. 

When there is incomplete vertical closure, the intersymbol interference will reduce the 
size of the additive noise required to cause errors. Hence, the wider the vertical opening, the 
greater the noise immunity. The ideal sampling instant is at the point of maximum (vertical) 
eye opening, but this can never be achieved precisely by a practical timing recovery circuit. 
Thus the horizontal eye opening is also practically important, since the smaller this opening 
the greater the sensitivity to errors in timing phase (the instant at which the signal is sampled). 

111011111001100010111100111 ... 

(a) (b) 

Fig. 5-5. A binary PAM signal made with 50% excess-bandwidth raised-cosine pulses. A segment of 
length 2T is shown in detail in (a). The small circles indicate the sample pOints where symbols are 
unperturbed by neighboring symbols. In (b), an eye diagram is made by overlaying sections of length 2T. 
The component from part (a) is shown darkened. This display is typical of an oscilloscope display of a 
signal, where the oscilloscope is triggered at the symbol rate. 

Fig. 5-6. A summary of the salient features of an eye diagram. The vertical eye opening (a) indicates 
the immunity to noise. The horizontal eye opening (b) indicates the immunity to errors in the timing 
phase. The slope of the inside eye lid (c) indicates the sensitivity to jitter in the timing phase. The ZF 
criterion is satisfied if all traces pass through the two symbol values in the center of the eye. 
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(b) 

Fig. 5-7. Eye diagrams for (a) 25% and (b) 100% excess bandwidth raised-cosine pulses. Note that the 
pulse with larger tails and less bandwidth (25%) has a smaller eye opening. 

Fig. 5-8. An eye diagram for a baseband PAM signal made with 25% excess-bandwidth raised-cosine 
pulses and an alphabet with four equally spaced symbols. 

141 

The shape of the eye is detennined by the pulse shape. In particular, the vertical eye 
opening is detennined by the size of the pulse at multiples of T, and the horizontal eye opening 
is detennined by the size of the tails of the pulse p( t). In Fig. 5-7 are shown two eye diagrams 
for 25% and 100% excess-bandwidth raised-cosine pulses. It is important to note the 
beneficial effect of increasing the excess bandwidth in tenns of horizontal eye opening. 
However, more bandwidth might allow more noise to be admitted by the receiver front end, if 
we do not carefully design the receive filter. Thus, there is a basic system tradeoff between 
excess bandwidth, noise immunity, and the complexity of the timing recovery circuitry. In 
particular, without special coding (such as partial response line coding) it is futile to try to 
achieve zero excess bandwidth because the horizontal eye opening is zero (see Problem 5-5). 

An eye diagram for a four-level PAM signal is shown in Fig. 5-8. 
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5.1.4. Bit Rate and Spectral Efficiency 

If the symbols are chosen independently and unifonnly from an alphabet Yl of size I Yll , so 
that the mapper does not introduce redundancy, then each symbol conveys log21 Yll bits of 
infonnation. 

Example 5-7. -------------------------
With the 4-PAM alphabet Yl= {-3, -1,1, 3}, each symbol conveys two source bits. 

Furthennore, since 1 I T symbols are transmitted per second, the bit rate of a PAM signal is: 

(5.14) 

The bit rate can be increased by increasing the size of the alphabet, or by increasing the 
symbol rate. As we have seen, the symbol rate is bounded by the bandwidth constraints of the 
channel; if we wish to avoid interference between symbols, then symbols may be transmitted 
at a rate no greater than twice the bandwidth of the channel. Furthennore, the size of the 
alphabet is constrained by the allowable transmitted power and by the severity of the additive 
noise on the channel. The combination of these two constraints - on symbol rate and alphabet 
size - limits the available bit rate for a given channel. 

The ratio of the infonnation bit rate Rb to the required bandwidth W is called the spectral 
efficiency [1]: 

_ bit rate _ Rb 
V - bandwidth - W . 

Spectral efficiency has the units of bits/sec-Hz, or loosely, bits/sec/Hz. 

(5.15) 

Example~. -----------------------------------------------
In point-to-point microwave radio, the spectrum is a public resource and it is important to use it 
efficiently for maximum public benefit. Therefore, the regulatory agencies have placed minimum 
requirements on the bit rates achieved as well as the bandwidth allowed. For example, 500 MHz of 
bandwidth is allocated in the United States for digital radio at 4 GHz divided into channels with a 
spacing of 20 MHz. Each channel is required to carry 90 Mb/ s, for a spectral efficiency of 4.5 
bits/ sec-Hz [2]. Higher efficiencies would of course be desirable. 

Example 5-9. --------------------------
A typical voiceband data modem operates at a bit rate of 28.8 Kb/ s. Ifthe bandwidth is 3.2 KHz, 
then the spectral efficiency is 9 bits/sec-Hz. Lest the reader conclude that the voiceband modem 
designers must be smarter, it should also be noted that the digital radio operates at bit rates about 
5000 times faster, making the implementation problems somewhat more severe. Also, the SNRs for 
the two systems are different. 

For the special case of baseband PAM, spectral efficiency simplifies. The previous section 
showed that the symbol rate 1/ T of a baseband PAM signal is related to the channel 
bandwidth W by the relationship W= (1 + a)/(2T), where a is the excess-bandwidth 
parameter. Thus, combining this with (5.14) and (5.15), we conclude that the spectral 
efficiency of baseband PAM is: 
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Rb 10g2/51//T 210g2/51/ 
v= W = (1+a)/(2T) = 1 +a . (5. I 6) 

In particular, the maximal spectral efficiency of baseband PAM (corresponding to zero excess 
bandwidth) is: 

Vrnax = 210g2 1511 . 

Alternatively, solving (5.16) for the alphabet size yields: 

1511 = 2(1+U)V/2. 

(5.17) 

(5.18) 

ExampleS-tO. -----------------------------------------------------
To achieve a bit rate of 28.8 kb/ s over an ideal low-pass channel with bandwidth 3.2 KHz using 
baseband PAM with I I. I % (a = 1 /9) excess bandwidth would require an alphabet size of 32. 

5.2. Passband PAM 

Many practical communication channels are passband in nature, meaning that their 
frequency response is that of a bandpass filter, as sketched in Fig. 5-9. Such channels do not 
support transmission of baseband signals. Most physical transmission media are incapable of 
transmitting frequencies at d.c. and near d.c., whereas baseband PAM signals as discussed in 
the last section usually contain d.c. and low-frequency components. 

ExampleS-tt. -----------------------------------------------------
Telephone channels, designed for voice, carry signals in the frequency range of about 300-3300 Hz 
with relatively little distortion. Radio channels are restricted to specified frequency bands by 
government regulatory bodies, such as the Federal Communications Commission (FCC) in the 
U.S., and constrain these channels to a bandwidth which is small relative to the center frequency. 

The next section shows how PAM can be adapted to accommodate a passband channeL 

5.2.1. Three Representations of Passband PAM 

This section describes several strategies for communicating across a passband channel. 
Our starting point will be a suboptimal strategy known as pulse-amplitude-modulation double
sideband (PAM-DSB); although this strategy is inefficient and not recommended, it is 
nevertheless a useful stepping stone to more efficient strategies. 

B .. . 
-fc fc 

~ f 

Fig. 5-9. A passband channel with bandwidth B calls for passband PAM. 
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The passband channel of Fig. 5-9 has bandwidth is B. The basic idea of PAM-DSB is to 
start with a real-valued baseband PAM signal with bandwidth B12, and to modulate it by 
multiplying it by a sinusoid with frequency equal to the channel center frequency tc. 
Specifically, a PAM-DSB signal takes the fonn: 

(5.19) 

The above signal will pass undistorted through the channel of Fig. 5-9 when the pulse shape 
g(t) is low-pass with bandwidth B12. To avoid lSI, the maximal symbol rate is twice the pulse 
shape bandwidth, or lIT= B. The maximal spectral efficiency of PAM-DSB with real 
alphabet ~is thus log21~1, which is half that of baseband PAM. 

There are two ways to modify PAM-DSB so as to make it more efficient. The first is to 
recognize that the upper and lower sidebands of s( t) are redundant; because the underlying 
baseband PAM signal is real, its Fourier transfonn displays Hennitian symmetry, meaning that 
its negative frequencies are uniquely detennined by its positive frequencies. We can thus 
double the spectral efficiency by adopting the single-sideband (SSE) strategy of transmitting 
only one of the sidebands, say the upper sideband. PAM-SSB can be implemented by passing 
the baseband PAM signal through the phase splitter of (2.20), which rejects the negative 
frequencies, before modulating by the sinusoid. One disadvantage of PAM-SSB is the 
difficulty in realizing the sharp discontinuity of the phase splitter near zero frequency. 

A more common way to modify PAM-DSB so as to improve efficiency is to recognize 
from (5.19) that a PAM-DSB carries infonnation only in the in-phase component; the 
quadrature component of the PAM-DSB signal is zero. The quadrature component represents 
an extra resource that the PAM-DSB strategy ignores. (Recall from Section 2.4 that the in
phase and quadrature components of a passband signal can be separated at a receiver without 
interfering with one another.) Thus, we can double the spectral efficiency of PAM-DSB by 
transmitting a second baseband PAM signal in quadrature, leading to: 

s(t) = J2 cos(21tfct)LkaLg(t - kT) - J2 sin(21tfct)Lka~ g(t - kT) . (5.20) 

This defines passband PAM. The bandwidth of this signal is no greater than that ofPAM-DSB, 
yet it conveys twice as much infonnation. We have assumed that both of the baseband PAM 
signals use the same pulse shape, and that the symbols modulating the in-phase and quadrate 
components are denoted {aL } and {a~}, respectively. When the two sequences {aL } and 
{a%} are chosen independently from the same real alphabet, (5.20) is said to be quadrature
amplitude modulation (QAM). In the general case, when {aL } and {a%} may be chosen 
jointly, we refer to (5.20) as passband PAM. A block diagram of a passband PAM transmitter 
is shown in Fig. 5-10. 

We can equivalently represent (5.20) in tenns of its complex envelope: 

s(t) = J2Re{s(t)ei21tkt }, 

where the complex envelope of a passband PAM signal is: 

s( t) = Lkakg(t - kT) , 

(5.21) 

(5.22) 
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where we have introduced a complex symbol: 

(5.23) 

The complex model for passband PAM will prove to be extremely useful. Observe from (5.22) 
that the complex envelope of a passband PAM signal looks exactly like the real-valued 
baseband PAM signal of the previous section; the only difference is that the symbol alphabet is 
now complex. This leads to the following succinct definition: a passband PAM signal is a 
signal whose complex envelope is the baseband PAM signal (5.22) with complex symbols and 
a real pulse shape. 

A realization of a passband PAM transmitter based on the complex view of (5.21) is 
shown in Fig. 5-11. While equivalent to Fig. 5-10, an implementation based on Fig. 5-11 
would be inefficient because Fig. 5-11 suggests that the imaginary part of s( t)ej21tfct is 
computed, and then thrown away, while in Fig. 5-10 the imaginary part is not computed. 
Nevertheless, in the remainder of this book we will tend to use the complex-valued notation of 
Fig. 5-11 because it is much more compact, and because it is easy to recognize situations 
where the computation of the imaginary part of a signal can be avoided. 

Although both passband PAM and PAM-SSB double the spectral efficiency ofPAM-DSB, 
they go about it in different ways. The SSB strategy fixes the bit rate but cuts the bandwidth in 
half. On the other hand, the passband-PAM strategy doubles the bit rate while keeping the 

.j2cos(2nfct ) 

ak = Re{ak} TRANSMIT 
FIL TER I---~:-:-:-::::---+( 
get) IN·PHASE 

BITS set) 
MAPPER 

QUADRATURE 

af'= Im{ak} 
'--_-----' SQ(t) = Im{ s(t)} 

.j2sin(2nfct) 

Fig. 5-10. A passband PAM transmitter. The in-phase and quadrature components of the transmitted 
signal are each real-valued baseband PAM signals. 

Fig. 5-11. An alternative passband PAM transmitter. It performs the same function as the transmitter in 
Fig. 5-10, as long as the transmit filter get) is real-valued. Compared to the baseband PAM transmitter of 
Fig. 5-1, there are only two differences: the symbols are complex valued, and there is an upconverter. 
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bandwidth fixed. Although the spectral efficiencies are identical, passband PAM is generally 
preferred because it is easier to implement. For this reason, we limit the remainder of our 
discussion to passband PAM. 

We have described two ways to represent a passband PAM: in terms of its in-phase and 
quadrature components (Fig. 5-10), and in terms of its complex-envelope (Fig. 5-11). A third 
representation of passband PAM follows by representing the data symbols am in terms of their 
magnitude and angle (polar coordinates), 

a =c ej9m m m , (5.24) 

so that 

s( t) = J2 Re{ L: = -00 cmej(21tfct + 9 m)g(t - mT) } 

= J2 L: = -00 cmcos(21tfct + 8m)g(t - mT). (5.25) 

Each pulse g(t - mT) is multiplied by a carrier, where the amplitude and phase of the carrier is 
determined by the amplitude and angle of am' This is sometimes called AM/PM, for 
amplitude modulation and phase modulation. It suggests that phase-shift keying (PSK), in 
which data is conveyed only on the phase of the carrier, is a special case of passband PAM. 
This is in fact true, and will be explored further in Section 5.2.2. 

5.2.2. Constellations 

The alphabet is the set .91. of symbols that are available for transmission. A baseband signal 
has a real-valued alphabet that is simply a set of real numbers, for example .91. = {-3,-
1, +1, +3}. A passband PAM signal has an alphabet that is a set of complex numbers, for 
example.91. = {-I, -j, +1, +j}. Both of these example alphabets have size 1.91.1= 4; each symbol 
can represent log21.91.1 = 2 bits. A complex-valued alphabet is best described by plotting the 
alphabet as a set of points in a complex plane. Such a plot is called a signal constellation. 
There is a one-to-one correspondence between the points in the constellation and the signal 
alphabet. Two popular constellations are illustrated in the following examples. 

Example 5-12. --------------------------
The 4-PSK alphabet is .91. = {-b, -jb, +b, +jb}, and its constellation is shown in Fig. 5-12(a). It 
consists of four symbols of magnitude b, each with a different phase. Hence the symbols may be 
written 

(5.26) 

and the transmitted signal may be written (from (5.25» 

s( t) = J2 b L: = -00 cos(21tfct + cl>m)g(t - mT) , (5.27) 
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where <Pm E {a, 1t/2, 1t, 31t/2}. The infonnation is carried on the phase of the carrier, while the 
amplitude of the carrier is constant, which explains the tenn phase-shift keying (PSK). The 4-PSK 
constellation is also called quadrature phase-shift keying (QPSK). 

Example5-13. -----------------------------------------------------
The 16-QAM constellation shown in Fig. 5-12(b) has 12 possible phases and three amplitudes. 
Because of the rectangular nature of the constellation, the rectangular coordinate system is 
preferable to the polar coordinates that are natural for PSK. 

In a baseband PAM system, the real-valued alphabet can also be plotted as a one-dimensional 
constellation, although this is perhaps less informative. 

Example 5-14. 
The binary signal constellation below corresponds to a binary baseband PAM system: 

Im{ak} 

_.L - Re{ak} 

~ 

This is called a binary antipodal signal constellation. It can be used for passband as well as 
baseband signaling, in which case it is sometimes called binary phase-shift keying (BPSK). 

Since baseband PAM is a special case of passband PAM, we will concentrate on passband 
PAM for the remainder of this chapter. 

The constants band c in Fig. 5-12 are not arbitrary. We now show that they directly control 
the energy or power of the transmitted signal. Assume that all symbols in the alphabet are 
equally likely, and assume that the pulse shape is normalized to have unit energy. Then the 
expected energy E of a single passband PAM pulse that is transmitted in isolation, so that 
set) = J2Re{s(t)ei21tfct } with set) = ag(t), is: 

E=E[Ls2(t)dt] =E[L Is(t)1 2dt] 

= E[l a I 2][ g(t)2dt 

Im{ak} 

Im{ak} 
0 0 3co 0 

b 

0 0 Co 0 
Re{ak} Re{ak} 

b c 3c 
0 0 0 0 

4·PSK 

0 0 0 0 

(a) 16-QAM 

(b) 

Fig. 5-12. Two popular constellations for passband PAM transmission. The constants band c affect the 
power of the transmitted signal. 
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_ 1 ~ 2 
-I-I~ lal. 

f.f a E f.f 
(5.28) 

Thus, we can equate the energy of a single pulse with the energy of the alphabet. 

There is also a simple relationship between the alphabet energy and the transmitted power 
of an infinite sequence of passband PAM pulses when the symbol sequence is white, so that 
the power spectrum is a constant, Sa(ej9 ) = E. This assumption is usually valid. From 
Appendix 3-A, the power spectrum of the passband PAM complex envelope (5.22) is then 

Ss (f) = ~ IG(f) 12, (5.29) 

where G(f) is the Fourier transform of the pulse shape. The power of the complex-valued 
baseband PAM signal s(t), which is also the power of the passband signal after upconversion, 
can be found by integrating the power spectrum of (5.29), yielding: 

P = E IT, (5.30) 

where we have exploited unit-energy assumption for g(t). Intuitively this makes sense, since 
power is energy per unit of time. Thus, a power constraint of P on the transmitted signal 
translates to an energy constraint of E = PT on the symbol alphabet. 

Example 5-15. -------------------------
On the telephone channel, the average transmitted power is constrained by regulation to be 
comparable to the power of voice signals. Many long distance facilities, particularly of the analog 
variety, are carefully designed under assumptions on the average power of each voiceband channel. 
On radio channels the average power is often constrained by regulation to avoid interference with 
other radio services. In addition, nonlinearities in the RF circuitry become more severe as the signal 
power gets larger. In wire-pair channels, the signal power is constrained so as to limit crosstalk 
interference with other cable pairs. 

Alphabet Design 

The distance between points in the constellation determines the likelihood that one point 
will be confused with another. (This will be explored with rigor in later chapters.) 
Furthermore, two points are more likely to be confused for one another if they are closer 
together than if they are farther apart. Hence the minimum distance between points in the 
constellation, denoted dmin, is a key parameter of the constellation. Two constellations can be 
considered to have approximately the same noise immunity if the minimum distance dmin is 
the same. But to make d min the same, constellations with more points (such as 16-QAM vs. 4-
PSK) require more transmit power. Hence there is either a power or an error-probability 
penalty associated with using larger constellations. 

Intuitively, the objective of signal constellation design is to maximize the distance 
between symbols while not exceeding the power constraint. Optimal constellations are often 
difficult to derive, and modems that use them may be unnecessarily costly. In this section, we 
describe some popular constellations that have close to optimal performance. We assume an 
average power constraint, but the results are easily extended to a peak power constraint. 
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Since the performance of a constellation depends only on the distances among symbols, 
we expect the performance of a constellation to be invariant under translation. Hence we 
should translate a constellation so that its power is minimized. We now show that its power 
will be minimized if it has zero mean. In other words, given a set of symbols {ai}, we wish to 
translate them with a complex number m such that the power 

M 
E[la-mI2]=~. Pa(aJlai-mI2 

L.J1 = I 
(5.31 ) 

of the translated symbol set {ai - m} is minimized. Note that (5.31) is precisely the expression 
for the moment of inertia of M point masses, where the mass of the ith point is Pa(aJ and its 
position is (ai - m) [3]. This is easily shown to be minimized if m is the taken to be the 
centroid (center of gravity) of the untranslated point masses; in other words, translate the 
system so that the centroid is at the origin. Thus the best choice for a translation is 

m = E[a]. (5.32) 

To prove this, note that for any other translation n, 

E[I a - n 12] = E[ 1 (a - m) + (m - n) 12] 

= E[ 1 a - m 12] + 2(m - n)(E[a] - m) + 1 m - n 12 
= E[ 1 a - m 12] + 1 m - n 12 (5.33) 

where the last step follows from (5.32). The mean energy under the translation n is larger than 
the mean energy under the translation m by the amount 1 m - n 12. From this it is clear that 
alphabets with zero mean always perform better than translated alphabets with non-zero mean 
under ar! average power constraint. 

Aside from ensuring zero mean (which is easy), the problem of optimal design of the 
constellation is complicated. A group of theoretical papers in the early 1960's [4][5][6][7] 
developed some basic design techniques. We will concentrate on constellations that are used in 
practice. 

Some quadrature-amplitude modulation (QAM) constellations are shown in Fig. 5-13. 
The constellations are classified according to the number of bits b per symbol that they can 
convey. The number of points in the constellation is therefore M = 2b. We have restricted b to 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

* 
0 0 0 0 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 

M=4 0 0 0 0 0 0 0 0 0 0 0 0 

M=16 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

M=64 

Fig. 5-13. Some QAM constellations. 
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be even so that half the bits are represented by the value along the imaginary axis and half by 
the value along the real axis. There are two significant practical advantages to these types of 
constellations. First, the in-phase and quadrature signals are independent (b / 2) level PAM 
signals, so the design of the mapper is simple. Second, because of the regular rectangular 
pattern, noisy symbols may be transformed into symbol decisions by independently applying a 
thresholds along the real and imaginary axes, simplifying implementation of the decision 
device. There is a price for this convenience. Rectangular constellations are not the most 
efficient in power for a given minimum distance between symbols. 

Example 5-16. 
Mathematically, the alphabet for M-ary QAM takes on a simple form when M can be written as 
M = L 2 for some L that is a power of two. In this case, the real and imaginary parts a I and aQ of 
the symbol are both chosen from the real L-ary PAM alphabet {±c, ±3c, ... ±(L - l)c}, for some 
scaling constant c. The m-th element of this alphabet can be written as c(-L + 1 + 2m) for 
mE {O, ... , L -I}. The average energy of the M-QAM alphabet is: 

E= E[la 12] = E[aJ] + E[a~] = 2E[a}J 

= 2~L-1 c2(-L + 1 + 2m)2 
~m=O 

= ~ c2(L2 - 1) = ~ c2(M -1) . (5.34) 

Thus, in terms ofthe average symbol energy E, the constant c is given by c = J;:~i . For example, 
we have c =JEI2 for4-QAM, and c = JEll 0 for l6-QAM. 

Constellations for an odd number b of bits per symbol are also possible (and practical), as 
shown in Fig. 5-14. The b = 1 constellation is the familiar binary antipodal signal 
constellation. Recall that since the symbols are real-valued, this signal can be transmitted in 
baseband, if a baseband channel is available. Because of their shape, the b = 5 and b = 7 (M = 
32 and M = 128) constellations are called cross constellations. These constellations require 
slightly more complicated mappers than the QAM constellations and are often used in 

0 0 0 

0 0 0 0 

+ + 0 0 0 0 

o 0 0 0 0 0 

M=2 
0 0 0 0 

M=8 
0 0 0 

M=32 

Fig. 5-14. Cross constellations. 
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combination with trellis coding (see Chapter 13 and Problem 5-11). Both the QAM and the 
cross constellations are called rectangular constellations because the symbols are on a 
rectangular lattice. 

Another family of constellations with simple geometry is based on phase-shift keying, 
sometimes combined with amplitude modulation, shown in Fig. 5-15. The 2-PSK signal is 
identical to the binary antipodal signal, and is sometimes called binary phase-shift keying 
(BPSK). The 4-PSK signal, which we saw in Example 5-12, is sometimes called QPSK or 4-
QAM. In general, the M elements of the M-PSK alphabet can be written as: 

a = JEej2TtmiM , for m E{O, ... , M -1}. (5.35) 

Traditionally, pure PSK (without any amplitude modulation) has been used because the 
signal has a constant envelope which makes it robust to amplifier nonlinearities. Furthermore, 
because all the information about the signal is borne by the phase of the carrier, the receiver 
can immediately apply a hard limiter without erasing the locations of the zero crossings, which 
indicate the phase. Thus, the hard-limited signal can then be processed inexpensively with 
digital logic without requiring AID conversion. 

A performance improvement can be achieved with hexagonal constellations, some 
examples of which are shown in Fig. 5-16. The symbols lie on the vertices of equilateral 
triangles. The term hexagonal refers to the shape of the decision regions, shown for M = 16 in 
Fig. 5-16. For large M, hexagonal constellations minimize the extent of a constellation for a 
given distance between points (try penny packing), and were suggested very early [8]. 
However, the improvement over rectangular constellations is slight, and the mapper and 
decision device are significantly more complicated [9][10]. 

A systematic method for constructing optimal constellations is given in [9], but because of 
the limited benefit and serious complication of the detector these more elaborate constellations 
have not found widespread use. Constellations where the probability of the symbols is not 
uniform have also been proposed, but practical difficulties often dominate. Some performance 
gains can also be accomplished using constellations of higher dimension, such as four or eight. 
Essentially, several symbols are selected by the mapper simultaneously and transmitted 
sequentially [11] or simultaneously on different carriers. (We will see multidimensional 
constellations again in Section 13.1). 

0 0 

+ + + 0 
0 + 0 0 

o 0 
0 0 0 o 0 o 0 0 

2-PSK 0 0 

4-PSK 8-PSK 1-7-AM-PM 

1-5-10-AM-PM 

Fig. 5-15. Constellations using phase-shift keying and amplitude modulation. 
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5.2.3. Spectral Efficiency 

The spectral efficiency of passband PAM is easily quantified. The key equations of (S.14) 
and (S.lS) don't change; the bit rate is stilllog21Jtl times the symbol rate, and the spectral 
efficiency is still the ratio of the bit rate to the bandwidth. What changes for the passband case 
is the relationship between symbol rate and bandwidth. With a baseband channel of bandwidth 
W, the maximal symbol rate using baseband PAM is 2W With a passband channel with 
bandwidth W, however, the maximal symbol rate using passband PAM is only W This is 
because the bandwidth of a passband PAM signal is equal to the twice the bandwidth of the 
pulse shape. (Recall from Section 2.4 that the upconversion process doubles the bandwidth). It 
follows that the spectral efficiency of passband PAM with excess bandwidth a is half that of 
(S.16): 

_ Rb _ log21Jtl 
v - W - --y-:;a . (5.36) 

Lest the reader infer that passband PAM has lower spectral efficiency than baseband PAM, 
keep in mind that the complex alphabet in (S.36) is often much larger than the real alphabet in 
(S.16). In fact, if we use QAM and transmit L levels on each of the two quadrature carriers, the 
spectral efficiency is 

v = log2L 2 = 2 . log2 L bits/sec-Hz, (5.37) 

the same as for the baseband PAM with L levels. So the efficiency of baseband and passband 
PAM are effectively identical, other considerations being equal. 
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Fig. 5-16. Optimal hexagonal constellations. For the M= 16 constellation we have shown the 
hexagonal decision regions. The outer decision regions are approximated as hexagonal for uniformity. 
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Example5-17. -----------------------------------------------------
Consider the following baseband channel with bandwidth W 

I I 
WI2 

~ f I 

-W12 

From (5.17), baseband PAM with symbol rate 2W and a real 4-PAM alphabet 5lt = {±1; ±3} 
would achieve a spectral efficiency of 2log2 i5l:4 i = 4 b/s/Hz. However, an unconventional but 
conceptually legitimate view of this channel is as a passband channel with center frequency WI 2 
and bandwidth W. We could thus use passband PAM with symbol rate W, with carrier frequency 
W12, and with a complex 16-QAM alphabet 51:4 + j5l:4 = {±1 ±j, ±1 ± 3j, ±3 ±j, ±3 ± 3j}. 
Both 4-PAM with symbol rate 2Wand 16-QAM with symbol rate Wwill achieve the same bit rate 
and both will require the same bandwidth. Thus, they have identical spectral efficiency, namely, 
4 b/s/Hz. 

Example 5-18. To achieve 4.5 bits/ sec-Hz in a digital radio system, (5.36) implies an alphabet 
size of at least M = 23, but considering the need for some excess bandwidth, and the convenience 
implied if M is power of two, M will be larger in practice. Let B be the spacing between carriers in 
a frequency-division-multiplexed digital radio system. Then the nominal bandwidth available on 
each carrier is B and a zero excess bandwidth system would have a symbol rate of 1 I T = B. In 
fact, the FCC transmission mask can be met for a digital radio system with 1 I T = (3 I 4)· Band 
raised-cosine shaping with a = 0.5 [1]. The signal bandwidth is therefore 3/2 . liT = 9/8· B or 
12.5% larger than the available bandwidth. This is acceptable, since the resulting interference with 
the adjacent carrier is small (the band edges of the raised-cosine pulse are small enough). The 
resulting spectral efficiency is 

(5.38) 

and 4.5 bitsl sec-Hz can be achieved with M = 64. Thus, the number of points in the constellation 
is more than twice as great as with zero excess bandwidth. This is the price paid for practical 
filtering characteristics and tolerance for timing errors (Chapter 16). 

5.3. The One-Shot Minimum-Distance Receiver 

Up to now this chapter has examined the design of a PAM transmitter. We now shift our 
attention to the receiver. 

Our ultimate goal is to describe the receiver that optimally accounts for both the presence 
of lSI and the presence of noise. However, in this section we temporarily eliminate lSI from 
consideration by assuming that only one pulse is transmitted. This is called the isolated pulse 
or the one-shot case. In this context, we will develop a systematic approach to designing a 
PAM receiver based on a minimum-distance philosophy. This philosophy will lead to an 
important structure known as a sampled matched filter. 
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5.3.1. The Minimum-Distance Criterion 

Suppose the transmitter sends only a single symbol, so that the receiver observation is: 

r(t) = ah(t) + n(t) , (5.39) 

where a E 5l is the transmitted symbol, h( t) is the received pulse shape, and n( t) is the noise. 
This model applies to baseband PAM, for which the symbol, received pulse, and noise are 
real-valued. This model also applies to passband PAM when we interpret r(t) as the complex 
envelope of the received signal. In this case, the symbol, the received pulse, and the noise are 
all complex-valued. Because baseband PAM can be viewed as a special case of passband 
PAM, we will focus on the more general passband case in the following. 

The receiver design problem is to infer from r(t) which of the symbols was transmitted. 
The minimum-distance design strategy chooses the alphabet symbol that best representations 
the received waveform in a minimum-distance sense. This will be illustrated by example. 

Example 5-19. Consider the case of binary antipodal signaling with a zero-excess bandwidth 
pulse and an alphabet of {±l}, so that noiseless received signal is either h(t) or-h(t), as shown in 
Fig. 5-17. Suppose the receiver observes the noisy waveform r(t), also shown in the figure. What 
decision should the receiver make? Intuitively, it is easy for us to see that r(t) is "closer" to -h(t) 
than h( t), so we would make the decision a = -1 by inspection. But a receiver requires a 
systematic technique for automating this intuition. A simple and intuitive approach is to form the 
difference between the received signal r(t) and each of the candidate signals ±h(t). As shown in 
Fig. 5-18 for the example of Fig. 5-17, when we form the difference between the received signal 

Fig. 5-17. A pair of binary antipodal signals ±h( t) and a received signal r( t). 

Fig. 5-18. The difference between the received Signal and each of the known signals for the signal set 
and received signal in Fig. 5-17. 
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r(t) and -h(t), it is much smaller than if we fonn the difference between r(t) and h(t). Usually this 
difference signal will be much "smaller" for the actual signal than for the wrong signals. One easy 
way to quantify the tenn "smaller" is to calculate the energy of the difference signaL A receiver 
following this strategy would calculate 

[ 1 r( t) - h( t) 12 dt and (5.40) 

and compare them. The minimum-distance receiver decides a = 1 if the first energy is smaller, and 
it decides a = -1 ifthe second energy is smaller. 

Generalizing this binary example to arbitrary alphabets, we arrive at the following. The 
minimum-distance receiver chooses the symbol that best represents the observation in a 
minimum-distance sense, namely: 

a = arg min r 1 r( t ) - ah( t) 12 dt . 
aE~ ~ 

(5.41) 

The minimum-distance terminology stems from Section 2.6, where signals were interpreted as 
vectors in a vector space. In that context, we saw in (2.98) that the energy in the error between 
two signals is equal to the squared distance between their corresponding vectors. 

While we do not explicitly consider the effects of noise in this section, the minimum
distance criterion is primarily motivated by noise. Later in this chapter (Section 5.5), we will 
calculate the receiver probability of error for additive Gaussian noise on the channel, when the 
receiver is designed according to the principles described in this section. In Chapter 7, we will 
show that for additive white Gaussian noise, the minimum-distance criterion of this chapter is 
in fact the "optimal" receiver structure, according to definitions of optimality defined there. 

As defined so far, the minimum-distance receiver must calculate the M = I ~ I integrals of 
(5.41), one for each element ofthe alphabet. We now derive a more efficient implementation 
that requires only a single integral. From (5.41), the minimum-distance decision is the 
candidate symbol a that minimizes the following cost function: 

J= [Ir(t)-ah(t) 1 2 dt 

= [Ir(t) 12 dt -2Re{a*[r(t)h*(t)dt} + lal 2[ Ih(t) 12 dt (5.42) 

= Er - 2Re{a*y} + I a 12Eh , (5.43) 

where we have introduced: 

(5.44) 

the energies of r(t) and of h( t), respectively, and where we have also introduced: 
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y = [: r(t)h*(t)dt. (5.45) 

We may interpret y as the correlation or inner product between the observation and the 
received pulse, y = (r( t), h( t) ). 

Observe that the first term Er in the cost function (5.43) is independent of the candidate 
symbol a, and hence the receiver can ignore it. Furthermore, of the remaining two terms, only 
the first depends on the observation waveform r(t), and it does so only through the correlation 
y. It follows that y is a sufficient statistic for determining the minimum-distance decision; it 
collapses everything important about the observation waveform into a single scalar quantity. 
Rather than perform the M integrals of (5.41), the minimum-distance receiver need only 
perform the single integral (5.45), and then minimize the last two terms in (5.43). 

There are two ways to implement the correlation integral of (5.45). A direct 
implementation would multiply the observation waveform by a replica of the conjugated 
received pulse, and integrate the result, as shown below: 

This is called a correlator. An alternative implementation is to apply r(t) to a filter with 
impulse response h*(-t), and to sample the filter output at time zero, as shown below: 

A filter with impulse response h*(-t) is said to be matched to h(t). The above structure is thus 
called a sampled matched filter (MF). Mathematically, the correlator and MF approaches are 
equivalent and interchangeable, in the sense that they produce identical outputs. 

Example5-20. -----------------------------------------------------
If r( t) is applied to a filter with impulse response f( t), the output is: 

y(t) = [: r('t)f(t -'t)d't. (5.46) 

Sampling at time zero yields: 

y(O) = [: r('t)f(-'t)d't. (5.47) 

If the impulse response is f(t) = h *( - t), the above integral reduces to the desired correlation of 
(5.45). 
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In practice the MF approach is often preferred over the correlator because it offers some 
implementation advantages, such as the ability to compensate for synchronization errors by 
adjusting the timing of the sampler. In contrast, to function properly, the correlator requires 
that the two inputs r(t) and h*(t) be synchronized ahead of time. 

We now return to the minimum-distance cost function of (5.43), and simplify it further. 
Factoring out the term Eh, it can we rewritten as: 

J= Eh(!: - 2Re{a* IJ + lal 2 ) 

= Eh14 _aI2_1~~2+Er. (5.48) 

Because only the first term depends on the candidate symbol a, the minimum-distance receiver 
reduces to: 

A • 1 y 12 a = arg mIn - - a , 
aE52I. Eh (5.49) 

where y is the correlation of (5.45). The minimum distance decision is the symbol a E52I. 
closest to the normalized correlation z = y / E h. In other words, the decision can be found by 
"rounding" or quantizing z to the nearest alphabet symbol. The decision device that performs 
this operation is called a slicer, and is drawn schematically as shown below: 

Often this can be implemented by applying a series of decision thresholds to the input signal. 

Example5-21. ----------------------------------------------------
If the data symbols are drawn from the alphabet {-I, 0, I}, the minimum-distance slicer would 
apply decision thresholds at -% and %, as shown below: 

OUT 

IN 

Similarly, a slicer for the l6-QAM alphabet {±l ±j, ±l ± 3j, ±3 ±j, ±3 ± 3j} would 
independently apply thresholds at {O, ±2} to the real and imaginary parts of the input. 

We can summarize the main results of this section with the help of Fig. 5-19, which shows 
the block diagram of the minimum-distance receiver for an isolated pulse of passband PAM. 
First, if applicable, the complex envelope is extracted using a downconverter. (For baseband 
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Fig. 5-19. The minimum-distance receiver for an isolated pulse of passband PAM. The receiver consists 
of a downconverter, a matched filter, a sampler, and a slicer. (In practice, the normalizing gain of Eh- 1 

can be absorbed into either the matched filter or the slicer.) The minimum-distance receiver for 
baseband PAM has exactly the same form, except there is no downconverter. 

PAM, the received signal is already baseband PAM, so that the downconverter is not needed.) 
Second, the complex envelope is correlated with the known received pulse using a sampled 
matched filter, producing (5.45). Finally, the correlation is normalized and quantized using a 
slicer, according to (5.49). The same structure applies to an isolated pulse of baseband PAM as 
well, with one minor modification: there is no downconverter in the baseband case. 

5.3.2. Properties of the Matched Filter 
The previous section derived the MF as a simple means for implementing the minimum

distance receiver. The MF has another useful interpretation as the receive filter that maximizes 
SNR. Specifically, suppose we generalize the receiver in Fig. 5-19 by replacing the MF by a 
more general receiver filter with impulse response f( t), leaving the rest (the sampler and 
slicer) unchanged. Because we are specializing to the isolated pulse case, the receive filter 
does not have to be concerned about lSI. From (5.47), the sampler output is: 

y = [r(t)f(-t)dt . (5.50) 

Substituting (5.39) for r( t) yields: 

y =a[h(t)f(-t)dt + £: n(t)f(-t)dt 

=8+N. (5.51 ) 

The first term (8) is the signal and the second term (N) is the noise. If n(t) is assumed to be 
white with PSD No, the energy of the noise term is easily shown to be 

where Ef = C If(-t) 1 2dt . (5.52) 

We may interpret Ef as either the energy in f(t) or the energy in f( -t), since they are the same. 
In this case, the signal-lo-noise ralio is defined as: 
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_lfh (t)f(-t) dtI2 Ea 
- Ef . No' (S.S3) 

where Ea = E[ 1 a 12] is the symbol energy. We can uniquely choose the receive filter f( t) to 
maximize (5.53). The integral form of the Schwarz inequality tells us that, for any two 
complex integrable functions h( t) and g( t) with energies Eh and Eg, respectively, their 
correlation must satisfy: 

(S.54) 

with equality if and only if g( t) = Kh( t) for some constant K [12]. This is actually the same as 
the Schwarz inequality of Section 2.6, but using the L2 inner product. Dividing both sides of 
(5.54) by Eg, and taking g(t) = f*( - t), the Schwarz inequality implies that: 

(S.5S) 

This relationship is known as the matched-filter bound on the SNR. Furthermore, the Schwarz 
inequality tells us that equality is reached if and only if get) = Kh(t), or equivalently 
f(t) = Kh*( - t). In the sequel, we choose K = 1, since any other choice affects the signal and 
noise terms equally. This proves that the MF maximizes SNR. 

The matched filter h*(-t) has frequency response H*(f). The matched filter performs 
perfect phase equalization, since the transfer function of the overall pulse at the output of the 
matched filter, I H(f) 12, is real-valued. 

Additional motivation for the matched filter comes from the geometry of signal space 
(Section 2.6). The sampled matched filter takes the inner product of the received signal with 
the known pulse, or equivalently, it calculates the component of the received signal in the 
direction of the known pulse. Components in other directions must be due to the noise, and 
thus it makes sense that the minimum-distance can discard them without penalty. 

If h( t) is causal, as will usually be the case, then the matched filter is anticausal. To 
implement it in practice, h( t) is assumed to be finite in length, 

h( t) = 0 for t ~ tmax , 

for some constant tmax, and the causal matched filter 

f'( t) = h *(tmax - t ) 

(S.S6) 

(S.S7) 

is implemented. The output is then sampled at tmax instead of at time zero. A similar 
assumption is required to compute the integral in the correlation receiver in finite time. 

5.3.3. Matched Filter and lSI 

It should be emphasized that the preceding optimization ignored the effect of lSI by 
assuming an isolated pulse. When a sequence of pulses is transmitted, using a matched filter as 
a receive filter will generally introduce lSI. There are exceptions, however. 
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Exercise 5-1. 
Show that if the received pulse is time-limited to one symbol interval, so that h( t) = 0 for 
t e [0, 1') then the overall pulse shape p( t) = h( t) * h( -t) at the output of the matched filter is 
time-limited to two symbol intervals, - T S t S T, and furthermore goes to zero at t = -T and t = 
T. Thus, the overall pulse shape satisfies the Nyquist criterion, and there is no lSI. 

More generally, we can say that if the overall pulse shape at the output of the matched filter 
obeys the Nyquist criterion, then the matched filter is the optimal receive filter for both the 
isolated-pulse case and the sequence-of-pulses case, in the sense that it maximizes the SNR. 
For a received pulse h( t), the overall pulse shape at the output of the matched filter has 
Fourier transform 1 H( f) 12. The Nyquist criterion thus becomes, at the output of the matched 
filter, 

(5.58) 

The quantity Sh(f) is called the folded spectrum of the received pulse. It will playa key role in 
Chapters 7 and 8, where we consider lSI in detail. Equation (5.58) depends only on the 
magnitude 1 H( f) 1 , as illustrated by the following example. 

Example 5-22. -------------------------
The raised cosine pulses given in (5.8) have a Fourier transform (5.9) that is real-valued and non
negative for all f Therefore, a simple way to satisty (5.58) is to use a pulse h( t) and receive filter 
f( t) with Fourier transforms equal to the square root of the raised cosine, 

H(f) = F(f) = p(f)1/2 , (5.59) 

where P(f) is given by (5.9). The corresponding time domain pulse shapes are [13], 

h(t)=f(t)= 4a .cos«1+a)1ttlT)+Tsin«1-a)1ttlT)/(4at). (5.60) 
1tJT 1 - (4atl T)2 

Convolving such a pulse with itself will yield the raised cosine pulse of (5.8), so using such a pulse 
and receive filter results in no lSI at the receive filter output. Such pulses are called square-root 
raised cosine pulses. They are particularly easy to implement if the channel is assumed to be flat, so 
that the transmit pulse g( t) is the same as the received pulse h( t). 

5.3.4. Passband PAM Receivers 

The passband PAM minimum-distance receiver of Fig. 5-19 first downconverts, then 
filters, and then samples. In practice, as described in this section, the order in which these 
functions are performed is sometimes rearranged in order to simplify the implementation. To 
aid our discussion we start with the general receiver structure shown in Fig. 5-20(a), which 
first downconverts a real passband signal r ( t), yielding its complex envelope r( t ); then filters 
by a complex-valued baseband receive filter f( t), yielding y( t); and finally samples at the 
baud rate, yielding Yk = y(k1'). The receive filter f( t) may be a matched filter, for example. 
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Fig. 5-20. Four equivalent ways to implement a passband PAM receiver front end. The usual approach 
(a), using a down converter, a baseband receive filter, and a baud-rate sampler. An equivalent structure 
(b) in which the baseband receive filter is implemented in passband, before the downconverter. An 
equivalent structure (c) in which the phase splitter and passband filter are combined to form a analytic 
passband filter. An equivalent structure (d) in which the order of the sampling and mixing is reversed, so 
that the mixer can be implemented in discrete time. 

161 

A fundamental result from Chapter 2, namely (2.32), tells us that the convolution of two 
complex envelopes is a factor of J2 larger than the complex envelope of the convolution of the 
corresponding passband signals. In terms of Fig. 5-20 this means that we can calculate the 
receive filter output by first filtering r( t) by a real passband filter with impulse response 
J2f( t) = 2Re{f( t )ej21tfct}, and then downconverting. Therefore, the system of Fig. 5-20(a) is 
equivalent to that of Fig. 5-20(b), where a real passband filter with impulse response J2f( t) is 
applied before the downconverter. This is increasingly done in practice. 

We can simplify the receiver further by recognizing that the Fourier transform of J2f( t) is 
F(f - fc) + F*( -f - fc). This filter can be combined with the phase splitter filter u(f) in the 
downconverter to yield a single filter. As long as the bandwidth of the original receive filter is 
less than the carrier frequency, which is almost always true in practice, the frequency response 
of the combined filter will be F(f - fc), and the impulse response will be f( t )e j21tfct . This leads 
to the equivalent receiver structure of Fig. 5-20(c). 
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The combined filter f( t )e i21tfct is still a passband filter, but it passes only posItIve 
frequency components, and not negative frequency components. Since the impulse response of 
this filter, f(t)e i21tfct, is an analytic signal, this filter is called an analytic passband filter. The 
impulse response f(t)ei21tfct is always complex-valued, so the filter will require two real filters 
for implementation, as shown below: 

Re{f( t )e j2'nf,l} 

;'(t) 

Finally, Fig. 5-20(d) shows a further simplification that arises from reversing the order of 
the filter and downconverter. Since the symbol-rate sampler immediately follows the mixer in 
Fig. 5-20(c), the sampler and mixer can change places. The mixer can then be performed in the 
discrete-time domain. This has important practical consequences, because it is common to 
coordinate the choice of symbol rate and carrier frequency at the transmitter so that the 
quantity feT assumes a convenient value. For example, if feT = 1/ N, then the values of ei21tfckT 
can be easily generated from a lookup table with N entries. This is often much simpler to 
implement than generating ei21tfct and performing the multiplication in continuous time. 

5.3.5. More Elaborate PAM Receivers: A Preview 

The receiver that we have derived in this section consists of a downconverter, a filter, and a 
slicer. However, passband PAM receivers can be much more elaborate, as we will see in 
subsequent chapters. In order to motivate those chapters, we give here a qualitative description 
of a typical passband PAM receiver in Fig. 5-21. It is a practical receiver, although there are 
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Fig. 5-21. Block diagram of a typical passband PAM receiver. Specific parts of this receiver will be 
discussed in detail in subsequent chapters. 
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many variations. The parts of the receiver that are already familiar are the bandpass filter on 
the front end, the phase splitter, the demodulator, and the slicer. In fact, the front end 
consisting of a BPF followed by a phase splitter is much like the structure shown in 
Fig.5-20(b). 

In the next section we will learn how to deal with intersymbol interference in an optimal 
way. The complexity can be prohibitive, however. Careful compromises lead to structures that 
look more promising and are made fully practical in Chapter 8. One such structure is a 
decision-feedback equalizer that consists of a fractionally spaced precursor equalizer (often 
also called a "forward equalizer") and a postcursor equalizer (often called a "feedback 
equalizer"), as shown in Fig. 5-21. The fractionally-spaced precursor equalizer is a filter that 
performs the function of the matched filter, and also equalizes the precursor portion of the lSI, 
which is defined as the interference from future data symbols. The postcursor equalizer then 
removes the postcursor portion of the lSI, defined as the interference from past data symbols. 
In Chapter 9 we show how the parameters of these filters can be adapted automatically so that 
characteristics of the channel do not have to be precisely known by the designer of the 
receIver. 

Timing recovery is required to derive a symbol-rate clock from the PAM waveform itself, 
as shown in Fig. 5-21 and explained in Chapter 16. There are many different timing recovery 
schemes available; the one shown here is decision-directed, which means that it uses the 
receiver decisions to update the phase and frequency of the clock. It is also shown producing 
three different sampling rates, all related by rational multiples. The Nyquist-rate sampling at 
the front end is required if the phase splitter is implemented in discrete time. Of course it need 
not be, and in fact can be combined with the bandpass filter at the front end, in which case this 
sampling operation will not be required. The second sampling rate is at twice the symbol rate; 
this explains the terminology "fractionally-spaced" for the subsequent equalizer. The final 
sampling operation is at the symbol rate, since the slicer requires samples only at the symbol 
rate. 

There are also connections from the output of the slicer (the decisions) to the two 
equalizers. These connections are required for adaptation of the equalizers, and imply that 
adaptation is also decision-directed. 

Also shown in Fig. 5-21 is the carrier recovery, which will be explained in Chapter 15. 
Until Chapter 15 we will consistently assume that the precise carrier frequency and phase are 
available at the receiver (except for a brief discussion of incoherent detection in Chapter 6), 
but in practice this is not true. After the phase splitter in Fig. 5-21, a preliminary demodulation 
is done using a carrier with frequency II. This carrier frequency is not expected to match the 
transmitter carrier frequency precisely, so phase errors result from the demodulation. These 
phase errors are corrected by further demodulation, shown as a complex multiplication 
following the fractionally-spaced precursor equalizer. The reason for this two-step 
demodulation is that the carrier recovery is decision-directed, like the timing recovery. A loop 
is formed that includes the slicer, the carrier recovery, and a complex multiplier, as shown in 
Fig. 5-21. It will become clear in Chapter 15 that the performance of this structure is 
considerably improved if there is no additional filtering inside the loop (the postcursor 
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equalizer is harmless in this configuration). Consequently the final demodulation should be 
done as close to the slicer as possible. The preliminary demodulation, however, is required in 
order to bring the signal down close to baseband so that the receiver does not have to operate 
on the high frequency signal. Sometimes this first demodulation can be performed simply by 
sampling the signal below the Nyquist rate, without using the complex multiplier shown in 
Fig. 5-21. 

Some possible variations on the receiver shown in Fig. 5-21 include the use of error 
correcting codes (Chapter 12) or trellis codes (Chapter 13), the use of a Viterbi detector 
instead of the slicer and equalizers, or the omission of the postcursor equalizer (Chapters 8 and 
9). It is also practical to design passband signals that are not PAM signals, for example FSK 
(below) or continuous-phase modulation, in which case the receivers are significantly 
different. Baseband receivers can also be more elaborate than those discussed here, using for 
example adaptive equalization (Chapters 8 and 9). 

5.4. Minimum-Distance Sequence Detection 

The previous section considered receiver design for an isolated pulse. In this section we 
extend the minimum-distance concept to the lSI case, when the transmitter sends a sequence 
of symbols {ao, al ... aL _ I} of length L. If each symbol is drawn from an alphabet of size 
M = 151.1, there are ML possible symbol sequences in all. The received signal is then 

~L-l 
ret) = LJk = oakh(t - kT) + n(t), (5.61) 

where h( t) is the received pulse shape, and we make no assumptions about h( t) being time
limited or satisfYing the Nyquist criterion. However, we do assume that h( t) has finite energy 
Eh and that n( t) is unknown noise with finite energy. 

5.4.1. The Minimum-Distance Sequence Detector and the Folded Spectrum 

A straightforward extension of the minimum-distance philosophy of Section 5.3 leads to 
the following. The minimum-distance sequence detector for the PAM model of (5.61) chooses 
the symbol sequence {ao, ... , aL _ I} that best represents the observation waveform in a 
minimum-distance sense, namely: 

{ Uk} = arg min L r 1 r(t) - L.~~ loakh(t - kT) 12 dt . 
{ak}E5I: -00 

(5.62) 

In other words, of the ML candidate signals of the form L;: ~akh(t - kT), the receiver 
chooses that which is closest to the actual observation ret). 

The sequence detector described above is a significant departure from the one-shot 
receiver. Specifically, the sequence detector makes a decision about the entire sequence all at 
once, rather than making individual symbol decisions one by one. Conceptually, the sequence 
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detector must wait until all symbols have been transmitted and received before making any 
decisions. Among other things, this implies that there is thus an inherent decoding delay that 
grows with the block length L. 

The above sequence detector is conceptually very simple: calculate M- integrals, and find 
the smallest. Implementation, on the other hand, is a challenge, especially when L is large. The 
objective of this section is to make implementation manageable. 

The cost function of (5.62) can be written as: 

J= [Ir(t)- L;:~akh(t-kT)12dt 

=Er - 2Re{ L;: ~ak * [r(t)h*(t - kT)dt} 

+ L;: ~ L~: ~aka/ r h(t - kT)h*(t - jT)dt 
-co 

(5.63) 

where we have used Er from (5.44) as the energy in r(t), and where we have made the 
following two definitions: 

Yk = [r(t )h*(t - kT)dt , (5.64) 

Ph(k) = [h(t)h*(t - kT)dt . (5.65) 

We recognize Yk as the correlation of r( t) with a delayed version of the received pulse, namely 
Yk = (r( t), h( t - kT». Therefore, the k-th correlation Yk can be calculated by sampling the 
output of a matched filter at time kT, as shown below: 

r(t) _ Q -X o---.!k 
~t'!kT 

At this point we can draw an important conclusion. The first term (Er) in the cost function 
of (5.63) is independent of the candidate sequence {ak}, and hence the minimum-distance 
receiver can ignore it and optimize only the remaining terms of (5.63). Furthermore, these 
remaining terms depend on the received waveform r( t) only through Yk' Therefore, the 
sequence of correlations {Yk} represents a sufficient statistic for solving the minimum-distance 
sequence detection problem. Everything important about the received waveform is captured by 
this sequence of correlations. Since the matched filter produces these correlations, we 
conclude that the sampled matched filter provides sufficient statistics. This generalizes the 
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result of Section 5.3.1, which showed that the matched filter was optimal for the special case 
of an isolated pulse. Here, we see that it is also optimal for the general case of a sequence of 
pulses. 

The matched filter attenuates those frequencies that the channel attenuates, and it amplifies 
those frequencies that the channel amplifies. In this sense, the matched filter accentuates the 
channel distortion. 

Example 5-23. -------------------------
Suppose the Fourier transfonn H(f) of the received pulse is as sketched below: 

-1 
2T 

o 1 
2T 

Also shown above is 1 H(f) 12, which is the Fourier transfonn of the overall pulse shape after a 
matched filter. We see that 1 H(f) 12 fluctuates over a range wider than H(f). In a sense, the 
matched filter has made the lSI more severe. This is the price paid for optimally accounting for the 
noise. Also shown above is a sketch of the channel inverse 1/ H(f), which is the transfer function 
of a zero-forcing linear equalizer; it forces the overall pulse to be the ideal rectangular Nyquist 
pulse indicated with a dotted line. Comparing the two, we see that the matched filter is very 
different from a linear equalizer. 

The previous example resolves an apparent conflict in the design of the receive filter. 
Intuitively we would like the receive filter to do two things: reject as much noise as possible, 
and shape the pulse so as to satisfy the Nyquist criterion and thus avoid lSI. But we cannot do 
both simultaneously. The minimum-distance criterion chooses the receive filter to minimize 
noise, not avoid lSI. The lSI is then compensated for afterwards, not with linear filtering, but 
through nonlinear signal processing that minimizes the cost function J of (5.63). 

The quantity Ph(k) of (5.65) is called the sampled autocorrelation of the received pulse. 
We recognize it as the correlation between a delayed and non-delayed version of the received 
pulse, namely Ph(k) = (h( t), h( t - kT». It plays a key role in receiver design, and so we will 
take a moment to explore some of its properties. First, at time zero, Ph(k) reduces to 
Ph(O) = Eh, the energy in the received pulse. Second, it displays Hermitian symmetry, so that 
Ph(-k) = p;(k). Third, the Schwarz inequality of (5.54) implies that the magnitude of the 
sampled autocorrelation achieves a maximum value at time k = 0, so that 1 Ph(k) 1 < Ph(O) for 
all nonzero k. Fourth, it is instructive to view the sampled autocorrelation as the output of a 
sampled matched filter when the received pulse is the input, as shown below: 
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The Fourier transfonn of Ph( k), denoted Sh(e j21CfT ), is easy to derive using the above figure. 
In particular, because the filter input has Fourier transfonn H(f), and because the matched 
filter has Fourier transfonn H*(f), the filter output has Fourier transfonn 1 H(f) 12. According 
to (2.17), sampling the filter output aliases the Fourier transfonn, so that the discrete-time 
Fourier transfonn of the sampled autocorrelation Ph( k) is given by: 

(5.66) 

Because this represents an aliased version of the matched filter output, Sh(e j21CfT ) is called the 
folded spectrum. We see that it is everywhere real and nonnegative, and thus it would be a 
valid power spectrum for a random process. 

The overall pulse after a matched filter satisfies the Nyquist criterion only if its Fourier 
transfonn - given by 1 H(f) 12 - aliases to a constant. In light of (5.66), this will be true only 
if the folded spectrum is a constant. Specifically, only if Sh(e j21CfT ) = Eh, so that the sampled 
autocorrelation reduces to Ph(k) = Ehbk. 

The Nyquist criterion stipulates that the bandwidth of a PAM signal be at least half the 
symbol rate. Thus, the sampling theorem would dictate a sampling rate greater than the 
symbol rate. On the other hand, the minimum-distance receiver requires only baud-rate 
sampling. Therefore, it introduces aliasing. We will see in Chapter 9 that it is common to 
choose a sampling rate higher than the symbol rate in practice, to address practical concerns. 

5.4.2. Minimizing Distance in Discrete-Time 

A basic result in Section 2.5, (2.67), provides a factorization of a rational transfer function 
that is non-negative real on the unit circle. This spectral factorization will now prove useful in 
deriving a basic minimum-distance receiver structure for lSI. 

A direct calculation of the minimum-distance cost J of (5.63) appears to be impractical 
from two perspectives: 

• Calculating the cost J for just one candidate symbol sequence {ao, ... , aL _ I} requires 
on the order of L2 additions and multiplications. In practical implementations, we can 
only provide a constant processing rate, or a total computational resource that is 
proportional to L. Thus, the calculation of (5.63) is impractical for large L. 

• Even worse, the total number of symbol sequences {ao, ... , aL _ I} for which (5.63) 
must be calculated is ML , which grows exponentially with L. Again, this is impractical 
to implement. 

In this section we will prove that the continuous-time minimum-distance receiver can 
equivalently be implemented using a discrete-time minimum-distance receiver. This receiver 
structure solves the first problem, since the computational overhead for one symbol sequence 
{ao, ... , aL-l} is proportional to L rather than L2. A solution to the second problem (the 
Viterbi algorithm) will be described in Section 5.4.4. 
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The fundamental enabling result is a spectral factorization of the folded spectrum. Since 
the folded spectrum Sh(ej~ is non-negative real-valued, it can be factored in the form (see 
(2.67)), 

Sh(Z) =rM(z)M*(lIz*) , (5.67) 

where M(z) is a monic loosely minimum-phase transfer function. Expressed in the time 
domain, this spectral factorization is 

(5.68) 

Consider Fig. 5-22, which appends to the output of the sampled matched filter a 
"precursor equalizer" whose transfer function is: 

1 
(5.69) 

y2M*(lIz*)· 

(Generally this will be a stable filter, but there are instances where filters with isolated poles on 
the unit circle are allowable, so we do not rule out this case.) Let {zk} denote the output of this 
filter, which is related to the sampled matched filter output {Yk} by 

(5.70) 

It turns out that the continuous-time minimum distance criterion of (5.63) is a simple 
function of Zk. This result can be demonstrated by completing the square. In particular, using 
the inner product notation (Xk' Yk) of (2.81) as shorthand for LkXkYk* , and (Xk, Xk) = IIxk 112, 
(5.63) can be written as: 

J=Er -2Re{(Yk, ak)} +LZ:~L~~~aka/Phv-k) 

= Er - 2y2Re{(zk, ak * mk)} + y211 ak * mk 112 

= Er + y211 zk - ak * mk 112 - y211 zk 112 , (5.71) 

where we made use of (5.68) and (5.70). Observe the similarity of this expression with that of 
(5.48) for the isolated pulse case. 

Since only the second term above depends on ak, the continuous-time minimum distance 
criterion of (5.63) reduces to the following equivalent discrete-time minimum-distance 
criterion: 

{ak}=arg minL L IZk-Lf:~almk-rl2 . 
{ak}eJ't k = 0 

(5.72) 

We can think of this receiver structure as a generalized slicer; the isolated data symbol ak is 
replaced by a filtered sequence of data symbols ak * mk. Instead of comparing each data 
symbol independently to a single sample, we compare a filtered sequence of data symbols to a 
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PRECURSOR 
EQUALIZER 

Fig. 5-22. A minimum-distance sequence detector for PAM with lSI, in which the continuous-time 
minimum distance criterion is transformed into a discrete-time minimum distance criterion. 
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sequence of discrete-time samples Zk, repeating this comparison for all allowed data-symbol 
sequences. 

Observe that the range of the summation index in (5.72) is 0:::; k:::; 00, even though the 
sequence of data symbols is finite. This is because the lSI may be infinite in extent, and thus 
the entire received signal sequence is considered by the minimum-distance criterion. If M(z) 
were FIR with memory Il, the index range would change to 0 :::; k :::; L + Il - l. 

For one symbol sequence {ao, ... , aL-l}, and when M(z) is FIR, (5.72) requires a 
computational load proportional to L. Thus, this form of the minimum-distance criterion 
reduces the computation for each candidate symbol sequence from the order of L 2 to L. If 
M(z) is not FIR, then it can usually be accurately approximated by an FIR response. In 
addition to the practical implications of (5.72), it is also of great theoretical interest, because it 
demonstrates the equivalence of two minimum-distance criteria, (5.63) in continuous time and 
(5.72) in discrete time. 

The receiver structure corresponding to criterion (5.72) is shown in Fig. 5-22. It measures 
the energy in the error between two discrete-time signals. One signal, {zk}, is a filtered version 
of the sampled matched filter output. The symbol-rate discrete-time filter in this upper path has 
transfer function given by (5.69), and it is called a precursor equalizer. The reason for the 
terminology "equalizer" is that, as we will see, this filter eliminates a portion (although not all) 
of the lSI at its input. That is, it inverts (but only partially inverts) the equivalent response of 
the channel and the sampled matched filter. It is called a "precursor equalizer" because it 
eliminates the "anticausal" or "precursor" response of the channel and sampled matched filter. 
This terminology will be explained further in Chapter 8. 

The second signal used in the discrete-time energy calculation is a filtered version of the 
candidate data-symbol sequence. The filter in this path is an equivalent discrete-time model for 
the response of the transmit filter, channel, matched filter, and precursor equalizer to the input 
data symbols, as we will see. The distance between precursor equalizer output and the filtered 
version of the candidate data-symbol sequences is calculated for all possible sequences of L 
data symbols. The sequence that minimizes that discrete-time distance is chosen. The distance 
must be recalculated many times, once for each allowable sequence of L data symbols. In the 
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presence ofISI (M(z) *- 1) it never reduces to a series of symbol-by-symbol decisions. The 
distance should be calculated only for feasible sequences of data symbols, reflecting any 
redundancy built into the coder at the transmitter. 

Since M(z) is minimum-phase, M*(lIz*) is maximum-phase, and so is lIM*(lIz*). 
Thus, to be stable this filter must be anticausal, which is impractical, although if it is FIR or 
can be approximated as FIR, it can be implemented as a causal filter in combination with a 
delay. 

Example~24. ---------------------------------------------------
The lowest-order rational all-pole folded spectrum is 

2 
Sh(z) = Y , 

(1- ez-1 )(1- e*z) 
Ie 1< 1 . (5.73) 

For this case, M(z) = 1/(1- ez-1), and the resulting receiver structure is shown in Fig. 5-23. The 
precursor equalizer (1- e*z) / y2 is an FIR filter. Although it is anticausal, it is very easily 
implemented as a causal FIR filter plus a single-sample delay. The candidate data symbols are 
filtered by a single-pole IIR filter with impulse response Jluk (where Uk is the unit-step function). 

Example 5-25. --------------------------------------------------
The lowest-order rational all-zero folded spectrum is 

lel< 1 . (5.74) 

For this case, M(z) = 1- ez -1, and the resulting receiver structure is shown in Fig. 5-24. The 
precursor equalizer 1/(1 - e*z) is an anticausal IIR filter with impulse response (e*r-ilU_k' and 
because it is IIR it cannot be implemented directly. Rather, it can only be approximated by an 
anticausal FIR filter. The candidate data sequence is filtered by the impulse response Sk - eSk _ l' 

We will now further motivate the reasons for the equivalence of (5.72) and (5.63). When 
the input signal is given by (5.61), the output of the sampled matched filter is 

(5.75) 

for some unknown noise nk' The signal portion of this output is represented by an equivalent 
discrete-time filter with impulse response Ph(k) (transfer function Sh(Z» and input ak' 

PRECURSOR 
EQUALIZER 

Fig. 5-23. The minimum-distance receiver for a first-order all-pole folded spectrum. 
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Consider what happens if we put the sampled matched filter output Yk through a precursor 
equalizer with transfer function 1I(y2M*(1Iz*» as shown in Fig. 5-22. The overall transfer 
function to data symbols is 

Sh(Z) 
- M(z) 

y2M*(1/z*) - , 
(5.76) 

and hence the output will be 

(5.77) 

where nk is the filtered noise. This output signal has the desirable property - heavily 
exploited in Chapters 8 and 9 - that the resulting overall discrete-time channel is causal. The 
precursor equalizer has thus removed the anticausal portion of the lSI; that is, the equivalent 
response up to the precursor equalizer input has a two-sided impulse response, and the 
precursor equalizer output turns this into a causal impulse response. In Fig. 5-22, the actual 
sequence Zk, corrupted by noise, is compared to what it would be for a candidate sequence of 
data symbols, namely Zk * mk, using a Euclidean distance measure. 

Special Case: Orthogonal Pulses 

It is instructive to examine how the minimum-distance sequence detector simplifies for the 
special case of no lSI. Suppose successive received pulses are orthogonal, or equivalently the 
pulse shape at the output of the matched filter satisfies the Nyquist criterion. This implies that 
the folded spectrum is a constant, namely Sh(e j21tfT ) = Eh, which admits a trivial spectral 
factorization (5.67) with y2 = Eh and M(z) = 1. The precursor filter of (5.69) reduces to a 
constant gain of Eh -1. In this case, the minimum-distance sequence detector of (5.72) reduces 
to: 

{elk} = arg min L~:~I zk- ak 12. 
{ak}E5tL 

(5.78) 

This makes intuitive sense, since the output of the sampled matched filter is Yk = Ehak + nk, 

where nk is unknown noise. That is, the signal component at the sampled matched filter output 
is free of lSI. This receiver structure is illustrated in Fig. 5-25(a). The difference between the 
sampled matched filter output and the normalized sequence of data symbols is formed, and the 

~(t) Yk 
h*(-t) 

t=kT 
MATCHED FILTER 

PRECURSOR 
EQUALIZER 

Fig. 5-24. The minimum-distance receiver for a first-order all-zero folded spectrum. 



172 PULSE-AMPLITUDE MODULA nON CHAP. 5 

energy in discrete-time is calculated. This is repeated for all possible sequences of data 
symbols, and the one that minimizes the error energy is chosen. 

When the data symbols are chosen independently of one another, (5.78) can be minimized 
symbol-by-symbol: since all the terms in the sum are non-negative, the sum is minimized by 
minimizing each term, where each term is precisely the criterion for a minimum-distance 
slicer design. Thus, in this case, the simplified structure of Fig. 5-25(b) can be used. This is 
exactly the same structure of Fig. 5-19 that was derived for the special case of an isolated 
pulse, except that here the matched filter output is sampled every symbol period instead of 
only once at time zero. Thus, with independent symbols and no lSI, the minimum-distance 
sequence detector reduces to a sequence of independent one-shot minimum-distance detectors. 

The following example illustrates when the more general structure of Fig. 5-25(a) must be 
used. 

Example5-26. -----------------------------------------------------
A simple technique for ensuring no d.c. content in a baseband PAM waveform is a coding 
technique called alternate-mark inversion (AMI). Briefly, the data symbol ak is chosen from an 
alphabet of size three, {±1, O} in order to communicate one bit of information. A zero bit is 
transmitted as ak = 0, and a one bit is transmitted by I ak I = 1, where the sign of ak is chosen to be 
the opposite sign from the last non-zero ak. Since the non-zero ak alternate in sign, there is no d.c. 
content to the sequence of data symbols. If we were to use the simplified structure of Fig. 5-25(b), 
the three-level slicer could detect sequences of data symbols that violate the known constraints on 
the data symbols. For example, it might detect two positive or two negative data symbols in a row. 
The correct procedure is to use the generalized structure of Fig. 5-25(a), and calculate the energy 
for valid sequences of data symbols only. In particular, for sequences of L user bits at the input to 
the transmitter, there are 2L valid sequences of data symbols, and not 3L as might be suggested by 
the alphabet of size three. 

This example illustrates a case where the sequence of data symbols embodies redundancy; that 
is, there are restrictions on the sequence of data symbols imposed by the coder that make the 

(b) 

Fig. 5-25. The minimum-distance receiver design for PAM when the overall pulse at the output of the 
MF satisfies the Nyquist criterion. (a) The receiver that applies to any set of data·symbol sequences, 
and (b) the special case where data symbols are chosen independently. 
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number of sequences less than ML for an alphabet of size M. There are many other examples 
of this, for example for the purpose of controlling the transmitted signal power spectrum and 
for combating noise on the channel (Chapter 12). In each of these cases, the redundancy can 
be accounted for in the minimum-distance receiver of Fig. 5-25(a) by considering only valid 
sequences of data symbols. This has the desirable side effect of restricting the number of 
sequences for which the energy must be recalculated. 

Non-Uniqueness of the Discrete-Time Criterion 

We will now show that the minimum-distance receiver structure that substitutes a discrete
time energy for a continuous-time energy is not unique. The discrete-time channel model in 
(5.77) (ignoring for a moment the noise) is minimum-phase, because of the minimum-phase 
spectral factorization. However, the spectral factorization of Sh(z) need not be minimum
phase. There are many front-end discrete-time filters that are equivalent in the sense that they 
result in the same detected sequence of data symbols {ao, ... , aL-l}. 

This is illustrated in Fig. 5-26, where the error sequence {Ek} defined in Fig. 5-22 is 
filtered by an arbitrary rational allpass filter before the energy is calculated. Since the allpass 
filter has a unit magnitude response, it does not change the energy, i.e. 

(5.79) 

as long as we assume that Em = 0 for m < o. Hence, the allpass filter will not change the 
sequence of data symbols chosen by the receiver. Now, we can move the allpass filter through 
the summation in Fig. 5-22, replacing the filter lIy2M*(1/z*) by A(z)/y2M*(lIz*) and 
replacing M(z) by A(z)M(z). This replacement has no effect on the data-symbol sequence 
chosen by the receiver. If this allpass filter has all poles inside the unit circle (and hence all 
zeros outside), then it is a stable causal filter, and does not destroy the causality of the channel 
model in (5.77) either. Effectively, this changes the discrete-time channel model from 
minimum-phase to non-minimum-phase. While this change would not appear to be harmful, it 
is shown in Problem 2-28 that a causal minimum-phase sequence has the property that, among 
all sequences with the same Fourier transform magnitude, it is maximally concentrated near 
zero delay. Thus, in this sense the impulse response of the minimum-phase channel model has 
minimum intersymbol interference, among all impulse responses with the same Fourier 
transform magnitude. Stating this another way, Problem 2-29 shows that the impulse response 
of the filter M(z) is more concentrated near the origin than the impulse response of the 
modified channel model A(z)M(z), and thus has less lSI. While this property does not affect 
the minimum-distance receiver, in the sense that it chooses the same data-symbol sequence, it 

Fig. 5-26. Introducing a rational allpass filter A(z) before the energy is calculated in Fig. 5-22. 
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is very important for another practically important receiver structure based on a similar 
decomposition (the decision-feedback precursor equalizer of Chapter 8). 

5.4.3. The Whitened-Matched Filter 

The main result of the previous section was the discrete-time minimum-distance criterion 
of (5.72). In this section we provide a simple geometric interpretation based on signal space. 
In the process, we introduce an important concept known as the whitened-matched filter. 

Define the signal space S as the span of all translates {h(t - kT)} ofthe received pulse. 
Also, define a new signal cj>( t) according to its Fourier transform, when it exists: 

cI>( f) = H (f) 
yM(ej2nfT) , (5.80) 

where y and M(z) are defined by the folded spectrum factorization Sh(z) = y2M(z)M*(1Iz*). 

Fact: ----------------------------------------------------------

The set of translates {cj>(t - kT)} forms an orthonormal basis for the signal space S. 

Proo~---------------------------------------------------------
To demonstrate orthonormality, the following integral must reduce to 8m,n: 

r cj>(t - mT)cj>*(t - nT)dt = r cj>( t )cj>*(t - kT)dt , (5.81 ) 
~ ~ 

where we substituted k = n - m. Taking the discrete-time Fourier transform of (5.81) yields: 

.!.L~ 1cI>(f-kIT)1 2 = .!.L~ 1 H(f-kIT) 12 
T k=~ T k=~ yM(ej2n(f-kIT)T) 

= y2IM(e~2nfT)12 ~L; = ~ JH(f - kIT)J2 = 1. (5.82) 

Reverting back to the time domain, we see that (5.81) reduces to 8m,n> so that the set {cj>(t - kT)} 
is orthonormal. 

To make {cj>(t - kT)} a basis we must also show that it spans, so that every element s( t) of Scan 
be written as a linear combination of {cj>(t - kT)}. If s( t) E S, there exists a sequence {ak} such 
that s( t) = Lkakh(t - kT). Since (5.80) implies that H(f) = yM(ej21tfT)cI>(f), it follows that 
s( t ) is the output of the following cascade of filters: 

~------~vr------~ 

H(f) 
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Fig. 5-27. Two equivalent implementations of the whitened-matched filter: (a) with the precursor equalizer 
embedded inside the receive filter; (b) with a separate discrete-time precursor equalizer after the sampler. 
We can convert (b) to (a) by moving the precursor equalizer to the other side of the sampler, and then 
absorbing it into the definition of the receive filter. Either way, the above structures project their input onto 
the signal space spanned by {h(t - kT)}. 
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From this picture it is clear that s( t) = ~kbk<P(t - kT) where bk = Y ak * mk' This proves that 
every element s( t) of the signal space can be expressed as a linear combination of {<p(t - kT)}, 
which concludes our proof that {<p(t - kT)} is an orthonormal basis. Indirectly, we have also 
shown that the projection of s( t) = ~kakh(t - kT) onto <p(t - kT) is bk = yak * mk' 

Having identified a basis for S, let us revisit the minimum-distance sequence detector of 
(5.62). Let S(t)=~kakh(t-kT) denote the candidate PAM signal, and let r(t) denote the 
projection of the received waveform r( t) onto S. Since r( t) E S, we must be able to expand it 
in terms of the basis; that is, there must exist a sequence of coefficients {Zk} such that: 

(5.83) 

(The motivation for the constant factor y will become clear shortly.) In particular, the k-th 
coefficient Zk can be found by correlating r( t) with the k-th basis function: 

(5.84) 

This correlation can be implemented by sampling at time kT the output of a receive filter with 
transfer function <I>*(f)/y and impulse response <p*(-t)/y, as illustrated in Fig. 5-27(a). The 
receive filter is thus matched to <P(t)/y. For reasons that will become clear shortly, the receive 
filter of Fig. 5-27(a) is called a whitened-matchedfilter. 

Because of (5.80), we can equivalently implement the whitened-matched filter of 
Fig.5-27(a) using the system of Fig. 5-27(b), which consists of a conventional sampled 
matched filter followed by a discrete-time filter with frequency response 1 / (y2 M* (e j21tfT». In 
effect, we have factored out the term 1/(y2M*(e j21tfT» from the receive filter and then moved 
it to the other side of the sampler. Because of its equivalence to Fig. 5-27(a), the system of 
Fig. 5-27(b) - including the sampler - is also known (loosely) as the whitened-matched 
filter. We immediately recognize the structure of Fig.5-27(b) as the front-end of the 
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minimum-distance receiver of Fig. 5-22, where it was motivated in an ad hoc fashion. We now 
have a useful geometric interpretation of the whitened-matched filter structure of Fig. 5-27(b) 
(and thus of Fig. 5-22): it projects the received waveform onto the signal space. 

The minimum-distance sequence detector can equivalently minimize distance after the 
whitened-matched filter, as was argued in the discussion leading up to (5.72). Based on our 
geometric interpretation of the whitened-matched filter, we now present an alternative 
derivation of (5.72), starting with the continuous-time cost function of (5.62): 

J = [I r(t) - s( t) 12 dt 

= [ 1 r( t) - r( t) + r( t) - s( t) 12 dt 

= [ 1 r( t) - r( t) 12 dt + [ 1 r( t) - s(t) 12 dt (5.85) 

(5.86) 

(5.87) 

where Ee is the energy in the projection error r(t) - r(t). The equality in (5.85) follows from 
the fact that the projection error r(t) - r(t) is orthogonal to all of S, including r(t) - s(t). The 
equality in (5.86) is based on Parseval's relationship of (2.99). Since Ee is independent of the 
candidate symbol sequence {ak}, the minimum-distance receiver can equivalently minimize 
the second term in (5.87). In other words, the minimum-distance sequence detector reduces to 
(5.72). 

The whitened-matched filter derives its name from two properties: like the conventional 
matched filter, it provides sufficient statistics for the minimum-distance receiver, and yet 
unlike the matched filter, it transforms white noise into white noise. Specifically, if the 
continuous-time noise n( t) at the input to the whitened-matched filter is white with power 
spectrum No, the discrete-time noise after the whitened-matched filter will also be white, with 
power spectrum No/y2. In contrast, the noise after a matched filter will have power spectrum 
proportional to the folded spectrum, namely NOSh(z), and thus will not generally be white. 

5.4.4. The Viterbi Algorithm 

The minimum-distance sequence detection requires that (5.72) be calculated ML times, 
one for each possible sequence of L symbols from an M-ary alphabet. The computation is 
therefore exponential in time (because time is proportional to L). In this section we describe a 
dynamic programming algorithm known as the Viterbi algorithm, originally proposed by A. 
Viterbi in 1967 [14], which achieves a computational load that is linear in time, which 
corresponds to a fixed computational rate. The Viterbi algorithm is used in many applications 
beyond sequence detection, such as in the decoding of convolutional codes, but to simplifY its 
presentation we restrict our attention to the lSI channel. 
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Finite-State Machine Signal Generator 

The relationship between the output of the whitened-matched filter {zk} and the 
transmitted symbols {ad is captured by the whitened-matched filter model of Fig. 5-28(a); 
the transmitted symbols are filtered by M(z), and noise is added. An expanded view of this 
model is shown in Fig. 5-28(b) for the special case when M(z) is FIR with memory Il, namely 
M(z) = 1 + mlz-1 + ... + m!!z-!!. In theory, M(z) is FIR if and only if Sh(z) is an all-zero filter, 
or equivalently if and only if a finite set of translates h(t - kI) are non-orthogonal. In practice, 
even an IIR filter can be well-approximated by an FIR filter with large memory; therefore, 
from now on we assume that Il is finite. 

With our assumption of finite memory, the signal Sk in Fig. 5-28 (before the noise) is 
generated by afinite-state machine (FSM). Let us define the state at time k by the vector of Il 
previous inputs: 

(5.88) 

Since each element of this vector is drawn from an alphabet 51., we have "'k Eft!!, so that the 
number of permissible states is 1511!!. Beyond the fact that there are only a finite number of 
states, the FSM is characterized by two additional properties: 

• its output Sk depends only on the current state "'k and current input ak; 

• the next state "'k + 1 depends only on the current state "'k and current input ak' 

We will find it convenient to characterize the FSM output as a function of a state transition. 
Specifically, since "'k + 1 uniquely determines the input ak, we can represent the FSM output as 
a function of a state transition: 

Sk=g("'k, "'k+l) , 

where g( . , . ) is a memoryless function, namely: 

(a) 

(b) 

Fig. 5-28. The whitened-matched filter channel model for the case when M(z) is FIR. 

(5.89) 
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(5.90) 

Example 5-27. -------------------------
A simple example that we will cany along for iIlustrative purposes is the binary OOK alphabet 
5I. = {O, I} and the foIl owing lSI model 

(5.91) 

as shown in Fig. 5-29(a). The memory is fl = 1, and the state is \Ilk = ak -1, the previous input. 
Since the alphabet is binary, there are only two possible states. The state transition diagram for this 
FSM is shown in Fig. 5-29(b), where the arcs are labeled with the input! output pair (ak' sk)' 

One of the characteristics of the output Sk produced by the FSM signal generator is 
redundancy. In Example 5-27, the redundancy occurs because Sk takes on four possible levels 
{O, 0.5, 1, 1.5}, even though only one bit of information is carried. The lSI which introduces 
this redundancy is assumed to be an undesired property of the channel, although there are 
situations where it is introduced deliberately - for example with partial response. Similarly, 
the error-control coding techniques of Chapter 12 introduce redundancy to help mitigate the 
effects of noise. Although the form and function of an error-control coder is very different 
from the lSI channel, the principles of sequence detection developed in this section apply 
equally to both cases. In the remainder of this section we will discuss the technique of 
sequence detection, and leave detailed discussion of its applications to later chapters. 

The Trellis Diagram 

The state transition diagram in Example 5-27 is a traditional representation of a FSM. D. 
Forney suggested in 1967 a valuable alternative representation called a trellis diagram [15], 
which shows the possible progression of states over time. 

To this point we have assumed that the transmitter sends only L symbols {ao, ... , aL-1}, 
which is equivalent to sending an infinite sequence of symbols {ak: _00 < k < oo} with the 
restrictions that ak = ° for k < ° and ak = ° for k 2:: L. This assumption leads to a minor 
complication when zero is not a part of the input alphabet, as is often the case. One approach 
would be to define an augmented alphabet as 5I.'= 5I. u {OJ, but this introduces complications 
of its own, such as a time-varying state space: the first few state vectors {\IIo, \lib ... } would be 
drawn from 5I.'I-l, whereas later states would be drawn from the strict subset 5I.1-l. We opt for a 

(1,1) 

1,1.5) 

(1,0.5) 

(a) (b) 

Fig. 5-29. The lSI signal generator (a) of Example 5-27. The state transition diagram (b) assuming 
binary input symbols. The arcs are labeled with the input bit/signal output pair (ak, sk)' 
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simpler solution. Specifically, in what follows we assume that the transmitter sends an idle 
symbol aO E YL before the first data symbol and after the last data symbol, so that ak = aO for 
k < 0 and ak = aO for k ~ L. For example, given a 4-PAM alphabet {±1, ±3}, the idle symbol 
might be aO = -3. Of course, aO = 0 is the natural choice when 0 E 5l. 

Let the Q = I YL I ~ permissible states be labeled by the integers {O, 1, 2, ... Q-1}. 
Furthermore, assume that the zero label is reserved for the all-idle state [an, an, ... an]. We 
will thus write \jf k = 0 as shorthand for \jf k = [ao, aO, ... aO], and similarly for other states. 
Because ak = aO for k < 0, it is clear from (5.88) that the state will satisfy \jfk = 0 for all k ~ O. 
Similarly, because ak = aO for k ~ L, (5.88) implies that \jfk = 0 for all k ~ L + J..l. 

The trellis diagram is a essentially a plot of all possible state progressions versus time. 
Because the state is known to be zero for all k ~ 0 and for all k ~ L + J..l, the time axis need only 
range from k = 0 to L + J..l. 

Example 5-28. -------------------------
Recall Example 5-27, for which the alphabet was binary and the memory was J..l = 1. The trellis 
diagram for this example is shown in Fig. 5-30(a). The starting and ending conditions are \jfo = 0 
and \jf L + 1 = O. Each small circle is a node of the trellis, and corresponds to the FSM being in a 
particular state at a particular time. Each arc in the diagram is called a branch, and corresponds to a 
particular state transition at a particular time. Thus, the single node at the left indicates that the 
FSM begins in state \jfo = 0 at time k = O. The next state can be either state \jf1 = 0 or state \jf1 = 1, 
depending on the value of ao, so transitions to both are shown. At time k = 1, the FSM for this 
example may branch (transition) from any node (state) to any other node (state), until it reaches the 
tenninal node of the trellis in state \jf L + 1 = O. Each branch in the trellis corresponds to one state 
transition that is triggered by a particular input ak and produces the output sk, and thus there is a 
one-to-one correspondence at time k between a branch, the state transition, and both the input and 
output of the FSM. One stage of the trellis is shown in Fig. 5-30(b) with the input and output pairs 
(ak, s0 labeled for each transition. 

k=O k =1 k=2 k=L k=L+1 

1jf=1 ~Z:Z:···:><7 
Ijf =0 

(a) 

(b) 

Fig. 5-30. A two-state trellis (a) illustrating the possible state transitions for Example 5-27. assuming the 
initial and final states are zero. One stage of the trellis is shown in (b). where each branch is labeled with 
the input and output pair (ak. akl corresponding to the that state transition. 
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Example 5-29. 
Suppose a sequence of L = 5 symbols drawn from the 4-PSK alphabet {-1, -j, 1, j} are filtered by 
M(z) = 1 - z-2. The trellis diagram for this example is shown in Fig. 5-31, assuming the idle 
symbol is aO = -1. This figure illustrates important features of a general trellis. Written above each 
stage of the trellis is the symbol that causes the corresponding transition. For example, the state is 
initially zero at time zero, and the value of the zero-th symbol ao determines which of the four 
states is reached at time one. Written below each stage is the corresponding received observation. 
There are L + J.l stages in the trellis, the first L being due to the data symbols, while the remaining 
J.l are due to the idle symbols. There are 1511 = 4 branches emanating from all nodes in the first L 
stages, one for each possible input symbol, while there is only one branch emanating from each 
node in the last J.l stages. All states are not reachable until time J.l (in this case, J.l = 2), since that is 
how long it takes for the memory elements of the tapped-delay line to fill up. The next L - J.l stages 
(in this case three) of the trellis are identical. At time L, the filter input reverts to the idle symbol, 
and hence succeeding transitions are restricted in such a way that state zero is reached at time 
L + J.l. The branches are labeled by the unique output associated with the corresponding state 
transition. The inputs are not labeled but are uniquely specified by associating the ordered alphabet 
{-1, -j, 1, j} with the 4 branches emanating from each node from top to bottom. For example, 

L STAGES DUE TO DATA SYMBOLS J.l STAGES DUE TO IDLE SYMBOLS 
, 

k=O 
[-1,-1) 

k=L k=L+f1 

[-j, -1) 

[ 1, -1) 

[ j, -1) 

[-1, -j ) 

[-j, -j) 

1, -j ) 

[ j,-j] 

[-1, 1 ) 

[-j, 1 ) 

[ 1, 1 ) 

[ j, 1 ) 

[-1, j ) 

[-j, j ) 

[ 1, j ) 

[ j, j ) 
Z2 

Fig. 5-31. A 16-state trellis for a sequence of 5 symbols drawn from the 4-PSK alphabet when the 
channel has memory 2. 
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when the state is [-I, -I] and the input is -j, the output is 1 - j, as indicated in the second branch 
emanating from state zero. 

A sequence of branches through the trellis diagram from the beginning to terminal nodes is 
called a path. Every possible path corresponds to a unique input sequence {ao, ... aL-l}' 
Thus, we may rephrase the goal of the minimum-distance sequence detector: based on the 
observation of Sk corrupted by noise, detect the minimum-distance path through the trellis 
diagram. 

Recall from (5.72) that the minimum-distance sequence detector chooses the symbol 
sequence {ak} that minimizes the following cost function: 

J' - ~L+Il-11 12 
- £..ik = 0 zk - Sk , (5.92) 

where Sk depends on {ak} according to Sk = L f:~ aZmk -Z' We can relate this cost function to 
the trellis diagram. Recall that there is a signal Sk associated with each branch of the trellis at 
each stage k ofthe trellis. For each stage k there is also an observation Zk' After observing Zk, 

we can assign to each branch of the trellis a numerical value called the branch metric that is 
low if Zk is close to Sk and high otherwise, namely 

(5.93) 

Then for each path through the trellis, we can calculate the path metric, which is the sum of 
the branch metrics. The preferred path will be the one with the lowest path metric. 

The minimum-distance sequence detector first calculates the branch metrics for every 
branch in the trellis diagram. It then calculates the path metric for every path in the trellis 
diagram, and chooses the path for which this path metric is minimum. The detected input 
sequence is then the sequence corresponding to this path. This straightforward approach of 
exhaustively calculating the path metric for each and every path through the trellis will clearly 
fail in practice because the number of paths grows exponentially with L. Usually L will be 
very large, corresponding to the entire time that communication takes place (usually minutes, 
hours, or even decades!). The Viterbi algorithm is a computationally efficient algorithm that 
exploits the special structure of the trellis to achieve a complexity that grows only linearly with 
L, or in other words, requires a constant computation rate (per unit time). 

Consider one node in the trellis diagram, and all paths through the trellis that pass through 
this node. 

Example5-30. -----------------------------------------------------
The particular case of two incoming branches and two outgoing branches is shown below: 

~~ 
~-----v--. 

The incoming branches are labeled A and B, and the outgoing branches are labeled C and D. There 
are a large number of paths passing through this node (increasing exponentially with L), but all 
these paths follow one of just four routes through this node, AC, AD, BC, and BD. 
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The path metric for a particular path through the node is the sum of the partial path metrics for 
the portion of the path to the left and the portion to the right of the node. Among all possible 
partial paths to the left, the detector will always prefer the one with the smallest partial path 
metric, called the survivor path for that node. We can immediately remove from consideration 
all partial paths to the left other than the survivor path, because any other partial path to the left 
has by definition a larger partial path metric, and if it replaced the survivor path in any overall 
path, the path metric would be larger. This is the basis of the Viterbi algorithm, which allows 
us to reject many possible paths at each stage of the trellis. 

The Viterbi algorithm finds the path with the minimum path metric by sequentially 
moving through the trellis and at each node retaining only the survivor paths. At each stage of 
the trellis we do not know which node the optimal path passes through, so we must retain one 
survivor path for each node. When we reach the terminal node of the trellis, we find the 
optimal path, which is the single survivor path for that node. The algorithm thus determines, at 
each time increment k, the survivor path for each of the Q nodes. The trick, then, is finding 
these Q survivor paths based on the information developed up to time k -1. This is pictured 
below for the case where there are two incoming branches to a given node at time k: 

k-l k 
----------~~O~ 

~~~'SW~~ k - 1 0 

----------~~O~ 
The only incoming paths to a node at time k that are candidates to be survivors are those 
consisting of survivors at time k - 1 followed by branches to time k. (The number of such 
candidates is equal to the number of incoming branches to that node.) We therefore determine 
the partial path metrics for each of those candidate paths by summing the partial path metric of 
the survivor at time k - 1 and the metric of the branch to time k. The survivor path at time k for 
a given node is the candidate path terminating on that node with the smallest partial path 
metric. We must store, for each node at time k, the survivor path and the associated partial path 
metric, for the algorithm to proceed to time k + 1. We will illustrate the Viterbi algorithm with 
an example. 

Example 5-31. -----------------------------------------------------
The trellis shown in Fig. 5-32 is marked with branch metrics corresponding to the transmission of 
L = 3 symbols and observing {0.2, 0.6, 0.9, O.I} for Example 5-27. The path metrics IZk -Sk 12 
are labeled in Fig. 5-32. A simple instantaneous slicer (not a sequence detector) would decide that 
the transmitted bits were {O, 1, I}, but the minimum-distance sequence detector takes into account 
knowledge of the lSI and selects {O, 1, O}. An iterative procedure for making this decision is 
illustrated in Fig. 5-32. The survivor paths at each node and the partial path metric of each 
surviving path are shown. 

The computational complexity of the Viterbi algorithm is the same at each time increment, 
except for end effects at the originating and terminating nodes, and hence the total 
computational complexity is proportional to the length of time L. 
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One practical problem remains. The algorithm does not determine the optimal path until 
the terminal node of the trellis; that is, it does not reach a conclusion on the entire sequence 
until the end of the sequence. Further, while the computation at each step is the same, the 
memory required to store the survivor paths grows linearly with time. In digital 
communications systems, sequences may be very long, and we cannot afford the resulting 
long delay in making decisions nor the very large memory that would be required. It is helpful 
if at some iteration k, all the survivor paths up to iteration k - d coincide, for some d. 

Example 5-32. 
In Example 5-31, when k ;::: 2, all the survivor paths coincide from k = 0 to k = 1. The minimum
distance detector decision for the first state transition can be made when k = 2. It is not necessary to 
wait until the terminal node of the trellis. 

When all the survivor paths at some time k coincide up to some time k - d, we say that the 
partial paths have merged at depth d, and we can make a decision on all the inputs or states up 
to time k - d. Unfortunately, we cannot depend on the good fortune of a merge, as it is possible 

TRELLIS (ALL PATHS SHOWN): 

k=O k = 1 k=2 k=3 k=4 
0.04 0.36 0.81 0.Q1 

~~:~ 
OBSERVATIONS: 0.2 

0.81 

0.6 

0.36 

0.9 0.1 

VITERBI ALGORITHM (ONLY SURVIVORS ARE SHOWN): 

~
0.04 0.04 

t 
0.64 PATH METRIC 

BRANC! METRIC 0.64 

0.04 0.36 

0.04 

DECISION: 

0.04 
o • 

0.36 

~O~ 0.16 

0.20 

0.36 

0.41 

0.01 
p-_+--oO.37 

o (0) 

Fig. 5-32. A two-state trellis with the branch metrics of the transitions marked and the Viterbi algorithm 
illustrated. The Viterbi algorithm iteratively finds the path with the minimum path metric without ever 
considering more than two paths at once. 
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for no merges to occur. It is usual therefore to make a modification to the algorithm by forcing 
a decision at time k on all transitions prior to time k - d, for some truncation depth d. The 
usual approach is to compare all the partial path metrics for the N partial paths at time k, and 
note which one is the smallest. The decision on the input or state transition at time k - d is then 
the transition at k - d of this survivor path. Since the decision has been made, there is no need 
to store the survivor paths beyond a depth of d transitions in that path. If d is chosen to be large 
enough, this modification will have negligible impact on the probability of detecting the 
correct sequence. 

5.5. Performance Analysis in AWGN 

A communications system must make efficient use of two precious resources: bandwidth 
and signal power. There is a fundamental trade-off between these two quantities. Some 
modulation schemes make very efficient use of signal power, but require a wide signal 
bandwidth, while other schemes are very bandwidth efficient but require high signal power. 
The overall aim of this section is to quantify this tradeoff for the special case of PAM. In order 
to accomplish this we will need to make some assumptions about the characteristics of the 
noise, so that we may tie signal power to the reliability of the communication system. We will 
assume that the noise is additive, white, Gaussian, and independent of the transmitted signal; 
this assumption is valid in a wide range of applications (but not all). With this assumption we 
will determine the probability that the minimum-distance receiver makes an error, expressed 
as a function of the signal power and noise power spectral density. Ultimately this analysis will 
lead to a quantification of the power-bandwidth tradeofffor PAM schemes. 

5.5.1. Probability of Symbol Error 
In this section we will evaluate the performance of an isolated pulse of passband PAM in 

the presence of additive white Gaussian noise. The results will also apply to the general case 
when a sequence of pulses is transmitted, provided that the transmitted symbols are 
independent and the folded spectrum is a constant (which implies that the received pulse after 
the matched filter satisfies the Nyquist criterion), since in that case the minimum distance 
sequence detector reduces to a sequence of one-shot minimum-distance detectors. We thus 
consider the system shown in Fig. 5-33, which consists of a one-shot passband transmitter, a 
channel that adds white Gaussian noise, and a one-shot minimum-distance receiver. As 
demonstrated in the previous section, the receiver observation after downconversion is: 

uPCONVERTER /l '(I) OOWNCOIMRTER 

~x 
J2 ei2't!fct 

Fig. 5-33. A one-shot passband PAM transmitter, a channel that adds Gaussian noise with PSD No/2, 
and a one-shot minimum-distance receiver. 
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r(t) = ah(t) + n(t) , (5.94) 

where a E.9l. is the transmitted symbol, h( t) is the received pulse shape, and n( t) is the 
downconverted noise. 

So far this chapter has paid little attention to the details of the noise; instead, we have 
treated it as some unknown but deterministic quantity. In this section, to achieve our goal of 
performance analysis, we need a full statistical characterization of the noise. We will assume 
that the channel noise before down conversion, call it n'( t), is real-valued, white and Gaussian 
with PSD No/2. Before we proceed we need to explore the statistics of its complex envelope 
n( t). 

The statistics of the noise complex envelope can be derived with the aid of the following 
picture, which shows white Gaussian noise n'( t) with PSD No/2 as the downconverter input: 

n'(t)~(t) n(t) 
u(f) X 

PSD No/2 

J2e -j2Ttfct 

Because linear filtering preserves Gaussianity, the output v( t) of the above filter is a Gaussian 
random process with PSD Sv(f) = (No/2)u(f). Furthermore, as demonstrated in 
Section 3.2.8, the phase-splitter output is circularly symmetric. Therefore, the PSD of the 
noise complex envelope (after the mixer) is circularly symmetric and Gaussian with power 
spectrum Sn(f) = Nou(f + fc)' The PSD is thus a constant for all frequencies greater than -fco 
and zero for all frequencies less than -fc' Therefore, strictly speaking, the complex envelope of 
white noise is no longer white. However, a practical receiver will always filter white noise. In 
particular, the minimum-distance receiver starts out with a matched filter. In this case, as long 
as the bandwidth of the MF is less than the carrier frequency fc - which will happen 
whenever the bandwidth of the transmit pulse is less than the carrier frequency, or equivalently 
when the passband spectrum does not overlap d.c. - the MF output will be circularly 
symmetric Gaussian noise with power spectrum No 1 H(f) 12. The very same PSD would arise 
if we assumed that the complex envelope of white noise is white. 

According to Section 5.3, the one-shot minimum-distance receiver correlates r(t) with the 
received pulse using a MF, and then normalizes by the received pulse energy, yielding: 

=a+n, (5.95) 

where n = Ehl[ n(t)h*(t)dt . (5.96) 

Fact: -----------------------------------------------------------
When n(t) is the complex envelope of real white Gaussian noise with PSD No/2, the real and 
imaginary parts of n in (5.96) are i.i.d. zero-mean Gaussian random variables with variance 
No/(2Eh). In other words, n - CJ{(O, NoIEh). 
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Proof: -----------------------------
We have already demonstrated that the output ofthe MF is a circularly symmetric Gaussian process 
with PSD No 1 H(f) 12. Sampling a complex circularly symmetric Gaussian random process leads 
to a circularly symmetric Gaussian random variable. The power of this random variable can be 
found by integrating the PSD, yielding: 

[NO 1 H(f) 12df= NoEh . (5.97) 

Finally, dividing by Eh changes the power from NoEh to No/ Eh, so that E[ 1 n 12] = No/ Eh. 

Although (5.95) was derived for the case of passband PAM, for which the alphabet is 
generally complex-valued, the same model also applies to baseband PAM, for which the 
alphabet is necessarily real-valued. We might choose to modify (5.94) slightly for the 
baseband case by forcing the imaginary part of the noise to zero, but even this minor 
modification is not really necessary. Even if we leave the imaginary part of the noise where it 
is, the minimum-distance slicer will ignore any imaginary components in z, and so it 
ultimately has no impact on performance. 

The Signal-to-Noise Ratio 

Let E denote the average received signal energy for a single isolated pulse of passband 
PAM, ignoring the noise. From (5.94), and exploiting the fact that the energy of a passband 
signal and its complex envelope are the same, we have E = EaEh' where Ea = E[ 1 a 12] denotes 
the energy of the alphabet, and where Eh denotes the energy ofthe received pulse shape. When 
the transmit pulse has unit energy, Ea also represents the average transmitted energy per pulse. 
In this context, the signal-fo-noise ratio (SNR) for white noise is defined by the ratio of the 
received signal energy to twice the two-sided noise power-spectral density, or: 

E 
SNR= No' (5.98) 

One way to derive this is to start with (5.95), and to think of the SNR as the ratio of the energy 
of the signal term to the energy in the noise term: 

(5.99) 

Since the numerator is Ea and the denominator is No/ Eh, this reduces to (5.98). 

The minimum distance receiver will apply z to a slicer, and choose the symbol a E 51 that 
minimizes 1 z - a 12. A symbol error occurs when the slicer chooses a symbol different from 
the actual transmitted symbol. Other definitions of error, such as bit error or block error, will 
be considered later. The main objective of this section is to determine the probability that the 
one-shot minimum-distance receiver makes a decision error when there is additive white 
Gaussian noise. 
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Derivations of Error Probability 

In the following series of examples we will evaluate the probability of error for the most 
popular forms ofPSK and QAM schemes. 

Example 5-33. -----------------------------------------------------
The best binary alphabet - subject to an average energy constraint - is the so-called binary 
antipodal alphabet .9l. = {±Na}. For passband PAM this is also known as the binary phase-shift 
keying (BPSK) alphabet. In this case, the minimum-distance decision is determined by the sign of 
z. If the negative symbol is transmitted, the pdf for z will be as sketched below: 

~/2cr) 
~ Re{z} 

d 

Specifically, the conditional pdffor z will be 'J{( -Na, cr2), where we have introduced 

2 No /2 
cr =---

Eh 
(5.l00) 

as the noise variance per dimension (real and complex) after the sampled and normalized ME 
(Keep in mind that the complex noise has double the variance, since E[ 1 n 12] = 2cr2.) Let 
d = 2Na denote the distance between the two alphabet symbols. From the above picture it is clear 
that the negative symbol will be erroneously detected as a positive symbol if and only if the noise 
exceeds half the distance between the two transmitted symbols. The probability of this event is 
Q(d/2cr), the area under the tail of the conditional pdf. as depicted by the shaded region above. 
Conversely, when the positive symbol is transmitted, an error will occur whenever the noise is less 
than -d/2, which also occurs with probability Q(d/2cr). The error probability is thus symmetric: 
if either of the symbols is transmitted, the probability of the other symbol being chosen by the slicer 
is Q(d/ 2cr). The overall error probability for BPSK is thus: 

Pr[error] = Q(d/2cr) = Q(J2E/No) , (5.l01) 

where to arrive at the second equality we used d = 2Na, E = EaEh, and (5.100). 

When M> 2 it is not always possible to find an exact expression for the error probability. 
There are exceptions, however. 

Example 5-34. ----------------------------------------------------
Consider the 4-PAM alphabet .9l. = {±e, ±3c}, as shown in the following figure: 

Im{a} 

-3c -c c 3c Re{a} 

where the constant c is related to the transmitted energy by c =JEa/5. If the transmitted symbol is 
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-c, then the p.d.f. of z is shown in the following figure: 

1 - 2Q(dI2cr) 

Q(dI2~(dI2cr) 

-3c -c c gc' Re{z} 
---cr-

CHAP. 5 

The probability that the received sample z is closer to a symbol other than -c is equal to the sum of 
the areas of the shaded regions. The shaded regions each have area Q(dI2cr), so 

Pr[symbol error I a = ±c] = 2Q(dI2cr) . 

On the other hand, 

Pr[symbol error I a = ±3c] = Q(dI2cr) , 

so if the symbols are equally likely then 

Pr[symbol error] = ~ Q(dI2cr) = ~ Q( J~E INo). 

(5.\02) 

(5.103) 

(5.104) 

The coefficient % is the average number of nearest neighbors. The last equality follows from the 
fact that dl2 = c = ./Ea/5 and (5.1 00). 

Example5-35. -----------------------------------------------------
Consider the 4-QAM alphabet 5'1.= {±c ±jc}, as sketched in Fig. 5-32, where c =./Ea /2. By 
symmetry the probability of error is independent of which symbol is transmitted, so let us assume 
that the lower-left symbol is transmitted, a = -c - jc. The decision region for this symbol is the 
shaded region in the figure. Rather than calculating the probability of error directly, in this case it is 
more convenient to first calculate the probability of being correct: 

Pr[correct] = Pr[correct I a = -c - jc] 
= Pr[Re{z} < c, Im{z} < c] 
=Pr[Re{z} <c]Pr[Im{z} <c] 

= (1 - Q(dI2cr»2 

= 1 - 2Q(dI2cr) + ~(dI2cr) , (5.105) 

where d = 2c, the minimum distance between symbols. The probability of a symbol error is simply 

Im{z} 

o 

d 

c Re{z} 

o 

Fig. 5-34. The shaded region is the decision region corresponding to the symbol -c - jc. 
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Pr[symbol error] = 1 - Pr[correct] 

= 2Q(dI2cr) - Q'2(dI2cr) 

= 2Q(JEINo) - Q2(JEINo), (S.106) 

where we substituted dl2 = c =JEa/2. Typically the SNR is high enough that Q'2(.) is 
negligible relative to Q( . ), so that: 

Pr[symbol error]:::: 2Q(JEINo). (S.107) 

This approximation is reasonable, because communication is likely to be useful only if the 
probability of error is small (see Problem S-16). Here the coefficient "2" reflects the fact that every 
symbol has two nearest neighbors. 

Example 5-36. 
The 4-PSK constellation is 5l = {±b, ±jb}, where b = $a. Suppose the receiver rotates z by 4S 
degrees, yielding z' = zd1t/4 = a' + n', where a' = ad1t/4 is the rotated symbol and n' = nd1t/4 

is the rotated noise. But a'E {±c ±jc} where c =JEa 12, which we recognize this as the 4-QAM 
alphabet. Thus, the rotation converts 4-PSK to 4-QAM. The statistics of the rotated noise are the 
same as the statistics ofthe non-rotated noise, since the noise is circularly symmetric. We conclude 
that 4-PAM has the same performance as 4-QAM, namely (S.I 06). 

Example5-37. -----------------------------------------------------
The 16-QAM alphabet is 5l= {±c ±jc, ±c ±j3c, ±3c ±jc, ±3c ±j3c} where c =JEaIlO, as 
illustrated in Fig. S-3S. The probability of error for 16-QAM can be found by a similar method. 
Consider the four inside points. Their decision regions are squares with sides equal to d = 2c. In 
this case, the probability of a correct decision is 

Pr[correct la on the inside] = [1- 2Q(dI2cr)]2 

so the probability of error is 

Pr[error I a on the inside] = 4Q(dI2cr) - 4Q2(dI2cr) :::: 4Q(dI2cr) , 

(S.108) 

(S.109) 

consistent with the fact that every interior point has four nearest neighbors. The probability of error 
for the comer symbols is similar to the probability of error for the 4-PSK signal, 

Im{z} 

+ 
0 0 

o 0 0 0 

c 3c 
Re{z} 

0 0 , 0 0 

0 0 0 0 

Fig. 5-35. The 16-QAM alphabet and the corresponding minimum-distance decision regions. 
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Pr[error I a in the corner] "" 2Q(dI2cr) , (5.110) 

and 

Pr[error I a not inside or corner] "" 3Q(dI2cr) . (5.111) 

Assuming the symbols are equally likely, the total probability of error is 

484 
Pr[error] "" 16 x 4Q(dI2cr) + 16 x 3Q(dI2cr) + 16 2Q(dI2cr) 

= 3Q(dI2cr) 

=3Q(~). (5.112) 

Generalizing the above analysis, it is easy to find an exact expression for the symbol-error 
probability for an M-QAM alphabet in the practical case when M = 2b and b is even, without 
making the assumption of high SNR (see Problem 5-19): 

Pr[error] = 4( 1- ./u) Q( l!~ ~o) -4( 1-./u) Q2( l!~~o ) (5.113) 

As the size of the alphabet M gets large, a greater percentage of the points will be in the 
interior with four nearest neighbors, and so the coefficient of Q( . ) tends towards 4. 

Example~38. -----------------------------------------------------
The M-PSK alphabet is the set of M points equally spaced on a circle of radius c = $a : .9/. = {c, 
ce j21t1 M, ce j41t1 M, ... ce j21t(M -1)/ M}. The 16-PSK alphabet is shown in Fig. 5-36. The 
symmetry of the alphabet implies that the symbol error probability is the same regardless of which 
symbol is transmitted, so let us assume that the transmitted symbol is a =.IEa . The conditional pdf 
for z is then C91[(JEa,2cr2). The minimum-distance decision region for this symbol is the 
nonshaded region of the complex plane corresponding to angles less than 7t1 Min magnitude. The 
error probability is the probability that the complex noise perturbs z to fall outside of this region. 
Although an exact expression cannot be found, it is easy to derive a tight bound. Let PI denote the 
probability that z crosses the upper threshold that separates c from its nearest upper neighbor. It can 
be expressed as PI = Pr[Im{n'} > d12], where n' = ne-j1tIM is a rotated version of the noise. 
Because the noise is circularly symmetric, the rotation does not change the noise statistics; 
therefore, PI reduces to Q(dI2cr). In tenns of the figure, we may interpret Q(dI2cr) as the two
dimensional integral of the conditional pdf for z over the striped region above the upper threshold. 
Similarly, the probability that the noise crosses the lower threshold is also Q(dI2cr), which 
represents the pdf integral over the shaded region below the lower threshold. Let P2 denote the 
probability that z falls in the decision region for -c, which can be found by integrating the 
conditional pdf for z over the crosshatched region shown in the figure. Since this region is the 
intersection of the striped and shaded regions, we have: 

Pr[error] = 2Q(dI2cr) - P2 . (5.114) 

In practice P2 will be negligible compared to Q(dI2cr), and so by ignoring it we arrive at the 
following upper bound: 



Sect. 5.5 Perfonnance Analysis in A WGN 191 

Pr[error] < 2Q(dI2cr) 

= 2Q( J2EINosin~), (5.115) 

where we used dl2 =ffa sin(nlM). The bound is tight for M~ 4. 

5.5.2. Bandwidth and SNR Requirements of Passband PAM 

In the previous section, we derived expressions for the probability of symbol error as a 
function ofSNR = EI No for a variety of modulation schemes. In this section we will compare 
the performance of these modulation schemes in terms of their bandwidth requirements (or 
equivalently spectral efficiency) and SNR requirements. To make the comparison fair, 
however, we must first account for the fact that different modulation schemes convey a 
different number of bits per symbol, and also have different bandwidth requirements. Towards 
this end, we first introduce Eb as the amount of signal energy received per source bit. In terms 
of the signal energy E received per transmitted symbol, it can be expressed as: 

(5.116) 

where b = log21511 is the number of bits conveyed by a uniformly drawn symbol. The energy 
per bit leads to the following as a definition for the per-bit signal-to-noise ratio: 

(5.117) 

o ,0 ' 

"0 . _ , 0 ' 

Fig. 5-36. The 16-PSK constellation. 
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In terms of the usual definition SNR = EI No, this SNR is Ebl No = SNRI b. Alternatively, in 
terms of the received signal power P and bit rate Rb, the per-bit SNR is: 

(5.118) 

The second change we make is to convert symbol-error probability to bit-error probability. 
Bit errors are caused by symbol errors, but the exact relationship between their probabilities 
depends on the mapper that maps input bits into symbols. If the SNR is high enough, as it is 
for most useful communication systems, then a symbol is far more likely to be mistaken for 
one of its neighbors in the constellation than for more distant symbols (see for example 
Problem 5-17). Mappers often implement a Gray mapping, as illustrated in Fig. 5-37, in which 
nearest neighbors correspond to bit groups that differ by only one bit. Thus, the most probable 
symbol errors cause only a single bit error. Thus, with Gray mapping at high SNR, we have: 

Pr[bit error] :::: ~ Pr[symbol error] , (5.119) 

where again b = 10g215t I is the bits per symbol. In the following we will use Pb to denote the 
bit-error probability. 

In some cases, Pb can be calculated directly and exactly, without resorting to the 
approximation of (5.119). 

Example 5-39. -----------------------------------------------------
Consider the Gray-mapped 4-PSK alphabet of Fig. 5-37(a). We can view 4-PSK as a rotated 
version of 4-QAM, which in tum can be viewed as a pair of BPSK alphabets in quadrature, each 
with energy Eb =EI2. The Gray mapping of Fig. 5-37(a) uses the first bit to determine the in
phase BPSK symbol, and the second bit to determine the quadrature BPSK symbol. Therefore, the 
exact bit-error probability for Gray-mapped 4-PSK is given by (5.101) with E replaced by Eb: 

(5.120) 

In contrast, plugging (5.106) into the approximation of (5.119) yields: 

Pb :::: Q(J2Ebl No) - ~ ~(J2Ebl No)· (5.121) 

Im{a} 

Im{a} 0000 0001 0011 0010 
0 0 0 0 

01 
0100 0101 0111 0110 

0 0 0 0 
11 00 

Re{a} 1 10 Re{a} 
0 

10 
1000 1001 1011 1010 

0 0 0 0 

(a) 

(b) 

Fig. 5-37. Gray-mapped 4-PSK (a) and 16-QAM (b). Associated with each symbol is a set of source 
bits. Notice that only one bit differs between any two adjacent symbols. This minimizes the number of bit 
errors per nearest-neighbor symbol errors. 



Sect. 5.5 Perfonnance Analysis in A WGN 193 

We see that the approximation of (5.119) erroneously includes a Q'2( . ) term in this example. 

After converting SNR to per-bit SNR, and after converting symbol-error probability to bit
error probability, the analysis results of the previous section for BPSK, M-PSK and M-QAM 
can be summarized as follows: 

(5.122) 

(5.123) 

(5.124) 

Ifwe solve (5.123) for Ebl No, we arrive at an expression for the SNR per bit required by 
M-QAM to achieve a certain bit-error probability, namely: 

2b -l 
Ebl No = r-b- (QAM) , (5.125) 

where r = ~(Q-l( bPb ))2 
3 4(1- 2-bl2 ) . 

(5.126) 

In contrast, the Shannon limit of SNR per bit is also given by (5.125) but with r = 1. Thus, we 
may interpret r as the SNR gap from capacity. At Pb = 10-6 and as b increases from 2 to 8, the 
gap r decreases roughly linearly from 8.8 dB to 8.4 dB. Similarly, solving (5.124) for Ebl No 
leads to the SNR requirement for M-PSK: 

(5.127) 

where again M = 2b. 

These expressions quantify the power requirements of the different modulation schemes, 
but they say nothing about the bandwidth requirements. Let us define the normalized 
bandwidth requirement as the ratio of the required bandwidth to the achieved bit rate. With 
zero excess bandwidth, the bandwidth requirement for any passband PAM scheme is equal to 
the symbol rate. Therefore, the normalized bandwidth requirement is 1/1og2 I 5'l1 = 1 I b. In 
Fig. S-38(a) we plot the per-bit SNR requirement as a function of the normalized bandwidth 
requirement for several QAM and PSK modulation schemes. The key feature of this figure is 
the tradeoff between signal power and bandwidth: As the size of the alphabet grows large, the 
bandwidth requirement goes down while the power requirement goes up. This tradeoff is 
fundamental. The Shannon limit also exhibits the same tradeoff. For example, with unbounded 
bandwidth, the Shannon limit on the SNR per bit is -1.6 dB. As the bandwidth becomes more 
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Fig. 5-38. Comparing M-QAM and M-PSK to the Shannon limit. In (a), we plot the required SNR per 
bit as a function of the normalized bandwidth requirement W/Rb, which reduces to l/b with zero 
excess bandwidth. This plot clearly shows the tradeoff between SNR and bandwidth. In (b), we plot the 
required SNR per bit as a function of spectral efficiency b. Both figures assume Pb = 10-6. 

8 

and more constrained, the SNR requirement grows larger. For example, when the bandwidth 
available is only 10% of the desired bit rate, the Shannon limit grows to 20.1 dB. Fig. 5-38(a) 
also clearly illustrates the superiority of QAM over PSK. 

In Fig.5-38(b) we plot the SNR requirement as a function of spectral efficiency b. 
Obviously, spectral efficiency is just the inverse of the normalized bandwidth requirement, so 
Fig. 5-38(b) and Fig. 5-38(a) convey the same information. In Fig. 5-38(b) we see that the gap 
to capacity for QAM (see (5.126» is roughly constant as spectral efficiency grows; in contrast, 
the gap to capacity for PSK grows larger with increasing spectral efficiency. 

5.6. Further Reading 

The minimum-distance approach to receiver design is not standard in textbooks or the 
literature. The benefit of this approach is that a wealth of receiver structures have been quickly 
derived from a common design principle. It turns out that the principle of minimum-distance 
receiver design is optimal in a certain sense (defined in Chapter 7) for channels with additive 
white Gaussian noise. Thus, these receiver structures are usually derived from noise 
considerations, an approach that is more circuitous. 

A good summary of the current state of the art of modulation for linear Gaussian-noise 
channels can be found in [16). The design and optimization of passband PAM alphabets was 
considered in [4]-[9). Higher-dimensional alphabets are proposed in [11]. The original Viterbi 
algorithm reference is [14], with a more tutorial paper following shortly thereafter [17]. A 
broader perspective is given in an excellent tutorial by D. Forney [18). A probabilistic view of 
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the Viterbi algorithm will be presented in Section 7.4. The Viterbi algorithm was originally 
derived to decode error-correcting codes (see Chapter 12). The proposal to use the Viterbi 
algorithm for lSI channels comes from Forney [15]. Omura [19] first pointed out that the 
Viterbi algorithm could be derived from the principles of dynamic programming, invented by 
Bellman [20]. A comprehensive coverage of its use in error-correcting codes can be found in 
Viterbi and Omura [21], which also has an extensive set of references. 

Problems 

Problem 5-1. Suppose that the rectangular pulse of Fig. 5-1 is used with the bandlimited channel of 
Example 5-17, where 

W=lIT. (5.128) 

Assume that the transmitted symbols have power E[ 1 ak 12] = Ea, and assume that successive data 
symbols are uncorrelated. Sketch the power spectrum of the received signal r( t). Describe qualitatively 
the distortion of the signal. 

Problem 5-2. Consider a baseband PAM system using the raised-cosine pulses in (5.8). Assume the 
symbol sequence is white and normalized, so its power spectrum is 

(5.129) 

Show that the transmit power is independent of T for any roll-off factor u. 

Problem 5-3. Consider a channel that is ideally bandlimited to 1 f 1 ~ 1500 Hz. What is the maximum 
symbol rate using pulses with 50% excess bandwidth? Assume that the receive filter will be an ideal 
lowpass filter and that lSI is not tolerable. 

Problem 5-4. In an example of a partial response system, a symbol sequence is generated as follows: 

BITS 
MAPPER 
O~-l 
1 ~+l 

Assume the incoming bits are random, independent of one another, and zeros and ones are equally 
probable. 

(a) Find Sa(ej o), the power spectrum ofthe symbol sequence. Sketch it. 

(b) Suppose the transmit pulse g( t) is an ideallowpass pulse with zero excess bandwidth. Find the 
power spectrum of the baseband PAM signal. A well-labeled, careful sketch is sufficient. 

(c) Find the pulse h( t) such that the transmitted signal 

s( t) = L: = -00 a~(t - m T) (5.130) 

can be written as 
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(5.131) 

Assuming g( t) from (b), does h( t) satisfy the Nyquist criterion? Assuming a perfect channel, 
b( t) = &( t), is there a stable receive filter f( t) such that the overall pulse shape p( t) = 
h( t) * b( t) * f( t) satisfies the Nyquist criterion? 

Problem 5-5. Show that the horizontal eye opening for a pulse with zero excess bandwidth and binary 
antipodal signaling is zero. Assume there is no coding, so any sequence of symbols is permissible. A 
consequence of this is that the timing recovery for such a channel would have to be absolutely perfect. 

Problem 5-6. In a baseband PAM system, assume G(f) =JT and B(f) = 1, so the transmitter sends 
an impulse stream and the channel has infinite bandwidth. Further assume that the channel noise has 
power spectrum SMt) = No/2, and assume Sa(ej9 ) = l. 

(a) Show that E[ 1 ak 12] = l. 

(b) Show that the power spectrum of the transmitted signal is independent of T Hint: Use the results 
of Appendix 3-A, where a random phase is introduced to make the transmit signal WSS. 

(c) Find the receive filter F(f) such that the output of the receive filter has a pulse shape that is an 
ideal zero-excess-bandwidth pulse shape. 

(d) Find the SNR at the slicer with p( t) given in part ( c). 

(e) Find the SNR at the slicer when the pulse p( t) has the triangular spectrum of Fig. 5-3(b), given 
by 

IT-'f'T2; Ifl<lIT 
P(f) = . 

0; otherwise 
(5.132) 

Compare this SNR to that in part (d). 

Problem 5-7. Suppose a baseband PAM signal with a complex-valued pulse g( t) whose Fourier 
transform is shown in the following figure: 

T~, 
1 2 f 
T T 

(a) Does this pulse satisfy the Nyquist criterion? Does Re{g( t)} satisfy the Nyquist criterion? 

(b) Suppose that the symbols ak are uncorrelated, so that 

Sa(e j2Ttfl) = Ea' (5.133) 

Give the power spectrum of the PAM signal. Sketch it. 

(c) Findg(t). 

Problem 5-8. Consider a channel where the equalized pulse p( t) = g( t) * b( t) * f( t) is a raised
cosine pulse. Assume white noise with PSD No/2 and white symbols with PSD Sa(ej6) = Ea' Find 
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the SNR after the receive filter as a function of the excess bandwidth (for the range of zero to 100%) for 
the following three transmitted pulse shapes and an ideal bandlimited channel: 

(a) The transmitted pulse is an impulse. 

(b) The transmitted pulse is a raised-cosine pulse with the same excess bandwidth as desired at the 
receiver. 

(c) The Fourier transform of the transmitted pulse is the square root of the Fourier transform of a 
raised-cosine pulse (tedious). 

Problem 5-9. Suppose you are to design a digital communication system to transmit a speech signal 
sampled at 8 KHz with 8 bits per sample. Find the minimum bandwidth required for each of the 
following methods: 

(a) Binary antipodal baseband PAM. 

(b) Binary antipodal passband PAM. 

(c) 4-PSK. 

(d) 16-QAM. 

Define bandwidth to cover positive frequencies only, as shown in the following figure: 

f ~ f 1 r 
A BW 

Problem 5-10. Consider a channel with bandwidth 10 KHz: 

t B(f) + '1----, 
10 KHz 

C • 

(a) What is the complex envelope b (t) ofthis channel's impulse response? 

(b) Let p( t) = g( t) * :l2 b ( t) * f( t ), where g( t ) is the impulse response of the transmit filter and 
f( t ) is the impulse response ofthe receive filter. Find the maximum bit rate achievable with zero 
lSI using the following methods: 

• 4-PSK with p( t) being a minimum-bandwidth pulse, 

• binary antipodal withp( t) being a 50% excess-bandwidth raised-cosine pulse, 

• 16-QAM with p( t ) being a 100% excess-bandwidth raised-cosine pulse, 

• 16-QAM with p( t ) as shown below: 

-T T ~ t 

(c) Assuming the 4-PSK signal of part (b), give transfer functions for filters get) and f(t) (and 
justify). Assume an additive-white Gaussian noise channel. 
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Problem 5-11. Design a hardware configuration for mappers for the constellations in Fig. 5-14. 

Problem 5-12. 

(a) Give an example of a pulse h( t) with time-duration that is exactly two symbol periods (21) (and 
hence it is not bandlimited) and obeys the Nyquist criterion at the output of a matched filter, 
Ph(k) = Ehok · 

(b) Repeat part (a) for three symbol periods (31). 

Problem 5-13. 

(a) Show that the pulse autocorrelation obeys the symmetry relation Ph(k) = Ph * (-k). 

(b) Show that the folded spectrum is non-negative real valued on the unit circle. 

Problem 5-14. Define 

and show that the folded spectrum is 

This gives a convenient way to calculate the folded spectrum. 

(5.134) 

(5.135) 

Problem 5-15. Let hoe t) be a complex-valued pulse shape that has energy Eo and that is orthogonal 
to all its translates by multiples of the symbol interval T. Let F( z) = L~ = ofkZ -k be a general FIR 
filter with memory ).1, and define a pulse shape 

(5.136) 

(a) Show that 

(5.137) 

and hence that 

Sh(Z) = EoF(z)F*(l/z",,> . (5.138) 

(b) What is the pulse energy? 

Problem 5-16. Compare Q(dI2cr) and f/'(dI2cr) for values of d = 2 and cr = 1/2. Do it again for 
cr = 1/4. Is the approximation in (5.107) valid for these values of cr? You may use to approximate 
Q(. ). 

Problem 5-17. Consider the 4-PSK constellation {±,fE, ±j,fE} with unit energy, E = 1, as shown in 
Fig. 5-37. Assume that the real and imaginary parts of additive Gaussian noise are independent zero
mean Gaussian with variance cr2 = No /2 = 1/16. Assuming that the transmitted symbol is -1, find a 
numerical value for the probability that the received sample is closer to j than to -1, and compare it to 
the probability that the received sample is closer to 1 than to -1. You may use Fig. 3-1 to estimate the 
probabilities. 
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Problem 5-18. Show that the probability of error for the 16-QAM constellation of Fig. 5-35 can be 
written 

Pr[error] = 3Q(dI2cr) - 2.25~(dI2cr) . (5.139) 

Problem 5-19. Consider an M-QAM alphabet in the practical case when M = 2b and b is even. Show 
that the probability that the minimum-distance receiver makes a decision error is exactly given by 
(5.113), assuming additive white Gaussian noise. 

Problem 5-20. 

(a) Find the union bound on the probability of error for the 16-QAM constellation in Fig. 5-35. 
Assume ak = c + jc is actually transmitted. 

(b) The CCITT Y.29 standard for full-duplex transmission at 9600 bl s over voiceband channels uses 
the constellation shown in Fig. 5-39. Find the union bound on the probability of error. Assume 
ak = 1 + j is transmitted. 

(a) Explain why the exact analysis technique that lead to (5.113) would be difficult to apply for the 
Y.29 constellation. 

(b) Find c in Fig. 5-35 so that the two constellations have the same power. Use the union bounds of 
parts ( a) and (b) to compare their performance. 

Problem 5-21. Show that the minimum-distance sequence detector of Fig. 5-22 reduces to that of 
Fig. 5-19 when there is no lSI. 

Problem 5-22. Suppose we add a first-order rational causal allpass filter before the Euclidean norm in 
Fig. 5-23, or equivalently in both the forward paths. Combine the allpass filter with the precursor 
equalizer in the top path, and combine the allpass filter with the channel model filter in the bottom path. 
For simplicity, assume y2 = l. 

(a) Determine the resulting transfer functions of the precursor equalizer and discrete-time channel 
model filters. 

(b) Show that it is not possible to use the allpass filter to tum the new precursor equalizer into a 
causal filter. 

(c) Determine the impulse response of the new channel model filter. 

5 

o 3 o 

01 0 

-<> ____ --t-r-1t----9 ...... Re{ak} 

o 0 

o 0 

Fig. 5-39. The constellation for the CCITT Y.29 standard for transmission at 9600 bl s over voiceband 
channels. 



200 PULSE-AMPLITUDE MODULATION CHAP. 5 

Problem 5-23. Consider a real-valued memoryless channel Y= X + N where N ~ :A[(O, 0.1), and 
suppose the input is constrained to have unit energy, E[X2] ~ 1. If the input is selected randomly from 
an L-ary PAM alphabet 5'1.= {±c, ±3c, ... , ±(L -l)c}, how big can L be in order to maintain a bit
error probability of roughly 10-6 using minimum-distance detection? 

Problem 5-24. Suppose we add a first-order rational causal allpass filter before the Euclidean norm in 
Fig. 5-24, or equivalently in both the forward paths. As in Problem 5-22, combine the allpass filter with 
the precursor equalizer and channel-model filter. 

(a) Determine the transfer functions of the precursor equalizer and discrete-time channel model 
filters. 

(b) Show that it is possible to tum the new precursor equalizer filter in the upper path into a causal 
filter by choosing the allpass filter appropriately. What is the allpass filter, and what are the 
resulting transfer functions ofthe precursor equalizer and channel-model filters? 

(c) Determine the impulse response of the new channel model filter for the general case of a. 

(d) Repeat c. for the particular allpass filter of b. 

Problem 5-25. For a possibly complex-valued WSS stationary random process S( t), define a cosine
modulated version 

Z( t) = J2 cos(2nfct + e)S( t ) (5.140) 

where e is uniformly distributed over [0, 2n) and is independent of S( t). Show that with this 
uniformly distributed carrier phase, Z( t) is WSS and find its power spectrum. Further, show that 
without the random phase Z( t ) is not WSS, and explain why not. 

Problem 5-26. Show that X( t) = J2 Re{ e j(21tfct + 8) S( t )} is WSS for any WSS S( t) when e is 
uniformly distributed on [0, 2n). 

Problem 5-27. Let Y( t) be a zero-mean WSS real-valued random process, and let Y( t) be its Hilbert 
transform. Show that the signal 

X(t) = J2Re{ej21tfct(Y(t) + FYct»} (5.141) 

is WSS and find its power spectrum. 
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6 

Advanced Modulation 

In Chapter 5 we described transmitter and receiver design using PAM. In this chapter we 
extend to other modulation schemes. We begin by considering a general form of modulation 
called M-ary modulation, in which one of M signals is transmitted every signaling interval. In 
this general setting, we present the correlation and projection receivers as practical means for 
implementing the minimum-distance receiver, and we present a union-bound approximation 
for the reSUlting probability of error in the presence of AWGN. 

We then specialize to orthogonal modulation, for which the M candidate signals are equal 
energy and orthogonal. Orthogonal modulation includes frequency-shift keying and pulse
position modulation as special cases. We examine the generalized Nyquist criterion, which 
lower-bounds the bandwidth needed to accommodate M orthogonal pulses without lSI. We 
show that orthogonal modulation has good power efficiency but poor spectral efficiency, the 
opposite of the large-alphabet PAM schemes considered in the previous chapter. Orthogonal 
modulation is then combined with PAM to give orthogonal pulse-amplitude modulation 
(OPAM). Two practical examples of this combination, multicarrier modulation and code
division multiplexing, are then described. The relationship between bandwidth and signal 
dimensionality will be explored with the aid of the Landau-Pollak theorem. Finally, we 
introduce the rate-normalized SNR as a means for comparing the performance of different 
modulation schemes with eachother, and also comparing them to the Shannon limit. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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6.1. M-ary Modulation 

In baseband PAM, symbols {ak} modulate the amplitude of a pulse train according to: 

(6.1) 

A single pulse shape g(t) is used in one signaling interval, and its amplitude is modulated by a 
data symbol. In this chapter we generalize the PAM model to M-ary modulation by allowing 
the pulse shape in any signaling interval to be chosen from a set of M possibilities, 
{gi(t); 0 ~ i ~ M -I}, to represent log2Mbits of information. The transmitted signal is then: 

(6.2) 

where ak takes on values in the set {O, 1, ... , M -I}. The data symbol thus indexes which 
pulse is transmitted in the k-th symbol interval, rather than the amplitude of the pulse that is 
transmitted. 

Example~l. --------------------------------------------------
In Chapter 5 the 8-PAM signal set was defined as {ag( t) : a E.9l.} with alphabet .9l. = {±1, 
±3, ±5, ±7}. In tenus of the new notation of (6.2), the 8-PAM signal set is go( t) = -7g( t), 
gl (t) = -5g( t), ... , g7( t) = 7g( t), as sketched below for a rectangular pulse: 

lIT 
6.1.1. Baseband Equivalent Model 

For passband systems, the pulses {gi( t); 0 ~ i ~ M - I} often represent the complex 
envelopes of the transmitted signal. In that case, the transmitted passband signal will be 

x(t) = J2 Re{ei21tfcts( t)} . 

An alternative viewpoint is to define the passband equivalent pulses 

gi(t) = J2Re{ei21tfctgi(t)}. 

These can then be used to form directly the passband signal 

x(t)=~OO ga(t-kT). 
£.Jk = -<X> k 

Both interpretations will be useful. 

(6.3) 

(6.4) 

(6.5) 
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Exercise 6-1. 
Show that the correlation between two passband pulses is equal to the real part of the correlation 
between the corresponding complex envelopes: 

(6.6) 

where gi( t) is defined by (6.4). This implies, among other things, that the energy of a pulse is 
equal to the energy of its complex envelope, and that two pulses are orthogonal if and only if their 
complex envelopes are orthogonal. 

6.1.2. One-Shot Minimum-Distance Detection 

A one-shot M-ary transmitter selects the transmitted signal from an M-ary signal set 
{go(t), ... gM -1(t)}· If the n-th pulse gn(t) is transmitted, the receiver observation waveform 
is: 

r(t) = hn(t) + n(t), (6.7) 

where hn( t) is the n-th received pulse and where n( t) is noise. In terms of the Fourier 
transform of the channel impulse response b( t), the received pulse is: 

(6.8) 

The model (6.7) and (6.8) applies to both the baseband and passband cases. In the baseband 
case, gn( t) is real-valued and transmitted directly with nO upconversion, so we set the carrier 
frequency to zero in (6.8), yielding hn( t) = gn( t) * b( t). In the passband case where gn( t) is 
the complex envelope of the transmitted signal, the waveform r( t) in (6.7) represents the 
received signal after downconversion, and (6.8) is equivalent to hn( t) = gn( t) * b (t)/ J2 . 
Since the model (6.7) is valid for both the baseband and passband case, we will focus on ilie 
more general passband case in the following. 

Correlation Receiver 

In Section 5.3 we introduced the minimum-distance detector in the context of PAM; it 
chooses the symbol that best describes the observation in a minimum-distance (or minimum 
error energy) sense. This strategy generalizes in a natural way to the case of general M-ary 
modulation. Given the observation (6.7), the minimum-distance receiver decides on the signal 
hi( t) that is closest to r( t) in a minimum-distance sense, minimizing: 

(6.9) 

Expanding the integrand into three terms and integrating each separately yields: 

(6.10) 
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where Er is the energy of r( t), and where Ei is the energy of the i-th received pulse: 

(6.11 ) 

Let us introduce Yi = Re{ ( r( t), hi( t»} as the real correlation between the observation and the 
i-th received pulse: 

(6.12) 

Because the first term in (6.10) is independent of the i-th pulse, the minimum-distance receiver 
can equivalently minimize the second two terms, or equivalently maximize the following: 

(6.13) 

This defines the correlation receiver for the an isolated pulse of a general M-ary signal set. A 
block diagram is shown in Fig. 6-1. Intuitively, the receiver correlates the observation with 
each of the possible received signals {ho( t), ... h M -1 ( t )}, then subtracts half the energy of 
the corresponding pulse, yielding J i . The minimum-distance receiver compares the numbers 
Jo, ... JM- 1 that result and selects the largest. 

There are two common variations of the correlation receiver shown in Fig. 6-1. First, the 
correlations of (6.12) can be calculated directly using a correlator (Section 5.3.l) instead of a 
matched filter. Second, exploiting (6.6), they can be calculated directly in terms of the real 

CHOOSE a E {O • ... M -l} 
LARGEST 

./2e -j21tf cl 

Fig. 6-1. The correlation receiver. which implements the minimum-distance receiver for an isolated 
pulse of general passband M-ary modulation. The downconverted signal is correlated against the M 
possible received pulses using a bank of sampled matched filters. Energies are subtracted from each 
correlation and the largest of the results determines the minimum-distance decision. 
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pulses themselves instead of in tenus of the complex envelopes. This would be appropriate for 
baseband modulation where there is no upconverter at the transmitter. These two variations are 
illustrated in Fig. 6-2, which shows a correlation receiver for M-ary modulation implemented 
using correlators. 

Projection Receiver 

The complexity of the correlation receiver is dominated by the number M of correlations it 
must compute, either using a correlator or a matched filter. Since M can be very high in some 
applications (M= 512 is not unheard of), there is a need to reduce complexity. This section 
derives an alternative method for implementing the minimum-distance receiver called the 
projection receiver. We will rely heavily on the signal-space ideas introduced in Section 2.6. 

Let S = span{ ho( t), ... h M -1 ( t)} denote the signal space, and let r( t) denote the 
projection of r( t) onto S. Then because the projection error r( t) - r( t) is orthogonal to 
everything residing in S, including r(t) - hi( t), the minimum-distance cost function of (6.9) 
reduces to: 

Because the first tenu is independent of the candidate decision hi( t), the minimum-distance 
receiver can equivalently minimize: 

r YM-l 

+ + 

Fig. 6-2. The correlation receiver for the special case of baseband M-ary modulation, where the 
received Signal and received pulses are real. 
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(6.15) 

Let {(PI U), ... <I> M t)} be an orthonormal basis for the signal space S, as described in 
Section 2.6. For example, the basis may be the result of applying the Gram-Schmidt procedure 
to the signal set {hoU), ... hM-l (t)}. Let hi = [hi 1> hi 2, ... hi Nf denote the vector of 

" , 
projection coefficients for hi( t), where: 

hij = r hi(t)<I>j(t)dt. (6.16) 
~ 

From the Parseval's relationship of (2.99), the minimum-distance cost of (6.15) reduces to: 

(6.17) 

where r = [r1> ... rNf is the projection vector for r( t), with: 

rj = [r(t)<I>j(t)dt. (6.18) 

The new cost function (6.17) suggests a new way of implementing the minimum distance 
receiver, called the projection receiver. First, the received waveform is projected onto the 
signal space basis functions, yielding an N-dimensional observation vector r. Then the cost 
(6.17) is minimized. Intuitively, the receiver "rounds" the projection vector r to the nearest 
signal vector in the N-dimensional complex space. A block diagram of the projection receiver 
is shown in Fig. 6-3. 

o--__ r2--l~ ROUND 
TO 

NEAREST ~ 0. E (a, ... M - I) 

h j 

./2e - j21tfct 

I r-------l rN 

~ 
Fig. 6-3. The projection receiver for an isolated pulse of passband M-ary modulation. 
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The complexity of the projection receiver is roughly governed by N, the signal space 
dimension, while the complexity of the correlation receiver is governed by M, the size of the 
signal set. Since N ~ M, the projection receiver will never be more complex than the 
correlation receiver. In some cases the complexity savings of the projection receiver is 
significant. 

Example~2. ------------------------------------------------------
In concept one could implement the minimum-distance receiver for 16-QAM using the correlation 
receiver of Fig. 6-1, but the complexity would be high, since there would be sixteen sampled 
matched filters. The projection receiver is much simpler. In particular, since all elements of the 16-
QAM signal set take the form ah( t ), an application of the Gram-Schmidt procedure leads to a one
dimensional signal space spanned by <1>( t) = h( t) / JE;,. So the projection receiver of Fig. 6-3 
reduces to a downconverter, a single matched filter, a sampler, and a slicer. In fact, this is precisely 
the same receiver structure as the one-shot minimum-distance receiver derived in the previous 
chapter and shown in Fig. 5-19. 

6.2. Probability of Error 

We will now calculate bounds on the probability of error for a general M-ary modulation 
format, assuming white Gaussian noise and a minimum-distance receiver. 

6.2.1. Performance in AWGN 

Let us look closer at the j-th projection coefficient of (6.18), assuming that the i-th pulse 
was received: 

rj = fhi(t)<I>j(t)dt + f n(t)<I>j(t)dt 
~ -00 

(6.19) 

where (6.20) 

Therefore, the projection vector is given by: 

r= h i + n, (6.21 ) 

where n = [nl> ... nN]T is a vector of noise samples. 

Properties of The Gaussian Noise Vector 

Fact: 
Let n( t ) be the complex envelope of real white-Gaussian noise with PSD Nr/2, and let ni denote 
the correlation of (6.20) between n( t) and the i-th element of an orthonormal basis 
{<I>I (t), ... <l>N< t)}. When the bandwidths of the basis functions are all less than the carrier 
frequency, the components of the vector n = [nl' ... , nN]T are i.i.d. C9{(O, No). 
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The bandwidth restriction is nearly always met in practice and is not a serious constraint. 
Intuitively it requires only that the passband signal (after upconversion) not overlap d.c., which 
is usually the case. 

Proot---------------------------------------------------------------
We have already seen that the complex envelope of white Gaussian noise is circularly symmetric 
and Gaussian (Section 3.2.8). The random variables {nl' ... nN} defined by (6.20) are all linear 
functions of the same circularly symmetric Gaussian random process, and hence they form a 
circularly symmetric jointly Gaussian random vector. To completely specify its statistics we need 
only identify its mean and autocorrelation matrix. Since n( t) has zero mean it is clear from (6.20) 
that the components of n have zero mean. The ij-th element of the autocorrelation matrix for n is: 

E[nin/] = E[r n( t)<I>i(t)dt r n *('r )<I>i 1')d'r ] 
~ ~ 

= [[E[n( t)n *('r)] <l>i(t)<I>i l' )dtd1' 

=No [[O(t -1')<I>i(t)<I>i1')dtd1' 

= No r <l>t(t )<I>i t )dt 
~ 

=N.OO· . !J. (6.22) 

As shown in Fig. 6-3, we can realize (6.20) by sampling the output of a filter matched to the j-th 
basis function when the noise complex envelope n( t) is the input. This interpretation is useful 
because it clearly indicates the implications of the bandwidth assumption. Specifically, although 
strictly speaking the PSD for the complex envelope n( t) is Nou(f + fc)' the assumption that the 
carrier frequency exceeds the bandwidth of the basis functions allows us to replace the input PSD 
Nou(f + fc) by No without affecting the filter outputs. This explains the third equality in (6.22). 
The last equality follows from the fact that the basis set is orthonormal. 

The result (6.22) implies that the autocorrelation matrix for n is diagonal, so that the components 
of n are uncorrelated. Since uncorrelated circularly symmetric Gaussian random variables are also 
independent, this completes the proof. 

This fact has several important implications that will be exploited in this chapter. Specifically 
the noise vector n has the following properties: 

o The set of 2N real-valued random variables {Re{nd, ... Re{nN}' Im{nd, ... Im{nN}} 
are mutually independent, zero mean and Gaussian with variance No/2. 

o The vector n is circularly symmetric and Gaussian with zero mean and E[nn*] = Noi. 

o The components of n are uncorrelated, so that E[nin/] = 0 for i *- j. 

o The components of n are circularly symmetric, or E[ninj] = 0 for 1 ::; i, j::; N. 

o A complex random variable defined as follows: 

X = ( n, e) = e *n (6.23) 
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will be e}.[(O, No) for any vector e with unit length (satisfying 1\ e II = 1). 

The last item in the list deserves further clarification. Clearly X is Gaussian, since it is a linear 
combination of independent Gaussian random variables. Further, it is circularly symmetric 
(E[.x2] = 0), since it is a linear function of a circularly symmetric Gaussian vector. This implies 
that Re{X} and Im{X} are identically distributed and independent. To determine the statistics 
of X, we need only determine is its variance. Calculating this directly, 

(6.24) 

Thus X has the same variance as the components of n, namely No, and as a result, the real and 
imaginary parts of X each have variance NoI2. This result can also be explained intuitively, 
since < n, e) is the projection of n on the span of a unit-magnitude vector e, or the component 
of n in the direction of unit-vector e. Since n has the same variance in each of its components, 
it stands to reason that the variance of the component of n in any direction has the same 
variance, not just in the direction of the principal axes. 

Vector-Valued Signal in Vector-Valued Noise 

The projection receiver converts the continuous-time minimum-distance criterion (6.9) 
into a vector-valued minimum distance criterion (6.17). The projection process leads to the N
dimensional complex vector r of (6.21), consisting of a known signal vector and an additive 
complex Gaussian noise vector: 

r =hi + n, (6.25) 

where r = [rl> r2, ... ,rNf is the projection vector for the received signal, and hi = [hi 1, hi l> 
... , hi,N]T is the projection vector for the i-th received pulse. We will refer to the s~t of M 
known such vectors {hI' ... hM } as signal vectors. 

Bounds on the Probability of Error 

We would like to determine the probability that the minimum-distance receiver makes an 
incorrect decision, given additive white Gaussian noise. However, a closed-form solution is 
not known in general, and so we often must resort to bounding the probability of error. 

We will first determine the pairwise error probability Pi-"lj' defined as the probability that 
the received signal is closer to hj than it is to hi, given that hi was transmitted, for some j ;f. i. 
In other words 

(6.26) 

Substituting hi + n for r, 

Pi-"lj = Pr[ II n - (hj - hi) 1\2 < II nl12 ] 

= Pr[ II n 112 + II hj - hi 1\2 - 2Re{ ( n, hj - hi)} < II n112]. (6.27) 

Cancelling the II n 112 term and dividing both sides of the inequality by 
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d··=llh·-h·11 IJ 1 I' (6.28) 

the distance between hi and hi' we get equivalently 

Pi~j = Pr[Re{( n, (hj - hi)ldij )} > dij l2]. (6.29) 

Since the vector (hj - hi)ldij has unit length, (6.23) implies that the Re{ . } tenn above is a 
Gaussian random variable with variance a 2 = No/2. Therefore, the pairwise error probability 
IS 

(6.30) 

where Q( . ) is the integral of the tail of the unit-variance Gaussian distribution (Chapter 3). 

Using this result, we can detennine the error probability for the binary case (M = 2). Since 
in this case each symbol conveys one bit, the error probability reduces to the bit-error 
probability. 

Example 6-3. -------------------------
If M = 2, and if r = ho + n, then an error occurs if r is closer to hI than to ho. This occurs with 
probability 

( dOl) Pr[h l chosen 1 ho transmitted] = Q 20 . (6.31) 

On the other hand, if hI is transmitted, ho will be chosen with the same probability. Therefore, 
regardless of the a priori probabilities, the error probability for any binary signal set {ho( t), 
hl(t)} is Q(dI2a), where d = \I ho - hIli = (tl ho(t) - hl(t) 12dt)1/2 anda2 = No/2. 

Example &4. -------------------------
The result of the previous example makes it easy to compare the performance of different binary 
modulation schemes. For example, consider the three cases of binary antipodal signaling, on-off 
keying, and binary orthogonal signaling shown below: 

ANTIPODAL OOK ORTHOGONAL 

1 ~) l~) 1 d5:) 
q,2 

~ ~ -JE t JE -., J2E q,1 JE q,1 
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Assuming both signals are equally likely, the average energy is E in all cases. The distance for 
antipodal signaling is 2$ , while in the other two cases the distance is J2E. Based on (6.31), the 
bit-error probability for antipodal signaling is thus Q( ./2EI No) , as compared to Q( ./EI No) for 
OOK and orthogonal signaling. This implies that binary antipodal signaling enjoys a 3-dB 
advantage over OOK or binary orthogonal modulation. 

The exact error probability for three or more signals (M ~ 3) can be difficult to calculate, 
since the minimum-distance decision boundary can be very complicated. We saw special cases 
in Chapter 5 where it is not too difficult. More generally, however, we can establish bounds on 
the error probability that are easy to apply. These bounds become tight as (J ~ 0, and thus 
represent not only bounds, but also accurate approximations for small (J (small error 
probability). Since most digital communication systems operate at low error probability, these 
bounds are very useful. 

The upper bound will be based on the union bound described in Chapter 3.1. For N events 
{'En, 1 ~ n ~ N}, the union bound is 

N N 
Pr[ U 'En] ~ L Pr['En] 

n=l n=l 
(6.32) 

We begin by bounding the probability that the minimum-distance receiver makes an error 
when ho is transmitted. If we define 'E) as the event that r = ho + n is closer to h) than ho, then 
the pairwise error probability Po....,,) can be written as Po....,,) = Pr['E)]. Then 

M-1 M-1 
Pr[error I ho transmitted] = Pr[ U 'EJ. ] ~ ~ . Pr['EJ·] . 

)=1 L.JJ =l 
(6.33) 

But since 

(6.34) 

we get 

Pr[ error I ho transmitted] ~ L7= ~ 1 Q( ~~ ) . (6.35) 

This is an upper bound on the probability of error, conditioned on ho being transmitted. 

It was shown in Chapter 3 that Q( . ) is a very steep function of its argument for large 
arguments (corresponding to high SNR). This implies that the sum in (6.35) tends to be 
dominated by the term corresponding to the smallest argument. Define dO,min as the smallest 
doj, 1 ~j ~ M-l. Then the union bound of (6.35) can be approximated by 

Pr[error I ho transmitted] :::: KoQ( d~~n) , (6.36) 

where Ko is the number of signals that are distance dO,min away from h o. We can no longer 
assert that (6.36) is an upper bound, since we have thrown away positive terms, making the 
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right side smaller. However, for small cr, (6.36) remains an accurate approximation. It is also 
intuitive that the error probability would be dominated by the signals that are closest to ho, 
since the nearest signals are the ones most likely to be confused with ho. 

A lower bound on error probability can also be established. Since ·~=t 'Ej contains 'Em for 
any 1 ~ m ~ M -1, we get that J-

Prtu]'Ej] ~ Pr['Em] = Q(do.m) • 
j=l 20 

(6.37) 

Obviously, the bound is tightest when do m = do min' since that will maximize the right side of 
(6.37). Thus, (6.37) acts as a lower bou~d on e'rror probability. Combining it with the upper 
bound of (6.35), we arrive at: 

Q ( d~~in) ~ Pr[error I ho transmitted] ~ ~7= -/ Q( ~::). (6.38) 

The approximation of (6.36) for the upper bound is seen to be only a factor of Ko larger than 
the lower bound. This bound applies equally well for any other transmitted signal hi with Ko 
replaced by Ki and do min replaced by di min' where d i min is the minimum distance from hi to 
any other signal, and.k is the number of signals at distance di,min' 

We are often interested in the overall probability of error Pe, defined as the probability that 
the wrong signal is chosen by the minimum-distance criterion. To calculate Pe, we must know 
{Pi, 0 ~ i ~ M -I}, the set of a priori probabilities of the M signals being transmitted. Then 

~M-l Pe = . Pr[hi not chosen I hi transmitted] . Pi . 
1=0 

(6.39) 

Substituting the union-bound approximation, Pe can be approximated as 

p ::::: ~M-l K.Q(di,min). 
e £.Ji = 0 PI I 20 (6.40) 

As before, (6.40) will be dominated by the terms with the smallest argument to Q( . ). Thus, 

P ::::: K. Q(dmin) 
e 20 ' 

(6.41) 

where K is a constant, called the error coefficient, and dmin is the minimum distance between 
any pair of signals. The error coefficient has the interpretation as the average number of 
signals at the minimum distance. Since Khas a much milder impact on Pe and the argument of 
Q( . ), the error probability at high SNR is dominated by the minimum distance dmin. 
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6.3. Orthogonal Modulation 

In this section we consider a special case of M-ary modulation called orthogonal 
modulation, in which the signal set is orthogonal and equal energy, meaning that 

(6.42) 

for some constant Eg. We will begin with two simplifications. First, we will avoid the issue of 
lSI by transmitting and receiving a single isolated pulse. (Later we will generalize the Nyquist 
criterion to design orthogonal signals that avoid lSI.) Second, we will assume the effect of the 
channel transfer function is benign, so that the corresponding received pulses hi( t) are also 
orthogonal and equal energy, namely: 

J~ h·( t)h·*( t)dt = E8· . 
1 J 1-J' (6.43) 

-~ 

where E is the energy of any of the received pulses. For practical applications, such as 
multicarrier and code-division multiple access, discussed below, this assumption is often valid. 
It is also obviously valid for channels with inherently flat frequency responses. 

For reasons seen shortly, orthogonal signaling has poor spectral efficiency, and hence is 
rarely used when bandwidth is at a premium. Nonetheless, it is valuable as a starting point for 
more elaborate techniques that combine it with PAM (Section 6.4). 

6.3.1. The Minimum-Distance Receiver for Orthogonal Modulation 

The correlation and projection receivers of the previous section are easily adapted to the 
case of orthogonal modulation. When the pulse set is orthogonal, the Gram-Schmidt 
orthonormalization process has no impact other than to normalize each pulse to have unit 
energy. Therefore, the dimension of the signal space is equal to the size of the signal set, 
N = M. It follows that the projection receiver is no less complex than the correlation receiver. 
Because all signals have the same energy, subtracting the energies in Fig. 6-1 is not needed. 
Thus, with orthogonal modulation, the minimum-distance receiver simplifies to that shown in 
Fig. 6-4. 

Intuitively, the minimum-distance receiver correlates the observation waveform with each 
of the possible received pulses. The fact that the received pulses h i( t) are orthogonal implies 
that when pulse i was transmitted, the i-th correlation Yi will be equal to JE plus noise, while 
the other correlations Yk *' i will be noise only. So it makes intuitive sense that the maximum Yi 
should determine which pulse was transmitted. From a signal-space perspective, each Yi looks 
only in the direction of hi(t) in linear space by forming an inner product (cross-correlation) of 
hi(t) with the received signal. 

Detection of an isolated pulse is only the beginning, of course. To detect a sequence of 
pulses, the matched-filter receiver in Fig. 6-4 can be modified so that samples are taken at 
multiples of T, rather than just once at t = O. This will also be optimal in a minimum-distance 
sense if such sampling does not result in intersymbol interference. 



216 ADVANCED MODULATION CHAP. 6 

6.3.2. Error Probability for Orthogonal Modulation 
For orthogonal modulation, each signal projection vector is real and ofthe form 

hi = [0,0, ... 0, JE, 0, ... , O]T (6.44) 

where the non-zero term is in the i-th position. Thus, every signal is the same distance from 
every other signal, namely d =,fiE , so the minimum distance is dmin =,fiE. The geometric 
picture is sketched below for the case of M = 3: 

4>2 

i'\ 
~hl 

4>1 

ho 

4>0 

For M orthogonal signals, there are M - 1 other signals at the minimum distance, and the error 
probability is independent of which signal is transmitted. Using (6.41), the error probability is 
approximated by: 

P '" (M - 1) . Q( dmin ) 
e 2cr 

= (M - 1) . Q( JI) . 

Yo 

Yt 

./2e - j21tf ct 

I ~ '"_. 
~ 

CHOOSE 
LARGEST 

(6.45) 

cle {O, .. . M-IJ 

Fig. 6·4. The correlation receiver for an isolated pulse of passband orthogonal modulation. For the 
baseband case, there is no down converter and there is no real·part operator. 
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The argument of Q( . ) is not a function of M, but the error probability does increase slowly 
with M because of the factor M - 1 multiplying Q(.). The basic trade-off is that, at the 
expense of more bandwidth and with only a minor penalty in error probability, the number of 
bits per symbol can be increased by increasing M. It is somewhat surprising that the required 
increase in bandwidth associated with increasing M does not result in a greater penalty in error 
probability, since increasing bandwidth is usually associated with allowing more noise into the 
receiver. 

The exact error probability for orthogonal modulation can be calculated with relative ease 
because of the simplicity of the signal geometry. In particular, we showed in the previous 
section that the minimum-distance receiver simplifies, for this geometry, to the criterion 

max{y/} , (6.46) 
/ 

or in words, the receiver chooses the largest correlation between the received signal and the 
orthogonal pulses. The error probability does not depend on which signal is transmitted, so 
assume that it is ho. In that case, all the y/ are independent real Gaussian random variables 
with variance 0 2 = Nol2, and all are zero-mean except for Yo, which has mean JE. A correct 
decision is made if Yo is larger than yz, 1 ~ I ~ M-l. Thus, 

Pr[correct decision I ho transmitted, Yo = y] = ( 1 _ Q(~))M -1 . (6.47) 

Since this error probability will be the same regardless of which signal is transmitted, we need 
only average (6.47) over the statistics of Yo, yielding: 

Pr[error] = Pr[error I ho transmitted] 

= 1 - Pr[correct decision I ho transmitted] 

= 1- [fyo(Y)(1_Q(~))M-1dY, (6.48) 

wherefyo(Y) is the p.d.f. ofa Gaussian random variable with mean JE and variance 0 2, 

fyo(y) = _1_e-(y_JJ!;)2/(2a2) . 
J21t02 

(6.49) 

The integral in (6.48) does not have a closed form solution, but is tabulated in [1] and 
plotted in Fig. 6-5 using solid lines. In contrast, the dashed lines in the figure were calculated 
using the approximation (6.45), which is seen to be very accurate at high SNR. Notice that for 
large SNR, the error probability is only weakly dependent on M, the number of orthogonal 
pulses, as predicted by the error probability approximation. Going from M = 2 to M = 128 
results in less than a 2 dB penalty. 
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6.3.3. Examples of Orthogonal Modulation 

Two canonical fonus of orthogonal modulation are frequency-shift keying (FSK) and 
pulse-position modulation (PPM}. They are roughly duals of one another, since in FSK each 
signal gets a different slice of the frequency band, where as in PPM each signal gets a different 
slice of the signaling interval. 

Frequency-Shift Keying 

Example 6-5. 
In binary FSK, two distinct carrier frequencies are used. An example is shown in Fig. 6-6, in which 
a lower-frequency pulse hO( t) is used to represent a binary "0" and a higher frequency pulse hI (t) 
is used to represent a binary "1". It is easy to show that these two pulse shapes are orthogonal if 
each contains an integral number of cycles in a symbol interval. 

Because FSK is a special case of orthogonal modulation, we can use the correlation (or the 
equivalent matched filter) receiver. 

10-1 

10-3 

10-" 

10-5 
- - - - - APPROX. (6.45) 
--- EXACT (6.48) 

, , 

10~~L-L-L-L-~~~~~~~~~~ 
o 5 10 15 

SNR, E I No (dB) 

Fig. 6-5. Error probability for M orthogonal pulses with equal energy E and AWGN. The dashed lines 
were calculated using the approximation (6.45), which is seen to be accurate at high SNR. 

Fig. 6-6. An example of a binary FSK signal. 
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Example6-6. ------------------------------------------------------
The binary FSK pulses ofthe previous example, properly normalized, can be written 

ho( t) = N sin(21t{ot)w( t) 

hl(t) = Ncos(21tht)w(t), (6.50) 

where w( t ) = u( t ) - u( t - T) is a rectangular window of duration T The matched filters (i( t) = 
hi( -t) have finite impulse response, but are non-causal. We can define causal matched filters, 

(o(t - T) = ho(T - t) , 

h (t - T) = hI (T - t) . 

For an isolated pulse, the sampling is delayed to t = T instead of t = O. 

(6.51 ) 

More generally, a set of M frequencies can be chosen, and the resulting pulse shapes will be 
orthogonal if each frequency is chosen with an integral number of cycles per symbol interval 
(this condition is sufficient, but not necessary). 

Like all forms of orthogonal modulation, FSK is not spectrally efficient, but it does offer 
some advantages: 

• Incoherence. For detection of passband PAM signals we have thus far assumed that the 
exact carrier frequency and phase is available at the receiver to perform the 
demodulation. However, as we will show in Chapter 15, carrier recovery is far from 
trivial, especially on certain channels where the received carrier phase varies rapidly_ 
Examples of such channels are optical fiber and radio links to rapidly moving vehicles 
such as aircraft. Effective FSK receivers can be designed that make no attempt to 
recover the carrier phase. Such receivers are said to be incoherent. 

• Ease of implementation. Very simple FSK modems are possible mainly because 
incoherent detection is feasible. For example, the receiver shown in Fig. 6-7 
discriminates between transmitted frequencies simply by measuring the density of zero 
crossings. The performance of this receiver is difficult to analyze, partly because 
Gaussian noise on the channel does not imply Gaussian noise at the input to the slicer. 
(A similar receiver is successfully analyzed in [2].) Fortunately, as we saw, the 
correlation receiver is easier to analyze, and provides a lower bound on the probability 
of error for any suboptimal receiver. 

• Immunity from certain nonlinearities. Most FSK modulation techniques result in a 
constant envelope, in which information is carried by the zero crossings of the signal 

"""111 
DIFFERENTIA TOR 

Fig. 6-7. A zero-crossing detector for binary FSK with the accompanying waveforms. 
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alone. Some channels, such as those using RF amplifiers operating at or near saturation, 
hard-limit the signal. 

Example 6-7. -------------------------
The CCITT Y.21 300 bls voiceband modem standard uses binary FSK with frequencies of 
1080 ± 100 Hz for transmission in one direction and 1750 ± 100 Hz for transmission in the 
other direction. The motivation for using FSK in this case is the hardware simplicity of the receiver 
and the fact that no carrier or timing recovery is required. This standard was developed in an age of 
more expensive hardware built with discrete devices. 

Example~8. -------------------------
The transmit power of a satellite is limited, and more power can be generated if the transponder is 
operated in or near its nonlinear saturation region. The transponder is essentially a peak-power 
limiter, and a constant envelope modulation method such as FSK can achieve a higher average 
power for a given peak power. 

FSK also has significant disadvantages, other than spectral inefficiency. Binary FSK suffers a 
3 dB penalty in SNR required to achieve a given probability of error relative to binary 
antipodal PAM (recall Example 6-4). Because the basic FSK signal is not usually a linear 
function of the data, existing adaptive equalization techniques (Chapter 8) for linear 
modulation are not applicable. Compensation for channel distortion is therefore more difficult 
than for PAM signals. FSK is therefore primarily limited to channels such as fiber optics and 
satellite where frequency dispersion and selective fading are not a problem. 

The rectangular window of Example 6-6 leads to an infinite bandwidth requirement. In 
contrast, very little bandwidth is required when a sinc-shaped window is used. 

Exercise 6-2. 
Let 

h (t) = ~(Sin(1tt/(2T») ( !)~) 
n ~T 1tt/(2T) cos n + 2 T ' (6.52) 

for n E {O ... , M -1}. Show that these pulses are ideally bandlimited to the frequency range 
n/(2T) ::;; If I < (n + 1)/(2T), as shown in Fig. 6-8, so that the aggregate bandwidth occupied by 
the first M pulses is M/(2T). Also show that they are orthogonal, so that ( hi( t), hi t) ) = EOiJ. 

oto o to o t 0 _--'-'_L....-.L.L..--+. f .... 
V(2T) 

Fig. 6-8. Time domain (top) and frequency domain (bottom) plots ofthe pulses in (6.52) for n = 1, 2, 3, and 4. 
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Pulse-Position Modulation 

Another example of orthogonal modulation is pUlse-position modulation (PPM), widely 
used in optical communications. Roughly speaking, PPM divides up the signaling interval into 
M slots or chips of width TIM, and sends a pulse in exactly one of the slots to convey log2M 
bits of information. An example of a 4-ary PPM signal set with a rectangular pulse is sketched 
in Fig. 6-9(a). Nonrectangular shapes are also possible. A general M-ary PPM signal set is 
given by {g( t), g( t - TIM), ... g( t - (M - l)T IM)}. To avoid lSI and ensure orthogonality, 
the overall pulse shape after a chip-matched filter, namely p( t) = g( t) * g*( - t), must satisfy 
the Nyquist criterion when sampled at the chip rate MIT. The rectangular pulse works, but its 
bandwidth is too large for many applications. The pulse with minimal bandwidth that satisfies 
this criterion is g( t) = JEMIT sin(MntlT)I(MntlT). The 4-PPM signal set with this pulse 
is shown in Fig. 6-9(b). The bandwidth requirement in this case is MI(2T), a factor of M 
larger than for the case of M-ary PAM. 

Interestingly, comparing the minimum-bandwidth PPM signal set to the sine-windowed 
FSK signal set of (6.52), we see that both require the same total bandwidth: MI(2T). In the 
following we will see that this is the minimum bandwidth required for orthogonal signaling 
and no lSI. 

6.3.4. The Generalized Nyquist Criterion 

There is a fundamental lower bound on the bandwidth required by an orthogonal signal 
set, assuming that we wish to avoid lSI. The Nyquist criterion, discussed in Section 5.1.1, 
states that for baseband PAM with symbol rate T, the minimum signal bandwidth is 1I(2T) 
Hz. We can now generalize the Nyquist criterion and show that the minimum bandwidth of an 
orthogonal signal set of size M is MI(2T) Hz. Thus, the requirement that there be M 
orthogonal pulses in the symbol interval increases the minimum bandwidth requirement by M. 

Assume the receiver structure of Fig. 6-4, and for an isolated-pulse input, sample the 
matched-filter outputs at all integer multiples of T. To avoid lSI, if the signal input is pulse 
hi t), then the samples at the output of the filter matched to hie t) must satisfY the ordinary 
Nyquist criterion, 

(6.53) 

~ ............... ~ -. 
_ h~~ ............... ~ • 

h3(t)· ~ ~ 
• t J. ............. ~""""'" -. t 

O~~¥T O~~¥T 
~ ~ 

Fig. 6-9. Two examples of 4-PPM: (a) with a rectangular pulse; (b) with a minimum-bandwidth pulse. 
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In addition, to avoid crosstalk between pulses, if h i( t) is the input to a filter matched to pulse 
hi t ), for j *- i, then the output sampled at t = kT must be zero for all k, 

hi(t) * hj(-t) It=kT=O, j*-i, -oo<k<oo. (6.54) 

These two conditions can be written together in a single compact form, 

hi(t) * hj(-t) It=kT =OkOj_i' (6.55) 

We can express these conditions in terms of an equivalent frequency-domain criterion. Let 
hi( t) have Fourier transform HiU). When we input hi( t) to a filter matched to hi t), the 
output has Fourier transform HiU)~*U), Sample this at t = kT, the discrete-time Fourier 
transform has to be unity for j = i and zero for j *- i, and hence 

1. ~oo H .(r - '.!!.)H!(r - '.!!.) = O· . 
T£.Jm=~ IT) T j-l' 

(6.56) 

Equation (6.56) is called the generalized Nyquist criterion. It is clear that a bandwidth of 
M/(2T) is sufficient to satisfy this criterion, as demonstrated by both the sinc-windowed FSK 
signal set of Exercise 6-2 as well as the minimum-bandwidth PPM signal set of the previous 
section. In Appendix 6-A, we show that this bandwidth is also necessary. 

A Set of Orthonormal Pulses with Excess Bandwidth 

The ideally bandlimited pulse set in Fig. 6-8 is not realizable. Practical pulse sets designed 
by Chang [3] achieve close to the minimum bandwidth promised by the generalized Nyquist 
criterion. We will derive these pulses, relegating many details to Appendix 6-A. 

Let w( t) be a windowing pulse shape chosen such that w( t) * w( -t) (the pulse shape at 
the output of a matched filter) satisfies the Nyquist criterion for symbol rate 1/ (2 T); that is, 

( w( t )w(t - 2kT) dt = Ok . (6.57) 

The minimum bandwidth of w( t) is 1 / (4 T), but to allow a gradual rolloff, assume that it has 
twice the minimum bandwidth, or 11 (2T). An example of a 1 WU) 12 satisfying these 
conditions is shown in Fig. 6-lO(a). Note that only the magnitude of WU) is constrained by 
this condition, not the phase. We will choose the phase later to satisfy the generalized Nyquist 
criterion. 

We can generalize (6.52) as follows. For n E {a, ... , M -I}, define a set of pulse shapes 

hn(t) = w(t)cos(n+ ~)~) . (6.58) 

Exercise 6-3. 
Show that as long as the window w( t) satisfies (6.57), then for each n, the matched filter output 
hn( t) * hn( -t) satisfies the ordinary Nyquist criterion (6.53). 



Sect. 6.3 Orthogonal Modulation 223 

To show that the {hn(t)} satisfy the generalized Nyquist criterion, we must verify that 
(6.56) holds. This requires some of the same machinery used to prove the minimum bandwidth 
of orthogonal modulation, so we defer the details to Appendix 6-A. In particular, in the 
appendix we show that (6.56) holds if W(f), the Fourier transform of w( t), satisfies 

Re{W(f)W(1/(2T)-f)} =0 , o ~ f~ 1/(4T) . (6.59) 

This can be satisfied by adjusting the phase of W(f) to have a particular symmetry about 
1/(4T), without regard to the magnitude. The magnitude can be chosen to satisfy (6.57) and 
simultaneously the phase can be chosen to satisfy (6.59). To see this, write W(f) in terms of its 
magnitude and phase, W(f) =A(f)e j8(f). Then 

Re{W(f)W(1/(2T) - f)} =A(f)A(1/(2T) - f)cos( elf) + e(1/(2T) - f)). (6.60) 

This function will be zero for all 0 ~ f ~ 1/ (4 T) if 

e(f) + e(1/(2T) - f) = ± n/2 (6.61) 

over the same range of f. 

Example 6-9. --------------------------
As an example of a phase function satisfying this constraint, let 

e(f) = -nfT + y(f) (6.62) 

where y(f) is any function that has odd symmetry about 1/(4T). Then, 

e(f) + 9(1/(2T) - f) = -n/2 + y(f) + Y (1/(2T) - f) = -n/2 . (6.63) 

This phase function includes a linear-phase term, corresponding to a delay, plus another arbitrary 
phase term meeting the odd-symmetry constraint. There is thus considerable freedom in choosing 
this phase function. 

~12 
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Fig. 6-10. (a) The Fourier transform of a pulse at the output of a matched filter that satisfies the Nyquist 
criterion for symbol rate 11 (2T). (b) The magnitude squared of the Fourier transforms of a set of four 
orthonormal pulses that satisfy the generalized Nyquist criterion at symbol rate 111; but unlike the 
pulses in Fig. 6-8 overlap in the frequency domain. 
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To summarize, we have defined a class of pulse sets (6.58) that satisfy the generalized 
Nyquist criterion. The magnitude I W(f) I has been chosen to force w( t) * w( -t ) to satisfy the 
ordinary Nyquist criterion at sampling rate 11 (2T), and the phase of W( f) has been chosen to 
force the pulses to be orthogonal as required. 

The pulses {ho(t), ... hM _1(t)} cover the frequency interval [lI(4T), (2M+3)/(4T)], 
for a total aggregate bandwidth of(M + 1)/(2T). This is only slightly larger than the minimum 
bandwidth MI(2T), for large M. This increase in bandwidth is the small price paid for 
achieving gradual rolloff. 

6.3.5. Noise Immunity and Spectral Efficiency of Orthogonal Modulation 
Gray mapping exploits the fact that some symbol errors are more likely than others, and is 

thus incompatible with orthogonal modulation, where all neighboring signals are equidistant. 
In fact, there is no room for optimization at all in the mapping of bits to orthogonal signals; all 
mappings will yield the same bit-error probability. Therefore, the relationship between bit
error and symbol-error probability of (5.120) cannot be applied to orthogonal modulation. 

Suppose a particular signal is transmitted, and consider its M - 1 equidistant neighbors, 
each labeled by a different block of b = log2Mbits. Unlike a Gray mapping, where all nearest
neighbor labels would differ in only one bit, we have only <t) neighbors differing in one bit, 
(~) differing in two bits, and in general (~) differing in k bits. Averaging k(~) over k E {1, ... b} 
yields M12. Since the probability of choosing anyone of the neighbors is Fe I(M - 1), where 
Pe is given in (6.48), we conclude that the bit-error probability for orthogonal signaling is 

(6.64) 

Since each pulse conveys log2M bits of information, the energy per bit for M-ary orthogonal 
modulation is Eb = EIlog2M. Therefore, from (6.45) we can approximate the bit-error 
probability by: 

Pb Z ~ Q( JIog2M ~) . (6.65) 

Solving for Ebl No leads to the following per-bit SNR requirement for M-ary orthogonal 
modulation: 

The mmlmum bandwidth for lSI-free orthogonal modulation IS MI(2T) Hz. 
Consequently the best spectral efficiency is 

log2M 2log2M 
v = T(MI2T) = M (6.67) 
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Differentiating the spectral efficiency (6.67) with respect to M reveals that it achieves a 
maximum value of v = 2 I (e . loge2) = 1.07 bl slHz when M = e. But since M must be an 
integer, the best we can do is M = 3, where v = 1.057 bl s/Hz. Both M = 2 and M = 4 give v = 
1 blslHz, which is almost as good. 

The performance of M-ary orthogonal modulation is illustrated in Fig. 6-11, where we 
plot the Ebl No required for Pb = 10-6 as a function of the bandwidth requirement normalized 
by the bit rate; i. e., as a function of the inverse of the spectral efficiency. This same plot was 
made for QAM and PSK in the previous chapter (Fig. 5-38(a)). Also shown in the figure is the 
performance of QAM and PSK and the Shannon limit. Observe that, compared to 4-QAM, 
binary orthogonal modulation (M = 2) is 3 dB less power efficient and half as spectrally 
efficient. On the other hand, 4-ary orthogonal modulation is only about 0.2 dB less power
efficient than 4-QAM, but still half as bandwidth efficient. As M grows large, M-ary 
modulation becomes more power efficient but less bandwidth efficient. This is the opposite of 
QAM and PSK, which become less power-efficient but more bandwidth efficient as the 
alphabet gets large. 
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Fig. 6-11. Orthogonal modulation is more power-efficient than QAM but less bandwidth-efficient. 
(The x-axis is the bandwidth normalized by the bit rate, which is the inverse of the spectral efficiency.) 
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PAM can be much more spectrally efficient, assuming that the signal-to-noise ratio allows 
us to increase the number of bits/ symbol, because that increase in bits/ symbol comes 
without any impact on either the bandwidth or the symbol interval. On the other hand, 
orthogonal signaling is inherently less susceptible to noise, because we are in effect doing a 
binary rather than M-ary amplitude modulation of the transmitted pulse. 

6.3.6. Practical Frequency-Shift Keying 

In this section we look closer at FSK and examine two practical issues that anse: 
continuous-phase FSK, and incoherent detection. 

Continuous-Phase Frequency-Shift Keying 

As defined in Example 6-6, the FSK transmitted signal can have either discontinuous 
phase or continuous phase, depending on the signal design, as illustrated below: 

Continuous phase, shown on the right, is desirable, since the high frequency components are 
reduced. This is important for a bandlimited channel, and particularly important when the 
channel is nonlinear. 

Example 6-10. 
In many applications, we would like to drive the transmitter RF amplifier hard enough into 
saturation that significant nonlinearity results. As shown in Fig. 6-12, a practical FSK transmitter 
will apply bandpass filtering prior to upconversion and amplification. Now there is unfortunately 
considerable interaction between phase transitions and the nonlinearity of the amplifier, since the 
bandpass filter will convert the phase transitions into an amplitude transient, which might be quite 
large. The power of the signal at RF will then have to be backed off in order to keep the amplitude 
of these transients within the peak power limitation, thereby reducing the average signal power and 
increasing the error rate at the receiver. In this case continuous phase is preferred. 

For pulses of the form (6.50) to result in a continuous-phase FSK signal, each pulse must 
traverse an integer number of cycles, so 

(6.68) 

where Mi is an integer. For maximum spectral efficiency, it also helps to minimize the 
frequency separation between signaling frequencies h We want minimum frequency 
separation while maintaining phase continuity and orthogonality of pulses. 

Fig. 6-12. Bandpass filtering before the nonlinearity of a power amplifier. 



Sect. 6.3 Orthogonal Modulation 227 

Example~ll. -----------------------------------------------------
For the binary FSK pulses of (6.50), continuous phase requires 

foT=Mo and hT=Ml (6.69) 

where Mo and Ml are integers. Minimum frequency separation I fo - h I requires that I Mo - Ml I 
= 1. One of the pulses must traverse exactly one more cycle than the other. Two such pulses are 
superimposed below: 

The pulse frequencies satisfy 

2fd= Ih -fol =llT (6.70) 

where fd is called the peak deviation from the nominal carrier frequency fe = (fo + h)/2. Such 
pulses are easily shown to be orthogonal (see Problem 6-1). A smaller frequency separation 
than that given by (6.70), maintaining both phase continuity and orthogonality, but only when 
we generalize the M-ary model by adding memory; this will be explained in Section 6.5.1. 

Exercise 6-4. 
As in Example 6-6, assume the channel is benign, so that the received pulses are equal to the 
transmitted pulses given in (6.50). Assume as in Example 6-11 that 

fo =MoIT and h =M1IT, (6.71) 

where Mo and Ml are arbitrary integers. Show that with these frequencies, the pulses (6.50) satisfy 
(6.56), and hence satisfy the generalized Nyquist criterion. 

For continuous-phase FSK signals with M pulses, Example 6-11 suggests that the frequencies 
of pulses must differ by integer multiples of liT If the pulses have frequencies 
fo<h <···<fM_l,then 

(6.72) 

is the minimum separation. This frequency spacing of 1 I T between pulses is twice as large as 
that achieved by the ideally bandlimited orthogonal pulses of (6.52) and the Chang pulses of 
(6.58). 

Example~12. -----------------------------------------------------
For binary FSK, a frequency spacing of 1 I (2T), equivalent to the spacing of the Chang pulses in 
(6.58), is possible (see Problem 6-1). However, when more than two pulses of the form (6.50) are 
used, they will not in general be orthogonal with such spacing. 

Incoherent Receivers 

The matched-filter and correlation receivers require that the receiver accurately know the 
frequency and phase of the sinusoids used to form the FSK pulses. Such receivers are said to 
be coherent. 
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Exercise 6-5. 
Consider the reception of a single isolated pulse, 

go( t) = ~ sin(21tfot}w( t) , (6.73) 

where fo = MolT for some integer Mo, and w( t) is a rectangular window over [0, T), as in 
Example 6-6. Assume a benign channel so that ho( t) = go( t) is received. Suppose that the 
receiver cannot accurately determine the phase of the sinusoid in (6.73), so it uses the erroneous 
matched filter 

f( t) = ~ sin(-21tfot + e)w( -t) , (6.74) 

where e is the phase error. If the receiver also cannot determine the frequency fo accurately, then e 
may be time varying. Assume that if it is time varying, then it varies slowly enough to be 
considered constant over one sample interval. Show that the sampled output ofthe received filter is 

go(t)*f(t)lt=o =cose. (6.75) 

Hence, ifthe phase is correct, e = 0, and the sampled output is unity. However, ifthe phase error is 
e = 1t 12, then the sampled output is zero! Hence, uncertainty in e can significantly compromise 
the performance of the matched filter receiver. 

One prime advantage of FSK is the ability to use an incoherent receiver, which does not 
require knowledge of the carrier phase and can tolerate small inaccuracies in the carrier 
frequency. The zero-crossing detector of Fig. 6-7 is an incoherent receiver, but the matched
filter and correlation receivers are coherent. The question arises whether the matched-filter 
receiver can be modified to operate incoherently. We will show here that it can, and in 
Chapter 7 we will show that a slightly more general structure is optimal if the carrier phase is a 
uniformly distributed random variable over [0, 21t). Incoherent receivers for FSK perform 
nearly as well as coherent receivers, so the additional cost of a coherent receiver may not be 
justified. 

We can arrive at an incoherent receiver by heuristic arguments. Matched filters for FSK 
signals are bandpass filters, although rather crude bandpass filters because of the relatively 
high sidelobes. Their magnitude frequency response is shown in Fig. 6-13. This suggests 
another intuitive argument for the matched-filter receiver; it simply measures the output of a 
bank of bandpass filters with center frequencies at each of the signaling frequencies, and 
selects the largest. Note however that the magnitude frequency response will not be affected 

Fig. 6-13. The magnitude response of a typical matched filter for FSK receivers. 
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Fig. 6-14. An incoherent receiver for isolated pulse.FSK signals. The filters hilt) are bandpass filters 
centered at the signaling frequencies. 
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Fig. 6-15. a. An ideal envelope detector uses a gain of two and a phase splitter to get a complex signal. 
The magnitude of the phase splitter output is equal to the amplitude of the sinusoidal input (see 
Problem 6-5). b. An approximate envelope detector uses a peak detector and a lowpass filter. 

by phase errors like those in Exercise 6-5. It will also be minimally affected by small 
frequency errors. This suggests that we could simply estimate the envelope of the filter output, 
as shown in Fig. 6-14. An envelope detector, shown in Fig. 6-15, simply finds the amplitude of 
a sinusoidal signal. 

Ideally, all outputs of all the filters in Fig. 6-14 but the correct one will be zero. The output 
of the correct one will be a sinusoid, and the envelope detector will capture the level of the 
sinusoid. Moreover, unlike the matched filter receiver, the time at which we take the sample at 
the output of the envelope detector is not critical. The receiver can tolerate relatively large 
errors in the timing phase, although the average rate at which we take the samples needs to be 
precise in either case. Timing recovery is covered in Chapter 16. 
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6.4. Orthogonal Pulse-Amplitude Modulation (OPAM) 

In Section 6.3 we saw that orthogonal modulation has a maximum spectral efficiency of 
about one bit! sec/Hz, which is poor in comparison to PAM. The reason that PAM has better 
spectral efficiency is that increasing the number of bits per symbol does not expand the 
bandwidth, as it does in orthogonal modulation. Fortunately, limiting ourselves to pure PAM 
or orthogonal signaling is not necessary. They can be combined to form orthogonal pulse
amplitude modulation (OPAM). In this section we describe the general properties of OPAM 
transmitters and receivers. We then present two important special cases ofOPAM: multicarrier 
modulation (both discrete-multitone and orthogonal frequency-division multiplexing) and 
code-division multiplex access. 

6.4.1. OPAM: Combined PAM and Orthogonal Modnlation 

Orthogonal modulation and PAM can be combined by choosing a set of N orthonormal 
pulse shapes {gn(t): n = 0, ... N -I}, .amplitude-modulating each pulse shape with a 
different symbol ak (n) from an alphabet of M symbols, and sending all of the pulses 
simultaneously, i.e., sending: 

(6.76) 

This combination of orthogonal modulation and PAM is called orthogonal PAM (OPAM). A 
block diagram of an OPAM transmitter is shown in Fig. 6-16. In each symbol interval of 
length T, N symbols are simultaneously transmitted using N distinct pulses. Because the pulse 
shapes are orthogonal, the superposition of pulses can be sorted out at the receiver by a bank 
of matched filters. Note that s( t) may represent the complex envelope, in which case the 
actual transmitted signal would be: 

x(t) = J2Re{s(t)ej21tfct}. (6.77) 

BITS s( t) 
MAPPER 

Fig. 6-16. An OPAM transmitter. 
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Example 6-13. -------------------------
PAM is clearly a special case of (6.76) in which N = 1. For passband PAM, (6.76) represents the 
complex envelope of the transmitted signal. Interestingly, sometimes the passband PAM signal can 
be represented directly as an OPAM signal. Consider a passband PAM signal where the carrier 
frequency fe has an integer number of cycles in one symbol interval, so that fe T is an integer. Then 
we can rewrite the quadrature representation (5.21) of a passband PAM signal as 

(6.78) 

where 

go( t) = J2 cos(2nfet)g( t) and gl (t) = -J2 sin(2nfet)g( t) . (6.79) 

These two pulses are orthogonal whenever the bandwidth of g( t ) is less than the carrier frequency, 
regardless of the particular shape of g( t). Hence, for certain carrier frequencies, passband PAM 
can be viewed as an example ofOPAM for N = 2. 

Example6-14. --------------------------
Ordinary orthogonal signaling may also be viewed as a special case of OPAM, provided we add a 
constraint that the symbols ak (n) take on values 0 or 1 in such a way that exactly one of the set 
{ak(O), ak(1), ... , ak(N-l)} has value 1. 

In the remainder of this section we focus on the unconstrained case where the modulating 
symbols {ak (n)} are chosen independently. 

In the following we will show that the spectral efficiency and power efficiency of OPAM is 
independent of N, and equivalent to that of PAM (N = 1). 

Spectral Efficiency and Power Efficiency 

Consider first passband OPAM, where (6.76) represents the complex envelope of the 
transmitted signal. The upconverter will double the bandwidth requirement from W = N / (2T) 
to W = N / T. When the symbols are chosen independently from the same complex alphabet of 
size M, the symbol set {ak (n) : n = 0, ... , N - l} can assume one of MN values, communicating 
log2# bits of information per signaling interval T. Thus the best spectral efficiency is 

log2MN 
v = WT = log2M . (6.80) 

Comparing this result to (5.36), we conclude that the spectral efficiency of OPAM is 
equivalent to passband PAM with the same alphabet size M, and independent of the 
dimensionality N. 

For baseband signaling, where (6.76) represents the real-valued transmitted signal, the 
bandwidth requirement would be cut in half. But since the symbols would be real-valued, they 
would convey half as much information, so the overall spectral efficiency would be the same. 
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The probability of symbol error is easily derived for OPAM, because the orthogonality of 
the different pulses implies that they have no impact on eachother after a matched-filter 
receiver. Thus, the probability of symbol error can be calculated by considering just one of the 
pulses in isolation. This means that we can use directly the analysis of Chapter 5 for PAM. 
With M-ary QAM, for example, the probability of error for OPAM is given by (5.113): 

(6.81 ) 

where we made the substitution SNR = EI No. This substitution is easily justified: Since E 
represents the average received energy for one of the pulses, it is a fraction 1 IN of the total 
received energy PT per signaling interval, namely E = PT I N. With no excess bandwidth 
(W= NIT), it follows that EI No = P /(NoW) = SNR. The key point is that the symbol-error 
probability depends only on the SNR, and is independent of the dimensionality N. Assuming 
they both have the same SNR and the same alphabet, PAM and OPAM have the same error 
probability, independent of N. 

Example~15. -----------------------------------------------------
Consider what happens when we base OPAM on the 4-ary PPM signal set Fig.6-9(b). Each 
signaling interval of length T is divided into four chips of duration T 14. With OPAM, a different 
PAM symbol modulates each of the chip pulses. But this reduces to conventional PAM with symbol 
rate 41 T! Using similar reasoning, it follows that any conventional PAM system may be viewed as 
OPAM based on N-ary PPM by simply grouping each block of N symbols together and treating it 
as a single block of OPAM symbols. Clearly, nothing can be gained or lost by this reinterpretation. 
It thus makes sense that the performance ofOPAM will be independent of N. 

Increasing the Symbol Interval 

Suppose we have a fixed channel with bandwidth W. We are free to increase the 
dimensionality N of the signal set if we simultaneously increase the symbol interval T. 
Intuitively, we are compensating for the reduced symbol rate by increasing the number of 
symbols transmitted per symbol interval, thereby keeping the spectral efficiency fixed. 

There are two fundamentally different ways to choose the set of orthogonal pulses as we 
increase T. One way is to hold the bandwidth of all the pulses fixed at W, and somehow make 
them orthogonal (a method for doing this will be discussed shortly). When we do this, the 
effects of non-ideal channel transfer functions can be mitigated, because we can make T so 
large that any time dispersion on the channel becomes insignificant relative to T. This effect is 
easy to visualize intuitively in the time domain, and will be further quantified in the frequency 
domain below. 

The second way to choose orthogonal pulses as T increases is to make each pulse have 
bandwidth on the order of 1 I (21'), satisfying the ordinary Nyquist criterion, and make them 
orthogonal by placing them at different center frequencies, spaced 1 I (21') apart. This was the 
approach used to design the idealized pulses (6.52) and the Chang pulses (6.58). Again, the 
effect of this is to mitigate the effects of non-ideal channels, because as T (and hence N) 
increases, the bandwidth of each pulse decreases (in inverse proportion). This implies that 
only a portion of the channel transfer function over a narrower and narrower bandwidth affects 
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each pulse transmission. Eventually, for sufficiently large T, the channel transfer function will 
be essentially constant over the bandwidth of the pulse, and introduce insignificant lSI. 
Furthermore, the pulses will tend to retain their orthogonality because they are in 
approximately non-overlapping frequency bands, both at the channel input and output (the 
latter assuming the channel is linear and time-invariant). This is the approach taken in 
multicarrier modulation below, where we will further consider the effects of lSI. 

An additional advantage of increasing T is that impulse noise phenomena that are highly 
localized in time will have less impact on pulses of greater time duration. 

Increasing Bandwidth 

The second way of increasing N is to hold the symbol interval T constant and increase the 
bandwidth W This is not feasible on many media, if the additional bandwidth is not available. 
However, for radio, the medium itself has very broad bandwidth and is typically frequency
division multiplexed (FDM) by assigning different users to non-overlapping frequency bands. 
FDM is closely related to the multicarrier modulation mentioned above, except that in FDM 
the different users typically do not overlap one another in frequency. 

An alternative approach to maintaining the separation of the users is to aggregate N users 
sharing a bandwidth W, where now W is N times as large as the nominal bandwidth required 
by each user in FDM. Then, rather than each user transmitting a pulse that does not overlap the 
bandwidth of the other users, all users are assigned pulses that occupy the full bandwidth W 
The orthogonality of these pulses is assured by the techniques mentioned above. This 
approach to sharing a fixed bandwidth among a set of users, allowing their transmissions to 
completely overlap in frequency, is called code-division multiple access (CDMA), and is 
elaborated further below. It is particularly advantageous in cellular radio systems, as discussed 
further in Chapter 17. 

Receiver Design 

A correlation receiver for OPAM is shown in Fig. 6-17. It shares some similarities with the 
correlation receiver for orthogonal modulation shown Fig. 6-4. As before, consider only a 
single signaling interval (which now carries N symbols a(O) ... a(N-l», and let 

s(t) = L::~a(n)gn(t), (6.82) 

and assume the received signal is corrupted only by noise. In particular, the received pulse 
shapes hn( t) are identical to the transmitted pulse shapes. Instead of selecting one of N 
candidate pulses as done in Fig. 6-4, each pulse is assumed to carry independent data, and 
hence has its own slicer, as shown in Fig. 6-17. If the pulses satisfy the generalized Nyquist 
criterion, there is no crosstalk between pulses at the matched filter output, sampled at the 
appropriate time, so each slicer responds only to its corresponding pulse. 

We will now give two important examples ofOPAM modulation, multicarrier modulation 
and code-division multiple access (CDMA). 
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MUX a (n ) 

a ( N - I ) 

Fig. 6-17. A correlation receiver for OPAM. 

6.4.2. MuIticarrier Modulation 

Multicarrier modulation is the generic term used for any OPAM scheme in which each of 
the orthogonal pulses is roughly localized in the frequency domain. It includes as special cases 
frequency-division multiplexing, orthogonal frequency-division multiplexing (OFDM), and 
discrete multi tone transmission. 

Our starting point for multicarrier modulation will be the following set of pulses: 

gn(t) = Jr ej2nntlTw( t), for n = 0, ... N - 1 , (6.83) 

where w( t ) = u( t) - u( t -1) is a rectangular window over [0, 1). These pulses are similar to 
the FSK pulses of Example 6-6 with the same frequency separation l/T used in 
Example 6-11. This frequency separation ensures continuous phase, but is twice as large as the 
frequency separation of the Chang pulses (6.58). 

Exercise 6-6. 
Show that the pulses in (6.83) are orthonormal. 

Using these pulses, the OPAM signal s( t) in (6.76) consists of superimposed finite-length 
signals modulated on different carriers. The technique is closely related to frequency-division 
multiplexing, although there is considerable overlap between neighboring frequency bands, as 
illustrated below: 
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These pulses are of theoretical interest but are somewhat idealized and not very practical, 
primarily because the rectangular window in (6.83) prevents the signals from being 
bandlimited. The next section shows how these pulses can be modified to make them more 
practical. 

A Better Set of Orthonormal Pulses 

We will see that a key advantage of multi carrier modulation is that it can be implemented 
with low cost by applying a discrete-time signal to an ideal D I A converter. The pulses of 
(6.83) cannot be generated in this way because they are not bandlimited; the output of a D I A 
converter will always be ideally bandlimited to half the sample rate. In this section we 
introduce a new set of orthonormal pulses that are similar in spirit to those described above, 
but which lead to low-complexity implementation. 

Let {gn(t)} be the result of passing the signals of (6.83) through the following back-to
back cascade of an ideal AID and D I A converter: 

g~(t) g.(t) 
D/A 

t A/ D 

o T 

First, the pulse gn(t) is sampled at the rate NIT. Because of the rectangular window, only N 
of these samples will be nonzero. Then, these N samples are interpolated using an ideal 
reconstruction filter for this sample rate, which is bandlimited to half the sample rate. 

The above diagram shows a specific example where N = 32 and n = 4, so that the sinusoid 
completes precisely four cycles during the signaling interval. We see that g4 ( t) looks very 
similar to g4( t) except at the transitions near t = 0 and t = T, where the bandlimited nature of 
g4 ( t) leads to small oscillations in the time domain. Mathematically, the new pulse set can be 
written as: 

gn(t) = ~L:: ~ej21tnkINp(t - kTI N), for n = 0, ... N -1, (6.84) 

where p( t) is an ideal unit-energy reconstruction filter for a sample rate of NIT: 

( t) = fT.sin(nNtlT). 
p ~N nt (6.85) 

Multicarrier modulation (or more generally OPAM) based on the pulse set {gn( t)} of(6.84) is 
called discrete-multitone modulation (DMT) in the context of DSL applications, and 
orthogonal-frequency-division mUltiplexing (OFDM) in the context of wireless applications. 
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Remarkably, the transformation from {gn( t)} to {gn( t)} does not alter orthogonality: just 
like the originals, the new pulse set { gn ( t)} satisfies the generalized Nyquist criterion. 

Exercise 6-7. 
Show that the set of pulses {gn (t)} defined by (6.84) are orthonormal. 

An important feature of {gn ( t)} is that they are bandlimited to half the sample rate. This 
property is illustrated in the following sketch, which compares the Fourier transforms of gn( t) 
and gn(t) when n = 15 and N= 32: 

-N 
2T 

r 

N 
2T 

Both pulses have most of their energy concentrated at 15/T, but unlike the infinite extent for 
g15(t), we see that g15(t) is strictly bandlimited to the range Ifl < N/(2T). 

Using the new pulses {gn (t)}, a one-shot OPAM transmitter sends: 

Substituting gn (t) from (6.84) and changing the order of summation leads to: 

s(t) = ~N-la(n)2. ~N-l ej21tnkINp(t_kT/N) 
£.In = 0 IN£.Jk = 0 

(6.86) 

= ~N-l{..l. ~N-la(n)ej21tnkIN}p(t_kT/N). (6.87) 
£.Jk = 0 .[N£.Jn = 0 

We immediately recognize the term within the brackets as the k-th inverse DFT coefficient of 
{a(O), a(l), ... a(N-l)}, call it Sk, so that the OPAM transmitter sends: 

~N-l 
s(t) = £.Jk=OSkP(t-kT/N). (6.88) 

We further recognize (6.88) as an interpolation of {so, ... SN-l} with the ideal interpolation 
filter p( t). Together, these two observations have an important implication: the multicarrier 
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signal s( t) of (6.86) can be generated by a cascade of an IFFT and a DI A converter with 
sample rate NIT, as sketched below: 

The complexity is extremely low. The above transmitter might look different from the general 
OPAM transmitter of Fig. 6-16 but the two are precisely equivalent when the pulse set is 
defined by (6.84). 

The Minimum-Distance Receiver 

The minimum-distance receiver also simplifies dramatically when the pulses of (6.84) are 
used. We consider the usual one-shot case in which the channel is benign; it adds noise but 
otherwise does not distort the signal, so that the received pulses are the same as the transmitted 
pulses. As illustrated in Fig. 6-17, the one-shot minimum-distance receiver for any OPAM 
scheme requires that the received signal r( t) be correlated with each of the pulses {gn (t )}. 
Substituting gn( t) from (6.84) and exchanging the order of summation and integration, the n

th correlation simplifies to: 

Yn = [r(t)g~(t)dt 

= f~r(t)-l "N-le -j2rr.nkINp (t_kTIN)dt 
~ JjlJL.Jk=O 

= ..l... "N -le-j2rr.nkINf~ r( t )p(t - kTI N)dt . (6.89) 
JjlJL.Jk= 0 ~ 

Let rk denote the last integral above; it can be calculated by passing r( t) through a filter p( t ) 
and sampling the output at time kT IN. Since p( t) represents an ideal antialiasing filter for a 
sample rate of NIT, we can equivalently interpret rk as the k-th output of an ideal AID 
converter that includes an antialiasing filter. With this definition, the n-th correlation simplifies 
to: 

Y = _l_"N-lr e-j2rr.nkIN. 
n JjlJL.Jk=O k (6.90) 

We immediately recognize this as the n-th DFT coefficient of the set of samples {ro, ... rN-l}. 
Thus, we can implement the entire bank of correlators simultaneously using a simple cascade 
of an AID converter and an FFT: 

r~ AID P1 FFT ~} 

The AID converter is understood to include the unit-energy antialiasing filter p( t). This front
end might look different from that of the general OPAM correlator shown in Fig. 6-17, but the 
two are precisely equivalent when the pulse set is defined by (6.84). 
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Combating lSI with a Cyclic Prefix 

So far we have assumed a benign channel that only adds noise. We now relax this 
assumption and examine the effects of lSI on the multicarrier signal. We will see that the lSI 
destroys the orthonormality between the pulses, but that it can be restored by a simple 
modification at the transmitter involving a cyclic prefix. 

Let hk denote the equivalent discrete-time impulse response between the transmitted 
samples Sk and received samples rk' Let Il denote the memory of this impulse response, so that 
hk is nonzero for k E {O, ... Il} only. Assume that Il ~ N. In other words, assume that the 
number N of carriers is large enough that one symbol interval (N sample periods) is longer 
than the impulse response of the channel. Thus, we can write the noise-free channel output as 
a finite convolution, 

(6.91) 

If we attempted to use the DFT-based receiver just derived - despite the lSI - we would 
end up taking the DFT of the above linear convolution. It would be nice if the DFT of the 
convolution would reduce to the product of DFT's, but this property applies only to circular 
convolution, not linear convolution. 

Let us briefly review the relationship between circular convolution and the DFT. The 
circular convolution of hk and Sk is defined by: 

(6.92) 

where ( . ) N is a modulo operator that reduces its argument to the range {O, .. , N - I}. Let 
Hn/JN denote the n-th DFT coefficient of {hk }; with this normalization, and given our 
assumption that the channel is FIR with memory Il < N, we may interpret Hn as the DTFT of 
the channel impulse response sampled at frequency 2nn/ N, namely: 

(6.93) 

Also, as usual, let a(n) denote the n-th DFT coefficient of Sk' With this notation, taking the 
DFT of both sides of (6.92) leads to the product ofDFT coefficients: 

(6.94) 

With a modification to the modulation format we can make the ordinary convolution equal 
to the circular convolution. All we need to do is precede the N samples {so, ... sN-l} by a 
cyclic prefix {S_I!' ... S_I} of length Il: 

(6.95) 

as illustrated in Fig. 6-18. Although these Il redundant symbols convey no new information, 
they have an important benefit: they make the ordinary convolution (6.91) equal to the circular 
convolution of (6.92). The receiver will discard the observations {r_I!' ... r_l} corresponding 
to the cyclic prefix, which also eliminates the lSI from the previous signaling interval, and will 
base its decisions on the DFT of the remaining samples {ro, ... rN_l}, which will now be: 
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Fig. 6-19. A multicarrier modulation system using FFTs. The shaded boxes are serial-te-parallel or 
parallel-to-serial converters. In practice. the complex D/A and AID converters are implemented using a 
pair of real DI A and AID converters having the same sample rate. 

(6.96) 

In other words, neglecting noise, the n-th correlation will be the (desired) n-th symbol a(n) 

scaled by the complex constant Hn' There is no interference from other pulses; the effect of the 
dispersive channel is only to scale each of the N symbols by the channel frequency response 
evaluated at the corresponding frequency. The receiver can easily compensate by scaling the 
n-th correlation by II Hn before applying the slicer. 

A complete multicarrier system based on FFT blocks is shown in Fig. 6-19. Although the 
picture only shows the one-shot case, it also applies to a continuous stream of pulses. The 
IFFT and FFT would be computed once per signaling interval, which has duration 
T= (N + J.l)T' with the cyclic prefix (where T' is the sample period). Each such interval 
carries a superposition of N orthogonal pulses and N symbols. 

I 
N-\ 

'-v--' ''--------~yr----------' 
CYCLIC PREFIX ORIGINAL SAMPLES 

Fig. 6-18. A cyclic extension of the samples Sk restores orthogonality despite a dispersive channel. 
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Nonnalizing the slicer inputs by 11 Hn is not necessary for binary or 4-QAM alphabets, 
but it is critical for larger alphabets. In most practical situations, we do not know precisely the 
frequency response of the channel, but Hn can be estimated from observations of Yn- The 
mechanism used to estimate Hn is related to the decision-directed techniques used for adaptive 
equalization (Chapter 9) and carrier recovery (Chapter 15). Referring to Fig. 6-19, if the 
decisions {a(n)} are all correct, then we can detennine what the variables Ym for 
n = 0, ... , N -1 should have been by computing an inverse DFT. Comparing what these 
variables should have been to the actual observation, using (6.96), we obtain an estimate of Hn 
for n = 0, ... , N - 1. These estimates can then be used for scaling the slicer inputs in 
subsequent signaling intervals. 

It is sometimes useful to view the multicarrier system of Fig. 6-19 in tenns of an 
equivalent passband PAM system having a higher symbol rate. Looking closer at Fig. 6-19, we 
recognize the inner channel from Sk to rk as a special case of a conventional single-carrier 
PAM system for which: 

• the "symbol" rate is N / T 

• the k-th transmitted "symbol" is Sk 

• the transmit pulse shape is p( t), which has zero excess bandwidth 

• the receive filter is not a matched filter but still provides sufficient statistics, because the 
lack of excess bandwidth implies that the baud-spaced samples avoids aliasing. 

With this view, we may interpret multicarrier modulation as conventional single-carrier PAM 
with only one difference: there is extra preprocessing at the transmitter. Namely, each block of 
N infonnation-bearing symbols {a(n)} is transfonned into a block of N + Il transmitted 
symbols {sk} using an IFFT and a cyclic prefix. 

Summary 

Multicarrier modulation has many advantages. Foremost is that it can avoid the need for 
computationally intensive time-domain equalization (Chapter 8); the cyclic prefix prevents 
interference between pulses despite the presence of a dispersive channel. And an 
implementation based on DI A, AID, and FFT blocks is extremely efficient. Also, as with 
many OPAM systems, the long signaling interval relative to a comparable PAM signal makes 
the multicarrier signal less sensitive to impulse noise that is highly localized in time. In 
wireless applications, multicarrier modulation together with error-control coding (Chapter 12) 
is an effective means for mitigating the effects of frequency-selective fading channels. 

A significant advantage of multicarrier modulation is the ability to choose separately the 
alphabet for each carrier depending on its corresponding SNR. Of course this is possible only 
when the transmitter has knowledge of the channel frequency response. In particular, from 
(6.96) it is clear that for a fixed n, the sequence of symbols ak(n) modulates the n-th carrier. 
The transmitter can adjust both the size and the energy of the n-th alphabet to match the n-th 
gain Hm thus controlling the transmitted power spectrum and the noise immunity. In 
Chapter 8, we will find a specific shape for the power spectrum (based on waterpouring) that is 
ideal, in that it pennits the perfonnance to approach the theoretical capacity of the channel. 
Multicarrier signals can easily synthesize that shape. It is reasonable to dynamically adjust the 
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choice of alphabet at each carrier frequency as the channel changes over time. Consequently, if 
a channel has a deep notch in its frequency response, or develops a deep notch due to 
frequency-selective multipath fading, for example, we would use a very simple binary 
antipodal alphabet at that frequency. We might even avoid using that frequency altogether. 
Correspondingly, at frequencies where the channel response is strong, we would use a large 
symbol alphabet. Such adaptive loading strategies are an integral part of DMT modems for 
DSL, but are less common in OFDM for wireless applications, because the time-varying 
nature of a wireless channel makes it difficult to acquire timely and accurate knowledge of the 
channel frequency response at the transmitter. 

If N is large, and the symbols ak (n) are appropriately random, then the probability 
distribution of a sample ofthe OPAM signal (6.76) will approach a Gaussian distribution, from 
the central limit theorem. Hence, a key disadvantage of multicarrier modulation is that the 
peak-to-average power ratio can be larger than with more conventional signals. This suggests 
that OPAM modulation is not advisable for either peak-power-limited channels or nonlinear 
channels. The linearity requirements of the power amplifier of a multicarrier transmitter are 
also more stringent than for a single-carrier system, increasing cost. However, the practical 
disadvantages of a Gaussian distribution becomes a theoretical advantage when we recall that, 
as shown in Chapter 4, a signal that achieves channel capacity has a Gaussian distribution. 

The benefits of the cyclic prefix come at the price of a reduced throughput; of the N + ~ 
transmitted symbols, only N convey information, leading to a rate-loss penalty of: 

/.1 
N + /.1' 

(6.97) 

This same fraction of signal energy is also wasted. 

Example~16. -----------------------------------------------------
The IEEE 802.11 a and ETSI HiperJan 2 proposed wireless LAN standards for the 5 GHz band are 
based on a sample rate of 20 MHz, suitable for operation over a passband channel with a 20 MHz 
bandwidth. The number of tones is N = 64. The length of the cyclic prefix is ~= 16 samples, which 
is large enough to accommodate a delay spread of at most 0.8 ~s. Therefore, from (6.97), 16/(64 + 
16) or 20% of the transmitted symbols are redundant and convey no information. 

Example~17. -----------------------------------------------------
The ADSL standard [4] uses a prefix oflength 32 with N = 512, leading to a penalty of 5.9%. 

The overhead penalty of the cyclic prefix can be made small by choosing N large. Even 
without a cyclic prefix, if the impulse response of the channel is short compared to the symbol 
interval T, the difference between the circular convolution (6.92) and the ordinary convolution 
(6.91) might be small enough that (6.96) is close enough to be useful [5]. 
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6.4.3. Spread Spectrum 

Spread spectrum systems are PAM systems that deliberately use pulses with much more 
than the minimum bandwidth 1/(2'1') required by the Nyquist criterion. Spread spectrum has a 
long history, mostly in secure military communications, as discussed by Scholtz [6]. More 
recently, a number of commercial applications have arisen, for example in digital cellular 
systems. A useful definition of spread-spectrum is [7]: 

Spread-spectrum is a means of transmission in which the signal occupies a bandwidth in excess of 
the minimum necessary to send the information; the band spread is accomplished by means of a 
code that is independent of the data, and a synchronized reception with the code at the receiver is 
used for de-spreading and subsequent data recovery. 

The spreading code used in this definition will be defined shortly. 

In Chapter 5 we saw that the SNR achieved with a matched-filter or correlation receiver 
depends on the energy in the received pulse h(t), but not on its bandwidth. So from the 
perspective of SNR, there is no harm in using a pulse with a broad bandwidth, as long as a 
matched filter receiver is used. There are several reasons for using large bandwidth: 

• Pulses with a broader spectrum are less sensitive to channel impairments that are highly 
localized in frequency. Such impairments arise, for example, with frequency-selective 
multipath fading. 

• Spread spectrum signals are less vulnerable to jamming, in which a hostile party is 
trying to deliberately disrupt the communication. 

• Spread spectrum signals can be concealed. By using very wide bandwidth pulses, these 
signals can be placed in regions of the spectrum already occupied by other signals, and 
in effect be masked by the other signals. 

• Many spread spectrum users can share a common bandwidth without interfering much 
with one another. 

Bandwidth and Probability of Error 

Assume the channel noise is white and Gaussian. We have already seen that the bit-error 
probability is independent of the channel bandwidth; it depends only on the energy of the 
received pulse (Example 6-4). An intuitive explanation of this bandwidth independence is as 
follows. The bandwidth required for N orthogonal pulses satisfying the generalized Nyquist 
criterion is W = N 1 (2'1'), which implies that N = 2WT. By definition, spread spectrum 
corresponds to 2 WT» 1, where this approximation becomes accurate. Since h( t) only 
occupies one dimension, the matched filter captures only a fraction 1 12 WT of the total noise 
in bandwidth W. While the variance of this total noise is proportional to W, on net, the noise 
variance at the output of matched filter is not dependent on W. 

It is common in practice to characterize the signal-to-noise ratio (SNR) at the receiver 
input, in preference to the energy per bit and noise power spectral density. The received signal 
power is equal to the energy per symbol E times the symbol rate 11 T, namely P = EIT. 
Furthermore, the total noise power within bandwidth W is No W. The received SNR is defined 
as the ratio of signal power to noise power, 
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P 
SNR=NoW· 
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(6.98) 

Substituting into Q(.)2EINo) , we can express the bit-error probability for binary antipodal 
signaling as a function of SNR: 

Pb = Q(.)2WT· SNR) . (6.99) 

If we keep SNR constant, then Pb decreases as the dimensionality 2 WT increases. However, in 
order to keep SNR constant for a fixed No, P has to be increased in proportion to "" If P is 
kept fixed, then Pb is independent of Was stated earlier. 

Generating Broadband Pulses 

Spread spectrum requires ways to generate broadband pulses with controlled spectral 
properties. A whole family of pulse shapes h( t ), each with the same amplitude spectrum and 
different phase spectra, is conveniently generated using a chip waveform and spreading 
sequence. In this approach, the symbol interval T is divided into N subintervals or chips, each 
of duration Tc = TIN. The pulse h( t) is formed from a PAM modulation of the chip pulses by 
some deterministic sequence {xo, Xl> ••• XN-l}, called the spreading sequence, according to: 

(6.100) 

The bandwidth of the resulting pulse will equal the bandwidth of hc( t). Typically, we choose 
h c( t) to satisfy the Nyquist criterion at the chip rate 1 I Te, which requires a minimum 
bandwidth of W = 1I(2Te) = NI(2T); this causes a bandwidth expansion by a factor of N = 
T I Te. The spectrum can be controlled to some degree by the spreading sequence, with 
precisely N degrees of freedom. 

The chip waveform and spreading sequence can also be used to generate orthogonal pulses 
(see Problem 6-16). For example, such orthogonal pulses are required for CDMA systems. 

lSI and Spread Spectrum 

The preceding error probability calculation presumed no lSI. In fact, spread spectrum 
affords a degree of immunity to lSI. To understand this, we need to consider the pulse shape at 
the output of a receiver matched filter, and then the effect of channel dispersion. 

Keeping the symbol interval T fixed, and increasing the bandwidth W, the lSI in the 
transmit pulse can be reduced. For a large 2WT, a pulse bandlimited to W can be largely 
confined to an interval T, in the sense that a diminishing fraction of the pulse energy falls 
outside that interval as 2 WT increases. (In fact, approximately 2 WT orthogonal pulses can 
satisfy this condition simultaneously.) When 2 WT is near unity, even a single pulse cannot 
come close to being time-limited to T. Thus, the transmit pulse can come much closer to being 
time-limited in a spread-spectrum system. 

However, the receive pulse is affected by the channel; furthermore, we are interested in the 
lSI at the matched filter output rather than the channel output. (Recall that the matched filter is 
crucial to the operation of a spread spectrum system because of its power to suppress in-band 
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noise.) Assume for the moment that the channel is ideal. The isolated-pulse output of the 
matched filter is then the pulse autocorrelation function, Ph( t). The Fourier transform of that 
isolated pulse is 1 H( f) 12, which by definition has a wide bandwidth W. 

Example6-18. -----------------------------------------------------
Suppose that 1 H( f) 12 is constant over the bandwidth Wand zero elsewhere. If we nonnalize the 
energy of h( t) to unity, then 1 H( f) 12 = 1 12 W. The isolated pulse at the matched filter output is 

Ph( t) = sinc(2nWt) . (6.101) 

As W increases, the energy of this pulse concentrates in a shorter time duration. Furthennore, if 
2WTis an integer, Ph( t) always obeys the Nyquist criterion, 

Ph(kT) =sinc(kn·2WT) =()k· 

This simple example illustrates two important points: 

(6.102) 

• For an ideal channel, the isolated pulse at the output of the matched filter is dependent 
only on the magnitude spectrum of h( t), and is not dependent on the phase spectrum. 
Even though we have specified the magnitude spectrum in Example 6-18, there remains 
flexibility in choosing the phase. 

• The time duration of isolated pulse at the output of the matched filter can be much 
shorter than the symbol interval, even though h( t) completely fills the symbol interval. 
The greater W, the shorter this duration can be. 

Pulses of the form of (6.100) can be designed to have a narrow autocorrelation function. 
The pulse autocorrelation (matched filter output isolated pulse) will conform to Example 6-18 
if two sufficient (but not necessary) conditions are satisfied: 

• The chip pulse hc(t) = sinc(ntl Tc) is an ideal LPF with bandwidth W = 11 (21;,), and 

• The sequence {xm} is chosen to satisfY 

(6.103) 

Example~19. -----------------------------------------------------
A trivial case is xk = Ok _ L for some 0 :s; L :s; N - 1. Regardless of L, (6.103) is satisfied. The 
choice of L affects the phase spectrum of h( t ), but not the magnitude spectrum. The problem with 
this choice is that the peak signal is very large in relation to Eh, creating practical difficulties on 
most channels, and especially on radio channels. 

Example~20. ---------------------------------------------------
We can increase Eh for a given peak signal by choosing a sequence so that 
IXoI2=lxlI2 ... =IXN_11 2 =1/N. For such choices, (6.103) cannot be exactly satisfied. 

However, a good approximate approach is to force (6.103) to be satisfied at unifonnly spaced 
frequencies, with spacing 1 I (N1;,) , 

(6.104) 

This is the condition that the DFT of {xm} have unit magnitude. 
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It is possible to come very close to satisfying the two conditions that 1 Xm 12 = 1 and the DFT 
have a unit magnitude, by making {xm} a maximal-length shift register sequence (this will be 
shown in Chapter 12). The result is called direct-sequence spread spectrum. Spreading codes 
can also be used to design orthogonal modulation signal sets (see Problem 6-16). Unlike the 
FSK pulse sets described earlier, these can overlap one another completely in frequency. 

Having established a method of designing a broadband h( t) that has very narrow 
autocorrelation Ph( t), the next question is the effect of channel dispersion. Assuming the 
channel has impulse response b( t), the output of the matched filter becomes 

h(t) * bet) * h*(-t) =Ph(t) * bet) . (6.105) 

As before, the phase spectrum of h( t) does not matter. The non-ideal channel increases the 
time duration of the matched filter output. However, since Ph( t) can be kept very narrow when 
W is large, Ph( t) * b( t) will have time duration approximately equal to the duration of b( t). 
As long as the duration of b( t) is smaller than the symbol interval T, the channel dispersion 
will not have a significant effect. 

Example6-21. -----------------------------------------------------
Spread spectrum is often used on radio channels, which sutTer from multipath distortion. Suppose 
we take a two-path model, 

bet) =15(t) + al5(t-'t) , (6.106) 

where't is the relative delay of the second path. For the Ph( t) of Example 6-18, the isolated pulse 
output of the matched filter with this dispersive channel will be 

f( t) = b( t) * Ph( t) = sinc(21tWt) + asinc(21tW(t - 't» . (6.107) 

The symbol-rate samples ofthis isolated pulse are then 

f(kT) = 15k + asinc(21tW(kT - 't» . (6.108) 

As W gets large, assuming that l't 1 < T, the lSI gets small. This is illustrated in Fig. 6-20. For 
2WT = 5 or 400% excess bandwidth, the multipath distortion sampled at the symbol interval can 
still be fairly large at the output of the matched filter. For 2WT = 128, even a half-symbol 

,- -, 
T 

Fig. 6-20. The isolated pulses at the output of a matched filter for a two-path multipath channel with "t = 
O.4Tand a = 0.5. Two bandwidth expansions are shown: 2WT = 5 and 2WT = 128. Note that the lSI will 
be small for 2WT = 128 as long as delay spread "t is a little less than the symbol interval T, but for 
2WT = 5 lSI will be significant even for very small "t. 
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multipath spread results in a very small lSI, because the basic pulse shape at the matched filter 
output decays so rapidly. 

This example illustrates the desirable effect of bandwidth expansion in terms of minimizing 
the effect of channel dispersion on the isolated pulse at the output of the matched filter. 
However, two caveats are in order: 

• Spread spectrum with large 2 WT is not immune to lSI; for example, consider what 
happens when't = Tin Example 6-21. In fact, if the multipath delay spread is 't = T, lSI 
will be a problem no matter how large 2WT may be! Spread spectrum successfully 
mitigates channel dispersion only where the time-delay spread is smaller than a symbol 
interval. 

• Fig. 6-20 illustrates that the timing recovery must be increasingly accurate as 2WT 
increases. Fortunately, the broader bandwidth of the signal is helpful in increasing the 
timing recovery accuracy as well. 

Spread Spectrum and Jamming or Interference 

We have shown that any bandwidth increase has no impact on the probability of error on 
white Gaussian noise channels, but it does help mitigate the effects of lSI. Another benefit of 
increasing bandwidth is that it improves immunity to jamming and broadband interference. 

Assume that the noise on the channel is generated by a jammer. Jamming is a deliberate 
attempt to disrupt communication by generating a broadband interference signal. In practice, 
the jammer is limited in the power it can generate. The jammer generates bandlimited white 
noise with power PJ over the signal bandwidth W, with spectral density No/2 = PJ I(2W). 
Since the jamming signal is white over the signal bandwidth, from the perspective of the 
receiver the error probability is the same as for white Gaussian noise (the presence or absence 
of out-of-band noise will be inconsequential). The receive SNR is now 

SNR=~= P 
NoW PJ ' 

(6.109) 

independent of bandwidth. The fact that the SNR is bandwidth-independent has profound 
implications, since from (6.99), Pb is now strongly dependent on the dimensionality 2WT. In 
fact, as 2WT increases by expanding W, Pb decreases. For this reason, 2WT is called the 
processing gain. 

Example~22. ---------------------------------------------------
If the processing gain is 2WT = 103 (30 dB), the jammer power is effectively suppressed by 30 dB. 
That is, in going from 2WT:::: 1 to 2WT = 103 by expanding the bandwidth by 1000,30 dB 
greater jammer power P J can be tolerated with the same error probability. 

The processing gain can also be interpreted in signal space. The pulse h( t) defines a one
dimensional subspace, and our assumption is that the jammer does not know the direction of 
this subspace. Thus, the jammer must spread its power P J evenly over all 2 WT dimensions of 
the subspace of signals bandlimited to W Hz and time limited to a symbol interval T (this is 
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equivalent to the jammer transmitting bandlimited white noise). The matched filter responds to 
the jammer noise in the direction of the signal only, and hence at the output of the matched 
filter the jammer power is reduced by 2 WT. 

The foregoing presumes that the jammer cooperates, and transmits bandlimited white 
noise, or equivalently spreads its power evenly over all dimensions of the signal subspace. But 
clearly the jammer would do better to concentrate its power in the direction of the signal, 
because then there would be no processing gain! Increasing the signal bandwidth is beneficial 
only if the jammer does not know the direction of the signal, and therefore must spread its 
jamming power equally in all directions. If the jammer transmits a one-dimensional signal, the 
jammer power in the direction of signal vector h( t) can fall anywhere between 100% (no 
processing gain) and 0% (infinite processing gain). 

The use of the term "jammer" implies a military connotation, but in commercial 
microwave radio systems an important consideration is co-channel interference. This 
interference, for example between two satellites within the aperture of a single antenna, 
between a satellite and terrestrial radio system, or among different users of a terrestrial cellular 
radio system, has similar characteristics to jamming. If the signal and interferer both spread 
their bandwidth, keeping their total powers the same, then a processing gain results. In fact, if 
we take steps to actively reduce interference, the interferer can avoid transmitting in the one
dimension of the signal, resulting in an infinite processing gain! This is the principle behind 
the use of spread spectrum as a multiple access technique, as described below. 

6.4.4. Code-Division Multiplexing 

Another application of OPAM is multiple access, where distinct transmitter-receiver pairs 
share a single channel. Each transmitter-receiver pair would typically use only one of the 
orthogonal pulses. As long as the other transmitter-receiver pairs use different orthogonal 
pulses, the OPAM receiver structures given above are effective in separating the signals. 

Reversing the order of summation and rewriting (6.76) in the form 

LN-l 
s(t) = un(t), 

n=O 
(6.110) 

we can now think of s( t) as being the superposition of N PAM subchannel signals {un(t), 0 
:$; n :$; N - I}, as shown in Fig. 6-21. Each of these PAM signals transmits an independent 
stream of data symbols {ak (n), -00 < k < oo} using its own distinctive pulse shape gn( t). All 
these N PAM signals can share the same channel as long as the pulses they use are orthogonal 
to one another. The matched filter in the receiver for one subchannel will not respond to the 
pulse shapes used by the other subchannels, as long as the set of pulses satisfies the general 
Nyquist criterion. 

ExampIe~23. -----------------------------------------------------
In multi carrier modulation, the pulses are chosen to be sinusoids of different frequencies. A 
mUltiple access scheme based on this set of pulses would be termed a frequency-division multiple 
access (FDMA) system. 
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s( t) 

Fig. 6-21. In code-division multiple access (CDMA). N bit streams share the same channel by using N 
distinct orthogonal pulses gi( t). 

Example 6-24. -------------------------
An alternative is to choose a set of broadband pulses gn( t), each one of which fills the entire 
bandwidth of I f I ~ N I (2T). For this particular choice of pulses gn( t), (6.110) is known as code
division multiple access (CDMA). The pulses used in CDMA are typically generated using a 
pseudorandom sequence, generated using a technique described in Chapter 12. For now, observe 
that these pulses can have broad bandwidth (the pseudorandom sequence ensures this) and will be 
orthogonal to one another. 

Previously we described spread spectrum as a technique that can counter certain types of 
noise and interference signals by greatly expanding the bandwidth of the transmitted pulse. It 
has very poor spectral efficiency, but can be used in situations where spectral efficiency is not 
important. In CDMA, each PAM subchannel is itself a spread-spectrum signal. The motivation 
here is not to counter jamming signals so much as to allow other PAM signals (using different 
orthogonal pulse shapes) to share the same channel. Of course, it is also possible in CDMA to 
expand the bandwidth beyond N 1(2T), thereby gaining both multiple access and immunity to 
jamming signals of the type discussed in Section 6.4.3. 

6.5. Modulation with Memory 

The modulation techniques considered so far can be considered as memoryless, in the 
sense that the signal transmitted during the k-th signaling interval depends only on the k-th 
symbol (or, for OPAM, the k-th set of symbols), and in particular does not depend on previous 
symbols. In practice it can be advantageous to generalize the modulator so that previous 
symbols as well as the k-th symbol determine the transmitted signal. In this section we 
examine three common types of modulation with memory: continuous-phase modulation, 
minimum-shift keying, and differential modulation. 
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6.5.1. Continuous-Phase Modulation 
A continuous-phase FSK transmitter can be implemented using a voltage-controlled 

oscillator (VCO, Chapter 14) driven by a baseband PAM signal, as shown in Fig. 6-22. The 
VCO frequency varies about a nominal carrier fc and automatically maintains phase continuity. 
The output signal can be written 

x( t) = KCos[ 2n(fct + fdL s('r)dt )]. (6.111) 

A signal of this form is called continuous-phase modulation (CPM). The baseband data signal 
is written 

s(t) =L: =-00 a~(t - kT) . (6.112) 

When the data signal s(t) is normalized to peak at unity, Is(t) 1$ 1, the factor fd is the peak 
frequency deviation. When g( t ) is rectangular, CPM is called continuous-phase FSK 
(CPFSK). Other pulse shapes are also used and can lead to significantly improved 
performance. 

The nonlinear relationship between the data signal s( t) and the FSK signal is clearly seen 
in (6.111). Among other effects, this nonlinear relationship makes it very difficult to find an 
expression for the power spectrum of a general CPFSK signal. Suitable derivations and plots 
are given elsewhere (see for example [2]). The bandwidth of an FSK signal is usually wider 
than a passband PAM signal with the same symbol rate, except when minimum shift keying 
(MSK) is used. MSK., discussed in the following subsection, is characterized by a frequency 
deviation fd that is half that predicted by (6.72), equivalent to the spacing of the Chang pulses 
(6.58). 

Minimum Shift Keying 

In Section 6.3 we determined that orthogonal FSK pulses have continuous phase if the 
frequency separation is equal to the symbol rate 11 T. However, it is possible to reduce the 
frequency separation still further while maintaining orthogonality and phase continuity using 
the model in (6.111). When the frequency separation is half of that predicted by (6.72), the 
modulation technique is called minimum-shift keying (MSK). 

MSK was invented by Doelz and Heald [8], and has been used in some microwave radio 
systems. It is sometimes called fast FSK (FFSK) because the spectral efficiency is higher than 
more traditional FSK signals. The separation in frequency between pulses is equivalent to that 

Fig. 6-22. An implementation of an FSK transmitter using a voltage controlled oscillator (VeO). 
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of the minimum-bandwidth pulses (6.52) and the Chang pulses (6.58). By introducing 
memory from one symbol to the next, it cleverly maintains phase continuity while decreasing 
the frequency separation. If the MSK pulses have frequencies fo < h < ... < fN -1' then 

fi-fi-1 =1I(2T); forl$i$N-l. (6.113) 

We will illustrate MSK for the binary case in the following example. 

Example~25. ---------------------------------------------------
Suppose that Ih - hi = 1I(2T) in the binary FSK example. The peak frequency deviation is fd = 
1 / (4T). The higher frequency sinusoid traverses half a cycle more than the lower frequency 
sinusoid within one symbol interval. The M-ary model of (6.2) for FSK would use two pulses like 
those in Fig. 6-23(a), resulting in the signal shown in Fig. 6-23(b), which has discontinuous phase. 
Using the continuous-phase model of (6.111), however, the corresponding signals are shown in 
Fig. 6-24. The frequency separation is half the minimum frequency separation of Example 6-11, 
yet the pulses are orthogonal (see Problem 6-2). 

The correlation or matched-filter receiver needs to be modified slightly to accommodate 
the MSK model. Notice from Fig. 6-24 that 

gi( t) = ± sin(21tfit )W( t) , (6.114) 

where w( t) is a rectangular window over [0, T), as in Example 6-6. There are two signals with 
opposite polarity for each symbol. Since the signals with opposite polarities bear the same 
information, the matched-filter receiver should compare the absolute value of the sampled 
outputs, as shown in Fig. 6-25. 

Fig. 6-23. (a) Two orthogonal FSK pulses with frequency separation If! - fol = 1/(2T). 
(b) An FSK signal with discontinuous phase. 

(a) 5(t)t 0 0 
• t 

(b) 

0 1 0 

go(t)b f\ gl(t)!'LA A t 

(c) \TV t VV 
-go(t)~ (\, -gl(t) \JLA V t VV t 

Fig. 6-24. This figure shows the relevant Signals for continuous-phase binary MSK. The peak frequency 
deviation is fd = 1/(41'). (a) A data signal. (b) The corresponding MSK signal.(c) The pulses. Notice 
that each bit value has two possible pulses which are negatives of one another. 
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It should be emphasized at this point that MSK is not orthogonal modulation. From 
(6.114), the two possible transmitted pulses are sin(2nfit) and -sin(2nfit), which are not 
orthogonal. In fact, MSK can be thought of as a constrained fonn of OPAM. 

The receiver in Fig. 6-25 throws away potentially useful infonnation, since based on the 
history of the received signal, we could infer which of the two polarities would be expected. 
Making use of this infonnation can reduce the probability of error. In the next section we will 
show how to take advantage of this additional infonnation. 

The pulses in (6.114) can be re-written 

gi( t) = sin[2nfct + nbtl(2T) + <I>]w( t) , (6.115) 

where b E {±1} detennines the transmit frequency and <I> E {O, n} depending on which phase is 
being transmitted. The nominal carrier frequency is 

fc = (fo + f1)/2 . (6.116) 

One representation for the transmitted MSK signal is therefore 

x( t) = L: = --00 sin[2nfct + nbktl (2T) + <l>k]w(t - kT) , (6.117) 

where bk is detennined by the data and <l>k ensures phase continuity. 

Exercise 6-8. 
Show that to maintain phase continuity we need 

<l>k = <l>k -1 + (bk -1 - b~nkl2 mod 2n . (6.118) 

Expression (6.118) explicitly shows the dependence of the phase in each symbol interval on 
the data. 

r(t) = hn(t) + n(t) 

I ,..---, JM _1 

~ 
Fig. 6-25. A suboptimal receiver for an MSK signal. 

SELECT 
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ne{0, ... M-1} 
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The matched-filter receiver of Fig. 6-25 performs roughly as well with binary MSK as 
with FSK. In the next section we will show that the performance can be improved to make 
MSK better than FSK, in that the probability of error will be lower and the bandwidth will be 
smaller. This is accomplished by using the information thrown away by the absolute values in 
Fig. 6-25, the error probability ofMSK becomes essentially equivalent to PSK. 

An interesting property of MSK signals is that they can be interpreted as passband PAM 
signals where the quadrature component is delayed half a symbol interval with respect to the 
in-phase component. Such signals are called offset keyed QAM (OQAM or OK-QAM) or offset 
keyed phase-shift keying (OPSK or OK-PSK). MSK is a special case (see Problem 6-4). 

6.5.2. Detection of CPM 

We now consider the detection problem for a CPM signal defined by (6.111) and (6.112). 
It is common to normalize the pulse shape g( t) so that it integrates to 112. With this 
normalization, the CPM signal has a phase change of aJ aJC radians in one symbol interval, 
with respect to the carrier fc' 

MSK provides a constant envelope signal with considerably narrower bandwidth than a 
constant envelope PSK (using rectangular pulses). However, since for CPFSK g( t) in (6.112) 
is rectangular, there is a discontinuity in the first derivative of the CP signal. This implies that 
with smoother choices for g( t) we can significantly reduce the bandwidth by ensuring 
continuous first, or even second or third, derivatives. The simplest case, called full-response 
CPM, uses a g( t) that is zero outside the interval 0 $t $T. The second case, called partial
response CPM, uses a g( t) that extends over several symbol intervals. The term partial 
response refers to the deliberate introduction of lSI for spectrum control. In fact, the spectral 
properties of partial-response CPM signals are considerably better than full-response CPM 
and CPFSK [9]. 

The evolution of a CPM signal over time can be compactly described using a phase 
diagram. The phase diagram plots the phase term from (6.111), namely 

21tf d t s('t)d't , (6.119) 

for all possible input symbols {ak}' 

Example~26. --------------------------------------------------
The phase diagram for MSK is shown in Fig. 6-26. 

Since phase is modulo 21t, the phase diagram is best viewed wrapped around a cylinder with 
circumference 21t. If the modulation index fd is rational, then the phase diagram will have a 
finite number of points on this cylinder. In this case, it can be viewed as the trellis diagram for 
a Markov chain. Since the phase evolves according to a Markov chain, the Viterbi algorithm is 
commonly used in the detector to perform optimal sequence detection. 
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Fig. 6-26. A phase diagram for an MSK signal. 

Example 6-27. -------------------------------
The receiver structure Fig. 6-25 for MSK signals perfonns roughly as well as the optimal matched
filter receiver for orthogonal FSK signals. However, by taking the absolute value of the sampled 
output of the matched filters, that structure discards useful infonnation. The useful infonnation that 
is discarded is easily seen in Fig. 6-26. The receiver in Fig. 6-25 makes no distinction between the 
path labeled "A" and the path labeled "B", which correspond to signals that are n radians apart, or 
antipodal. Obviously, making the distinction would be useful. Considering that the phase is modulo 
2n, the phase diagram in Fig. 6-26 has only four states, best viewed as lying on a cylinder. The 
minimum-distance error event has length two and is the bold diamond shape in Fig. 6-26 (see 
Problem 6-15). Furthennore, the squared distance of this error event is twice the squared distance 
between the two orthogonal signaling pulses, so application of the Viterbi algorithm results in a 3 
dB improvement over the receiver in Fig. 6-25. That receiver was shown to perfonn roughly as well 
as an optimal orthogonal FSK receiver, which is 3 dB worse than an optimal binary antipodal (2-
PSK) signal of the same average power. Consequently, by using the Viterbi algorithm with MSK 
we are able to recover the 3 dB loss associated with FSK and match the perfonnance ofPSK. 

Construction of the trellis and application of the Viterbi algorithm becomes more complicated 
for CPM signals other than MSK. The number of states depends on the modulation index fd 
and the extent of the pulse g( t). 

6.5.3. Differential Encoding and DPSK 

Most of the signal constellations we have described have the practical problem that they 
are rotationally invariant for some particular angles of rotation, typically multiples ofn/2. By 
this we mean that if the constellation is rotated, there is no way that the receiver can 
distinguish it from a valid constellation, unless it knows the actual transmitted data symbols, 
which it does not. If this problem is not dealt with, the receiver may decide on a receive phase 
corresponding to a rotated constellation, with the result that the information bits will be 
incorrectly decoded. This problem can be eliminated by using differential encoding, in which 
the information is encoded by the change in constellation position between symbols rather 
than absolute position. Differential encoding can be mixed with absolute encoding. For the 16-
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QAM constellation of Fig. 5-12, for example, it is common to differentially encode the 
quadrant (specified by two bits), while the point within the quadrant (specified by another two 
bits) is encoded absolutely. 

Differential encoding is especially valuable on channels with rapid fading, such as the 
mobile radio channel. It is common on such channels to use PSK modulation, which makes 
the detection of data symbols insensitive to fluctuations in the amplitude of the received signal, 
since the slicer considers only the angle and not the amplitude of its input. However, the phase 
of such a channel can also vary rapidly, especially during deep amplitude fades. At the 
expense of some noise immunity, this phase fluctuation can be mitigated by using PSK with 
differential encoding and differential detection. This combination of PSK, differential 
encoding, and differential decoding is called differential PSK (DPSK). 

We will consider differential encoding only for the case of PSK, although it should be 
recognized that it is often used with other constellations as well. For PSK, the transmitted 
symbols are of the form ah = ejq,k where the phases <Ph are chosen from some alphabet. The 
phase <Ph is determined by 

(6.l20) 

where the difference in phase from one symbol to the next, Ah, carries the information, not the 
absolute phase <Ph. 

Example~28. ---------------------------------------------------
In differential binary PSK (DBPSK), one of two phases is transmitted. For this case, these two 
phases are n apart, and the coder can map a zero bit into Ah = ° (two successive transmitted phases 
are identical) and a one bit into Ah = n (two successive transmitted phases are n apart). 

Example~29. ---------------------------------------------------
The IS-54 standard for digital cellular radio in North America transmits two bits per symbol, using 
is a form of quadrature PSK (QPSK). However, rather than associating these two bits with four 
phases, in actuality eight equally-spaced phases are used, as shown in Fig. 6-27. At any given 
symbol (k) the data symbol assumes only one offour phases chosen from the sets {O, n12, n, 3nl 
2} (for odd-numbered symbols) and {nI4,3nI4,5nI4,7nI4} (for even-numbered symbols), 
where these two sets are offset by nl 4 relative to one another. Two information bits are coded as a 
change in phase by one of the values {nl 4,3nl 4,5nl 4, tnl 4}. The possible phase transitions 
from one symbol to another are shown in Fig. 6-27. The differential phase Ah is determined from 
the two input information bits in accordance with the following table: 

Bits ~ 

11 5nl4 
01 3nl4 
00 nl4 
10 7nl4 

There are two choices in the receiver design when using differential encoding: coherent or 
synchrodyne detection, which attempts to learn and track the absolute phase of the received 
data symbols, and differential detection, which looks at only the change in phase from one 
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symbol to the other, as illustrated in Fig. 6-27. Synchrodyne detection (Fig.6-27(a» is 
appropriate when differential encoding is used only to mitigate the rotatio,nal invariance of the 
signal constellation. Suppose the input samples to the detector in both cases are 

(6.121) 

where ek is some unknown phase rotation and nk is the complex-valued additive noise. In the 
coherent case, we assume that ek = e, where e assumes certain discrete phases (e.g. any 
multiple of n/ 4 in Example 6-29) that allow the slicer to work properly. The Yk are applied to 
a conventional slicer designed for the <Pk, and it is assumed that the receiver estimates <Pk + e 
rather than <Pk' After the slicer, a difference operation forms an estimate of 11k, independent of 
e, that directly represents the information bits. 

The second alternative, differential detection, is shown in Fig.6-27(b). This approach 
avoids tracking a rapidly varying channel phase. For this case, the statistic YkYk ~1 is formed 
before the slicer. The slicer is designed to have the proper thresholds for e j 6.k rather than ejCh. 

There are two consequences of this: 

• In the absence of noise, the input to the slicer is the proper phase 11k regardless of e. 
This is valuable on channels with rapid phase variations, since it means that the carrier 
phase does not have to be tracked. 

• There is an increase in the noise at the slicer input; this is the price paid for the 
insensitivity to phase rotation. 

We will now verify these two properties. The slicer input is 

* - J.6. J·(8 - 8 ) J.('" + 8) * -J.('" + 8) * YkYk-1-e ke k k-l +e '¥k knk_1 +e '¥k-l k-1nk+nknk_1 (6.122; 

Assume that the phase rotation ek does not change too much from one symbol to the next 
(ek ::: ek -1)' This is a valid assumption as long as the symbol rate is high relative to the rate of 
phase change. With this assumption, the signal term at the slicer input is e j 6.k, independent of 
ek· Looking at the noise terms, nknk ~1 is the product of two noise terms, and hence will 
typically be insignificant. The phase factors multiplying nk and nk ~1 do not affect their 
variance. Approximating these terms as independent, the total noise variance is now 

(6.123) 

or twice as large as in the coherent case. There is thus roughly a 3 dB penalty for differential 
detection (twice as much noise power). A more refined analysis that takes account of the 

!:,.k Qk ~-----,6.k L!:,.k 
~ 

Qt-l (b) 

Fig. 6-27. Two detection techniques for DPSK. (a) Coherent, which requires an accurate phase 
reference, and (b) differential, which allows an arbitrary slowly-varying phase rotation of the data 
symbols. 
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correlation of the two noise tenns reveals that the penalty is actually about 2.3 dB at high 
SNR. 

6.6. Bandwidth and Signal Dimensionality 

This chapter has introduced the important concept of the dimensionality of the subspace 
spanned by the set of known signals. In this section, we develop additional insight into the 
relationship between this dimensionality and the bandwidth required to accommodate this set 
of signals. Specifically, we will shed new light on the generalized Nyquist criterion by 
examining it from a different perspective. In Section 2.6 we defined the subspace of signals 
spanned by a set of M known signals, and observed that this subspace is finite dimensional 
(with dimension N). Our goal is to understand better the relationship between the bandwidth 
of the signals and the dimension of the subspace. 

6.6.1. Landau-Pollak Theorem 
No signal can be both time limited and bandlimited. A bandlimited signal is not time 

limited, in the sense that its energy cannot be totally confined to any finite interval of time, and 
a time-limited function is not bandlimited, in the sense that its energy cannot be totally 
confined to a finite band of frequencies. However, it is possible for functions to be bandlimited 
and approximately time limited, or time limited and approximately bandlimited. For example, 
consider a function f( t ) that is causal and bandlimited to W Hz, and also has finite energy Ef" 
Then f( t) never goes precisely to zero beyond any fixed time to, but because it has finite 
energy it will decay gradually to zero. One way to measure the rate of that decay is to calculate 
the fraction E( to) of its energy outside the interval [0, to], where E( to) < 1. Specifically, let 

tlf(t)1 2dt=EP-E(to» . 
o 

(6.124) 

Since a fraction E( to) of the energy is outside the interval, a fraction 1 - E( to) is within the 
interval. For a causal finite-energy function f( t ), as to ~ 00, E( to) ~ O. If we define the signal 
to be approximately time limited to an interval when less than a specific fraction E of its energy 
is outside that interval, then we can always choose a large enough interval that the signal is 
approximately time limited. 

Although the signal space of all finite-energy signals is infinite-dimensional, it is also true 
that the subset of such signals that are bandlimited to W Hz and approximately time limited to 
[0, to] is approximately finite dimensional, with dimension 2Wto + 1. This statement is made 
rigorous by the Landau-Pollak theorem [10]. 

There exists a set of 2Wto + 1 orthonormal waveforms (Pi( t), such that for any (possibly 
complex-valued) finite-energy waveform f( t) with energy Ef that is bandlimited to I f I ~ W, 
for any constant 0< E < 1, and for any to sufficiently large that 



Sect. 6.6 Bandwidth and Signal Dimensionality 

tlf(t)1 2dt > EP-E), 
o 

there exists a set of 2 Wto + 1 coefficients fi such that 
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(6.125) 

(6.126) 

We can state this theorem in words as follows. If less than a fraction E of a bandlimited signal's 
energy is outside an interval [0, to], then that signal can be approximated by a linear 
combination of a set of 2Wto + 1 orthonormal waveforms with an error which has energy less 
than a fraction 12E of the signal's energy. Thus, the dimensionality of the subspace of all 
signals approximately time limited to to and bandlimited to W is approximately 2Wto + 1, in 
the sense that a small fraction of the signal's energy is outside a signal subspace of dimension 
2Wto + 1. As to increases, the fraction of energy outside this subspace (which is also growing 
in dimensionality) gets smaller. 

6.6.2. Relation to the Generalized Nyquist Criterion 

In the generalized Nyquist criterion, we made no attempt to time-limit the pulse 
waveforms hn( t) to the symbol interval T. Thus, the Landau-Pollak theorem does not apply 
directly. However, the generalized Nyquist criterion and the Landau-Pollak theorem are 
connected, and consistent with one another, as we now show. 

The key to forming the connection is to consider a sequence of L signaling intervals. 
Suppose hn( t), 0 ~ n ~ N - 1 is a set of pulses bandlimited to W Hz that satisfy the 
generalized Nyquist criterion. Generate an OPAM signal consisting of L signaling intervals: 

(6.127) 

Since s( t) is a linear combination of NL orthogonal waveforms hn(t - kT), 0 ~ n ~ N - 1, 0 
~ k ~ L - 1, it lies in an NL-dimensional subspace of signal space. It is also easy to show (see 
Problem 6-11) that under very mild conditions, s( t) is approximately time limited to [0, L1'] in 
the sense that the fraction of the energy of s( t) outside this interval goes to zero as L ~ 00. 

Thus, the Landau-Pollak theorem tells us that s( t) can be approximated by 2 WLT + 1 
orthonormal functions, with increasing accuracy as L ~ 00. This means that this 
dimensionality must be at least the actual dimensionality NL, 

2WLT+1~NL , NL-1 
W~ 2LT . (6.128) 

As L ~ 00, the Landau-Pollak theorem implies that the bandwidth required is W~ N /(2T) Hz, 
which is consistent with the generalized Nyquist criterion. 
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6.6.3. Impact of Signal Bandwidth on the Isolated Pulse 

One impact of the Landau-Pollak theorem is that the parameter 2Wto, the so-called time
bandwidth product, plays an important role for signals that are approximately time limited and 
bandlimited. For a bandlimited signal with bandwidth W, as 2Wto increases, a couple of things 
happen: 

• The fraction of the signal energy confined to an appropriate time interval of duration to 
will increase. 

• The fraction of the signal energy falling outside a 2Wto+1 dimensional subspace of 
signal space will decrease. 

When 2 Wto is small, the notion of a pulse being confined to an interval of duration to is crude 
at best. However, as 2 Wto gets large, we can design bandlirnited pulses that are, for all 
practical purposes, confined to the interval of duration to. 

The Landau-Pollak theorem considers a waveform with bandwidth Wand requires us to 
find a sufficiently large time limit to such that most of the energy of the waveform lies within 
[0, tol. An alternative approach is to hold to fixed and increase the bandwidth W, allowing the 
waveform to be increasingly confined to [0, tol. The dual notions of increasing the bandwidth 
or the time interval both arise in digital communication. 

Example 6-30. -------------------------
In spread spectrum, a single pulse h( t ) is amplitude modulated for each data symbol. The Nyquist 
criterion says that a bandwidth of 1 / (21') is required if lSI is to be avoided. In fact, in spread 
spectrum the bandwidth W is much larger (often hundreds of times), so that 2WT is very large. In 
this case, it is possible to make the pulse h( t) nearly time limited to the symbol interval T. This 
implies in turn that lSI is rarely a practical issue in spread spectrum systems. In fact, countering or 
avoiding lSI is often a motivation for using spread spectrum; the essential property is that the time
bandwidth product is very large. This issue was addressed in Section 6.4.3. 

Example~31. --------------------------
In orthogonal modulation (for example FSK), one of M orthogonal pulses is transmitted for each 
symbol. The minimum bandwidth W required to satisfy the generalized Nyquist criterion is 
W= M/(2T), or 2WT = M. If Mis large (not two or three), a side effect of this larger bandwidth 
is that the pulses can be designed to be largely confined to the symbol interval T. One advantage of 
orthogonal modulation can thus be less susceptibility to lSI. 

Example ~32. -------------------------
In multi carrier modulation, the usual perspective is that as the dimensionality of the signal set is 
increased, the bandwidth W is kept constant but the symbol interval T is increased. While the 
symbol rate is thereby reduced, a number of orthogonal pulses, each independently amplitude 
modulated with their own data symbols, can be transmitted simultaneously and separated out at the 
receiver by a bank of matched filters, keeping the spectral efficiency approximately constant. In 
fact, a maximum of N = 2WT orthogonal pulses can be defined consistent with generalized 
Nyquist criterion, and with this maximum N, the spectral efficiency is not affected by increasing N 
and T. One side effect is that the pulses can be designed to be more confined to a symbol interval, in 
this case because of the increase in T for constant W Again, the system can be less susceptible to 
lSI as a result. Often a short guard time between pulses will completely eliminate lSI. 
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6.6.4. Communication Link in a Network Context 
While communication theorists tend to focus on two perfonnance parameters, bit rate and 

error rate, a third parameter - the delay a communication link imparts - is of great 
importance when a link is incorporated in a network. This parameter is closely related to the 
Nyquist criterion and the Landau-Pollak theorem, and we now explore this relationship briefly. 

Suppose a communication link imparts a total signal delay 't from input to output. For 
example, in free space 't equals the physical length of the link divided by the speed of light. 
(The link also imparts dispersion, which we ignore for simplicity.) Taking a snapshot of time 
and looking at the signal wavefonn as a function of distance along the link, we see 't seconds 
of the past transmitted wavefonn. The Landau-Pollak theorem tells us that the number of 
orthogonal pulses that can be in transit at any given time is thus approximately 2 W't + I :::::: 
2W't. This observation is important to the design of a network (and applications utilizing the 
network), because the bits represented by these pulses in transit are latent: they have been 
generated and transmitted, but have not yet arrived. A network engineer thinks of this in tenns 
of latent bits rather than pulses, and says equivalently that the number of bits in transit equals 
the bit-rate-delay product Rb't, where Rb is the bit rate. 

An often invoked metaphor for a network is a "superhighway." This is misleading because 
the way we increase the throughput of a highway (with a fixed number of lanes) is to increase 
the speed limit. On a communication link, the "speed limit" is fixed by nature (at some large 
fraction of the speed of light), and the way to increase throughput is to make the bits 
physically smaller and closer together: increasing the transmitted bandwidth and symbol rate 
is equivalent to deceasing the space occupied on the link by individual bits and pulses (or 
decreasing the size and spacing of the vehicles on the highway). I 

From the point of view of applications, the latency of bits is less important than the latency 
of messages; that is, groups of bits that have application meaning only when taken as a group. 
For example, in a tightly coupled parallel computation, the latency of messages between 
processors (numerical values input to another part of the computation) directly affect the time 
it takes to complete an overall computation. The latency of a message on a communication 
link is the time that elapses between when that message is available to be transmitted until it 
arrives at the destination in its entirety. (Of course, networks have other sources of latency 
including queuing delay). This message latency has two components: the message transmit 
time (L/Rb seconds for an L-bit message) and the transit time 'to As we increase the 
"performance" of the link by increasing Rb (using the techniques in this book), the transmit 
time decreases but the transit time does not. Thus, there comes a point of diminishing returns 
(with respect to message latency) where the unchanging transit time dominates message 
latency; this is where the entire message occupies a small portion of the bits in transit on the 
link. The transit time thus comes to dominate the message latency perfonnance of a link, a fact 

I. Network engineers also commonly refer to the network "bandwidth," when they really mean "bit-rate throughput." This is 
confusing, because the two parameters are proportional, but the constant of proportionality (the spectral efficiency) can 
differ widely from unity. 
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that has profound implications to the future of networks and their applications. The only way 
to reduce this transit time is to make the communication link shorter, or equivalently the entire 
system smaller. 

6.7. Capacity and Modulation 

There are a number of ways of comparing different modulation techniques. The 
appropriate method depends on the context. Some of the measures of interest when making 
comparisons include: 

• The average transmitted power is limited on most media, due to physical constraints or 
regulatory fiat. On some media, peak transmitted power is also of concern. Either of 
these limitations, together with the attenuation of the medium, will limit the received 
signal power. The noise immunity of the modulation system is measured by the 
minimum received power relative to the noise power required to achieve a given error 
probability. 

• The probability of error is normally the basic measure of the fidelity of the information 
transmission. Of primary concern in some contexts is the probability of bit error, and in 
other contexts the probability of block error, for some appropriate block size. 

• The spectral efficiency is of great concern on bandwidth-constrained media, such as 
radio. The spectral efficiency is the ratio of two parameters: the information bit rate 
available to the user and the bandwidth required on the channel. 

• A measure that has not been discussed yet is the potential advantage of using coding 
techniques (Chapters 12 and 13). This advantage is different for modulation formats 
that are otherwise comparable. Coding gain is usually defined as the decrease in 
received signal power that could be accommodated at the same error probability if 
coding were used in conjunction with the modulation system. 

• An important criterion in practice, although one we do not emphasize in this book, is 
the implementation cost or design effort required to realize a given modulation system. 

The variety of measures for comparison of modulation systems makes it difficult to define one 
"standard measure of comparison." For example, for two modulation techniques, we can set 
the transmitted powers equal and compare the uncoded probability of error. However, the 
usefulness of this comparison will be compromised if the two modulation systems have 
different bandwidth requirements or provide different information bit rates for the same 
bandwidth. 

In this section, we first illustrate how to make simple comparisons of uncoded modulation 
systems, addressing specifically baseband and passband PAM. Following this, a more 
sophisticated approach (based on a "rate-normalized SNR") is developed. This approach 
allows modulation systems to be compared against the fundamental limits of information 
theory (Chapter 4) and against one another in a way that is independent of bit rate or 
bandwidth requirements. The rate-normalized SNR takes into account most of the parameters 
mentioned - transmit power, noise power, and spectral efficiency - and summarizes them in 
a single universal error probability plot that further displays the available coding gain. 
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Comparisons will be made under the following assumptions: 

• The channel is an ideal bandlimited channel with bandwidth W and additive white 
Gaussian noise with power spectral density No/2. 

• The average transmit power is constrained to be P. There is no peak power limitation. 

• Symbol error probability adequately reflects the performance of the system. Moreover, 
the union bound is sufficiently accurate as an approximation to error probability. 

6.7.1. Error Probability of PAM 

The simplest approach to comparing modulation systems is to calculate their error 
probability as a function of all the relevant parameters. A convenient approximate formula for 
the probability of symbol error (based on the union bound) for PAM is given by (6.41), which 
we repeat here, 

P "" K. Q(dmin) 
e 20 ' (6.129) 

where dmin is the minimum distance between any pair of alphabet symbols, K is the average 
number of nearest neighbors at that distance, and 0 2 = No/2. Let W denote the signal 
bandwidth, E denote the average signal energy, and T denote the symbol interval, so that the 
signal power is P = EIT. We will find it convenient to rewrite the error probability in terms of 
SNR = PI (No W) as follows: 

(6.130) 

where we have introduced: 

(6.131) 

This formula applies to any PAM system, as long as the effect ofISI is ignored, and expresses 
Pe in terms of the received SNR, dimensionality 2WT, and a parameter of the signal 
constellation, 11A- Often it is desired to express the probability in terms of the spectral 
efficiency, which is 

(6.132) 

where M is the number of points in the signal constellation. 

It is instructive to determine 11A for two standard constellation designs. 

Example~33. -----------------------------------------------------
For a baseband PAM constellation with M equally spaced points, let M be even and let the 
constellation consist of odd integers. Thus, 51 = {(2m -1), 1 - M 12 ~ m ~ M 12}, and the 
minimum distance is dmin = 2. Assuming all the points in the constellation are equally probable, 
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the variance is (calculating the average-squared valued of only the positive points, taking advantage 
ofsyrrunetry) 

E = ! ~M 12 (2m _ 1)2 _M2 - 1 
M L.Jm = 1 --3- (6.l33) 

Substituting into (6.l31), and using (6.l32), 

(6.l34) 

Example~34. ---------------------------------------------------
For a passband PAM L X L square constellation with M = L2 points, and again using odd integers 
on each axis, the minimum distance is again amin = 2, and the variance for equally probable points 
can be shown to be E = 2 (M -1)/3. Substituting into (6.l31) and (6.l32), 

(6.l35) 

In both the baseband and passband cases, as the number of points in the constellation 
increases, or equivalently the spectral efficiency increases, TlA gets smaller and as expected, 
from (6.130) we must increase SNR to hold Pe fixed. 

It is useful to determine Pe when the highest possible symbol rate consistent with the 
Nyquist criterion is used, since this will maximize the SNR and minimize Pe. For the 
baseband case, the maximum symbol rate is 1 IT = W, and hence 2 WT = 1. For the passband 
case, a passband channel with bandwidth W corresponds to a complex baseband channel with 
bandwidth W 12, and thus the maximum symbol rate is 1 IT = Wor 2WT = 2. Expressed in 
terms of SNR and v, the resulting Pe is the same for both cases, 

(6.l36) 

This is a "universal" formula that applies to both baseband and passband PAM systems with 
square QAM constellations and the maximum possible symbol rate. 

It is difficult to compare modulation systems that have different bit rates or spectral 
efficiencies. The universal formula for Pe in (6.136) gives a hint as to a possible approach, 
since it shows that, when expressed in terms of spectral efficiency, all baseband and passband 
square QAM constellations are equivalent. Another simplification of this formula is that Pe 
does not depend on SNR or v individually, but only through the ratio SNRI (2v -1). It is 
helpful, therefore, to define a new parameter SNRnorm' which is called the rate-normalized 
SNR, as 

(6.l37) 

Now, the Pe is a function of only two parameters, K and SNRnorm' 
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(6.138) 

Two square baseband or passband QAM constellations with the maximum symbol rate and the 
same SNRnorm will have approximately the same Pe' 

The utility of (6.138) is that it expresses very succinctly Pe for a variety of PAM systems, 
including baseband, passband, and different bit rates and symbol rates. The simplicity of this 
result leads us to speculate that there may be something fundamental about this tradeoff 
between SNR and v expressed in SNRnorm. Indeed there is, although we will have to take a 
diversion, calculating the capacity of the channel, to uncover it. 

6.7.2. Capacity of the Ideal Gaussian Channel 

Two approaches to comparing modulation systems operating over the same channel are 
first, to compare them directly, or second, to compare them against the fundamental limits of 
channel capacity (Chapter 4). The channel capacity tells us the maximum bit rate (or 
equivalently spectral efficiency) that can be obtained on the underlying channel. Comparing 
against capacity has a couple of benefits. First, it gives an indirect comparison of the systems 
against one another. Second, the comparison against fundamental limits gives us a valuable 
benchmark, because it indicates the maximum possible benefits of doing channel error
correction coding (Chapters 12 and 13). 

The capacity of an ideal bandlimited Gaussian channel with additive white Gaussian noise 
will now be derived, and subsequently compared against the spectral efficiency of several 
modulation techniques operating over this same channel. A general way to compare a given 
modulation system against this capacity, based on the rate-normalized SNR already 
encountered in QAM modulation, will be uncovered. 

The frequency response of an ideal channel with bandwidth W Hz is shown in Fig. 6-28 
for two cases, baseband and passband. The convention is that the bandwidth of the channel is 
W in both cases. This implies that the baseband channel is equivalent to the passband channel 
for the specific carrier frequency fc = W / 2. Intuitively, we would not expect the carrier 
frequency to affect the capacity of the channel, since the noise is white, and thus we expect the 
capacity of the two channels in Fig. 6-28 to be identical. In fact, that is the case. 

We are interested in calculating the capacity C of these two channels, where capacity has 
the units bits/sec. Thus, C can be directly compared to the bit rate achieved by a given 
modulation system. The capacity is calculated under a transmitted power constraint, so that the 

(a) I 11 
I -----+---.--~~-----f 

-w 0 W 

(b) Fg Fgl 
-fc 0 fc 

Fig. 6-28. An ideal bandlimited channel with bandwidth W for the (a) baseband, and (b) passband, 
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transmitted signal is constrained to have power P. Also of interest is the spectral efficiency v, 
which has the units of bits/ sec-Hz. We define v c as the spectral efficiency of a system 
operating at the limits of capacity, and thus 

Vc =CIW. (6.139) 

The channel coding theorem (Chapter 4) says that a certain spectral efficiency v c can be 
achieved with transmit power P in the sense that an arbitrarily small probability of error can be 
achieved by some modulation and coding scheme. Further, it says that if you try to achieve a 
higher v at this P, the probability of error is necessarily bounded away from zero for all 
modulation and coding schemes. The tradeoff between v c and P as quantified by the channel 
capacity theorem is thus a fundamental limit against which all modulation systems can be 
compared. 

The capacity of the ideal channels in Fig. 6-28 with additive white Gaussian noise is 
simple to calculate using the capacity of a vector Gaussian channel (Chapter 4). We will do the 
calculation for the baseband case since it is slightly easier, although the passband case is also 
straightforward (problem 6-20). Utilizing the Landau-Pollak theorem (Section 6.6.1) and an 
orthogonal expansion of the signal subspace, any transmitted signal with bandwidth W Hz can 
be approximately represented in a time interval of length T by 2 WT orthonormal waveforms, 
with increasing accuracy as T~ 00. From Section 6.1.2, the minimum-distance receiver will 
generate a set of 2WT decision variables, by (6.21), 

r=s+n, (6.140) 

where s is the 2 WT-dimensional vector of signal components, and n is a vector of Gaussian 
independent noise components, each component having variance 0"2 = No/2. In this case, 
since the signal, noise, and channel are real-valued, all vectors in (6.140) are real-valued. 

The capacity of channel (6.140), consisting of an N-dimensional real-valued vector signal 
in real-valued vector Gaussian noise, with total signal variance E and noise variance per 
dimension 0"2 = No/2, is given by (4.36), 

N CVG = "2log2 (1 + SNR) , SNR=EI;' . 
cr 

(6.141) 

This is the capacity for a single use of the vector channel, or equivalently the capacity for the 
continuous-time channel over a time interval of length T. The signal-to-noise ratio SNR is 
defined as the ratio of the total signal variance to the total noise variance. 

The constraint that the transmitted power is P implies that the average transmitted energy 
in time interval T must be PT, and thus 

(6.142) 

Defining CT as the capacity for time interval T, with this power constraint, 
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PT P 
SNR = WTN. = No W . 

o 0 
CT = WT· log2(1 + SNR) , (6.143) 

In this case, SNR can again be interpreted as signal-to-noise ratio, since the numerator P is the 
total signal power at the channel output, and the denominator is the total noise power within 
the signal bandwidth (the noise spectral density No/2 times the total bandwidth, which is 2W 
for positive and negative frequencies). 

The capacity per unit time is 

C = CT/T = W· log2(1 + SNR) bits/sec. (6.144) 

This expression for the capacity of a bandlimited channel is known as the Shannon limit. 
Alternative proofs and interpretation of this result are given in [11][12]. 

Fundamental Limit in Spectral Efficiency 

The spectral efficiency is the bit rate per unit time (capacity) divided by the bandwidth, 
and thus the maximum spectral efficiency predicted by the channel capacity is 

v c = C / W = log2(1 + SNR) bits/ sec -Hz. (6.145) 

If V is the spectral efficiency of any practical modulation scheme operating at signal-to-noise 
ratio SNR, then we must have v $ v c' 

Rate-Normalized Signal-to-Noise Ratio 

Rewriting (6.145) in a different way, if a modulation system is operating at the limits of 
capacity with signal-to-noise ratio SNR and spectral efficiency v c' then 

SNR =1. 
2v'-1 

(6.146) 

This relation has a striking similarity to SNRnorm defined in (6.137), and SNRnorm was shown 
in (6.138) to largely determine Pe for a rectangular baseband or passband QAM constellation. 
The only difference is that v, the spectral efficiency of the PAM modulator, is substituted for 
v c' the spectral efficiency at capacity limits. The combination of (6.138) and (6.146) suggests 
that SNRnorm is a fundamental and useful parameter of a modulation system [13]. In fact, 
since v $ v c for a system operating short of the capacity limit, 

2v'-1 SNRnorm = -- ~ 1 
2v-l 

(6.147) 

This is another way of expressing the Shannon limit on the operation of a given modulation 
system; if the modulation system operates at signal-to-noise ratio SNR with spectral efficiency 
v, and the corresponding SNRnorm > 1, then there is nothing fundamental preventing that 
system from having an arbitrarily small Pe' (If it has a large Pe, that is only because it is falling 
short of fundamental limits). Conversely, if SNRnorm < 1, the Pe of the system is necessarily 
bounded away from zero, because the parameters of the system (SNR and v) are violating 
Shannon limits. In this case, the capacity theorem does not prevent Pe from being small, but it 
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does guarantee that there is nothing we could do (like adding error-control coding) to make Pe 
arbitrarily small, short of changing the parameters SNR and/or v. Thus, SNRnorm > 1 is the 
region where we want to operate on an ideal bandlimited white Gaussian noise channel. 

It is useful to plot the relationship between SNR and SNRnorm' where both are expressed 
in dB, as in Fig. 6-29. Taking the logarithm of (6.137), 

SNRnorm,dB = SNRdB - f).SNRdB , (6.148) 

At large spectral efficiencies, the unity term can be ignored, and f).SNRdB approaches an 
asymptote of f).SNRdB :::: 3v. Thus, for a hypothetical high spectral efficiency system operating 
at the limits of capacity, 3 dB of additional SNR is required to increase spectral efficiency by 
one bit/sec-Hz. At low spectral efficiencies, a larger increase in SNR is required. Remarkably, 
PAM systems with square QAM constellations operating at a constant Pe > 0 obey exactly the 
same tradeoff between V and SNR, as indicated by (6.138). (Although the tradeoff is the same, 
they will require a higher absolute SNR to achieve a reasonable Pe' as will be seen shortly.) 

For any modulation system, the gap (usually expressed in dB) between SNRnorm and 
unity (the minimum value of SNRnorm) is a measure of how far short offundarnentallimits the 
modulation scheme falls. Specifically, it is a measure of how much the transmitted power (or 
equivalently the SNR) must be increased to achieve a given spectral efficiency, relative to the 
lower bound on transmitted power (or SNR) predicted by capacity. The usefulness of 
SNRnorm is that it summarizes SNR and v in a single parameter, and the Shannon limit is very 
simply expressed in terms of SNRnorm' 
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Fig. 6-29. The difference between SNR and SNRnorm in dB plotted against spectral efficiency. The 
"asymptote" is the same relationship ignoring the "1 +" term. 



Sect. 6.7 Capacity and Modulation 267 

6.7.3. Using Normalized SNR in Comparisons 
While SNRnorm = 1 corresponds to a hypothetical system operating at capacity, all 

practical modulation schemes will have a non-zero error probability for all values of SNRnorm' 

A useful way to characterize Pe is to parameterize it on SNRnorm' because SNRnorm expresses 
both SNR and v in a single parameter, and because the Shannon limit is so simply 
characterized in terms of SNRnorm' In this section we illustrate how the symbol error 
probability Pe can be calculated as a function of SNRnorm for different modulation techniques. 
This relationship gives us several types of information: 

• Comparisons can be made between different modulation techniques. For two 
modulation systems operating at the same Pe (as approximated by the union bound, and 
ignoring the effect of the error coefficient K), and at the same spectral efficiency, if the 
superior modulation system allows SNRnorm to be 3 dB lower, then it allows 3 dB 
lower transmit power. Alternatively, if the two systems are operating at the same SNR, 
then the superior system will operate at a spectral efficiency that is one bit! sec-Hz 
higher (asymptotically at high v). 

• Comparisons can be made between a modulation system and fundamental limits. At a 
given Pe and v, the difference between SNRnorm and unity (usually expressed in dB) 
tells us how far the modulation system is operating from fundamental limits, in the 
sense that it is requiring a higher SNR or lower v to achieve the same spectral 
efficiency. This quantifies, for example, the ultimate potential benefit of adding error
correction coding to the system (Chapters 12 and 13). 

• Reasonable comparisons between modulation systems operating at different 
information bit rates and spectral efficiencies can be made. For example, we might want 
to compare two schemes utilizing the same bandwidth but having a different number of 
points in the constellation (and hence different spectral efficiency). Comparing them 
each against the Shannon limit is an indirect way of comparing them against each other. 

We are interested in a wide range of error probabilities (some applications are more 
demanding than others), and thus it is useful to plot the functional relationship between Pe and 
SNRnorm' and compare to capacity (SNRnorm = 1). This will now be illustrated for several 
modulation systems. 

Baseband and Passband PAM 

Earlier in this chapter we found that the symbol-error probability for baseband and 
passband QAM (as well as for GPAM) was (6.130), where the parameter llA is given by 
(6.134) (baseband case) and (6.135) (passband case). Expressing Pe in terms of SNRnorm' 
rather than SNR, (6.130) can be rewritten as 

(6.149) 

where 

(6.150) 

This assumes that the bandwidth on the channel is the minimum consistent with the Nyquist 
criterion. For the baseband case, from (6.134), 
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d~in(2V -1) 
YA = 4E ' (6.151) 

and for the passband case, from (6.135), 

d~in(2V -1) 
YA = 2E (6.152) 

Example 6-35. -------------------------
For square QAM constellations, as shown in (6.138), the remarkably simple result is that YA = 3. 
This holds for all cases where the number of points in the constellation is even (baseband case) or 
the square of an even number (passband case). 

For other PAM constellations, YA is a parameter of the constellation that is independent of 
scaling, but is a function of the geometry of the constellation. Remarkably, the Pe of any PAM 
constellation across a wide range of SNR's, is accurately summarized in this single parameter 
YA- It can be determined directly from (6.151) or (6.152). The error coefficient K is also 
relevant, although much less important. 

We can plot Pe vs. SNRnorm under different conditions, and get a set of universal rate
normalized curves. First, in Fig. 6-30, YA is held fixed (at YA = 2), and K is varied. This set of 
curves has several interesting interpretations. First, it shows how large an SNRnorm is required 
to achieve a given error probability for these assumed parameters. As expected, the required 
SNRnorm increases as Pe gets smaller. The Shannon limit dictates that SNRnorm > 1, or 0 dB. 
Since the channel capacity theorem guarantees the feasibility of achieving any (arbitrarily 
small) error probability, it is theoretically possible to achieve any point on the 0 dB SNRnorm 
axis; conversely, since SNRnorm ;:: 1, the probability of error will be theoretically bounded 

10-5 
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Fig. 6-30. A plot of p. vs. SNRnorm for passband PAM assuming YA = 2 and three typical values of K. 
This illustrates that K has a relatively minor effect on the error probability. 
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away from zero at any point to the left of the 0 dB SNRnorm axis. In this sense, the 0 dB axis 
represents the limit on deliverable performance as dictated by Shannon limit. At a given Pe the 
horizontal distance between the 0 dB SNRnorm axis and the curve, labeled "SNR gap to 
capacity;' represents the increase in SNRnorm required relative to capacity. Also, the 
horizontal distance between two curves represents the difference in SNRnorm required for two 
different signal constellations to achieve the same Pe. This gap can be made up in one of two 
ways: operate the system at a higher SNR, or at a lower v. 

By definition, the SNR gap to capacity goes to zero as SNRnorm ~ 1. What may be 
surprising is that Pe can be small (like 10-1) at this crossover point, or even for SNRnorm < l. 
Doesn't the channel capacity theorem rule out any useful operation for SNRnorm < I? Two 
points should be made about this behavior. First, since the error probability is based on the 
union bound, it is generally not wise to trust these quantitative results at low SNR (high Pe), 
except for modulation schemes for which the union bound is exact (such as binary antipodal 
signaling). Second, although it would be tempting to assert that the channel capacity tells us 
something specific about the error probability of any modulation scheme operating at 
SNRnorm < 1, in fact it only asserts that in this region the error probability is bounded away 
from zero. It does not tell us what that bound is. Thus, the channel capacity theorem does not 
rule out any non-zero error probability at the point where SNRnorm = l. 

In Fig. 6-30 the effect of K on SNRnorm is small, emphasizing that K has a relatively 
minor influence on Pe. The effect of YA is much more significant, as illustrated in Fig. 6-3l. 
The major factor distinguishing different signal constellations is YA- We will calculate YA for a 
couple of cases to illustrate this. 

10-5 

SNR GAP 10 CAPACITY 

10-10 

K=4 

o 10 

NORMALIZED SNR. SNRnorm. dB 

Fig. 6-31. A plot of Pe vs. SNRnorm for passband PAM, assuming K = 4 and different values ofYk 



270 ADVANCED MODULATION CHAP. 6 

Example~36. ---------------------------------------------------
All rectangular QAM constellations are equivalent, in the sense that they require the same 
SNRnorm to achieve a given error probability. That tradeoff between SNRnorm and Pe is the YA = 
3 curve in Fig. 6-31. For example, at an error rate of Pe = 10 -6, the SNR gap to capacity is about 
9 dB, independent of the size of the constellation. However, at a fixed Pe, square QAM 
constellations do require different unnormalized SNR's, since for the passband case 

SNR = SNRnorm . (2v - 1) = SNRnorm . (M - 1) . (6.153) 

As M increases, the SNR must increase in proportion to M -1 because of the need to increase 
the signal power to maintain the same minimum distance. Looking at it another way, as the 
spectral efficiency v increases, the SNR must be increased in proportion to (2v - 1). 

Example~37. ---------------------------------------------------
For a PSK signal constellation, all the points fall on the unit circle, and thus E = 1 independent of 
the distribution of signal constellation points. It is straightforward to show that dmin = 2sin(nl M), 
and thus, 

YA = 2(M - 1)sin2(nl M) . (6.154) 

In this case, YA is strongly dependent on M, in contrast to rectangular QAM. This dependence is 
plotted in Fig. 6-32, where the largest YA is 3, the same as rectangular QAM, for M = 3 and M = 4. 
Thus, the SNR gap to capacity for PSK is the same for 3-PSK and 4-PSK as it is for rectangular 
QAM. The equivalence at M = 4 is obvious, since 4-PSK is in fact a square QAM constellation. 
Both 2 -PSK (binary antipodal) and M-PSK for M> 4 are inferior to rectangular QAM in the 
sense that they require a larger SNRnorm to achieve the same Pe (higher SNR at the same V or 
lower vat the same SNR). In the case of2-PSK, which is equivalent to binary antipodal signaling, 
its gap is larger than QAM because it is a passband PAM system that fails to use the quadrature axis 
(we have shown previously that a baseband PAM binary antipodal constellation has YA = 3). 

The SNR gap to capacity for PSK increases rapidly at a given Pe as M increases. Intuitively, 
this is because PSK does not efficiently pack the circularly-shaped constellation with a regular 
grid of points, and thus suffers in spectral efficiency as compared to square QAM 
constellations. We can also plot the Pe directly, as shown in Fig. 6-33, for different M, taking 
into account the corresponding K. M = 4 has the smallest gap (equivalent to rectangular 
QAM), and M = 2 and 8 have roughly the same gap (because the VA is about the same, as seen 
in Fig. 6-32). Choosing large values of M for PSK results in significantly poorer performance. 

If it is desired to compare two constellations against one another analytically, the simplest 
approach is to set the arguments of Q( . ) to be equal, which ignores the effect of K. In other 
words, compare their VA-

Example 6-38. ---------------------------------------------------
To compare rectangular QAM against PSK, set 

3 . SNRnorm,QAM = 2(M - 1) . sin2(nl M) . SNRnorm,PSK (6.155) 

to yield 
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SNRnorm PSK 3 

SNRnorm,QAM - 2(M -1)sin2(nIM) 
(6.156) 

This relationship is plotted vs. M in Fig. 6-34 in dB. The penalty in SNRnorm for using PSK is 
shown as a function of M. For any M greater than four, PSK requires a higher SNR to achieve a 
similar error probability. All values of M are squares of even integers, which are the only square 
QAM constellation sizes. 

Spread Spectrum 

Our examples of the SNR gap to capacity for PAM thus far have presumed that the 
maximum feasible symbol rate in relation to channel bandwidth is used. In spread spectrum, a 
much lower symbol rate is used, and the SNR gap to capacity will expand accordingly. We can 
quantify this effect as follows. Considering the bandpass case, from substituting (6.135) into 
(6.130), 

K=1 

10 12 14 16 

Fig. 6-32. The relationship of YA to M for the PSK constellation. The cases M = 3 and M = 4 have the 
smallest SNR gap to capacity. 

10 

NORMALIZED SNR. SNRnonn. dB 

Fig. 6-33. p. vs. SNRnorm for a PSK constellation and several values of M. 
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(6.157) 

where the additional factor is 

(6.158) 

Since v is a function of WT, it is useful to express Yss in tenus of M, the number of points in 
the constellation, 

_ WT· (MlI(WT) -1) 
Yss- M-1 (6.159) 

For the maximum symbol rate, 2WT = 2 and Yss = 1. More generally, however, Yss < 1, 
forcing SNRnorm to be larger for the same Pe and increasing the SNR gap to capacity. This 
implies that coding is more beneficial in spread spectrum systems. 

Exercise 6-9. 
Show that as WT ~ 00, Yss ~ OogeM)/(M - 1). 

The effect ofyss is to increase the SNR gap to capacity. Asymptotically, the gap is increased 
by (M - 1) /logeM for a signal constellation of size M. For M = 4, the smallest M for which the 
fonuula for YA is valid, the SNR gap to capacity is increased by 3/loge 4 = 2.16 (3.3 dB). 

Penalizing spread spectrum in its SNR gap to capacity, although understandable in tenus 
of its reduced spectral efficiency, is unfair when we realize that multiple spread spectrum 
signals can coexist within the same bandwidth, as in code-division multiple access. The 
increase in SNR gap to capacity calculated here is for a single spread spectrum signal 
occupying the bandwidth. Also, these results are for white noise with fixed power spectral 
density on the channel, which is not always the context in which spread spectrum is used. 
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Fig. 6-34. The penalty in dB for PSK in comparison to QAM. vs. constellation size M. when M is an 
even power of 2. 
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Orthogonal Modulation 

The symbol error probability for orthogonal modulation was found in (6.45) to be: 

(6.160) 

where E = PT is the energy per signaling interval T, and P is the signal power. But the 
minimum bandwidth for M-ary orthogonal modulation is W = M I (2T), so that: 

P 2 E 
SNR=- =-'NoW M No' 

(6.161) 

Furthermore, as shown in Section 6.3, the spectral efficiency of orthogonal modulation is 

log2M2 
v=~ (6.162) 

Thus, rewriting (6.160) in terms of SNRnorm = SNR/(2v -1) yields: 

Pe :::; (M - 1) . Q(Jy MSN~orm) , (6.163) 

where 

(6.164) 

As M gets large, the factor YM increases monotonically, which reduces the error probability, 
but the multiplier M - 1 increases it. The resulting error probability is plotted for several 
values of M in Fig. 6-35; the net effect is that the gap to capacity decreases as M increases. 

10-2 

10"" 
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10-10 
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NORMALIZED SNR, SNR,.,m, (dB) 

Fig. 6-35. Pe vs. $NRnorm for orthogonal modulation for several values of M. where M is the 
dimensionality. 
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From Fig. 6-35 it appears that orthogonal modulation gives similar performance to QAM, 
in the sense that the SNR gap is similar. However, as we will see in Chapter 12, there are 
known ways to use channel coding to "shrink the gap" in the case of PAM, but there is no way 
to do this directly with orthogonal modulation. 

6.S. Further Reading 

The geometric approach to estimating the error probability of modulation systems was 
originally inspired by the text by Wozencraft and Jacobs [14], which remains recommended 
reading. The approach to comparing modulation systems used here, based on the normalized 
signal-to-noise ratio, was heavily influenced by [13]. Spread-spectrum is covered in some 
detail in the digital communications textbooks by Proakis [IS], Cooper and McGillem [16], 
and Ziemer and Peterson [17]. Our coverage has relied heavily on two excellent tutorial 
articles [7][18]. 

More detailed information about FSK can be obtained from Proakis [15] and Lucky, Salz, 
and Weldon [2], both of which derive the power spectrum of continuous-phase FSK signals. 
For tutorials on MSK, we recommend Pasupathy [19] and Haykin [20]. The relationship 
between MSK and QPSK modulation is described in detail by Gronemeyer and McBride [21] 
and Morais and Feher [22]. For a more general treatment of continuous-phase modulation, see 
[23]. An excellerit treatment of noncoherent and partially coherent modulation is given by 
Simon, Hinedi, and Lindsey [24]. 

Multicarrier modulation dates back to the 1960s, with early work carried out by Chang 
[3], Saltzberg [25], Powers and Zimmerman [26], and Darlington [27]. The use of the DFT to 
construct the transmitted signal is described by Weinstein and Ebert [28] and Hirosaki [5]. 
Kalet [29] and Ruiz, Cioffi, and Kasturia [30J considered the design of the symbol sets and 
allocation of bit rates when the channel is distorted, with the latter applying coset coding 
(Chapter l3). The technique has been applied to the voiceband data channel [31], the high
speed digital subscriber loop (HDSL) channel [32][33], wireless LANs, and the magnetic 
recording channel [34]. 

Appendix 6-A. 
The Generalized Nyquist Criterion 

In this appendix, we first show that a bandwidth of N/(2T) is required to satisfy the 
Nyquist criterion, 

(6.165) 
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Then we demonstrate a class of practical pulse shapes that satisfy the criterion with a 
bandwidth close to the minimum. 

Proof of Necessity 

In (6.52) and Fig. 6-8 we showed a pulse set with bandwidth NI(2T) that meets the 
criterion. This shows that the a bandwidth of N I (2T) is sufficient. We will now show that it is 
also necessary. 

The left side of (6.165) is a periodic function of f with period 1/ T. Consequently, we need 
only verify (6.165) for f E [-1/(2T), 1/(2T)]. (If hn(t) is real for all n, then we need only 
verify (6.165) for E [0, 1I(2T)]. By conjugate symmetry of Hn(f) it is automatically satisfied 
for the rest of the range.) Assume that all pulses hn( t) for each ° ~ n ~ N - 1 lie within the 
frequency range if! ~KI(2T) for some arbitrary integer K (we already know that the 
generalized Nyquist criterion can be met with bandlimited pulses). Then the summation in 
(6.165) becomes finite, so for fE [-1I(2T), 1I(2T)], 

~L::-MI Hn(f - ~)Ht*(f -~) =81- n , (6.166) 

where MI and M2 are integers that depend on K. Specifically, we want to make them as small 
as possible while maintaining the equivalence of (6.166) and (6.165). We require that the 
range [f- MIlT, f + M2/TJ be at least as large as the total bandwidth of the pulses -KI(2T), 
KI(2T)] for eachfE [-1/(2T), 1/(2T)]. IfKis odd, then the smallest values areMI =M2 = 
(K - 1) I 2, so there are K tenns in the summation. If K is even, we can use different values of 
MI andM2 in the rangesfE [-1I(2T), 0] andfE [0, 1I(2T)]. For fE [-1I(2T), 0], we can use 
MI = (KI2) -1 and M2 = K12. In the latter range we can use MI = KI2 and M2 = (KI2) - 1. 
In all cases, the number of terms in the summation is MI + M2 + 1 = K. 

For each fixed f, define a vector Hn(f) consisting of the K tenus in the summation, Hn(f
miT» for m =-Mv ... , M2. The dimensionality of Hn(f) is K. (If real-valued pulses are 

desired, then f can be restricted to the interval f E [0, 1I(2T)] with the constraint Hn(-f> = 
Hn(f)*.) Now we can write (6.166) as 

~Hn(f)1Hl(f)*=81-n' -1!(2T)~f~/(2T), n,lE{0,1, ... ,N-1}, (6.167) 

where Hn(fl is the transpose of Hn(f). Thus, the generalized Nyquist criterion can be 
satisfied if, for eachf E [-1I(2T), 1/(2T)], a set of N orthogonal equal-length K-dimensional 
Euclidean vectors Hn(f), n E to, 1, ... , N -I}, can be found. Clearly, N orthononnal vectors 
can be found iftheir dimensionality is at least N, or K~ N, and cannot be found for smaller K. 
Thus, a bandwidth of N I (2T) will suffice, as confinned by the earlier example. 

We have argued that for N orthononnal pulses bandlimited to an integer mUltiple of 
1/(2T), the multiple must be K~ Nto satisfy (6.166). Choosing the minimum value, K = N, 
we can now show that the entire bandwidth [-NI(2T), NI(2T)] must be used. Thus we prove 
that the bandwidth cannot be reduced further from N/(2T). Specifically, note that if there is 
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any value of f in this interval where all N vectors are zero-valued, then (6.167) cannot be true. 
To see this, define the NxKmatrix H(f) where row n is Hn(fl', and note that (6.167) is 
equivalent to 

f H(f)H(f)* = I (6.168) 

for all f E [-I/(2T), 1/(2T)], where H(f)* is the conjugate transpose and I is the identity 
matrix. Hence H(f) must have full rank. Furthermore, when N = K, the matrix is square, so 
this implies that each component of the vectors Hn(f) must be non-zero for some n 
E {O, 1, ... , N -I}, or else H(f) would have an all-zero column. This in turn implies that 
Hn(f) *' 0 for some n E {O, 1, ... , N -I} for every f E [-N/(2T), N/(2T)]. Thus, we arrive at 
the following theorem: 

Theorem 6-1. The minimum aggregate bandwidth required to satisfy the generalized Nyquist 
criterion is N / (2T). More precisely, if a set of pulses is constrained to lie within a bandwidth 
of N /(2T), then the pulses collectively fill this bandwidth, leaving no gaps. If the bandwidth 
is lowpass (it need not be), then for every f E [-N /(2T), N /(2T)], Hn(f) *' 0 for some 
n E { 0, 1, ... , N - I}. Conversely, there exist sets of pulses satisfying the generalized Nyquist 
criterion with aggregate bandwidth N / (2T). 

For N> 1, the minimum-bandwidth set of pulses is not unique. To see this, note that if H(f) 
satisfies (6.168), then UH(f) will also satisfy (6.168) for any unitary matrix U (see Problem 6-
7). (A matrix U is unitary ifU -1 = U*, where U* is the conjugate transpose.) 

For the four pulses shown in Fig. 6-8, if we simply number them left to right, then in the 
rangefE[0,1/(2T)], 

[0 ° 1 0] ° 1 ° 0 H(f) = JT 0 0 0 1 ' 
1 000 

(6.169) 

which satisfies (6.168). In the range f E [-1I(2T), 0] the matrix is similar, but not identical. 
These pulses, which are non-overlapping in the frequency domain, illustrate the possibilities, 
but are not practical due to the discontinuity in the frequency response at the band edge. What 
is needed is a set of pulses that have gradual rolloff, and thus overlap one another in the 
frequency domain. 

A Practical Pulse Set With Minimum Bandwidth 

The pulse set in (6.52) is not practical to implement because the pulses are ideally 
bandlimited. In Section 6.3.4 we generalized (6.52) to 

hn(t) = w(t)cos«n + %)ntlT) , (6.170) 

where w(t) is a pulse with I W(f) I chosen so that w( t) * w(-t) satisfies the ordinary Nyquist 
criterion for symbol rate 1I(2T), half the desired symbol rate [3]. We allow the bandwidth of 
w(t) to be as high as 1I(2T), twice its theoretical minimum, allowing gradual rolloff in the 
frequency domain. While the magnitude of W( f) is specified so that each pulse satisfies the 



The Generalized Nyquist Criterion 277 

ordinary Nyquist criterion, we will now show how to select the phase of W(f) so that pulses 
hn(t) are mutually orthogonal and satisfy the generalized Nyquist criterion. 

We need to show that (6.165) is satisfied for / =t n. Since W(f) is bandlimited to 1I(2T), 
hn(t) and hn + 1 (t) have a 50% overlap in the frequency domain, but hn(t) and hz(t) do not 
overlap for 1 n - /1 ~ 2. Thus (6.165) holds trivially for 1 n - /1 ~ 2. 

The only case left is l = n + 1. We will now show that, for any w(t) * w(-t) satisfying the 
Nyquist criterion (with respect to symbol rate 1I(2T», the phase of W(f) can be chosen such 
that hn(t) and hn+1(t) satisfy (6.165). 1 Hn(f) 12 and IHn+l(f)1 2 are plotted in the 
Fig. 6-36(b), where without loss of generality it is assumed that n is even. The interval f E [0, 
1/(2T)] is highlighted, as are all translates of this interval by 11 T that overlap the spectra in 
question. We see immediately that there are two cases to consider, f E [0, 11(41)] and f 
E [11(41), 1I(2T)]. In the first case, at all translates by liT, one or the other of Hn(f) and 
Hn+1(f) is zero, and thus their inner product must be zero. For the second case, both Hn(f) 
and Hn+1(f) have non-zero coordinates for exactly two of the translates by kT, and for those 
two translates the vectors are, using the fact that W*( -f ) = W(f) (since w( t) is assumed real
valued), for the interval f E [11(4'1'), 1I(2T)], 

Hn(f) = [W*(3/(41) - f>, W(f-1I(41)] (6.171) 

Hn + 1(f) = [W(f- 1/(41), W*(3/(41) - f)] . (6.172) 

All the zero components of both vectors are omitted, since they will not affect the inner 
product between the two vectors. The inner product between Hn( f) and Hn+ 1 (f) will be zero 
if 

Re{W(f - 1/(41)W(3/(41) - f)} = 0, fE [1/(41), 1I(2T)] . (6.173) 

Changing variables, this can be written 

Re{W(f)W(1/(2T)-f)} =0 , fE [0,1/(41)] . (6.174) 

This condition can be satisfied by adjusting the phase of W( f) to have a particular symmetry 
about 1/(41). An example showing how to do this is included in Section 6.3.4. 
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Fig. 6-36. An orthonormal pulse set overlapping in the frequency domain. a. The magnitude-squared of 
a pulse satisfying the Nyquist criterion at the output of a matched filter, with respect to rate 11 (2T). 
b. The magnitude-squared of two pulses overlapping one another in the frequency domain. 
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Problems 

Problem 6-1. 

(a) Show that the binary FSK pulses given in (6.50) are orthogonal when 

f2-h=lIT 

andh +f2 =KITforsomeintegerK. 

(b) Show that they are also orthogonal when 

f2 - f1 = 1/(2T) 

and h + f2 = KI (2T) for some integer K. 

CHAP. 6 

(6.175) 

(6.176) 

Problem 6-2. Consider the binary CPFSK with pulses given by (6.114) and shown in Fig.6-24(c). 
Assume the nominal carrier frequency satisfies 

(6.177) 

for some integer K. Show that the frequency spacing ofMSK signals (6.113) is the minimum frequency 
spacing that results in orthogonal pulses. 

Problem 6-3. Consider designing an MSK transmission system with N = 8 pulses of different 
frequencies. Suppose that the lowest frequency is fo = 10 MHz. Also suppose that the symbol interval is 
T = Ills. Find h through f7. 

Problem 6-4. In this problem we show that an MSK signal can be described as an offset-keyed PSK 
signal with half sinusoidal pulse shapes. 

(a) Show that (6.117) can be written 

x( t} = cos(2nfct) L.; = _~ hSin(:~) wet - kT) 

(6.178) 

where Qk = cos(<l>0 and Ik = bkcos(<l>0. This is close to a passband PAM form, but more work is 
required. 

(b) Show that if k is even then Qk = Qk _ h and if k is odd then Ik = Ik -1' Hint: Use (6.118). 

(c) Use parts (a) and (b) to show that 

x( t) = cos(2nfct)Lk evenp(t - kT)(-li 12 Ik 

+ sin(2nfct)Lkodd pet - kT)(-I)(k+1)/2Qk ' (6.179) 

where pet) =sin(:~) (w(t) + w(t- T» (6.180) 
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is one half of one cycle of a sinusoid. This is a passband PAM signal with pulse shape p(t) 
(which extends over 21). Notice however that since one of the summations is over even k and the 
other is over odd k, the in-phase and quadrature parts of the signal are offset from one another by 
T The symbol rate is 1I(2T), the in-phase symbols are (-1)kI2Ik for even k, and the quadrature 
symbols are (_1)(k+l)/2Qk for odd k. 

Problem 6-5. Show that if Acos(2nfct) is fed into an ideal phase splitter to produce a complex output 
signal, that the magnitude of the complex output signal is the constant A/2. Hence, the amplitude of a 
sinusoid (its envelope) can be found using the structure in Fig. 6-15(a). 

Problem 6-6. Consider the OPAM modulation of (6.76). Suppose you are to achieve a total bit rate of 
19.2 kb/ s using N = 128 distinct orthonormal pulses. Assume each pulse is modulated using a 4-PSK 
constellation. Find the symbol interval T 

Problem 6-7. We are to design a real-valued set of orthonormal pulses for orthogonal modulation. In 
the range 0 ::; f < 1/ (2T), define the matrix of (6.168) to be 

[ 1 1 0 0] 
H(f) = JT -1 1 0 0 

2 0 0 1 1 . 
o 0 -1 1 

(6.181) 

This clearly satisfies (6.168). Sketch Hn(f) forn =0,1,2,3, assumingMl =2 andM2 = 1 in (6.166). 
Find expressions for hn( t) for n = 0, 1, 2, 3. How does the bandwidth efficiency compare to that of the 
pulses in Fig. 6-8? 

Problem 6-8. 

(a) Verify that the 3 X 3 DFT matrix 

D ~ },[ : 

satisfies 

where I is the identity matrix. 

1 
e-j21t/3 

e-j41t/3 

DD*=I 

(6.182) 

(6.183) 

(b) Use the property in part (a) to find a 3 x 3 matrix H(f) that satisfies (6.168) for f E [-1 /(2T), 
1/(2T)). 

(c) Use H(f) from part (b) to design an orthogonal modulation pulse set that satisfies the generalized 
Nyquist criterion. Assume that in defining H(f), we use Ml = 0 and M2 = 2 in (6.166). Give 
both time and frequency domain expressions or detailed sketches (whichever is more convenient) 
for the three pulses. 

(d) Is your pulse set real-valued in time? What is the spectral efficiency if these pulses are used for 
orthogonal modulation over a real channel? What is the spectral efficiency if the pulses are used 
for OPAM (combined orthogonal modulation and PAM), assuming an alphabet size of M? How 
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does the spectral efficiency compare to what you would get using the ideal bandlimited pulses of 
Fig. 6-8 for OPAM? How does it compare to ideal baseband and passband PAM? Are the pulses 
practical? 

Problem 6-9. Define dij = II Si - Sj II. Show that Y = Si + E is closer to Sj than to Si if and only if 

d· . 
Re{( E, U)} > ~) 

where U is a unit vector in the direction of (Sj - SJ. 

Problem 6-10. Calculate the minimum distance d min for the following cases: 

(a) Slicer design, with the data-symbol alphabet 4-PSK and magnitude unity. 

(6.184) 

(b) Isolated pulse PAM, where the pulse energy is ('5h and the data symbol is chosen from the same 
alphabet as in a. 

(c) Orthogonal modulation with pulse energy CJ~ . 

(d) PAM with lSI for two data symbols (K = 2) and a pulse autocorrelation function Ph(k) = a Ik I 
for a real-valued ° ::; a <1. 

Problem 6-11. Assume that in (6.127), the causal orthogonal bandlimited pulses hn( t) are chosen 
such that their tail energy is bounded by 

(6.185) 

for some constant a. Thus, the energy falls off at least as the square of time. Show that the 
fraction of the energy in s( t) falling outside the interval [0, KTJ goes to zero as K -t 00. Thus, 
the signal becomes approximately time limited to [0, KTJ as K -t 00. 

Problem 6-12. Assume a benign passband channel, Blf) = 1, with real additive Gaussian noise with 
power spectrum SNif) = NO/2. The transmit filter produces a 100% excess-bandwidth raised-cosine 
pulse. The transmit power cannot be greater than unity. The complex envelope f( t) of the receive filter 
is an ideal low-pass filter that permits the 100% excess-bandwidth pulse to get through undistorted. The 
constellation is 16-QAM. Find the probability of error as a function of No and T 

Problem 6-13. Consider the constellation in the following figure: 

Assume that 

o 

·b 

o 

• The inner two symbols each have probability 1 14. 
• The outer four symbols each have probability 1/8. 

b/2 0 

b 

o 

• The noise in each dimension is independent and Gaussian with variance ('52. 
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(a) Design a coder for this constellation that achieves these probabilities if the input bits are equally 
likely to be zero or one. 

(b) Find the exact probability of error as a function of b. 

(c) Find the signal power as a function of b. 

(d) Give the probability of error as function of the SNR. Use an approximation from Fig. 3-1 to find 
the probability of error when SNR = 10 dB. 

( e) Give approximations for the probability of error. Compute the approximate probabilities of error 
when SNR = 10 dB. 

Problem 6-14. Suppose that more than two dimensions are available for our alphabet. Consider an 
alphabet where the symbols are vertices of an M dimensional hypercube, shown for M = 3 in the 
following figure: 

Assume that all the symbols are equally likely and the noise in each dimension is independent with 
variance a2. 

(a) What are the decision regions? 

(b) What is the probability of error as a function of M and the minimum distance d between points in 
the signal constellation. 

Problem 6-15. Consider the following MSK signal: 

(6.186) 

where s( t) is given by (6.112), ak E {±1}, andg( t) is a rectangular pulse over [0, T) that integrates to 
112. 

(a) Using Fig. 6-26 as a starting point, draw a trellis with a finite number of states that describes the 
phase evolution of the MSK signal. 

(b) Show that the minimum-distance error event is the error event oflength one. Find its distance. 

(c) Compare the optimal sequence detector performance to that ofthe receiver in Fig. 6-25. 

Problem 6-16. Show that if the translates of the chip waveform hc( t) are mutually orthogonal, then 
N = 2WT pulses of the form of (6.100) can be made mutually orthogonal by choice of the spreading 
sequences. SpecifY the required properties of the spreading sequence. 

Problem 6-17. Consider the spreading sequence {xo, xl> ... XN-l} in (6.100) to be the impulse 
response of a causal, discrete-time FIR filter. Condition (6.103) suggests that we would like this filter to 
be an allpass filter. Use the results of Section 2.5.4 to show that the only FIR filters that are allpass have 
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impulse response Ok _ L, for some integer L. Thus, (6.103) can be exactly satisfied only for the trivial 
choice of spreading sequence in Example 6-19. 

Problem 6-18. Consider a spread-spectrum system operating in N = 2WT dimensional signal space, 
where the isolated pulse signal is chosen randomly. Let a set of orthonormal basis functions for this 
space be G>i( t), 1 ~ i ~ N. The one-dimensional binary antipodal transmitted signal is chosen to be 

N 
±s( t) = ± ~ . siG>i( t) 

~I=I 

and a jammer generates a similar signal 

(6.l87) 

(6.188) 

where the si and xi are mutually independent zero-mean random variables. The signal components are 
chosen to have variance E[Si2j = E / N where E is the average energy per bit, and the jammer chooses 
the xi variances to satisfy the constraint 

(6.189) 

where EJ is the constrained jamming signal energy per symbol interval. The receiver is told the si, and 
applies a matched filter to the received signal. 

(a) Determine the signal and noise random variables at the output of the matched filter. 

(b) Define the SNR at the matched filter output as the ratio ofthe mean-signal squared to the noise 
variance. Show that this SNR has a processing gain of N independently of how the jammer 
distributes its energy among the signal components. (This result is due to the fact that the signal 
is truly random and unknown to the jammer.) 

Problem 6-19. Consider a fiber optic communication link on which the group velocity is half the 
speed of light. 

(a) For each one meter of distance and at a bit rate of 10 Gb/s, how many bits are in transit? 

(b) At what distance (in meters) does the transmit time of a 1 megabyte message equal the transit 
time? 

Problem 6-20. Verify that the capacity of the passband channel in Fig. 6-28(b) is given by (6.l44). 
Use a signal space argument with complex rather than real signals, noise, and vectors. 

Problem 6-21. One way to view digital communication is as a way in which to exchange channel 
bandwidth for improved noise immunity. For example, in analog modulation systems, FM modulation is 
thought of primarily as a way to achieve higher post-demodulation SNR in exchange for increased 
bandwidth. In this problem we quantify this tradeoff for digital communication systems, using SNR for 
a given channel capacity as a measure of noise immunity. Given two white Gaussian noise channels as 
in Fig. 6-28, with bandwidths WI and W2, where W2 > WI> suppose they have the same channel 
capacity. Find a relation for the SNRs (in dB) required for the two channels as a function of the 
bandwidth expansion factor W2 / WI' Interpret this relation. You may assume large SNR. 
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Problem 6-22. It is common to use binary PSK in spread spectrum modulation. Find the SNR gap to 
capacity for 2-PSK spread spectrum as a function of WT. What is the increase in the SNR gap to 
capacity asymptotically as WT -7 00, expressed in dB? 
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7 
Probabilistic Detection 

A fundamental problem in digital communications is the corruption of the transmitted 
signal by noise. The minimum-distance philosophy for receiver design is reasonably robust in 
the presence of noise, but two questions arise: when is it optimal? And what should be done 
when it is not? In this chapter we start with the statistics of the noise and develop a theory of 
optimal detection for both discrete-time and continuous-time channels. With this theory, we 
identify the circumstances under which the minimum-distance receiver is optimal. Moreover, 
we take a systematic approach to receiver design based on a probabilistic characterization of 
the noise that is applicable to a wide range of applications beyond the classical model of 
additive white Gaussian noise, including those for which minimizing distance is not optimal. 
The probabilistic tools developed in this chapter play an important role in iterative decoding of 
error-control codes (Chapter 12). 

The general approach to deriving optimal receivers is to model the relationship between 
the transmitted and received signals by a joint probability distribution. Based on the noisy 
observation (the received signal corrupted by noise), we wish to estimate or detect the input 
signal. We use the term estimation when the transmitted signal (or more generally the quantity 
to be estimated) is a continuous-valued random variable, as is often the case in an analog 
communication system, and the term detection when the transmitted signal is discrete-valued 
(even if the received signal is continuous-valued). The primary distinction is that in detection 
we can often recover the signal exactly with high probability, a restatement of the regeneration 
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principle of Chapter 1. In estimation, by contrast, we must be satisfied with a recovered signal 
that may be more accurate than the observation but will not be exact. In this chapter we study 
only detection, although very similar techniques can be applied to the estimation problems of 
analog communications. 

This chapter will adopt the notation that random quantities will be upper case (such as X) 
whereas deterministic quantities will be lower case (such as x). This will help us distinguish 
between a random variable and a particular outcome of that random variable, an important 
distinction in the analysis of this chapter. 

In order to address the detection problem, we need a statistical model for the received 
signal. Before the data symbols arrive at the detector, they are processed by a transmitter, pass 
through a channel, and are further processed by the front end of the receiver. Some of this 
processing is deterministic, such as any filtering functions, and some is random, such as 
additive noise on the channel. In this chapter we call the deterministic portion signal 
generation and a random component noise generation. The model is shown in Fig. 7-1. The 
input Xk is a discrete-time and discrete-valued random process. It is not only discrete-valued 
but has afinite number of possible values, each of which is a function of the source bits. 

Example 7-1. ------------------------------------------------------
Suppose Xk is a data symbol sequence. Then the signal generator could be a discrete-time 
equivalent transmit filter and channel transfer function, representing lSI, and the noise generator 
could be additive Gaussian noise, independent of Xk . 

Example7-2. ------------------------------------------------------
Suppose Xk is a bit sequence. The signal generator could be a coder that produces another bit 
sequence, and the noise generator could be modeled as a binary symmetric channel (BSC), which 
randomly inverts some ofthe bits. 

The receiver uses the observation Yk to make a decision about Xk. The observation can be 
either discrete or continuous-valued. Since each Xk has a finite number of possible values, the 
detector must make a decision from among a finite number of alternatives. 

Two related detection methods are covered: maximum likelihood (ML) and maximum a
posteriori probability (MAP). MAP detection, also called Bayesian detection, is optimal in the 
sense that it minimizes the probability of error. ML detection is a special case of MAP 
detection for the special case when all the possible inputs are equally likely. 

INPUT 

Xk 
SIGNAL GENERATION 

MODEL 
NOISE GENERATION 

MODEL 

Fig. 7-1. A signal Xk to be transmitted is processed deterministically (signal generation) and 
stochastically (noise generation). 
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We begin with simple signal generation models and progress to more realistic (and more 
complicated) models. We address the two basic noise generators of Example 7-1 and 
Example 7-2 - additive Gaussian noise and the BSC. We begin with the detection of a single 
real-valued data symbol, where the input is a real-valued data symbol and the signal generator 
is trivial. Then we progress to the detection of vector-valued inputs, which applies to the case 
of complex-valued signal constellations among others. The next step is to derive the optimal 
detector in additive Gaussian noise, for both the discrete-time and continuous-time cases. Up 
to this point the optimal detectors have been defined for the detection of a single data symbol, 
and the next extension is to lSI, where it is shown that the minimum-distance receiver design 
of Section 5.4 is optimal in additive Gaussian noise. The Viterbi algorithm will be reviewed 
from a probabilistic viewpoint. We then introduce the BCJR algorithm for calculating a 
posteriori probabilities after an lSI channel with white Gaussian noise. The BCJR has many 
other applications in digital communication, including the detection of convolutional and 
trellis codes (Chapters 12 and 13). We then relax the known-signal assumption by allowing the 
carrier phase to be unknown and random. Finally, the detection of a shot-noise signal with 
known intensity, characteristic of fiber optic systems, is considered. 

7.1. Detection of a Single Real-Valued Symbol 

In this section, we consider the simplest case, where the input is a single random variable 
X (a single data symbol A) rather than a random process, and the signal generator passes this 
symbol directly through to the noise generator without modification. The data symbol has as a 
sample space the alphabet 5l, as discussed in Chapter 5. Noise generators that arise in practice 
for this case result in either a discrete-valued observation Y or a continuous-valued 
observation. We give examples of both cases in the following subsections, at the same time 
illustrating the ML and MAP detectors. 

7 .1.1. Discrete-Valued Observations 
Some noise generators result in discrete-valued observations Y. In order to design a 

detector, we must know the discrete distribution of Y conditioned on knowledge of the data 
symbol, PYIA(Y I a), as this completely specifies the noise generator. The maximum-likelihood 
(ML) detector chooses a E JI. to maximize the likelihood PYIA(Y I a), where y is the observed 
outcome of Y. 

Example7-3. -----------------------------------------------------
Suppose that we have additive discrete noise N, so that Y = A + N. Assume A and N are 
independent and take on values zero and one according to the flip of two fair coins. There are three 
possible observations, y = 0, 1, or 2. The likelihoods for the observation y = ° are 

A {0.5; for a = ° 
PYIA(O I a) = ° fi A ; ora = 1 

(7.1) 
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so if the observation is y = 0, the ML detector selects 0,= 0. If the observation is y = 1, then the 
likelihoods are equal 

" ) {0.5; for a = ° 
PYli1 1 a = 0.5; for a = 1 

(7.2) 

so the ML detector selects either zero or one (it could choose randomly, for example). If the 
observation is y = 2, the ML detector selects a = 1. 

The advantage ofML detection is that the likelihood PYIA(Y I a) is easily computed for each 
possible a knowing only the statistics of the noise generator and not the statistics of the data 
symbol. 

The maximum a-posteriori probability (MAP) detector maximizes the posterior 
probability P A J Y( a I y). This should be more intuitively appealing than maximizing the 
likelihood. In fact, we will see that the MAP receiver minimizes the probability of error, and 
hence is optimal for any application that prefers correct decisions over incorrect. We can write 
the posterior probability in terms of the likelihood using Bayes' rule (3.32) 

(a I ) = PYIA(Yla)p A(a) 
PAIY y Py(y) (7.3) 

A MAP detector therefore needs to know the probabilities PA(') of the symbols. These 
probabilities are called the prior probabilities, the a priori probabilities, or more simply, just 
the priors. Since Bayes' rule is used to compute the posterior probability, MAP detection is 
also called Bayesian detection. Since the denominator does not depend on the detector 
decision a, maximizing the posterior probability is the same as maximizing the numerator, 
namely PYIA(YI a)PA(a). If PA(a) is constant for all aE.J'I, then maximizing the posterior 
probability is the same as maximizing the likelihood PYlA (y I a), and MAP reduces to ML. 

Example74. ------------------------------------------------------
In Example 7-3, P A (a) = 0.5, for each possible a, so MAP and ML are equivalent. 

Example 7-5. ------------------------------------------------------
Ifwe knew a priori in Example 7-3 that one ofthe coins was biased (unfair), say 

PA(O) = 0.75, PA(1) = 0.25, (7.4) 

then the MAP detector would not generally give the same result as the ML detector. It is easily 
shown that if the observation is y = ° or y = 2, the ML or MAP detections are the same and are 
correct with probability one. Ifthe observation is y = 1, however, the detectors are not the same. In 
this case, the likelihoods are the same, as specified in (7.2), so the ML detector can arbitrarily select 
a decision. However, when y = 1, the posterior probabilities are 

y( " I ) - {0.75; fora = ° 
PAl a 1 - " 

0.25; for a = 1 
(7.5) 
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so the MAP detector always gives a = 0 when the observation is y = 1. 

Whenever we are detecting a signal based on a noisy observation there is of course the 
possibility of making an error or mistake. The probability of error 

Pe=Pr[a *a] (7.6) 

is a good measure of the quality of our detector design. 

Example 7-6. -------------------------
In Example 7-3, when the coin flip is fair, the MAP and ML detectors are identical, so their 
probability of error is identical. We can compute that probability of error. The observation 
Y=A + Ntakes on values in {O, 1, 2} with probabilities {0.25, 0.5, 0.25}, respectively. If the 
observation is y = 0, then both detectors give the result a = 0, and no error occurs. Similarly, if 
y = 2, both detectors give a = 1, and no error occurs. If the observation is y = 1, however, both 
detectors are unable to choose a unique maximum. If the detectors select a to randomly equal zero 
or one, then they will be wrong half the time. Since the py(l) = 0.5, the total probability of error is 
Pe= 0.25. 

In the case of equal prior probabilities for A, ML and MAP detectors give identical results, and 
their probability of error is identical. This is no longer true if the priors are different. In this 
case, a MAP detector will always have a lower probability of error than a ML detector. 

Example 7-7. -------------------------
Assume that the data symbol A in Example 7-3 is generated by an unfair coin, just as in 
Example 7-5. We again assume a noisy observation Y = A + N, where N is a fair coin. If the 
observation is either y = 0 or y = 2, then both detectors are correct, and no error is made. If y = 1 
and the ML detector arbitrarily selects a decision, it will make errors with probability 0.5 each time 
it observes y = 1. This occurs with probability py(l) = 0.5, so the total probability of error is 0.25. 
The MAP detector, however, will do much better, because when y = 1 it always selects a = O. This 
is incorrect for only 1/4 of such observations, and py(l) = 0.5, so the probability of error has been 
reduced to 0.125. 

In fact, the MAP detector minimizes the probability of error. To show this, note the 
probability of a correct decision is 

Pr[correct decision] = Ly E 9'"Pr[correct decision 1 Y = y ]py(y) . (7.7) 

Since py(y) ~ 0, the probability of a correct decision is maximized if the decision for each 
observation y maximizes Pr[ correct decision 1 Y = y]. This is what the MAP receiver does since 
the probability of a correct decision is 

Pr[correctdecisionIY=y] =PAly(a Iy) , (7.8) 

and this is precisely the posterior probability maximized by the MAP detector. 

In summary, ML and MAP are different detection techniques, but yield the same result 
when the prior probabilities are equal. If the prior probabilities are different, the MAP detector 
will yield a lower (and indeed the minimum) probability of error. If we have no information 
about the prior probabilities, we usually assume they are equal, and MAP reduces to ML. 
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a~o~y~o 

a=l~Y=l 
I-p 

CHAP. 7 

Fig. 7-2. A schematic diagram of the binary symmetric channel (BSC). which flips bits with probability p. 

The most common noise generation model in digital communications that results in a 
discrete-valued observation is the binary symmetric channel (BSC). This channel applies when 
the input data symbol is binary, and the conditional probabilities are shown in Fig. 7-2. The 
noisy observation differs from the binary input symbol with probability p, which is called the 
error probability or crossover probability of the BSC. The ML and MAP detectors for a BSC 
are derived in Problem 7-1. 

7 .1.2. Continuous-Valued Observations 

A common noise generation model corrupts the input data symbol A by additive 
continuous-valued noise N. The observation Y = A + N is then a continuous-valued random 
variable. The MAP detector selects a to maximize PAl Y( a I y) while the ML detector selects 
a to maximize PYIA(Y I a). Given an observation Y = y, to find the MAP detector we use the 
mixed form of Bayes' rule (3.31) to write 

(
A I ) _ fyIA(Yla)PA(a) 

PAly a Y - fy(Y) (7.9) 

The denominator is independent of the decision, so we need only maximize the numerator. 
This is illustrated by example. 

Example7-8. ------------------------------------------------------
Suppose that A takes on value ±1 according to the flip of an unfair coin, so thatPA(+1) = 0.75 and 
PA(-1) = 0.25. Suppose further that we observe Y =A + N where N is a continuous-valued 
random variable with the p.d.f. given in Fig. 7-3(a). We can derive the MAP detector and its 
probability of error. We need to select a to maximize fylA(Y I a)PA(a). In Fig.7-3(b), this 
quantity is shown for the two possible values of a as a function of the observation. From this figure 
it is immediately evident that the MAP detector will set a = 1 if Y > -0.5, otherwise a = -1. An 
error never occurs if A = + 1. An error occurs one third of the time that -1 is transmitted, because 
one third of the time the observation will be greater than -0.5. Hence, the probability of error is 
PA(-1)/3 = 1112. This is the area of the shaded region Fig. 7-3(b). 

Example 7-9. ------------------------------------------------------
We now find the ML detector and its probability of error for the same scenario as in the previous 
example. In Fig. 7-3(c) we plot the likelihoods for the two possible decisions as a function of the 
observations. The likelihoods are equal in the region -0.5 < Y < 0.5, so the ML detector can make 
its decision arbitrarily. A legal ML detector sets its threshold at -0.5, and has performance identical 
to that of the MAP detector. But another legal ML detector sets its threshold at zero (halfway 
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Fig. 7-3. (a) The p.d.f. of uniformly distributed noise. (b) For a = I, the MAP criterion {yJA<Y I a )PA(a) is 
plotted. Note that the MAP detector will prefer a = 1 for any observation y > -0.5. (c) The likelihoods as 
a function of the observation yare plotted for a = ± 1. Note that the ML detector has no preference when 
the observation is -0.5 < y < 0.5. (d) The MAP criterion is plotted assuming additive Gaussian noise. 
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between the two possibilities); this detector will make an error 1/6 of the time for each possible 
transmission, so the probability of error is 1/6. 

The most common distribution for additive noise in digital communications is Gaussian, 
rather than uniform as in previous examples. The principle of the detectors is the same. 

Example7-10. -----------------------------------------------------
In Fig. 7-3(d) we show the functions fylA(Y l±l)PA(±l) as functions of the observations assuming 
additive Gaussian noise. For the MAP detector, the threshold is selected where these curves cross. 
For the ML detector, the threshold is zero. 

In the next section we will consider the additive Gaussian noise case for the more general 
situation where the signal and noise are vector-valued. 

7.2. Detection of a Signal Vector 

Many of the communication channels we describe in this book can be modeled as noise 
corrupting a vector-valued signal. Although typical channels accept only scalar-valued signals, 
a convenient vector communication model can often be obtained using the technique shown in 
Fig. 7-4. A vector of transmitted symbols is converted to a sequence of scalars for 
transmission over an additive noise channel, and then reconverted to a vector at the channel 
output. In effect we have taken a finite sequence of samples and modeled them as a vector. 

Example 7-11. ---------------------------------------------------
In Section 6.1 we saw that the minimum-distance receiver for a continuous-time channel can be 
implemented using a projection receiver, which first transforms the continuous-time received signal 
into a projection vector of dimension N. The projection receiver then proceeds to minimize 
distance for the vector-valued channel. 

A general model for the situation is as follows. The signal generator accepts an input X and 
maps it into a vector signal S with dimension N. 
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Example 7-12. -------------------------
The signal generator might take a set of N consecutive data symbols as the signal vector, S = 
[AI"'" AN]~ 

The observation is a vector Y with the same dimension as the signal. The noise generator is 
specified by the conditional distribution of the observation given the signal, fy I s(y I s). The 
detector decides which signal vector s from among all the possible signal vectors was actually 
transmitted based on the observation. A common characteristic of the noise generator is 
independent noise components, by which we mean precisely that 

N 

fYlsCYls) = II fYkISk(YkISk) , 
k=I 

(7.10) 

or in words, given knowledge of the signal vector, each component of the noise generation is 
independent of the others. 

In the following subsections we will consider first the ML detector (for which the signal 
generator does not need to be statistically characterized) and then the MAP detector. 

7.2.1. ML Detection 

The ML detector chooses the signal vector s from among all the possibilities in order to 
maximize the conditional probability fy IS CY Is), a probability given directly by the noise 
generation model. It is simple in that the statistics of the signal S need not be taken into 
account. Two important examples are the additive Gaussian noise generator and the BSC noise 
model. 

Example 7-13. ---------------------------
Consider the AWGN channel: 

Y=S+N, (7.11) 

where the signal vector S is randomly chosen from a set of M possibilities, and where the 
complex-valued noise vector N is circularly symmetric Gaussian with uncorrelated (and hence 
independent) components with variance 20"2. As discussed in Section 6.1, this is the model for 
the projection vector with M-ary signaling in additive white Gaussian noise, (6.25). Given a 

SYMBOLS 
VECTOR TO 

SCAlAR 
CONVERTER 

SCALAR 
CHANNEL 

NOISE 

SCAlAR TO 
VECTOR 

CONVERTER 

~~-----------~v~----------~ 
EQUIVALENT VECTOR CHANNEL 

OBSERVATION 

Fig. 7-4. A scalar channel plus some signal processing can sometimes be modeled as a vector 
channel. 
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particular outcome s for S, the received signal Y is a complex-valued Gaussian vector with 
mean equal to s, and hence has the probability density function 

(7.12) 

Hence the ML detector selects & to maximize fN(y - &). Since the components of N are 
assumed Gaussian and independent, from (3.49) we obtain 

N 

fN(n) = IT fNk(nk)' 
k=l 

(7.13) 

Since, for a complex Gaussian random variable with independent real and imaginary 
components, 

(7.14) 

it follows that 

fN(n) 1 e-lln112/2a2 
(21t02)N 

(7.15) 

Since the exponential is a monotonic function of its exponent, maximizing fN(y - &) is 
equivalent to minimizing II y - &112. In other words, the ML detector reduces to the minimum~ 
distance detector for the special case of a white-Gaussian noise vector channel. 

Example 7-14. -------------------------
For the binary symmetric channel (Bse) of Fig. 7-2 with independent noise components, the 
components of the signal vector are binary, as are the components of the observation. The 
conditional probability for one channel use is 

(7.16) 

Define the metric dB< & , y) as the number of components in which the two binary vectors & and y 
disagree. This metric dB< . , . ) arises frequently in coding theory where is it called the Hamming 
distance or Hamming metric after R. Hamming of Bell Laboratories, who did pioneering work on 
algebraic coding in the 1950's. If the vectors have dimension N, then the joint conditional 
distribution is 

When p < 1/2 as is usual, the ML detector chooses & to minimize dB<&, y). In other words, it 
chooses the signal vector closest to the observation vector in Hamming distance. 

The two important noise generators with independent additive noise components, the additive 
Gaussian noise and the BSC, result in a similar ML detector: choose that signal vector which 
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is the closest to the observation vector. The only difference between the two cases is the 
manner in which we measure "distance;" in the first case we use Euclidean distance and in the 
other we use Hamming distance. In both cases, the sample space y can be divided into 
decision regions. The i-th decision region is the set of all y E Y closer to si (in Euclidean or 
Hamming distance) than to any other Sj, j :f. i. In other words, it is the set of all observations 
that will lead to the decision s = si. 

Example 7-15. -------------------------
Let the signal S be a two-dimensional vector from the set 

(7.18) 

The signal space and decision regions are shown below: 

The ML detector in both cases is simple and intuitive, and has the feature that the noise 
variance (}"2 or crossover probability p need not be known by the detector. This feature is 
desirable, since in many digital communications systems the noise variance or error 
probability may be dependent on factors such as the distance of transmission, and therefore 
difficult to know in advance. 

7.2.2. MAP Detector 

The MAP detector is somewhat more complicated and requires extra knowledge about the 
noise statistics; for the Gaussian case it requires knowledge of the noise variance, and for the 
BSC case it requires knowledge of the crossover probability. Assume that the prior 
probabilities Ps(s) are known for each possible signal s. Given the observation y, the MAP 
detector selects s to maximize the posterior probability 

(7.19) 

The denominator is independent of s , so the MAP detector equivalently selects s to maximize 
the numerator, f Yls(Yls)ps(s). If the prior probabilities Ps(s) are equal (the signals are 
equally likely), then the MAP detector reduces to the ML detector, regardless of the channel 
parameters. 
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Example 7-16. -------------------------
For the additive Gaussian noise channel of Example 7-13, the MAP detector maximizes 

(7.20) 

Taking the natural logarithm, a monotonic function, we see that this is equivalent to minimizing 

(7.21) 

The sample space for Y can again be divided into decision regions, but the boundaries of the 
regions are not determined strictly on the basis of Euclidean distance if the prior probabilities are 
not equal, and unfortunately depend on the noise variance cr2 and the prior probabilities (see 
Problem 7-3 and Problem 7-4). 

A similar result occurs in the case of the BSC of Example 7-14; namely, the detector does not 
merely minimize the Hamming distance but rather takes into account the error probability p 

and the prior probabilities if they are not equal (see Problem 7-2). 

In practice, it is often the case that the prior probabilities or the noise variance are not 
known with sufficient accuracy to implement a MAP detector. When the MAP detector is 
used, the decision boundaries can be set for the worst case noise variance cr2, thereby giving 
the optimal performance in the worst case. In more critical applications the noise variance can 
be estimated. 

7.2.3. Probability of Error for BSC ML Detector 

The probability of error was considered in Section 6.2 for the Gaussian noise case and 
minimum-distance receiver design. But we just showed that the ML detector in AWGN 
reduces to the minimum-distance detector. Thus, the error probability determined in 
Section 6.2, namely Pe <= KQ(dmin /2cr), applies directly to the ML detector in AWGN. In this 
section we extend this result to the BSC channel. Basically all that differs is the definition of 
distance and the definition of the Q( . ) function. 

Two-Signal Case 

Consider two binary vectors Bi and Bj that differ in d components (the Hamming distance 
is d). Suppose Bi is transmitted through a BSC noise generator. The conditional probability of 
the received bits, given the transmitted bits, has the form given by (7.17). From Example 7-14, 
the ML detector will choose Bj instead of Bi if the received bits yare closer in Hamming 
distance to Bj than to Bi' Any error that occurs in a component for which the bits in Bi and Bj are 
the same will not affect ML detection, since it will impact the Hamming distances to both Bj 

and Bi equally. Pessimistically assume that a detection error is always made if the received bits 
y are equidistant from Bi and Bj. A detection error then occurs if more than t errors occur in the 
d bits that differ, where 
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t = ld-1J = {(d-1)/2; 
2 (d/2)-1; 

ifd is odd 
if d is even' 

CHAP. 7 

(7.22) 

The number of errors in d components is binomial, so the probability that the ML detector 
prefers Sj over si (i.e., the pairwise error probability Pi~ j ) is: 

Q(d, p) = ~~ (c0 pi(l _ p)d - i . 
L..z=t+l i) 

(7.23) 

We choose the notation Q(d, p) for this sum in order to emphasize the similarity to the Q( . ) 
function used in the Gaussian case. By convention, whenever a function Q has two arguments, 
we mean (7.23), and whenever it has one argument, we mean (3.38). 

Example7-17. -----------------------------------------------------
Suppose that si = [000000] and Sj = [11 0 111]. The Hamming distance is d = 5. If si is 
transmitted over a BSC with error probability p, the ML detector will prefer Sj if three or more of 
the received bits in the five differing positions are changed by the channel. The probability of this 
occurring is 

Q(5, p) = (~)p3(1_ p)2 + (~)p4(1_ p) + (~)p5 
= lOp 3(1 _ p)2 + 5p4(1- p) + p5 . (7.24) 

Three or More Signals 

In Section 6.2, we derived an upper bound (the union bound) and a lower bound on the 
error probability for M-ary modulation in AWGN. That same bound applies to the ML 
detector for the BSC with a redefinition of distance and the definition of the Q( . ) function. 
Just as these bounds are tight for small cr in the Gaussian case, they become tight for small p in 
the BSC case. 

Q(d, p) is monotonic in d for the BSC, just as Q(d/2cr) is monotonic in d for the Gaussian 
channel. Consequently, exactly the same bounds apply, where dmin is Euclidean distance for 
the Gaussian channel, and dmin is Hamming distance for the BSC. The conclusion is that for 
small p, the error probability is 

(7.25) 

where d min is the minimum Hamming distance among all pairs of transmitted signal vectors, 
and where K is the average number of neighbors at the minimum distance. 

7.3. Known Signals in Gaussian Noise 

In this section we consider the problem of designing the ML detector for one of M signals 
in additive Gaussian noise, first for the discrete-time case and then for the continuous-time 
case. The discrete-time case for white noise follows in straightforward fashion from the results 
of Section 7.2. Our main concern will be with extending this result to nonwhite Gaussian 
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noise, and subsequently to continuous time. For generality, we will treat the case of complex
valued noise and received signals. Subsequently we will apply the results directly to the 
baseband and passband signals of specific interest. 

7.3.1. Discrete-Time Received Signal 

We first consider a discrete-time received signal of the form 

Y k = Sk (m) + N k , 0 ::;; k < 00, (7.26) 

where {Sk(l) . ... Sk(M)} is a set of Mknown signals, Sk(m) is the m-th of those signals, and Nk is 
additive zero-mean Gaussian noise. All quantities in (7.26) are assumed to be complex-valued. 

White Noise Case 

Assume the noise is white and Gaussian with variance 2cr2 and circularly symmetric and 
hence is also stationary. This is similar to the vector signal case considered in Section 7.2, 
except that the number of components in the vector is countably infinite. We can handle this by 
using the previous structure for the N-dimensional vector and allowing N ~ 00. The ML 
detector then calculates the Euclidean distance between the received signal and each known 
signal. Hence, it calculates 

J = ~= 1 Y - S (m) 12 
m 4.Jk = 0 k k 

= ~= 1 Y k 12 + ~= ISk(m) 12 - 2Re{~= YkSk(m)*} , (7.27) 
4.Jk=O 4.Jk=O 4.Jk=O 

for 1 ::;; m ::;; M, and then chooses the m for which Jm is minimum. The first term is not a 
function of m, so it can be ignored. Thus, the ML criterion is equivalent to maximizing 

E =~= Is(m) 12 
m 4.Jk = 0 k , (7.28) 

where Em is the energy of the m-th signal. This detector correlates the received signal with 
each of the known signals {Sk (1) .... Sk (M)}, and then takes the real part of the result. This is 
repeated for each m, and after subtracting half the energy, the decision is the m for which 
difference is maximum. This interpretation of the receiver is shown in Fig. 7-5(a). This is a 
discrete-time version of the correlation receiver structure that was seen earlier in Chapter 6 
(Fig. 6-1), except that here we are operating on discrete-time signals. 

An equivalent way to generate Rm is to apply the received signal to a filter with impulse 
response S_k(m) *, which has transfer function 8 m *(1/ z*), and sample the output at k = o. This 
interpretation of the receiver is shown in Fig. 7-5(b). The filter 8 m *(1/ z*) is a discrete-time 
version of the matched filter first encountered in Chapter 5. As in the continuous-time case, the 
discrete-time matched filter is anticausal. If it happens to be FIR, then it can be realized as a 
causal filter plus a delay. If it is IIR, then it can only be approximated in practice. 
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Nonwhite Noise Case 

We now consider wide-sense stationary circularly symmetric Gaussian noise with power 
spectrum SN<z) that is not necessarily white. The receiver of Fig. 7-5 is the ML detector for 
white noise only, so it cannot be directly applied to the nonwhite noise. A useful trick is to first 
apply the received signal to a noise-whiteningfilter. 

The power spectrum SN<z) must be non-negative real on the unit circle. In Section 2.5.5 
we derived the spectral factorization of a rational SN< z) that is real-valued and non-negative 
on the unit circle, 

SN<z) =rM(z)M*(lIz*) (7.29) 

where M( z) is a monic and loosely minimum-phase transfer function. This factorization 
generalizes to non-rational SN<z) as well. Assume that SN<z) has no zeros on the unit circle. 
In that case, II M(z) is causal, stable, and strictly minimum-phase. As illustrated in Fig. 7-6, 
the received signal can be passed through the strictly minimum-phase whitening filter 
lIyM(z), which produces noise at the output that is unit-variance white and Gaussian. The 
whitening filter also affects the signal, and the Z-transform of the new signal is Sm( z )/yM( z), 
where Sm(z) is the Z-transform of {Sk(m), 0 ~ k < oo}. The matched-filter receiver of Fig. 7-5 

Fig. 7-5. Two interpretations for the ML detector for a discrete-time known signal in white Gaussian 
noise. (a) A correlator, and (b) a discrete-time matched filter. 

WHITENING FILTER MATCHED FILTER %Em 

Yk yM(z) . Q +. t . Rm 
k=O~ 

, ~ , / , ~ , / 

)-----1 

Fig. 7-6. The minimum-phase whitening filter for the noise spectrum 8Mz) whitens the noise, allowing 
the matched filter detector to be applied to the new signal. The whitening filter is a reversible operation, 
and hence will not adversely affect the error probability of the detector. Combining the two filters, we get 
an equivalent matched filter for nonwhite noise. 
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can be applied to this whitened received signal, taking into account the new signal spectrum. 
Since linear filtering preserves the circular symmetry of Gaussian noise, the white noise is 
circularly symmetric, and thus the samples of the noise are mutually independent. As also 
shown in Fig. 7-6, the whitening and matched filters can be combined into a single filter, 
equivalent to that in Fig. 7-5 except that the transfer function is normalized by the noise 
spectrum S M Z ). This normalization is appropriate for a matched filter in nonwhite noise, and 
the result is an ML detector. 

7.3.2. Continuous-time Reception 

Suppose we have a continuous-time received signal, 

Y(t) =sm(t) + N(t), 0 ~ t < T, (7.30) 

where {sl (t), ... , sM< t)} is a set of known signals over the interval [0, T). The noise N( t) is 
assumed to be a zero-mean circularly symmetric stationary Gaussian process with power 
spectrum S M f) and autocorrelation function R M 1: ). For reasons of mathematical tractability, 
we address a finite (but arbitrarily large) time interval 0 ~ t < T. 

To develop the ML detector as we have in the discrete-time case, some new techniques 
have to be introduced. Our approach is to turn this into a problem equivalent to the discrete
time case by using a signal-space expansion of the random process N( t), 0 ~ t < T, in terms of 
a countable set of functions, 

where the functions are orthonormal in signal space, 

T 

J (1)i(t)<I>/(t)dt =Oi_j . 

o 

O~t< T (7.31) 

(7.32) 

Equality in (7.31) is in the sense of mean-square convergence of the series on the right to the 
process on the left. This expansion is most useful if the coefficients are themselves 
uncorrelated, 

E[NN*] = 0.20. . ! } !!-} . (7.33) 

Under quite general conditions, a set of orthonormal functions {<I>i( t )} can be found such that 
(7.33) is satisfied (even for the case where N( t) is not wide-sense stationary as we assume 
here). The resulting expansion is known as the Karhunen-Loeve expansion. 

First, taking the inner product of both sides of (7.31) with <l>i< t), 

T 

~ = J N(t)<I>/(t) dt. 

o 
(7.34) 
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Since ~ is a linear function of a Gaussian process, it is a Gaussian random variable, and 
further it is circularly symmetric since N( t) is assumed circularly symmetric. This circular 
symmetry together with (7.33) implies that the ~ are statistically independent. In Appendix 7-
A, it is shown that a necessary and sufficient condition on {<Pi t)} for (7.33) to be satisfied is 

T 

fRN<t-T)<PiT)d't=O/<Pi t) , l~j<co, O~t<T. (7.35) 

o 

Although the left side of (7.3 5) looks like a convolution, the equality is valid only for the finite 
time interval 0 ~ t < T, so it is in fact not a convolution. This is an integral equation, and, in 
analogy to similar matrix equations, <Pi t) is called an eigenfunction of RN< t) with 
corresponding eigenvalue a/-

The question arises as to whether there exists a set of complete orthonormal 
eigenfunctions and corresponding non-zero eigenvalues {<Pi t), aj, 1 ~ j < co} satisfying 
(7.35). This is considered in some detail by Van Trees [1], where it is confirmed that they do 
exist under rather general conditions. For our purposes, it suffices that the power spectrum 
SN<f) be non-zero for all f. Fortunately, in the following we don't actually have to find the 
eigenfunctions satisfying (7.35); it suffices to know that they exist. 

Now returning to the original detection problem of (7.30), the approach is to expand the 
received signal in the same set of orthonormal functions that arise out of the Karhunen-Loeve 
expansion of N( t), 

v. = s.<m) + N· 0 < t < T .II I I' - • (7.36) 

The coefficients Ni are uncorrelated, circularly symmetric (and hence independent) Gaussian 
random variables. Their variances are not necessarily equal, E[ 1 Ni 12] = cr?, and the s/m) are 
the coefficients of sm( t) with respect to the orthonormal basis functions <Pi( t), namely 

T 

slm) = J sm(t)<p/(t)dt . 
o 

(7.37) 

The Karhunen-Loeve expansion turns the continuous-time received signal into an 
equivalent discrete-time received signal, at least in a mathematical if not literal sense (since the 
i in Yi is not time, but an index over the signal-space basis). The continuous-time received 
signal Y( t) is represented on the finite time interval 0 ~ t < T by the countable set of random 
variables {Yi, 1 ~ i < co}. We can apply the earlier discrete-time results to this equivalent 
representation, with the slight complication that the noise samples do not all have equal 
variance. Assuming that the eigenvalues are all non-zero, this problem is easily circumvented 
by normalizing the samples by dividing both sides by the known standard deviation, 

y. sCm) N. 
I I I 

- = -+-, 
OJ OJ OJ 

l~i<co. (7.38) 
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The Ni/(Ji are all unit-variance Gaussian random variables. The normalization of (7.38) can be 
considered a form of whitening, similar to the whitening filter applied in Fig. 7-6. 

The normalized representation of (7.38) satisfies all the conditions assumed for the 
discrete-time case, namely a set of known discrete-time signals with additive white noise 
variables. We can therefore apply the earlier detector to the normalized received signallil(Ji, 
where the known signal component is s/m) I (Ji. Thus, the ML detector minimizes 

(7.39) 

over all possible signals 1 ~ m ~ M. As in the discrete-time case, the first term L.~ = 1 lli 12 will 
be independent of m, so the ML detector equivalently maximizes the decision variable 

(7.40) 

In Appendix 7-A, this result is related to the original continuous-time signals. In particular, 
defining a function g m ( t ) that satisfies the integral equation 

T 

f RN<t-'t)gm('t)d't =sm(t), 1::; m::;M, 0 ~ t < T , 

o 

then (7.40) can be written as 

T 

Em = f sm(t)gm*(t)dt 
o 

(7.41) 

(7.42) 

Example7-18. -----------------------------------------------------
If the additive noise is white, so that its autocorrelation is RN< 't) = NOO( 't), then Nol5m( t) = 
sm( t). In that case, the receiver simply correlates with each of the known signals sm( t), 1::; m 
::;M. 

The significance of (7.42) cannot be overstated. It shows that the infinite-dimensional 
continuous-time received signal can be reduced to a finite set of M decision variables Rm, 

1 ::; m ::; M, where M is the number of known signals. Rm consists of a correlation against 
gm( t), as shown in Fig.7-7(a). As in the discrete-time case, the correlation detector is 
equivalent to the continuous-time matched filter detector of Fig. 7-7(b). For the special case of 
white noise, Example 7-18 establishes that the matched filters in Fig. 7-7 are matched to the 
set of signal waveforms {Sl ( t), ... sAt< t )}. 

Ifwe let T -7 00, we get a different interpretation and a better understanding of gm( t). In 
that case, assuming that gm(t) is causal, (7.41) approaches a convolution equation 
RN<t) * gm(t) = sm(t), or Gm(f) = Sm(f)ISN<f). This limiting case has the interpretation 
shown in Fig. 7-7(c). In the white noise case, the matched filter has impulse response s':(t) 
and transfer function Sm*(j). 
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In the nonwhite noise case, a different interpretation takes advantage of the fact that 8M!) 
is positive real-valued. It can be factored as the product of two identical filters, 

(7.43) 

Thus, in Fig. 7-7(c) the matched filter has been divided into two parts: a whitening filter 
11 8 NII2(f) that has white noise at the output, and a filter matched to the signal at the 
whitening filter output. The signal component at the output of the whitening filter is 8 m (f) I 
8d12(f), and the second filter is matched to this new' signal. The factorization into whitening 
and matched filtering is similar to the discrete-time case (Fig. 7-6). Em is the energy of the 
signal sm( t) after it passes through the whitening filter, making it consistent with the white
nOIse case. 

7.3.3. Sufficient Statistics 

In (7.42), define the M complex-valued decision variables 

T 

Vm = J Y(t)gm*(t) dt, l:$m:$M, 

o 
(7.44) 

as labeled in Fig. 7-7. The ML detector first calculates these M decision variables, 
corresponding to the M signals, and then chooses m to maximize Rm = Re{Vm} - Em12. The 
ML detector is thus summarizing the continuous-time received signal {Y( t), 0 :$ t < T} by the 
M random variables {Vl, ... , VM }. In the process, it is clearly throwing away a lot of 
information about {Y( t ), 0 :$ t < T}. The information that is being thrown away is considered 
irrelevant by the ML detector. 

Y(t) 

(a) 

" " 

1 U( t) 

S~2(f) (e) 

Fig. 7-7. The ML detector for a continuous-time known signal in additive Gaussian noise. (a) The 
correlation receiver. (b) The matched filter receiver. (c) The matched filter in the limit as T ~ 00. 



Sect. 7.3 Known Signals in Gaussian Noise 303 

The overall goal of this subsection is summarized in Fig. 7-8. Starting with the received 
signal {Y( t), 0 $ t < T}, the Karhunen-Loeve expansion coefficients {Yi} give an equivalent 
representation. This countable set of random variables is much easier to deal with analytically, 
but remains impractical for implementation because of the infinite number of variables. 
However, the ML detector further reduces the received signal to M decision variables {VI' 
... , VM }, where M is the number of known signals. For purposes of implementation, this finite 
set of decision variables is a dramatic improvement. Conceptually, however, if the 
dimensionality of the subspace spanned by the signals is less than M, then based on the 
experience of Chapter 6 we would expect that a number of decision variables equal to the 
dimension of the subspace would suffice. In fact, it will now be shown that the received signal 
can be represented by a set of N sufficient statistics {Ul , ... , UN}' where N $ M, and Nwill be 
defined shortly. The sufficient statistics summarize {Y( t), 0 $ t < T} for purposes of detection 
of {sl(t), '" sM<t)}. 

The N sufficient statistics can be used for purposes of ML detection. This reduces the 
number of decision variables that must be dealt with in the implementation of the ML detector. 
Remarkably, the sufficient statistics can be relied upon for the detection of the known signals 
{sl (t), ... , s M< t)} for any criterion of optimality, not just the ML criterion. For example, they 
would serve equally well as the starting point for MAP detection. 

The intuitive basis for sufficient statistics is that they retain all the information in the 
received signal that is relevant to the detection of the known signals {sl(t), ... , sM<t)} and 
discard only information that is irrelevant. As we will also show below, the sufficient statistics 
{Ul , ... , UN} can be obtained from the ML decision variables {VI' ... , VM } as pictured in 
Fig. 7-8, and therefore all the information in the sufficient statistics must also be included in 
the ML decision variables. Thus, the ML decision variables are themselves sufficient statistics, 
and could be used by any detection criterion (not just the ML criterion) without compromising 
performance. 

Our starting point is to define a new set of signals {h (t), ... , 1M< t)} that are related to the 
original set {sl ( t ), ... , s M< t)} by the Fourier transform 

Sm(f) 
F m(f) = SJ/2({) , 

RECEIVED SIGNAL EQUIVALENT KARHUNEN-LOEVE COEFFICIENTS 
{Y(t),O:<;;t<T} +t----------+ {YJ 

SUFFICIENT STATISTICS 

{Ui> ... , UN} 

1 
ML DECISION VARIABLES 

{Vi> ... , VM } 

(7.45) 

Fig. 7-8. The progression from the received signal Y( t) through a progression of decision variables, all 
of which retain all relevant information for detection of the known signals. 
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where SmU) is the Fourier transform of the pulse 8m(t). The new signals are easy to 
understand in terms of Fig. 7-7(c): fm(t) is the response of the whitening filter to 8 m(t). In 
other words, whereas {81 (t), ... , 8MC t)} is signal set for the original nonwhite-noise charmel, 
(f1 (t), ... , fMC t)} is the signal set for the equivalent white-noise channel model after the 
whitening filter. The second half of the matched filter in Fig. 7 -7( c) is matched to f m( t). 

Assume the (f1 (t), ... , fMC t) : 0 ~ t < oo} span a subspace Sf of signal space of dimension 
N ~ M, and let {'IIk( t), 1 ~ k < oo} be a complete set of orthonormal functions chosen so that 
the first N, {'II 1 ( t ), .,. 'II M t ) }, serve as a basis for Sr- Then we can write 

(7.46) 

Let U( t) denote the output of the whitening filter in Fig. 7 -7( c). In other words, whereas Y( t) 
is the original observation for the nonwhite charmel model, U( t) is the observation for the 
equivalent white-noise model. In the following, we will represent U( t) in terms of the basis 
{ 'II k( t ), 1 ~ k < 00 }, and show that only the first N coordinates are relevant to detecting {81 ( t ), 
... ,8MCt)}. 

The components of U( t ) with respect to the new basis are 

Uk = (U( t )'IIk*(t)dt , 

Substituting for U( t) from 

l~k::;oo. 

U(t) =fm(t) + Wet) 

where W( t) is white noise with unit variance, 

Uk = (fZ(t)'IIk*(t)dt + (W(t)'IIk*(t)dt 

= { Fk (m) + Wk , 1 5, k 5, N . 

Wk , k>N 

(7.47) 

(7.48) 

(7.49) 

The noise components Wk are mutually independent because of the white noise component in 
U( t) and the orthonormality of the 'IIk( t). Only the first N components of Uk depend on the 
signal. 

The {U1, ... , UN} of (7.47) are sufficient statistics for the received signal Yet). This 
means they contain all the relevant information in {Y( t), 0 ~ t < T} for purposes of detection 
of known signals from the set {81 (t), ... , 8M< t)} with respect to any criterion of optimality, 
not just the ML criterion. In fact, the MAP detector, or any other detector can start by 
calculating these sufficient statistics. The justification for this sufficient statistic property is as 
follows: 

• Only the first N components of Uk have a signal component. 

• The remaining components are statistically independent of the first N components. 
Thus, they do not contain any information about the first N components. 
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• Thus { Uk, N + 1 ~ k < oo} is irrelevant to the detection of the signal, regardless of what 
criterion of optimality is used. 

The procedure used to arrive at this smaller set of decision variables is identical to the 
expansion in Section 6.1.2, except there we expanded {SI(t), ... , sdt)} in tenns of an N-
dimensional basis rather than the whitening-filter-adjusted signal set {fI (t), ... fd t)}. (Note 
that due to the whitening filter, the signal sets {sI(t), ... sdt)} and {fI(t), ... fdt)} may 
actually have a different dimensionality.) Thus, (7.46) and (6.16) are essentially the same, 
except for the intervening whitening filter. 

Example~19. -----------------------------------------------------
As an example of the utility of the sufficient statistic argument, consider the reception of a single 
PAM pulse, where sm( t) = Am· h( t) and the data symbol Am assumes one of M values 1 $; m 
~ M. For this case the received signal is one-dimensional, since all signals are linear multiples of a 
single waveform h( t). Thus, if the additive noise is white and Gaussian, any detector can first form 
a sufficient statistic for the received signal 

VI = (Y(t)h*(t) dt , (7.50) 

or if the noise is nonwhite, it may apply the received signal to a matched filter with transfer function 
H*(f) / SMf) and sample at time t = O. The resulting single random variable summarizes the 
received signal for purposes of detection with respect to any criterion. 

It can be shown (Problem 7-23) that {UI , ... , UN} can be obtained from the larger set of 
decision variables {VI' ... , VM } by a simple lineartransfonnation. This dependence is shown 
in Fig. 7-8. It follows that {VI> ... , VM} must also be a set of sufficient statistics, since {UI , 
... , UN} could not contain any relevant infonnation about {Y( t), 0 ~ t < T} not present in {VI' 
... , VM}. It is usually advantageous to use {UI , ... , UN} rather than {VI' ... , VM} since it has 
fewer decision variables, and furthennore the Gaussian noise components in {UI , ... , UN} are 
independent as established in (7.47). This latter property makes it easier to develop the 
remainder of the receiver structure based on the actual optimality criterion. 

Based on the sufficient statistic results, and given a criterion of optimality, an optimal 
receiver structure can be developed as follows: 

• The receiver front end calculates the N (or M) sufficient statistics. One of these finite 
sets of decision variables replaces the received signal for purposes of the design of the 
remainder of the receiver. 

• The statistics of the sufficient statistics are established for the particular noise and the 
set of known signals. 

• The remainder of the receiver structure is detennined by the criterion of optimality as 
applied to the sufficient statistics and their statistical properties. 

In summary we conclude that, generally speaking, the minimum-distance receiver structure of 
the previous chapter is optimal with respect to the maximum-likelihood criterion, provided 
that the noise is stationary and Gaussian, and provided that a noise-whitening filter is used. 
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7.3.4. Optimal Detectors for PAM with lSI 

In Chapter 5 a receiver for PAM with lSI was derived using a minimum-distance criterion. 
The receiver front end uses a whitened-matched filter (WMF). In geometric tenns, this filter 
projects the received signal onto an orthononnal basis for the signal space. The receiver then 
minimizes distance in discrete time. In this section, we extend these results in several ways: 

• We show that the WMF output is a set of sufficient statistics for the received signal 
when the noise is Gaussian. Thus, a receiver designed with respect to any criterion of 
optimality can share this same WMF front end. 

• We show that the minimum-distance receiver design of Chapter 5 is, as expected, the 
ML detector for a set of ML known signals consisting of a sequence of L data symbols. 
As a result, we call this receiver the ML sequence detector (MLSD). 

• We extend these results to nonwhite noise, and in particular show that the WMF can be 
refonnulated for this case. 

WMF Outputs as Sufficient Statistics 

As in Chapter 5, assume that the received signal consists of a finite sequence of L data 
symbols, each with the same alphabet with size M, modulating a basic complex baseband 
pulse h(t), 

(7.51) 

For the moment assume that the noise is white and Gaussian with PSD SM!) = No/2. Then 
we can consider (7.51) as consisting of a signal portion drawn from a set of M = 1.91.1 L known 
signals, together with additive white Gaussian noise. In Section 7.3, we established that a set 
of sufficient statistics can be generated by downconverting to yield the complex envelope Y( t ) 
of the received signal, and then correlating with each possible complex baseband signal, 

(7.52) 

where 

Uk = C Y( t )h *( t - kT) dt , 0 :5 k :5 L - 1 . (7.53) 

This correlation has to be repeated for all M = 1.91.1 L sequences of data symbols {ao, ... , aL-l}' 

In practice, calculating M = 1.91.1 L correlations is not feasible as L gets large, but 
fortunately, (7.52) can be generated from the L decision variables {Uo, ... , UL- 1} in (7.53). 
These L variables summarize the received signal from the perspective of calculating (7.52). 
The {Uo, ... , UL- 1} are themselves sufficient statistics. This reduces the number of sufficient 
statistics from 1.91.1 L down to just L. These L sufficient statistics are the outputs of L 
correlators against h*( t- kT), 0:5 k:5 L -1. As shown in Fig. 5-19, these L correlators can be 
replaced by a single matched filter, matched to h( t), followed by a sampler at t = kT for 
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o ~ k ~ L - 1. Thus, we conclude that a receiver structure consisting of a downconverter 
followed by a filter matched to the complex baseband pulse h( t) followed by a symbol-rate 
sampler generates a set of sufficient statistics for the received signal detection. 

This result is easily generalized to nonwhite noise using the results of Section 7.3.2, 
specifically the asymptotic results as T ~ 00. In this case, the output of the downconverter is 
first whitened by filter lIS~2U), and the set of known signals is replaced by the set of known 
signals as modified by this whitening filter. Equivalently, the matched filter can be replaced by 
a filter matched to h( t) normalized by S fi f ). The resulting front end that generates the 
sufficient statistics {Uo, ... , UL- 1} is shown in Fig. 7-9(a). The noise samples at the sampler 
output are not white, but rather have power spectrum 

Sn(ej2nfT) = 1:. Loo IHCf - m1T)1 2 . 
T k = -00 Sit(f - miT) 

(7.54) 

This is similar to the folded Sh(z) of Chapter 5, (5.58), exceptthat 1 H(f) 12 is normalized by 
SitU). As in Chapter 5, we can invoke a minimum-phase spectral factorization to write 

Sn(Z) =y; MnC z)Mn* (lIz*) (7.55) 

where y; is a positive constant and Mn( z) is a monic minimum-phase transfer function. 

In Fig. 7-9(a) a maximum-phase whitening filter is added to the output of the sampled 
matched filter, yielding an output noise process Nk that is white, Gaussian, and circularly 
symmetric, with variance 1 Iy;. The resulting discrete-time channel model from input 
symbols to WMF outputs is shown in Fig. 7-9(b). 

(a) 

(b) 

DOWN
CONVERT 

H*(f) 
Sf./f) 

1 

ak -1L.._M_"(_Z)--,~) ~.~ 

Fig. 7·9. A whitened-matched filter for PAM and nonwhite noise. (a) Complete front end of the receiver, 
and (b) equivalent discrete-time model. 



308 PROBABILISTIC DETECTION CHAP. 7 

Example 7-20. -------------------------
The front end of Fig. 7-9 reduces to the WMF derived in Section 5.4.3 when the channel noise is 
white, SN<f) = NO/2. For this case, Sn(e j21tfl') = Sh(e j21tfl') I No, where Sh(Z) is the folded 
spectrum, and thus: 

S (z) 2 
Sn(Z) = ~ = 1. M(z)M*(l/z*) 

o 0 
(7.56) 

The Nk thus have variance l/y; = No/y2. 

A receiver for detection of the data symbols can be safely based on the WMF front end of 
Fig. 7-9(a) regardless of what criterion of optimality is applied. This result is quite remarkable 
when we consider that symbol-rate sampling at the matched filter output is generally at less 
than the Nyquist rate, so aliasing of both noise and signal is inherent in this sampling. This 
aliasing will not compromise the performance of the receiver as long as the filter before the 
sampling is a matched filter. 

Maximum-Likelihood Sequence Detector 

The sufficient statistic argument allows us to use the front end of Fig. 7-9(a) for any 
detection criterion, so we will now apply it to the ML detector. With the WMF front end, the 
equivalent discrete-time model of Fig. 7-9(b) can be used as a starting point for application of 
the ML criterion. In particular, the ML detector for this equivalent discrete-time model was 
developed in Section 7.3. It chooses the sequence of data symbols that minimizes the 
Euclidean distance 

min L I Wk - L7 -=-~ aZmk _ zl2 . 
{ao, ... , aL-l} k = 0 -

(7.57) 

This is precisely the minimum-distance receiver design of Chapter 5, and thus that receiver 
design is equivalent to the detector using the criterion of maximizing the likelihood of the 
received signal conditional on a sequence of data symbols {ao, ... , aL-l}' Since an entire 
sequence of data symbols is detected at once, this detector is called the maximum-likelihood 
sequence detector (MLSD). If all sequences are equally likely, the MLSD minimizes the 
probability of making one or more errors in a sequence of data symbols. That is, the criterion 
penalizes the detector equally for making any number of detection errors. 

We have now derived the MLSD criterion of (7.57) in two ways. First, in Section 5.4 it 
was shown that the discrete-time criterion of (7.57) is equivalent to a continuous-time 
minimum-distance receiver design, in the sense that both criteria will choose the same 
sequence of data symbols. Second, in this section, using the argument that the WMF forms a 
sufficient statistic for the received signal detection, and also using the white noise property of 
the WMF output, we have shown that the criterion of (7.57) is optimal in the ML sense. 
Combining these two facts, we arrive at the conclusion that minimum-distance receiver design 
is optimal in the ML sense for PAM with lSI on the white Gaussian noise channel. 
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7.4. ML Sequence Detection with the Viterbi Algorithm 

The Viterbi algorithm was presented in Chapter 5 as an efficient technique for solving the 
minimum-distance sequence detection problem. We now show how it can be generalized to 
solve the maximum-likelihood sequence detection problem for any Markov signal generator 
and any noise generator with independent noise components. 

Let '1'= ['¥O, ... 'I'L+~ E {a, ... Q_l}L+/l+l denote the sequence of states ofa finite
state machine from time k = ° to L + ~, and let the vector \If denote an outcome of this random 
vector. Similarly let the vector Y = [Yo, ... Y L + /l-1] denote the corresponding vector of noisy 
observations. (There is one fewer observation than states because observations correspond to 
transitions between states). Then given a particular observationy, the MAP sequence detector 
selects the vector \If that maximizes the posterior probability P,¥ ly(\If \y). Note that the 
criterion is to maximize the a posteriori probability of the whole sequence of states, rather 
than a single state, and hence the term sequence detector. 

In this section we omit the pdf subscripts when there is no anlbiguity, writing p(\If \y) 
instead ofp,¥ ly(\If \y), for eXanlple. The shorthand will greatly simplify notation. Furthermore, 
we will use the notation f(y) to denote the probability density function for Y, which implies 
that Y is continuous-valued, as in the case of additive Gaussian noise. If it is discrete-valued, 
as in the BSC, then simply replace f(y) with p(y). 

The MAP sequence detector can equivalently maximize the product p(\If \y)f(y) because 
f(y) is not dependent on our choice \If. From the mixed form of Bayes' rule (3.31), we can 
equivalently maximize f<S \\If)p(\If). We look at the second factor first. 

Exercise 7-1. 
Use Bayes' rule and the Markov property to show that 

L+I'-1 

p(\If) = p(\lfo) II P(\lfk+l\ \lfk) . (7.58) 
k=O 

This is intuitive because the a priori probability of a given state trajectory \If is equal to the 
product of the probabilities of the corresponding state transitions and the probability of the 
initial state. Since we assume the initial state is known, p(\Ifo) = 1. 

We now look at the first factor. Because of the independent noise components assumption, 

L+I'-1 

f<S I \If) = II f<Sk I \If) . (7.59) 
k=O 

Furthermore, since Yk depends on only two of the states in \If, we can write 

L+I'-1 

f<S I \If) = II fl:Yk I \lfk, \lfk+1) . (7.60) 
k=O 

Putting these results together, the goal of the MAP sequence detector is to find the state 
sequence \If, or equivalently the path through the trellis, that maximizes 
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L+!1-1 

fCY 1'I1)p('I1) = II [fCYk I '11k, 'I1k+1)P('I1k+11 '11k) ] . 
k=O 

(7.61) 

We can interpret this quantity as a path metric equal to the product of branch metrics, where 
the term in the square brackets represents the branch metric for the transition ('11k, 'I1k+1)' The 
MAP detector then calculates the path metric for each path through the trellis and finds the 
path with the largest path metric. 

To make things more precise we will adopt the notation of Section 5.4.4. Assume there are 
Q states labeled 0, ... Q - 1. Assume that the state is known to start at zero at time zero, and 
end at zero at time L + J.L. Let a(P' q) and s(P' q) denote, respectively, the unique input symbol 
and unique signal generator output associated with a valid transition from state P E {O, 1, ... 
Q-1} to state q E {O, 1, ... Q-1}. In other words, following the usual convention of labeling 
state transitions by the input/output pair, the label for a transition from state P to state q is 
(a(p, q), s(P' q». This notation will be illustrated by example. 

Example 7-21. -------------------------
Consider a sequence of OOK symbols ak E {O, I} over an lSI channel with transfer function 
H( z) = 1 + 0.5z-1, for which one stage ofthe trellis is shown below: 

lj/=O 
(0,0.0) 

--ll.. 
(1,1.0) - __ 

(0,0.5) 

- - - -~ - - - :-0 
(1,1.5) 

(This same example was considered in Example 5-27.) The input and output labels of the trellis 
stage shown above indicate that: 

a(O,O) = 0, a(O,l) = 1, a(l,O) = 0 , a(l,l) = 1 , 

s(O,O) = 0, s(O,l) = 1, s(l,O) = 0.5, s(l,l) = 1.5 . (7.62) 

In terms of this notation, P('I1k+1 = q I '11k = p) reduces to PAk(a(P, q», the a priori probability 
that the k-th symbol is a(P' q), and also fCYkl'l1k, 'I1k+1) reduces to {YklSk CYk Is(P,q», where Sk 
denotes the k-th signal generator output. Thus, (7.61) suggests that the branch metric for a 
transition from state P to q at time k should be: 

(7.63) 

If it is impossible to transition from state P to state q, the corresponding branch metric reduces 
to zero, because the a priori probability of a symbol causing such a transition is evidently zero. 
Often the branch metric can be significantly simplified. For example, if all symbols are equally 
likely then the a priori factor p(a(p, q» is a constant and can be omitted. Alternatively, if we do 
not know these a priori probabilities, we can assume a uniform distribution and again omit this 
term. In either case the MAP sequence detector reduces to the ML sequence detector. 
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The Viterbi algorithm of Section 5.4.4 can be used to efficiently find the path with the 
largest metric, with only a minor modification to handle the multiplicative branch metric. The 
modified algorithm will be called the multiplicative Viterbi algorithm. (We will see that it 
shares many similarities with the BeJR algorithm of the next section.) Define the survivor for 
state P at time k as the partial path beginning at time zero and state zero and ending at state p at 
time k with maximal metric, and call this maximal metric CJ.k(P). The Viterbi algorithm 
exploits the fact that survivors at time k + 1 will build on survivors at time k. In particular, the 
partial path metrics at time k + 1 are related to the partial path metrics at time k by: 

(7.64) 

Since the state is known to be zero at time zero, the CJ. metrics are initialized according to 
[CJ.o(O), ... CJ.o(Q -1)] = [1, 0, ... 0], or more succinctly, CJ.o(p) = op. The multiplicative Viterbi 
algorithm uses this recursion to recursively determine the survivors for k E {I, 2, ... L+fl-1}. 
The last survivor (for state zero at time L + fl) is then the decision path. 

In practice the complexity of this recursion is reduced by tracking the negative of the 
logarithm of the survivor metric, a monotonic function. Taking the negative logarithm of 
(7.64) allows us to replace the branch metrics by their negative logarithm, replace the 
multiplication by addition, and replace maximization by minimization. With these changes, 
(7.64) reduces to the familiar add-compare-select recursion of Section 5.4.4. 

Example7-22. -----------------------------------------------------
Consider the case of complex additive Gaussian noise with Yk = Sk + Nk, where Sk is the k-th 
output of the signal generator. In this case the branch metric of(7.63) reduces to 

Y (P ) = _1_ -IYk- S (p.q)1 2 /(2cr2 ) «p,q» k ,q 2e PAk a . 
2n<J 

(7.65) 

The negative of the logarithm of the branch metrics is proportional to 

(7.66) 

The last term is common to all transitions and can be omitted. In the special case when all symbols 
are equally likely, the second term is also a constant and can be omitted, yielding an effective 
branch metric equal to the squared Euclidean distance. Hence we have rederived the result from 
Section 7.2 in another way! We have also shown how it can be generalized to accommodate a priori 
information about the transmitted symbols, namely, by using (7.66). 

Example7-23. -----------------------------------------------------
Consider a tinite-state signal generator that produces binary vectors {Sk} oflength N, and assume 
a BSC noise generator with crossover probability p, so that (7.63) reduces to: 

Yk(P, q) = f(yk I s(P, q»PAk(a(P, q» 

= (~/H(Yk' s(p,q» PA (a(p, q»(l _ p)N 
I-p k 

(7.67) 

where a(p ,q) and s(p ,q) are the unique inputs and outputs associated with a transition from P to q. 
The negative logarithm ofthis branch metric is proportional to: 
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dH(Yk, S(p, q» -logPA (a(p, q»/ log( ~) - Nlog(l- p)/ log( ~) . (7.68) 
k I-p I-p 

The last term is common to all transitions and can be ignored. In the special case when all input 
symbols are equally likely, the second term is also a constant and can be omitted, yielding an 
effective branch metric equal to dH<Yk, s(p, q», the Hamming distance. Thus, whereas Euclidean 
distance is appropriate for the AWGN channel, Hamming distance is appropriate for the BSe 
channel. 

7.5. A Posteriori Probability Detection with BCJR 

In this section we summarize the Bahl, Cocke, Jelinek, Raviv (BCJR) algorithm [2] for a 
posteriori probability (APP) detection of symbols corrupted by an lSI channel and AWGN. 

Although the BCJR and Viterbi algorithms share many similarities, they differ in a 
fundamental way because they compute very different quantities. The Viterbi algorithm 
computes hard decisions by performing sequence detection. The BCJR algorithm computes 
soft information about the data symbols in the form of a posteriori probabilities for each of the 
transmitted symbols. When applied to PAM over an lSI channel, for example, the Viterbi 
algorithm is an example of a hard-output equalizer, whereas the BCJR algorithm is an example 
of a soft-output equalizer. Of course, this soft information could be converted to hard decisions 
by choosing each decision so as to maximize its a posteriori probability; the resulting 
decisions would be individually optimal in the sense that they have minimal probability of 
being in error. Thus, whereas the Viterbi algorithm produces the most likely symbol sequence, 
which minimizes the probability of a sequence error, maximizing the APP's as calculated by 
the BCJR algorithm produces the sequence of most likely symbols, which minimizes the 
average symbol-error rate. The distinction is subtle and is not by itself enough to warrant much 
interest in BCJR. Indeed, the hard-decision performance of BCJR is only marginally better 
than Viterbi. 

The real value of BCJR is it that the APP's are valuable in their own right; they may be 
used to estimate the reliability of a decision, and are especially useful when interacting with 
other modules in a receiver. For example, so-called soft decoding of error-correction decodes 
base on APP's can significantly outperform hard decoding based on hard decisions. 
Furthermore, APP's are needed for implementing iterative receivers based on turbo 
processing. 

The BCJR algorithm shares many similarities with the multiplicative Viterbi algorithm. 
Both are based on the same trellis, both assign the same multiplicative branch metric to 
transitions, and both progress through the trellis recursively. However, rather than making one 
pass through the trellis from start to finish, as is done in the Viterbi algorithm, the BCJR 
algorithm makes two passes: one forward pass from start to finish, and then a second backward 
pass from finish to start. Therefore, roughly speaking, the complexity of the BCJR algorithm is 
twice that of the Viterbi algorithm. 
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To be concrete, we consider a signal generator with Q states labeled {O, ... Q -I} and L 
inputs symbols {ao, ... aL -I} drawn independently from an alphabet 5t For example, the 
symbols might be drawn from a complex PAM alphabet and the signal generator might be an 
FIR filter (representing lSI) with memory log 15l.1 Q. The input symbols are not necessarily 
drawn uniformly from 5t Our presentation of the BCJR algorithm will rely on the same trellis 
structure used by the Viterbi algorithm (Section 5.4.4). As in Section 5.4.4, we make the 
simplifying assumption that an idle symbol is input for all time k < ° and k ~ L, so that the 
state of the signal generator is known to be zero at both time k = ° and time L + 11. The trellis 
consists of L + 11 stages, the first L being due to the data symbols, while the remaining 11 are 
due to the idle symbols. Let y = [Yo, ... YL + 1l-1] denote the set of observations, one for each 
trellis stage. There are 1511 branches emanating from all nodes in the first L stages, one for 
each possible input symbol. 

Simply stated, the aim of the APP detector is to compute PAk (a 1 y) for each a E Jl, and for 
all k E {a, ... L -l}. In the context of the trellis diagram, these probabilities are easily 
computed once the a posteriori transition probabilities crk(P, q) = Pr[\lfk = p, \lfk+1 = q Iy] are 
known for each state transition (or branch) in the trellis. The BCJR algorithm provides a 
computationally efficient method for finding these state transition probabilities. 

The key to the BCJR algorithm is a decomposition of the a posteriori probability for a 
transition at time k into three separable factors: the first depending only on the "past" 
observations yz <k = {yz: l < k}, the second depending on only the "present" observation Yk, 

and the third depending only on the "future" observations Yz > k = {Yz : l > k}. This 
decomposition is illustrated in Fig. 7-10. We can derive this decomposition through the 
following series of straightforward equalities: 

TIMEk TIMEk+1 
, , , , 

: ~0 : 

STATEp ----~------------akrp~: : 

, ' q) , 

STATEq ---- ------------------:----------r---------; k+l(q)~ 
, , ,------'--, , , 

YZ<k = {YZ}g-1 

PAST 
Yk 

PRESENT 

L+)1-1 
Yl>k={Ylh+l 

FUTURE 

Fig. 7-10. A transition from state p to state q at the k-th stage ofthe trellis. Associated with the starting 
state is the quantity uk(P), which depends only on the past; associated with the ending state is the 
quantity ~k+l( q), which depends only on the future, and associated with the branch is the metric 
Yk(P, q), which depends only on the present. The a posteriori probability of this particular transition is 
proportional to the product uk(P)Yk(P, q)~k+l(q). 
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(Jk(P, q) = f(\j1k = p, 'IIk+l = q, y)lf(y) 

= f('IIk = p, 'Ilk + 1 = q, yz < k' Yfl, yz > k)lf(y) 

= f(yz > k I 'Ilk = p, 'Ilk + 1 = q, yz < k' Yk)f('IIk = p, 'Ilk + 1 = q, YZ < k' Yk)lf(y).(7.69) 

Because of the Markov property of the finite-state machine model, knowledge of the state at 
time k + 1 supersedes knowledge of the state at time k, and it also supersedes knowledge of Yk 
andyz <k' so that (7.69) reduces to: 

(Jk(P, q) = f(yz >k I 'Ilk + 1 = q)f('IIk = p, 'IIk+l = q, yz <k' y~/f(Y) 

= f(yz > k I 'Ilk + 1 = q)f('IIk+1 = q, Yk I 'Ilk = p, yz < k)f('IIk = p, yz < k)lf(y)· (7.70) 

Again, exploiting the Markov property, this simplifies (with a reordering of tenns) to: 

(Jk(P, q) = f('IIk = p, yz < k)f('IIk+1 = q, Yk I 'Ilk = p)f(yz > k I 'Ilk + 1 = q)lf(y) (7.71) 

= x I f(y). 

This equation defines uk(P), ~k+ 1 (q), and Yk(P, q). We immediately recognize Yk(P, q) as 
being identical to the mUltiplicative Viterbi branch metric (7.63) from Section 7.4. Although 
the quantity uk(P) defined above is not identical to the partial path metric Uk(P) of 
Section 7.4, we purposefully use the same notation so as to emphasize their similarities. 

Observe that uk(P) is a probability measure for state P at time k that depends only on the 
past observations yz < k. On the other hand, ~k+ 1 (q) is a probability measure for state q at time 
k + 1 that depends only on the future observations yz > k. And finally, Yk(P, q) is a branch 
metric for a transition from state P at time k to state q at time k + 1, and it depends only on the 
present (k-th) observation Yk. The implication of (7.71) is that, as illustrated in Fig. 7-10, the a 
posteriori probability for a particular transition can be calculated (to within a constant factor) 
by simply multiplying the U quantity for the starting state by the branch metric by the ~ 
quantity for the ending state. 

The ultimate goal is to calculate the a posteriori probabilities for the symbols ak, and not 
for the transitions. Fortunately, it is easy to translate from one to the other. Specifically, let Sa 
~ {O, ... Q - 1}2 denote the set of integer pairs (p, q) for which a state transition from P to q 
corresponds to an input symbol of a. We illustrate this notation by a simple example. 

Example 7-24. -------------------------
Let us return to the OOK example with lSI channel H( z) = 1 + 0.5z-1, for which one stage of the 
trellis is: 
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The transitions corresponding to an input of a one are shown as dashed lines. Therefore, in terms of 
the above notation, So = {(O, 0), (1, O)} identifies the solid transitions, and Sl = {(0,1), (1,l)} 
identifies the dashed transitions. 

The a posteriori probability that the k-th symbol is a particular a E.9I. can be easily computed 
by simply adding all of the transition probabilities in stage k corresponding to that a: 

PAkly(aJy)= L Pr['Jik=p, 'Jik+1=q Jy] 
(P.q)eSa 

1 
= f(y) L ak(p )Yk(P, q )~k+ 1 (q) . 

(P,q)eSa 

(7.72) 

(7.73) 

In practice, the quantity f(y) in the denominator is ignored because it is common to all 
posteriori probabilities. If desired, its impact can be implicitly accounted for by first 
calculating (7.73) withoutf(y), and then normalizing the results so that the a posteriori pdffor 
each of the transmitted symbols sums to unity, La E51PAkly(a Jy) = l. 

The branch metric is determined by the statistics of both the noise and the source. For 
example, the branch metric for the AWGN channel and BSC are given by (7.65) and (7.67), 
respectively. There are many applications in which all symbols are equally likely, in which 
case the a priori probability factor PAk (a) is a constant, independent of a. In such applications, 
the BCJR branch metric is equivalent to the usual Euclidean-distance or Hamming-distance 
metric. However, the coding of symbols before transmission (for example, using source 
coding or channel coding) can make some symbols more likely than others, and exploiting this 
knowledge can be beneficial. 

That the transition APP can be decomposed into the form ak(p )Yk(P, q )~k+ 1 (q) is 
interesting in theory, but to make this decomposition valuable in practice we need a 
computationally efficient method for computing the {uk(P)} and {~k(P )} values. Fortunately, 
they can be computed recursively with very low complexity. Specifically, it is easy to show 
(see Appendix 7-C) that the metrics {Uk(P)} can be calculated recursively according to: 

(7.74) 

Remarkably, this BCJR recursion is very similar to the Viterbi recursion of (7.64); the only 
difference is that the maximum operator maxp { . } of the Viterbi recursion has been replaced 
by a summation operator Lp{ . }. Thus, whereas the Viterbi recursion compares contributions 
from several branches and selects one, the BCJR recursion accepts contributions from all 
branches. This difference is not always significant, however, because the exponential form of 
the branch metric (7.65) implies that the maximum is often a good approximation to the sum. 

As shown in Appendix 7-C, the metrics {~k(q)} can be also be calculated recursively, 
using the exact same recursion as above but working backwards, starting at the end of the 
trellis and moving to the beginning, according to: 

(7.75) 
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The BCJR algorithm can now be summarized as follows. 

1. Just as for the Viterbi algorithm, calculate the branch metrics (y) for all branches in the trellis. 
(For example, use (7.65) for the AWGN channel, or use (7.67) for the BSC.) 

2. Calculate forward metrics (a) using (7.74) for q E {O, ... Q -I}, as k = {O, 1, ... L+~-l}, 
with initialization ao(p ) = Op. 

3. Calculate backward metrics (B) using (7.75) for P E {O, ... Q - I}, as k = {L+~-l, ... 1, O}, 
with initialization BL+~(p) = Op. 

4. Calculate the a posteriori probabilities using (7.73) for each a E 5'1., k E {O, ... L - I}. 

Interestingly, steps I and 2 are just the multiplicative version of the Viterbi algorithm with 
maxp{ . } replaced by Lp{ . }. We need only add steps 3 and 4 to realize the BCJR algorithm. 

7.5.1. Special Case: Binary Alphabet 

If the input alphabet is binary, 5f. = {±1}, then the a posteriori probabilities PAk I yea I y) are 
completely characterized by the scalar PAkly(lly) = 1-PAkl y (-1Iy), or equivalently by the 
ratio P Ak I y(ll y) / PAk I y( -11 y), or equivalently by its logarithm: 

1 _ (PAk\y(+lIY») 
II.k -log· , 

PAk \y(-lly) 

which from (7.73) can be expressed as: 

Ak = log (p,q) E 5) • [ 
L ak(p )Yk(P, q )Bk+ 1 (q)1 

Lak(P)Yk(P, q)Bk+1(q) 
(p,q) E 5.) 

(7.76) 

(7.77) 

The BCJR algorithm for binary alphabets thus uses (7.77) to produce the a posteriori log
likelihood ratios Ao, A1> ... , AL -1, one for each transmitted symbol. If desired, the decisions 
that minimize the probability of being wrong can then be formed using a simple quantizer: 

(7.78) 

This is the minimum-probability-of-error detector. As mentioned earlier, however, the hard 
decisions produced by quantizing the a posteriori probabilities are not significantly more 
reliable than those produced by the Viterbi algorithm. Thus, in practice, the additional 
complexity of the BCJR algorithm is only justified when the a posteriori probabilities 
themselves are desired. 

7.5.2. Normalization 
Implementation of the forward and backward recursions on a finite-precision computer 

can lead to numerical underflow as the values for a and B become small. To prevent such 
numerical problems, the forward and backward recursions are commonly replaced by the 
following normalized versions: 
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Uk' + I(q) = AkL:: ~ Uk'(P )Yk(P, q) , 

~k'(P) = BkL::~Yk(P' q)~k'+ I(q), 

317 

(7.79) 

(7.80) 

where the constants Ak and Bk are chosen to prevent U and ~ from becoming too small. A 
common choice is to choose Ak and Bk so that LpUk' (p) = Lp~k' (p) = 1 for each k, or else so 
that uk'(O) = ~k'(O) = 1 for each k (the latter strategy having the advantage of reducing slightly 
the storage requirements). It is easy to see that the net effect of these normalizations is: 

(7.81) 

Thus, using Uk' and ~k' in place of Uk and ~k in (7.72) would only scale the a posteriori 
probabilities for the k-th symbol by the constant factor (rr:=o Ai)(rr;:~~~ BJ This factor is of 
no consequence, because it applies equally to all symbols in the alphabet, and it can easily be 
accounted for by rescaling the a posteriori pdf to ensure that it sums to unity. For the same 
reason, all of the branch metrics within a given stage k of the trellis can be scaled by the same 
constant without affecting the APP calculations. This constant can change from one stage to 
the next. For example, the 1/(2ncr2) factor in (7.65) and the (1 - p)N factor in (7.67) can be 
ignored in practice. 

Example 7-25. -------------------------
Suppose a sequence of L = 3 OOK symbols {ao, aI, a2} E {O, 1}3 are transmitted over an lSI 
channel with memory Il = 1 and AWGN. The trellis has L+ 1l-1 = 4 stages, as shown below: 

1 2 4 9 22 
1jI=o ~""'"" 2~1---{ >--1-,-,,' 27 

1 "" 2 , l' "'" /1 , , , 

",,0(---1 ---'~,t(--.o--~~, 4 1jI=1 

8 2 1 

The transitions caused by inputs of one are shown as dashed lines. Suppose the a prIOri 
probabilities {P Ai( ai)} and the relevant observations {Yo, Y1> Y2, Y3} are such that the branch 
metrics defined by (7.65) are as shown above. (Almost surely these branch metrics would not be 
integers, but we assume integers to simplify our calculations.) In other words, suppose step 1 ofthe 
BCJR algorithm has already been performed. The aim ofthis example is to illustrate the remaining 
steps of the BCJR algorithm. 

Associated with each node are two metrics. We write the forward metric U above the node, and the 
backward metric ~ below the node, in bold. According to step 2, the forward metric is unity at state 
zero at time zero, so uo(O) = 1 is written above the root node. The forward recursion dictates that 
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0.1 (0) = a.o(O)yO(O, 0) = 1 x 2 = 2, which is written above the state 0, time 1 node. Similarly, it 
dictates that 0.1(1) = o.O(O)yO(O, 1) = 1 x 1 = 1, which is written above the state 1, time 1 node. 
Then we move on to the next stage. For example, according to the forward recursion, 

0.2(1) = 0.1 (O)YO(O, 1) + 0.1 (l)Yo(1 , 1) 
=2x2+1x1=5, 

which explains why a "5" is written above the node at time 2, state 1. 

(7.82) 

After calculating all of the forward metrics, step 3 tells us to repeat the same procedure backwards. 
The state is known to be zero after the last stage, so ~L+l(O) = 1 is written below the last node. For 
example, the "7" written below the node at time 1, state ° is there because the backward recursion 
implies that: 

~1 (0) = Yl (0, O)~2(O) + Y1 (0, 1)~2(1) 
=lx3+2x2=7. (7.83) 

Observe that the last backward metric agrees with the last forward metric, ~0(0) = o.L+ 1 (0) = 22. 
They will always agree. 

Once the forward and backward metrics are known, the a posteriori log-likelihood ratios defined in 
(7.76) can be calculated according to (7.77). The results are: 

~ (lXIX8) (4) 11.0 = log -- = log - > 0 lx2x7 7 ' (7.84) 

A = 10 (2 x 2 x 2 + 1 x 1 x 2) = 10 (~) > 0 
1 g 2xlx3+1x2x3 g 6 ' (7.85) 

A. = 10 (4 x 1 x 1 + 5 x 0 x 1) = 10 (~) < 0 
2 g 4xlx2+5xlx2 g 9 . (7.86) 

The numerators are the sum of the a. x Y x ~ products for the dashed transitions, which 
correspond to an input of one, while the denominators are the sum of the a. x Y x ~ products for 
the solid transitions, which correspond to an input of zero. The signs of the a posteriori LLR's 
indicate that the symbol-wise MAP decisions are ao= 1, a1 = 1, and a2= o. 

7.6. Symbol-Error Probability for MLSD 

In this section we relate the probability of sequence error to the probability of symbol error 
for the ML sequence detector, focusing primarily on the case of continuous-time passband 
PAM with real additive white Gaussian noise with PSD No/2. 

By interpreting a sequence of PAM pulses as a single signal, we can apply directly the 
general M-ary analysis results of Section 6.1. The fact that we have found a computationally 
efficient algorithm for making the ML decision will not change that error probability. 
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However, in this context, the error probability is really the probability of a sequence error. By 
sequence error, we mean one or more errors in the detection of the entire sequence of data 
symbols. Specifically, from (6.41), the sequence error probability is approximately 

Pe ~ K. ~d~n) . (7.87) 

In this expression, cr2 = No/2, and dmin is the minimum Euclidean distance between two 
distinct sequences of data symbols, that is, the minimum distance between any signal 
s(t) = L;:~akh(t - kT) and any other signal s'(t) = L;:~a'; h(t - kT): 

d!in = min r I s( t) - s' ( t) 12dt . 
{ak};t{ak}EJ'lL ~ 

(7.88) 

However, caution is in order. As the length L of the sequence gets large, the number of 
distinct paths with minimum distance from the correct path also gets large, invalidating the 
approximations in Section 6.1 that led to (7.87). In fact, as L gets large, the probability of 
sequence error usually approaches unity! Fortunately, the probability of symbol error of the 
minimum-distance sequence detector stays small even if L goes to infinity. The symbol-error 
probability of the minimum-distance sequence detector will be explored below. 

7.6.1. Error Events 

For purposes of determining the symbol error probability, it is useful to introduce the 
concept of an error event. Let {\jI k} be the correct state sequence and {'" k} be the sequence 
selected by the Viterbi algorithm. Over a long time, {\jI k} and { '" k} will typically diverge and 
remerge several times. Each distinct separation is called an error event, which is therefore 
defined as a correct path through the trellis paired with an error path that begins and ends with 
the correct state. By definition, the error path does not share any intermediate states with the 
correct state sequence. The length of an error event is the number of intermediate (incorrect) 
nodes in the path. 

Example7-26. -----------------------------------------------------
Examples of error events of length one and two are shown in Fig. 7-11 for a two-state trellis. The 
assumed correct state trajectory is shown by dashed lines, and the error event by solid lines. There 
are error events of unbounded length, although as we will see, the probability of the longer events 
will usually (but not always) be negligibly small. 

i i+l i+2 i+l i+2 i+3 

~ o 
(a) (b) 

Fig. 7-11. When the correct state sequence II' and the detected state sequence Ij! diverge and 
remerge, we have an error event. Two error events are shown here. (a) The shortest error event for the 
two-state trellis in Example 7-24. (b) The next longest error event. In both cases we have assumed the 
correct state trajectory is all zeros, shown with the dashed lines. 
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An error event has one or more symbol errors, which are incorrect symbols or bits that result 
from taking an incorrect path through the trellis. In Appendix 7-B we show that the probability 
of symbol error is dominated by the probability of the minimum distance error event at high 
SNR. For the Gaussian noise case, 

Pr[symbol error] "" C· Q(dmin /2cr) (7.89) 

and for the BSe case 

Pr[symbol error] "" C· Q(dmin, p) , (7.90) 

where C is some constant between P and R given by (7.157) and (7.149) respectively, and 
Q( . , . ) is defined by (7.23). As long as P and R are reasonably close to unity, we need not be 
too concerned with this multiplicative constant. 

The following procedure will find the distance of any particular error event for either the 
Gaussian or BSe cases. Assume a correct state sequence, and label each branch in the trellis 
with its squared distance from the corresponding branch of the correct state sequence. This 
would be the branch metric if the channel were noiseless. The correct state sequence will have 
branch metrics that are zero, and normally all the branches not on the correct path will have a 
non-zero branch metric. For each possible error event, we can find the distance of that error 
event very simply by computing its path metric. 

Example 7-27. -------------------------
Continuing the lSI Example 7-24, Fig. 7-12 shows the trellis labeled with the branch metrics 
assuming a noiseless channel and an all-zeros transmitted sequence. The path metric for each path 
through the trellis is now the square of the Euclidean distance of that path from the correct all-zeros 
path. The error event of length one is easily seen to have Euclidean distance )1.25, and the error 
event of length two has distance J3]. Longer error events have still greater distances. Obviously, 
the error event of length one is much more probable than longer error events. It is easy to show by 
exhaustive search that all possible correct paths through the trellis are at least distance j1.25, and 
none has smaller distance (see Exercise 7-2 below), so )1.25 is the minimum distance for all 
possible correct paths. It is shown in Appendix 7-B that C = 1, so 

Pr[symbol error] "" Q(j1.25/2cr) . (7.91) 

Exercise 7-2. 
Completing Example 7-27, show that for each possible correct path through the trellis, the 
minimum-distance error event has length one and distance )1.25. 

In Example 7-27 we found the minimum distance by inspection. This will not be so easy in 
general. Fortunately, it turns out that the Viterbi algorithm can itself be used to find the 

i i+l i+2 i+l i+2 i+3 

~
- ... --o-- .. --

1.0 0.25 

(a) (b) 
2.25 

Fig. 7-12. The trellis of Fig. 7-11 labeled with the distances from the correct branches. assuming the 
correct branches are the dashed ones. 
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minimum-distance error event for a given correct state sequence! Using the trellis diagram 
labeled with the same branch metrics as above, we can begin on the correct path and use the 
Viterbi algorithm to find the survivor at each stage, excluding the correct path (the only one 
with zero path metric). Each survivor at a node on the correct path corresponds to an error 
event, and the path metric is the distance of this error event from the correct path. At each 
stage of the algorithm, keep track of the minimum-distance error events recorded thus far; 
when all survivors have a partial path metric greater than this minimum, the minimum
distance error event has been found for one assumed correct path through the trellis. 

As shown in Appendix 7-B, it is the global minimum distance d min that dominates the 
probability of error, not the minimum distance from one particular path through the trellis. 
Fortunately, usually we do not need to examine all possible correct paths to find the minimum 
distance. Better techniques are available for both the lSI examples (discussed shortly), and the 
BSC examples (discussed in Chapter 12). In both cases we exploit symmetry based on 
linearity, although the nature of the linearity is quite different in each case. 

7.6.2. Calculating the Minimum-Distance for lSI 

We now examine the problem of calculating the dmin of (7.88) for PAM over an lSI 
channel. In Section 5.4.3 we showed that a PAM signal of the form s( t) = L~: ~akh(t - kT) 
can be expanded in terms of the WMF basis {cjl(t - kT)}, where the expansion coefficients are 
yak * mk, and where mk and y are defined by the factorization Sh(z) =y2M(z)M*(1 /z *). 
Therefore, from Parseval's relationship, (7.88) simplifies to: 

(7.92) 

00 

_ . 2 ~ I ~L-l 12 - mm y ~ ~n_ocnmk-n , 
{EO" 0, El,···EL-l} -

k=O 
(7.93) 

where ck = ak - ak is called an error symbol. The minimization is over all sequences of {ak} 
and { ak} that are not equal; that is, that differ for at least one k. Therefore, the minimization is 
over the error alphabet .91.-.91., with the constraint that at least one of the ck'S must be nonzero. 
By time invariance, we can limit attention to error events that begin with an error at time k = 0; 
that is, the minimization of (7.93) is over all {ck} such that Co * o. 

The minimum-distance problem of (7.93) can be formulated in a form that can be solved 
by the Viterbi algorithm, but only for the case where M( z) is an FIR filter, where an FSM 
model holds. Assuming mk = 0 for k > 11, the convolution sum can be reversed, 

(7.94) 

Two desirable things happen in the FIR case as formulated in (7.94). First, the summation over 
k becomes finite, although in practice this is not too helpful because we are interested in very 
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large values of L. Second, the minimization can be formulated as the minimization of the path 
metric in a trellis. Toward this end, define a state 

(7.95) 

and a trellis diagram for the progression of this state. Labeling each branch of this trellis with 
the corresponding branch metric l:Lr = 0 mick _ i 12, the minimization problem becomes one of 
finding the non-zero path through this trellis with minimum path metric. The minimization is 
over all error symbol sequences starting with co;f. 0, and hence over all paths through the 
trellis where the starting state is [0, 0, ... , 0] and the first branch is non-zero. 

This formulation of the minimum-distance problem has its price, as well as a major 
advantage. The price is that the alphabet of error symbols is larger than the alphabet of the data 
symbols, increasing the number of states in the trellis. In general if the data symbol alphabet 
has size M, the error symbol alphabet can be as large as M2, although normally it is smaller. 

Example 7-28. -------------------------
If the data symbols are real-valued, M is odd, and the data-symbol alphabet is all integers in the 
range [-(M -1)/2, (M -1)/2], then the error symbols (difference between two data symbols) 
can assume all values in the range [-(M - 1), (M - 1)], or (2M - 1) distinct values. This is 
generally much smaller than M2. 

The advantage of this formulation is that the branch metric is a function of each branch in 
isolation, not pairs of branches (correct path and error path), greatly reducing the number of 
alternatives that have to be considered. 

The Viterbi algorithm can now be applied to finding dmin in a simple example (where it ~s 
hardly needed). 

Example7-29. -----------------------------------------------------
For the lSI channel of Example 7-24, where H( z) = 1 + 0.5z -1, the branch metric is given by 
(ck + 0.5ck _1)2. If the data symbols are binary, with alphabet {O, 1}, the error ck is ternary, with 
alphabet {O, !:t1}. The corresponding three-state trellis diagram is shown in Fig. 7-13(a), and the 

'l' 

-1 

o 

+1 
(a) 

0.25 

o 

0.25 

(b) 

Fig. 7-13. a. The trellis diagram for finding the minimum distance for the lSI example of Example 7-29. 
b. The two minimum-distance error events. 



Sect. 7.6 Symbol-Error Probability for MLSD 323 

two minimum-distance error events are shown in Fig. 7-13(b). Each error event has a single symbol 
error. 

To complete the probability-of-error analysis it is helpful to estimate the error coefficient C in 
(7.89) or (7.90) by finding P and R, where P::; C::; R. Recall that Pis the probability that there 
is an error event starting at a fixed time i with distance dmin, and R is given by (7.149), or 

R = Le EB w(e)Pr['If] (7.96) 

where B is the set of error events with minimum distance, w(e) is the number of symbol errors 
in the error event e, and 'If is the correct state trajectory. 

Example7-30. ---------------------------------------------------
Continuing Example 7-29, at any given time k, exactly one minimum-distance error event can start 
at that time, regardless of the correct state trajectory. If ak = 0, which occurs with probability '/2, 

then the top error event is possible, corresponding to Ek = -1. If ak = 1, which also occurs with 
probability '/2, then the bottom error event in Fig. 7-13(b) is possible, corresponding to Ek =+1. 
Consequently, P = 1. Since the error event includes one symbol error, w(e) = 1 for each e E B, 
and since there is only one minimum distance error event possible for each correct path through the 
trellis, R = 1. Consequently, C = 1 and Pr[symbol error] '" Q(J1.25/2cr). 

Example 7-31. --------------------------
Consider a channel with response H( z) = 1 - Z -1 and a binary alphabet {O, I}. The trellis is 
shown in Fig. 7-14(a). What is interesting about this channel is that two of the branches not on the 
correct zero path have zero branch metric. As a result, there are an infinite number of error events at 
the minimum distance of J2, corresponding to any sequence of consecutive errors of the same 
polarity. First note that since every correct path has at least one minimum-distance error event, P = 
1. To find R, consider the contribution of an error event with m consecutive errors. This error event 
can only occur if m consecutive data symbols have the same polarity as the error, and the (m + 1) 
symbol has the opposite polarity. This event has probability 2 -{m + 1). This error event contributes 
m symbol errors, and there are two such error events, so 

R = 2 ~oo m2 -{m + 1) = 2 . 
L..im = 1 

(7.97) 

So C may be as large as 2. The behavior of this particular channel is analogous to that of a 
catastrophic convolutional encoder, discussed further in Chapter 12. 

'P 
-1 

o 

+1 

(a) (b) 

Fig. 7-14. a. The trellis for the channel of Example 7-31. (b) Four of the minimum-distance error events. 
There are actually an infinite number, corresponding to any sequence of consecutive errors with the 
same polarity. 
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In retrospect, the infinite number of minimum-distance error events of Example 7-31 is not 
unexpected, since a sequence of consecutive ones and a sequence of consecutive zeros both 
result in the same channel output sequence (all zeros). Thus, it is difficult for the ML sequence 
detector to distinguish the two cases; if it happens to make an error at the beginning, which is 
the only place where they differ, it will get the entire sequence wrong. 

It may seem that an infinite number of error sequences must be considered in finding the 
minimum distance. In fact Fig. 7-14 illustrates that minimum-distance error events can be 
infinite in length, although this is unusual. However, as long as P and R are moderate, it is 
adequate to find just the minimum distance, and necessarily not the number of error events at 
the minimum distance. If our goal is limited to finding the minimum distance, there are only a 
finite number of error events that need be considered. This statement follows from the 
following observation: if an error event passes through the same state twice (other than the all
zero path), then it need not be considered in searching for the minimum-distance error event. 
This is because the shorter error event obtained by removing that portion of the path between 
the two passes through the same state must have a path metric at least as small. This rule 
allows us to remove from consideration many error events. In particular, if the trellis has N 
states, then only error events that pass through the N - 1 non-zero states at most once need be 
considered, and such error events are oflength at most N - 1. 

Example7-32. -----------------------------------------------------
For a symmetric three-state trellis, corresponding to binary data symbols and memory f..L = 1, it 
suffices to consider the error events shown below: 

By symmetry all branches that are vertical mirror images of one another have the same branch 
metric. There are thus two error events not shown (the mirror images) that need not be considered 
since they have the same path metrics. Of the two error events shown, the second will always have 
a path metric at least as large as the first, because of the mirror-image symmetry of the branch 
metrics and because of the extra branch in the middle. Thus, for a symmetric three-state trellis, the 
error event oflength one always has the minimum distance. A word of caution is in order, however. 
From Example 7-31 we know that there can be many error events with this minimum distance. 

For a trellis with a large number of states, the number of error events that must be 
considered, although finite, is still large. In this case, the minimum-distance error events can 
be found using the Viterbi algorithm, and it is wise to use a computer. 

7.7. Incoherent Detection 

In Chapter 6, FSK was presented as a modulation technique suitable for transmission over 
channels that cause rapidly varying carrier phase. One of the major advantages of FSK is the 
ability to incoherently detect a signal, without deriving the carrier phase. Intuitively, this can 
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be accomplished by realizing a set of bandpass filters, one centered at each of the known 
signal frequencies, and measuring the power at the output of each filter. The question arises, 
however, as to the optimal detection technique where the carrier phase is unknown. We will 
now derive the optimal incoherent detector, applying directly the results of Section 7.3. 

Assume that the carrier phase is random, with the goal of rederiving die ML detector. The 
complex envelope of the received signal is now of the form 

(7.98) 

where e is assumed independent of the signal, and the noise N( t) is white, circularly 
symmetric and Gaussian. In the absence of any other relevant information, we can assume that 
e is uniformly distributed over the interval [0 ,2n); this is also the most tractable choice 
analytically, leading to a simple result. The general approach to determining the ML detector 
is to first condition on knowledge ofe = 8, and then average over 8. 

Assume that the {81 (t), ... 8M< t)} span a subspace of dimension N, and that this 
subspace has an orthonormal basis {'If 1 ( t ), ... 'If AT< t ) }. If the carrier phase is known to be e = 
8, then a sufficient statistic is 

Vn = (Y(t)'lfn*(t)dt, l~n~N, (7.99) 

as in (7.44). Incorporating phase 8 in the calculation of the sufficient statistic would simply 
multiply Vn by e j9 , but not add any additional information. Substituting (7.98) into (7.99), and 
observing that the 2fc term will integrate to zero, we can express the sufficient statistics as an 
N-dimensional vector, 

(7.100) 

where Sm is a vector of the coefficients of 8m( t) with respect to the orthonormal basis and N 
is a vector of independent circularly symmetric Gaussian random variables. The effect of the 
unknown carrier phase 8 is to shift the signal component of V by phase 8. 

To determine the ML detector, we must determine the probability density function of V 
conditioned on the m-th signal being transmitted. As the first step, we find the p.d.f. of V 
conditioned on both m and the phase e, fv I M,e(V I m,8). This is a multi-dimensional Gaussian 
density function, given by 

fVIMe(vlm,8) = 1 e-llv-ej8SmI12/2cr2, 
, (21t0"2)N 

(7.101) 

where cr2 = No/2 is the variance of the real or imaginary part of the Gaussian noise. This 
formidable expression will be made yet more formidable by finding fVIM<v I m) by integrating 
out the dependence on 8. But do not despair - the end result is simple! It is useful to derive 
first the following simple result. 
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Exercise 7-3. 
Define the modified Bessel function of zero order, 

Io( x) = ..!.. r e xcos(8)de 
2n -7t 

for a real-valued x. Show that for a complex-valued z, 

Hint: Write z in polar coordinates. 

CHAP. 7 

(7.102) 

(7.103) 

Using this result, we can find the marginal density of the received signal by integrating against 
the density function ofE>, 

fVIM..v 1m) = r fVIM,e(V I m,e)fe(e) de 
-7t 

= 12 Nexp( -lillvlI2 + II SmI12»)Io(l<v, ~m)l) 
(2no ) 20 0 

(7.104) 

When each signal has the same energy so that II ~ II is a constant, the exponential term in 
(7.104) is independent of m. Therefore, from the monotonicity of Io(x), the ML receiver 
selects m to maximize 

(7.105) 

This is the simple form that was promised. A receiver structure to compute J m is shown in 
Fig. 7-15. Instead of correcting the matched filter output for the phase, as would be done if the 
phase were known, the receiver simply determines the magnitude of the matched filter output, 
throwing away any phase information. 

Example7-33. -----------------------------------------------------
For binary FSK, 81 (t) = e-j21t/dtw( t) and 82( t) = ei27t/dtw( t), where 2fd is the deviation 
between the two signals, and where w( t ) = u( t) - u( t - T) is a rectangular window. In terms of 
the passband signal Y( t), the optimal receiver calculates the quantity: 

DOWN
CONVERT 

Y(t) 

Sm*(-t) k -1,-_I_._I-,~ J m 

MATCHED FILTER 

Fig. 7-15. The optimal incoherent receiver uses a matched filter (a correlator could be used also) and 
throws away phase information. 
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1 J~ Y(t)e-j21t(fc ±fd)tdt 12 = 

U~ Y(t)cos(21t({e ± fa)t)dt r + (( Y(t )sin(21t({e ± fa)t)dt r (7.106) 

as shown in Fig. 7-16. Since the signal energies are the same, and since the Bessel function is 
monotonic, J 1 and J2 given by (7.106) are compared and the signal corresponding to the 
maximum chosen. Intuitively, since the phase of the signal is unknown, we must correlate 
against two quadrature sinusoids, since we are then assured of a strong correlation for any 
signal phase for one or the other sinusoid phases. This receiver is also equivalent to passing the 
received signal through two filters 

(7.107) 

These are roughly bandpass filters centered at fe + fd and fe + fd' the two transmitted 
frequencies. The filter outputs are each followed by an envelope detector. This structure was 
previously shown in Fig. 6-14, where it was justified on intuitive grounds. 

The calculation of the probability of error for an incoherent detector is rather involved, and 
each case is best treated individually. The starting point is substituting (7.1 00) into (7.105), so 
that the decision variable becomes, conditioned on transmitted signal m, 

(7.108) 

We can illustrate the probability of error calculation using FSK. 

Example 7-34. -----------------------------------------------------
FQr F§K the two signals are orthogonal (with the proper choice offrequens:y deviation), and thus 
(81 ,82 ) = O. Hence, the decision variables of(7.108) become, assuming 8 1 is transmitted, 

(7.109) 

Y(t) sin(21tifc + fa)t) MAX 

Fig. 7-16. The optimal incoherent receiver for a binary FSK signal using correlators. 
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The probability of error becomes, conditioned on S 1 transmitted, 

Pr[error 181 transmitted] = Pr[ I (N, 82 ) I > I eiell 81 112 + (N, 81 ) I J. (7.110) 

This probability is in fact independent of 8, and by symmetry is the same as the error probability 
conditioned on ~ being transmitted. The two random variables on the left and right sides are not 
independent. The evaluation of the result is rather involved, and leads to an expression in terms of a 
tabulated function known as Marcum's Q function. 

For more examples of the calculation of the probability of error, the interested reader is 
referred to [3][4]. 

7.8. Shot Noise Signal with Known Intensity 

For most digital communication media the additive Gaussian noise model considered 
earlier in this chapter is quite appropriate. The major exception is the optical-fiber channel 
under some circumstances. The signal at the output of an optical detector is actually shot noise 
or afiltered Poisson process. The randomness of the signal itself is therefore a contributor to 
errors, as is thermal noise introduced in receiver preamplifiers. The appropriate detection 
technique thus depends on the situation: 

• When thermal noise is the dominant impairment, the white Gaussian noise detector is 
appropriate, since taking account of the shot noise nature of the signal will have little 
impact. 

• When thermal noise is insignificant, as in a homodyne or heterodyne optical receiver, 
the shot noise nature of the signal will be dominant, and the optimal detector should 
take it into account. 

In this section we consider optimal ML detection of a shot-noise signal with time-varying 
known intensity, approximating the case where thermal noise is insignificant. When the shot
noise has high intensity (roughly speaking, when there are a large number of received photons 
per bit), we showed in Section 3.4.5 that the signal could be accurately approximated as a 
deterministic signal (the mean value of the shot noise) plus additive Gaussian noise. 
Unfortunately, the variance of the latter is time-varying (see (3.218)), and hence this noise is 
non-stationary and the previous results do not apply even approximately to this case. By 
resolving the detection problem, we will show that the ML detector correlates against not the 
signal intensity as one might expect from the Gaussian case, but rather against the logarithm of 
the signal intensity. We will give a simplified derivation of this result under specific 
assumptions, to avoid getting overly involved in the details. 

The current output of the photodetector is a shot noise process with intensity (average 
number of photoelectrons generated per unit time) proportional to the incident optical power. 
Assume that one of M signals is received on the interval [0, 'l1. where the current intensity for 
the m-th signal is "'m< t) + "'dark where "'dark is the dark current that is always present, 
regardless of the signal. Our first simplifying assumption is that h( t), the response of the 
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receiver circuitry (photodetector biasing circuitry and preamplifier) to a single photoelectron 
assumes the particular shape of Fig. 7-l7(a). This shape simplifies the calculation, because the 
photodetector output becomes a modified counting process, as shown in Fig. 7-l7(b). We call 
it a counting process since the current I( t) at time t is equal to the count of the number of 
photoelectrons in the interval oftime [t - Th , t]. 

For the assumed pulse shape, the current waveform is not strictly bandlimited and we 
cannot sample without aliasing. However, it is a reasonable approximation to sample the 
current every Th seconds, yielding 

Kn =I(nT~, (7.111) 

which equals precisely the number of photoelectrons since the last sample; that is, the number 
of photoelectrons generated over the interval [en - l)Th, nTh]' We choose this sampling rate 
for two reasons: 

• The successive samples are statistically independent, since the arrival of photoelectrons 
follows a Poisson process and hence the number of arrivals in non-overlapping intervals 
are independent. If we sampled any faster, we would lose this independence, 
complicating the results to follow. 

• This is the minimum sampling rate that avoids throwing away useful information about 
the signal, since with less frequent samples there would be photoelectrons that would be 
missed because they did not affect any sample. 

In summary, the samples Kn are independent and Poisson distributed with parameter 

fnTh r n1m = Am(t)dt + ThAdark' 
(n -l)Th 

(7.112) 

If we assume that the response time Th of the photodetector will be much faster than the rate 
of change in the intensity, as will almost always be ilie case, then we get the approximation 

(7.113) 

To detennine the ML detector, we must calculate the probability of the received samples 
Kn conditioned on the m-th signal having been transmitted. The probability of one sample 
I(nT~ = Kn is the Poisson distribution of (3.155), 

h(t) I( t) 

(al 

PHOTOELECTRON GENERATION TIMES 

Fig. 7-17. a. The assumed shape of h( t). the response of the detector to a single photoelectron. for 
calculation of the optimal receiver processing. (b) An example of the sample function of the shot noise 
photodetector current resulting from this pulse shape. 
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(7.114) 

and since the samples are independent, the joint probability of L samples is the product of the 
probabilities, 

(7.115) 

where L is the number of samples required to cover the signaling interval [0, 1'1, T = LTh. For 
convenience, we calculate the logarithm of this probability, 

(7.116) 

Since the logarithm is monotonic, the ML detector chooses the signal m for which this 
quantity is maximum. In (7.116), the only quantity that is a function of the signal is r n I m' and 
hence the last term can be discarded. We can make a couple of further simplifications. First, 
from (7.112), 

(7.117) 

where 

T 
Em =J/"m(t) dt (7.118) 

is the integral of a quantity proportional to the incident power on the detector and hence is 
proportional to the total energy incident on the detector for the m-th signal. The second term in 
(7.117) can be ignored since it is signal independent. Also, the first term in (7.116) can be 
approximated by an integral, since from (7.113) 

(7.119) 

Finally, we can ignore the signal-independent Th and ThAdark terms, so that the ML detector 
equivalently finds the signal that satisfies 

{ T (Am(t») } max 8m = J I(t)log 1 + -A- dt - Em . 
me{l, ... ,M} 0 dark 

For high intensity, where the signal current is large relative to the dark current, 

T 
8 m == f /< t )logAm(t) dt - Em' 

(7.120) 

(7.121) 
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case, where the dark current is larger than the signal, we can approximate log(l + E) by E, and 
thus the ML detector reduces to a correlation against the signal as in the Gaussian case, 

T 
8 m'" J/(t)Am(t) dt - Em' (7.122) 

Example7-35. ------------------------
If the signal intensity A( t) is constant over an interval [0, Tj, the ML detector simply integrates the 
current over that interval. Hence the ML detector reduces to an "integrate and dump" detector. 

7.9. Further Reading 

The Karhunen-Loeve expansion is described in [1]. A good overview of the Viterbi 
algorithm is given in [5]. The Viterbi algorithm was originally developed in the context of 
error-control coding as a means for determining the most likely transmitted codeword. It was 
later applied to the problem ML sequence detection for mitigating lSI [6]. Similarly, the BCJR 
algorithm for APP decoding was originally developed as a means for the optimal bit-by-bit 
decoding of error-correcting codes [2], although a similar algorithm appeared earlier for 
mitigating lSI [7]. The BCJR algorithm arises in a wide range of statistical inference 
applications, such as speech recognition, where it is known as the forward-backward 
algorithm [8]. 

Appendix 7-A. 
Karhunen-Loeve Expansion 

In this Appendix, we derive some of the detailed results for the Karhunen-Loeve 
expansion used in Section 7.3.2. 

Integral Equation 

It is necessary to show that (7.35) imposes necessary and sufficient conditions for (7.33) to 
be satisfied. Assuming that (7.33) holds, after substituting for N j and ~ from (7.34) and 
exchanging the order of expectation and integration, 

T T 

CJi20ij = J <l>i*( t) J RJI,.. t - 't)<I>i 't) d't dt (7.123) 

o 0 

A sufficient condition for this to be satisfied is (7.35), as can be established by substituting 
(7.35) into (7.123). To show that (7.35) is a necessary condition, we assume that (7.31) and 
(7.33) are valid, and show that this implies (7.35). Multiplying (7.31) by Nn * and taking the 
expected value, we get 
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(7.124) 

Similarly, multiplying the conjugate of (7.34) by N( t) and taking the expectation, 

T T 

E[N(t)Nn*J=E[N(t)fN*('t)<I>n('r) d'tJ= fRMt-'t)<I>n('r)d't, O~t~T. (7.125) 

o 0 

Equating these two results establishes (7.35). 

Derivation of the Continuous-time Whitening Filter 

We now derive (7.42). Define 

(7.126) 

and then (7.41) follows directly by multiplying both sides of (7.126) by Rtv<,'t - t) and 
integrating. Similarly, 

(7.127) 

Sufficient Statistic Argument 

In Section 7.3.3 we derived a set of sufficient statistics {Ur. ... UN} for the received signal 
Y( t), 0 ~ t ~ T, by letting T -7 00 and using intuitive arguments. Here we derive these 
sufficient statistics carefully for finite T using the Karhunen-Loeve expansion. The results 
remain valid as T -7 00, Define 

(7.128) 

where {<I>i( t), (Ji2 , 1 ~ i < oo} are the eigenfunctions and eigenvalues of (7.35) and the {s/m)} 
are given by (7.37). As T -7 00, (7.128) approaches the same definition as (7.46), The complete 
orthonormal basis {"'k( t), 1 ~ k < oo} is chosen so that the first N members are a basis for the 
subspace Sf spanned by the {h (t), ... fM< t)} in (7.128). Using (7.46), 

where 

T sCm) 
Fk(m) = f fm(t)"'k*(t) dt = L.~-1 ~ "'k/ ' 

! - (Ji 
o 

T 

"'k,i = f "'k( t )<I>i*( t) dt . 
o 

(7.129) 

(7.130) 
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Since the eM t) are a complete orthonormal set, and (7.130) are the components of", k( t ) 
in terms of the eM t), it follows that 

(7.131) 

and thus 

T T 

OkJ' = J "'k( t )"'j'*( t) dt = ~~ ~oo "'k i"'j'Z* J eM t )<I>z*( t) dt £oJ1 = 1 £oJz = 1 ' , 
o 0 

(7.132) 

Thus, the discrete-time sequences {"'k,i' 1:S; k:S; oo} for 1 :s; i < 00 are orthonormal. 

Returning to the received signal of (7.38), and forming the inner product of both sides with 
"'k,i' 1:S; i < 00, thus expressing it in terms ofa new basis {"'k,i' 1:S; k < oo}, 

00 y. 00 sCm) 00 N· 
Uk=L ~"'k'*=L -'-"'k'*+L ---':"'k'* i = 1 CJj ,I j = 1 CJj ,I i = 1 CJj ,I' 

(7.133) 

The first term on the right side of (7. 133) is Fk(m), and the second is a noise term Wk' All that 
remains to establish (7.49) is to show that Wk is white, which follows from 

[ 
00 00 NjNz* ] 00 E[WkW*] = E ~ ~ __ llrk ,"'''·z = ~ llr .. llrk ·* =0" 

j £oJi = l£oJZ = 1 CJiCJZ 'I' ,I 'l'j, £oJj = 1 'l'j,I'I' " IJ' 
(7.134) 

Since Wk is a linear function of a circularly symmetric process Nk, it is circularly symmetric, 
and (7.134) implies that the Wk are mutually independent. 

We can express the sufficient statistics in terms of continuous-time signals as follows. 
Substituting from (7.130) in (7.133), 

00 Y·IT IT Uk = ~. ~ "'k*(t)Mt) dt = U(t)"'k*(t) dt 
£oJ1 = 1 CJj 0 0 

(7.135) 

where 

00 y. 
U( t) = Lj _ 1 CJ ~ <l>j( t) , 

- , O:S;t:S; T • (7.136) 

is the output of the whitening filter. This confirms (7.47). 



334 PROBABILISTIC DETECTION CHAP. 7 

Appendix 7-B. 
Bit-Error Probability for Sequence Detectors 

We showed in Section 7.6 that the probability of sequence error is easy to obtain using the 
vector channel results from Section 6.2, but is often useless because the probability 
approaches unity as the sequence gets large. Instead of the probability of sequence error, we 
can compute the probability that an error event begins at a particular time. This effectively 
normalizes the probability of sequence error per unit time. Error events are defined in 
Section 7.6.1. 

We are most often interested however in the probability of a bit or symbol error rather than 
an error event. In this appendix we derive the error event probability and a general expression 
for the probability of bit or symbol error that does not depend on linearity in the system. We 
then show that for the additive Gaussian white noise case the probability of error is 
approximately c· Q(dmin/2cr), where C is a constant that we can easily bound, and dmin is the 
distance of the minimum distance error event. For the BSC channel case, the probability of 
error is approximately C· Q(dmin, p), where Q( . " ) is defined by (7.23). 

After the sequence detector selects a path through the trellis, the receiver must translate 
this path into its corresponding bit sequence (recall the one-to-one mapping between incoming 
bit sequences and state trajectories). Several bit or symbol errors may occur as a consequence 
of each error event. Let E denote the set of all error events starting at time i. Each element e of 
E is characterized by both a correct path 'If and an incorrect path W that diverge and remerge 
some time later. We make a stationarity assumption that Pr[e] is independent of i, the starting 
time of the error event. This will of course not be true if the trellis is finite, but if it is long 
relative to the length of the significant error events then the approximation is accurate. Each 
error event causes one or more detection errors, where a detection error at time k means that 
ink at stage k of the trellis is incorrect. For the lSI example, each Xk is a symbol Ak, so a 
detection error is the same as a symbol error. For the binary coding examples, each Xk is a set 
of one or more bits. Define 

cm(e) = {I; if e has. a detection error in position e (from the start i) 
0; otherwise 

(7.137) 

This function characterizes the sample times corresponding to detection errors in error event e. 

Example 7-36. -------------------------
Consider Example 7-24, the lSI example. Let el denote the error event of Fig. 7-11(a), which 
assumes that the correct state trajectory 'If consists of zero states. From we the figure of 
Example 7-24 we see that this error event causes decisions Xi = 1 and Xi + 1 = O. Since Xi = 0 and 
xi+l = 0 are the correct decisions, 

(7.138) 
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The probability of a particular error event e starting at time i and causing a detection error at 
time k is 

Ck _ i(e)Pr[e] . 

Since the error events in E are disjoint (if one occurs no other can occur), 

Pr[detection error at time k] =~: = -00 Le EE Pr[e]ck _ iCe) 

Exchanging the order of summation, assuming this is legitimate, 

Pr[detection error at time k] = Le EE Pr[e] L: = -00 Ck _ iCe) 

By a change of variables, 

wee) = ~k Ck _ iCe) = ~oo cm(e) 
~!=-oo ~m=O 

which is the total number of detection errors in e. Thus 

Pr[detection error] = Le EE Pr[e]w(e) , 

(7.139) 

(7.140) 

(7.141) 

(7.142) 

(7.143) 

where we note that the dependence on k has disappeared. Hence, the probability of a detection 
error at any particular time is equal to the expected number of detection errors caused by error 
events starting at any fixed time i. In retrospect this result is not unexpected, since from the 
perspective of time k, the probability of a detection error at that time must take into account all 
error events starting at times prior to k. 

The probability of the error event e depends on the probabilities of both the correct and 
incorrect paths 'If and ljJ that make up e, 

Pr[e] = Pr['If]Pr[ljJ 1'If] . (7.144) 

It is usually difficult to find exact expressions for Pr[ljJ I \If], but bounds are often easy. The 
reason is easy to see in the simple example of Fig. 7-18, where we assume there are only three 
possible trajectories. In Fig. 7-18(a) the ML decision regions for the three signals are shown. 
These decision regions lie in a M-dimensional space that we schematically represent on the 
two-dimensional page. Now suppose that \If is the actual trajectory, corresponding to signal s 
in Fig. 7-18(a). The region corresponding to the detection ofljJ is shown in Fig. 7-18(b). The 

.. ~ .. ;r+ .++ .'.r. ' . 
8 8 

(a) (b) (e) (d) 

Fig. 7·18. a. Three signals corresponding to state trajectories IV, wand IV' where IV is the actual state 
trajectory. (b) If received Signal (with noise) is in the shaded region, the ML detector will choose 
trajectory W . (c) The decision region for W if there were only two signals, IV and W . d. If the received 
signal (with noise) is in the shaded region, the ML detector will generate an error event. 
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probability of the noise carrying us into this region is very difficult to calculate, especially as 
the number of possible trajectories gets large. However, this probability is easy to upper bound 
by using the larger decision region of Fig. 7-l8(c), which ignores the possibility of any 
trajectory other than \jf and W. 

For the additive white Gaussian noise model, the probability of the region in Fig. 7-18(c) 
is 

Pr[w !\jf] $ Q(d(W, \jf)/2cr) (7.145) 

where d(W, \jf) is the Euclidean distance between transmitted signals sand s corresponding to 
state trajectories wand \jf. For the BSC, 

Pr[w !\jf] $ Q(d(W, \jf),p) (7.146) 

where d(W, \jf) is now a Hamming distance and Q( .•. ) is defined by (7.23). The bound is 
precisely the probability that the received signal is closer to the signal s corresponding to W 
than it is to the signal s corresponding to the correct path \jf. Combining (7.143), (7.144), and 
(7.145), for the Gaussian case 

Pr[detection error] $ Le EE w(e)Pr[\jf]Q(d(W, \jf)/2cr) . (7.147) 

This can be written 

Pr[detection error] $ Le EBw(e)Pr[\jf]Q(dmin /2cr) + other terms (7.148) 

where B is the subset of error events in E that have distance dmin, and the "other terms" all 
have arguments to the Q( . ) function larger than dmin / 2cr. At high SNR these other terms 
become insignificant and the upper bound on Pr[detection error] approaches RQ(dmin / 2cr), 

where 

R = Le EB w(e)Pr[\jf] . (7.149) 

For the BSC case, just replace Q(dmin /2cr) with Q(dmin• p). 

Example 7-37. -------------------------
In Example 7-36 we considered the error event el shown in Fig. 7-1 1 (a), and found that w(el) = 1 
and the distance is JL25. This is the minimum distance, and it occurs for the eight error events 
shown in Fig. 7-19, each of which also have wee) = 1. Consequently, (7.149) becomes 

(7.150) 

.... .... ~-.---o---.-- ~-.---o., ~ 
....... ... ... ...... ... ... cr--.--

~ L7~" L7~"O---.--,- .... 
--+---0---+-- --.---0" ... 

,,0., 
.," ....... 
~ 

Fig. 7-19. Eight error events that have the same probabilities. 
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where B is the set of error events shown in Fig. 7-19. Assuming all possible actual paths are 
equally likely, and noting that only three successive states of each \jI in Fig. 7-19 are specified, 
Pr[\jI] = 2 -3 = 1/8 for each one. Hence R = 1 and (7.148) becomes 

Pr[detection error] ~ Q(.}1.25/2cr) + other terms. (7.151) 

We can get an idea of the magnitude of the "other terms" by considering the set of second most 
probable error events, one of which is shown in Fig. 7-11 (b). It has length two, distance d = 
j3.5 from the correct path, weight w(e:a) = 2, and Pr[\jI] = 1/16, so its contribution to the sum 
is O.125Q(j3.5/2cr). Because of the exponential decrease in Q('), this term is orders of 
magnitude smaller than the first for small cr. Consequently, we conclude that the "other terms" 
in (7.151) can safely be ignored. 

A lower bound on the probability of detection error for the additive white Gaussian noise 
model can also be found. Combining this with the upper bound in (7.147) leads to an accurate 
estimate of Pr[detection error]. Return~ng to Fig. 7-18, we want to use the decision region of 
Fig. 7-18(c) to somehow obtain a lower bound. Shown in Fig. 7-18(d) is the decision region 
corresponding to any error event conditioned on actual state sequence \jI. The probability of 
any error event is evidently lower bounded by calculating the probability of the smaller 
decision region in Fig. 7-18(c). Thus, we see that in order to determine a lower bound, we 
must start with the probability of any error event, rather than the probability of a particular 
error event. 

Since wee) ~ 1 for all error events e, then from (7.143) 

Pr[detection error] ~ Le EE Pr[e] = Pr[an error event] . (7.152) 

Now consider a particular actual path \jI through the trellis. For this path, let dmin(\jI) denote 
the distance of the minimum distance error event (either Euclidean or Hamming). Of course, 
dmin(\jI) ~ dmin, where dmin is the minimum distance error event over all possible actual state 
sequences \jI. As in Fig. 7-18(c), if \jI is the actual state sequence, the probability of an error 
event is lower bounded by Fig. 7-18(c). Obviously to make this bound strongest, we want to 
choose a particular error event that is closest to 'If, one of those at distance dmin('If). Hence, for 
the Gaussian case 

Pr[anerroreventl\jl] ~ Q(dmin(\jI)/2cr). (7.153) 

Combining this with (7.152) we get 

Pr[detection error 1\jI] ~ Q(dmin(\jI)/2cr). (7.154) 

Consequently, 

Pr[detection error] ~ L IjI Pr[\jI]Q(dmin(\jI)l2cr) . (7.155) 

If we omit some terms in this summation, the bound will still be valid since the terms are all 
non-negative. Thus, let us retain only those state sequences \jI for which dmin(\jI) = dmin , 

Pr[detection error] ~ LIjI EA Pr[\jI]Q(dmin/2cr) , (7.156) 
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where A is the set of actual paths \jf that have a minimum distance error event, and dmin is that 
minimum distance. Define 

P = LlJI EA Pr[\jf] , (7.157) 

the probability that a randomly chosen \jf has an error event starting at any fixed time with 
distance dmin (or is consistent with a minimum distance error event). Then 

Pr[detection error] ~ PQ(dmin /2cr) . (7.158) 

In retrospect this lower bound is intuitive, since we would expect that every state sequence 
consistent with a minimum-distance error event will result in a probability of error event at 
least as large as Q(dmin/2cr), and each error event will result in at least one detection error. For 
the common case where all possible paths \jf through the trellis are consistent with a minimum
distance error event, P = 1. This is true in Example 7-37. 

Combining our upper and lower bounds, 

PQ(dmin/2cr) :$; Pr[detection error] :$; RQ(dmin /2cr) , (7.159) 

where the upper bound is approximate since some terms were thrown away. We conclude that 
at high SNR 

Pr[detection error] '" C· Q(dmin /2cr) 

for some constant C between P and R. The BSC case is identical, 

Pr[detection error] '" C· Q(dmin, p) 

where Q( . , . ) is defined in (7.23). 

(7.160) 

(7.161) 

Example 7-38. -----------------------------------------------------
Continuing Example 7-37, note that P = R = 1. Hence 

Pr[detection error] '" Q(J1.25/2cr). (7.162) 

For this example, each detection error causes exactly one bit error, so Pr[detection error] = 
Pr[bit error]. Hence, with the sequence detector we get approximately the same probability of 
error as for an isolated pulse and a matched filter receiver (see Problem 7-9). 

In general, a single detection error may cause more than one bit error. Suppose each input 
to the Markov chain Xk is determined by n source bits (and hence comes from an alphabet of 
size 2n). Then each detection error causes at least one and at most n bit errors. Hence we can 
write 

! Pr[detection error] :$; Pr[bit error] :$; Pr[detection error] . 
n 

Typically we make the pessimistic assumption that 

Pr[bit error] '" Pr[detection error] . 

(7.163) 

(7.164) 
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Appendix 7-C. 
BCJR Forward/Backward Recursions 

We first derive the forward recursion of (7.74), by using a series of straightforward and 
self-explanatory equalities. Starting with the definition of ak(p) in (7.71), we have: 

ak+l(q) =f("'k+l =q,Yl<k+1) 
= f(", k+l = q, Yk, Yl < V 
= L:: ~f("'k+l = q, Yk, "'k = p, Yl < V 

= L::~f("'k+l =q,Yk l"'k=P,Yl<vf("'k=P,Yl<V 

= L::~f("'k+l = q, Yk I "'k = P)f("'k = p, Yl <V 

= L:: ~ ak(p )Yk(P, q) . (7.165) 

The derivation of the backward recursion (7.75) is similar. Starting with the definition of 
~k+l(q) in (7.71), we have 

~k(P) = f(Yl>k-11"'k =p) 
= f(yl >k' Yk I "'k = p) 

= L::~f(yl>k'Yk' "'k+l =ql"'k =p) 

= L::~f(yl>kIYk' "'k+l =q, "'k =P)f(Yk' "'k+l =ql"'k =p) 

Problems 

= L::~f(yl>kl"'k+1 =q)f(Yk, "'k+1 =ql"'k =p) 

= !,::>k(P, q)~k+l(q) . (7.166) 

Problem 7-1. Suppose a binary symbol A E {O, I} with a priori probabilities PA(O) = q and 
PA(l) = 1- q is transmitted through the BSC of Fig. 7-2. The observation Y E {O, I} is also binary; it 
equals A with probability 1 - p. 

(a) Find the ML detection rule. Assume P < 1/2• 

(b) Find the probability of error of the ML detector as a function of p and q. 

(c) Assume p = 0.2 and q = 0.9. Find the MAP detector and its probability of error. Compare this 
probability of error to that in part (b). 
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(d) Find the general MAP detector for arbitrary p and q. 

(e) Find the conditions on p and q such that the MAP detector always selects a = O. 

Problem 7-2. Consider the vector detection problem for the BSC of Example 7-14. Specify the MAP 
detector for some given prior probabilities for signal vectors. 

Problem 7-3. Consider a random variable XE{-3, -1, +1, +3} with a priori probabilities 
px(±3) = 0.1 and px(±l) = 0.4. Given an observation y of the random variable Y = X + N, where N is 
a zero mean Gaussian random variable with variance 0-2, independent of X, find the decision regions for 
a MAP detector. Now suppose 0-2 = 0.25 andy = 2.1. What is the decision? 

Problem 7-4. Assume the random variable X is from the alphabet X = {xl' x2} with nonuniform a 
priori probabilities PX(Xl) #- PX(x2). Define the random variable Y = X + N, where N is a zero mean 
Gaussian random variable with variance 0-2, independent of X. Give an expression for the MAP 
decision boundary between Xl and x2. 

Problem 7-5. Consider M vectors each a distance d min from the other vectors. Assume an ML 
detector will be used to distinguish between these vectors. 

(a) Give an example for M = 3 of such a set of vectors where d min is a Euclidean distance of J2. 
(b) Give an example for M = 3 of such a set of vectors where d min is a Hamming distance of2. 

(c) Use the union bound to find an upper bound on the probability of error for your two examples, 
assuming additive white Gaussian noise for (a) and a BSC for (b). First give the bound assuming 
81 is transmitted, then give the bound without this assumption. 

Problem 7-6. Suppose you are given N observations xl> ... , xN of the zero mean independent 
Gaussian random variables Xl' ... , XN Assume that the random variables have the same (unknown) 
variance 0-2. What is the ML estimator for the variance? 

Problem 7-7. Given a Gaussian channel with independent noise components, one of the following 
four equally likely signals is transmitted: (1, 1), (1, -1), (-1, 1), (-1, -1). Determine the exact 
probability of error of an ML detector for Gaussian noise with variance 0-2. 

Problem 7-8. 

(a) Repeat Problem 7-7 for a BSC with error probability p and four equally likely signals: 
(000000), (000111), (111000), (111111). 

(b) What is this error probability whenp = 0.1? Compare to the minimum distance approximation. 

Problem 7-9. Suppose that a symbol A from the alphabet 5'1. = {O, I} is transmitted through the LTI 
system with impulse response 

(7.167) 

and corrupted by additive white Gaussian noise with variance 0-2. 

(a) Determine the structure of the ML detector. 

(b) Calculate the probability of error for the ML detector. 
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Fig. 7-20. A simple case of a discrete-time channel with intersymbol interference. 

Problem 7-10. Consider the system in Fig. 7-20. Assume Nk is a sequence of independent zero mean 
Gaussian random variables with variance 0'2. Assume the symbol alphabet is .9l = {O, I} and that the 
channel impulse response is 

(a) Derive the matched filter receiver. 

(b) Give an expression for the probability of error. 

(c) Now suppose.9l = {-I, 0, +l}. Repeat part (a). 

Problem 7-11. 

(7.168) 

(a) Detennine the optimal incoherent receiver structure for passband PAM modulation, where the 
data symbols assume only two values Ao = 0 and Ao = 1. This is known as amplitude shift 
keying (ASK). 

(b) Discuss the conditions under which passband PAM can be successfully demodulated using an 
incoherent receiver. 

(c) Find an expression for the probability of error of the type derived in Example 7-34. You do not 
need to evaluate this expression. 

Problem 7-12. 

(a) Derive a discrete-time channel model analogous to Fig. 7-9 where instead of a matched filter, a 
general filter F*( f) is used, the Gaussian noise added on the channel has power spectrum 
S M f), and symbol-rate sampling is used at the output of the filter. 

(b) Detennine a model for the special case where the matched filter optimized for the particular noise 
spectrum is used. 

(c) As a check, verify that your model reduces to Fig. 7-9 when the filter is a matched filter and the 
noise is white. 

Problem 7-13. Suppose that for a channel with additive white noise, the response at the output of the 
whitened matched filter is M( z). Find an example of a received pulse h( t) that results in this response. 

Problem 7-14. Find the appropriate branch metric for the ML sequence detector for the following 
signal and noise generators. Let the signal generator output be non-negative, Sk ~ 0 for all k. Assume 
the noise generator outputs conditioned on a particular signal are independent and identically distributed 
Poisson random variables, and the k-th output has mean value a.Sk' (This model is roughly equivalent 
to what might be encountered on a fiber optics channel.) 
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Problem 7-1S. Repeat Problem 7-14 for the following. The signal generator output is binary, 
assuming the values {O, I}, and the channel is the binary-erasure channel of Problem 4-8, with 
independent channel uses. 

Problem 7-16. Consider transmitting bits Xk (zeros and ones) over a channel with additive white 
Gaussian noise. Assume that Xk = 0 for k < 0 and k ;::: K. Suppose K = 3 and the observation sequence 
is Yo = 0.6, Y1 = 0.9, Y2 = 1.3, and Ya = 0.3. 

(a) Find the ML decision sequence xk assuming that the additive noise is the only degradation (no 
lSI) and that Xk are i.i.d. 

(b) Suppose you are told that the lSI channel of H(z) = 1 + 0.5z-1 is being used. Draw the trellis 
for the Markov model and label the transition weights. What is the ML detection of the incoming 
bit sequence? 

Problem 7-17. Consider the following lSI model with AWGN: 

Assume Ak is equally likely to be 0 or I, and the Ak are independent for all k. Assume additive 
Gaussian white noise with variance 0'2. 

(a) Model the system as a shift register process and draw the state transition diagram. Label the arcs 
with the input/ output pair (Ak, S~. 

(b) Draw one stage of a trellis and label with the input/ output pairs (Ak, S~. 

(c) Assume 'Ilk = 0 for k ~ 0 and k;::: 5. Suppose the observation sequence is Yo = 0.5, Y1 = -0.2, 
Y2 = 0.9, Ya = 1.2, andY4 = 0.1. Draw a complete trellis with branch weights labeled. 

(d) Use the Viterbi algorithm to find the ML decision sequence. 

(e) Assuming that the correct state trajectory is 'Ilk = 0 for all k, find the minimum-distance error 
event and its distance. 

(f) Argue convincingly that the minimum distance found in part (e) is the minimum distance for any 
correct state trajectory. 

Problem 7-18. Consider a response M(z) = 1 + m1z -1 + m2z -2 at the output of a whitened 
matched filter. Assume the data symbols have alphabet {O, I}. 

(a) Draw the trellis diagram that can be used to find the minimum distance, and label each transition 
with the appropriate branch metric. 

(b) Specify a finite set of error events that it suffices to consider in searching for the minimum 
distance. 

(c) Give an example of a channel such that the minimum-distance error event is of length less than 
(1 + m12 + m22). 

Problem 7-19. For a response M(z) = 1 + dz-1 + dz-2 at the whitened matched filter output, find the 
minimum distance as a function of 0 ~ d ~ 1 assuming binary signaling from alphabet {O, I}. 
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Problem 7-20. For the response M( z) = 1 + z-l, find the set of minimum-distance error events and 
the resulting bound on the probability of symbol error assuming binary signaling with alphabet {O, I}. 
Can you give an intuitive explanation for the error events you find? 

Problem 7-21. A sequence of three symbols ao, aI> a2 from the binary alphabet {±I}, with a priori 
probabilities satisfying PAo(I) = 2PAl (1) = PA2(I) = 112, is transmitted across an lSI channel with 
transfer function H( z) = 1 - z-l. Use the BCJR algorithm to find the a posteriori log-likelihood mtios 
1..0,1..1> and 1..2 of (7.76) when the observation after an AWGN channel with real variance cr2 = 0.5 is 
y = [Yo, ... Y3] = [1,0, -1,0]. Assume that the idle symbol is -1, and that the state is constmined to be 
idle at times k = 0 and k = 3. 

Problem 7-22. 

(a) Apply the Chernov bound to the problem of detecting a binary shot noise signal with two known 
intensity functions as well as dark current. In particular, assume that the shot noise signal has 
filtering function f( t), which is a composite of the photodetector response and any post-filtering, 
and that this signal is directly sampled at t = 0 and applied to a slicer. 

(b) Minimize the upper bound with respect to f( t), and show that the resulting detector correlates 
the logarithm of the known intensity against the delta-function shot noise signal. 

( c) Evaluate the upper bound for the solution of (b) 

Problem 7-23. Using the results of Appendix 7-A, develop the following relationship between {VI> 
... , VM} and {UI> ... , UN}' which serves to establish that {VI' ... , VM} is also a set of sufficient 
statistics, 

(7.169) 
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8 
Equalization 

In PAM, intersymbol interference (lSI) results from linear amplitude and phase distortion 
in the channel that broadens the pulses and causes them to interfere with one another. The 
Nyquist criterion specifies a condition on the received pulses under which there is no lSI. 
Generally this or a similar condition is not satisfied unless we equalize the channel, meaning 
roughly that we filter to compensate for the channel distortion. Unfortunately, any equalization 
of amplitude distortion also enhances or amplifies any noise introduced by the channel, called 
noise enhancement. There is therefore a tradeoff between accurately minimizing intersymbol 
interference and minimizing the noise at the slicer input. Ultimately, of course, our goal is to 
minimize the probability of error. 

In Chapter 7 we derived the maximum-likelihood sequence detector (MLSD), which is the 
optimal receiver for detecting a sequence of data symbols under the maximum-likelihood 
criterion. Rather than filtering the lSI to eliminate it entirely, the MLSD filters to ensure that 
the lSI is causal and monic; the resulting front-end structure is identical to the whitened 
matched filter (WMF) described in Section 5.4. The detection is performed by comparing the 
WMF output sequence against what that output sequence would be for each feasible sequence 
of input data symbols in the absence of noise; it chooses the data symbols that best match the 
WMF output according to a Euclidean distance measure. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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Both MLSD (implemented using the Viterbi algorithm) and the symbol-wise MAP 
detector (implemented using the BCJR algorithm) are based on the same trellis structure. The 
complexity of both algorithms is governed by the number of states, which grows exponentially 
with the memory of the channel. Therefore, neither algorithm is feasible when the channel 
impulse response has many coefficients. In this chapter we describe several simpler strategies 
for mitigating lSI that are applicable to channels with large memory: linear equalization, 
decision-feedback equalization, and transmitter precoding. 

In Section 8.1, the optimal equalization structures are derived under a zero-Jorcing (ZF) 
criterion, which means that we completely eliminate the lSI at the slicer input. The starting 
point is the WMF, which is used as the front-end of the receiver of Chapters 5 and 7, and relies 
on the sufficient statistic argument. In Section 8.2 these results are generalized by relaxing the 
assumption that the WMF is used, and also by considering an alternative mean-square error 
(MSE) criterion. The MSE criterion reduces noise enhancement by allowing residual lSI at the 
slicer input, and attempts to minimize the sum of the lSI and noise. In Section 8.3 we 
demonstrate that the equalization, including the matched filter in the WMF, can be 
implemented in discrete time if the sampling rate is increased to some multiple of the symbol 
rate, as is often done in practice. Section 8.4 describes briefly a practical equalizer filter 
structure called the transversal filter, which is just another name for a direct-form FIR filter. 
The transversal filter plays a central role in the realization of adaptive equalization as 
described in Chapter 9. Finally, in Section 8.5 we consider the channel capacity of a channel 
with lSI, and derive Price's result, which suggests that the DFE receiver structure does not 
compromise channel capacity at high SNR. In other words, with appropriate channel coding, 
the trellis-based equalizers of the previous chapter are not only high in complexity, but also 
unnecessary. 

In this chapter we assume that the linear distortion of the channel is exactly known. 
Furthermore, we do not constrain the complexity of the receiver or its filter structures. Both of 
these assumptions are relaxed in Chapter 9, where we describe constrained-complexity filters, 
known as adaptive equalizers, that adapt to unknown or changing channel conditions. 

Notation 

Some of the expressions in this chapter become fairly complicated, so will often use a 
simplified notation in which the frequency variable is suppressed. For a transfer function F( z), 
which becomes F( ej9 ) when evaluated on the unit circle, we will write simply F. Similarly, the 
reflected transfer function F*(lIz*), which becomes F*(ej9) when evaluated on the unit 
circle, will be written in shorthand notation as F*. 

Example~l. ------------------------------------------------------
Given a transfer function S( z) that is non-negative real on the unit circle, the minimum-phase 
spectral factorization can be written in four ways, 

S(z) =y2M(z)M*(lIz*) , S(ej9 ) =y2IM(ej9 ) 12 , 

S =y2MM*, S =y21M12 . 

We will often use in this chapter the shorthand notations of (8.2). 

(8.1) 

(8.2) 
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Also, in this chapter the arithmetic and geometric means of a function will arise 
frequently, and we will use a shorthand notation for these means. Given a non-negative real
valued function f(x) and a subset X of the x axis, define IXI as the total size (measure) of the 
set X. For example, if X = { x: I x I ~ xo}, then I X I = 2xo. The arithmetic mean of f(x) over X is 
defined as 

(8.3) 

which has the interpretation as the average value of f( x ) over the interval X. Similarly, define a 
geometric mean of f( x) over X 

(f)a,x=ex11~IJ}ogf(X) dx }. (8.4) 

The geometric mean is independent of the base of both the exponential and the logarithm, as 
long as they agree. So, for example, we could write (f)a X = 2( log2f kx. 

Jensen's inequality implies that E[logf(Y)] ~ logErt(Y)] for any random variable Yand any 
nonnegative function f( . ), with equality if and only if f(Y) is deterministic. By interpreting Y 
as a random variable uniformly distributed over the set X, Jensen's inequality implies that the 
geometric mean is always less than or equal to the arithmetic mean: 

(f)a,x ~ (f)A,X (8.5) 

with equality if and only if f( x ) is a constant over the set X. 

Example 8-2. -------------------------
The constant y2 in the geometric mean fonnula of (8.2) is, from (2.69), 

(8.6) 

where the independent variable in this case is e rather than x. 

The arithmetic and geometric means have several useful properties. For both types of 
mean, the mean of a real nonnegative constant is itself, 

Similarly, 

( a· f)a x = a . (f)a X . , , 

The arithmetic mean also obeys the distributive law, 

(a·f+a·g)A,x=a·(f)A,X+b·(g)A,X, 

(8.7) 

(8.8) 

(8.9) 

but the geometric mean does not. Conversely, the geometric mean obeys the multiplicative 
laws 
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(f-g )a,x =( f)a,x .(g )a, x' 
f _ (f)a,x 

(g )a,x- (g) , 
a,x 

(8.10) 

which the arithmetic mean does not. 

8.1. Optimal Zero-Forcing Equalization 

In Chapter 7 we derived receivers for PAM with lSI based on optimal detection criteria. In 
particular, the MLSD offers a computational load that is constant with time. However, in 
practice the MLSD is rarely used to equalize lSI for a couple of reasons. First, the complexity 
of trellis-based equalizer grows exponentially with the memory in the channel, making them 
impractical for all but channels with very short impulse responses. Second, in high 
performance data communication systems, error-control coding is almost always used 
(Chapters 12 and 13), and surprisingly it has been shown that coding can be used to approach 
channel capacity in the presence of lSI without trellis-based equalization. 

In this section, we will first review the results of Chapter 7 as they apply to PAM with lSI, 
and in the process develop some useful bounds on the performance of receivers in the presence 
of lSI. Following this background, we will describe three practical and widely used 
equalization techniques - linear equalization, decision-feedback equalization, and transmitter 
precoding - and compare their performance to one another and to the MLSD. 

8.1.1. Background Results 

The results of Chapter 7 will prove very useful as a starting point for the derivation of 
optimal equalizer structures for lSI. Not only does Chapter 7 establish a canonical front end 
for all receivers, including those based on equalization, but it also establishes some useful 
bounds on the performance of such receivers. 

In Section 7.3 we established that the whitened matched filter (WMF), first encountered in 
Section 5.4 as an embodiment of the minimum-distance receiver design criterion, develops a 
set of sufficient statistics for the received signal. When the noise on the channel is white and 
Gaussian, the WMF can be used as the front end of a receiver designed according to any 
criterion of optimality. This result is particularly valuable because of the desirable properties 
of the WMF output: 

• It is a sampled data signal, with sampling rate equal to the symbol rate. 

• The equivalent discrete-time channel model is causal and minimum-phase, the latter 
implying that the energy of the impulse response is maximally concentrated in the early 
samples (Problem 2-29). 

• The equivalent additive noise is Gaussian, circularly symmetric and white, implying 
that the samples of this complex-valued noise are independent. 

These properties greatly simplify the derivation of the remainder of the receiver for any 
particular criterion. It was shown in Section 7.3 that the WMF can be generalized to nonwhite 
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(a) 

PSD= No/y2 

"'>" -I,;;:, 1 Aln,--;,:,/ 
WMF CHANNEL MODEL 

(b) 

Fig. 8-1. A passband PAM transmitter, channel, and receiver front end (a). The transmitter consists of a 
transmit filter and upconverter; the channel has lSI and adds white Gaussian noise with PSD No/2; the 
receiver consists of a downconverter, a MF, a sampler, and a precursor equalizer. The equivalent WMF 
channel model (b) is a causal monic minimum-phase filter, with additive white and circularly symmetric 
Gaussian noise. 
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channel noise, and that the equivalent channel model is essentially the same. In this section we 
will assume the channel noise is white. 

A passband PAM system together with a WMF receiver front end is shown in Fig. 8-I(a). 
In the following we review the properties of the equivalent channel model for both the sampled 
MF front end and the WMF front end. 

Sampled MF Channel Model 

Let us first derive the equivalent impulse response between the transmitted data symbols 
ak and the sampled MF output Yk' This can be done by setting ak = Ok, so that the noiseless 
downconverter output is an isolated pulse h( t). The equivalent impulse response at the output 
of the sampler is then Ph( k), the sampled autocorrelation function of h( t). Taking the Z 
transform, the equivalent transfer function is Sh( z), the folded spectrum. 

Next, let us derive the noise power spectrum after the sampled ME When the original 
passband noise is white and Gaussian with power spectrum No / 2, the downconverted noise 
can be modeled as circularly symmetric and Gaussian with power spectrum No. (See 
Section 3.2.8). This implies that the power spectrum after the MF is also circularly symmetric 
and Gaussian with power spectrum No 1 H(f) 12. Since sampling a random process aliases its 
power spectrum according to Section 3.2.5, it follows that the power spectrum of the discrete
time noise after the sampled MF is NOSh(z), where Sh(e j21t{T) is the folded spectrum of 
(5.66). 



350 EQUALIZATION CHAP. 8 

Together, the above results imply that the following is an equivalent model for the sampled 
MF output when the original channel adds white Gaussian noise with power spectrum No 12: 

SAMPLED MF CHANNEL MODEL 

Interestingly, the equivalent transfer function and the equivalent noise PSD are identical to 
within a constant. This channel model has two drawbacks: the impulse response is two-sided 
(and hence noncausal), and the noise is not white. Both drawbacks are rectified by the WMF. 

WMF Channel Model 

Let us now derive the equivalent channel model after the noise-whitening filter of 
Fig. 8-I(a), or in other words, after the WMF. We have already seen that the data symbols see 
a transfer function of Sh(z) at the output of the sampler, which is nonnegative real on the unit 
circle and thus admits a minimum-phase spectral factorization (Section 2.5): 

(8.11 ) 

Therefore, the equivalent transfer function after the noise whitener lIy2M*(lIz*) is simply 
M(z). This equivalent response is causal. For this reason, the filter lIy2M*(1/z*) is known as 
a precursor equalizer, because, among other things, it eliminates the noncausal portion of the 
lSI, called the precursor. In other words, it turns a two-sided impulse response Ph( k) at the 
sampled MF output into a causal response mk at the WMF output. 

We have already seen that the noise after the sampled MF is circularly symmetric 
Gaussian with power spectrum NoSh( z). Therefore, the precursor equalizer changes the 
power spectrum of the noise to: 

S (z) =N.OSh(z)' 1 . 1 
n y2M*(1/z*) y2M(z) 

(8.12) 

The noise after the WMF is white. This explains why the precursor equalizer is also known as 
a noise whitener, and which also explains the whitened MF terminology. Furthermore, the 
samples of this noise are statistically independent, since it is white and circularly symmetric. 
In addition, the real and imaginary parts are statistically independent, and have the same 
variance, namely 

= -' exp - logSh(e J ) de , No { -1 fit .s} 
2 2n -It 

(8.13) 

where we made use of (2.69). 
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Therefore, the equivalent channel model for the WMF is that shown in Fig. S-I(b). The 
equivalent transfer function is M( z), which is causal and monic, and the noise is white and 
circularly symmetric Gaussian with power spectrum No/y2. 

It is not necessary to evaluate the integral of (S.13) for rational folded spectra, since the 
constant y 2 can be read directly from the rational spectrum. This is illustrated by two 
examples. 

Example~3. ---------------------------------------------------
Let the received pulse be h( t) = J2EhIT. e-tl'Cu( t), where u( t) is the unit step function, 't > 0, 
and Eh is the pulse energy. Calculating the pulse autocorrelation directly yields: 

a = e-T1'C, (8.14) 

so that the folded spectrum is first-order all-pole and rational: 

(8.15) 

This is written in the form of a minimum phase spectral factorization, since the first term 
M(z) = 1/(1- az-l) is minimum-phase and monic (M(oo) = 1). Because each term is monic, we 
deduce that 

(8.16) 

without the need to evaluate the geometric-mean integral. 

Example~. -----------------------------------------------------
Let the received pulse be h( t ) = ho( t ) + aho( t - T), where ho( t) is a pulse shape with energy 
Eo that is orthogonal to its translates by kT. Then the autocorrelation of this pulse is { ... 0, <XEo, 
(1 + ( 2)Eo, <XEo, 0, ... }, so that the folded spectrum is: 

(8.17) 

A~ain, this is written in the form of a monic minimum-phase spectral factorization, and we identify 

y = Eo· 

The existence of the spectral factorization of (S.II) was established in Section 2.5 only for 
rational folded spectra. Fortunately, it holds more generally, in fact for any folded spectrum 
Sh(Z) such that both Sh(ej~ and 10gSh(ej~ are integrable on the interval [-n, n). This is 
known as the Paley-Wiener condition. From (S.13), the integrability oflogSh(ej~ is required 
for y2 to be well defined. 

Example~5. ---------------------------------------------------
If Sh(e j o) = 9 over any interval offrequencies, then logSh(e j o) = -00 over that same interval, and 
thus logSh(e'O) is not integrable. Intuitively, this is obvious since for this condition the noise at the 
output of the sampled matched filter will have a vanishing power spectrum over an interval of 
frequencies, and clearly it cannot then be whitened. 
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We cannot guarantee the existence of a spectral factorization of (8.11) unless the folded 
spectrum vanishes on the unit circle only at discrete points, and even then it must vanish in 
such a way that its logarithm is integrable. Fortunately, rational folded spectra can vanish at 
only a finite set of points on the unit circle (at most the number of zeros), and their logarithm is 
always integrable. 

The existence of the WMF in Fig. 8-1 depends on the spectral factorization of Sh(Z), 
which depends in turn on the integrability of Sh(e j9). The WMF exists for rational folded 
spectra without poles on the unit circle, but not for all non-rational folded spectra. The receiver 
design techniques described in this section do not apply to folded spectra for which the WMF 
does not exist. 

Very useful for the sequel is the observation that the energy in the received pulse h( t ) can 
be related to y2 and M( z) through the time-domain version of (8.11): 

(8.18) 

and hence 

Eh = Ph(O) =y2~OO 1 mk 12 . 
£.Jk = 0 

(8.19) 

In the following sections, we will use the WMF of Fig. 8-1(a) as the front end of the 
receiver. For purposes of designing the equalizer structures, it is appropriate to use the channel 
model of Fig. 8-1(b) as the starting point. 

Probability of Error 

It was shown in Section 6.2 that when a minimum-distance receiver design criterion is 
used for the equivalent channel model of Fig. 8-1 (b), the error probability is approximately 

(8.20) 

where K 2: 1 is the error coefficient, equal to the average number of signals at the minimum 
distance, dmin is the minimum Euclidean distance between pairs of known signals, and 0 2 = 
No/ (2y2) is the variance of the real or imaginary parts of the additive noise. The interpretation 
of the terminology known signals depends on the context. We will see two examples below: 
the isolated-pulse case, and the sequence case. 

It was observed that the argument of Q( .) has much greater impact on the error 
probability than the multiplicative constant K. Therefore, in this chapter we will compare 
modulation techniques primarily through their value of r, rather than comparing the error 
probability directly. Since r is the primary parameter of a particular receiver design impacting 
its probability of error, we will call it the figure of merit for the receiver equalization or 
detection technique. Generally, receivers with a higher figure of merit will have a lower error 
probability (although K must be taken in account to be definitive). 
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Matched-Filter Bound 

The WMF leads directly to two upper bounds on the figure of merit r in the presence of 
lSI. The first bound is the matched filter bound, which presumes that a single data symbol is 
transmitted. That is, the input to the equivalent channel of Fig. 8-1(b) is aOok for some isolated 
data symbol ao. The output of the channel is then 

(8.21) 

This is the case of a received discrete-time signal in additive white Gaussian noise. The ML 
detector is shown in Section 7.3 to be a matched filter with transfer function M*(lIz*) 
followed by a sampler at k = 0 and a slicer for a scaled version of the data symbol ao. Actually, 
this discrete-time matched filter is (within a constant) the inverse of the equalizer in the WMF, 
and thus the ML detector reverts to the output of the continuous-time matched filter H*( f) 
sampled at time t = o. Since the continuous-time received signal in this case is aoh( t), this is 
obvious in retrospect. The original matched filter was adequate without the need for thy 
precursor equalizer. 

The set of known signals in (8.21) is aomk for all ao in the symbol alphabet. The minimum 
distance for this set of known signals is 

(8.22) 

where ao (1) and ao (2) are two different data symbols, the minimization is over all such pairs 
such that ao (1) "* ao (2), and amin is the minimum distance within the data-symbol alphabet. 
From (8.19), this can be written in the form 

(8.23) 

Thus, from (8.20) we get a figure of merit of 

r MF = d~in = a 2 . . 2Eh 
02 mm No· (8.24) 

The constant 2Eh / No is a kind of signal-to-noise ratio, equal to the received pulse energy 
divided by the power spectrum of the white noise. 

In the presence of lSI, the receiver will generally not achieve a figure of merit of r MF 

because the matched-filter receiver does not take lSI into account. However, r MF represents a 
very useful benchmark, since the difference between the actual receiver figure of merit (always 
smaller than r MF) and r MF is a measure of the severity of the lSI, as well as the effectiveness 
of our methods for countering its effects. 

Figure of Merit for the MLSD 

Another upper bound on the figure of merit is r MLSD, the figure of merit for the MLSD. 
No receiver based on equalization or other techniques for countering lSI can perform better 
than the MLSD. Thus, r MLSD represents an upper bound on the figure of merit. Moreover, any 
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gap between r MLSD and r MF is due to lSI and not to shortcomings in the receiver design. This 
difference is a fundamental measure of the severity of the lSI. Surprisingly, in many cases this 
difference is zero, meaning that within a mUltiplicative constant the error probability of the 
MLSD is essentially the same as the MF bound even in the presence of lSI. 

The figure of merit for the MLSD is given by 

2d!in 2d2 . y2 rMLSD = __ = mm 
No/y2 No 

(8.25) 

where 

2 _ . ~L+J.I-11~J.I 12 d min - mm ~ ~. miEk_i 
(£o,. 0, £l""£L-tl k = 0 1=0 

(8.26) 

The calculation of this minimum distance is described in Section 7.6. 

A pair of very useful bounds on r MLSD can be developed simply. The first bound shows 
that the MLSD has a figure of merit less than or equal to the matched-filter bound. This 
follows from the simple observation that if we perform the minimization over a set of 
restricted error events, then this cannot match the minimum distance. In particular, in (8.26) 
constrain Ek to be of the form Ek = EOOk, so that 

d!in ~ min LL+J.I-1IEomk 12 = min lEO 12Loo Imk 12 
£0,.0 k=O £0,.0 k=O 

= a!in ~oo ImkI2=a!inEhly2, 
~k=O 

(8.27) 

where we have used (8.19). Equation (8.27) leads to the desired upper bound on r MLSD, 

a~in E h/y2 2 2E h 
r MLSD ::; No/(2y2) = amin' No = r MF . (8.28) 

It is possible for r MLSD = r MF, even in the presence of lSI. This will occur whenever one of 
the minimum-distance error events is the single error EO, since in that case (8.27) becomes an 
equality. 

Example~6. ------------------------------------------------------
Suppose the minimum-phase channel response is M(z) = 1 + a.z -1. Assume the original data 
symbols are taken from the alphabet {a, I}, so that the error symbols have alphabet {a, ±1}. For 
the given M( z), the error-event trellis has three states, as shown in Fig. 8-2. Shown are the only 
two possible error events, and the shorter error event is always the minimum-distance event because 
its path metric is smaller by (1 - a)2. The minimum distance error event has only a single non-zero 
error Eo. Hence, r MLSD = r MF for this channel, and the MLSD achieves the same fi~ure of merit 
as the matched filter bound. We can verify this in another way, because d~in = 1 + a ,and hence 

(8.29) 
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In (8.29) we have used the fact that y2 = Eh/(l + a,2) and also that amin = 1 for this alphabet. 

A lower bound on r MLSD follows from the inequality 

L~:~-1IL~=omiEk_iI2 2:: IL~=omiE_iI2 = 1 Eomo12 = IEol2 . (8.30) 

For any candidate error sequence, the left-hand side of (8.29) is greater than or equal to the 
right side. Thus, for the error sequence that minimizes the left side (and achieves d~in)' 1 Eo 12 
is not greater. If we minimize 1 EO 12 over EO (yielding a ~iJ, we get an even smaller (or equal) 
quantity. Thus, it follows that, 

r > 2 2y2 
MLSD - amin . N . 

o 
(8.31) 

This bound will prove useful in comparing the MLSD to other receivers later. (The lower 
bound is actually the figure of merit of the decision-feedback equalizer considered later.) If 
there is lSI (M( z) -:;:. 1), and M( z) is an FIR filter (as it must be for application of the VA), then 
this inequality is strict (Problem 8-2). 

8.1.2. Zero-Forcing Linear Equalizer 

An obvious sub-optimal receiver eliminates lSI using a linear filter called a linear 
equalizer. For example, we can choose the receive filter so as to satisfy the Nyquist criterion at 
the slicer input. However, such a filter is not unique. The Nyquist criterion specifies neither the 
equalized pulse at the slicer input nor the receive filter. Even if the excess bandwidth of the 
equalized pulse is chosen, the pulse and the corresponding receive filter are not unique. The 
question is, among those satisfying the Nyquist criterion, which receive filter minimizes the 
noise at the slicer or equivalently minimizes the probability of symbol error? 

The optimal receive filter under the constraint that the Nyquist criterion must be satisfied 
at the slicer input can now be determined easily because the WMF can be used as a front end 
for any criterion of optimality, including this one. Placing a discrete-time symbol-rate filter at 
the WMF output, the filter that will satisfy the Nyquist criterion is unique because of the 

+\ 0 

o 

-\ 0 

3 

o 

o 

Fig. 8-2. The trellis for determining the minimum distance in Example 8-6. 
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symbol-rate sampling. That filter, called the zero-Jorcing linear equalizer (LE-ZF), is the 
inverse filter M-1( z), assuming the discrete-time equivalent channel model for the WMF of 
Fig. 8-1 (b), since the Nyquist criterion is equivalent to an overall unity transfer function for 
the WMF plus equalizer. The term "zero-forcing" refers to the fact that we are constraining the 
lSI to be entirely absent, a constraint that will be relaxed in Section 8.2. Since M( z) is a monic 
causal minimum-phase filter, the equalizer must have all its poles inside or on the unit circle; 
hence it is a causal filter, although it is not necessarily minimum phase or stable, because of 
the possibility of poles on the unit circle. We will see that when M( z) has zeros on the unit 
circle, the LE-ZF is not useful since the noise at the slicer input would have to have infinite 
variance (the figure of merit would be zero). 

Combining the equalizer M-1(z) with the WMF discrete-time equalizer in Fig. 8-1(a), we 
show the resulting LE receiver structure in Fig. 8-3. Among all receiver structures consisting 
of a downconverter, receiver filter, and equalizer constrained to eliminate lSI at the slicer 
input, this one is optimal (minimizes error probability). The combined discrete-time equalizer 
has transfer function Sh -1( z), the inverse of the folded spectrum. 

Figure of Merit for the LE-ZF 

The figure of merit for the LE is easily determined from the fact that the noise at the WMF 
output is white and circularly symmetric with variance No / y2. The power spectrum of the 
noise at the output of the LE is therefore (suppressing the z and l/z* variables): 

S =No . .l._l_ =No 
U y2 M M* Sh 

(8.32) 

(a) • "1 Sh~Z) 1 

LINEAR EQUALIZER 

(b) 

Fig. 8-3. The zero-forcing linear equalizer. (a) It consists of a matched filter, symbol-rate sampler, and a 
discrete-time equalizer with transfer function that is the inverse of the folded spectrum. (b) The 
equivalent channel model consists of an ideal channel plus nonwhite Gaussian noise. 
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The input to the slicer is the current data symbol plus an additive Gaussian noise sample. To 
find the variance of this noise, we need only integrate the power spectrum above, yielding: 

20'v2 =No ' (Sh-1)A . 

The minimum distance is that of the data symbol, amin, and thus the figure of merit is 

2a~in -1 -1 
r ZF·LE = ---w.- . (Sh )A . 

o 

(8.33) 

(8.34) 

For rational spectra, it is easier to calculate r ZF.LE by finding the coefficient of zO in Sh -1( z) 
than it is to evaluate this integral. 

Example 8-7. --------------------------
For the first-order all-pole received pulse of Example 8-3, the inverse of the folded spectrum is: 

Sh-1(Z) = (1-a.z-1)(1-a.z) 
(1- a.2 )Eh 

so that the coefficient of zO is (1 + a 2)(1 - a 2)-I/ Eh. Thus, the figure of merit is 

2 2Eh 1 - a.2 1- a.2 
r ZF.LE = amin-N, '-1 2 =rMF ·--· 

o + a. 1 + a.2 

(8.35) 

(8.36) 

Note that r ZF.LE ~ 0 as I a I ~ 1, which is the case where the channel pole approaches the unit 
circle. 

ExampleS-S. --------------------------
For the first-order all-zero received pulse h( t) = ho( t) + aho(t - T) of Example 8-4, the inverse 
of the folded spectrum is 

S -1( ) _ 1 + a.2 1 
h z ---' 

Eh (1-a.z-1)(1-a.z) 
(8.37) 

and when expanded in z -k has a coefficient of zO of (1 + a 2)(l - a 2) -1/ Eh. As a result, the figure 
of merit is 

2Eh 1-a.2 1-a.2 
rZFLE=a . -'-- =rMF ·--· 

. mm No 1 + a,2 1 + a,2 
(8.38) 

Note that r ZF.LE ~ 0 as I a I ~ 1, because the channel zero approaches the unit circle and the 
LE-ZF cannot equalize it. 

Bound on Figure of Merit 

An upper bound on r ZF.LE that is useful for later comparisons can be developed. Let fk 
denote the impulse response of the equalizer ~I(z). This response is causal, and since 
M-l(oo) = 1, it is also monic (fo = 1). Since the input noise to this LE-ZF is white, we can 
express the output variance in terms of this impulse response as: 
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2cr 2 = NO . ~oo I' 12 > NO 
v y2kJk=Olk -Eh ' (8.39) 

with equality if and only if M( z) = 1 (there is no lSI). From this it follows that 

(8.40) 

The right side of (8.40) is the figure of merit for the zero-forcing decision-feedback equalizer, 
considered later in Section 8.1.3. 

Existence of the LE-ZF 

The existence of the LE-ZF is not guaranteed, but depends on the folded spectrum Sh(z). 
The first requirement is the existence of the WMF, or in other words that logSh(ei9) be 
integrable. As we saw earlier, the WMF is precluded if, for example, Sh(eif) vanishes on an 
interval. The LE-ZF has the more stringent requirement that the filter M-1(z) be stable, and 
that the noise variance at its output be finite. The problematic case is where M( z) has one or 
more zeros on the unit circle, in which case M-1(z) is a well-defined filter but is not stable, 
and the variance of the noise at the slicer is infinite. This can be seen from (8.39) above, 
because when M-1(z) has a pole on the unit circle, fk does not decay to zero as k ~ 0, and 
thus L; = 0 Ifk 12 = 00. 

In summary, when Sh( z) is rational, the LE-ZF will not be useful (in the sense that the 
slicer noise variance would be infinite) whenever Sh(z) has zeros on the unit circle. 
Intuitively, this is because the LE-ZF, in the process or adding gain to compensate for channel 
attenuation, cannot compensate for even an algebraic zero in the frequency response of the 
channel. Note that under these conditions the WMF does exist, so that for example the MLSD 
can be implemented. 

When Sh(Z) is not rational, the precise condition for the LE-ZF to be useful is that the 
inverse folded spectrum Sh -l(e i f) be integrable, which guarantees a finite noise variance at the 
slicer input. 

8.1.3. Zero-Forcing Decision-Feedback Equalizer 

The zero-Jorcing decision-Jeedback equalizer (DFE-ZF) is a nonlinear receiver structure 
that offers a performance intermediate between the LE and the MLSD. In the absence of 
channel coding (Section 12), the DFE is frequently used since it offers a good compromise 
between performance and implementation complexity. 

The DFE-ZF follows from the observation that the WMF equivalent channel model of 
Fig. 8-1(b) is monic and causal. Thus, the residual lSI at this point is called postcursor lSI, 
meaning that the interference at the WMF output is only from past data symbols. This is 
distinguished from precursor lSI, where the interference is from future symbols. The 
distinguishing feature of postcursor lSI is that if we know the past data symbols, we can 
cancel the lSI by subtracting a replica of the lSI from the WMF output. If we are making 
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symbol-by-symbol decisions using a slicer, then in fact we do have estimates of the past data 
symbols, namely the slicer output. In the DFE, these estimates are used to cancel the 
postcursor lSI at the slicer input. 

The DFE is related to the LE in Fig. 8-4. In Fig. 8-4(a), the LE is shown in a different 
form, where the equalizer filter M-1(z) is realized as a filter M(z) -1 placed in a feedback 
loop. It is easily shown that the transfer function of this feedback system is M-1( z). The 
feedback loop is also realizable; because M( z) is causal and monic, M( z) - 1 is a strictly 
causal response with no zero-delay tap (such a tap could not be realized in the feedback loop!). 
This filter is stable as long as M( z) has no zeros on the unit circle (it is strictly minimum
phase). 

The DFE, first suggested by Austin [1][2], is shown in Fig.8-4(b). There are two 
equivalent ways of looking at this receiver structure. One follows from the observation that, in 
the absence of noise, the output of the LE (input to the slicer) in Fig. 8-4(a) is precisely the 
data symbol ak. This property is not affected by moving the slicer inside the feedback loop, 

~ CHANNEL MODEL -.J+-- LINEAR EQUALIZER ---.; 

I nk I 
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ak ---1 
I 
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I 
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(b) 

ak~Yk 

~,~' MATCHED t - kT 
FILTER 
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I 

Fig. 8-4. The zero-forcing decision-feedback equalizer (DFE-ZF). (a) A different realization of the LE
ZF, in which the filter M-1(z) is implemented with a feedback filter. (b) The DFE-ZF, in which the slicer is 
moved inside the feedback loop, reducing the noise enhancement. (c) Expansion of the channel model. 
The front end of the DFE-ZF, identical to the WMF, consists of a matched filter and precursor equalizer, 
where the latter also doubles as a whitening filter. 
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since in the absence of noise the slicer has no effect. The effect on the noise of moving the 
slicer inside the feedback loop is beneficial, however, since the effect of the slicer is to remove 
any noise that would otherwise recirculate back through the feedback loop to the input to the 
slicer (this will be verified mathematically momentarily). Moving the slicer inside the 
feedback loop also has a beneficial stabilizing effect; even if G( z) has zeros on the unit circle 
and the LE-ZF filter is not stable, the nonlinear filter of Fig. 8-4(b) is stable, since the output of 
the slicer is always bounded! Thus, the DFE-ZF exists and is a stable system whenever the 
WMF exists. 

The second viewpoint, lSI cancellation, is illustrated in Fig. 8-5. The channel model of 
Fig. 8-4(c) is shown in a different way in Fig. 8-5(b). As illustrated in Fig. 8-4(c), the front end 
of the DFE-ZF is identical to the WMF, including a matched filter, symbol-rate sampler, and 
maximum-phase whitening filter (labeled precursor equalizer). In the context of the DFE-ZF, 
that whitening filter plays another, more important role, that of equalizing the response to be 
causal. This is why it is also called a precursor equalizer. If there is any lSI at all, then there is 
precursor lSI because of the symmetry about t = 0 of the matched filter response. The 
precursor lSI is eliminated by the precursor equalizer. The resulting model M( z) is monic and 
causal, and hence can be viewed as shown in Fig. 8-5(b). Since the output of the slicer is an 
estimate Ok of the current data symbol ak, if Ok = ak, then the postcursor equalizer exactly 
cancels the lSI introduced by the model in Fig. 8-5(b). 

An example is shown in Fig. 8-6. The output of the sampled matched filter has both 
precursor and postcursor lSI, but the precursor equalizer eliminates the precursor lSI. The 
postcursor lSI is cancelled by the postcursor equalizer M( z) - 1 using the symbol estimates 
generated by the slicer. Since the lSI at the output of the precursor equalizer has transfer 
function M( z) - 1, a replica of this lSI can be generated using the feedback filter. This 
argument depends on the assumption that all decisions are correct. In fact, when the slicer 
makes incorrect decisions, the lSI correction becomes flawed for future decisions. This 
phenomenon is known as error propagation, and is discussed later. 

(a) , 

, , 
, , 

. , .------------ ... 
~;_,...----.c. :~ 

I 
I 
I 

: (b) 
I ------------_. 

Fig. 8-5. (a) Another view of the zero-forcing decision-feedback equalizer (DFE-ZF). (b) An expanSion 
of the channel model that shows clearly that this model introduces postcursor lSI that is cancelled by the 
DFE. M( z) is causal and monic, so M( z) - 1 is strictly causal. 
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Figure of Merit ofthe DFE-ZF 

The DFE performance is easily calculated assuming that all past decisions are correct. In 
that case, the signal component at the slicer input is the current data symbol ak, free of lSI, and 
hence the minimum distance is the data-symbol alphabet minimum distance amin0 The noise at 
the slicer input is precisely the noise at the WMF output, which has variance No /y2. The 
figure of merit is therefore 

2 
r = a min 

ZF-DFE N-o /--,-(....:c2"-y2"--) (8.41) 

Using (8.13) this can be expressed directly in terms of the folded spectrum as 

2a~in 2a~in -1 -1 
rZF-DFE = -_. (Sh)G = -- . (Sh > 

No No G 
(8.42) 

The second form of (8.42) is written in a form to emphasize the comparison to (8.34); the two 
equations are similar except that the arithmetic mean in (8.34) is replaced by the geometric 
mean in (8.42). For rational spectra, r ZF-DFE is easily calculated directly from the spectrum 
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Fig. 8-6. Example pulse shapes in a DFE. (a) The pulse shape at the output of the sampled matched 
filter is always symmetric about k = o. The cursor at time zero is marked by a thick line for emphasis. (b) 
After the precursor equalizer (whitening filter) the pulse is causal and minimum phase; that is. it has 
postcursor lSI only. The postcursor equalizer cancels the tail. 
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without using (8.42). However, (8.42) is very useful for non-rational spectra, or to avoid 
performing a spectral factorization. 

Example~9. ------------------------------------------------------
Let us consider again the first-order all-pole pulse in Example 8-7, but this time for the ZF-DFE. 
Inspection of the folded spectrum of (8.35) reveals that y2 = Eh(l - (.(2). This illustrates the ease 
with which y2 can be calculated without evaluating a geometric mean integral. Then the figure of 
merit is 

(8.43) 

As in the ZF-LE, r ZF-DFE ~ 0 as I (.( I ~ 1, because the channel pole is approaching the unit 
circle. Also, from Example 8-7, r ZF-DFE / r ZF-LE = 1 + (.(2, so that as expected the DFE-ZF 
always has a larger figure of merit than the LE-ZF, by as much as 3 dB. 

Example~10. -----------------------------------------------------
Repeating the first-order all-zero pulse of Example 8-8 for the DFE-ZF, in this case by inspection 
y2 = Eh/(l + (.(2), and hence the figure of merit is 

2 2Eh 1 
rZF-DFE = amin-J\T '-1 2' 

lVo + a 
(8.44) 

In contrast to the ZF-LE, the DFE-ZF is well behaved as I (.( I ~ 1. The DFE-ZF suffers at most a 
3 dB penalty relative to the MF bound, whereas the LE-ZF may suffer an arbitrarily large penalty. 

Two bounds, (8.31) and (8.40), establish that the figure of merit of the DFE-ZF falls 
between the LE-ZF and the MLSD, 

r ZF-LE ::; r ZF-DFE ::; r MLSD . (8.45) 

These are strict inequalities, unless there is no lSI, in which case they become equalities. (An 
additional inequality is that r MLSD ::; r MF, which can be an equality even in the presence of 
lSI.) The intuitive reason the DFE-ZF performs better than the LE-ZF is that postcursor lSI is 
cancelled without noise enhancement, since the slicer removes noise fed back through the 
postcursor equalizer filter. 

Existence of the DFE-ZF 

Since the DFE-ZF uses the WMF as a front end, it exists whenever the WMF exists; that 
is, both Sh(ej~ and 10gSh(ej~ must be integrable. Roughly speaking, the folded spectrum 
Sh(ej~ cannot vanish on an interval, although algebraic zeros (characteristic of rational 
spectra) are permissible. Thus, another advantage of the DFE-ZF over the LE-ZF is that the 
DFE-ZF has a finite noise variance at the slicer input even when the folded spectrum has zeros 
on the unit circle, whereas the slicer input noise will have infinite variance for the LE-ZF 
under the same conditions. This is a desirable side effect of performing precursor equalization, 
but not postcursor equalization, using a linear filter. 
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Optimality of the WMF as the DFE-ZF Front End 

We based the DFE on the WMF, without considering alternative filters. The basic concept 
of canceling postcursor lSI with a postcursor equalizer does not depend on the details of the 
impulse response of the precursor equalizer, except that the equivalent discrete-time isolated
pulse response up to and including the precursor equalizer must be monic and causal, so that 
the lSI is in fact postcursor. 

As shown in Fig. 8-7, any filter E(z) can be placed at the output of the WMF, changing 
the equivalent transfer function from M(z) to M(z)E(z), as long as the feedback filter is 
changed from M( z) - 1 to M( z )E( z) - 1. E( z) must be chosen to meet the two constraints 
above: 

• Since M( z) is causal, M( z )E( z) will be causal if and only if E( z) is causal. 

• Since M(z) is monic (M(oo) = 1), M(z)E(z) will be monic (M(oo)E(oo) = 1) if and only 
if E(z) is monic (E(oo) = 1). 

For a filter E( z) with impulse response ek meeting these constraints, since the noise at the 
input to E(z) is white with power spectrum No/y2, the variance of the output (input noise to 
the slicer) will have variance 

No ~oo 2 No 
2 L.J lekl ~ 2' y k=O Y 

(8.46) 

with equality if and only if E( z) = 1. This establishes that the original configuration of 
Fig. 8-4 is optimal in the sense of minimizing the noise variance at the slicer input. 

In Section 5.4.2, it was pointed out that the minimum-distance receiver design (which is 
equivalent to the MLSD) does not require a minimum-phase spectral factorization. 
Equivalently, adding an allpass filter to the WMF and to the equivalent channel model will not 
change the minimum-distance criterion. This would be equivalent to making E( z) a causal 
monic filter with a constant magnitude response in Fig. 8-7. We have just shown, however, that 
the minimum-phase spectral factorization is critical to the DFE, because it minimizes the noise 
at the slicer input. Adding a monic and causal filter E( z) with constant magnitude I E(e j9) I to 
the WMF will increase the noise variance without affecting the signal level at the slicer. 

~ CHANNEL MODEL -.; , , 

Fig. 8-7. An arbitrary DFE-ZF precursor equalizer can be realized by concatenating a monic and causal 
filter E( z) with the WMF front end. 
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An intuitive explanation for this difference between the MLSD and the DFE is as follows: 
the DFE relies on the first sample of the equivalent impulse response to make the decision on 
the data symbol, and throws away the remainder of the received signal energy in the postcursor 
lSI. The minimum-phase channel model maximizes the energy in the first sample (see 
Problem 2-29), and is thus important to the performance of the DFE. The MLSD, on the other 
hand, uses all the energy in the equivalent channel impulse response, and hence will not be 
affected by the relative distribution of that energy between the first sample and the postcursor 
lSI. 

In actual practice, the minimum-phase spectral factorization is helpful in the 
implementation of the MLSD as well. As shown in Section 5.4.4, the use of the Viterbi 
algorithm to realize the DFE requires that the channel response be FIR, and the computational 
complexity of the algorithm increases exponentially with the number of taps in the FIR 
channel model. It is often necessary to approximate an IIR response M( z) with an FIR filter, 
and the number of taps required for a good approximation will generally be minimized when 
the spectral factorization is minimum-phase, since again that concentrates the energy in the 
low-delay coefficients. 

Linear Predictor Interpretation of DFE-ZF 

The optimal DFE-ZF structure can be derived in a slightly different way, one which lends 
additional insight. This alternative derivation illustrates a connection between optimal linear 
prediction (Section 3.2.3) and the WMF and DFE, and also explains in another way why the 
LE results in more noise enhancement than the DFE. The connection is illustrated in Fig. 8-8, 
where a DFE is placed at the output of a LE-ZF rather than WMF, and consists of a linear 
predictor E( z), which introduces postcursor lSI, and a DFE postcursor equalizer. The key 
observation is that the noise at the output of the LE-ZF is not white, as demonstrated by (8.32), 
unless of course there is no lSI (M( z) = 1). Since the noise samples are correlated, we can take 
advantage of this correlation, and apply an optimal linear prediction error filter E( z) as shown 
in Fig. 8-8. Like all linear prediction error filters, E( z) is monic and causal. Thus, while E( z) 
introduces lSI (which was absent at the output of the LE-ZF), this is postcursor lSI and can be 
canceled by a DFE-ZF feedback filter without enhancing the noise. 

As shown in Section 3.2.3, the optimal E( z) is the monic minimum-phase whitening filter. 
The noise power spectrum at the input to the predictor is proportional to lIM(z)M*(l/z*), 
and the monic minimum-phase portion is thus M-1(z). The optimal whitening filter is the 
inverse of this, M( z), which also happens to be the inverse of the LE-ZF filter M-1( z). Thus, 
the optimal predictor and the LE-ZF filter cancel one another, the optimal front end for the 
DFE is the WMF, and the optimal postcursor equalizer is E( z ) - 1 = M( z ) - l. 

This establishes in a different way that the WMF is a front end that generates white noise 
at its output, and among all such front ends is the one that minimizes the noise variance. It also 
explains in a compelling way the enhanced performance ofthe DFE-ZF relative to the LE-ZF. 
The DFE-ZF takes advantage of the correlation of noise samples at the output of the LE-ZF to 
reduce the noise variance at the slicer input, and cancels the resulting postcursor lSI using a 
DFE postcursor equalizer. 
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DFE Error Propagation 

One obvious potential problem with the DFE is that any decision errors at the output of the 
slicer will cause a corrupted estimate of the postcursor lSI to be generated by the postcursor 
equalizer. The result is that a single error causes a reduction in the margin against noise for a 
number of future decisions. This phenomenon is called error propagation, and results in an 
error rate greater than would be predicted on the basis of SNR calculations alone. Error 
propagation is explored further in Appendix 8-A, where it is shown that the benefit of reduced 
noise enhancement usually far outweighs the effect of error propagation. 

8.1.4. Transmitter Precoding 
DFE error propagation can be avoided by using transmitter precoding. Transmitter 

precoding is sometimes called Tomlinson-Harashima coding, in honor of its co
inventors [3][4][5]. This technique has also been called generalized partial response [6], since 
the ordinary partial response invented earlier [7] is a special case. 

The idea of precoding is to move the cancellation of the postcursor lSI to the transmitter, 
where the past transmitted symbols are known without the possibility of errors. However, this 
means that the postcursor lSI impulse response M( z) must be known precisely at the 
transmitter. In practice, in most situations this impulse response must be estimated in the 
receiver using adaptive filter techniques (Chapter 9), and passed back to the transmitter in 
order to use transmitter precoding. This is feasible on channels that are time-invariant or 
slowly time-varying, but is not feasible on channels (such as mobile radio) that are rapidly 
time-varying. 

The basis of transmitter precoding is the observation that the channel model through the 
WMF, M( z), and LE equalizer M-1( z), both linear and time-invariant, can be reversed 
without compromising the requirement that the Nyquist criterion be satisfied at the slicer 
input, as shown in Fig. 8-9(a). The LE equalizer M(z) can be put in the transmitter. There are 
two benefits to this: 

:+- CHANNEL MODEL -+: 

Fig. 8-8. Showing the connection between the optimal DFE precursor equalizer and optimal linear 
prediction. The DFE precursor equalizer can be obtained by applying a linear predictor to the nonwhite 
noise at the LE-ZF output. 
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• Since the receiver is now the WMF followed directly by a slicer, the noise at the slicer 
input is that of the WMF; that is, it is the same as for the DFE. Thus, even though the 
receiver uses linear equalization, it does not suffer the noise enhancement of linear 
equalization because the equalization is done prior to the channel, where the noise is 
introduced. 

• The error probability may actually be slightly lower than with the DFE, because the 
postcursor lSI cancellation is done in the transmitter and there is no possibility of error 
propagation as there is in the DFE. 

In the transmitter-based linear equalizer of Fig. 8-9(a), the transmitted data symbols Xk are 
the original data symbols ak filtered by M-1(z). This filter is simply placed between the 
original data symbols and the pulse-amplitude modulator, so that the transmitted signal takes 
the form L~!$(t - kT). When the transmit filter, channel, and WMF front end in the receiver 
are taken into account, the channel model of Fig. 8-9(a) results. 

Simply doing the equalization in the transmitter as shown in Fig. 8-9(a), is not advisable, 
however, because it increases the average and peak power in the transmitted signal. If the 
impulse response of M-1(z) is fk' which is causal and monic, then the peak transmitted 
sample is increased by a factor of L; = 0 Ifk 12 > 1. Likewise, if the data symbols are 
independent and identically distributed, then the average power of the transmitted symbols is 
multiplied or enhanced by a factor L; = 0 I fk 12 > 1. Not surprisingly, when the equalizer was 
at the receiver, it resulted in noise enhancement. By moving it to the transmitter, we induce 
signal enhancement. If we penalize the system for these increases in transmitted peak and 
average power, then we end up back where we started: a transmitter-based linear equalizer 
performs no better or worse than a receiver-based linear equalizer. 

Modification to Reduce the Transmitted Power 

Fortunately, there is a simple solution that substantially reduces these peak and average 
power penalties, and in fact makes them go away entirely in the limit of large data-symbol 
constellations. This approach is easiest to understand in the one-dimensional case, so assume 
the data symbols ak are drawn from the L-ary alphabet (where L is even) {-(L - 1), - (L - 3), 
... , -3, -1, 1, 3, ... , (L - 3), (L -I)}. That is, the data symbols are chosen among all odd 
integers in the range (-L, L). Consider the modification of the transmitter-equalizer shown in 
Fig. 8-9(b), in which an additional term 2L . ik is added to the feedback, where the sequence of 
integers {ik' -00 < k < oo} is yet to be determined. Define an expanded symbol Ck, 

(8.47) 

Since ak is an odd integer and 2L· ik is an even integer, their sum is odd, and the alphabet of 
the expanded symbol Ck is the set of all odd integers, not those limited to the range (-L, L). 
Both the original data symbol alphabet and the expanded data symbol alphabet are illustrated 
in Fig. 8-10. The original data symbol ak can be recovered from the expanded symbol Ck by 
reducing it modulo 2L, 

ak = ck modulo 2L . (8.48) 

By (x modulo 2L), we mean specifically the unique value of x + 2L· m when the integer m is 
chosen such that -L < x + 2L . m :::; L. The precoded symbol Xk is transmitted, where 
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(8.49) 

Fig. 8-9(b) is equivalent to Fig. 8-9(a) with the data symbol ak replaced by the expanded 
symbol Ck of (8.47). Thus, in the receiver, the data symbol ak can be recovered by first 
applying an expanded slicer, which detects the expanded symbol Ck, and then reducing the 
result modulo 2L. The expanded slicer simply applies thresholds to detect a data symbol 

TRANSMITIER -..- CHANNEL MODEL --.- RECEIVER 
nk : 

~ ~ ~ 
~ +}-------t"--:--l~ 

ak Xk 
~+}-------1--;-+I 

Fig. 8-9. Derivation of the transmitter precoder. (a) The LE-ZF, realized as a feedback filter as in 
Fig. 8-4(a), can be placed in the transmitter rather than the receiver. (b) For the data-symbol alphabet 
specified in the text, an arbitrary sequence of samples 2L· ik can be added to the data symbols, as long 
as the receiver slicer is appropriately expanded. (c) The transmitted power can be minimized by 
choosing 2L·ik to yield an equivalent modulo 2L operation. 

(b) 

(a) 
-3 -1 +1 +3 
)( )( )( )( 

)( )( )( )( )( )( )( )( )( )( )( )( , 
~~~ 

~=~ ~=O ~=l 

Fig.8-10. Data symbol alphabets for transmitter preceding: (a) The original data symbols ak for L = 4, 
and (b) the expanded data symbols ck, shown for three values of ik' (In general, i k can assume larger 
values as welL) 
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expected to be any odd integer, as opposed to the original slicer that expects an odd integer in 
the range (-L, L]. With the expanded slicer, the system of Fig. 8-9(b) works just like 
Fig. 8-9(a) for any sequence of integers ik. Furthennore, the error probability is essentially the 
same, since the minimum distance is unchanged (the distance between odd integers is dmin = 2 
in either case). There will be a slight increase in error probability due to end effects, as the 
original constellation is bounded, and the two outer symbols are therefore detected with a 
slightly lower error probability, a property lost with the expanded constellation. 

The final step is to choose the sequence of integers ik . For this purpose, observe from 
Fig. 8-9(b) and (8.49) that a tenn 2L· ik appears directly in the precoded symbols Xk. Since our 
original goal was to reduce the peak or average power penalty, ik should be chosen to 
minimize the magnitude of each Xk. In fact ik can always be chosen to limit Xk to the range 
(-L, L], which is equivalent to reducing it modulo 2L; choosing any other ik results in a 
precoded symbol with a larger magnitude. This transmitter precoding approach, shown in 
Fig. 8-9( c), results in a small increase in the range of the precoded symbol alphabet, as the 
original data symbols are limited in magnitude to L - 1, and the precoded symbols are limited 
to L. For large L, this is only a slight increase in transmitted power. 

The operation of the precoder can be better understood with the following simple (and 
accurate, for large L) model that predicts the statistics of the precoded symbols for an 
idealized statistical model of the original data symbols. Assume that the data symbols Ak are 
independent unifonnly distributed random variables on (-L, L]. Of course, they actually have 
a discrete distribution, but this approximation becomes more accurate as L increases. This 
approximation is an important analytical tool in coding theory, and has been called the 
continuous approximation [8]. We will now show that under these conditions, the precoded 
symbols Xk are also independent and unifonn-distributed on (-L, L]. First, in Fig. 8-9(c), 

Xk = (ak - uJJ modulo 2L . (8.50) 

The first observation is that Xk is unifonnly distributed and independent of Uk, regardless of 
the channel response M( z). 

Exercise 8-1. 
Show that P I v (x I u) is a uniform distribution on (-L, L]. Since the particular outcome U has no 
bearing on thf; c~nditional distribution, xk is statistically independent of uk. 

It follows readily that Xk is independent of {Uk, Uk-I, ... }. Obviously x is dependent on ak, but 
it is independent of {ak_l> ak-2' ... }, since the ak's are independent. Since xk-l is a function 
of ak _ l and Uk _ l' it follows that Xk is independent of Xk _ l for 1 ;:: 1. 

The approximation that the xk are independent unifonnly distributed random variables 
implies that the statistics of the precoded symbols are very similar to the statistics of the 
original data symbols, if the latter are independent identically distributed and are 
approximately equally likely to assume the L values in their alphabet. In particular, the 
variance E[Xk 2] of the precoded symbols is approximately L2/3, the variance of a unifonn 
random variable. The original data symbols have variance (L2 -1)/3, if they are equally 
likely. This approximation suggests that for large L, the average power of the precoded 
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symbols Xk is approximately the same as the average power of the original symbols. Thus, the 
modulo operation accomplishes the objective of reducing the peak and average transmitted 
power to approximately that of the original signal. 

In the absence of channel coding, transmitter precoding does not offer a substantial 
advantage over the DFE, since all it accomplishes is to eliminate error propagation, which 
turns out to be a minor problem in practice. Transmitter precoding has the major disadvantage 
that it requires precise knowledge of the channel in the transmitter. For these reasons, it was 
not used until recently. However, it has recently become important as one of three available 
equalization methods for obtaining the best performance in combination with channel coding 
on channels with intersymbol interference (Chapter 13). The DFE, while widely used in 
uncoded systems, is fundamentally incompatible with channel coding because of the 
requirement for immediate symbol decisions to cancel postcursor lSI. Channel decoding 
inevitably introduces a multi-symbol delay in the detection and decision process. 

8.2. Generalized Equalization Methods 

In Section 8.1, two important equalization techniques were introduced, linear and 
decision-feedback equalization. The structures developed were optimal under the criterion of 
minimizing the noise at the slicer input subject to the constraint that there be no lSI. There are 
several directions that these results can be generalized, and all are important in practice: 

• Remove the assumption that the front end of the receiver consist of a matched filter 
followed by a symbol-rate sampler. While this structure was shown to be optimal for 
Gaussian channel noise, it is problematic on many real channels because it requires 
knowledge of the channel transfer function and presumes that this transfer function is 
not changing with time. There are adaptive techniques for dealing with these problems 
(Chapter 9), but they typically work in discrete time. Thus, practical receivers for 
unknown or time-varying channels typically do not use front-end matched filtering, 
although as shown in Section 8.3 the equivalent operation can be performed in discrete 
time if the sampling rate is increased. 

• Generalize the criterion of optimality to allow for residual lSI at the slicer. By allowing 
residual lSI, we can reduce the variance of the noise, and usually there is a net 
advantage in SNR at the slicer. 

• Constrain the complexity of the equalization filters, so that we can make them practical 
to implement and control the implementation cost. 

In this section, we will deal with two of these issues. First we will not assume a matched-filter 
receiver front end. Second, we will define a mean-square error (MSE) criterion that takes into 
account lSI as well as noise. We will design optimal equalizers under both the zero-forcing 
(ZF) and MSE criteria. In this section we will stick with symbol-rate sampling, relaxing that 
assumption in Section 8.3, and we will not constrain the equalizer complexity, leaving that 
consideration to Chapter 9 where adaptive equalization is covered. 
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Fig. 8-11. A discrete-time channel model sampled at the symbol rate. The channel is not necessarily 
causal or monic, and the noise is not necessarily white. 

8.2.1. Preliminaries 

Before deriving optimal equalizer structures, we will choose a basic discrete-time channel 
model that does not presume front-end matched filtering, as in Section 8.1, and also define the 
MSE criterion. 

Data-Symbol and Channel Model 

The noise, signal, and channel model we consider here is shown in Fig. 8-11. Unlike for 
the ZF criterion, to design receivers according to the MSE criterion we must assume a 
statistical model for the data symbols, so that {ak} is viewed as a random process. The 
complex-valued data symbols ak and additive complex noise {nk} are both assumed to be 
zero-mean wide-sense stationary discrete-time random processes with power spectra 

Sa =y;. MaMa* (8.51) 

(8.52) 

where the minimum-phase spectral factorizations of Section 2.5.2 have been introduced, and 
Ma and Mn are loosely minimum-phase, causal, monic transfer functions. In case these are 
white, the power spectra reduce to y; or y; respectively. We also make the reasonable 
assumption that the noise and data symbols are uncorrelated and independent. The channel H, 
presumed to be rational, introduces dispersion or intersymbol interference (IS/). It is no longer 
assumed that H is non-negative real on the unit circle, as it would be with a MF front end, nor 
is it minimum phase and monic, as it would be with a WMF front end. For purposes of 
analysis, it is convenient to decompose the rational H canonically in the manner of (2.52), 

H=Ho' z". Hmin' Hmax' H zero (8.53) 

where Ho is a complex constant, Hmin is monic, causal, and minimum-phase, Hmax is monic, 
anticausal, and maximum-phase, and Hzero contains all the zeros on the unit circle, and is 
causal and monic. Generally a flat delay in the channel is of no consequence, so we will 
assume that r = O. 

Example 8-11. -------------------------
When the receiver front-end is a matched filter followed by symbol-rate sampling, H = Sh' For this 
case, Hmin = Hmax ~ Ho = y2, and H zero assumes a particular form where zeros come in pairs. 
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Example~12. -----------------------------------------------------
Given the channel 

Hz - (1-0.lz-1)(1-2z-1)(1-z-1) 
( ) - 1- 0.5z-1 ' 

(8.54) 

the minimum-phase and unit-circle zero terms are all in monic form, but a bit of manipulation is 
required on the maximum-phase term, 

(8.55) 

and hence we can identifY 

Ho =-2, r =-1, H . (z) = _1_-_0._1_z-~1 
mill 1 _ 0.5z-1 ' 

Hmax(z) = 1- 0.5z, Hzero(z) = 1- z-l . (8.56) 

Then we can set r = 0, in effect dealing with the channel zH( z) rather than H( z). 

Physical Constraints on the Channel Model 

Physical channels will never have a left-sided component to the impulse response. Thus 
we would expect Hmax to be an FIR filter, implying that it has poles only at z = 00, because 
there are no poles in H outside the unit circle (except possibly at z = 00). Channel poles outside 
the unit circle, while mathematically feasible, can be ruled out by physical considerations. 

Example ~13. -----------------------
The equivalent channel response for the WMF is Sh, which is non-negative real on the unit circle. 
Excluding poles at z = 0 and z = 00, if Sh has any additional poles at all, then it will have poles 
outside the unit circle. The practical problem here is that if the received pulse h( t) is right sided 
but does not have finite support (it decays to zero but never reaches zero), the matched filter will be 
left-sided and will not have finite support, and hence is not physically realizable. Under this 
condition, the matched filter can only be approximated by a filter with a finite-support impulse 
response, and the resulting response will again be right-sided. For this practical approximation, 
unlike the ideal matched filter case, H can have poles inside the unit circle, but not outside. 

While we expect Hmax to be FIR, it is not necessarily unity. That is, channel zeros outside the 
unit circle are feasible, and common if we use the WMF front end. 

Example 8-14. -----------------------------------------------------
A broadband channel model for mobile radio, where the delay spread is large, consists of 
independent Rayleigh fading channels with different delays. Assume that there are two resolvable 
paths, so the impulse response of the channel is cl h( t ) + c2h( t - 't) where cl and c2 are 
independent Gaussian random variables. (Actually, cl and c2 are random processes, but we are 
interested in them at some fixed time.) The 't is the differential delay of the two paths, and h( t) is 
the impulse response of the ideal channel, typically dominated by the transmit and receive filters, 
and chosen to satisfY the Nyquist criterion. If the output of the receive filter is sampled at the 
symbol rate, then the discrete-time channel has impulse response hk = CIOk + c2h(kT - 't). Just to 
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illustrate what can happen, for simplicity assume that 't is a multiple of the symbol interval T, 't 

= mT, so that 

(8.57) 

This channel model has poles only at z = 0, and the m zeros satisfy 

I
C2

1

11m Izl = -
c1 

(8.58) 

Hence all m zeros have the same radius 1 c2 1 / 1 cl I. The channel is minimum-phase if and only if 
1 c2 1 $ 1 cl I· Thus, the channel will have zeros outside the unit circle, and not be minimum-phase, 
if the greater delay path has a higher strength than the lesser delay path. If the lesser delay path is 
the direct path to the transmitter, this is unlikely to happen. However, if both paths are reflected, as 
during a deep shadowing, then the channel could easily not be minimum-phase. Furthermore, due 
to the fading, the channel is likely to alternate between minimum and non-minimum phase. 

As we will see shortly, these zeros outside the unit circle, if they exist, are quite 
problematic for both the LE and DFE, because they require equalization filters with poles 
outside the unit circle. Practically speaking these zeros outside the unit circle can only be 
approximately equalized, and accurate equalization requires high-complexity filters. The 
situation described in Example 8-14 is particularly difficult for equalization, because the 
channel can be minimum- and non-minimum-phase at different times. As we will see, the 
desired structure for the equalizer when the channel model has zeros outside the unit circle is 
much different than when it is minimum-phase. 

Mean-Square Error 

In this section we want to allow residual lSI at the slicer input, in which case there is not 
only noise but lSI at the slicer input. The simple Q( . ) formula for the probability of error no 
longer applies. Rather than calculate the exact probability of error, which is difficult, we will 
compare and optimize equalizers using an MSE criterion. The MSE is simply the variance of 
the error between the slicer input and the actual data symbol. We denote it by £2, and define it 
as 

(8.59) 

where ak is the data symbol, assumed to be a random variable, and Yk is the input sample to the 
slicer. The expectation is with respect to both the data-symbol statistics and the noise statistics. 
To calculate the MSE, it is necessary to know the power spectrum of the additive channel 
noise, Sm the power spectrum of the data symbols, Sa (assuming the data symbols are 
modeled as a wide-sense stationary random process), and the equivalent channel response H. 

In Section 8.1 we used a "figure of merit" r to compare different equalization techniques, 
where the probability of error was directly related to r through the Q( . ) function. It is natural 
to define a quantity similar to the figure of merit, where we replace the Gaussian noise 
variance in the denominator by half the MSE (half because the MSE is the variance of the 
complex-valued error, and cr2 is the variance of only the real or imaginary component), 
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(8.60) 

The philosophy here is that the residual lSI is a source of "noise" similar to the additive 
Gaussian noise, so we simply add its variance. In fact, on some channels the lSI might be 
approximately Gaussian, by the central limit theorem, and then a good approximation to the 
error probability would be K· Qa.fn. Even without having to make this approximation, 
minimizing £2 is a reasonable criterion for the design of the equalizer. 

In this section we will simply use £2 as a measure of the effect of lSI and noise, and design 
and compare different receiver structures based on this measure. Since ek is not Gaussian, this 
approach is not equivalent to minimizing the error probability, but because of its simplicity, it 
is widely applied in practice. As we will see in Chapter 9, this criterion is also widely used for 
the adaptation of equalizers as well. 

8.2.2. Linear Equalizer 

The linear equalizer (LE) applies the channel output to an equalizer filter C, as shown in 
Fig. 8-12, the purpose of which is to reduce or eliminate the lSI. The error ek is the difference 
between the slicer input and the current data symbol, which we want to be as small as possible. 
As is conventional, the error is shown as the difference between the slicer input and output, 
called the slicer error, which will be the same as ek as defined in (8.59) only if the slicer makes 
a correct decision. In this section we will assume that the slicer always makes a correct 
decision for purposes of analysis of the MSE and design of the equalizer filters (this 
assumption becomes relevant only in the case of the DFE). With this assumption, the slicer 
error can be generated in the convenient form of Fig. 8-l2(a). 

H(z)C(z) -1 

(b) 

Fig. 8-12. A linear equalizer receiver. (a) The receiver uses an equalizer filter C and slicer. generating 
error ek' (b) Equivalent way of generating the error assuming that decisions are correct. 
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Assuming that the slicer decisions are correct, ak= ak, then the filters in Fig. 8-12(a) can 
be combined as shown in Fig.8-12(b). This illustrates clearly that ek consists of two 
components: the output of the top filter is the residual lSI after equalization, and the output of 
the bottom filter is the noise component at the slicer input. There is generally a tradeoff 
between these two components of error. Minimizing the lSI enhances the noise, so if we are 
willing to accept more lSI after equalization we can reduce the noise enhancement. Designing 
C in accordance with the MSE criterion represents one way to specifY the desired tradeoff 
between noise enhancement and lSI. 

The power spectrum of the slicer error evaluated on the unit circle, from Fig. 8-12(b) and 
the assumption of independence between the data symbols and noise, is 

(8.61 ) 

The mean-square error (MSE) , which is the variance of the slicer error, E[ lek 12], is the 
integral of the power spectrum given by (8.61), 

(8.62) 

We will now determine the equalizer filter C for two cases: First, we will constrain the lSI 
to be zero (the ZF criterion) and then we will not constrain the lSI (the MSE criterion). 

Zero-Forcing Criterion 

In Section 8.1 we constrained the lSI to be zero at the slicer. We now repeat that design for 
a general channel model H. The equalizer is simply chosen to force the lSI component of the 
slicer error to zero (hence the name zero-forcing), or 

_ 1 _ 1 
C--- . 

H H 0 . H min· H max· H zero 
(8.63) 

We can make several observations: 

• C does not depend on either the data-symbol or noise statistics. The MSE will depend 
on the noise spectrum, although not on the data-symbol spectrum because the lSI is 
forced to zero. 

• This equalizer cannot be stable unless Hzero = 1; that is, the channel has no zeros on the 
unit circle. 

• Hmin- 1 is a readily implemented causal minimum-phase filter. 

• Hmax- 1 is an anticausal maximum-phase filter. In the practical case where Hmax is an 
FIR filter (since poles would result in an impractical left-sided channel impulse 
response), Hmax- 1 is an all-pole IIR anticausal filter, which is impractical to implement 
and can at best be approximated. 

To summarize, a minimum-phase channel is relatively straightforward to equalize. When the 
channel has a maximum-phase component, even if that component is FIR, the LE-ZF suddenly 
becomes impractical to implement and can at best be approximated. This approximation can 
be an FIR filter, but will often require a high order to be accurate. 
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The only component of slicer error is the noise, which has, from (8.61) and (8.63), 
vanance 

(8.64) 

For white noise and rational H, a convenient way to evaluate E~F.LE without the need to 
integrate is to note that it is y; times the coefficient of zo in an expansion of (HH*rl. 

Example 8-15. -------------------------
For white noise (Sn( z) = y;) and a first-order FIR channel, H( z) = 1 - CZ -1 for some complex
valued c, the LE-ZF is C( z) = 11 (1 - cz -1). When the channel is minimum-phase ( 1 c 1 < 1) the 
equalizer impulse response is ck = CkUk' where Uk is the unit step function, a stable causal 
response. When the channel is not minimum-phase ( 1 c I> 1), the impulse response is anticausal 
and IIR, ck = -CkU_k_1. The noise is processed only by C( z), and hence has power spectrum 
y;C(z)C*(l Iz*). The MSE can be evaluated from the partial fraction expansion 

C(z)C*(lIz*) = 1 = _1_(~ + _1_) . 
H(z)H*(lIz*) l-1c1 2 l-cz-1 l-c*z 

(8.65) 

For the minimum-phase case, the first term in (8.65) starts at k = 1, and does not contribute to the 
zo term. The second term does, and E~F.LE = y; I (1 -I c 12). For the non-minimum-phase case, 
rewrite (8.65) as 

C(z)C*(1/z*) = 1 = _1_(_1_ + c*z ). 
H(z)H*(l/z*) 1c1 2 -1 1- c-1z 1-c*-lz-l 

(8.66) 

In this case, only the first term contributes to zo, and E~F.LE=y;/(lcI2_1). In both cases 
E~F.LE ~ 00 as 1 c 1 ~ 1. As noted in Section 8.1.2, the LE-ZF is not useful when the channel 
model has zeros on the unit circle. 

Example 8-16. ----------------------------
We can now rederive the results of Section 8.1 by setting H = M and setting Sn = No/y2, where 
the spectral factorization of Sh is Sh = y2 MM*. This corresponds to the symbol-rate discrete-time 
channel model for the WMF front end. In this case, the LE-ZF is C = M-1 and the MSE is 

2 1 Ilt No/y2 -1 
EZF LE = -- -- de = NO·(Sh )A· 

. 21t -It IMI2 
(8.67) 

Equation (8.67) is consistent with (8.34). For this case, it appears that the equalizer is relatively 
simple to implement because the channel model is strictly minimum-phase. However, that is not the 
case, because the trouble is hidden in the WMF, which includes a strictly maximum-phase filter 
1 I M*. That WMF filter can only be approximated in practice if M has any zeros, since the WMF 
will then have poles outside the unit circle. The continuous-time matched filter may also be 
problematic if the received pulse h( t ) is causal and has unbounded support. 
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Mean-Square Error Criterion 

The second method for designing the equalizer is to minimize the mean-square error 
(MSE) E[ 1 ek 12], taking into account both the lSI and noise components. The resulting 
equalizer is known as the mean-square error linear equalizer (LE-MSE). Since C is not 
constrained in complexity (this assumption will be removed in Chapter 9), C can be chosen 
independently at each frequency. The MSE can therefore be minimized by minimizing Se 
given by (8.61) at each frequency by judicious choice of C. 

First note that the power spectrum of the signal plus noise at the channel output in 
Fig. 8-11 is 

Sr = Sa 1 H 12 + Sn . (8.68) 

It will turn out that this power spectrum plays a crucial role in the equalizer design. 

Exercise 8-2. 
Show that by completing the square, (8.61) can be written as 

(8.69) 

Since all terms in (8.69) are positive, it can be minimized at each frequency by forcing the first 
term to zero, 

(8.70) 

which is shown in Fig. 8-13. We recognize that the term H* is a discrete-time MF, and 
separate it out. Again, we can make some important observations: 

• The reason that the LE-ZF does not contain a MF is that the equalizer would simply find 
the inverse of this filter, making it pointless. However, the LE-MSE includes a discrete
time matched filter. 

• The MF is typically difficult to realize when the channel response has poles, as noted 
previously. Those poles will, for a physically meaningful channel and continuous-time 
receive filter, be inside the unit circle, which will place poles outside the unit circle in 
the MF. The resulting anticausal IIR filter can only be approximated by a realizable 
filter. 

• The equalizer SaSr -1, without the MF included, is non-negative real on the unit circle. 
Excluding poles at z = 0 and z = 00, if it has any additional poles, then some of these 
must be outside the unit circle, making it unrealizable. 

• If, as is typically the case, Sn 7: 0 on the unit circle (the channel noise is non-zero at all 
frequencies), then the equalizer SaSr -1 can have no poles on the unit circle, and hence 

Fig. 8-13. The LE-MSE receiver, which minimizes the mean-square slicer error, consists of a MF and 
equalizer. 
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is stable. Similarly, since the channel H is assumed to be stable and have no poles on the 
unit circle, then the matched filter H* will also be stable. Hence, for this case the LE
MSE is stable, in contrast to the LE-ZF, which will have poles on the unit circle if Hhas 
zeros on the unit circle. However, it is possible for the LE-MSE to have poles outside 
the unit circle as noted above, in which case it can only be approximated in practice 
even though it is mathematically well defined as a stable filter. 

• As Sn --7 0, the LE-MSE approaches the LE-ZF, which is expected since in that case the 
LE-MSE will ignore the noise and focus on minimizing the lSI. 

To summarize, the practicality of the LE-MSE is quite distinct from the LE-ZE The LE-ZF 
has difficulty with non-minimum-phase channels, in the sense that the equalizer can only be 
approximated, and that approximation may have relatively high complexity. The LE-MSE has 
a similar difficulty with any channel with poles, except at z = 0 and z = 00, due to the MF 
portion. The LE-ZF is not stable for channels with zeros on the unit circle. On the other hand, 
the LE-MSE generally has no difficulty with non-minimum-phase channels, where there are 
zeros outside the unit circle, or with channels with zeros on the unit circle. 

Assuming (8.70), the power spectrum of the slicer error is the last term in (8.69), and 
hence the MSE is 

(8.71) 

Comparing with (8.64), the extra SnSa-1 term in the denominator ensures that E~MSE.LE 
~ E~F-LE' since the integrand must be smaller at some frequencies in the MSE case. 
Furthermore, if SrSa-1;f:. 0 on the unit circle, which will typically be the case, then E~MSE-LE 
is guaranteed to be finite regardless of the channel H. Thus the LE-MSE is guaranteed to be 
stable, although it may not have a right-sided impulse response. This nice property follows 
intuitively from the fact that this equalizer can avoid infinite noise enhancement (which 
plagues the LE-ZF) by allowing some residual lSI at the slicer. 

ExampleS-I7. -----------------------------------------------------
Continuing Example 8-16, where the receiver front end is a WMF, assume that the data symbols are 
white (Sa = y; ). Then the equalizer is 

M* (8.72) 

and we see that C --7 M-1 (the LE-ZF solution) as No/ (y2y; ) --7 0 (the high-SNR case). The 
MSE is given in integral fonn by 

(8.73) 

which approaches the ZF-LE as No --7 O. 
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8.2.3. Decision-Feedback Equalizer 
To detennine the optimal DFE under an MSE criterion, we will draw heavily on the 

connection between the DFE and linear prediction established in Section 8.1.3. The 
opportunity for improving on the MSE of the LE comes from the fact that the slicer error 
samples are correlated, and hence can be reduced by a linear prediction error filter. The LE 
slicer error ek from Fig. 8-l2(b) is reproduced in Fig. 8-l4(a), with the addition of a linear 
prediction filter E, which is constrained to be causal and monic. We know that the new slicer 
error ek' will have a smaller variance than the LE slicer error ek if E is chosen properly, but the 
question is whether the slicer error configuration of Fig. 8-l4(a) corresponds to a practical 
DFE configuration. Fortunately, the DFE configuration of Fig. 8-l4(b) is equivalent, assuming 
that decisions are correct ( ak = ak). Furthennore, the feedback filter is realizable, because the 
postcursor equalizer in the feedback loop, (E - 1), is a strictly causal filter; that is, the zero
delay coefficient is zero since E is monic. Thus, the output of this filter, subtracted from the 
slicer input, is a function of past decisions only, as it must be to avoid zero delay in the 
feedback loop. 

We know from the properties of optimal prediction in Section 3.2.3 that if the prediction 
error filter is properly chosen, then the slicer error ek' in Fig. 8-14 will have a variance no 
larger than ek, the LE slicer error, for the same choice of C. Furthennore, we know that the 
DFE slicer error must be white for a properly chosen prediction error filter E. Thus, the 
addition of the feedback filter in Fig. 8-14 must be beneficial, in the sense of reducing the 
mean-square slicer error, when compared to a LE using the same C. 

Having defined the DFE structure, it remains to detennine the optimal equalizers 
(precursor equalizer CE and postcursor equalizer E - 1). It is much simpler to detennine the 
optimal C and E, and then infer the precursor and postcursor equalizers. In fact, for any C, E is 
chosen as the optimal linear prediction error filter. Once E is so detennined, it is simple to 
detennine the optimal C. 

As in the case of the LE, there are two alternative approaches: the zero-forcing DFE 
(DFE-ZF) forces the lSI to zero at the slicer input, while the mean-square DFE (DFE-MSE) 
minimizes the variance of the slicer error. It turns out to be easy to show that C is the same for 
the LE-ZF and DFE-ZF, and likewise for the LE-MSE and DFE-MSE. Thus, for either 
criterion the only difference between the LE and DFE is the addition of the linear prediction 
error filter in the DFE. In both cases, the linear prediction filter results in a white slicer error 
process, although in the ZF case that process is Gaussian and in the MSE case it is not 
(because of the residual lSI). 

Let us first assume some filter C, and choose the optimal linear predictor E. For a given C, 
the power spectrum of the LE slicer error is given by (8.61), and a monic minimum-phase 
spectral factorization of this spectrum can be perfonned, 

(8.74) 
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where EbFE is the variance ofthe innovations ek', and hence is the mean-square DFE slicer 
error. The prediction error filter is the monic minimum-phase whitening filter E = Me- l . A 
convenient formula for EbFE is given by (2.69), 

(8.75) 

Naturally, Be' Me' and E all depend on C, which depends in turn on the criterion used. 

Zero-Forcing Criterion 

Considering first the DFE-ZF, assume that there are no zeros on the unit circle (Hzero = 1) 
so that the LE-ZF is stable (we will relax this assumption momentarily). The LE-ZF is then 
C = H-l , and the only component of the LE slicer error is the noise passing through C. The 
slicer error spectrum is 

(8.76) 

and we can immediately see that E~F-DFE= Y~/IHo 12. A more universal formula follows from 
(8.75), 

(8.77) 

Furthermore, the prediction error filter (monic minimum-phase whitening filter) is: 

H(z)C(z)-l 

(a) 

(b) 

Fig. 8-14. The decision-feedback. equalizer (DFE). (a) Adding a linear prediction filter to Fig. B-12(b) to 
whiten the slicer error. (b) An equivalent DFE structure assuming that slicer decisions are correct. 
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(8.78) 

thereby detennining the precursor equalizer, 

H·H * H * CE=H-1. mm max =~.~.M;;"l 
Mn Ho Hmax . 

(8.79) 

A few observations: 

• The tenn Mn -1 is a minimum-phase noise-whitening filter. This ensures that the noise at 
the slicer input is white. This is expected, since the lSI is completely eliminated by the 
precursor and postcursor equalizers, and thus the noise is the only component of slicer 
error. The slicer error will always be white for an optimal DFE. 

• The Hmax * / Hmax tenn is an allpass filter. With a phase-only filtering, the precursor lSI 
can be eliminated, and there is no noise enhancement due to frequency-dependent 
precursor equalizer gain. In contrast, the LE eliminates both precursor and postcursor 
lSI at the expense of noise enhancement. 

• The allpass filter does not modify the noise spectrum at the slicer input, allowing the 
noise-whitening filter to do its job without interference. 

• The response of the channel plus precursor equalizer is E, which is minimum-phase. 
The role of the allpass filter is thus to convert the maximum-phase channel component 
to minimum-phase by reflecting poles and zeros inside the unit circle. Another 
interpretation of this result is that among all causal responses with the same magnitude 
Fourier transfonn, the minimum-phase response has maximum energy near k = 0 
(Problem 2-28). Thus, in this sense the minimum-phase response minimizes the energy 
of the lSI which must be canceled by the postcursor equalizer, minimizing the signal 
energy that is thrown away by canceling it in the postcursor equalizer. 

• If the channel is minimum-phase and the noise is white, no precursor equalizer at all is 
required, aside from a flat gain! Thus, the DFE-ZF is like the LE-ZF, in that it finds 
minimum-phase channels much easier to deal with. In fact, except for the noise
whitening filter required when the noise is not white, the precursor equalizer is 
unnecessary! 

• If there is a maximum-phase component H max, then in a practical sense it must be an 
FIR filter (all its poles are at z = 00). In this case the allpass filter component of the 
precursor equalizer has poles outside the unit circle, and hence can only be 
approximated by a (relatively high-complexity) FIR filter. Thus, the DFE-ZF has a 
similar difficulty as the LE-ZF with non-minimum-phase channels. 

Example~l~ ---------------------------------------------------
Consider the same channel as in Example 8-15, H(z) = 1- cz -1. For the minimum-phase case, 
I c 1< 1. We identify HO = 1 and Hmax( z) = 1, and hence no precursor equalizer is needed. 
Because there is no precursor equalizer, the slicer error is E~F.DFE = y;, and there is no noise 
enhancement. The postcursor equalizer, E(z) -1 = -cz -1, simply cancels the single lSI sample. 
Note that nothing special happens as I c I ~ 1, in sharp contrast to the LE-ZF, which is not stable in 
that case. 
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Example~19. ---------------------------------------------------
When we repeat Example 8-18 for the non-mini mum-phase case, I e I> 1, we will obtain a much 
different answer! Rewriting H( z) = -cz-1(1 - e-1z) we can ignore the z -1 term, and identify 
Ho =-e and Hmax(z) = 1 - e-1z. The MSE is thus E~F-DFE= A; / Ie 12, and thus the slicer 
error is smaller than in the minimum-phase case (since the receiver is basing its decision on the 
larger delayed sample e). Since E( z) = 1 - c*-lz-l, the postcursor equalizer becomes E( z) -
1 = -e*-lz-l, a single tap as in the minimum-phase case. The big difference is in the precursor 

equalizer, which is the allpass filter 

1 l-e*-l z-l 
C(z)E(z) = -' . 

e l-e-1z 
(8.80) 

This precursor equalizer is anticausal, since it has a pole outside the unit circle, and can at best only 
be approximated by a realizable filter. There is thus a wide gap between the complexity of the 
precursor equalizer for the minimum-phase and non-minimum-phase channels. When I c I crosses 
unity, in principle nothing bad happens (in contrast to the LE-ZF), but in practice the structure of 
the precursor equalizer changes dramatically. This can present implementation difficulties, and is a 
real problem for example on broadband Rayleigh fading channels (Example 8-14). 

It should be noted from these two examples that the minimum-phase solution will work in the 
maximum-phase case, in the sense of eliminating the lSI component of the slicer error, but the 
penalty paid will be a larger MSE slicer error (y; rather than y; / Ie 12). This statement is more 
generally true: as long as the maximum-phase channel component has poles only at z = 0 or 
z = 00, which is normally expected on physical grounds, zero lSI at the slicer can be ensured by 
a postcursor equalizer only (if an appropriate delay is added to the channel) because the 
channel has a right-sided impulse response. However, a penalty in MSE is paid for not 
equalizing to a minimum-phase response. 

Example~20. -----------------------------------------------------
Continuing Example 8-16, assume that the front end is a WMF. Then C = 1 / M, and the power 
spectrum of the LE slicer error is 

NO/y2 N /y2 S = __ =_0_ 
e 1M!2 MM* 

(8.81) 

The optimal predictor is thus the inverse of the minimum-phase portion, E = M, and the forward 
equalizer is CE = 1; that is, as expected, the precursor equalizer is actually the WMF. The MSE is 
given by 

(8.82) 

consistent with (8.42). 

One of the practically important properties of the DFE-ZF is that, in contrast to the LE-ZF, 
it works perfectly well in the presence of zeros on the unit circle. To see this, assume that 
Hzero "# 1, but design the precursor equalizer as before, turning the maximum-phase 
component into a minimum-phase component. The response of channel plus precursor 
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equalizer is then EHzero rather than E. Since this response is still causal and monic, the lSI can 
still be canceled by a strictly causal postcursor equalizer EHzero - 1. In effect we have 
included Hzero in the minimum-phase component of the channel, which is customary and 
introduces no mathematical difficulties. 

Example 8-21. -------------------------
Replace H(z) in Example 8-19 by H( z) = (1 - cz-1)(1 - z-l) for I c I> 1. Retaining the same 
allpass precursor equalizer, the isolated pulse response at the precursor equalizer output is 

(1 - c*-l)(l - z-l) = 1 - (c* + l)c*-lz-l + c*-lz-2 (8.83) 

and the lSI can be canceled with postcursor equalizer (-(c* + l)c*-lz -l+c*-lz -2). 

Mean-Square Error Criterion 

The DFE-MSE optimal filters are almost as easy to determine. The first observation is that 
(8.75) is monotonically increasing in Se at each frequency, and hence will be minimized by 
choosing C at each frequency to minimize Se' Thus C for the DFE-MSE is precisely the same 
as C for the LE-MSE, since C was designed to meet the same criterion. C is given by (8.70) 
and Se is given by the last term in (8.69). To find the whitening filter E, first do a minimum
phase spectral factorization of Sp 

S = S HH* + S = Y 2 . M M * ran r r.n~r' 

and thus from (8.69) 

It follows that 

and 

The optimal precursor equalizer is 

Y~ Ma* -1 CE= - ·H*·_·M 
2 M * n Yr r 

(8.84) 

(8.85) 

(8.86) 

(8.87) 

(8.88) 

(8.89) 

As in the LE-MSE, this solution includes a matched filter H*, and as in the DFE-ZF it includes 
a noise-whitening filter Mn- 1. The remaining term is, in contrast to the DFE-ZF, not an allpass 
filter. It is straightforward to verifY that this MSE solution approaches the ZF solution as 
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Sn ~ 0 (Problem 8-8), and it follows from (8.77) and (8.87) that C~SE.DFE::S; C~F.DFE 
because the integrand is smaller at some frequencies for the MSE criterion. 

Example~22. ---------------------------------------------------
Continuing Example 8-16, assume that the front end is the WMF. The power spectrum of the 
equivalent channel output is 

(8.90) 

The only simplification is that the noise-whitening filter is not required, since the noise at the WMF 
output is already white (Mn = 1), and hence the postcursor equalizer is E = Mrl Ma and the 
precursor equalizer is 

The MSE is 

Unbiased Mean-Square Error 

y2 MM * 
CE=~· __ a_. 

Y2 M * r r 
(8.91) 

(8.92) 

If we calculate the transfer function from the data symbol Ak to the slicer error for the 
DFE-MSE design, it is, from Fig. 8-14, 

_y2 M * 
(HC-1)E= 2._n_. 

Y2 M M* r a r 
(8.93) 

The striking property of this solution is that, since Mn * 1 MaMr * is monic, the slicer error has a 
component proportional to the current data symbol ak, namely (-y; IYr2). ak' Thus, the total 
component of the current symbol at the slicer input is this error plus ak, or 

y;-y; 
--2-' ak ' 

Yr 
(8.94) 

While this minimizes the MSE, the error probability can be made smaller by removing this 
bias in the amplitude of the data symbol reaching the slicer. (Recall that the slicer error is not 
Gaussian, so minimizing the MSE is not precisely the same as minimizing the error 
probability.) Thus, the performance can be improved by scaling the slicer input by a factor 
which removes this bias, this factor being yr2 1 (Yr2 - y;). No other modifications are 
necessary, as the precursor and postcursor equalizers remain the same (since the gain is added 
after lSI cancellation). The resulting design is called the unbiased DFE-MSE (MMSE-DFE-U) 
[9]. 



384 EQUALIZATION CHAP. 8 

The MSE of the MMSE-DFE-U, C~MSE.DFE,U' must be larger than C~MSE.DFE . We can 
find out what it is from Fig. 8-15, which shows the relationship between the slicer error of the 
DFE-MSE, ek', and the MMSE-DFE-U, ek". First, the DFE-MSE slicer input sample Yk is 
obtained by adding the data symbol to ek', and then the slicer input is multiplied by the 
adjustment factor, and then the new slicer error is obtained by subtracting the data symbol. 
From this figure, 

(8.95) 

Finding the MSE from this relationship is easy for the particular case where the data symbols 
are zero-mean and independent (Ma = 1). For this case, ak is independent of ek", because the 
latter has no component of ak, and ak is independent of all the other components that make up 
ek" (the noise and the other data symbols). Thus, we can easily calculate the variance, 

4 2 _ (2 2)2 2 4 2 Yr ·cMMSE.DFE - Yr - Yn ·cMMSE.DFE,U + Yn 'Ya ' 

which, with the aid of (8.87) is easily solved for C~MSE.DFE,U ' 

2 2 2 _ Ya Yn 
cMMSE.DFE,U - y22 . 

r -Yn 

(8.96) 

(8.97) 

The increase in MSE due to removing the bias is a factor of Y r2 / (y r2 - y;). Furthermore, it is 
readily shown that 

Y~ Y~ 
2 = -,2,,------ + 1 , 

EMMSE.DFE cMMSE.DFE,U 
(8.98) 

and since the two ratios are in the form of signal-to-noise ratios (SNR's), we see that the SNR 
of the MMSE-DFE-U is indeed smaller than the SNR of the DFE-MSE, in fact by exactly 
unity. 

ek' 
Yk 

ek" X 
+ 

ak Y; ak 

y;-y~ 

Fig. 8-15. The slicer error ek", for the unbiased OFE-MSE (MMSE-OFE-U) obtained from ek', the slicer 
error for the DFE-MSE. 
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The MMSE-DFE-U has two analytical disadvantages: the MSE is larger than for the DFE
MSE, and unlike the DFE-MSE the slicer error is not white. However, we do expect it to have 
a lower error probability. From a theoretical point of view, the MMSE-DFE-U is related in a 
remarkable canonical way to the capacity of the discrete-time channel, as will be shown in 
Section 8.5. 

It has also been shown [9] that among all DFE equalizers that are unbiased, the MMSE
DFE-U achieves the minimum MSE. Since the DFE-ZF is also an unbiased DFE equalizer, it 
follows that 

222 
EMMSE·DFE ~ EMMSE.DFE,U ~ EZF·DFE . 

8.2.4. Maximum-Likelihood Sequence Detector 

(8.99) 

We demonstrated in Section 8.1 that the MLSD and the DFE-ZF share the same WMF 
front-end filtering. In Section 8.2.3 we generalized the DFE-ZF to channels that do not 
necessarily have a matched-filter front end. The Viterbi algorithm can be applied at the output 
of the DFE-ZF precursor equalizer, in place of the WMF. This is illustrated in Fig. 8-16. 
Fig. 8-l6(a) shows a configuration in which the Viterbi algorithm is applied at the output of 
the precursor equalizer, and Fig. 8-l6(b) shows the equivalent channel model to the input of 
the Viterbi algorithm. This equivalent channel model displays all the characteristics needed to 
apply the Viterbi algorithm; the equivalent channel is causal and monic and the noise samples 
are Gaussian and independent. 

The only restriction in using the Viterbi algorithm in detecting the data symbol sequence 
ak under an ML criterion is that E be an FIR filter, so that the channel model is a finite-state 
machine. This requires the following conditions: 

• Hmax * must be an FIR filter, implying that, excluding poles at z = 0 and z = 00, Hmax 
have no poles. As we have discussed, this requirement is also necessary for physical 
realizability of the channel model. 

• Hmin must be an FIR filter, implying that, excluding poles at z = 0 and z = 00, the 
channel model H must have no poles at all. 

• Excluding zeros at z = 0 and z = 00, Mn must have no zeros, implying that the noise 
spectrum Sn must be an all-pole spectrum (such a noise process is known as 
autoregressive). 

It should be emphasized that the configuration of Fig. 8-l6(a) is not the ML sequence 
detector applied to the continuous-time received signal (in the sense derived in Chapter 7) 
unless of course the channel model H was obtained from the WMF receiver front end. 
However, if we do not use a WMF front end, the Viterbi algorithm applied as in Fig. 8-l6(a) is 
still a MLSD with respect to that discrete-time channel model, even though it is suboptimal 
with respect to the continuous-time model. 

What do we do when E is not FIR? The VA remains useful in this case, even though it is 
not precisely an ML detector. There are two possible approximations we can use: 
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(a) 

1 Hmax*(lIz*) 

HO' Hmax 

PRECURSOR 
EQUALIZER 

Hmin(z)Hmax"(l/z*) 

GZ(Z) 

(b) EQUIVALENT 
CHANNEL 

NOISE·WHITENING 
FILTER 

VITERBI 

ALGORITHM 

nk', E[lnk'l~ =E~F.DFE 

Uk 

CHAP. 8 

Fig.8·16. (a) The Viterbi algorithm as applied to the detection of data symbols in the presence of 151. It 
must be assumed that the isolated pulse response at the precursor equalizer output is FIR. (b) 
E~uivalent model, in which the channel is causal and the additive noise nk' is white with variance 
EZF.DFE . 

• The precursor equalizer can be modified to result in an FIR response, in which case the 
noise samples at the VA input will not be precisely white. 

• The channel model can be truncated to an FIR response assumed in the realization of 
the VA, in which case there will be some residual lSI not considered in the VA. 

Either of these approximations become more accurate as the number of taps in the artificially 
assumed FIR response becomes larger. 

8.3. Fractionally Spaced Equalizer 

One of the surprising properties of the sampled MF and the WMF is the symbol-rate 
sampling. Assuming that the PAM signal design uses some excess bandwidth, as it must for 
practical reasons, this sampling rate is less than would be required to avoid aliasing distortion. 
It seems strange that aliasing distortion would be deliberately introduced, and indeed there are 
some practical problems that result. Thus, it is common to use a higher sampling rate in a 
receiver front end and equalization, using an architecture known as the fractionally spaced 
equalizer (FSE) [10]. This fractionally spaced approach applies to all the receiver design 
strategies we have considered: the LE and DFE, WMF, and MLSD. A properly designed FSE 
is equivalent to the matched filter plus symbol-rate sampling, but offers considerable 
advantages [11][12] [13]. First we will outline two of the problems addressed by the FSE, and 
then derive the FSE structure in two ways - in the time-domain and in the frequency-domain. 

Aliasing and Sampling Phase 

From a practical perspective, the assumptions under which the sampled matched filter was 
derived are problematic. There are several assumptions underlying this structure that are often 
violated in practice: 

• The receiver sampling phase is precisely known relative to the symbol interval. 
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• The channel response h( t) is known precisely. This is partially overcome with the 
adaptive equalization techniques of Chapter 9, but the practical difficulty is the 
continuous-time matched filter, which is not easily adapted. 

• The discrete-time filters, such as the linear equalizer or DFE precursor equalizer, have 
unconstrained complexity. 

To see the effect of a sampling phase error, assume that the input isolated pulse is delayed in 
time by an unknown time to [14]. The complex-valued baseband pulse is then h(t - to) rather 
than h(t), but the sampling times t = kT at the matched filter output are unchanged. 

Exercise 8-3. 
Verify that, with this time delay, the white-noise folded spectrum of an isolated pulse after sampling 
IS 

Sh (e j21tfl') = 1:. ej21tfta ~= IH(r _ '!!.)12 ej21tmtalT . 
,to T ~m =-«> T (8.100) 

While Sh(e j21tfl') is a non-negative real-valued fun~tion, Sh,to(e j21tfl') is no longer necessarily 
either real-valued or non-negative. In fact, Sh,to(e J21tfl') can have spectral nulls or near-nulls 
that are not present in Sh(e J21tfl'). An equalizer that compensates for these nulls can produce 
considerably more noise enhancement than when to = o. 

Example 8-23. -----------------------------------------------------
When there is less than 100% excess bandwidth, we get the simpler relation 

(8.lDl) 

where 

ex = IH(f -11T)12 . 
H(f) 

(8.102) 

If the channel falls off monotonically, then ex will generally be less than unity. The term in 
parentheses in (8.101) has squared magnitude 

(8.103) 

which has minimum value (1 - ex)2 when to = T 12. The folded spectrum has a near-null at the 
frequency for which ex is maximum, and the depth of the null depends on to, with the worst case 
when to = T 12. The folded spectrum depends on to, and for some values of to the noise 
enhancement can be much worse than for others. 

When equalizer filters are made adaptive (Chapter 9), their complexity must constrained. 
The symbol-rate folded spectrum in a passband QAM channel can have rapid transitions near 
the band edges that are difficult to equalize using a constrained complexity equalizer [15]. 
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A receiver front end that moves the matched filter to discrete time, which requires a higher 
than symbol-rate sampling, is equivalent to the sampled matched filter under idealized 
assumptions, but is superior under more realistic assumptions. This alternative receIver 
structure will be derived first in the time domain, and then in the frequency domain. 

Time Domain Derivation 

Assuming that the noise spectrum is white, the matched filter following demodulation 
equivalently correlates against the received pulse h*( t). For simplicity, assume that the 
channel has an excess bandwidth of less than 100%, so that h( t) is bandlimited to liT Hz. 
The sampling theorem (Section 2.3) tells us that the received pulse h( t) can be expanded in 
terms of its samples at twice the symbol rate, hm = h(mT 12), 

(8.104) 

where sinc(x) = sin(x) 1 x. We can replace h( t) by (8.104) in calculating the folded spectrum, 
resulting in a sampled matched filter output of 

(8.105) 

where 

Sn = r r( t)e -j21tfctsinc(2;(t - nT 12») dt . 
-~ 

(8.106) 

{8m - 00 < i < oo} is evidently another sufficient statistic for the received signal since the 
matched filter output can be deduced from it using (8.105). 

The sufficient statistics {8n } in (8.106) are simply the sampled output of an ideallowpass 
filter, where the filter bandwidth is liT as shown in Fig. 8-17(a). This lowpass filter rejects all 
out-of-band noise components, and especially the out-of-band noise that would otherwise alias 
in-band after sampling. Since the output has bandwidth less than liT, by the sampling 
theorem it can be sampled at rate 21 T (twice the symbol rate) without loss of information. The 
calculation of the second sufficient statistic in (8.105) can be thought of as applying a matched 

e -j21tfct 

r( t) EQUALIZER 

r( t) 

(b) 

Fig. 8-17. Fractionally spaced equalizer for 100% excess bandwidth. a. Realization with separate 
discrete-time matched filter and equalizer. b. Realization where the discrete-time matched filter and 
equalizer are combined. 



Sect. 8.3 Fractionally Spaced Equalizer 

~Yk 

X-i2nfct, 

r< t ~b~,-_H_'_(f_) -lHL...._C_<_f_) =_C_l_<e_i2_nfT_)--lH T:~~Yk 

Fig.8·18. FSE interpretation in the frequency domain. a. The starting point is the conventional matched 
filter, symbol-rate sampler, and equalizer C1 < z). b. The equalizer implemented in continuous time. c. 
The matched filter and equalizer implemented in discrete time with sampling rate equal to twice the 
symbol rate. 
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filter to the lowpass filter output in discrete time. The output of this matched filter can be 
sampled at the symbol rate as before, so that this discrete-time matched filter also performs a 
decimation (by a factor of two) implicitly. This is followed by a symbol-rate equalizer, for 
example a linear equalizer or a precursor equalizer. 

The two discrete-time filters in Fig. 8-17(a) can be combined as in Fig. 8-17(b), where the 
resulting combined matched filter and equalizer is called a fractionally spaced equalizer 
(FSE). It is a filter that has an input sampling rate equal to twice the symbol rate, and output 
sampling rate equal to the symbol rate. We can think of it as a filter with input and output 
sampling rates equal to twice the symbol rate, where every second output sample is not used 
and hence need not be calculated. The FSE structure shown in Fig. 8·17(b) is applicable to any 
of the design strategies considered previously, including the sampled matched filter, WMF, 
LE, DFE, and MLSD. An FSE is assumed in Fig. 5-21. 

Exercise 8-4. 
Determine a formula for the output of the FSE before decimation in terms of the received pulse 
h( t) and equalizer C( z), and thereby determine the transfer function of the FSE. 

Frequency Domain Derivation 

It is instructive to rederive the FSE entirely in the frequency domain. The conventional 
matched filter H*(f), symbol-rate sampler, and a discrete-time equalizer C1(z) are shown in 
Fig. 8-18(a). The first step in the derivation of the FSE is to implement the discrete-time filter 
equivalently in continuous time as a filter with transfer function C1 (e j21tfT). This moves the 
symbol-rate sampler after the equalizer, but does not change the output. 

Exercise 8-5. 
Show mathematically that Fig. 8-18(a) and Fig. 8-18(b) are equivalent. 
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Assume again that the excess bandwidth is less than 100% (this can be relaxed, see 
Problem 8-9). Then the combined filter H*(f)Cl(ej21tfT) has bandwidth less than 1 I T, and 
hence can be implemented as a discrete-time filter with sampling rate equal to 21T, or twice 
the symbol rate. This is shown in Fig. 8-l8(c); the channel output is first filtered by an 
antialiasing filter that eliminates all noise and signal components above the symbol rate 1 I T, a 
twice symbol-rate sampler, and a discrete-time filter that realizes both the matched filter and 
the precursor equalizer. The output of this discrete-time filter is resampled at the symbol rate, 
implying that this is a decimating filter (Problem 8-10). 

Interpretation 

The symbol-rate sampling after a matched filter usually introduces aliasing. In both the 
time and frequency domains, we have seen that the FSE uses a discrete-time filter at a 
sampling rate such that there is no aliasing before filtering. The result is that the discrete-time 
filter can be designed to adjust for the sampling phase in the matched filtering portion of its 
response, thereby eliminating the effect of sampling phase on noise enhancement. In practice, 
we will find in Chapter 9 that the discrete-time FSE can adapt automatically to compensate for 
the sampling phase, thereby reducing the effect of sampling phase on noise enhancement. In 
addition, the limited degrees of freedom of a finite discrete-time filter are more effective when 
deployed before decimation to the symbol rate, because the aliased sidebands can be filtered 
independently. 

It should be remembered that a twice-symbol-rate FIR FSE with the same number of 
coefficients as a symbol-rate discrete-time filter has an impulse response that will span half the 
time interval. In spite of this, experience has shown that the FSE will perform as well for the 
same number of coefficients for all channel conditions, and noticeably better for channels with 
severe band-edge delay distortion [12]. 

We do not need to redo the equalization designs of Sections 8.1 and 8.2, because of the 
equivalence to the FSE shown in Fig. 8-18. Thus, a simple approach is to design the equalizers 
according to the theory of Sections 8.1 and 8.2, and then transfer the resulting design to the 
fractionally spaced implementation using the equivalence property. Note that fractionally 
spaced equalizers can be used for the LE, the WMF, and the precursor equalizer of the DFE. 
However, the postcursor equalizer of the DFE will always use symbol-rate sampling, because 
it operates at the same sampling rate as the slicer. 

8.4. Transversal Filter Equalizers 

In previous sections of this chapter, we have considered equalizer designs without regard 
to implementation complexity. In practice any equalizer that is built must be realizable, which 
means that it must have a rational transfer function. Rational transfer functions come in two 
basic types, finite impulse response (FIR) or infinite impulse response (IIR). FIR filters can be 
implemented even if they are not causal, if an additional delay is permissible. Such a delay 
will be permissible in the feedforward, but not feedback, path. IIR filters can be implemented 
as stable and causal filters as long as their poles are inside the unit circle. 
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If the folded spectrum Sh( z) happens to be rational, then all the equalizer designs are 
rational. However, it is very unusual for a channel to have precisely a rational transfer 
function, so we must resort to an approximation. Moreover, we saw in Section 8.2 that 
equalizer designs resulting from optimization often have poles outside the unit circle, when the 
discrete-time channel model has a maximum-phase component. These equalizers can only be 
approximated, usually by an FIR filter. The usual approximation would be something like 

C( z) = ",N CkZ- k , 
4Jk =-N 

(S.107) 

which is noncausal. In fact an equalizer of the form of (8.107) is realizable if the output is 
delayed by N symbol intervals, since 

2N k 
z-NC(z) = '" C z-

4Jk=O k-N (S.lOS) 

is causal. Of course any physically realizable system must be strictly causal, but we have 
assumed a non-causal matched filter, which again can be approximated by a causal filter plus 
delay. 

In digital communication, an FIR digital filter is usually given the special name 
transversal filter, a terminology that originated in early continuous-time realizations using 
analog delay lines. The coefficients Ck of the filter are usually called the tap weights or tap 
coefficients of the filter. In the case of (8.107) there are precisely 2N + 1 taps for the filter, 
which gives us 2N + 1 degrees of freedom in the design of the filter. 

Optimization of equalizer designs based on a constrained-complexity filter such as (8.107) 
is feasible, although quite different techniques than those used earlier in this chapter are 
necessary. The equalizer transfer function can no longer be chosen independently at each 
frequency as was done earlier. This implies that the zero-forcing criterion is no longer feasible, 
since a constrained-complexity filter may not be able to force the lSI to zero. Thus, a minimum 
MSE criterion is often used, and the MSE is minimized over the choice of filter tap coefficients 
(considered as a (2N + I)-dimensional vector). An example of this type of optimization will 
arise in Chapter 9, as a first step in the design of adaptive equalizers. 

8.5. lSI and Channel Capacity 

In this chapter we have established the effect of lSI on the error probability of several 
receiver designs, including both equalization and the MLSD. Another related question is the 
effect of lSI on channel capacity. While the error probability results allow us to predict the 
impact of lSI when channel coding is not used, the channel capacity results allow us to assess 
the effect of lSI in the presence of channel coding. In Section 6.7 we did a similar 
development for ideal channels without lSI, and found the performance of different 
modulation techniques in relation to the fundamental limits of capacity in the absence ofISI. It 
was found that a given modulation technique at a given probability of error displayed an "SNR 
gap to capacity," which is the difference between the normalized SNR required to achieve that 
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error probability and the normalized SNR that the channel capacity theorem says is required 
for a vanishingly small error probability. Our purpose here is to extend those results to 
channels with lSI. 

Since implementation of processing techniques is easier in discrete time, we must choose 
a sampling rate and transmit and receive filters that effectively transmit a discrete-time signal 
over a continuous-time channel. If the continuous-time channel is not bandlimited, then this 
conversion to discrete time sometimes involves a reduction in capacity, although, as we will 
see, that is more likely to occur at high SNR. For the most part, we will apply our discrete-time 
techniques to continuous-time channels that are strictly bandlimited, because this case is 
analytically much simpler. (At the end of the section, some differences in the conclusions for 
channels that are not strictly bandlimited will be mentioned.) For strictly bandlimited channels 
we will find some surprising conclusions, including: 

• lSI always reduces the capacity of a channel. This is surprising because we have seen 
that lSI does not always appreciably increase the error probability for PAM, for 
example on some channels with mild lSI when the MLSD achieves a figure of merit 
equal to the matched filter bound. 

• On channels with lSI, we will find a generalized definition of normalized SNR, 
SNRnorm' that has the same interpretation as SNRnorm in Section 6.7; namely, 
SNRnorm ~ 1, with equality when the modulation technique is operating at capacity 
limits. The difference between SNRnorm and unity represents an "SNR gap to 
capacity", or increase in transmitted power or SNR relative to the minimum transmitted 
power or SNR at which it is feasible to operate, as quantified by the channel capacity. 

• When we use PAM in conjunction with the equalization strategies considered in 
Section 8.1, we will quantify the SNR gap. For the DFE-ZF, we will find that this SNR 
gap approaches a constant at high SNR that is independent of the channel response. 
Since an lSI-free channel is a special case of a channel with lSI, this asymptotic SNR 

n( t) 

x(t) r-:-l 1 r(t) 

~ 
(a) 

n(t) 

~_I_OEA_LB_P_F~~ 
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H( to ) BANDWIDTH N 

(b) 

Fig. 8-19. Continuous-time channel models for the calculation of capacity. (a) A continuous-time 
channel with additive Gaussian noise. (b) A small subband of the channel. 
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gap is, at high SNR, the same on channels with lSI as on ideal channels. This implies 
that channel coding (Chapter 12) has approximately the same potential for 
improvement in the normalized SNR at a given error probability on channels with lSI as 
on ideal channels. This does not imply that lSI is benign with respect to channel 
capacity, since it does reduce channel capacity as noted above, but rather it does imply 
that the gap between coded modulation systems and capacity can be closed essentially 
to the same extent on channels with lSI as on ideal channels, at least at high SNR. 
Furthermore, it suggests that the DFE-ZF, and not the MLSD, is a good receiver 
structure to use as a starting point. 

• The SNR gap for the MMSE-DFE-U is fixed, independent of the lSI, at all SNR's (not 
only at high SNR as with the DFE-ZF), as long as the transmit filter is optimized. This 
suggests that the unbiased DFE-MSE may be a good canonical receiver structure for 
coded modulation systems at low SNR. 

8.5.1. Continuous-Time Water Pouring 

As in Section 6.7, the first step will be to determine the capacity of the continuous-time 
additive Gaussian noise channel. We do this first for a general channel, and then apply the 
results to the special case of a passband channel. 

Suppose, as pictured in Fig. 8-19, that we have a real-valued channel with transfer 
function H(f) and additive real-valued Gaussian noise n( t). While we are primarily interested 
in the white noise case, the following development is no harder if we assume that the noise has 
a general power spectrum Sn(f). In Section 6.7 we developed the channel capacity for a 
similar situation, except the channel was an ideal channel with bandwidth B Hz. We were then 
able to derive the fundamental limits to the spectral efficiency of this ideal channel. Our 
purpose here is to extend these results to channels with lSI, and hence general H(f) and Sn(f). 

The earlier ideal channel results can be applied to the present situation by dividing 
bandwidth into small bins of width tJ..{, where tJ..{ is small enough that the channel transfer 
function is approximately constant over a range of tJ..{. (Of course, later we will take tJ..{ -t 0, at 
which time the approximation will become precise.) One of these subbands, centered at 
frequency to, is shown in Fig.8-19(b). This subband is modeled by a fiat gain of H(fo) 
together with an ideal (unit gain) real-valued bandpass filter with bandwidth tJ..{ centered at 
frequency to. Even though the additive noise is not white, it can be considered as white with 
power spectral density Sn(fo) within the bandwidth of interest in the subchannel. Since each 
of these subbands can be used in principle by a separate and independent digital 
communication system, the total capacity is the aggregate capacity of each of these subbands. 

Suppose there is a constraint on the average transmit power E[x2( t)] = P. Furthermore, let 
Sx(f) be an appropriate input power spectrum that meets this constraint. Choosing SX< f) is 
equivalent to deciding how to distribute the available input power across frequencies, or across 
subbands. Our approach is to determine the capacity of each subband, assuming its input 
power is constrained by Sx(f) (at the frequency of that subband), giving us an expression for 
the total capacity as a function of Sx(f). Subsequently, the Sx(f) that maximizes this total 
capacity will be found, subject to the constraint that E[x2( t)] = P. 
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The capacity of one subband can be determined as follows. The constraint on the power 
into the subband is 2SxUo) . M, taking into account both positive and negative frequencies. 
This power and the gain factor HUo) is equivalent to an ideal (unity transfer function) 
subchannel with input power constrained to 2SxUo) I HUo) 12 . M. The capacity of this 
subchannel is given by (6.144), 

(8.109) 

The total capacity is then the sum of the subchannel capacities, which becomes an integral in 
the limit of M ~ 0, 

= ( S IHl2) = ~L log2 1 + T df bits/sec. (8.110) 

In this and many subsequent expressions the frequency variable is suppressed for 
compactness. 

Since capacity in each subband is achieved by a wide-sense stationary Gaussian input 
process, total capacity is achieved if x( t) is wide-sense stationary Gaussian with power 
spectrum SxU). What remains is to translate an overall input power constraint into an optimal 
power spectrum SxU). Our desire is to maximize C under the constraints 

(8.111 ) 

where P is the transmitted power. Using a Lagrange multiplier approach, we can equivalently 
choose Sx as a function of A. to maximize 

(8.112) 

and then choose A. to meet the power constraint (8.111). Writing this as a single integral and 
differentiating the integrand with respect to Sx at each frequency and setting that derivative to 
zero, we get that Sx is of the form (1/ 2A. - Sn /1 H 12). Taking into account that Sx must be 
positive, the result is 
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Fig. 8-20. An illustration of water pouring for the optimization of the transmit power spectrum in 
achieving capacity. A "bowl" shaped like Sn(f) / 1 H(f) 12 is formed, and water with volume P is poured 
into it up to level L. The capacity-achieving transmit spectrum at each frequency is the depth of the 
water. 
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Sx = L- 1HI2, IE F 1 
Sn 

(8.113) 
0, otherwise 

where the constant L = 1/2A is chosen to meet the power constraint and F is the set of 
frequencies for which L > Snll H 12. F is called the water-pouring band. This method of 
determining the transmit spectrum is called water pouring, and we will call the resulting 
transmit spectrum Sx the water-pouring spectrum [16]. 

The approach of splitting up the overall channel into subchannels also points out that the 
input random process that achieves capacity is a wide-sense stationary (and hence strictly 
stationary) real-valued Gaussian process with power spectral density Sx(f). Thus, 
communication systems that wish to approach capacity have to somehow ensure that the 
transmit spectrum approximates the water-pouring spectrum, and also that the distribution is 
approximately Gaussian. 

This solution is easiest to understand pictorially, as in Fig. 8-20. A "bowl" SnllHI2 is 
formed, and water is poured into the bowl up to level L until the total volume of water equals 
the transmit power constraint. The transmit spectrum vs. frequency is then the depth of the 
water. Water pouring concentrates the transmit power at those frequencies where the ratio 
1 H 121 Sn is relatively large; that is, the channel has relatively little attenuation or the noise 

power spectrum is relatively small. 

Passband Channel 

Observe that the water-pouring approach applies equally well to passband as well as 
baseband channels. 

Example 8-24. -------------------------
For an ideal passband white Gaussian noise channel with bandwidth B, SnllHI2 =No/2 is a 
constant within the channel bandwidth. The bowl (actua\1y two bowls) have infinite-slope sides, as 
i11ustrated in Fig. 8-21, because 1 H 12 = 0 outside the channel bandwidth. Thus, the water-pouring 
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band is precisely the full passband bandwidth. The volume in one ofthe bowls must be P 12, which 
implies that the depth of the water must be PI 2B; that is, Sx = PI 2B over the bandwidth of the 
channel. The capacity is then 

c = B· log2(1 + SNR) , SNR = P 1 (NoB) , (8.114) 

consistent with (6.144). 

A formula for capacity in terms of a complex baseband equivalent channel can be derived 
for a passband channel. Assume the channel H is strictly bandlimited to fo - B 12 ~ I f I ~ 
fo + B12. Then the capacity integral of (8.110) can be safely limited to this frequency range, 
since the water-pouring band must fall in this range. Thus, (8.110) can be written as the sum of 
two integrals, one for positive and one for negative frequencies, or equivalently twice the 
positive-frequency integral due to the symmetry of I H I about f = 0 (since the channel H is 
real-valued). Thus, 

_ ffo+Bl2 [ Sx({)IH(f)1 2] 
C - log2 1 + S (f) df 

fo-BI2 n 

_JBI2 [ Sx(f+fo)IH(f+fo)1 2] 
- log2 1 + S (f f) df 

-B12 n + 0 
(8.115) 

When water pouring is performed at passband, it is clear from symmetry that half the power 
will be at positive frequencies, and thus we can formulate water pouring at baseband using 
P 12 in place of P, 

sp + toJ = 1 
L- SN<f + fo) 

fE F 
IH(f + f o)1 2' 

0, otherwise 
(8.116) 

where L is chosen such that 

BI2 J Sx(f + fo) df=Pl2 . 
-B12 

(8.117) 

tj_L 
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Fig. 8-21. Illustration of the water pouring procedure for the ideal bandpass white Gaussian noise 
channel. 
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Also, F must be a subset of [-B / 2, B / 2]. The complex baseband channel does not necessarily 
have spectra symmetric about f = 0 (the baseband-equivalent channel and noise are complex
valued), and thus the water-pouring band F is not necessarily symmetric about f = o. 

8.5.2. Discrete-Time Water Pouring 

When a continuous-time channel is strictly bandlimited, and we derive a discrete-time 
channel from it using a sufficiently high sampling rate, then the discrete-time channel will 
have the same capacity as the underlying continuous-time channel. This will also be true of 
channels which are not bandlimited, but for which the transfer function approaches zero as 
frequency gets large. We will now form the connection between the channel capacities of 
discrete- and continuous-time channels, leading to a formula for the capacity of a discrete-time 
channel. We will gain the ability to compare the capacity of this channel with the performance 
of PAM in conjunction with receiver design techniques covered earlier in this chapter. 

Assume that H(f) is a real-valued continuous-time channel, which mayor may not be 
bandlimited and may be baseband or passband. A discrete-time channel is derived in 
Fig. 8-22(a) by sampling at rate 2B = liT at both input and output with ideal LPF transmit 
and receive filters each with gain JT , to ensure that their impulse response has unit energy. 
The resulting discrete-time system is pictured in Fig. 8-22(b). We will now relate the discrete
time transfer function and power spectra to the similar quantities for the continuous-time 
channel. 

Signal Transfer Function 

Since the receive filter is bandlimited to half the sampling rate, there is no aliasing 
distortion in the final sampling operation. The overall gain of T in the transmit and receive 
filters makes up for the factor of 1 / T in the conversion from continuous to discrete time, and 
hence the discrete-time and continuous-time transfer functions are directly related, 

H(e i21tfT) = H(f) , Ifl~B . 

, 
I+-- CHANNEL MODEL ---+l 

IDEALLPF 
BANDWIDTHB 

GAIN ./T 

IDEALLPF 
BANDWIDTHB 

GAIN./T 
"''' U H(f) 4-i "" SxU~l rT~ 

T~RA""'N""'S'""MIT""'F:C"IL-=TE::'.R (a) n( t) '-RE-C-EIV-E-F-ILT-E-'R 

Sn(f) 

(8.118) 

SAMPLER 

t=kT 

Fig. 8-22. The way in which a discrete-time system can be obtained from a continuous-time system 
employing the sampling theorem. (a) Deriving the discrete-time channel by sampling at the input and 
output. (b) The resulting discrete-time channel model. 
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Transmit Power Constraint 

The discrete- and continuous-time power spectra are related by 

IfI$B, (8.119) 

since there is a factor of liT in the conversion from discrete- to continuous-time (see 
Appendix 3-A) compensated by the JT gain of the filter. The relation 

1/(2T). fll(2T) 
E[Xk 2] = Tf Sx(e J21tfT)df = T Sx(f)df = T· E[~( t)] 

-1/(2T) -1I(2T) . 
(8.120) 

implies that a continuous-time power constraint P = E[~( t)] is equivalent to a discrete-time 
constraint on the energy of a single sample, PT = E[Xk2]. Furthermore, any continuous-time 
power spectrum Sx( f) can be generated, providing that it is bandlimited to B Hz. Thus, if 
capacity for the continuous-time channel demands a transmit power spectrum wider than this, 
in accordance with water pouring, then it cannot be generated by the configuration of 
Fig. 8-22(a) for sampling rate 2B. Conversely, if the bandwidth of the continuous-time water
pouring band is less than B, then the discrete-time channel capacity will equal the continuous
time channel capacity, with the transmit power spectrum chosen appropriately. 

Output Noise Spectrum 

When the power spectrum of the noise on the continuous-time channel is Sn(f), then the 
noise at the output of the receive filter is bandlimited to B Hz and multiplied by T. The 
sampling operation does not introduce aliasing distortion, and multiplies the power spectrum 
by 1/ T, and thus after sampling 

Ifl$B. (8.121) 

Capacity of the Discrete-Time System 

The capacity of the discrete-time system with input power constraint E[xk 2] = E will equal 
the capacity of the continuous-time system with input power constraint E[~( t)] = E/T, 
providing that the resulting water-pouring band of the continuous-time system is contained in 
I f I $ B. This will always be true if the continuous-time system is strictly bandlimited to B. 
Therefore, by assuming that H(f) is bandlimited to B and satisfies (8.118) for I f 1$ B, we can 
calculate the capacity of the discrete-time system indirectly by calculating the capacity of the 
continuous-time system with input power constraint P. Thus, the capacity of a real-valued 
discrete-time baseband channel H(e J21tfT) with additive real-valued noise Sn(e J21tfT) is 

1 1/(2T) ( Sx(eJ21tfT)IH(eJ21tfT)12) 
C = -f log2 1 + . df, 

2 -1/(2T) Sn(eJ21tfT) 
bits/sec, (8.122) 

where Sx(eJ21tfT) is given by the water-pouring formula 
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S (ej'l:1tt'l') 

L-IH~ej21tfT)12' fE F 

0, otherwise 
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(8.123) 

where L is chosen such that the transmit power P = E[Xk 2]1 T is 

fll(2T) . 
P = Sx(e J2nfF) df . 

-1/(2T) 
(8.124) 

Passband Case 

We can use the capacity of a continuous-time passband channel, given by (8.115), to 
derive the capacity of a discrete-time complex-valued baseband channel derived from that 
passband channel. The connection is the upconversion and downconversion steps illustrated in 
Fig. 8-23. The resulting complex baseband channel is shown in Fig. 8-23(b). As shown in 
Chapter 2, the equivalent baseband channel is H(f + fc), and the equivalent baseband power 
spectrum is Sn(f) = 2 SitU + fc), where SitU) is the power spectrum of the real passband 
noise. The factor of two in Sn can be interpreted intuitively in two ways: 

x( t) 

'+-I 
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(C) 

r( t) 

Fig. 8-23. The derivation of a complex baseband model from a passband channel B(f). (a) A 
continuous-time bandpass channel. (b) An equivalent complex baseband channel derived using 
upconverter and downconverter. (c) A discrete-time complex baseband channel derived by applying the 
sampling and transmit/receive filter of Fig. 8-22 to the baseband channel of (b). 
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• The noise power spectrum doubles due to spreading the same noise over half the 
bandwidth at baseband compared to passband. 

• The noise is divided between the real and imaginary parts in equal variance (due to 
circular symmetry of the complex Gaussian noise), each part with the same power 
spectrum (referred to baseband) as in the passband case, but half the bandwidth. 

Finally, due to the J2 factor in the transmitter, the relation between discrete-time and 
continuous-time signal power spectra is SX<e j2rcfT) = 2SX<f)T, which normalizes the total 
power to be the same at passband and baseband, and also results in the power constraint, from 
(8.117), 

p = t/(2T) SX<e j2rcfT) df, 
-1/(2T) 

corresponding to power constraint P = E [ 1 xk 12] / T. 

(8.125) 

Substituting these values into (8.115), the capacity of the complex baseband discrete-time 
channel is 

_ 1/(2T) (Sx(ej2rr.fT)iH(ej2rr.fT)i2) . 
c - f 10g2 1 + '2 fT df bIts/sec, 

-1I(2T) Sn( eJ rr. ) 
(8.126) 

where the functional form of the transmit spectrum is, from (8.116), 

( 

S (ej2 rr.fT ) 
2L- n. ,fEF 

SX<e j2rcfT) = IH(eJ2 rr.fT )12 
0, otherwise 

(8.127) 

and 2L is chosen to meet constraint (8.125). 

Example 8-25. -------------------------
When the noise on the continuous-time channel is white with power spectrum No/2, Sn = No. It is 
convenient to define a nonnalized transmit spectrum, 

S'= Sx=(.L'-IHI-2
, fEF 

x N. 
o 0, otherwise 

in which case L' is chosen to meet the power constraint of (8.125), 

~ = TJlI(2T) S ' df 
NoB -1I(2T) x 

and the capacity of(8.126) becomes 

fll(2T) 
C·T= T 10g2(1 + Sx' 'IHI 2) df . 

-1I(2T) 

(8.128) 

(8.129) 

(8.130) 
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Of course, P / NoB is familiar as the SNR of the ideal white Gaussian noise channel. These 
relations are convenient for calculating the capacity for this white noise case. If the variable of 
integration is changed from f to v = iT, the factors of T multiplying the integral conveniently 
go away. For example, 

J1/2 '2'2 2 
C·T= 10g2(1 + Sx'(e1 1tV)'IH(e1 1tV) I ) dv 

-1/2 
(8.131) 

Since 1 / T is the sampling rate in Hz, the quantity C· T = C / B is the capacity per sample. 
Alternatively, it is the capacity as measures in bits/ sec/Hz. 

Example 8-26. -----------------------------------------------------
Consider a single-zero channel H(z) = (1 - cz-1)/ J1-;fcI2, normalized to have a unit-energy 
impulse response. The capacity is plotted in Fig. 8-24 for three cases: the actual channel with 
I c 1= 0.99, the ideal channel (c = 0), and a formula derived later that applies asymptotically at 
high SNR. For our present purposes, the interesting comparison is between the ideal channel and 
the channel with lSI. At low SNR, the channel with lSI actually has a higher capacity than the ideal 
channel, because the water-pouring spectrum can be concentrated at frequencies where the channel 
transfer function has gain. At high SNR, there is a modest penalty in capacity due to lSI. 

Example~27. -----------------------------------------------------
The capacity ofthe single-pole channel H( z) = J1-;fcI2/(1 - cz -1) for I c I = 0.99 is plotted in 
Fig. 8-25. This channel has much more severe lSI than the single-zero channel, and as a result there 
is a much greater penalty in capacity due to lSI. 

10r--------.---------.--------.-------~ 

'N 
~ HIGH-POWER ASYMPTC:T~ _ - - - -o ______________ --
Ql 
U) 

" 5 .l!l 
:0 

OL-______ ~ ________ _L ________ ~ ______ ~ 

-10 0 10 20 30 SNR (dB) 

Fig. 8-24. The capacity per sample is plotted against SNR PI NoB for·a single-zero channel with I c I = 
0.99. The capacity is independent of the angle of c. 
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8.5.3. Relation to Arithmetic and Geometric Means 

Once the water-pouring band F is detennined, the capacity fonnulas can all be simplified 
in a useful way in tenns of the arithmetic and geometric means. This gives a compact fonnula 
for the capacity, with the caveat that the fonnula is not self-contained, in that water-pouring 
must be perfonned first to detennine F. Although this applies to both the continuous-time and 
discrete-time cases, we are primarily interested in discrete-time here. We will do the baseband 
case first, followed by the complex baseband equivalent to a passband channel. 

Baseband 

Assume we know F. From (8.123), we can calculate the total power for the water-pouring 
spectrum directly by integrating Sx, and restricting the integral to F, 

(8.132) 

which gives us an equation for Lin tenns of the power constraint P. Also, substituting (8.123) 
into (8.122), where the integral is restricted to f E F, 

This is directly related to the geometric mean, 

14.--------.--------.--------,r-------, 

N 10 :r: 
"-
" (I) 

"' "-
"' e 
~ 
C3 

i'-~V c:: 5 
< ~~ u (j 

~~ 
~ 

O~ ______ _L ________ ~ ______ ~~ ______ ~ 

o 10 20 30 40 SNR (dB) 

Fig. 8-25. The capacity per sample plotted against SNR P / NoB for a single-pole channel with 
I c I = 0.99. The capacity is independent of the angle of c. 

(8.133) 
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(8.134) 

Finally, substituting from (8.132), 

g bits/sec. C -_ IFllo (P /IFI + (Sn /IHI2) A. F) 
2 2 (Sn/IHI2)a F 

(8.135) 

Example~28. ---------------------------------------------------
When Sn = No/2 is white noise, the capacity becomes 

bits/sec, (8.136) 

where SNR = P/( IF I No/2) is the channel input signal-to-noise ratio within the water-pouring 
band F ( 1 F 1 is the total bandwidth of the water-pouring band in Hz, and when multiplied by 
No/2 we get the total noise within this bandwidth). Note that the signal-to-noise ratio at the 
channel output is dependent on the channel transfer function. Equation (8.136) bears a striking 
relationship to (8.114), and of course when there is no lSI (H = 1 for f E F) it reduces to (8.114). 

Once the water-pouring band Fis determined, the only parameters of the channel that need be 
known are the arithmetic and geometric means of Sn/ 1 H 12 over F. All channels with the same 
water-pouring band, and the same arithmetic and geometric means over that bandwidth, have 
the same capacity. This result is striking in view of the fact that the arithmetic and geometric 
means (over the entire bandwidth) determine the performance of the equalizers considered in 
Section 8.2 as well. 

Complex Baseband Case 

The only differences in the complex baseband case are the replacement of L by 2L in the 
water-pouring formula (which doesn't change the result since it is just another constant), the 
fact that the noise is complex, and the removal of the factor of 1/2. Thus, the capacity for the 
complex baseband case is similar, 

(8.137) 

The biggest difference is a capacity that is a factor of two larger, due to the complex signals; 
that is, the capacity per dimension stays the same. Of course, other differences in practice 
include a 50% smaller bandwidth (compensating for the higher dimensionality), and spectra 
that are generally not symmetric about f = o. 
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8.5.4. Spectral Efficiency, SNR, and Normalized SNR 

Thus far in this section, the capacity of both continuous- and discrete-time channels with 
additive Gaussian noise have been detennined. These results will now be applied to 
characterizing the perfonnance of digital communication systems operating over such 
channels. The results of Section 6.7, in which the operation of specific modulation techniques 
were related to the fundamental limits of capacity, will be extended to channels with lSI. This 
will be done by defining a nonnalized signal-to-noise ratio, SNRnorm' which is a 
generalization of the SNRnorm defined in Section 6.7, with the same interpretation that 
SNRnorm ~ 1 with equality if the system operates at the fundamental capacity limits. 

For the remainder of this section, we will limit attention to the complex baseband channel 
shown in Fig. 8-23(c). In typical applications, this channel will have been derived from an 
underlying continuous-time channel by transmit and receive filtering and sampling, but we 
will not concern ourselves with how that happened. The lSI on the channel is represented by 
the transfer function H(e i21tfT), and the additive Gaussian noise has power spectrum 
Sn(e i21tfT). When the channel is used for digital communication with PAM modulation, Xk will 
be replaced by the data symbols ak, and the channel output rk will be applied to one of the 
receiver structures considered in Section 8.2, such as the LE, DFE, or MLSD. Our concern is 
with the perfonnance of the latter receivers, as measured by Pe, and how that perfonnance 
relates to the fundamental capacity limits for the discrete-time channel of Fig. 8-23(c). 

Since capacity is nonnally expressed in bits/ sec, or in tenns of spectral efficiency, we 
need to know the sampling rate in Fig. 8-23(c), which is the symbol rate as well. Define the 
symbol rate as Bo = 1 I T, where T is the symbol interval. In typical applications, the complex 
baseband channel of Fig. 8-23{ c) would be associated with an underlying continuous-time 
passband channel. If we start with a passband channel with nominal bandwidth B, the highest 
possible symbol rate is Bo = B. The complex baseband channel has bandwidth B12, and the 
highest symbol rate is double this, or B. 

Spectral Efficiency 

The spectral efficiency depends on the bit rate and the bandwidth of the continuous-time 
channel that supports this bit rate. For the latter, we will assume that the symbol rate Bo has 
been chosen to be as high as possible, and thus the underlying continuous-time channel has 
bandwidth Bo. If the continuous-time channel actually has a higher bandwidth than this, and 
we are using it inefficiently by choosing a lower symbol rate than necessary, then the spectral 
efficiency will actually be lower than that calculated here. With this assumption, the spectral 
efficiency is 

C IFI (PIIFI + (Sn /IHl2)A F) . 
Vc = - = - ·!og2 ' bits/sec-Hz. 

Bo Bo (Sn/IHI2)a,F 
(8.138) 

When the water-pouring band is the full bandwidth of the channel, then the factor I F II Bo = 1. 
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Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) is defined as the ratio of the average signal power to the 
total noise power. This SNR applies only to the discrete-time channel; if the underlying 
continuous-time channel were considered instead, the result might be different because of the 
bandlimiting effects of the receive filter, etc. We will now calculate the SNR when the input 
spectrum is chosen according to water pouring; such a spectrum can achieve capacity. There 
are two natural places to define the SNR; at the input to the channel, or at the output. We will 
focus on the input to the channel; this is simpler because the signal power at the channel output 
depends on the details of Sx (not just its integral) as well as the channel H. The channel-output 
SNR is relegated to Problem 8-14. 

At the input to the channel, the signal power is, by definition, P. Although the channel 
model defines the noise spectrum as Sn at the output of the channel H, this is equivalent to a 
noise with power spectrum Sn II H 12 at the channel input. 

f Sn / lH I2 df = iFl . (Sn / IH I2 )A,F, 
F 

and the input SNR is then 

SNR = PIIFI 
m (S IIHI2) n A,F 

(8.139) 

(8.140) 

This SNR does not depend on the water-pouring spectrum, but rather depends only on the 
water-pouring band F and the total signal power P (this is an advantage of using channel-input 
SNR). For the case where I F 1= Bo, SNRin can also be interpreted as the signal energy per 
sample divided by the noise variance; in other words, in this case SNRin coincides with the 
usual definition of SNR. 

Normalized SNR 

Equation (8.138), for the maximum spectral efficiency Bo = B, can be rewritten as 

(8.141) 

This is an alternative way to define the maximum achievable spectral efficiency v c for a given 
set of channel parameters (F, (Sn II H 12 )G Fl and (Sn II H 12 ) A F); it is simply a 
generalization of (6.146) for the ideal channel. This motivates the definition of a rate
normalized SNR, SNRnorm' that is a direct generalization of (6.137). For a system operating 
over channel H, with output noise spectrum Sm with input power P, and achieving a spectral 
efficiency v, define 

SNR = PIIFI 
norm 2vBo/\F\ (Sn / IHl2)G, F - (Sn/IHI2) A, F 

(8.142) 

This expression is simply (8.141) with the limiting spectral efficiency v c replaced by the actual 
achieved spectral efficiency v. It is more complicated than it looks at first glance, since in 
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general F(andhence IFI, (Sn/IHI2)A,P, and ( Sn/lHI2 )a,F) is a complicated function of P. 
However, substituting for Pfrom (8.141), 

2vcBo/ 1FI(S IIHI2} - (S IIHI2) 
SNR = n G, F n A, F > 1 

norm 2VBo/IFI(SnIIHI2}G,F- (SnIIHI2}A,F - , 
(8.143) 

with equality if the system is operating at the fundamental limits of capacity. That is, the 
relation v :S v c is equivalent to the bound SNRnorm ?' 1. Note that (8.143) does not require that 
the system occupy the water-pouring band F, but rather applies to any system operating with 
transmit power P and spectral efficiency v. 

We can express SNRnorm in terms of the SNRin by substituting for Pfrom (8.140), 

SNR = SNRin 
norm (2vBo/IFI(S IIHI2) I(S IIHl2} ) - 1 n G,F n A,F 

(8.144) 

a relation that is similar to, and a generalization of, the ideal channel case in (6.137). 

Example~29. ---------------------------------------------------
For a complex baseband discrete-time channel derived from a continuous-time ideal passband 
channel with bandwidth B and white noise No/2, Sn = No and H = 1, and the water-pouring 
band will be the full bandwidth, F = [-BI2, BI2]. Hence the arithmetic and geometric means 
will both be NO, and SNRnorm = SNRin I (2v - 1). Furthermore, SNRin = PI NoB, and this 
expression for SNRnorm is the same definition as (6.137). Unlike that simpler expression, (8.144) 
is a function of the lSI on the channel through the parameters F, (Sn/l H 12 )a p, and (Sn 

2 ' IIH! )A,F-

It is important to note that in SNRnorm, F depends on P (through water pouring), and 
hence the other factors (IFI, (Sn/IHI2 )A,P, and (Sn/IHI2)a,F) also depend on P. Thus, 
unlike in the ideal channel case, SNRnorm is in general not a linear function of P. As in 
Section 6.7, SNRnorm expressed in dB is related to the "SNR gap to capacity." In Section 6.7, 
that SNR gap to capacity was defined as the increase in transmitted power (or equivalently 
SNR) required to achieve a give Pe, relative to the Shannon limit on power at the same spectral 
efficiency. Unfortunately that same simple interpretation does not apply to the lSI case 
considered here, because SNRnorm is not linearly related to the transmit power P. However, 
based on SNRnorm we could still infer the SNR gap to capacity by taking into account the 
precise nonlinear relationship between P and SNRnorm' Fortunately, at high SNR this is not 
necessary, and the simpler interpretation of Section 6.7 applies, as we now show. 

Capacity at High SNR 

On some (but not all) channels H the water-pouring bandwidth eventually becomes the 
full bandwidth IFI = Bo at high signal powers. Two cases are illustrated in Fig. 8-26 (for the 
white noise case). If IHI2 is non-zero for all Ifl:SBo/2 as in Fig. 8-26(a), the sides of the 
bowl become infinitely steep at the band edge, and for sufficiently high signal powers 
I F I = Bo· In contrast, on a channel with a zero at the band edge, as shown in Fig. 8-26(b), or 

for that matter a zero anywhere else, I F I < Bo at all finite (even if large) signal powers. 
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If P ever becomes large enough that I F I = Bo, a major simplification occurs, in that the 
parameters < Sn II H 12)A F and < Sn II H 12)0 F are constants that are not a function of P and 
SNRin is proportional to P. In that case, SNR~orm has the same simple interpretation as that in 
Section 6.7; namely, it is the increase in signal power (or equivalently SNRin) required to 
achieve a given Pe' relative to the Shannon limit. 

Example 8-30. -------------------------
Ifthe noise on a passband channel is white, Sn = No, and IFI = Bo, then from (8.142) 

SNR = PI(NoBo} 
norm 2v (IHI-2) _ (IHI-2) G,F A,F 

(8.145) 

The only tenn on the right that is a function of P is P itself. Thus, SNRnorm and P are directly 
proportional. 

Example~31. -------------------------
In both Fig. 8-24 and Fig. 8-25, the high SNR approximation, obtained by setting I F 1= Bo and 
replacing the arithmetic and geometric means by their values over the full Nyquist bandwidth, are 
plotted. These asymptotes are useful at high SNR, especially in the single-pole channel case. 
However, the single-zero case illustrates that very high signal powers may be need to approach the 
asymptote, because H will be very small in the vicinity of a zero near the unit circle. For the case of 
I c 1= 1, where there is a null in H at the angle of c, the arithmetic mean will not even exist and the 

-i----===:::C::::===----i.-+ f 
- 8 0 / 2 (b) 

Fig. 8-2S. Illustration of water pouring on channels with an without zeros. (a) When H is non-zero for all 
IfI~Bo/2, the bowl has infinitely steep sides at the band edge. (b) When H has a zero at the band 
edge, the sides of the bowl have finite slope, and water pouring never fills the bandwidth. Similar 
behavior will occur if H has a zero anywhere in-band. 
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water-pouring band will never fill the Nyquist interval. In this case, there is no meaningful high
power asymptote. 

Whenever a channel has nulls within its bandwidth, the water-pouring band F will always 
exclude a small frequency interval around these nulls. This is fortunate, because otherwise 
< Sn I I H 12 ) A,F would be infinite! If I H 1-2 is zero over an interval of frequencies, then F will 
exclude that interval, which is fortunate since otherwise < Sn II H 12)0 F and < Sn II H 12)A F 
would both be infinite. In fact, the water-pouring procedure ensures th~t I H 12> 0 over F, ari.d 
therefore both < Snll H 12 )O,F and < Snll H 12 )A,F are bounded for all finite powers P. 

However, nulls in I H 12 do imply that I F I < Bo for all P. Thus, the simple interpretation of 
SNRnorm never occurs, because < Sn II H 12 )0 F and < Sn II H 12) A F are functions of P at all 
power levels and SNR never becomes preci;ely proportional to P. On the other hand, for 
simple isolated nulls, the interval excluded from the water-pouring band will shrink to zero, 
and we would not expect the nulls to have a large effect at high P. This issue has to be 
addressed carefully, and would take us too far afield here [17][18]. 

Remarkably, at high SNR, provided that I F I = Bo, the capacity of the discrete-time 
channel is directly related to the MSE's of the LE-ZF and DFE-ZF given by (8.64) and (8.87), 

(E~F'LE + PI Bo] 
C =Bo ·10g2 ----,,:-2----" 

EZF·DFE 

bitslsec . (8.146) 

At high SNR, the capacity of a discrete-time channel can be predicted by knowing E~F.LE and 
E~F.DFE alone. The normalized SNR becomes 

PIBo 
SNRnorm = 2 2 

2vEZF.DFE - EZF.LE 
(8.147) 

8.5.5. Relationship of Capacity to Unbiased DFE-MSE 
The formula for capacity of (8.146), which applies to many channels at high signal 

powers, can be replaced by an even simpler formula, 

Ea 
SNRMMSE.DFE.U = 2 ' 

EMMSE.DFE,U 
(8.148) 

where E~MSE.DFE U is the MSE of the unbiased DFE-MSE designed in Section 8.2 and Ea is 
the alphabet energy. Remarkably, this formula holds at all signal powers, whereas (8.146) 
holds only at high power. To understand this result, the design of the unbiased DFE-MSE that 
leads to (8.148) needs to be clarified: 

• Unlike the ZF case, the statistics of the data symbols matter to the MSE criterion, so 
they must be specified. The input symbols ak are chosen to be zero-mean, stationary, 
and mutually independent (and hence white). 

• A discrete-time transmit filter G( z) is added, filtering the data symbols before they 
reach the channel, in order to control the shape of the spectrum of the signal at the 
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discrete-time channel input subject to an average power constraint. (Note that the 
underlying continuous-time channel will normally also include a continuous-time 
transmit filter, which is not affected.) 

• The unbiased MSE between the equalizer output and the data symbols is minimized by 
choice of the receiver precursor and postcursor filters, taking into account G( z). 

• The MSE is minimized by the choice of G( z), which remarkably turns out to result in a 
channel-input spectrum exactly to the water-pouring spectrum that achieves capacity. 

This result demonstrates a close canonical relationship between the MMSE-DFE-U and 
channel capacity. In particular, (8.148) is in precisely the functional form of the capacity for an 
ideal white noise channel, except that the SNR of the MMSE-DFE-U is substituted for the 
SNR of the ideal channel. The optimal G( z) for the MMSE-DFE-U results in a transmit 
spectrum reaching the channel that is precisely the water-pouring spectrum for that channel. 
Furthermore, (8.148) holds at all SNR, and is not just an asymptotic result. Thus, the SNR of 
the MMSE-DFE-U, for an optimized transmit filter that results in the water-pouring spectrum 
at the channel input, bears the same relationship to capacity on channels with lSI as the simple 
SNR plays in the absence of lSI. This result was derived [9] in a more general continuous-time 
channel context. The derivation we give here is simpler but also less general. 

The derivation of (8.148) is based on the configuration of Fig. 8-27. The input data 
symbols ak are zero-mean and white with energy Ea. Furthermore, we assume that they are 
mutually independent. The data symbols are put through G( z), which allows us to generate 
any input power spectrum to the channel Ea 1 G 12. Since the effects of channel noise could be 
eliminated by choosing a transmit filter with a very large gain, we constrain the power at the 
transmit filter output to be P, or in other words set PT = Ea< 1 G 12)A- A MMSE-DFE-U 
equalizer is put at the output of the channel, generating output samples Yk, which would then 
be applied to a slicer. 

The earlier analysis of Section 8.2 considered a similar situation, and determined the MSE 
assuming the data symbols are white and independent. That analysis did not include any 
discrete-time transmit filter G( z), but that shortcoming is trivially overcome by recognizing 
that the transmit filter can simply be combined with the channel H, and those earlier results 
can be applied with H replaced by GH. We first minimize the MSE for any given transmit filter 
G, and subsequently choose G to minimize the MSE under the transmit power constraint. 
From (8.98) and (8.87), 

Ea E y; (Sr)G 
2 + 1 = 2 a - Yn2 = (Sn)G = < Sri Sn)G 

cMMSE.DFE·U cMMSE.DFE 

Xk 
G(z) H(z) 

rk UNBIASED 

nk 
Sn(z) 

DFE-MSE 

(8.149) 

Yk 

Fig. 8-27. The configuration used for deriving the canonical relationship between the MMSE-DFE-U 
and channel capacity. 
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where 

8r =Ea IGHI 2 +8n · 

If we define 8x = Ea I G 12 as the input power spectrum to the channel, we get that 

8 r = 8x I H 12 + 8n , 

and 

Ea _( 2 
2 + 1 - 1 + 8x I H I /8n )a . 

EMMSE.DFE·U 

CHAP. 8 

(8.150) 

(8.151) 

(8.152) 

This gives us the minimum MSE for any given transmit filter G. The final step is to choose 
G to minimize the MSE, subject to the constraint that the power in 8x is P. We can relate this 
optimization back to capacity, since from (8.126), 

2CIBo=(1+8xIHI2/8n)a. (8.153) 

The right side of (8.153) is maximized when 8x is the water-pouring spectrum. Thus, 
maximizing the SNR of (8.152) is mathematically equivalent to finding the capacity, and the 
transmit spectrum 8x that maximizes (8.152) is the water-pouring spectrum. When 8x is 
determined by water pouring, we can set (8.152) and (8.153) equal, 

Ea + 1 =2C1Bo, 
E~SE-DFE-U 

(8.154) 

thereby establishing (8.148). 

8.5.6. Impact of lSI on Capacity 

The effect of channel H and noise 8n on the capacity can be quantified by setting the 
capacity of the channel with lSI equal to the capacity of an ideal channel and solving for the 
relationship between the transmitted power required in both cases. This comparison is most 
meaningful if we assume that the noise is white in both cases, 8n = No, where we get 

P ~P )BO/IFl ~ =( IHI-2 ) IDEAL 1 -(IHI-2 ) N IFI G, N B + A,F· 
000 

(8.155) 

PISI can be larger or smaller than PIDEAL. For example, if the channel has a large gain, the 
channel with lSI may require less transmitted power in spite of the lSI. To separate out the 
effects of lSI, we can normalize the channel response, for example by setting the received 
isolated pulse energy Eh equal to that of the ideal channel. 

As the transmitted power increases, IFI~ Bo, and (8.155) simplifies to 

(8.156) 
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Asymptotically, at high SNR, the effect of the lSI is to increase the required SNRin by a factor 
of(IHI-2 )G· 

Example~32. -----------------------------------------------------
Given a minimum-phase causal IIR channel with unit-energy impulse response and a single pole, 

H(z)=~ 
1-cz-1 

for I c 1< 1, the means are 

( IHI-2) =1+lci2 
A 1-1c1 2 ' 

Thus, the capacity at high SNR is 

( IHI-2) - 1 
G - 1-1c12 

(8.157) 

(8.158) 

(8.159) 

where SNR = P / NoRo. This formula can be used for conveniently illustrating the effect of pole 
radius on capacity, as shown in Fig. 8-28. As I c I ~ 1, the lSI gets worse and there is a rapid drop
off in capacity. Asymptotically at high SNR, the channel with lSI requires a larger SNR by a factor 
of 1 /(1 -I c 12) to achieve the same capacity as the ideal channel (c = 0). For example, in the case 
plotted in Fig. 8-25, I c 1= 0.99, and the SNR must be larger by 20 dB, which is the asymptotic 
difference between the "ideal channel" and "actual channel" curves in Fig. 8-25. 

8.5.7. Performance of the LE and DFE 

Using the results from the previous section, the performance of the linear and decision
feedback equalizers is easily related to capacity limits by calculating SNRnorm at a given error 
probability, and comparing to unity. This comparison is simple at high signal power, if the 
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Fig. 8-28. The capacity per symbol (spectral efficiency) of a one-pole channel (with impulse response 
energy normalized to unity) plotted as a function of pole radius. 
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water pouring bandwidth becomes the full bandwidth of the channel, so we will restrict 
ourselves to this case. Generally this corresponds to the case where both the LE-ZF and DFE
ZF exist, further simplifying matters. 

For a zero-forcing equalizer, if the transmit symbol is (J.·ak (the factor (J. allows us to vary 
the transmit power), then the input to the slicer is (J.·ak plus additive Gaussian noise with 
variance £2 for MSE £2 (where £2 = £~F-LE or £2 = £~F-DFE)' Since the Gaussian noise is 
circularly symmetric, the real and imaginary parts have equal variance 0"2 = £2/2. In the DFE
ZF case, this presumes optimistically that the slicer has made no past decision errors within 
the memory of the postcursor equalizer. The minimum distance is (J.. amin, where amin is the 
minimum distance over the symbol alphabet. When the data symbols are independent and 
each have variance 0" A 2, the transmitted energy per symbol is PT = (J.2Ea. If K is the average 
number of symbols at the minimum distance, the error probability is approximately 

Pe =:: K.Q(dmin) =K.Q( a 2a!in) =K.Q( a!inPT). 
20" 2E2 2EaE2 

(8.160) 

This gives us an accurate estimate of the error probability for zero-forcing equalizers, but 
we are interested in their performance in relation to capacity. If the PAM system operates at 
minimum bandwidth (zero excess bandwidth), then the spectral efficiency is v = log2M. 
Furthermore, if the input noise is white, at sufficiently high power levels the water-pouring 
band becomes the entire Nyquist interval, and the normalized signal-to-noise ratio becomes, 
from (8.147), generalized to a complex baseband channel, 

PT 
SNRnorm = 2 2 

2v£ZF_DFE - EZF-LE 
(8.161) 

and substituting for PT in (8.160), 

Pe =:: K· Q(JYAYISISNRnorm) ' (8.162) 

where 

(M -1)a~in 
YA = 2E 

a 
(8.163) 

is a property of the symbol constellation (already defined for the ideal channel case in 
Section 6.7), and 

M 2 2 
£ZF-DFE - EZF-LE 

YISI = (M -1)E2 (8.164) 

is a function of the choice of equalizer structure (through £2) and also the size of the 
constellation M. We saw in Section 6.7 that for square QAM constellations, YA = 3 
independent of M, the size of the constellation. Thus, the effect of lSI on the SNR gap to 
capacity is embodied in the term YISI> which is also a function of M, the constellation size. 
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Equation (8.162) is a remarkably simple characterization of SNRnorm that applies at high 
SNR to discrete-time channels Hwith additive white noise Sn = No. It reflects the nature of the 
lSI on the channel through only two parameters, the MSE of the LE-ZF and DFE-ZE To 
reiterate, it applies only when the water-pouring bandwidth fills the entire Nyquist bandwidth. 
The effect of the lSI is reflected in the factor YISI, which will generally be less than unity, 
requiring SNRnorm to be larger to achieve the same error probability. Thus, the difference 
between YISI and unity is a measure of the increase in the SNR gap to capacity due to lSI, for 
the particular equalizer structure used. Of course, when there is no lSI, £~F-DFE = E~F-LE = 
£2, and YISI = 1 and the SNR gap to capacity reduces to that displayed for the ideal channel in 
Section 6.7. 

For large signal constellations M (large v), YISI approaches an asymptote 

£2 r -7 ZF-DFE 
lSI E2 (8.165) 

There are two cases of interest: 

• When we use the LE-ZF, then for large M 

£2 
Y -7 ZF-DFE 

lSI 2 ' 
EZF-LE 

(8.166) 

and the SNR gap to capacity is increased, relative to the ideal channel case, by precisely the 
MSE penalty of the LE-ZF relative to the DFE-ZE 

• Ifwe use the DFE-ZF, then for large M 

YISI -71, (8.167) 

and there is no increase in the SNR gap to capacity due to lSI. 

This last fact is a remarkable conclusion first observed by Price [19]. It says that the SNR gap 
to capacity at high signal powers is independent of the lSI, and in particular is the same for 
channels with lSI and for ideal channels, as long as the DFE-ZF is used as the receiver 
structure. Thus, channel coding has potentially the same benefit (the same gap to close) on 
channels with lSI as on ideal channels. This statement has to be qualified, however, with many 
caveats: 

• The water-pouring band must fill the entire baseband bandwidth at high signal powers; 
that is, the channel transfer function must be non-zero. (However, it has been shown that 
the result is unchanged if the channel has isolated zeros, for example at the band edge_) 

• While this statement is true for general symbol-rate sampled discrete-time channels, it 
applies to continuous-time channels only if they can be represented by an equivalent 
discrete-time channel through transmit/receive filtering and sampling without 
information loss. That is, they must be strictly bandlimited. (It has been shown that this 
asymptotic result does not apply to many channels that are not strictly bandlimited, as 
will be discussed later.) 

• It applies asymptotically only at high signal powers and large signal constellations. 
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• Our approximation to error probability assumes that all past decisions are correct. In 
fact, the error probability of the DFE-ZF will be higher, due to error propagation. As 
shown in Appendix 8-A, the effect on error probability is to increase the factor K, so it 
is not a major effect. 

Price's result suggests that, at least in principle, channel coding techniques designed for 
the ideal Gaussian channel should have approximately the same potential benefit (reduction in 
signal power for the same Pe) on channels with lSI, independent of the nature of the lSI, at 
high signal powers. This follows from the fact that the SNR gap to capacity for the DFE-ZF is 
independent of the nature of the lSI, including the case of no lSI, at high signal powers. This 
result also suggests that the DFE-ZF is a good receiver structure on which to base a channel 
coding system for channels with lSI, since channel coding techniques should be able to close 
the SNR gap to capacity to the same extent from a starting point of the DFE-ZF as on the ideal 
channel. In particular, it shows that the MLSD receiver, which is optimal with respect to 
probability of error in the absence of channel coding, is not required at high signal powers in 
the presence of channel coding to obtain good performance. This result is surprising in light of 
the fact that the DFE-ZF arbitrarily cancels a part of the received signal energy, the part 
residing in the postcursor lSI, while the MLSD uses this energy to advantage. 

There are some obstacles to applying Price's result in practice, since it depends on the 
ability to cancel the postcursor lSI using past decisions. This depends on the constellation 
being discrete, and further depends on immediate decisions, both of which are incompatible 
with available channel coding techniques. Fortunately, ways have been found to circumvent 
these obstacles, as discussed in Section 13.4. 

It is tempting to apply a similar analysis to the MMSE-DFE-U. Since it is canonically 
related to capacity, we might expect its SNR gap to capacity to be independent of lSI at all 
signal powers (as long as the transmit filter is designed in accordance with water pouring). 
However, we cannot estimate the error probability ofthe MMSE-DFE-U simply, since there is 
residual lSI at the slicer (and hence the slicer error is not Gaussian); further, the Gaussian 
noise component of the slicer error is not white. Thus, the extent to which the MMSE-DFE-U 
mayor may not close the SNR gap to capacity at low signal powers, relative to the DFE-ZF, 
remains an open question. 

8.6. Further Reading 

For further details on the design of optimal detectors in various circumstances arising in 
digital communication, see Wozencraft and Jacobs [20] or Proakis [21]. An excellent treatise 
on equalization can be found in [22] or [15]. The literature on the subject is very extensive, and 
those references have extensive bibliographies. On the Viterbi algorithm for sequence 
detection, the original paper by Forney [23] and a later tutorial article [24] are highly 
recommended. An excellent tutorial description of transmitter precoding, Price's result, and 
the capacity of channels with lSI is [25]. A nonlinear equalizer structure using decision-aided 
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cancellation not covered here is the intersymbol inteiference canceler suggested by Proakis 
[26] and elaborated by Gersho and Lim [27]. Simplifications of the full-blown MLSD for lSI 
channels have been explored in several articles [28][29][30]. 

Appendix 8-A. 
DFE Error Propagation 

In this appendix we consider the nature of error propagation in the DFE, finding in 
particular upper bounds on the error probability that demonstrate that the effects are usually 
insignificant compared to the benefits of reduced noise enhancement. 

We can model the error propagation phenomenon by removing the assumption that 
ak = ak, and rewriting the slicer input as 

Yk=ak+ ~~ g-ak_- - ~~ g-ak_-+nk 
£")=1) ) £")=1) ) 

where nk is the complex-valued noise at the slicer input. This can be rewritten as 

Yk = ak + Uk + Zk 

(8.168) 

(8.169) 

where the middle term is the residual lSI due to incorrect cancellation of postcursor lSI 
samples given by 

N 
Uk = ~ g-wk-£"j=l) -)' (8_170) 

and a finite number N taps has been assumed. 

For purposes of understanding this phenomenon further, specialize to the baseband case 
with binary antipodal signaling, so that ak =±1 and Wk assumes the values {±2, O}. For this 
case the slicer will apply a threshold at zero, and we can easily calculate the probability for 
both types of error at time k. The first type of error occurs when ak = 1 and the slicer input is 
negative, and results in Wk = 2, 

Pr[wk = 2] = p . Pr[l + Uk + nk < 0] 

where p = Pr[ak = 1]. Similarly the probability that wk =-2 is 

Pr[wk =-2] = (1- p) . Pr[-l + Uk + nk > 0] 

Exercise 8-6. 

(8.171) 

(8.172) 

Show that if nk is a real-valued zero-mean Gaussian random variable, and the data symbols are 
equally likely, p = %, then for any lSI Uk 

Pr[wk 1:- 0] < % . (8.173) 
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The intuition behind this result is that no matter how big the lSI, it actually reduces the error 
probability for one polarity of data symbol, and if the symbols are equally probable then the 
error probability can be no worse than % for any residual lSI. 

Of course the conclusion that the error probability is no worse than 1/2 is of little value 
since we could flip a coin in the receiver and do just as well. In order to get stronger results, 
assume that the data symbols ak and the noise samples nk are independent. From Section 8.6 
we know that the noise samples will be independent as N ~ 00 for the optimal forward filter 
design, and should be approximately true for N sufficiently large. Then we can see that Pr[wJJ 
depends only on Wk _ j' 1 ~j ~ N, and therefore Wk is a Markov chain (Section 3.3) with 3N 

states. While the steady-state probability of the states of this chain can be calculated in 
principle [2], we can easily develop a simple model for this chain that gives an upper bound on 
the error probability as well as considerable insight into the error propagation phenomenon 
[31]. 

Assume that in the absence of lSI the error probability is Pe,o, 

Pe,o=Pr[wk;t:Olwk_j=O, l~j~N]. (8.174) 

Further, make the worst case assumption that if there is residual lSI, the error probability is %, 
(8.175) 

Define a Markov chain Xk, where Xk is a count of the number of successive correct decisions 
that have been made up to but not including time k. That is, Xk = n if W k _ 1 = W k - 2 = ... = 
Wk _ n = 0 and Wk _ n -1 ;t: O. We now get the following model for an error propagation event. If 
Xk ;::: N there is no residual interference because there have been no errors made within the 
memory of the FIR DFE feedback filter. Assume that Xk ;::: Nbut that an error is made anyway 
at time k, Wk ;t: 0, due to the additive noise, resulting in Xk + 1 = o. Then according to our 
worst-case model, errors will be made thereafter with probability 1/2 until such time that N 
correct decisions in a row have been made, at which time we revert to the state of zero residual 
lSI and the error probability returns to Pe o. Suppose that on average it takes K time increments 
until N correct decisions in a row have been made. We call K the average length of an error 
propagation event. Since the error probability is % during the event, error propagation results 
in an average of KI2 errors for every error due to the random noise. Thus, the error probability 
taking into account lSI is 

Pe = (~K + l)Pe,o. (8.176) 

In actuality we expect that the error probability will be less than this, since the error 
probability during an error event will in fact be less than 1/2• This bound can be strengthened 
and made more rigorous as in [31]. 

This logic, even though worst-case, gives considerable insight into the mechanism of error 
propagation. It demonstrates that error events will terminate whenever we make N correct 
decisions in a row, and that this happens in relatively short order because the error probability 
is no worse than 1/2 no matter how large the lSI gets. This argument depends strongly on the 
assumption of equally probable (random) data, and in fact there are worst-case data sequences 
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for which the error event can persist much longer than we have predicted here. This suggests 
that it is important to insure that the data is random when the DFE is used, and also suggests 
that it is desirable to keep N as small as possible consistent with obtaining most of the benefit 
oftheDFE. 

We can determine Kin (8.176) by observing that K is the average number of tosses of a 
fair coin before we obtain N heads in a row. This was determined in Problem 3-13 to be 

(8.177) 

Substituting into (8.176), we get 

Pe = 2N . Pe,o , (8.178) 

and the error probability is multiplied by a factor of 2N due to error propagation. If N is fairly 
modest, this error multiplication is much more than offset by the benefit of the DFE in 
reducing Pe o. For example, N = 3 results in an order of magnitude increase in error probability 
due to erro; propagation, and the DFE must reduce Pe 0 by only about half a dB to result in a 
net reduction in error probability. ' 

Problems 

Problem 8-1. Extend Example 8-6 to a channel with two zeros, and the same alphabet. 

(a) Sketch one stage of the trellis, showing only the structure of the trellis (allowable branches) and 
not bothering to label the branch metrics. 

(b) Sketch the error event corresponding to a single error; that is, sketch the one which, if it is the 
minimum-distance error event, implies that r MLSD = r MF. 

(c) Sketch two other error events which are relatively short, and are thus possible candidates as the 
minimum-distance error event. 

Problem 8-2. Show that the inequality in (8.31) is strict when M( z) is FIR and M( z) * 1. Hint: You 
will need to use the fact that only a finite number of error events need be considered in calculating the 
minimum distance. 

Problem 8-3. Given a channel with transfer function H( z) = 1/(1 - cz -1), with complex-valued 
pole location c such that I c 1* 1, verify the following: 

(a) (IHI-2)A=1+lcI 2. 

(b) (IHI-2)G=lfor Icl<land(IHI-2)G= IcI 2 forlcl>1. 

(c) Note that the geometric mean is everywhere smaller, as expected. 

Problem 8-4. Consider the channel of Problem 8-3: 
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(a) Find the transfer function ofthe LE-ZF, assuming the noise is white. 

(b) Find E~F.LE for both the minimum-phase and maximum-phase cases. 

(c) Interpret the result as a function of I c I. 
(d) Discuss the practicality of this channel model. 

CHAP. 8 

Problem 8-5. Repeat Problem 8-4, except normalize the channel impulse response such that the 
energy in the impulse response is unity for all c. Be sure to treat the minimum- and maximum-phase 
cases separately, and explain the results intuitively. 

Problem 8-6. For the channel model of Problem 8-3 and white noise: 

( a) When I c I < 1, find the precursor and postcursor equalizers and the resulting MSE. 

(b) Repeat (a) for I c I > l. 

(c) Interpret the results of (a) and (b), and compare to the results of Problem 8-4. 

Problem 8-7. As in Problem 8-5, modify the results of Problem 8-6 by normalizing the channel 
impulse response to unit energy. 

2 2 
Problem 8-8. Show that EMMSE.DFE of (8.87) approaches EZF.DFE as Sn ~ 0, and further that the 
precursor and postcursor equalizers for the MSE criterion approach those of the DFE-ZF. 

Problem 8-9. Derive the structure of a FSE for the following circumstances, using a sampling rate that 
is no higher than necessary: 

(a) The received pulse has excess bandwidth less than 200%. 

(b) The received pulse has excess bandwidth less than 50%. 

Problem 8-10. Assuming that the FSE of Fig. 8-18(c) is implemented as a non-FIR discrete-time 
filter, derive a time-domain expression for the output Yk in terms of the samples xk at the output of the 
antialiasing lowpass filter F( f). 

Problem 8-11. Derive a formula for the capacity of the continuous-time passband channel in terms of 
arithmetic and geometric means for an equivalent complex baseband channel model. 

Problem 8-12. Suppose the method for deriving a discrete-time baseband channel from a continuous
time baseband channel of Fig. 8-22 is replaced by a more practical system, where the transmit filter is 
replaced by a general filter JT G(f), and the receive filter is replaced by a general filter JT F(f). Also 
do not assume that the filters G, H, or F are necessarily bandlimited. 

(a) Derive a formula for the capacity of the resulting discrete-time channel. 

(b) Derive the capacity when the receive filter is chosen to be a filter matched to the received pulse. 

(c) Under what conditions can you be certain that the capacity of the discrete-time channel of (a) has 
the same capacity as the underlying continuous-time channel? 

(d) Repeat (c) for the receive filter of (b). 

(e) Repeat (d) when a discrete-time precursor equalizer is added to turn the receiver front end into a 
WMF. 

Problem 8-13. Show that the discrete-time capacity formulas for the baseband and passband cases 
both reduce to the capacity of (8.114) when the noise is white and the discrete-time channel is ideal. 



References 419 

Problem 8-14. In the chapter, the nonnalized SNR was expressed in tenns of the channel-input SNR. 
In this problem, we will refonnulate it in tenns of the channel-output SNR. 

(a) Derive an expression for the SNR at the output of the channel within the water-pouring band, 
SNRout, where the signal power is derived for the water-pouring signal spectrum. 

(b) Utilizing the result of (a), express SNRnorm in tenns of SNRout· 

Problem 8-15. With the MMSE-DFE-U, we found benefit in including a transmit filter, and 
optimizing that filter resulted in the water-pouring filter at the channel input. The question arises as to 
the benefit of a transmit filter to the DFE-ZF. Include a transmit filter G in the DFE-ZF, assuming the 
data symbols are white (Ma = 1) and the transmit power is constrained to P, PT = E a< I G 12)A. Under 
these conditions, prove that the optimal transmit filter, with the goal of minimizing the MSE, is a fiat 
filter. That is, the trivial transmit filter is optimal. 

Problem 8-16. Generalize the results of Problem 8-15 by allowing the transmit data symbols to have a 
general power spectrum Sa. 

(a) Show that the optimal transmit filter for the DFE-ZF is not fiat, but is in fact a whitening filter for 
the transmit symbols. 

(b) Find the resulting MSE. 

(c) Show that the MSE is always smaller when the transmit symbols are not white and the optimal 
transmit filter is used, than when the symbols are white with the same variance. 

Problem 8-17. Since E~E.DFE ~ E~F.DFE' it might appear from (8.165) that a DFE-MSE could 
potentially operate at a smaller gap to capacity on a channel with lSI than on the ideal channel (that is 
VISI> 1). Explain why this conclusion would be wrong. 
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9 
Adaptive Equalization 

In Chapter 8 we derived a set of receiver structures that counter intersymbol interference 
under the assumptions of a known channel and unconstrained implementation complexity. The 
resulting structures are impmctical for most applications in the exact form we derived them for 
several reasons. First, assumption of a known received pulse shape is unrealistic, particularly 
for channels such as the digital subscriber loop (with bridged taps), radio channel (with 
selective fading), and voiceband data channel, where there are significant variations in the 
channel affecting the reception. Thus, the received pulse shape is not actually known in 
advance for these channels, and is sometimes varying during actual transmission. Second, the 
receiver structures we derived usually have an infinite number of coefficients, and cannot be 
realized. Third, our optimizations did not take into account significant impairments such as 
timing jitter and timing offset, which must be considered in the design of receive filtering. 

Timing offset and jitter will be considered in Chapter 16. In this chapter we will address 
the problem of estimating the actual channel isolated pulse response, and automatically 
adjusting an equalizer to equalize this channel. This is known as adaptive equalization, and 
was first proposed and analyzed by R.w. Lucky in 1965 [1][2][3], building on earlier work in 
adaptive filtering by B. Widrow and M.E. Hoff, Jr. [4]. Our geneml approach will be to define 
practical filter structures similar to those found to be optimal in Chapter 8, and then arrange to 
adapt the pammeters of those structures to the actual channel chamcteristics. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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The simplest form of adaptive equalizer is shown in Fig. 9-1 in block diagram form. The 
received signal is applied to a receive filter. Since the channel is not assumed to be known, the 
receive filter is usually not a matched filter, although it may be a compromise approximation. 
Rather, it is more likely to be a lowpass filter which simply rejects all out-of-band noise. The 
output of the receive filter is sampled, usually at the symbol rate or twice the symbol rate, and 
applied to an adaptive equalizer. The adaptive equalizer may be realized as afinite transversal 
filter, which is a version of the transversal filter encountered in Section 8.4, with a finite 
number of taps or coefficients. The object is to adapt the coefficients to minimize the noise and 
intersymbol interference at the output, which is applied to a slicer to make the decisions on the 
data symbols. The adaptation of the equalizer is driven by an error signal, which indicates to 
the equalizer the direction that the coefficients must be moved to more accurately represent the 
data symbols at the slicer input. 

In the steady state, the adaptation of the equalizer is decision directed, meaning that the 
receiver decisions are used to generate the error signal. In the absence of intersymbol 
interference and noise, the slicer input would precisely equal the transmitted data symbols, and 
the slicer output would equal the slicer input. Thus, there would be no error, and the error 
signal at the adaptive equalizer would be zero. This would tell the equalizer that no adjustment 
of coefficients is necessary. If there were noise alone at the slicer input, but no intersymbol 
interference, the error signal would be non-zero, but would average to zero resulting in no net 
change in the coefficients. But when there is intersymbol interference, the resulting error 
signal can be used to adjust the coefficients so as to reduce that intersymbol interference. A 
more detailed block diagram for the passband PAM case was shown in Fig. 5-21. 

The adaptive equalizer thus uses the regenerative effect (Chapter 1) to advantage: since the 
slicer regenerates a noise- and intersymbol interference-free representation of the transmitted 
data symbols, a comparison of these symbols with the slicer input can be used to adjust the 
equalizer. Of course, the slicer makes occasional errors, but due to the long averaging time of 
the equalizer coefficient adjustment algorithm these errors have no significant effect. 

Decision-directed equalizer adjustment is effective in tracking slow variations in the 
channel response. It is often, however, not effective during initial acquisition since the 
intersymbol interference can be so bad as to cause a very high error rate initially. For this 
reason the initial acquisition of the equalizer is often accomplished by using a training signal. 
In this mode of operation, the transmitter generates a data symbol sequence known to the 

ERROR 

TRAINING 
SIGNAL 

GENERATOR 

Fig. 9·1. Block diagram of an adaptive equalizer. 
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receiver. The receiver therefore substitutes this known training signal in place of the slicer 
output, as shown in Fig. 9-1. Once an agreed period of time has elapsed, the slicer output is 
substituted and actual data transmission begins. 

9.1. Constrained-Complexity Equalizers 

Before we can adapt an equalizer, we must specify the structure of a suitable filter that has 
finite degrees of freedom or constrained complexity, and only then can we design an algorithm 
for adapting the parameters of that structure. The constrained complexity transversal filter 
defined in Section 8.4 is suitable for that purpose. Using this structure, in this section we re
solve the optimization of the filter coefficients under the mean-square error (MSE) criterion 
for the linear equalizer (LE) case. This requires the solution of a set of linear equations; we 
discuss a specific method to obtain this solution called the mean-square error gradient 
(MSEG) algorithm. This method is of interest because it leads directly to an adaptation 
algorithm in Section 9.2. 

9.1.1. Equalizer Structure 

A block diagram of a complete adaptive decision-feedback equalizer system is shown in 
Fig. 9-2. The coefficients of the equivalent discrete-time channel, H(z), will in general be 
complex-valued, and the additive noise Nk will also be complex-valued. The channel response 
and receive filter are reflected in the equivalent discrete-time response H( z). This channel 
model assumes that the demodulation has been performed prior to equalization, as was derived 
in Chapter 8, which is known as a baseband adaptive equalizer. In practice a passband 
equalizer is usually used, as discussed in Section 9.5, but we discuss the baseband case first 
since it is easier to understand and also models the important baseband channel case. We have 
also assumed symbol-rate sampling in the equalizer; the fractionally spaced case (Section 9.4) 
will be deferred to Section 9.4. 

The DFE consists of a precursor equalizer and a postcursor equalizer; the postcursor 
equalizer is absent in the LE (D(z) = 0). The error signal between slicer input and output, 

CHANNEL PLUS 
RECEIVE FILTER 

EQUALIZER 

POSTCURSOR 
EQUALIZER 

Fig. 9-2. An adaptive decision-feedback equalizer. A linear equalizer results when D( z) = o. 
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(9.1) 

will be used to adapt the precursor and postcursor equalizers in the decision-directed mode; 
during the training mode the actual transmitted data symbol Ak is substituted for the decision 
Ak. In the analysis of the equalizer, we assume that there are no decision errors, and thus use 
Ak in place of Ak. This assumption is justified by experience, which confirms that as long as 
the error rate is below ten percent or so there is no appreciable effect on equalizer operation. 

Linear Equalizer (LE) Structure 

For the LE in Chapter 8 the precursor equalizer is non-causal, even with unconstrained 
complexity, and thus it is natural to assume that the finite transversal filter has taps 
symmetrically spaced around the zero-delay tap. If we assume the total number of coefficients 
N is odd, and let L = (N -1)/2, then this equalizer would be of the form 

L 
C(z) = Lm=_Lcmz-m (9.2) 

where Cm' -L:::; m :::; L are the N coefficients of the precursor equalizer. This filter is not causal, 
but can always be made causal at the expense of an additional delay through the equalizer. 

Decision-Feedback Equalizer (DFE) Structure 

For the DFE, in Chapter 8 the unconstrained complexity precursor equalizer was 
anticausal in order to cancel precursor. intersymbol interference, so we can assume an 
anticausal N coefficient equalizer of the same form, 

o 
C(z) = ~ cmz-m. 

£"m=-(N-l) 
(9.3) 

The postcursor equalizer must be a strictly causal filter with M taps, viz. 

N 
D(z) = ~ dmz-m. 

£"m= 1 
(9.4) 

The number of feedforward coefficients N is allowed to be different from the number of 
postcursor equalizer coefficients M. 

9.1.2. Minimum MSE Solution 

We now return to the same problem solved in Chapter 8, the known channel case, and re
derive the optimal equalizer for constrained complexity, using the minimum mean-square 
error (MSE) criterion. We also make the assumption that all signals are wide-sense stationary. 
The solution will lead directly to a method of adapting the equalizer in Section 9.2. We 
specialize to the LE case here, and defer the DFE until Section 9.4. 

In Chapter 8, the ZF criterion forced the intersymbol interference to zero, while the MSE 
criterion allowed intersymbol interference in order to reduce the noise variance at the slicer 
input. For the constrained complexity transversal filter, intersymbol interference is inevitable 
since there are insufficient degrees of freedom to get completely rid of it. Thus the ZF criterion 
is a little different - it now forces the intersymbol interference to zero for only a finite set of 
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precursors and postcursors. The MSE criterion is much the same as before - it minimizes the 
MSE at the slicer input. Since intersymbol interference is inevitable, the constrained 
complexity MSE criterion makes more sense and is usually the one used. Therefore, we will 
consider only that criterion and will leave the ZF criterion to the problems. 

For the transversal filter it is appropriate to use vector and matrix notation. Throughout 
this chapter we use xT to denote a matrix or vector transpose, x to denote a complex conjugate, 
and x* to denote a conjugate (or Hermitian) transpose, so that x* =x1'. Define a column vector 
of transversal filter coefficients 

(9.5) 

where L = (N - 1) I 2, and N is the number of equalizer taps, assumed odd. Also define a vector 
of past and future input samples to the equalizer, 

(9.6) 

If the slicer output is assumed to equal the actual transmitted data symbols (no decision 
errors), then the error signal is 

(9.7) 

In general all these quantities are complex-valued, although for the baseband channel they are 
all real-valued. Assume that all the random processes are wide-sense stationary with known 
statistics, and design the equalizer coefficient vector c to minimize the MSE, defined as 
E[ I Ek 12]. 

Exercise 9-1. 
Explicitly evaluate the mean-square error and show that it is equal to 

E[ I Ek 12] = E[ IAk 12] - 2Re{c*E[Akrk]} + c*E[rkrllc 

= E[ IAk 12] - 2Re{c*a} + c*<l>c, 

where a and <l> are defined as 

CPo 
CPl 

CP-l CP-(N-l) 

<l> = E[rkrl] = CP2 CPm = E[Rk+mRk *] . 

CPN-l CPo 

Exercise 9-2. 

(9.8) 

(9.9) 

(9.10) 

Suppose the channel model of Fig. 9-2 is based on a receiver front end conslstmg of a 
downconverter, a receive filter, and a baud-rate sampler. Assume that the transmitted symbols are 
zero-mean and uncorre1ated with energy Ea, and assume the passband noise is white and Gaussian 
with PSD No/2. Show that the autocorrelation function ofthe equalizer input is 
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<l>m = EaLkhk+mhk + NoPr(m) , (9.11 ) 

pt<k) is the autocorrelation of the receive filter impulse response f( t). 

The MSE is not a function of time due to the wide-sense stationarity assumption. The 
autocorrelation function <l>m is just a simplified notation for RR(m), and <l> is an 
autocorrelation matrix for the sampled data signal. 

Exercise 9-3. 
Show that <l> has the following important properties: 

(a) <l> is a Hermitian matrix, i.e. 

<l>* = <l> . (9.12) 

(b) <l> is a Toeplitz matrix, i.e. the (i, j) element is a function of i - j [5][6]. 

(c) <l> is a positive semidefinite matrix, i.e. the Hermitian/orm x*<l>x is real-valued for any vector x 
and is also non-negative, 

x*<l>x ~ O. (9.13) 

In most but not all applications it can be assumed that this autocorrelation matrix is positive 
definite, and hence nonsingular. Instances where it is singular will be discussed in Section 9.4, 
but for the time being assume it is nonsingular. 

Our goal is to find the vector c that minimizes (9.8). There are several ways to accomplish 
this; in the spirit of illustrating useful techniques we will demonstrate two approaches. The 
first approach is to express the MSE in a form for which the minimum MSE solution is 
obvious. 

Exarnple9-1. -----------------------------------------------------
As an aid to intuition, it is often helpful to specialize to the degenerate case of a single real-valued 
coefficient c. This simplifies the equations dramatically, and yet reveals many of the interesting 
properties. If the input signals Ak and Rk are real-valued, then (9.8) becomes 

(9.14) 

where a = E[AkRk] and <1>0 = E[Rk 2]. Since the square term is non-negative, the MSE is 
minimized ifit is zero, and the optimal coefficient is Copt = a 1<1>0' 

Exercise 9-4. 
Verify by multiplying it out that 

E[IEk 12] = E[ IAk 12] - a*<I>-la + (<I>-la - c)*<l>(<l>-la - c) . 

is equivalent to (9.8). 

(9.15) 

Since <l> is positive semidefinite, the last term in (9.15) is non-negative (from (9.13)) and is 
minimized by the choice 

_m-1 
Copt - 'Va. (9.16) 
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Since only the last tenn in (9.15) depends on c, (9.16) also minimizes the mean-square error, 
which has a resultant minimum value 

(9.17) 

Finding Copt from (9.16) requires the solution of a system of linear equations. Under our 
nonsingular cI> assumption, the solution of these equations is unique. 

We now have a useful fonnula for the MSE, (9.15), which we can write in the fonn 

(9.18) 

This consists of a tenn independent of the coefficient vector c, and a second tenn that is a 
Hennitian fonn in a vector (c - Copt) with matrix cI>. 

Another way to find the optimal solution is to take the gradient of the MSE with respect to 
the coefficient vector, and set that gradient to zero to find Copt. For the baseband channel case, 
where everything is real-valued, this is straightforward. In the complex-valued case we have to 
be more careful because derivatives of some innocuous-looking complex-valued functions do 
not exist (for example, the derivative of z*, the conjugate of a complex variable z, does not 
exist anywhere!). Fortunately, with the MSE we are dealing with a real-valued function of a 
complex vector c, which makes life simpler because we can consider the MSE to be a real
valued function of two real-valued vectors (the real and imaginary parts of c). 

Ifwe define the real and imaginary parts of the complex quantities in (9.8), 

(9.l9) 

and consider the real-valued function E[ I Ek 12] to be a function of two real-valued vectors CR 
and Cr. 

Exercise 9-5. 

(a) Show that as a consequence of the Hennitian property, 

Q>R = Q>RT , Q>r = -Q>rT . 

(b) Show that 

V CRc*cI>c = 2cI>RcR - 2cI>IcI , 

VcRRe{c*a} =aR, 

V CIC*cI>c = 2cI>RcI + 2Q>IcR , 

VcIRe{c*a} =aI, 

where V x is the gradient with respect to vector x. 

(9.20) 

(9.21 ) 

(9.22) 

(c) Show that if we define a gradient of a real-valued function with respect to a complex vector c as 

(9.23) 

then 

V cc*cI>c = 2cI>c , V cRe{ c*a} = a . (9.24) 
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Given the results of the exercise, we can find Copt by taking the gradients of E[ I Ek 12] from 
(9.8) with respect to CR and CI and setting them to zero to find the real and imaginary parts of 
Copt. In view of our definition of a gradient with respect to c, this is equivalent to 

VcE[IEkI2] = 2<1>c-2a.=O, 

which yields the same solution as (9.16). 

Orthogonality Principle 

(9.25) 

If we calculate the crosscorrelation between the slicer error signal and the input signal to 
the equalizer, assuming the equalizer coefficient vector is optimal, 

- 7:- --r 
E[Ekrk] = E[(Ak - Copt r~rk] = E[Akrk - rkrk Copt] = a. - <l>copt = 0 . (9.26) 

This result is known as the orthogonality principle. This principle is the first inkling of a 
possible approach to adapting the equalizer. In particular, it tells us a way in which the filter 
can tell if the coefficients are optimal; namely, the different delays of the sampled data signal 
at the input should be orthogonal to the slicer error. If this condition is not met, then the 
orthogonality principle doesn't necessarily tell us which direction to move the coefficients to 
bring them closer to the optimum, but we will find such a method in the next section.· 

9.1.3. The MSE Gradient Algorithm 

The previous results indicate that a system of linear equations must be solved in order to 
find the optimal MSE coefficient vector. Any number of numerical techniques could be used to 
solve these equations, but we now focus on the MSE gradient (MSEG) algorithm. This method 
is of interest because it leads directly to an adaptive algorithm for equalizer adjustment, the 
stochastic gradient (SG) algorithm, in Section 9.2. Further, understanding of the convergence 
properties of the MSEG algorithm is a prerequisite to the understanding of the SG algorithm. 

The MSEG algorithm defines a sequence of coefficient vectors that is guaranteed to 
converge to Copt, assuming that a unique optimum exists. As a starting point to the derivation, 
Rk is again assumed to be wide-sense stationary with nonsingular autocorrelation matrix 
(9.10). The output MSE given by (9.8) is a quadratic form in the coefficient vector and 
therefore has a unique global minimum. The MSE can be viewed as a surface in (N+ 1)
dimensional space (since it is a function of N coefficients). The quadratic nature of this surface 
makes it simple to adjust the weights iteratively to minimize the MSE by descending along the 
MSE surface. This is the MSE gradient algorithm. 

Since the algorithm is iterative in nature, a notation for the coefficient vector that reflects 
this is needed. Thus, call the j-th iteration of the coefficient vector Cj. Given the present 
coefficient vector Cj' by subtracting off a term proportional to the error gradient, VeEr 1 Ek 12], 

the resultant tap vector should be closer to Copt. This is because the gradient of the error is a 
vector in the direction of maximum increase of the error. Moving a short distance in the 
opposite (negative) direction of the gradient should therefore reduce the error. On the other 
hand, moving too far in that direction might actually overshoot the minimum, and result in 
instability. 
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The MSEG algorithm is illustrated in Fig. 9-3 for the order two case (N = 2). Because of 
the quadratic nature of the MSE, the contours of constant mean-square error are elliptical. The 
negative of the gradient points in the direction of maximum decrease of the mean~square error. 
When the step size is small, the mean-square error is reduced at each step of the algorithm, and 
approaches the minimum of (9.17) asymptotically. When the step size is too large, as shown in 
Fig. 9-3, the mean-square error can actually increase, and the algorithm becomes unstable. 

The MSEG algorithm is explicitly 

(9.27) 

where ~ is a small adaptation constant or step size that controls the size of the change in Cj at 
each update. The division by two is included to avoid a factor of two in the subsequent 
adaptation algorithm. From (9.25), this algorithm becomes 

Cj+l = Cj + ~(a - cf>c) = (I - ~cf»Cj + ~a , (9.28) 

where 1 is the identity matrix. Hopefully, if this algorithm is simply iterated from some 
arbitrary initial guess Co it will converge to Copt of (9.16). 

Example9-2. -----------------------------------------------------
Continuing Example 9-1, in this case (9.28) becomes 

(9.29) 

where Cj is the j-th iteration of a single real-valued coefficient c. It is simple to find a formula for Cj 
from (9.29), but even easier to subtract the optimal coefficient from Example 9-1 from both sides to 
obtain 

(Cj+1 - copt> = (1 - ~<Po)(Cj - copt> = (1 - ~<PoY(co - copt> ' (9.30) 

which demonstrates that Cj ~ Copt as long as 11 - ~<Po I < 1. Thus, the step size of the algorithm 
must be in the range 0< ~ < 2/ <Po for there to be convergence. The convergence is exponential 
in the iteration index. The fastest convergence is for ~ = 1/ <Po, in which case the MSEG 
algorithm converges in a single iteration! 

Fig. 9-3. The elliptical contours of equal MSE, and an illustration of the MSEG algorithm. 
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This simple example is readily extended to the general case. If Copt from (9.16) is subtracted 
from both sides of (9.28) and 

qj = Cj - <I> -In 

is defined as the error between the actual and optimal coefficient vector, then 

qj+I = (I - ~<I»qj = (I - ~<I>y+Iqo 

The question becomes whether this error converges to zero. 

(9.31) 

(9.32) 

The behavior of (9.32) depends critically on the eigenvalues of the matrix <1>, which we 
denote by 1..1",., A.n> and which are explored in the following exercise. 

Exercise 9-6. 
Let A be a Hennitian matrix. Then establish the following facts: 

(a) The eigenvalues of A are real-valued. 

(b) Let A.i and A.j be two distinct (real-valued) eigenvalues of A. Show that the associated 
eigenvectors Vi and Vj are orthogonal; that is, Vi*Vj = O. 

(c) Assume for simplicity that the eigenvalues of A are all distinct, and that the eigenvectors are 
nonnalized to unit length (Vi*Vi = 1). Define the matrix 

Y = [vI,v2,' .. ,vN] (9.33) 

called the modal matrix. Show that this modal matrix is unitary, i.e. 

V-I =Y*. (9.34) 

(d) Show that 

A=YAY* (9.35) 

where A is a diagonal matrix of eigenvalues, 

(9.36) 

(e) Show that if A is positive definite (semi-definite) then its eigenvalues are all positive (non-
negative). 

The results of the exercise generalize to the case where the eigenvalues are not distinct [7]. In 
particular, if an eigenvalue is repeated with multiplicity m, then there are m corresponding 
linearly independent eigenvectors. These can always be constructed (by the Gram-Schmidt 
procedure, for example) to be mutually orthogonal and orthogonal to all the other 
eigenvectors. Thus; the decompositions of (9.35) apply to a general Hermitian matrix. More 
precisely, for any Hermitian matrix <I> there exists a unitary matrix V such that the 
diagonalizing transformation of (9.3 5) holds. 

Exercise 9-7. 
These results can be applied to our autocorrelation matrix <1>, which is Hermitian from Exercise 9-3. 
Let {A.I' 1..2, ... ,A.N} be the real-valued non-negative eigenvalues of <I> and let {VI' V2, ... ,VN} 
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be a set of associated eigenvectors chosen to be mutually orthogonal. Establish that <I> can be 
written in the form 

<I> = ~n A.v.v.*. 
L.Ji = 1 t t t 

(9.37) 

This is known as a spectral decomposition of the matrix. 

Exercise 9-8. 
Show that the eigenvectors of the matrix (I - ~<I» are the same as the eigenvectors of <1>, and that 
the eigenvalues are (1 - ~AJ, 1 :::; i :::; n, and thus establish the following decomposition, known as 
a modal decomposition, 

(9.38) 

The i-th term in (9.38) is known as the i-th mode of the convergence. 

From (9.38) and (9.32), the error vector.qj obeys a trajectory that is the sum of N modes, the i
th of which is proportional to (1 - ~Ai)'. The speed of convergence of each of these modes is 
governed by ~. If ~ is made too large, then one or more of the (1 - ~Ai) terms will be larger 
than unity in magnitude, and the error vector in (9.38) will actually increase in size with time. 
This is quite consistent with the intuitive behavior exhibited in Fig. 9-3 since the large ~ 
causes an overshoot of the minimum and actually increases the error. 

This acceptable range of ~ can be investigated further if we order the eigenvalues from 
smallest to largest, denoting the smallest as Amin and the largest as Amax. Then the (1 - ~AJ 
term that governs how large ~ can get is the one corresponding to the largest eigenvalue, and 
hence the condition for qj decaying exponentially to zero is 

o < ~ < ~. 
max 

(9.39) 

This determines the largest value of~, but of more interest is the ~ corresponding to the fastest 
convergence of the MSEG algorithm. For a fixed 13, the speed of convergence of the algorithm 
can be considered to be dominated by the slowest converging mode in (9.38). This slowest 
mode corresponds to the largest value of 11 - ~Ai I. The two extreme cases are plotted in 
Fig. 9-4, where this term is calculated for Amin and Amax. The corresponding curves for the 
other eigenvalues lie in between these two curves. The value of ~ that results in the fastest 
convergence is the point labeled ~opt in the figure. Choice of any other value of ~ results in a 
slower convergence of the mode corresponding to either the maximum or minimum 
eigenvalue. This optimal value of ~ is easily shown to be 

2 
~oPt = A A ' 

min + max 
(9.40) 

and for this choice of ~ the modes corresponding to both minimum and maximum eigenvalues 
converge at the same rate, namely proportional to 



434 ADAPTIVE EQUALIZATION CHAP. 9 

(9.41) 

The quantity in the parenthesis is plotted in Fig. 9-5 as a function of the parameter Amax/Amin. 
This parameter, the ratio of largest to smallest eigenvalue, is called the eigenvalue spread. The 
eigenvalue spread has a minimum value of unity, and can be arbitrarily large. The larger the 
eigenvalue spread of the autocorrelation matrix, the slower the convergence of the MSEG 
algorithm. As seen in Fig. 9-5, the convergence becomes arbitrarily slow as the eigenvalue 
spread approaches infinity since the quantity in parentheses in (9.41) approaches unity. 

The important role of the eigenvalues can be further quantified based on the following 
exercise. 

Exercise 9-9. 
Show that 

using expansion (9.38). 

1 

1 ~oPt 2 1 
Amax Amax Amin 

2 
Amin 

Fig.9-4. Choice of step size for fastest convergence of the MSEG algorithm. 

0.5 

EIGENVAlUE SPREAD, Amax 
Amin 

O~--~----~--~----~--~----~ __ ~ ____ ~ __ ~ ____ ~ __ -. 
10 

Fig. 9·5. Relation of fastest convergence rate to eigenvalue spread. 
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Equation (9.42) decomposes the MSE into its components in the direction of each of the 
eigenvectors, and shows that the component in that direction is proportional to the 
corresponding eigenvalue. The MSE therefore increases most rapidly in the direction of the 
eigenvector corresponding to Amax and most slowly in the direction corresponding to Amin. 

The largest acceptable step size ~ is determined by the maximum eigenvalue, since the 
gradient will be the largest in the direction of the eigenvector corresponding to the largest 
eigenvalue, and the correction of the MSEG algorithm will thus be largest in that direction. As 
~ gets larger, that is the direction in which the increment in the algorithm will first be so large 
as to actually increase the MSE. 

The ~oPt of (9.40) is optimized to speed the convergence of the coefficient vector. An 
alternative approach is to choose ~ to maximize the rate of convergence of the MSE. From 
(9.42), the MSE at time k = 1 can be expressed in terms of the coefficient error q1 as 

E[ IElI2] - ~min = 1:;= /i Iq1*Vi 12 , 

which can then be expressed in terms of qo using (9.38) as 

(9.43) 

(9.44) 

To get the maximum reduction in MSE from step k = 0 to step k = 1, we would minimize 
(9.44) with respect to ~. Unfortunately, this requires some assumption about the initial 
coefficient error qo. However, the largest contributor to the MSE is likely to be the term in the 
sum corresponding to the largest eigenvalue, Amax. A reasonable strategy is therefore to 
choose ~ to immediately force that term to zero. This is achieved by choosing ~ = lIAmax. The 
conclusion is that (9.40) is not necessarily the best choice for step size, if the criterion is to 
most quickly reduce the MSE as opposed to reduce the norm of the coefficient error vector. 
The step size that speeds the convergence of the MSE depends on the initial coefficient error 
vector, but ~ = 1 jAmax is a reasonable choice. 

The convergence of the MSEG algorithm can be interpreted graphically by plotting the 
contours of equal mean-square error as in Fig. 9-6. Equation (9.42) illustrates that the contours 
of equal mean-square error are elliptical in shape, with the principal axes in the direction of the 
eigenvectors. The eccentricities of the ellipses are directly related to the relative sizes of the 
eigenvalues. This is illustrated in Fig. 9-6 for the N = 2 case. It is assumed that 1..2 > 1..1, in 
which case the mean-square error increases more rapidly in the direction of V2. The direction 
of the two orthogonal eigenvectors is shown. The major axis of the ellipse is in the direction of 
V1' and the minor axis in the direction of V2. 

The case where the eigenvalue spread is small (eigenvalues approximately equal) is shown 
in Fig. 9-6(a); the ellipse is close to being a circle. A larger eigenvalue spread is shown in 
Fig. 9-6(b); there the ellipse is more eccentric. 

For a small eigenvalue spread, the gradient correction is always nearly in the direction of 
the minimum mean-square error, and the length of the gradient vector is always approximately 
the same. For a larger eigenvalue spread, the direction of the negative gradient can be quite 
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different from the direction of the minimum, although for small steps the mean-square error 
still gets smaller. Since each step does not go directly toward the minimum, the number of 
required steps will be increased for some starting conditions. More importantly, the length of 
the gradient vector will be much smaller in the direction of the major axis of the ellipse, since 
the MSE is not varying as rapidly in that direction. The step size is therefore governed by the 
largest eigenvalue, so that the steps do not overshoot in the direction of the corresponding 
eigenvector, which is the minor axis of the ellipse. A step size that maintains stability along the 
minor axis results in very small increments in the direction of the major axis. 

An intuitive interpretation of Fig. 9-4 also follows from Fig. 9-6. Consider the case where 
the starting coefficient vector is on the minor axis of the ellipse, so that convergence is in the 
direction of the eigenvector corresponding to the largest eigenvalue. If ~ is chosen to be 
smaller than 1/ Amax, then each step of the algorithm in this direction does not overshoot the 
minimum, and the MSE gets smaller. When ~ = lIAmax, the algorithm converges to the 
minimum in one iteration. When ~ is greater than lIAmax, the algorithm overshoots on each 
iteration, but as long as ~ is smaller than 2/Amax the MSE still decreases and the algorithm 
converges. It is advantageous from the point of view of maximizing the worst-case 
convergence rate to choose ~ = ~oPt, a choice that results in the algorithm overshooting the 
minimum in the direction of the eigenvector corresponding to Amax in order that the algorithm 
converge faster in the direction of the eigenvector corresponding to Amin. 

Since the eigenvalue spread plays such an important role in the adaptation speed, it is 
instructive to relate it to the power spectral density of the wide-sense stationary random 
process Rh, the samples of the data wavefonn. It is a classical result of Toeplitz fonn theory 
[6] that the eigenvalues of (9.10) are bounded by 

min S(ej~ < Ai < max S(ej~ , 
e e 

(9.45) 

where S(ej~ is the power spectral density of the reference random process defined as the 
Fourier transfonn of the autocorrelation function (the elements of the matrix), 

C2 C2 

@ 
Direction of 

Direction of Negative Gradient 
VI Negative Gradient VI 

CI 
V2 (b) 

Cl 
(a) 

Fig. 9-6. Effect of eigenvalue spread on convergence. a. Small eigenvalue spread. b. Larger eigenvalue 
spread. 
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While the eigenvalues depend on the order of the matrix, n, as n -7 00 

Amax -7 max S(e}~ . 
e 
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(9.46) 

(9.47) 

See [6] for more precise statements of these results. This interesting relationship between the 
eigenvalues and the power spectrum is explored in Problem 9-4. 

It follows that the spectra that result in slow convergence of the MSEG algorithm are those 
for which the ratio of the maximum to the minimum of the spectrum is large, and spectra that 
are almost flat (have an eigenvalue spread near unity) result in fast convergence. The intuition 
behind this result is that a large eigenvalue spread is related to a large correlation among the 
input samples, which in turn slows convergence because of interactions between the 
convergence of the different coefficients of the transversal filter. 

Since the modes of convergence of the MSEG algorithm are all of the form ofy}, where Y 
is a positive real number less than unity and j is the iteration number, the error in decibels can 
be determined by taking the logarithm of the square (Problem 9-8), 

2· 2 . 
10 ·loglO(Y J) = [10 ·loglO(Y )].}, (9.48) 

and thus the error expressed in decibels decreases linearly with iteration number (the constant 
factors multiplying these exponentially decaying terms give a constant factor in decibels). The 
convergence of a MSEG algorithm is thus often expressed in units of dB per iteration, which is 
the number of decibels of decrease in the error power per iteration. 

9.2. Adaptive Linear Equalizer 

On many practical channels, one cannot pretend to know the autocorrelation matrix <1>, and 
hence the known-channel solution of Section 9.1 is not applicable. 

Example9-3. -----------------------------------------------------
On the voiceband telephone channel, there is significant variation in the amplitude and phase ofthe 
channel transfer function from one call to another. On a terrestrial microwave channel, under 
normal conditions the channel is nearly ideal, but there can be conditions under which there is 
considerable variation in the transfer function due to selective fading. 

The technique is to modify the MSEG algorithm, by a simple trick, to allow adaptation. The 
resulting algorithm is known as the is the stochastic gradient (SG) algorithm. The approach 
taken in the SG algorithm is to substitute a time average for the ensemble average in the MSE 
solution. This adaptation algorithm is also sometimes called the LMS adaptive transversal 
filter. The term LMS stands for least-mean square, although the algorithm does not provide an 
exact solution to the problem of minimizing the mean-square error but rather only 
approximates the solution. This approximation is the price paid for not requiring that the 
channel be known or stationary. 
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Ifwe don't know the channel, then we cannot calculate the expectation in (9.8). However, 
we can, if we choose, calculate the modulus-squared error without the expectation, 

(9.49) 

Using Exercise 9-5, and using the fact that rkrT is a Hermitian matrix, we can take the gradient 
of this expression, 

(9.50) 

Because we are dealing with well-behaved quadratic functions, and the gradient and 
expectation are linear operators, they can be interchanged. The expectation of the gradient in 
(9.50) is the same as the gradient of E[ I Ek 12], 

E[V'cIEkI2] =V'cE[IEkI2]. (9.51) 

Therefore, (9.50) is an unbiased estimator of the gradient in the MSEG algorithm derived in 
Section 9.1. The SG algorithm substitutes this "noisy" or "stochastic" gradient for the actual 
gradient in the algorithm of (9.28). What results is 

(9.52) 

or 

Ck+l = Ck + ~Ekrk 
= [I - ~rkrl]ck + ~Akrk . (9.53) 

There is another rather subtle but important difference between this SG algorithm and the 
algorithm of (9.28). In the former algorithm, the indexj corresponded to the iteration number 
for the iterative algorithm for solving a system oflinear equations. In (9.53) on the other hand, 
the iteration number k corresponds to the sample number (or time index) of the data waveform 
at the input to the equalizer. Thus each iteration corresponds to a new sample. The algorithm is 
in effect performing a time average in order to estimate the gradient. 

It is not surprising to note the similarity between the SG algorithm of (9.53) and the 
MSEG algorithm of (9.28). The fonner substitutes the stochastic matrix rkrl for <I» and the 
stochastic vector Akrk for the vector a.. In each case the deterministic matrix or vector 
corresponds to the ensemble average of the stochastic matrix or vector for the stationary case. 

A realization of adaptation algorithm (9.53) is illustrated in Fig. 9-7. What is shown is a 
single filter coefficient and how it contributes both to the transversal filter structure as well as 
how it is adapted. Denote the j-th coefficient Cj at time k by [ck1j' Then the adaptation 
algorithm of (9.53) can be rewritten for the j-th component as 

(9.54) 

Specifically, the input sample to the equalizer Rk _ j is taken from the output of the same unit 
delay as is used for multiplication by Cj' conjugated, and multiplied by the j-th coefficient at 
time k. The resultant value contributes to the summation which is subtracted from the data 
symbol Ak to obtain the error sample Ek. In accordance with this equation, [ck1j is obtained by 
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cross-correlating (time averaging) the estimation error Ek with the delayed input Rk _ j. This 
cross-correlation consists of taking the product of Ek with Rk_j and step size ~ and 
accumulating the result. 

This algorithm is not surprising in light of the orthogonality principle of (9.26). In 
particular, when all the filter coefficients are optimal, the orthogonality principle says that the 
input to the accumulator in Fig. 9-7 will average to zero. Under these conditions, the output of 
the accumulator will maintain the same average value (namely the optimal filter coefficient). 
What the orthogonality principle does not tell us directly is that when the coefficients are not 
optimal, the non-zero average of the accumulator input is of the correct sign so as to move 
each coefficient toward the optimum. 

Example94. -----------------------------------------------------
Continuing Example 9-1 for a single real-valued coefficient c, denote this coefficient at time k as 
ck, and then (9.54) becomes 

(9.55) 

Now suppose that ck = Copt + A for some A > O. Then the correction term in the algorithm is 

(9.56) 

The first term in (9.56) has an average value of zero by the orthogonality principle, and the second 
term is always negative, decreasing the coefficient on average as desired. (In spite of the fact that 
the second term gives the correction a bias in the right direction, the correction is stochastic because 
ofthe first term, and hence will sometimes go in the wrong direction.) 

This example is easily generalized. The term in the product EkRt_ j which depends on [Ck]j is 
-[ck]j IRk- j 12. Consider for example the case where the real part of [copJj is positive. Since 
1 Rk _ j 12 is positive real-valued, if the real part of [Ck]j is too large then the real part of this 
gradient term is more negative than it would be if the coefficient were optimal. This makes the 
average correction to the real part of [cklj negative and on average the real part of [Ck+1]j is 
smaller than [Cklj. The same logic applies to the imaginary part of [Ck]j' 

~ ... 

Ak E 
~--------------~. r--------------~------- k 

Fig. 9-7. SG algorithm for one coefficient. Although signals are shown with single lines, in general all 
signals and coefficients are complex-valued. 
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This explanation does not answer the important question as to the effect of the interaction 
between the adaptation of the different coefficients. This interaction occurs because all the 
coefficients affect the error Ek, which in turn affects the coefficient adaptation. We now 
address this question. 

9.2.1. Convergence of the SG Algorithm 

One difference between the SG algorithm of (9.53) and the MSEG algorithm of (9.28) is 
that in (9.28) the coefficient vector follows a detenninistic and predictable trajectory, while the 
trajectory in (9.53) is random or stochastic. The cause of this random fluctuation is the use of 
the time average in place of ensemble average, or alternatively the use of the input samples in 
place of the ensemble averages. 

A useful method for analyzing the convergence behavior of an adaptive filtering algorithm 
is to assume (often unrealistically) that the input samples can be modeled as a wide-sense 
stationary random process with known statistics; that is, return to the assumptions' of 
Section 9.1. The coefficient vector can then be expected to converge in some sense to be 
detennined to the MSE solution. The speed of this convergence, while not directly applicable 
to a case where the input statistics are actually changing with time, is a good indication of the 
convergence perfonnance of the algorithm. 

If the assumption is made that the input can be modeled as a wide-sense stationary random 
process, we would first like to find the average trajectory of the coefficient vector in (9.53). If 
the step size ~ is small, the coefficient vector will vary slowly, since the update at each sample 
time is proportional to ~. The input random process will therefore vary rapidly relative to the 
coefficient vector. If we take the expectation of (9.53) with respect to the statistics of rk, it is 
therefore a good approximation to assume that the coefficient vector Ck is a constant with 
respect to this expectation, and hence 

Ck+I = E[(I - ~rkr{)ck] + ~E[Akrk] 
'" (I - ~<I»Ck + ~a. , (9.57) 

where the expectation is only with respect to the input process. Although the coefficient vector 
is varying slowly, it is still random, and hence we must still take the expectation of both sides 
with respect to the ensemble of coefficient vectors, 

(9.58) 

This approximate average trajectory precisely obeys the earlier detenninistic MSEG 
algorithm. It can be asserted without further analysis that within the accuracy of this 
approximation the average trajectory of the SG converges to the optimal coefficient vector 
under the same condition that guarantees convergence of the MSEG algorithm, and the nature 
of the convergence is identical to that discussed in Section 9.1.2. 

This does not mean, however, that any particular coefficient vector trajectory itself 
converges to the optimum, but only that the average of all trajectories converges to the 
optimum. In fact, the coefficient vector does not converge to the optimum. Even after 
convergence of the coefficient vector in the mean-value sense, the difference equation (9.53) 
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still has a stochastic driving tenn, and therefore the coefficient vector continues to fluctuate 
about the optimal coefficient vector randomly. The larger the value of the step size ~, the larger 
this fluctuation. The size of this fluctuation will be considered in a moment. Keeping it 
reasonably small generally requires a much smaller step size than the value given by (9.40). 

These considerations make it important to calculate some measure of the variation of the 
coefficient vector about this optimum. In analogy to (9.31), define an error vector between the 
actual coefficient vector at time k and the optimal vector as 

(9.59) 

Exercise 9-10. 
Substitute into the SG algorithm of (9.53) to show that the update equation for the error vector is 

where r k is a stochastic matrix 

R- T r k = I - prkrk , 

and Dk is the error signal for a transversal filter with optimal coefficients, 

(9.60) 

(9.61) 

(9.62) 

This interesting relationship demonstrates again that the coefficient vector can never reach its 
optimum because this stochastic equation has a driving term which never goes to zero (except in the 
degenerate case where the optimal filter yields a zero error signal). 

One measure of how well the SG algorithm is working would be the Euclidean nonn of the 
coefficient error vector, 

(9.63) 

This is the appropriate measure to use if the accuracy with which the algorithm approximates 
the optimal coefficients is the primary concern. If, on the other hand, we are interested in how 
well the adaptive filter does its job, as manifested by the size of the error signal (which after all 
is what causes incorrect decisions in the slicer), then we are interested in the size of Ek rather 
than the error vector. 

Actually, as one might expect, these two measures are closely related. If the coefficient 
vector is fixed, then from (9.15), 

(9.64) 

where ~min is the minimum MSE that would result from the use of the optimal coefficient 
vector Copt (q = 0). The second tenn in (9.64) we call the excess MSE, or that MSE over and 
above the minimum possible due to the non-optimal coefficient vector. If the step size ~ is very 
small, then within the time frame of significant variation in the input random process Rk we 
would expect very little change in q. Thus, we can substitute the time-varying coefficient 
vector for the fixed vector in (9.64) to accurately find how the MSE varies with time, 
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(9.65) 

In order to find the average MSE, we must average (9.65) over the ensemble of coefficient 
error vectors, or 

(9.66) 

This equation establishes the link that we were looking for between the coefficient error vector 
and the filter output MSE. 

Rather than analyze the dynamics of (9.66) in general, we will specialize to an input 
process Rk with uncorrelated zero-mean samples. For this case, the autocorrelation matrix is 
diagonal, 

<II = <Pol, 

The average MSE as a function of time from (9.66) becomes a simpler expression 

E[ 1 Ek 12] = ~min + <PoE [II qk 112] 

(9.67) 

(9.68) 

that relates directly to the Euclidean norm of the coefficient error vector. Estimation of this 
norm is somewhat tedious, so we defer it to Appendix 9-A. Derived there is a difference 
equation in the error vector norm 

(9.69) 

There is only a single mode of adaptation due to the assumption of a white input spectrum 
(and therefore there is only one distinct eigenvalue). This relation demonstrates both the speed 
with which the error vector norm decreases with time as the filter is adapting and the 
asymptotic error vector norm, which is non-zero due to the continued stochastic driving term 
even after nominal convergence. This latter contribution to excess MSE is related to the 
minimum MSE for a fixed-coefficient filter because this error appears in the error signal 
driving adaptation even after nominal convergence of the coefficient vector. 

The condition for stability of the filter, in the sense that the error vector norm decreases 
with time, is that 

Iyl< 1. (9.70) 

The quantity y is plotted in Fig. 9-8, where we see several interesting properties. Starting with 
zero, as we increase the step size ~ the speed of convergence increases, until a maximum speed 
is reached at 

1 
~opt = N<po' (9.71) 

Continuing to increase the step size slows convergence, until eventually we reach instability at 
twice the optimal step size. The condition for stability is 

2 
0< ~ < N<po = 2~opt . (9.72) 
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This condition is considerably more stringent than the condition for convergence of the 
average coefficient vector (9.39). This implies that we could get a situation where the average 
coefficient vector is converging but the norm of the error vector is diverging. Since this is 
unacceptable, (9.72) is the most stringent condition. 

Since convergence is exponential, it is instructive to define a time constant 't as the number 
of samples required for the MSE to decrease by a factor of e-1, y 1: = lie; solving for't we get, 
in the range of small ~, 

1 
't ""--

2~<I>o ' 
(9.73) 

with a shortest time constant corresponding to ~opt of't "" N 12. The important conclusion here 
is that the best rate of convergence is dependent on the number of filter coefficients - the 
more coefficients, the longer it takes for the coefficients to converge. This is not surprising in 
view of the inevitable interaction of the coefficients. The more coefficients there are, the more 
"noise" is introduced into the adaptation of each coefficient by the simultaneous adaptation of 
the other coefficients. 

Aside from the rate of convergence, the other parameter of interest is the asymptotic error 
in the filter coefficients after convergence. The stationary point in (9.69) is 

as k --'; 00 • (9.74) 

This is plotted in Fig. 9-9, where we see that the asymptotic error increases as the step size 
increases until it blows up at twice the optimal step size. At the optimal step size (optimal in 
terms of rate of convergence of MSE, not the asymptotic MSE), the error is 

(9.75) 

In view of (9.66), the asymptotic MSE is 

E[ 1 Ek 12] --'; ~min + ~min = 2~min· (9.76) 

y 

---- ---- ---;:-;:-~-~ 

o +-----,,--------r ..... ~ 
o ~oPt 21'1opt 

Fig. 9-8. A plot of Y vs. ~ characterizing convergence of the MSE for a white input spectrum. A small N 
(N = 2) is plotted to exaggerate the curve. 
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Thus, for the fastest convergence, the total MSE is twice the minimum MSE for a fixed
coefficient filter, with half that MSE attributable to the asymptotic wandering of the filter 
coefficients about their optimal value. 

There is an important tradeoff between speed of convergence and asymptotic MSE. If the 
goal is to minimize the asymptotic MSE, then choose as small a step size as possible. 
Generally what limits how small we can make the step size is the number of bits of precision 
in the arithmetic we use to implement the SG algorithm. In this case we can get the asymptotic 
MSE as close to the minimum MSE for a fixed-coefficient filter as we like at the expense of 
higher precision arithmetic. On the other hand, if our goal is to maximize the rate of 
convergence, then the step size should be chosen to be ~opt> with the penalty that the 
asymptotic MSE is twice as large as the minimum possible value. 

A similar analysis to what we have done here can be applied to the general input spectrum 
case [8][9][10][11]. Surprisingly, the results are essentially the same as for the white input 
case we have considered here. Thus, the large effect of eigenvalue spread on the convergence 
of the average coefficient vector does not extend to the convergence of the MSE. The reason 
for this can be seen in the expression for excess MSE given in (9.42). In the direction of 
eigenvectors corresponding to small eigenvalues, the MSE does not change very rapidly, as 
manifested in the Ai term. This implies that the coefficient vector tends to have larger 
excursions in this direction. Small eigenvalues thus cause problems in the convergence of the 
coefficient vector in the direction of the corresponding eigenvectors. However, these same 
excursions do not cause as large an impact on the resulting MSE precisely because of the small 
eigenvalue. Thus, if the goal is to accurately estimate the optimal coefficient vector, then small 
eigenvalues are a problem, but if the goal is to minimize the MSE of the adaptive filter they do 
not present nearly as great a problem. Even in the latter case, however, they can lead to 
numerical problems, as discussed in Section 9.4. 

9.2.2. Common Modifications 

Several modifications are commonly made to the SG algorithm as we have derived it. 

o ~oPt 2~opt 

Fig. 9·9. Asymptotic average Euclidean norm squared of the filter coefficients after convergence as a 
function of the step size. 
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Normalization of Step Size 

The sa algorithm displays an undesirable dependence of speed of convergence on input 
signal power. This can be seen from (9.53); if the input signal is increased in size by a factor y, 
then this is equivalent to increasing the step size ~ by the factor y 2 to ~y 2. Another way to see 
this is that the optimal step size of (9.71) requires that the step size ~ should be inversely 
proportional to the input signal power .po. The speed of convergence and asymptotic MSE of 
the sa algorithm is strongly affected by the size of the input signal. A serious consequence is 
that if the input signal grows too large the adaptation algorithm becomes unstable. 

The standard solution to this difficulty is to normalize the step size of the algorithm. The 
size of the updates can be kept approximately the same size on average if the update is 
normalized by an estimate of the input signal power, which is equivalent to choosing a step 
size in (9.53) equal to 

~k = t b' 
Cfk + 

(9.77) 

where ~k is the step size at time k, a and b are some appropriately chosen constants, and CJk 2 is 
an estimate of the input signal power at time k. The purpose of the b in the denominator is to 
prevent ~k from becoming too large (causing instability) when the input signal power becomes 
very small. 

As an example of how the input signal power can be estimated, we can use an 
exponentially weighted time average of the input signal power, 

2 ~. 2 
CJk = (1 - ex) ~ . a' 1 Rk _ ·1 

L.J;=o ; 
(9.78) 

where ex is an appropriately chosen constant and the (1 - ex) factor normalizes the estimate to 
be an unbiased estimate of the input signal power. The reason for choosing this estimate is that 
it can be written recursively as 

(9.79) 

Gear-Shift Algorithms 

There is a tradeoff between asymptotic MSE and speed of convergence of the sa 
algorithm. Speed of convergence is important in two contexts. First, if we start the equalizer up 
on an unknown channel, then we would like to have rapid convergence of the equalizer. 
Second, if there is any variation of the channel, we would like the equalizer to track this 
variation. In many applications of adaptive equalization, variation of the channel is quite slow. 

Example 9-5. -----------------------------------------------------
In voiceband data modems, there is no mechanism to cause any significant variation of the impulse 
response of the channel once a telephone connection is established. Thus, any changes are minor 
and occur over a long time period. 

On these channels, a very small step size would be desirable after convergence of the equalizer 
to insure a small asymptotic excess MSE, but a larger step size is needed during initial 
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convergence. The solution is a gear-shift algorithm, in which the step size is initially larger, 
and shifted to a smaller value after a sufficient period of time for convergence to have 
occurred. 

There are examples of channels in which the tracking capability of the equalizer is 
important, in which case a larger excess MSE must be accepted in order to gain this tracking 
capability. 

Example9-6. -----------------------------------------------------
In a microwave radio system, selective fading can vary fairly rapidly. Therefore, the time constant 
of the MSE adaptation should be small relative to the time of significant variation of the fading. In 
a mobile radio system, the variations are even faster, making speed of adaptation the most 
important factor. 

9.3. Adaptive DFE 

Just as the coefficients of a transversal filter equalizer can be adapted, so too can the 
coefficients of a decision feedback equalizer. We will follow the model of the linear equalizer, 
and consider first the MSE solution for a finite precursor and postcursor equalizer filter in the 
DFE, followed by derivation of the stochastic gradient algorithm (we can dispense with the 
MSE gradient algorithm now that we know the principle of the stochastic gradient). 

We will assume the form of the DFE shown in Fig. 9-2 in which the precursor equalizer is 
anticausal with N coefficients and the postcursor equalizer is causal with M coefficients. The 
slicer input is given by the relation 

Lo LM A Y = cR . - d· J1 · k i = -(N -1)' k -, i = 1 IPk -, , 
(9.80) 

which is illustrated in Fig. 9-10. The figure has been drawn to illustrate an interesting 
interpretation ofthe finite DFE as a two-sided transversal filter, with non-causal coefficients to 

Fig. 9-10. The DFE for finite precursor and postcursor equalizer transversal filters. In general all Signals 
and coefficients are complex-valued. 
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cancel precursor intersymbol interference and causal coefficients to cancel postcursor 
intersymbol interference. This is similar to the LE, with the important difference that the input 
to the causal portion of the filter is the decisions rather than the output of the precursor 
equalizer filter. This difference will obviously change the desired tap coefficients as well as 
reduce the noise enhancement due to equalization. 

Exercise 9-11. 
The coefficients of both the causal and non-causal portions of the DFE equalizer will be different 
from the corresponding coefficients of the LE. Why? 

9.3.1. MSE Solution 

It is instructive to find the optimal finite equalizers using the MSE criterion. We have to re
solve this problem, first considered in Chapter 8, since the filters now have constrained 
complexity. It is permissible to assume that there are no decision errors in calculating the 
output of the postcursor equalizer. The resulting filter, combining the channel model of 
Fig. 9-2 and the equalizer of Fig. 9-10, is shown in Fig. 9-11(a). After combining the filter 
blocks, we get the configuration of Fig. 9-11(b). 

The objective is to minimize E[ 1 Ek 12] over the choice of the postcursor equalizer filter 
coefficients and the precursor equalizer filter coefficients. The former are easier to find. 
Assuming the noise and data symbols to be uncorrelated, E [ 1 E k 12] in Fig. 9-11 (b) is the sum 
of two terms, one for the noise and the other for the intersymbol interference, where the noise 
term is independent of D(z). Hence, we can minimize just the intersymbol interference term 
over the postcursor equalizer coefficients. This term is of the form 

(9.81) 

where 

k E{l, 2, ... , M} 
(9.82) 

otherwise 

It is evident that as long as the data symbols are uncorrelated with one another, E[ 1 Ek 12] will 
be minimized by choosing D( z) to eliminate the first M intersymbo1 interference samples; that 
is, force Vrn = 0, 1::::; m ::::; M. Hence, the optimal postcursor equalizer coefficients are 

N�r_--::-:----ot 
(b) 

Fig. 9-11. (a) Equivalent of channel, precursor equalizer, and postcursor equalizer assuming no 
decision errors. (b) Simplification after combining filters. 
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o 
dm = L. ciPm-i' m E{l, 2, ... , M}. 

1=-(N-1) 
(9.83) 

This says, not surprisingly, that there is no benefit to leaving any postcursor intersymbol 
interference after the postcursor equalization within the memory of the filter, since this cannot 
reduce the noise. 

Having found the postcursor equalizer coefficients in terms of the precursor equalizer 
coefficients, we substitute this solution and then minimize over the precursor equalizer 
coefficients Ck. 

Exercise 9-12. 
Assume the data symbols are mutually uncorrelated with mean zero and variance Ea. Define a 
vector of precursor equalizer coefficients 

C = [C-(N -1), ... , COlT (9.84) 

and show that the optimal c satisfies (9.16) where the matrix CI> has elements given by (9.11) except 
that the summation is missing the terms m = 1 to m = M and the vector a. is given by 

a.T = Ea[P -(N-1), .··,Po]· (9.85) 

9.3.2. Stochastic Gradient Algorithm 
The derivation of a stochastic gradient algorithm for the DFE is a simple extension of the 

LE case. First we define an augmented vector of N+M filter coefficients, 

v = [C-(N -1), ... , Co> -d1, .•• , -dM]T 

and an augmented input signal vector 

wk=[Rk+(N-1)' ... , Rft, Ak-1' ... ,Ak_M]T. 

Then the DFE slicer error can be expressed as 

Ek = o'k-VkTwk· 

(9.86) 

(9.87) 

(9.88) 

This is identical to the LE case with c replaced by v and p replaced by w, and hence we can 
immediately infer that the SG algorithm is, from (9.53), 

(9.89) 

9.4. Fractionally Spaced Equalizer 

Thus far in this chapter we have considered the adaptation of a linear equalizer with 
sample rate equal to the symbol rate. In practice it would be more common to adapt a 
fractionally spaced equalizer (FSE) discussed in Section 8.3 for several reasons. First, 
incomplete knowledge of the channel makes it impossible to realize a matched filter directly. 
The FSE structure allows us, in effect, to adapt the matched filter as well as the equalizer. 
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Second, the FSE is less influenced by sampling phase, as discussed in Section 8.3. Third, for 
implementation, the separate matched filter has the effect of doubling the loss of the channel, 
greatly increasing the gain necessary in the transversal filter equalizer and increasing its 
dynamic range requirements. 

If we start with an FSE and use a MSE criterion for adaptation, within the constraints of 
the finite degrees of freedom the resulting filter will perform both the matched filtering and 
equalizer functions. The adaptation is also a straightforward extension of the earlier case. For 
example, if the FSE sampling rate is twice the symbol rate, we can think of the FSE as a 
transversal filter that operates at twice the symbol rate but simply fails to calculate every 
second output sample. The adaptation is based on the output samples that are calculated. 
However, the FSE does suffer from one subtle difficulty, which is a form of numerical ill
conditioning. We will address this issue in the following subsection. 

9.4.1. Conditions for Unique MSE Solution 

The existence of a unique solution to the MSE problem, as well as the arguments for the 
convergence of the gradient and SG algorithms, depended on the nonsingularity of the input 
autocorrelation matrix <I> • The singular case corresponds to one or more zero eigenvalues. 
From the argument in Section 9.1, the case of concern is where the spectrum of the reference 
input vanishes at some frequency, since (9.47) would then predict that one (or more) 
eigenvalues would approach zero as N -7 00. That the vanishing of the input spectrum would 
cause problems is not surprising, since the equalizer transfer function in the regions of zero 
spectrum does not affect the MSE, so the filter coefficients would obviously not be unique. 

The FSE displays this ill-conditioning problem, because the bandwidth of the input data 
signal is deliberately made less than half the sampling rate. Although there will likely be noise 
components at all frequencies, they may be small and still not prevent some eigenvalues from 
being very small. Thus, we pay a price for the reduced sensitivity to sampling phase, and other 
benefits of the FSE, in adversely affecting the convergence properties of the equalizer. The 
small eigenvalues lead in particular to a problem with coefficient saturation, as will now be 
detailed. 

9.4.2. Coefficient Drift 
In any implementation, analog or digital, there will be a maximum value that a filter 

coefficient can assume. As one or more eigenvalues get very small, it becomes more likely that 
this maximum value will be inadequate, and the proper operation of the filter comes into 
question. This point is illustrated in Fig. 9-12. The region of allowed filter coefficients for a 
two-coefficient filter is usually a square centered at the origin as constrained by 
implementation considerations. As an eigenvalue approaches zero, the sensitivity of the mean
square error in the direction of the corresponding eigenvector to the filter coefficients becomes 
very small. Even after convergence of the filter coefficients to the optimum, there will continue 
to be a fluctuation of the filter coefficients about that optimum, with the adaptation algorithm 
continually bringing the coefficients back toward the optimum. The fluctuation of the 
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coefficients in the direction ofleast sensitivity (the direction of the eigenvector corresponding 
to the minimum eigenvalue) will tend to be larger. Since the coefficients can drift relatively 
freely in this direction, the phenomenon is called coefficient drift. As the eigenvalue gets 
smaller, the probability of coefficient drift taking the coefficients out of the allowed region gets 
large. 

There are several possible solutions to this problem. If the coefficients drift to the edge of 
the allowed region, then further adaptation could cause an overflow. A simple solution is to 
saturate the coefficients when they reach the edge, in effect constraining the adaptation to the 
allowed region. A less attractive solution is to inject a small component of white noise at the 
input to the adaptation algorithm, thereby increasing the smallest eigenvalue (Problem 9-14). 
Obviously this degrades performance, since this noise component will also appear at the slicer 
input. 

A third solution, which also degrades performance, is to introduce a coefficient leakage 
that tends to force the coefficients toward the origin [12]. This leakage can be obtained by 
changing the criterion that the adaptation algorithm is minimizing to 

(9.90) 

where Jl is another small constant. Instead of simply minimizing the MSE, the criterion tries in 
addition to minimize the length of the coefficient vector. Like the added white noise, this 
criterion results in some compromise in the asymptotic mean-square error and coefficient 
vector, which are no longer optimal in the sense of (9.16) (Problem 9-15). 

9.5. Passband Equalization 

The equalization techniques that we have discussed thus far are based on a baseband 
channel model, in which it has been assumed that demodulation has been performed prior to 
equalization. It is possible to perform equalization prior to demodulation; this is called 
passband equalization. This is an important extension of the results thus far. Passband 
equalization is much more common than baseband equalization, for reasons that will be 

Fig. 9-12. Contours of equal MSE for a large eigenvalue spread. 
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elaborated in Section 15. Basically these reasons relate to the difficulty in placing the adaptive 
equalizer in the carrier recovery loop. Passband equalization mitigates these difficulties by 
allowing us to place the entire demodulation structure after the equalization. Passband 
equalization was proposed in a seminal paper by Falconer in 1976 [13). Passband fractionally 
spaced equalization was assumed in Fig. 5-21. 

The first step in deriving the passband equalizer structure is to derive a new channel model 
assuming that demodulation is not performed in the receiver front end. Such a channel model 
is shown in Fig. 9-13(a). We show the usual QAM transmitter, a channel impulse response 
b( t), a receive filter f( t), a phase splitter to generate the analytic signal, and a demodulator 
with frequency II. The baseband channel model that we have considered thus far corresponds 
to II = fc· The case where there is no demodulation corresponds to II = o. Other values of II are 
possible; an important example would be where II was chosen to nominally equal fo but with a 
small and unknown frequency offset due to the fact that fe and II are generated by independent 
oscillators. 

Ifwe define 

I:!{=fc-II ' 

then the channel model of Fig. 9-13(b) can be derived. 

Exercise 9-13. 
Show that the model of Fig. 9-13(b) follows from Fig. 9-13(a), where 

h(t) =g(t) * «b(t) * f(t»e-j2rtfct. 

Bya simple manipulation the model of Fig. 9-13(b) becomes 

where 

Ak 1 g(t) 

(a) 

Lk Akh(t - kT)e -j2rtD.ft = LkAkh( t - kT) , 

(9.91) 

(9.92) 

(9.93) 

Fig. 9-13. A passband channel model. (a) The transmitter, channel, and receiver assuming that 
demodulation uses frequency fl rather than fc• (b) Equivalent channel model consisting of baseband 
filter and modulator. (c) Equivalent channel model consisting of modulator and passband filter. 
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~ = Ake j27W.fkT 

is called the rotated data symbol and 

h(t) = h( t)e j27W.ft 

CHAP. 9 

(9.94) 

(9.95) 

is called the passband channel response. This relation corresponds to the model shown in 
Fig. 9-13( c). Since h( t) is a baseband filter, centered at d.c., h( t) is a passband filter, centered 
at frequency Af. One way to view this model is as a modulation operation followed by 
passband filter, as opposed to a baseband filter followed by modulation in Fig. 9-13(b). 

For purposes of equalization, we can think of the channel as consisting of a passband filter 
h( t) driven by the rotated data symbols Ak. This logic leads to the passband equalizer 
structure shown in Fig.9-14(a). The sampled channel output is fed through a passband 
equalizer C( z), the purpose of which is to invert the response h( t) to yield a good estimate of 
the rotated symbols Ak. Ifwe wanted to replicate the baseband equalizer structure, we would 
build a slicer appropriate for the rotated symbols. The simplest way to do this is to take a slicer 
appropriate for the non-rotated symbols, and precede that slicer by the reverse rotation and 
follow it by the rotation, as shown in the figure. Since the purpose of the passband equalizer is 
to generate a good estimate of the rotated symbols, we must use an error signal for adaptation 
which is the difference between the equalizer output and the rotated data symbol, as shown. 
We call this error signal Ek, since it is a rotated version of the error Ek between input and 
output of the non-rotated slicer, 

(9.96) 

This is made clearer by the equivalent equalizer structure shown in Fig. 9-14(b). We can think 
of this structure as realizing a slicer and error generator appropriate for the non-rotated data 
symbols, whereas the equalizer works in a rotated data symbol world. The rotators simply 
convert between the two worlds. 

The convergence of the adaptive passband equalizer follows directly from the baseband 
case, since the two are equivalent except for two facts: 

(al 

e -j27W.fkT 

+ 
+ 

e -j21tllfkT 

Fig. 9-14.· Passband equalizer structure. a. Direct generation of rotated error signal. b. Rotation of slicer 
error signal. 
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• The passband equalizer is driven by rotated data symbols rather than the non-rotated 
symbols. 

• The passband equalizer is inverting the passband channel response h( t) rather than the 
baseband response h( t). 

The relationship between the statistics of the non-rotated and rotated data symbols is easily 
developed. 

Exercise 9-14. 
Show that the power spectrum of the rotated data symbols is given by 

(9.97) 

Hence, if the non-rotated symbols are white (uncorrelated), then so are the rotated symbols. 

The convergence properties of the passband equalizer are therefore the same as those of the 
baseband equalizer when the transmitted data symbols are uncorrelated. 

The passband equalizer can be used in several ways: 

• We can phase-lock the demodulation carrier to the incoming carrier, making h = fe 
(f:l.{ = 0). This raises problems to be discussed in Chapter 15, because it puts the 
equalizer delay into the carrier recovery loop, slowing the tracking capability of that 
loop. 

• We can choose h = 0 (f:l.{ = fe)' This is the passband equalizer case. 

• We can choose h to nominally equal fe' but without phase locking with a carrier 
recovery loop. For this case f:l.{will be small but unknown. We can think of this case as a 
baseband e<]!lalizer with a small frequency offset and phase compensation at the output. 
In this case h( t) is not a passband function, although it has been shifted in frequency by 
a small amount. 

In either of the second two cases, a carrier recovery loop driving the rotators at the equalizer 
output is required, as discussed in Chapter 15. Case 3 could therefore be described as a 
baseband equalizer with a phase-tracking carrier loop. The relative merits of the second two 
realizations is considered in Problem 9-17. 

9.6. Further Reading 

The tutorial article by Qureshi on adaptive equalization is highly recommended reading 
[10][11], as is the recent book by Proakis [14]. The early treatise by Lucky, Salz, and Weldon 
is somewhat dated but still recommended reading [3]. There are several books on the general 
topic of adaptive filtering [9] [15] [16]. 

We have not discussed the adaptation of a ML sequence detector (Viterbi algorithm). This 
is not straightforward; the issues are addressed at some length in [11]. 
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Several methods to speed the convergence of the adaptive equalizers have been omitted. 
These include an alternative structure called the lattice filter [9][17][18], and a class of 
adaptation algorithms called the least-squares (LS) algorithms [9]. There are many versions of 
the LS algorithms, including those based on both transversal filter [19] and lattice filter 
realizations [20]. 

Appendix 9-A. 
SG Algorithm Error Vector Norm 

In this appendix we approximate the expected value of the norm of the error vector qk for 
an input random process consisting of zero-mean independent samples. 

An update for qk is given in (9.60). By direct calculation, 

IIqk+1112 = qk+1 *qk+l = qk *rk *rkqk + 2~Re{Dk *r{rkqk} + ~21Dk 121irkl12 . (9.98) 

Since by assumption Dk is the error of an optimal fixed-coefficient equalizer, by the 
orthogonality principle it is uncorrelated with the vector of input samples rk. If we also 
assume it is independent, 

E[Dk*r{rkqkJ = E[Dk*JE[r{rkqkJ (9.99) 

and noting that E[DkJ = 0, fortuitously the expectation of the middle term is zero. 

Assuming that the error vector qk is changing very slowly, we can assume it is a constant 
with respect to the expectation over the input random vector rk, and thus the mean value of the 
error vector norm versus time is 

In this expectation, we have 

To evaluate the expectation of the first term, we write it out explicitly, 

EWk *rkJ = I - 2~<I> + ~2E[(rlr~(rkr{)J 

= I - 2~<I> + ~2EUirkI12(rkr{)J , 

(9.100) 

(9.101) 

(9.102) 

where <I> = <pol by assumption. The last term is difficult since it involves fourth-order statistics, 
which we will have to approximate (unless the Rk are Gaussian, in which case exact evaluation 
is possible). In terms of the original input process, the (m, n) element of this matrix (indexed 
from the center) is 
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LL 2 * E[. IRk+jl Rk+mRk+,J . 
J =-L 

(9.103) 

Because of the assumed independence and zero mean of the Rk, this expectation is zero for 
m::f.n; therefore, the matrix is diagonal. When m = n, it reduces to 

where 

E[[L~ = -L 1 Rk+j 12 1 Rk+m 12J = E[ 1 Rk+m 14] + L#mE[ 1 Rk+j 12]E[ 1 Rk+m 12] 

= Tla + (N - 1)<1>02 , 

We will approximate Tla as the square of the second moment, 

Tla "" <1>02 . 

(9.104) 

(9.105) 

(9.106) 

The second term is precisely (N - 1)<1>02; hence, the entire sum is approximately N<I>02. We can 
get some idea of the accuracy of this approximation from considering the Gaussian example. 

Exercise 9-15. 
Assume that Rk is a complex-valued Gaussian random variable with independent identically
distributed real and imaginary parts. Show that 

(9.107) 

Hence the approximation above has the correct dependence on <1>0 but is offby a factor of two. 

Substituting the approximation of(9.106) into (9.104), we get 

(9.108) 

and the result of (9.69) is established. The error in this approximation will generally be small 
when N is reasonably large. The approximation is necessary since the statistics are governed 
by the very complicated intersymbol interference, and the fourth moment is therefore very 
difficult to evaluate explicitly. 

Problems 

Problem 9-1. For a linear predictor of input process Rk, define a vector of prediction coefficients 

(9.109) 

and a vector of past data samples, 

(9.110) 
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Then the prediction error of an N-th order predictor is 

(9.111) 

Find the optimal set of coefficients and the resultant minimum MSE. 

Problem 9-2. Rederive (9.16) directly from orthogonality principle (9.26). 

Problem 9-3. Derive the orthogonality principle for a linear predictor. 

Problem 9-4. This problem will attempt to make plausible the relationship between the eigenvalues of 
an autocorrelation matrix and the power spectrum displayed in (9.47) Let <I> be a (2L + 1) X (2L + 1) 
autocorrelation matrix, and let the components of an eigenvector of this matrix be 

v= [v_L, v-L+l> ... , VL]T . 

(a) Show that the eigenvector and associated eigenvalue A satisfies the relationship 

L 
Li = -L <Pj - iVi = AVj , -L ~j ~ L 

(b) Let L ~ 00 and take the Fourier Transform to show that 

S(e j8 )V(e j8 ) = AV(e j8 ) , 

where S(ej~ is the power spectrum defined by (9.46) and 

(9.112) 

(9.113) 

(9.114) 

(9.115) 

(c) Where S(e j8 ) is a single valued function (that is, it doesn't assume the same value at two 
different frequencies), argue that the infinite eigenvectors have components that are samples of a 
complex exponential (ej8rfi), with corresponding eigenvalues equal to the power spectrum at the 
same frequency. 

(d) Use these results to argue the validity of (9.47). 

Problem 9-5. Consider an input wide-sense stationary random process with autocorrelation function 
<Pm = a lml . 

(a) Find the power spectrum of this random process. 

(b) Find the asymptotic minimum and maximum eigenvalues of the autocorrelation matrix. 

(c) Find, as a function of a, the eigenvalues and eigenvectors of the 2 X 2 autocorrelation matrix. 

(d) Find the eigenvalue spread of the autocorrelation matrix as predicted by approximate relation 
(9.47) and compare to the results of c. 

(e) Find, as a function of a and as N ~ 00, the step size ~ and resulting dominant mode of 
convergence of the MSEG algorithm. Interpret this result intuitively. 

Problem 9-6. Show that for the MSEG algorithm, the error vector is given by 

(9.116) 
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and interpret this equation. 

Problem 9-7. Using the results of Problem 9-6 and (9.38) show that the excess MSE is given, for the 
MSEG algorithm, by the relation 

(9.117) 

and interpret this equation. 

Problem 9-8. Consider the dominant mode of the MSEG algorithm. 

(a) The excess MSE as a function of time expressed in decibels is approximately given by Yl - Y2' j. 
Find the constants Yl and Y2' 

(b) Evaluate these constants for the particular case where f3 is very small, and discuss the tradeoff 
between speed of convergence and step size for this case. Thus, the MSE expressed in decibels 
decreases linearly with time. 

Problem 9-9. For an input process Yk with mean value J.! '# 0, show that the minimum-MSE first
order predictor is 

(9.118) 

where p is a normalized covariance, defined as 

(9.119) 

Problem 9-10. A real-valued input WSS process has power spectral density 

<1>( z) = A , 0< ex < 1 
(1-az)(1-az-1) 

(9.120) 

and the region of convergence includes the unit circle. 

(a) Find the autocorrelation function tl>m' 
(b) Find the predictor coefficients for a minimum MSE N-th order predictor. 

Problem 9-11. In the MSEG algorithm, in place of a fixed step size f3, use a variable step size f3j in the 
determination of Cj. 

(a) Show that the error vector at iterationj is given by 

n 

qj = L rr~ = 1(1 - f3iAz)(VI*qo) . vI' 
1=1 

(9.121) 

(b) Show that you can force the error vector to zero in precisely N iterations by proper choice of the 
step sizes assuming you know the eigenvalues of the matrix (but that is all you need to know). 
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Problem 9-12. For the signal power estimation algorithm of (9.78), assume that Rk is a real-valued 
zero-mean white Gaussian process. 

(a) Show that (Jk 2 is an unbiased estimator of the signal power. 

(b) Find the variance of this estimate. Interpret how this variance depends on step size u. 

Problem 9-13. Assume an FSE with sampling rate equal to twice the symbol rate. 

(a) Write the equations describing the input-output relationship of the FSE. 

(b) Find the SG algorithm that adapts this equalizer structure. 

Problem 9-14. Assume that a white noise component with variance (J2 is added to the input of an 
adaptive filter. Quantify the effect ofthis noise on the coefficient drift as follows: 

(a) What is the new set of eigenvalues? 

(b) What is the new eigenvalue spread? What is the effect of (J? 

(c) For the MSE solution, what is the effect of (J on the MSE? 

Problem 9-15. Suppose the MSE criterion is modified to minimize (9.90). Find the coefficient vector 
cl-l which minimizes this quantity, and show that the error between this solution and the coefficient 
vector Copt of (9.16) is given by 

and that the resulting excess MSE of (9.8) is given by 

How does this MSE increase as we vary J.l? 

Problem 9-16. Continuing Problem 9-15: 

(a) Find the MSE gradient algorithm which iteratively minimizes this error. 

(b) Find the criterion on the step size of this algorithm which guarantees stability. 

(c) Find the step size which maximizes the rate of convergence. 

(9.122) 

(9.123) 

(d) Investigate how the maximum rate of convergence can be altered by the choice of J.l, particularly 
where the eigenvalue spread is large. Discuss the tradeoff between "excess MSE" and rate of 
convergence. 

(e) How do these results apply to the stochastic gradient algorithm of(9.53)? 

Problem 9-17. Consider a voiceband data modem with the following characteristics: carrier frequency 
1800 Hz, symbol rate 2400 Hz, excess bandwidth 10%. Assume that all sampling rates used in the 
receiver are an integer multiple of the symbol rate and are chosen to be as small as possible. Draw a 
block diagram of a receiver using a fractionally-spaced linear equalizer, labeling the sampling rates at 
each point. 
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(a) Assume a baseband equalizer with phase-locked demodulation at the receiver front end. 

(b) Assume a passband equalizer. 

459 

(c) Assume a baseband equalizer with a demodulator at the front end, but not phase-locked to the 
receive carrier. 

(d) Which ofthese realizations appears to be more attractive? Why? 

Problem 9-18. For the same conditions as in Problem 9-17b, draw a block diagram of a DFE with a 
passband precursor equalizer labeling the sampling rates at each point. 
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10 
MIMO Communications 

Prior chapters were concerned with communication across a single-input single-output 
(8180) channel for which the channel input and channel output were scalar-valued signals. In 
this chapter we study the problem of communicating across a multiple-input multiple-output 
(MIMO) channel, for which the channel input and output are vector-valued signals. In doing 
so, this chapter adds another impediment to the mix. Not only must a receiver contend with lSI 
and noise, but also with interference between the inputs. Depending on the application, this 
interference may be referred to as co-channel interference, adjacent-channel interference, 
crosstalk, or multiuser interference. Whatever its name, the presence of this interference is 
what distinguishes this chapter from previous chapters. 

At one level, a MIMO channel is a straightforward extension of an lSI channel to higher 
dimensions. Indeed, as we will see, many useful communication strategies for MIMO 
channels are obviously extensions of lSI equalization strategies to the case of a matrix-valued 
channel. However, this view can be misleading because it fails to recognize that MIMO 
channels possess unique characteristics that have no counterpart in lSI channels. For example, 
because the different inputs to a MIMO channel can represent n different users, it follows that: 

• the interfering symbols might have much higher energy than the desired symbols 

• there are n! ways to arrange the order in which the n input symbols are detected 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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In contrast, neither is possible in scalar lSI channels, where instead, the interfering symbols 
have the same energy as the desired symbols, and where an equalizer detects the symbols in 
the same order in which they were transmitted. As we will see, MIMO channels have many 
such unique properties that call for new transmission and detection strategies. 

As special cases, this chapter also considers multiple-input single-output (MISO) and 
single-input multiple-output (SIMO) channels, as can arise when either the transmitter or 
receiver uses an antenna array, for example. Antenna arrays are commonly used in wireless 
channels as a means for providing diversity against multipath fading, and thus MIMO 
channels frequently arise in the context of wireless channels. For this reason, there will be 
more of a focus on wireless channels in this chapter than in previous chapters. 

There are two classes of applications for which the MIMO model arises: single-user 
channels and multiuser channels. The class of multiuser channels can be further decomposed 
into two types: multiple-access channels and broadcast channels. 

• In a single-user MIMO channel, the emitters are collocated at a single transmitter, and 
the sensors are collocated at a single receiver, facilitating coordination at both ends. A 
single-user system is also known as a point-to-point system. The n inputs originate from 
the same source and are often highly correlated. The receiver aims to detect all inputs 
simultaneously. 

• In a multiple-access channel, or multipoint-to-point channel, there are multiple 
transmitters (or users) that are geographically isolated from one another and for which 
there is little or no coordination. Specifically, each user has its own distinct message to 
convey, so that the symbols emitted from different transmitters are statistically 
independent. A receiver whose goal is to detect all inputs is a centralized multiuser 
detector, whereas a receiver whose goal is to detect only one of the inputs is 
decentralized. In a cellular setting, the uplink channel (from portables to the 
basestation) is an example of a multiple-access channel. The basestation receiver is 
often centralized. 

• In a broadcast channel, or point-to-multipoint channel, there are multiple receivers (or 
users) that are geographically distinct and for which there is no coordination. The 
transmitter, which consists of one or more coordinated emitters, sends distinct messages 
to the multiple users simultaneously. The downlink (from the basestation to the 
portables) is an example of a broadcast channel. The receivers are generally 
decentralized. 

Example 10-1. -----------------------------------------------------
A home gains access to the telephone network through a twisted pair of wires. Before the central 
office, the twisted pairs from neighboring homes are typically bundled into a single cable with a 
protective sheath, as illustrated in Fig. 1O-I(a). The mutual interference among the twisted pairs 
within the cable leads to a single-user n-input n-output channel model. 

Example 10-2. -----------------------------------------------------
As shown in Fig. 1 0-1 (b), a wireless transmitter with an array of n antenna elements and a receiver 
array with m elements constitute a single-user MIMO channel with n inputs and m outputs. 
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Fig. 10-1. Examples of single-user MIMO channels: (a) Mutual interference or crosstalk among the 
twisted pairs bundled within a single cable leads to a MIMO channel model; (b) a wireless transmitter 
with an array of n antennas communicating to a receiver with an array of m antennas leads to an n
input m-oulpul channel model. 
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Fig. 10-2. Examples of multiuser MIMO channels with n inputs and m outputs: (a) n mobile 
transmitters near a basestation receiver with m antennas constitute an n-input m-output multiple
access channel in which only the channel outputs are processed jointly; (b) n basestation transmitters 
communicating to a collection of m mobile receivers constitutes an n-input m-oulput broadcast 
channel in which only the channel inputs are coordinated . 

Example 10-3. 
The wireless channels illustrated in Fig. 1O-2(a) and Fig. 1O-2(b) are examples of multiple-access 
and broadcast multiuser channels, respectively, that take a MIMO model. 

For our purposes, the three categories ofMIMO channels are distinguished by the amount 
of coordination at each end: a multiple-access channel coordinates only at the receiver, a 
broadcast channel coordinates only at the transmitter, and a single-user channel coordinates at 
both ends. Throughout this chapter, whenever possible, we will focus our discussion on a 
general MIMO channel model that encompasses all three categories. 
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10.1. Basics of MIMO Systems 

This chapter considers continuous-time and discrete-time signals that are vector-valued, as 
well as filters that are matrix-valued. In this section we briefly summarize the notation and 
properties of such signals and systems. 

10.1.1. Deterministic Signals 

In this chapter, column vectors will be bold and lower case, such as a, and matrices will be 
bold and uppercase, such as A. We use the notation AT to denote a transpose, A to denote a 
complex conjugate, and A * to denote a conjugate (or Hermitian) transpose, so that A * = A 1'. 
When A is invertible, we use A -* as a shorthand for (A-1)*. The rank ofa matrix is the number 
of linearly independent columns. A real matrix satisfies A = A, a symmetric matrix satisfies 
AT = A, and a Hermitian matrix satisfies A * = A. 

A continuous-time vector-valued signal set) = [sl(t), ... , sn(t)]T of dimension n is a 
column vector whose components are continuous-time scalar signals. A linear-time-invariant 
n-input m-output filter is characterized by an impulse response matrix H(t) of dimension 
m x n, whose component hilt) in row i and column j is the response at the i-th output to an 
impulse at the j-th input, assuming all other inputs are silent. The output of a MIMO filter with 
impulse response matrix H(t) and input set) is given by the convolution integral: 

yet) = (H(-r)s(t --r)d-r. (10.1) 

We define the Fourier transform of a vector-valued signal set) as S(f) = [81(f), ... , 8n(f)f, 
where 8 i(f) is the Fourier transform of si(t). Similarly, the Fourier transform of H(t) is H(!), 
where the component Hij(f) of H(f) in row i and columnj is the Fourier transform of hij(t). 
Although we will use the same notation H( . ) for both the time and frequency domain, the 
ambiguity is easily resolved by considering the context and the argument of H( . ). Taking the 
Fourier transform of both sides of(IO.1) yields Y(f) = H(f)S(f). 

Discrete-time signals and systems will use an analogous notation. A discrete-time vector
valued signal Xk = [Xk(1), ... , Xk(n)]T of dimension n is a vector whose i-th component is a 
scalar sequence Xk(i). An LTI n-input m-output filter is characterized by a matrix-valued 
impulse response Hk of dimension m x n, whose component hk (i, j) in row i and column j is the 
response at the i-th output to an impulse Ok at the j-th input. The matrix sequence Hk will be 
referred to as an impulse response, even though it would be more accurate to call it a matrix of 
impulse responses. The output of a MIMO filter with impulse response Hk and input Xk is: 

(10.2) 

The Z-transform of Xk is X(z) = [X1(z), ... Xn(z)]'\ where Xi(z) = L; = -ooXk(i)z-k is the Z
transform of Xk(t). Rather than viewing X(z) as a vector of Z transforms, we can equivalently 
view it as the Z-transform of the vector-valued sequence Xk, using: 
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(10.3) 

When z = ej8 or z = ej21tfT, X(z) reduces to the Fourier transfonn X(e j8 ) or X(e j21tiT). 

Similarly, the Z-transfonn of Hk .is H(z), where the component Hi/Z) of H(z) in row i and 
column j is the Z-transfonn of hk (~, J), or equivalently: 

(10.4) 

Taking the Z transfonn or Fourier transfonn of (10.2) yields Y(z)=H(z)X(z) or 
y(ei8)=H(ei8)X(eil). For this reason, H(z) is referred to as the transfer function of the MIMO 
filter. 

A discrete-time MIMO filter with impulse response H '!:.k is said to be matched to the filter 
with impulse response Hk. If the original filter has dimension m x n, its matched filter has 
dimension n x m. The Z-transfonn of the matched filter H~k is H*(l/z*), as is easily verified 
from (lOA). The transfer function H*(lIz*) is said to be the parahermitian conjugate ofH(z). 
A transfer function H(z) that satisfies H*(l/z*) = H(z) is said to be parahermitian [1]. 
Clearly, a matrix can only be parahennitian if it is square. If H(z) is parahennitian then H( e j8 ) 

is Hennitian for all S. 

A MIMO filter is stable if its transfer function is stable. A transfer function H(z) is stable 
if bounded inputs produce bounded outputs, which is true if and only if the entries Hij(z) are 
stable; i.e., their regions of convergence include the unit circle. 

The rank of a transfer function H(z) will generally depend on the value of z. For a rational 
MIMO transfer function (whose elements are rational scalar transfer functions), the rank of 
H(z) will be the same - the so-called normal rank - for all but a finite set of points in the z 
plane. The largest possible value for the nonnal rank is the minimum of m and n. 

The notion of poles and zeros that is so useful for scalar filters does not readily extend to 
MIMO filters. A transmission zero of a MIMO transfer function H(z) can be defined as a value 
of z for which the rank of H(z) is smaller that its nonnal rank. For the special case when H(z) 
is square with full nonnal rank, the transmission zeros reduce to the conventional zeros of the 
scalar detH(z). Observe that a transmission zero at z = Zo does not imply that H(zo) = 0; it only 
implies that H(zo) has a smaller rank than at other values of z, so that there exists a constant 
vector u such that an input of the fonn zoku produces a zero output o. In this sense, a 
transmission zero has associated with it a direction (or more precisely, a subspace) as well as a 
frequency. 

There is no direct relationship between a transmission zero of H(z) and the zeros of the 
components ofH(z). 

Example 10-4. -------------------------

The rank of 
H(z) = [! ~] 
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is two for all values of z in the complex plane except at z = ±l, where it has rank one. Hence, its 
normal rank is two, and its transmission zeros are at z = ±lo In contrast, the components of H(z) 
have a zero only at z = O. 

The poles of H(z) are defined as the union of all of the poles of Hij(z). Unlike the scalar 
case, a particular value of z can be both a pole and a transmission zero, without cancellation! 

Example 10-5. -----------------------------------------------------

The stable transfer function H(z) = [2 + z-1 

z=-1/2. 1 

3 + Z-I] 
__ 1_ has both a pole and a transmission zero at 
2 +z-1 

Space-Time Causality 

A causal system is a system that does not require knowledge of future inputs to produce a 
given output. There are three ways to define causality for a MIMO filter, depending on how 
"future" is defined. All three are valid extensions of causality from scalar sequences to vector 
sequences, in the sense that all reduce to the conventional definition when the filter has a single 
input and a single output. 

Given a MIMO filter with input Xk and output Yk, one way to extend causality to MIMO 
systems is to define a causal system as one in which the outputYk depends only on {xk, Xk -1' 

Xk -2, ... }. For an LTI system, this is equivalent to the condition that Hk = 0 for k < O. This 
definition does not order the components of a particular Xk, but instead implicitly assumes that 
they occur simultaneously. The past and future with respect to a particular vector Xk are 
distinguished in Fig. 1O-3(a). 

A less obvious but equally valid definition for causality would order the components of a 
vector sequence so that space takes precedence over time, according to { { .. 'X_1 (1), Xo (1), Xl (1) 

... }, { ... X_l(2), Xo(2), Xl(2) ... }, ... {",X_l(n), Xo(n), Xl(n) ... }}. In other words, we could 
declare that Xk(i) comes before xfj) when i <j, regardless of k and t, and that Xk(i) comes 
before xP) when k < t. From the perspective of a particular component xk(i), the past and 
future are illustrated in Fig. lO-3(b). With this ordering, all of the matrix coefficients {Hk} of a 
causal LTI filter would be lower triangular, and the entire transfer function H(z) of a causal 

%. - 2 %1r - ' Xle X.k.l XII +2 " " _ 2 "Jt - t x" " Jr+l X"+2 XA- _ 2 %Ic - l Xk %11. +1 Xk+2 

~ ~ /j y; ~ ~ ?; % ?a ~ ~ ~ ~ ~ (% ~ ~ 

~ 
?3 ~ ~ 

!Z ~ ~ 

0 
~ "' .. . ~ ::3 ~ ~ ... ~ ~ ~ a: .. 

0 0 0 ~ ~ ~ ~ ~ ~ 
(a) (b) (c) 

....sT // 
FUTURE c:::::::J 

Fig. 10-3. Three ways to order the elements of a vector-valued sequence. 
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filter would be lower triangular. Unlike the diagonal elements, the elements below the diagonal 
would not necessarily be causal in the scalar sense. This version of causality can be useful in 
some theoretical treatments of multiuser detection [2]. 

The most convenient definition of causality for our purposes is to order the set of all 
components {Xk(i): for all i, k} so that time takes precedence over space. In particular, from 
the perspective of Xk (i), the "past" includes not only {Xk _ 1, Xk _ 2 ... } but also {Xk (1), ... Xk (i

I)}, and the "future" includes not only {Xk + 1> Xk + 2 ... } but also {Xk (i + 1), ... Xk (n)}. These 
relationships are sketched in Fig. IO-3(c). With this ordering, the transfer function H(z) of a 
causal LTI filter is generally not lower triangular, although the zero-th coefficient Ho is. 
Furthermore, all components of Hi/Z) will be causal in the scalar sense. This leads to the 
following definition for space-time causality, which we adopt in the remainder of the chapter. 

Definition. H(z) is space-time causal if and only if (1) Hk = 0 for k < 0, and (2) Ho is lower 
triangular. 

The value of this definition will become clear later in the chapter, when we describe decision
feedback detectors. Suffice it to say that this definition leads to a unified view of decision
feedback detection that encompassed DFE for scalar lSI channels and successive interference 
cancellation for multiuser channels. 

Another way to understand the triangular constraint is to consider a scalar (time-varying) 
filter sandwiched between a parallel-to-serial converter and a serial-to-parallel converter, as 
shown below, where the input and output switches are synchronized to move in unison: 

1 ." ,. • 1 
2 _____ "x. .1 SCALAR 1 _x - 2 

: '~FILTER~' : 
n~ ---'m 

This arrangement could be used to emulate an arbitrary LTI MIMO system. However, if we 
constrain the scalar filter to be causal, then this arrangement can only emulate a space-time 
causal system for which Ho is lower triangular. 

Example 10-6. -----------------------------------------------------

The transfer function HI (z) = [~ z:l] is space-time causal, but H2(z) = [~-1 ~] is not. 

A transfer function H(z) is strictly space-time causal if H(z) is space-time causal and Ho 
is strictly lower triangular, with zeros on the diagonal as well as above. The output of a strictly 
space-time-causal filter depends only on the past. A transfer function H(z) is space-time 
anticausal if its parahermitian conjugate (or equivalently, its matched filter) H*(1I z*) is 
space-time causal. 

If H(z) is space-time causal then Hi/z) will be causal for i?j and Hij(z) will be strictly 
causal for i < j. It follows that if H(z) is space-time causal and stable, the poles of all of its 
components {Hij(z)} will be inside the unit circle. 
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A space-time causal or anticausal filter H(z) is monic if Ho has ones on the diagonal. The 
transfer function HI (z) of Example 10-6 is monic. A constant triangular matrix Ho is also said 
to be monic when it has ones on the diagonal. So a space-time causal or anticausal H(z) is 
monic if Ho is monic. 

Example 10-7. -----------------------------
Consider the linear feedback system shown in Fig. 1O-4(a). Just as in the scalar case, such a system 
can be implemented only when the feedback filter B(z) is strictly causal. If the ordering of 
Fig. 1O-3(a) were used, so that all components of a particular output Yk were calculated 
simultaneously, then we would require that Bk = 0 for k ~ O. If the ordering of Fig. 1O-3(b) were 
used, so that the first output sequence {Yk (I)} were computed in its entirety (for all k E {-OO, ... 
co}) before computing any element of the second output sequence {Yk(2)}, then we would require 
that Bk be strictly lower triangular for all k E {-OO, .,. co}. Equivalently, we would require that 
B(z) be strictly lower triangular, with diagonal elements that are strictly causal in the scalar sense, 
but whose elements below the diagonal would not necessarily be causal in the scalar sense. But we 
will be using the ordering of Fig. IO-3(c), so that {Yk(1), ... Yk(i -I)} as well as {Yk -1> Yk _ 2 

.,. } are available when computing Yk(i); in this case, we require that B(z) be strictly space-time 
causal in the sense that Bk = 0 for k < 0 and Bo be strictly lower triangular. With this constraint, 
the linear feedback system of Fig. 1O-4(a) is implementable, and the transfer function mapping xk 
to Yk is given by: 

x 

C(z) = (1 + B(z»-IF(z) . 

r -1 
11 

}----....... --t .. Yk 

(a) 

(b) 

(10.5) 

Y 

Fig. 10-4. A general linear feedback system is shown in (a). A special case is shown in (b), where 
F(z) = r-1 and B(z) = M - I; this system implements the inverse of a lower-triangular matrix G, where 
r is the diagonal part of G and M = r-1G is monic and lower triangular. This is the backsubstiMion 
method for inverting a triangular matrix. 
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In particular, by choosing B(z) = M(z) - 1 and F(z) = r-1, we can use the feedback system to 
implement G(z)-I, the inverse of a space-time causal filter G(z) = rM(z), where r is the 
diagonal part of Go, and where M(z) is monic and space-time causal. A special case is shown in 
Fig. I 0-4(b), where the inverse of a constant 3 x 3 triangular matrix is implemented using linear 
feedback. This method for implementing the inverse of a triangular matrix is known as back 
substitution. 

Definition. A square filter H(z) is minimum phase if and only if both H(z) and H-1(z) are space
time causal and stable. 

10.1.2. Random Signals and MIMO Systems 

A random vector sequence Xk = [Xk(l), ... , Xk(n)jT of dimension n is a vector of scalar 
random sequences, or equivalently, a sequence of random vectors. The autocorrelation 
function R(d, k) is an n x n function defined by: 

(10.6) 

It can be viewed as the correlation matrix for the pair random vectors xk + d and Xk' Without 
the expectation operator, the product of the column vector Xk + d and row vector xk * would 
have rank one. With the expectation operator, however, the rank can be as high as n. A random 
sequence is wide-sense stationary (WSS) if its autocorrelation function is independent of time 
k, in which case (10.6) is written as R(d). If Xk is WSS, the covariance of Xk + d and Xk 

depends only on the time lag d. The power spectral density (PSD) matrix, or power spectrum, 
of a WSS random sequence is defined as the Z-transform S(z) or Fourier transform S(e j8 ) of 
its autocorrelation function, when it exists: 

S(z) = L; = ~ R(d)z-d . (10.7) 

Its inverse is given by: 

(10.8) 

A vector random process is said to be spatially white if its PSD is proportional to the 
identity matrix, S(z) = $(z)1 for some valid scalar PSD $(z). It is said to be temporally white if 
its PSD is a constant, S(z) = S, independent of z. A vector random process that is both 
spatially white and temporally white is said to be white; its PSD is of the form S(z) = $1 for 
some real positive constant $. 

Example 10-8. 
If {Xk(l), ... Xk(n), for all k} are independent and uniformly distributed over {±1}, then the 
autocorrelation function of the vector random sequence xk = [Xk (1), ... , Xk (n)] Tis: 

(10.9) 

Since this is independent of k, xk is WSS with R(d) = OdI. Taking the Z-transform, the PSD of xk 

is S(z) = I. Hence, xk is white (both temporally and spatially). 
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Exercise 10-1. 
The PSD S( z) and autocorrelation function R( d) of a vector random process xk have many useful 
properties that will be exploited in this chapter. Most of these properties are direct extensions of 
their scalar counterparts. Show that: 

(a) E[ 1 Xk(i) 12] = Rii(O) = 2~r Sii(e j9)de. 

2 -It 1 Jlt '9 1 Jlt n '9 
(b) EUlxkll ] = tr{E[x~k *]} = tr{R(O)} = 2n tr{S(e J )}de = 2n Li = lSii(e J )de. 

-It -It 

(c) R*(-d) = R(d). Thus, if we interpret R(d) as a filter impulse response, it is matched to itself. 

(d) S*(lIz*) = S(z). Thus, a PSD is parahermitian. 

(e) Forany angle e, u*S(eJ1l)u ~ 0 for all vectors u. 

(f) For any angle e, the eigenvalues p.'i(e)} ofS(ej~ are nonnegative, Ai(e) ~ 0 for all i. 

A matrix S(ej~ satisfying property (e) is said to be positive semidefinite (PSD). Hence, one 
can say that a PSD is PSD! A matrix S(eJ~ satisfying property (e) is said to be positive definite if 
u*S(eJ1l)u = 0 implies that u = 0; in this case, all of its eigenvalues in (f) become strictly 
positive. 

We say that a given transfer function S(z) is a valid PSD if one could construct a WSS 
random sequence with S(z) as its PSD. In terms of the properties of Exercise 10-1, S(z) is a 
valid PSD if and only if it satisfies properties (d) and (e). In the scalar case, (d) reduces to the 
requirement that the power spectrum be real, and (e) reduces to the requirement that it cannot 
be negative. 

Example 10-9. -------------------------
Consider the following two matrices: 

(10.10) 

The matrix Sl(Z) is a valid PSD. The matrix S2(Z) is not a valid PSD because it does not satisfy 
(d). The matrix S3(z) =-Sl(Z) is not a valid PSD, because it satisfies (d) but not (e). 

Filtering a Random Sequence 

If a WSS random sequence xk with PSD Siz) is passed through a MIMO filter with 
transfer function H(z), then the output Yk will also be WSS, and its PSD will be given by: 

Siz) = H(z)Sx(z)H*(Vz*) . (10.11) 

On the unit circle, this reduces to: 

(10.12) 

It is important to emphasize that, as in (10.11), the three matrices in this expression do not 
commute, and must be written in this order. This is in contrast to the scalar case, where (10.12) 
reduces to Sx(ej~IH(ej~ 12 , 
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To demonstrate (10.11), we begin with the definition (10.6) for the autocorrelation 
function ofthe filter output, and substitute the convolution sum of(10.2): 

&y(d) = ELYk + dYk *] 

= E [I7= -= Hlxk +d-l I~= -= Xk ~ iHi*J 

= ~oo HI ~':" R (d - j -l)H~ (where j = -i) 
L..l=-= L..J=-= x j 

= Hd ® Rx(d) ® H~d (where ® denotes convolution). (10.13) 

Taking the Z-transform of (10.13) yields (10.11). The above convolution operator is not 
commutative. 

10.1.3. Matrix Spectral Factorization 

Suppose you are given a valid PSD S(z) of dimension n x n. How would you go about 
creating a random sequence with S(z) as its PSD? Alternatively, if you were given a random 
sequence Xk with PSD S(z), how would you go about whitening it, or predicting future 
samples based on a linear combination of past samples? Answers to questions such as these 
are based on a minimum-phase spectralfactorization of the PSD matrix S(z) [3][4]. 

Theorem 10-1. (Matrix Spectral Factorization.) IfS(z) is a valid n x n spectral matrix that 
is rational and nonsingular on the unit circle, there exists a unique right factorization: 

S(z) = M*(1Iz*)r2M(z) (right), (10.14) 

where M(z) is monic and minimum phase, and where r2 is a diagonal matrix with positive 
diagonal components. There also exists a unique left factorization: 

S(z) = M(z)r2M*(lIz*) (left), (10.15) 

where again M(z) is monic and minimum phase, and r2 is positive definite and diagonal. In 
either case, r2 satisfies: 

(10.16) 

At times it will be convenient to combine the factors r and M(z) into one, by defining the 
minimum-phase filter G(z) = rM(z) for the right factorization, and G(z) = M(z)r for the left 
factorization, so that the right and left factorizations reduce to S(z) = G*(llz*)G(z) and 
S(z) = G(z)G*(lIz*), respectively. We should emphasize that the M(z) of (10.14) will not be 
the same as the M(z) of (10.15). They are given the same name only because they are both 
monic and minimum phase. This causes no confusion in practice because a given application 
will require that only one of the factorizations be performed. A numerical technique for 
factoring spectral matrices is explored in Problem 10-1. 
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The above matrix spectral factorization reduces to well-known factorizations in two 
limiting cases. In the scalar case, when n = 1, it reduces to the minimum-phase spectral 
factorization of Chapter 2. Altematively, in the memoryless case when 8(z) is a constant, 
independent of z, the matrix spectral factorization reduces to the Cholesky decomposition. (We 
will examine the Cholesky decomposition in more detail in Section 10.3.4.) 

Example 10-10. -------------------------
The spectral matrix: 

[ 10 30] [lOS 21] [10 41] 1 8(z) = 41 83 Z + 21 426 + 30 83 z- (10.17) 

can be factored as both 8(z) = GL(Z)GL *(1/ z*) and 8(z) = GR*(l1 z*)GR(z), where 

_[10 0]+[1 2] -1 _[10.078 0 1 +[°.908 3.8341_1 
GL(z) - 1 20 3 4 Z ,and GR(z) - 0.S64 19.84SJ 1.S12 4.183 f . (10.18) 

We are now ready to address the realization problem that was used to motivate the spectral 
factorization at the beginning of this section. Specifically, to generate a random sequence {Xk} 
with a given PSD 8(z), one need only generate a white vector sequence {uk} with i.i.d. unit
variance components, so that 8uu(z) = I, and then pass Uk through a filter whose transfer 
function G(z) is defined by the left factorization (10.15) of the given PSD, namely 
8(z) = G(z)G*(lIz*). Then (10.l1) implies that the filter output will have the desired PSD. 

10.1.4. Linear Prediction 
In this section we extend the linear prediction results of Section 3.2.4 to vector-valued 

random sequences. We first consider the space-only problem of linear prediction for a 
temporally white random process. Afterwards we consider the general space-time prediction 
problem. 

Linear Prediction in Space 

Consider the problem of linear prediction for a single random vector x of dimension n, 
whose mean is zero and whose autocorrelation matrix Rxx = E[xx*] is full rank. As just 
explained, such a matrix admits a unique (Cholesky) factorization Rxx = Mr2M*, where M is 
monic and lower triangular, and r2 is diagonal with real and positive diagonal elements. Let us 
form an estimate Xi of its i-th component as a linear combination of its past components {xl, 

... Xi-I}, namely Xi = L j: 11 Pi,jXj. In particular, because the first component of x has no past, 
we have Xl = O.The vector of estimates x = [xl' ... Xn]T can be expressed as: 

x =Px, (10.19) 

where P is a strictly lower-triangular matrix of prediction coefficients {Pi,j}. The problem is to 
choose the prediction coefficients so as to minimize the sum mean-squared prediction error 
E[\\x - x 1\2] = trRee, where Ree = E[ee*] is the autocorrelation matrix of the prediction error 
e = x - X = (I - P)x. Specifically, we have: 
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EUlx - x 112] = trRee 
= tr{(I- P)R=(I- P)*} 

= tr{ (I - p)Mr2M*(1 - P)*} 

= tr{(I + D)r2(1 + D)*} , 

473 

(10.20) 

where we have introduced (I + D) = (1- P)M. Since M is monic and lower triangular, and 
since P is strictly lower triangular, the product (1- P)M must be monic and lower triangular. 
Therefore, the matrix D must be strictly lower triangular. Multiplying (10.20) out yields: 

E[lix - x 112] = tr{r2 + Dr2 + r2D* + Dr2D*} (10.21) 

(10.22) 

where we exploited the fact that the trace of a strictly triangular matrix is zero. The second 
trace in (10.22) is nonnegative, because it is the trace of a Hermitian matrix, which has 
nonnegative eigenvalues. Hence, we can do no better than to force the second term to zero by 
choosing D = 0, yielding a minimum MSE of tr{r2}. Thus, solving (I + D) = (I - P)M for P 
with D = 0 yields the solution to the linear prediction problem: 

P=I_M-1. (10.23) 

Since M is lower triangular and monic, it is invertible, and P is strictly lower triangular. 

Example 10-11. ------------------------
Consider a random vector x = [xl> x2, x31 T whose autocorrelation matrix is: 

[
16 8 

R== 8 20 
20 10 

(10.24) 

. 
M* 

where we have shown the unique left Cholesky factorization R= = Mr2M*. Suppose we want to 
predict x2 given Xl, and also x3 given Xl and x2' From (10.23), the optimal linear predictor is 
x = Px, where: 

P = 1 - M-1 = 1 - [1~2 ~ ~ ] -1 = [1~2 ~ ~o ] . 
114 112 1 0 112 

(10.25) 

It follows that x2 = O.5x1, and x3 = O.5x2' The resulting MSE is tr{r2} = 48. 

Linear Prediction in Space and Time 

In this section we generalize the above result to solve the space-time linear prediction 
problem. Consider a WSS random sequence Xk of dimension n whose PSD S=(z) is left
factored according to S=(z) = M(z)r2M*(1 / z*), where M(z) is monic and minimum phase, 
and where r2 is a positive-definite diagonal matrix. Let us form an estimate x!i) of its i-th 
component at time k as a linear combination of its past components {Xk (1), ... xk (i - I)} and 
{xk -1' xk _ 2, ... }. In vectorform, xk = [Xk (1) , ... Xk (n)]T can be expressed as: 
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(10.26) 

where {Pk} is a strictly space-time causal MIMO filter of prediction coefficients with transfer 
function P(z), so that Pk = 0 for k < 0, and Po is strictly lower triangular. The MMSE linear 
predictor chooses P(z) to minimize E[JIxk - Xk 112] = trinl.: See(ej9) d9, where Seiz) is the 
PSD of the prediction error ek = xk - Ii= 0 P1xk -I. But: 

See(z) = (I - P(z»Sxx(z)(I- P*(lIz*» 

= (1- P(z»M(z)f2M*(1/z*)(1 - P*(l/z*» 

= E(z)r2E*(1/z*) , (10.27) 

where we have introduced E(z) = (1- P(z»M(z). Being the product of two monic and space
time causal transfer functions, E(z) = Ik' = ~kZ-k is also monic and space-time causal, with 
Eo monic and lower triangular. The MSE can now be expressed as: 

E[JIx- x112] = tr2
1 r See(e j9)d9 
1t -It 

= tr"!" r E(ej9)r2E*(ej9)d9 
21t -It 

= trIk' = oEkr2Ek * 

= tr{ Eor2EO*} + tr{ Ik' = lEkr2E k *} . (10.28) 

The second trace is nonnegative, because it is the trace of a semi-positive definite matrix, and 
hence we can do no better than to force it to zero by choosing Ek = 0 for k ~ 1. Given a monic 
constraint, the first term is minimized by choosing Eo = I, as proved in the last section; hence, 
the E(z) that minimizes MSE is the identity matrix. Using E(z) = (I - P(z»M(z), we find that 
the best prediction filter is: 

P(z) = 1- M(zr1 . (10.29) 

This solution reduces to the space-only solution (10.23) when the random process is 
temporally white, and it reduces to the time-only solution of (3.76) when xk is a scalar. The 
MSE after the best linear predictor is E[JJXk - Xk 112] = tr{r2}. Using the arithmetic-geometric 
mean inequality and (10.16), this MSE is bounded by: 

(10.30) 

This expression might be useful for a PSD that cannot be factored analytically, or even for an 
experimentally measured PSD. 
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10.2. The Gaussian MIMO Channel 

The bulk of this chapter concerns the general MIMO channel shown in Fig. 10-5. There 
are n emitters or users that produce the channel inputs, and there are m sensors that produce 
the channel outputs. The complex envelope of the j-th emitted signal is LkaP)gP - kI), 
where {aP)} is the complex symbol sequence for the j-th emitter, and gP) is the transmit 
pulse shape for the j-th emitter. Let ri(t) denote the complex envelope of the waveform 
observed at the i-th receiver sensor. It will be convenient to represent the n channel input 
sequences by the vector-valued sequence ak = [ak(1), ... ak(n)l\ and similarly the m output 
waveforms by the vector-valued observation r(t) = [rl(t), ... rm(t)l-Z: Then r(t) is related to 
{ak} according to: 

(10.31) 

where H( t) is an m x n matrix of impulse responses whose (i,jih component hij(t) is the 
received response at the i-th output due to an impulse at the j-th input. As in previous chapters, 

AWGN 

(a) 

m x n n( t) 

H(t) ak ~~ ~l ~t) 
~ 

mxn 

(e) 

(b) 

Fig. 10-5. The MIMO channel model: (a) underlying passband model; (b) equivalent baseband model; 
(c) equivalent matrix model. 
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hij(t) is generally complex-valued, taking into account the effects of the transmitter pulse 
shape g/t) as well as the passband channel response bi/t), according to: 

Hij(f) = G/f)Bij(f + fc). (10.32) 

We assume that the noise vector n(t) = [nl(t), ... nm(t)f has independent complex
symmetric components, each white and Gaussian, satisfying E[ni(t + 't)n/(t)] = NOOijO('t). 
Implicit in this model is the assumption that all transmitters are complex PAM with the same 
symbol rate 1/ T. However, the inputs are not assumed to be synchronous. The relative timing 
offsets of the different inputs are not shown explicitly in (10.31) because they have been 
absorbed into the definitions of the different components of H( t). 

The equation (10.31) is reminiscent of the standard complex baseband model for PAM
based systems that has dominated the book, but with the important distinction that the input 
and output are vectors, and the received pulse shape has been replaced by a matrix of received 
pulses. 

10.2.1. The Matrix Matched Filter 
Of course, a special case of the MIMO channel is the SISO channel, which was studied 

extensively in the previous chapters. In the SISO case we saw that there were two ways to 
formulate the receiver optimization problem. One was to find the most likely sequence of 
transmitted symbols, which was solved by the Viterbi algorithm. The other was to find the 
sequence of most likely symbols, which was solved by quantizing the soft outputs of the BCJR 
algorithm. In the MIMO setting, there are three ways to formulate the receiver optimization 
problem: 

• Thejoint maximum-likelihood sequence detector (JMLSD) chooses the entire sequence 
{ak} that maximizes the likelihood function f(r(t) I {ak}). 

• The vector-by-vector ML detector chooses each ak so as to maximize f(r(t) I ak). 

• The symbol-by-symbol ML detector chooses each element ak(i) of each ak to maximize 
f(r(t) I ak(i»· 

In the following we focus on the JML sequence detector - loosely called the ML sequence 
detector - because it is the easiest to implement. 

Given that the noise is white and Gaussian, the JML sequence detector will choose the 
symbol sequence {ak} that minimizes: 

(10.33) 

which reduces to: 
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Only the first two terms depend on r(t), but the receiver may ignore the first term because it is 
independent of {ak}' Hence, everything about r(t) that the receiver needs to know in order to 
recover the input symbols is captured by the integral in the second term, namely: 

Yk = r H*(t - kT)r(t)dt . (10.35) 
~ 

In other words, the set {Yk} is a sufficient statistic for determining the JML sequence. 

The receiver may calculate the vector Yk by passing r(t) through a matrix matched-filter 
(MMF) with impulse response H*(-t), and sampling the output at time kT, as shown in 
Fig. 1O-6(a). The sampled-MF transforms the underlying continuous-time channel to an 
equivalent discrete-time channel with input ak and output Yk, as shown in Fig. 1O-6(b). 

The MMF has two key properties. First, it transforms the continuous-time observation into 
a discrete-time sequence that is sufficient for recovering the channel input. Second, it 
transforms the underlying m x n continuous-time channel into an equivalent discrete-time 
channel model that is square with dimension n x n. Interestingly, this dimension does not 
depend on the number of receiver sensors m. 

The impulse response of the sampled MF channel of Fig. 1O-6(b) is easily derived. 
Substituting (10.31) into (10.35), we find that: 

Yk = L7 = ~ r H*(t - kT)H(t - IT)dtal + nk ' 
~ 

or equivalently: 

where Sk = [H*(t - kT)H(t) dt 

mXn n(t),No nxm 

~L_H_(t_) .....J~f---(a-r:-t)--+l·1 H'H' k --.:' 
n 

n x n nk, NoS(z) 

~b--=k -----c:.s- (b) 

Fig. 10-6. (a) The MIMO channel followed by a sampled matched filter; (b) its equivalent model. 
In (b), the channel response 8(z) and the noise PSD NoS(Z) are proportional to one another. 

(10.36) 

(10.37) 

(10.38) 
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and nk = [H*(t - k1)n(t) dt . (10.39) 

We may interpret (10.38) as a generalization of the sampled-autocorrelation function Ph(k) of 
(5.65) to MIMO channels. Since H*(t) has dimension n x m and H(t) has dimension m x n, 
each Sk has dimension n x n. The Z-transform of Sk is S(z) = LkSkZ-k, and the Fourier 
transform is: 

(10.40) 

Since S(z) is parahermitian and positive semidefinite, it is a valid PSD. We refer to S(z) and 
S(e i21tfI') as the folded spectrum, since it is a MIMO generalization of the scalar folded 
spectrum (5.66). 

The filtered and sampled noise sequence nk of (10.39) has autocorrelation matrix: 

Rn(m) = E[nk + mnk *] 

= E [r H*(t - kT - m1)n(t)dt Joo n('t)* H('t - k1)d't ] 
--00 --00 

= No [H*(t - kT - m1)H(t - k1)dt = NoSm . (10.41) 

Taking the Z-transform, we find that the power-spectrum matrix for the noise nk IS 

Sn(z) = NoS(z). Interestingly, it is proportional to the equivalent channel transfer function. 

10.2.2. Separating Space From Time 

The spatial and temporal properties of the MIMO impulse response H(t) can be separated 
in the narrowband case, for which the symbol rate is sufficiently small that the frequency 
response of the channel can be modeled as a constant over the band of frequencies occupied by 
the signal. In this case, assuming that all n transmitters use the same pulse shape g(t), the 
MIMO impulse response of (10.31) reduces to: 

H(t) = g(t)H , (10.42) 

where H is a constant matrix. Therefore, the matched filter H*(-t) can be decomposed into the 
cascade of a space-only memoryless matrix H* followed by a bank of time-only matched
filters g(-t). This is illustrated in Fig. 10-7. The matrix H* is called a linear or spatial 
combiner, and can be interpreted as a spatial matched filter. 

Example 10-12. -------------------------
Consider a single-user single-antenna narrowband transmitter with complex envelope s( t) = 
Lkakg(t - kT), and a receiver with two antenna elements, producing the pair of observations rl (t) 
= h1s(t) + nl(t) and r2(t) = h2s(t) + n2(t). The MIMO impulse response is given by (10.42) 
with H = [hI> h2]1.' As shown in Fig. 10-8, the MF receiver first applies the spatial combiner H*, 
which produces y(t) = h1*rl(t) + h2*r2(t), and then applies y(t) to a scalar temporal MF g(-t). 
In this setting, the spatial combiner H* is commonly referred to as a maximal-ratio combiner, 
because it is the combiner that maximizes SNR. 
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The decision to perfonn spatial processing before temporal processing above is somewhat 
arbitrary; when the channel is narrowband as given by (10.42), the MMF can just as well be 
decomposed into a temporal sampled MF bank followed by a spatial combiner H*. But a 
receiver that perfonns spatial combining first will require only a single RF downconverter in 
practice, and thus has a complexity advantage, because downconverters can be expensive to 
implement. On the other hand, a receiver that perfonns temporal filtering first could 
implement combining after the samplers, making it easier to track a time-varying or unknown 
channel using digital processing. The price paid for this added flexibility is the need for two 
downconverters and two AID converters instead of one of each. Interestingly, because the 
output of the spatial combiner provides sufficient statistics, so must its input. Hence, the MF 
bank alone transfonns the continuous-time model of (10.31) into an equivalent discrete-time 
model. This model will also be memoryless if 1 G(f) 12 is a Nyquist pulse. 

nXn mxn n(t) nxm nxn 

~ H ~~ r(t) 

·1 H h-.:· g(t)J H H* g( -t)J 

spatial combiner MF bank 

Fig. 10-7. In the narrowband case, the spatial and temporal processing of the MF can be separated. 

, , , , 
, _______________ ..J 

Yk -

Fig. 10-8. The MMF for a narrowband SIMO system reduces to a maximal-ratio combiner followed by 
a single temporal MF. The 2 x 1 channel model within the dotted box implicitly includes a pair of down 
converters, once for each receiver antenna. Therefore, the figure shows combining after 
downconversion. In practice the combining can be performed at RF, before downconversion, allowing 
implementation with only a single downconverter. 
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10.2.3. Linear Separability 

The Nyquist criterion for scalar PAM signals states that, to avoid lSI, the Fourier 
transfonn of the pulse shape must alias to a constant. This result may be generalized to MIMO 
systems as follows [5]. If sampling r(t) = L1H(t -11)al at the symbol rate is to reproduce ak, 
so that r(kT) = ak, without any lSI and without any co-channel interference, then H(t) must 
satisfy: 

(10.43) 

or equivalently: 

~LH(f-~)=I, 
k 

(10.44) 

where H(f) is the Fourier transfonn ofH(t). These two equations represent the time-domain 
and frequency-domain manifestations of the generalized Nyquist criterion, which we first 
encountered in Section 6.3.4. 

The Nyquist criterion has important implications. Consider first a SISO receiver that 
observes r(t) = Lla1h(t -IT) in the absence of noise. An implication of the Nyquist criterion 
is that, in order for the receiver to be able to recover the transmitted symbols through linear 
filtering and symbol-rate sampling, the pulse shape h(t) must be transformable into a Nyquist 
pulse through linear filtering, or equivalently, the folded spectrum S(e j!) must be nonzero for 
all 9. From this we concluded that the bandwidth must be at least 1/(21). 

The question becomes more interesting in the MIMO case. Consider a MIMO receiver 
that observes r(t) = L1H(t -1T)al in the absence of noise. Under what conditions can the 
receiver recover the transmitted symbols through linear MIMO filtering and symbol-rate 
sampling alone? The answer is the same: Only when the folded spectrum S(e j !) is invertible 
for all 9. But the implications are more profound, because it leads to an important relationship 
between the number of users (or more generally, number of channel inputs) n, the signal 
bandwidth W, and the number of receiver sensors m. 

Let W be the bandwidth of all of the channel inputs, so that all components of H(f) are 
nonzero for I fl ~ Wand zero for I fl > W Let 11 T be the common symbol rate of all of the 
inputs. Then the number of inputs n that can be linearly separated must satisfy: 

n~mLW2TJ , (10.45) 

where m is the number of receiver sensors. This result is a direct consequence of the 
generalized Nyquist criterion, and is proved in Appendix 1O-A. It is useful to interpret the tenn 
L W2T J as a bandwidth expansion/actor, since it is the integer part of the ratio of the actual 
bandwidth Wto the minimum bandwidth 1I(2T). For the SISO case with m = n = 1, (10.45) 
reduces to the familiar requirement that W~ 1/(2T). 

The implications of (10.45) are that a receiver can linearly separate n channel inputs only 
when the product of the bandwidth expansion factor and the number of receiver sensors is at 
least n. With less than 100% excess bandwidth, the burden falls entirely on array size, and we 
must have n ~ m. (This agrees with the well-known array-processing adage that an array with 
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m elements can cancel m - 1 narrowband interferers.) At the other extreme, with only a single 
receiver sensor, the burden falls entirely on the bandwidth expansion factor; in this case, 
(10.45) becomes n ~ L W2T J, which implies that we must have W~ n/(21). Hence, to 
accommodate n users, their bandwidths must be expanded by a factor of n. This is the 
principle behind spread-spectrum multiple-access communications. The implication of (1 0.45) 
is that by doubling the number of receiver sensors, we halve the required bandwidth expansion 
factor. 

10.2.4. Joint ML Sequence Detection 

Let us return to the problem of joint ML sequence detection posed in Section 10.2.1, this 
time with the aim of developing an efficient implementation. To get started, we briefly review 
our progress so far. From (10.34), the joint ML sequence detector for the channel of (10.31) 
chooses the decision sequence {ak} so as to minimize: 

(10.46) 

where Yk is defined in (10.35) as the output of the MMF H*(-t) at time kT. The equivalent 
discrete-time MIMO channel mapping ak to Yk is called the sampled-MF channel, and is 
shown in Fig. 10-6(b): 

(10.47) 

where Sk is the sampled-autocorrelation function defined in (10.38), with Z-transform S(z), 
and where the PSD of the noise nk is NoS(z). If the cascade of the channel H(t) and the MMF 
H*(-t) satisfies the generalized Nyquist criterion (10.44), then S(z) reduces to the identity 
matrix, and (10.47) reduces to a memoryless channel without crosstalk. 

The Space-Time Whitened-Matched Filter 

The key step to developing an efficient implementation of the ML sequence detector is the 
space-time whitened-matched filter (WMF), which can be realized by appending a discrete
time filter after the sampled-matched filter. The WMF is often motivated as a means for 
achieving white Gaussian noise, which permits application of the Viterbi algorithm. However, 
this view of the WMF neglects to address its optimality with respect to the original ML 
criterion, as applied to the underlying continuous-time channel. In this section we follow the 
geometric approach of Section 5.4.3: we identify the WMF with an orthonormal basis for the 
signal space. When the MIMO channel reduces to a SISO channel, the space-time WMF 
presented here reduces to the scalar WMF of Section 5.4. 

Consider the folded spectrum S(z), where Sk is defined in (10.38). Since S(z) is a valid 
PSD, it admits a unique right spectral factorization, according to Theorem 10-1: 

S(z) = G*(l1 z*)G(z) , (10.48) 

where G(z) = L; = oGkz-k is space-time causal, with Go lower triangular. When S(z) is 
constant, (10.48) reduces to a Cholesky factorization. Let us define an m x n filter <I>(t) by its 
Fourier transform: 
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(10.49) 

Clearly, this is a generalization of the scalar filter (5.80) to the MIMO case. In the following 
we will define the space-time WMF as a filter matched to cI>(t). First, we show how cI>(t) 
relates to the signal space. 

Theorem 10-2. The set of translates {cI>(t - kT)} forms an orthonormal basis for the signal 
space Sspanned by {H(t - kT)}, that is, the set of signals of the form {LkH(t - kT)xk}' 

Proof. To demonstrate orthonormality, we must show that the following inner product: 

Dk = [cI>*(t - kT)cI>(t) dt (10.50) 

reduces to Dk = Okl. We may view Dk as a sampled version ofP(t) = cI>*(-t) ® cI>(t), which 
has Fourier transform P(f) = cI>*( f)cI>( f). Hence, the Fourier transform of Dk = P(kT) is: 

D(ei21t/T) = .!. ~ P(f - ! ) 
TL.k T 

= .!. ~ G-*(ei21t/T)H*(f - ! )H(f - ! )G-1(ei21tjT) 
TL.k T T 

= G-*(ei21t/T){.!.~ H*(f-! )H(f - ! )}G-1(ei21t/T) 
TL.k T T 

= G-*(ei21t/T)S(ei21t/T)G-l(ei21t/T) = I, (10.51) 

where we used the fact that ei21tC! - k/1)T = ei21t/T for all k. Taking the inverse transform 
yields Dk = Okl, which proves that the elements of {cI>(t - kT)} are orthonormal. 

To demonstrate that {cI>(t - kT)} forms a basis for the space Sspanned by {H(t - kT)}, we 
need only show that any element of S may be expressed as a right-linear combination of 
{cI>(t - kT)}. But ifs(t) ESthen there exists a sequence {ak} such that s(t) = LkH(t
kT)ak' In other words, we may generate s(t) by passing {ak} through a filter with transfer 

function H(f). But from (10.49), we may decompose H(f) into the cascade ofa discrete-time 
filter G(z) followed by a continuous-time filter cI>(f). Ifwe define bk = LzGZak -z as the 
output of the discrete-time filter, we may express s( t) as a linear combination of {cD(t - kT)}, 
namely s( t) = Lkcl>(t - kT)bk, which proves that {cI>(t - kT)} spans S. This completes the 
proof. 

Having established that {cI>(t - kT)} is an orthononnal basis for the signal space, the JML 
sequence detector can, without loss of infonnation, project the continuous-time observation 
onto this basis, yielding: 

rk = [cI>*(t - kT)r(t) dt, for all k. (10.52) 

This projection may be implemented using the space-time whitened matched filter, which is 
just a filter matched to cI>(t). Such an implementation is shown in Fig. 10-9(a), where r(t) is 
passed through a filter matched to cI>(t), and the output is sampled at time kT. From (10.49), 
the space-time WMF has Fourier transfonn: 
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(10.53) 

Hence, as shown in Fig. 10-9(b), we may implement G-*(ei2nf1) in discrete time, after the 
sampler. Thus, the projection of (10.52) can be implemented by filtering the output of a 
conventional sampled matched filter. 

As we have seen earlier (see (10.41», the PSD of the noise nk at the output of the sampled 
matched filter is 8n(z) = No8(z), where 8(z) is the folded spectrum. Therefore, the noise Wk 

after the discrete-time filter G-*(l I z*) is white: 

8w(z) = G-*(1/z*)8n(z)G-1(z) 

= G-*(1/z*)No8(z)G-1(z) 

=NoI, (10.54) 

where we exploited the spectral factorization of (10.48). For this reason, we may interpret the 
discrete-time filter G-*(l I z*) after the sampler as a noise-whiteningfilter. 

mXn n(t) nxm 

ak r(t) <fJ*(f) = -4, rk 
H(t) • 

G-*(d21t/1)H*(f) kT 
(a) STWMF 

, , , , 

n , , , , , , 
mxn n(t) nXm nx n 

, , 

~ rzt r(t) 

·1 k Yk 
rk 

H(t) H*(f) G-*(lIz*) 

I 
I 

, I , 
(b) I , , I , , I , I , , I 

n"" I 
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, nk I , nxn I 

~ 
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1 r (c) S(z) G-*(l/z*) 
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nxn 

~;: (d) ~ G(z) 

Fig. 10-9. The space-lime WMF for MIMO channels can be implemented using a sampled matched filter 
followed by a discrete-time noise-whitening filter. It transforms a continuous-time white-noise channel (a), 
(b) into an equivalent discrete-time white-noise channel (c), (d) whose transfer function G(z) is causal. 
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The filter G-*(lIz*) not only whitens the noise, it also has a desirable impact on the 
desired signal. Specifically, since the transfer function between the channel input ak and the 
sampled-MF output Yk is S(z), it follows that the transfer function between the channel input 
and the space-time WMF output is G-*(l1 z*)S(z), which reduces to G(z) from (10.48). Thus, 
the space-time WMF maps the underlying continuous-time white-noise channel, which is not 
necessarily space-time causal, into an equivalent discrete-time white-noise channel that is 
space-time causal. 

Minimizing Discrete-Time Distance 

An important fact that makes joint MLSD feasible in some circumstances is that the 
original minimum-distance criterion as applied to the continuous-time observation is 
equivalent to minimizing distance in discrete time, after the space-time WMF. We now 
demonstrate this result, where we use the notation II . 112 in two different ways, depending on 
whether its argument is a continuous-time vector signal or a discrete-time vector sequence: 

(10.55) 

With this notation, the original joint MLSD cost, as applied to r(t), can be written as: 

J= II r(t) - ~~= ~ H(t -l1)ak 112 

= II r(t) - r(t) + { r(t) - ~~= ~ H(t -l1)al r (10.56) 

where we have introduced r(t), the projection of r(t) onto the signal space S spanned by 
{H(t - k1)}. The term within the braces { . } lies within S, and hence it can be expressed as a 
linear combination of the basis {<p(t - k1)}, namely: 

(10.57) 

By the projection theorem, this signal is orthogonal to the projection error r(t) - r(t). 
Furthermore, from Parseval's identity we find that its energy is given by: 

(10.58) 

Therefore, (10.56) reduces to: 

(10.59) 

Because the first term is independent of {ak}' only the second term need be minimized. We 
recognize rk as the result of passing r(t) through the space-time WMF, and we recognize the 
summation as a convolution of the candidate symbol sequence ak with the WMF channel 
response Gk . Thus, we have shown that the minimum-distance receiver operating on the 
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continuous-time wavefonn reduces to a minimum-distance receiver operating on the space
time WMF output. 

Suppose that G(z) is FIR with finite memory Il, so that G(z) = L~ = o Gkz-k. Under this 
condition, the WMF output rk is the output of a finite-state machine perturbed by white
Gaussian noise, and hence the ML sequence {ak} may be determined using the Viterbi 
algorithm of Section 50404. The state at time k may be defined as: 

"'k = [ak -1. ak _ 2 •... , ak _~. (10.60) 

which can take on any of 1511 nIL values, where 51 is the alphabet used by each of the n channel 
inputs. Since the complexity of the Viterbi algorithm is governed by the number of states, the 
JMLSD is practical only for small values of 1511 , n, and Il. 

Example 10-13. -------------------------
A single-input channel with memory 3 and alphabet size 4 has 64 states, which is manageable. But 
a four-input channel under the same conditions would have over 16 million states! 

When the JML detector is impractical, suboptimal detectors with reduced complexity 
must be used. As described in the following section, practical strategies for MIMO detection 
include linear detection, decision-feedback detection, and multistage detection. So as to 
simplify their presentation, the next section will temporarily restrict its attention to a simple 
memoryless discrete-time model. Once we understand the basic principles for this special case 
we will be better prepared to tackle the more general continuous-time problem, which is 
addressed in Section lOA. 

10.3. Memoryless MIMO Channels 

In this section we focus on the special case of a memoryless discrete-time channel, which 
embodies much of the essence of the general MIMO communications problem while avoiding 
complicated notation. Specifically, we consider the following n-input m-output channel: 

r = L7 = 1 aihi + n 
=Ha+n. (10.61) 

where r = [rIo ... r,JT is the channel output, H = [hlo ... h,J is the m x n channel matrix 
whose i-th column is hi, a = [alo ... a,JT is the channel input, and n = [nlo ... nm]T is the 
noise. 

We will make the assumption that the n channel inputs are independent and unifonnly 
chosen from the same discrete and complex alphabet. The inputs are thus uncoded. 
Furthennore, we will assume that the n columns hlo ... h n of H are linearly independent, so 
that the rank of H is n. This assumption implies that there are at least as many channel outputs 
as channel inputs, m ~ n, so that H is a square or tall matrix. As usual, we will also assume 
white Gaussian noise, so that the real and imaginary components of n are i.i.d. zero-mean 



486 MIMO COMMUNICATIONS CHAP. 10 

Gaussian with variance No/2. The independence of the inputs and noise allows us to use the 
model (10.61) independently for each signaling interval, and hence without loss of generality 
we may focus on a single signaling interval. 

Example 10-14. -------------------------
The model of (10.61) can arise from the narrowband model of (10.42), where all transmitters use 
the same pulse shape g(t), and the channel has a flat frequency response, so that H(t) = g(t)H. 
Specifically, suppose g(t) is a unit-energy square-root Nyquist pulse, Ig(t)g(t - k1)dt = Ok' If 
the receiver applies a bank of filters matched to g(t), one for each of the m receiver sensors, and 
samples their outputs at multiples of T, the m outputs will be related to the n channel inputs by 
(10.61). 

Example 10-15. -------------------------
The memoryless model also arises in synchronous CDMA, where n independent users transmit 
simultaneously to a receiver with a single sensor, leading to a 1 x n continuous-time channel 
H(t) = [h1(t), ... hn(t)]. Assume that each hi(t) is nonzero over the interval [0,1) only. Let 
{cP!(t), ... q,m(t)} denote an orthonormal basis for the span of {h1(t), ... hn(t)}. Then a bank of 
m filters matched to q,l(t), ... q,m(t), which provides sufficient statistics, leads to (10.61). 
Interestingly, the dimensions change; a 1 x n continuous-time channel becomes an m x n discrete
time channel. 

The last example illustrates that the number of rows m in H may not be equal to the number of 
receiver sensors. This is a common occurrence. It is best to think of the number of rows m as 
an effective number of sensors that may be greater than the actual number of physical sensors. 

The columns of H may be interpreted as the signatures for the channel inputs. In 
Example 10-14, the i-th column hi represents the spatial signature for the i-th transmitter, 
whereas in Example 10-15, it represents the spreading signature for the i-th user. 

10.3.1. Joint ML Detection 

On a memoryless MIMO channel there are two ways to formulate the maximum
likelihood receiver optimization problem: 

• The joint-ML (JML) detector chooses a so as to maximize f(r I a). 

• The individual-ML (IML) detector chooses each element ai of a to maximize f(r I aJ 

If a denotes a vector of decisions, the JML detector minimizes the probability of vector error 
Pr[a::l; a], whereas the IML detector minimizes the probability of symbol error Pr[ai::l; ail. In 
the following we will focus on the JML detector because it is simpler, and also because its 
performance is not significantly different from the IML detector. 

Because of the white Gaussian noise, the joint likelihood function is given by: 

f(rl a) = _1_ exp{;i Ilr- HaI12 }. 
(1tNo)m 0 

(10.62) 

Hence, the ML decision a is also the minimum-distance decision, minimizing: 

IIr-Ha112 = IIrI12 -2Re{a*H*r} + a*H*Ha. (10.63) 
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Since the first term is independent of a, we can equivalently choose a so as to minimize the 
following metric: 

J(a) = - 2Re{a*y} + a*H*Ha, (10.64) 

we have introduced y = H*r. We may interpret y as the result of applying the spatial MMF H* 
to r. The MF is especially advantageous when m »n, because it converts the original m
dimensional observation into an n-dimensional observation that is a sufficient statistic. Any 
subsequent processing can then be performed with lower complexity. 

A brute-force solution to the JML detection problem would perform an exhaustive search, 
whereby (10.64) would be computed for all possible a, and the lowest-metric a would win. 
The number of candidate input vectors is 1511 n, which can be prohibitively large. 

Example 10-16. ----------------------------------------------------
If each of ten inputs uses a 64-QAM alphabet, there are 6410 possibilities. A receiver capable of 
one billion calculations of (10.64) per second would require 36 years to complete an exhaustive 
search. All of this to recover only 60 bits! This would explode to 150000 years if the number of 
inputs were to grow from ten to twelve. 

In Section 10.3.8 we describe the sphere detector, which organizes its search in a clever way 
so as to avoid the full complexity of an exhaustive search. We delay further discussion on this 
topic until after our discussion on decision-feedback detection, which will greatly simplify its 
presentation. 

When JML detection is impractical, we must resort to suboptimal alternatives with 
reduced complexity. 

10.3.2. Genie-Aided Receivers and the Matched-Filter Bound 

Before considering reduced-complexity receivers, we first consider a hypothetical receiver 
that bounds the performance of all receivers. Consider the outputy = H*r of the MMF: 

y = H*r, 
= H*(Ha + n) 
=Ra+ w, (10.65) 

where we have introduced the matrix: 

R=H*H. (10.66) 

This matrix will play a central role in our analysis. It can be viewed as a matrix of 
crosscorrelations, since its (i, j)-th component is equal to the correlation between the i-th and 
j-th column of H, namely Rij = hi*hj. The autocorrelation matrix of the Gaussian noise 
w = H*n after the MMF is E[ww*] = NoR. Let Rd = diag{ IIhll12, ... Ilhn ll2} denote the 
diagonal part ofR. In terms of this diagonal matrix, we may rewrite the MMF output as: 

y = Rda + (R - Rd)a + w . (10.67) 
~' .. 
desired interference 
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The matrix R - Rd has zeros on the diagonal. The i-th component of y can be written as 
Yi = Riiai + Xi + wi, where Xi = Lj'" iRij aj represents the contribution to the i-th MMF output 
from the interfering symbols {aj '" d. Hence, the first and second vectors in (10.67) contain the 
desired and interference terms, respectively. 

A genie-aided receiver for the i-th symbol ai is a receiver that somehow knows the 
interfering symbols {aj '" d. Consider a bank of such genie-aided receivers, one for each 
symbol al through an. Since the interference term is deterministic and known to each receiver, 
the best it can do is to subtract it off. Hence, the bank of genie-aided receivers would subtract 
the interference term from (10.67), yielding: 

(10.68) 

which reduces to z = Rda + w. Since the interference has been eliminated, the i-th receiver 
need only quantize Zi to arrive at its genie-aided decision. 

The genie-aided receiver is the gold standard against which practical receivers are 
compared. Its performance is a bound for any practical receiver, and is commonly called the 
matched-filter bound (MFB), the single-user bound, or the perfect interference-cancellation 
bound. Since the i-th component of(1O.68) is Zi = IIhdl2ai + Wi, its SNR and MSE are: 

SNRMFB .= IIhdl 2 

,I No' (10.69) 

assuming E [ 1 ai 12] = 1. Simply stated, the MFB is the performance of the MF receiver for user 
i in the absence of other interferers. Like the MFB for lSI channels, the MFB is often not 
attainable by a practical receiver, even by the joint ML receiver. 

10.3.3. Linear MIMO Detection 

The simplest detector for memoryless MIMO channels is the linear detector, illustrated in 
Fig. 10-10. While in theory it does not always perform as well as more sophisticated detectors, 
in some applications it can be preferred due to its ease of implementation and robustness to 
nonidealities. A decentralized linear detector makes a decision about the i-th symbol by 
quantizing the decision statistic Yi = wi*r, where Wi is an m x 1 vector of combining 
coefficients. A centralized linear detector is a bank of independent decentralized detectors 
operating in parallel; it produces a vector of decisions by independently quantizing the 

mXn n nXm 

1 H ~ c Hs~· 
LINEAR SLICER 

DETECTOR BANK 

Fig. 10-10. A centralized linear detector applied to the memoryless MIMO channel of (10.61). 
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components of the vector y = Cr for some n x m matrix C, whose i-th row is wi*. In the sequel 
we will often focus on the more general case of centralized detection, knowing that we need 
only discard all but one of the rows of C to produce a decentralized detector. 

Like the linear equalizer of Chapter 8, the linear detector for MIMO channels comes in 
two varieties: zero-forcing (ZF) and minimum mean-squared error (MMSE). A third 
possibility is a matched-filter (MF) detector, which essentially ignores interference. We briefly 
consider the MF detector first. 

Matched-Filter Detection, the Near-Far Problem, and Power Control 

The decentralized MF detector for user i chooses Wi = hi. This would be optimal in the 
absence of the other interfering columns {hj '" i}, but it can be grossly suboptimal when they 
are present. Nevertheless, the MF detector has the advantage that a decentralized receiver need 
only know a single column of H. In the context of multiuser detection for CDMA, the MF 
receiver is known as the conventional receiver; in this case, the columns of H represent the 
signatures of the different users, so that a decentralized MF detector need only know the 
signature of the desired user. Its performance is close to optimal in the special case when the 
columns of H happen to be nearly orthogonal; that is, when the off-diagonal elements of 
R = H*H are negligible compared to the diagonal elements. This condition is rarely met in 
practice, with the possible exception of synchronous CDMA with power control, as described 
below. 

A challenging problem in multiuser systems is the so-called near-far problem. Essentially, 
the near-far problem occurs whenever the energies of the interfering signals are much greater 
than the energy of the desired signal. It can arise whenever a nearby (and hence powerful) 
interferer inhibits a receiver from detecting the information transmitted by a far-away (and 
hence weak) desired user, as sketched below: 

~))) 
desired user ~ receiver I 

This phenomenon is peculiar to multiuser systems. It is not present in single-user lSI channels, 
because there the interfering symbols have the same energy as the desired symbol. Hence, this 
is one example of a MIMO phenomenon that has no counterpart in scalar lSI channels. 

The MF or conventional receiver is particularly susceptible to the near-far problem. 
Consider the synchronous CDMA system of Example 10-15. Let Aj = II hj II denote the 
received amplitude for the j-th user. In practice the different signatures are designed to have a 
low normalized correlation, so that I h/hi 1/(AiA) « 1. Nevertheless, practical constraints 
prevent these correlations from being zero. Regardless of how small these nonzero correlations 
are, there will always exist a set of interfering amplitudes that will make the interference 
dominate over the desired signal, rendering the conventional MF receiver useless. 
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A classical approach to the near-far problem is to couple the MF receiver with a power 
control strategy, in which the power emitted by each transmitter is adjusted so that the received 
amplitudes for all users are equal: Aj =A for all j. Power control is a form of zero-forcing 
linear MIMO equalization at the transmitters, and can be effective in some multiuser 
applications. However, in single-user MIMO applications for which the different channel 
inputs originate from the same transmitter, power control can be grossly suboptimal. Indeed, a 
capacity-achieving MIMO transmitter will follow a water-pouring strategy - the opposite of 
power control [6]. 

Zero-Forcing Linear Detection 

A zero-Jorcing (ZF) linear detector chooses the matrix C of Fig. 10-lO so as to eliminate 
interference completely, regardless of noise enhancement. Specifically, a ZF linear detector 
chooses C so that CH = I. Such a matrix will always exist, given our assumption that there are 
at least as many channel outputs as inputs, and that the columns of H are linearly independent. 
When the channel has just as many outputs as inputs, so that H is a square matrix, then the ZF 
linear detector is unique: C = H-1. When the channel has more outputs than inputs, m > n, 
then there are an infinite number of matrices C satisfYing CH = I. In such cases we define the 
ZF linear detector as the unique such C that also minimizes the resulting MSE = E[jICr - aI1 2]. 

The ZF linear detector is easily derived once we decompose C into the product C = WH*, 
where W is an n x n matrix to be determined, and H* is an MMF. We may do this because the 
MMF is known to give sufficient statistics, whether the criterion be ML or MMSE. Now, our 
constraint CH = I becomes WH*H = I. Because H has full column rank, H*H is invertible; 
therefore, we must have W = (H*H)-l. Hence, the ZF linear detector is given by the n x m 
matrix: 

(10.70) 

This matrix is also known as the Moore-Penrose pseudoinverse of H. When H is itself 
invertible, C reduces to H-1. 

The decentralized ZF linear detector has a useful geometric interpretation. With respect to 
a given symbol index i, the desired symbol modulates the i-th column hi of H, while the 
interfering symbols modulate the remaining columns {hj*- j}. In this context, the interference 
subspace is defined as the span of the interfering columns {hj *- d. We can decompose hi as 
the sum of a vector within the interference subspace and another orthogonal to it, according to: 

h· = h-+ (h· - h-\ 
l l. 1. V ' (10.71) 
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where the first term hi is the projection of hi onto the interference subspace, and the second 
term (hi - hi) is the projection error. This decomposition is illustrated below: 

interference subspace 

span{hj * i} 

The ZF detector must discard the first term hi of (10.71) in order to satisfy the zero
interference constraint. In doing so, the ZF detector throws away that fraction of the signal that 
lies in the interference subspace. The corresponding loss of signal energy can lead to a 
significant penalty in performance. Scaling the ZF detector output to compensate for this loss 
in signal energy results in an amplification of the noise, or noise enhancement. 

After discarding hi, the ZF linear detector keeps only the remaining term in (10.71), so 
that its coefficient vector is proportional to the projection error: Wi = (hi - hi) 102. The 
projection theorem of Chapter 2 ensures that the projection error will be orthogonal to the 
interfering columns {hj * i}' The constant 0 2 = II hi - hi 112 is chosen to force Wi* hi = 1, which 
compensates for the signal loss. 

A systematic way of deriving the decentralized ZF linear detector is to apply the Gram
Schmidt orthonormalizaton procedure to the columns of H arranged so that the desired 
column hi is last. Dividing the last basis vector by 0 will give the desired ZF linear detector 

Wi' 

In the context of multiuser detection, the ZF linear detector is called the decorrelating 
detector. Its importance stems from its optimality with respect to near-far resistance and ML 
detection in the presence of unknown signal amplitudes. Both attributes are best understood 
after we modify our channel model to explicitly account for signal amplitudes. If we define 
Ai = Ilhi II as the received amplitude for the i-th user, then the channel model (10.61) reduces 
to: 

r = '2.7 = la0.isi + n 
=SAa+n, (10.72) 

where Si = hillihi II is the unit-length signature for the i-th input. In terms of matrices, we 
have effectively decomposed the channel matrix H into the product H = SA, where 
A = diag(Al> ... An> is a diagonal matrix of signal amplitudes, with Ai = II hi II, and where 
S = [s1, ... snl is a matrix of unit-length signatures. 

When the receiver has perfect knowledge of the received amplitudes, the joint ML 
detector of Section 10.3.1 is optimal. At the other extreme, however, when the receiver knows 
the signatures but has no a priori knowledge of the received amplitudes, and the alphabet is 
binary, the decorrelator is optimal. This is explored in the following example. 
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Example 10-17. -------------------------
Consider the model of (10.72), where the receiver knows S exactly but has no a priori information 
about A. This models the scenario in which the receiver knows the signatures of aH transmitters, 
but it does not know the distance to each user. In this case, the receiver could solve the joint 
estimation problem of finding the symbols a and amplitudes A that j ointly maximize the likelihood 
function fer I a, A), or equivalently that minimize: 

(10.73) 

where we have introduced y = S*r as the output of a bank of unit-energy matched filters, and 
Rs = S*S as a matrix of signature correlations. The equality in (10.73) foHows by completing the 
square and is easily verified. The first and last term do not depend on a and A; hence, the joint 
estimator need only minimize the middle term. For the special case ofthe BPSK alphabet {±l}, we 
can force the middle term to zero by choosing Aa = Rs -ly, which leads to the solutions Ai = I zi I 
and o'i = sign(zJ where z = Rs -ly. Hence, the decorrelator solves the joint maximum-likelihood 
estimation problem. The solution is more complicated when the alphabets are complex. 

The performance of the ZF linear detector is easily evaluated. Since r = Ha + n, the 
outputy = Cr of the ZF detector of(10.70) reduces to: 

y = (H*H)-lH*(Ha + n) 

=a+ ii, (10.74) 

where the noise ii is no longer white, but has autocorrelation matrix NoCC* = NoR-I, where 
R = H*H. Hence, the MSE for the i-th symbol is: 

MSEi = No(R-1)ii . (10.75) 

It is not hard to show that this expression can also be written as (see Problem 10-10): 

MSE i = Noll hi - hi 11-2 , (10.76) 

where hi is the projection of hi onto the subspace spanned by {hiT" i}' 
To quantifY the gap in performance between any particular receiver and the MFB of the 

genie-aided receiver, three performance metrics are commonly used. The multiuser efficiency 
may be defined for our purposes as the ratio MSE MFB,i / MSEi . (See [7] for a more precise 
definition.) It is a number between zero and one that measures how close the detector comes to 
the MFB. The asymptotic multiuser efficiency (AME) is the limit of the multiuser efficiency as 
No ---7 O. The performance of a multiuser receiver is usually a strong function of the interfering 
amplitudes {Aj"# i}' The near-far resistance (NFR) is defined by: 

NFRi = min AMEi . 
{Aj;r ;} 

(10.77) 

In words, the near-far resistance is the AME in the worst-case scenario when the interfering 
amplitudes happen to be just the right values to minimize the AME. 

From (10.76), the multiuser efficiency for the ZF linear detector is: 
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(10.78) 

The ZF linear detector achieves the MFB only when hi is orthogonal to the interference 
subspace; i.e., when hi is zero. Since (10.78) is independent of No, it also describes the AME 
of the ZF linear detector. Furthermore, since (10.78) is independent of the interfering 
amplitudes, the NFR of the ZF linear detector is also given by (10.78). 

It is a surprising result that the NFR of the JML detector is also given by (10.78). In other 
words, the ZF linear detector is optimally near-far resistant. Of course, for most interfering 
amplitudes the JML detector is superior to the ZF linear detector, but if the interfering 
amplitudes are worst-case, the JML detector can do no better than the ZF linear detector. A 
rigorous demonstration of this result would take us too far afield, but the gist is as follows, 
assuming binary alphabets, ai E {±1}. First, the probability that the JML detector makes an 
error for the i-th symbol is roughly Q(dmin !J2""No) at high SNR, where: 

dmin = I!lin. IISAa - SAali . 
{a,a:ui"u;} 

(10.79) 

In contrast, the error probability for the ZF linear detector is Q(J2I MSEi ). We can define an 
effective asymptotic MSE for the JML detector by equating the two Q functions, yielding 
MSE iJML = 4No/d~in' But dmin of (10.79) reduces to: 

dmin = .min. IIAi(ai - ai)si + Lj*iA/araj)sj II 
{a, a:ui"ui} 

= mIn II2Aiaisi - 2Li*iAjejsjll 
UiE {±I},ejE {O,±l} 

= min 2I1h'-L' Ae·s'lI 
ejE {O,±1} I }*I} } J ' 

(10.80) 

where we have introduced ej = (ar aj)/2 E {a, ±1}. If (10.80) is then minimized over the set 
of interfering amplitudes, the se~s {ej} and {A) will be such that the term Lj*iAjejSj in 
(10.80) reduces to the projection hi of hi onto the span of {hj * i}, in which case: 

(10.81) 

Hence, the worst-case effective MSE for the JML detector is 4Nol d~in = Noll hi - hdl-2 , 

which is exactly the same as the MSE of (10.76) for the ZF linear detector. 

Despite its optimality in the face of worst-case interfering amplitudes, the ZF detector can 
perform very poorly in other circumstances, as shown in the following example. 

Example 10-18. -------------------------
Consider the memoryless channel [ 1 

H= E ~]. 
When E is small, the second column is nearly collinear with the first. In order to eliminate the 
interference from the second user, the ZF detector for the first user would discard the first 
component of the channel output, even though it contains most of the desired signal energy, and 
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even though the interference is relatively benign. When £ is small, it would be much better to 
ignore altogether the interference, and use an MF detector instead. To quantify the performance 
difference, we may calculate the respective outputs of the ZF linear detector (which uses the first 
row ofH-1) and the MF detector (which uses the first row ofH*) as: 

(10.82) 

Comparing the two, the ZF detector has zero interference but amplified noise, while the MF 
detector has a small amount of interference and negligible noise amplification. Assuming 4-QAM 
alphabets of {i1 ij}/J2, taking the sign of the real and imaginary components ofYZF and YMF 
will produce respective error probabilities of: 

(10.83) 

From these expressions we can conclude that the MF detector outperforms the ZF linear detector by 
roughly 11£2 in SNR when £ and No are small; e.g., by 40 dB when £ = 10-2 and BER = 10-6. 

Minimum-Mean-Squared Error Linear Detection 

A drawback of the ZF linear detector is its insistence on forcing the interference to zero, 
regardless of the interference strength. As demonstrated in Example 10-18, the ZF detector 
will discard any desired signal energy that lies in the interference subspace, even if the 
interfering columns of H happen to have much less energy than the desired column hi' The 
signal energy lost in this way is effectively a form of noise enhancement. A better strategy is to 
choose C so as to balance the lost signal energy with the increased interference; it is much 
better to accept some residual interference if it allows you to capture more of the desired signal 
energy. 

The MMSE linear detector chooses C so as to minimize the sum MSE = EUlCr- a11 2] 

directly, without the additional zero-forcing constraint that CH = I. Unlike the ZF detector, 
which minimizes interference but neglects noise, and unlike the MF detector, which minimizes 
noise but neglects interference, the MMSE detector achieves an optimal balance of noise 
enhancement and interference suppression. The MSE can also be expressed as MSE = tr{Re}, 
where: 

Re = E[(Cr - a)(Cr - a)*] 

= CRrC* + I - H*C* - CH 

= (C - H*Rr- 1)Rr(C - H*Rr- 1)* + I - H*Rr- I H 

= (C - H*Rr- 1)Rr(C - H*Rr- 1)* + No(H*H + Nol)-l. 

(10.84) 

(10.85) 

We have introduced Rr = E[rr*], the received autocorrelation matrix. In deriving the above, 
we have assumed that the channel inputs are uncorrelated with unit energy, so that E[aa*] = I. 
(The columns of H can be scaled to account for an alphabet that does not have unit energy.) 
Only the first term of (10.85) depends on C, and we can do no better than to make this term 
zero. Hence, the MMSE solution is C = H*Rr-l, which can be rewritten in two equivalent 
ways: 
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C = H*(HH* + Nol)-l 

= (H*H + NolrlH* . 

495 

(10.86) 

(10.87) 

The equivalence is easily verified. Although the difference between (10.86) and (10.87) is 
subtle at first glance, closer inspection yields three important differences: the MF comes last in 
(10.86) but first in (10.87); the identity matrix has dimension m x m in (10.86) but n x n in 
(10.87); and the product HH* in (10.86) becomes H*H in (10.87). The first form (10.86) of 
the MMSE detector is often preferred in analysis. However, the last form (10.87) can be 
implemented with lower complexity because the matrix inverse has a smaller dimension. It 
also obviously reduces to the ZF linear detector of (10.70) when the noise is zero. 

After the MMSE linear detector, the autocorrelation of the error signal is given by the last 
term in (10.85). Hence, the MSE E[ IYi - ai 12] for the i-th symbol is given by: 

(10.88) 

where we have introduced Ii = H*H + Nol. In the absence of noise, Ii reduces to R, and the 
performance of the MMSE linear detector reduces to that of the ZF linear detector (10.75). 

The MMSE detector of (10.86) and (10.87) is centralized. A decentralized detector for the 
i-th input takes the form Yi = wi*r, where Wi is the i-th column of C*, namely: 

Wi = (HH* + Nol)-lhi 

= (hihi* + "2:.j *- ihjh/ + Nol)-l hi . (10.89) 

From this expression we observe that, in two extreme cases, the MMSE detector approaches 
the MF detector. First, in the limit as the noise variance goes to infinity, then Wi ~ h i/ R with 
R = No. Second, if the noise variance is fixed but the interfering amplitudes go to zero, II hj *- ill 
~ 0, then Wi ~ h i/ R with R = IIhi ll 2 + No. 

Example 10-19. ------------------------
The decentralized MMSE linear detector for the first input to the channel H = [2 Az] ranges from 
the MF detector to the ZF linear detector as A2 ranges from zero to infinity. 1 0 

Example 10-20. ----------------------------------------------------
Consider again the channel from Example 10-18. The decentralized linear MMSE detector is the 
first row of(H*H + Nol)-lH*, which can be expressed as w* = [1, d]/ A, where: 

d= E (1 + ~) , and A = 1 + E4 / No + 2E2 + No . (10.90) 

Ifwe fix E and let No ~ 0, the MMSE detector approaches the ZF detector: w* ~ [0, ell, which 
is the first row of 11-1. On the other hand, if we fix No and let E ~ 0, the MMSE detector 
approaches the MF detector: W* ~ [1, E]/(1 + No), which is proportional to the first row ofH*. 
Thus, for certain values of E and No, the MMSE detector may resemble the ZF detector or the MF 
detector. Evaluating Y = w*r in the general case leads to: 
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YMMSE = ( (1 + dE)a1 + Ea2 + n1 + dn2) 1 A . (10.91) 

Assuming 4-QAM alphabets of {±1 ± j} 1./2 , taking the sign of the real and imaginary parts of 
Y MMSE yields an overall bit-error probability of: 

BERMMSE = ! Q( 1 - e + de ) + ! Q( 1 + e + de ). 
2 JNo (1 + d 2) 2 J No(1 + d2) 

(10.92) 

This expression is plotted below for E = 10-2, along with BERZF from (l0.83): 

10-2 

r£ 10-4 
W 
CD 
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40 dB 
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Again, like the MF, the MMSE detector is seen to outperform the ZF detector by 11 E 2 when E and 
No are small, or by 40dB when E = 10-2. The dashed curve shows p = MSEMMSE/MSEzF. 

The previous example conveys an important message - the MMSE detector can significantly 
outperform the ZF detector, even at high SNR. At first glance this is a surprising result, 
because it seems to contradict two earlier results, namely: 

• The MMSE detector coefficients of (10.87) approach the ZF detector coefficients of 
(10.70) as No ~ o. 

• The MSE performance of (10.88) for the MMSE detector approaches that of the ZF 
detector (10.75) as No ~ o. 

There is no contradiction, except that the above two limiting results are somewhat misleading. 
The value of SNR that is required to make the limits valid may be beyond the SNR range of 
interest. For example, the second result above implies that the ratio p = MSEMMSE/MSEzF 
satisfies p ~ 1 as No ~ o. While true in theory, the dotted curve in the previous example 
shows how the ratio actually behaves as a function of SNR for this example. We see that p 
does grow with SNR, but only slowly; p is only 10-2 when SNR = 60 dB. Eventually we will 
have p~ 1, but not until SNR is very high. Specifically, to achieve p ~ 0.99 requires 
SNR ~ 100 dB. By then, (3.43) indicates that the BER of even the ZF detector will be 
infinitessimal: BERzF < 10-217147. 

Example 10-21. ------------------------
Consider a receiver with an array of m = 4 omnidirectional antennas. If the antennas are arranged 
in a line with uniform half-wavelength spacing, the SIMO channel response to a narrowband 
transmitter with angle of incidence e is given by the so-called steering vector [8]: 
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(10.93) 

As illustrated in Fig. 10-11, suppose there is one desired user and three interferers with angles of 
incidence 15", 30°, 70°, and 80°, respectively. Furthennore, suppose a reflection from the desired 
user arrives with angle of incidence 50° and attenuation 0.9, and that the second and third 
interferers are attenuated by 0.5 and 0.6, respectively. Then the MIMO model of (10.61) applies, 
with U = [hI' h 2, h 3, h4] and: 

hI = v(15°) + 0.9v(500) , h2 = v(300) , h3 = 0.5v(700) , h4 = 0.6v(SOO) . 

A decentralized linear detector takes the fonn y = c*r. In this context, given c, the antenna array 
pattern is the response I c*v(9) I as a function of9, and it measures the antenna gain or attenuation 
as a function of angle of incidence. The array patterns for the following four detectors are shown in 
Fig. 10-11 using a polar plot, assuming No = O.OS and a 4-QAM alphabet {±1 ± j} / j2 : 

• The beamsteering detector is c = v(15°); it is matched to the LOS path only, and ignores both the 
reflected path of the desired signal and the interference. 

• The maximal-ratio combiner (or MMF) is c = hI; it is matched to all contributions from the 
desired signal, including the multi path, but ignores the interference. 

• The zero-forcing detector is c = (UU*)-lhl , or equivalently the first column ofU-*; it captures 
as much signal energy as possible, while steering nulls in the directions of all interferers. From the 
figure we see that the main lobe of the ZF detector is not very close to the desired signal, but it is as 
close as possible while satisfying the ZF constraint. 

• The MMSE detector is c = (UU* + NoI)-lh l . By relaxing the ZF constraint, the MMSE 
detector is able to accept more energy from the LOS path, and also steer a secondary beam to the 
multipath component, while very nearly nulling the interferers. 

The output constellations clearly illustrate the superiority ofthe MMSE detector over the others. 

A centralized MMSE detector is able to separate the signals from multiple narrowband 
users, even when they transmit at the same time, they are in the same vicinity, and they occupy 
the same bandwidth; this concept is known as space-division multiple access (SDMA). The 
only requirement is that the spatial signatures {hi} induced by the different users be linearly 
independent, a condition that is easily met in practice when the users are spatially separated 
and are subject to multipath propagation. 

Example 10-22. ----------------------------------------------------
Consider three independent narrowband users transmitting simultaneously and in the same band to 
a receiver using a unifonn linear array with 8 elements, and suppose the first two users are subject 
to multipath propagation, so that the channel matrix of(10.61) is U = [hI> h2, h3], where: 

hI = v(S5°) + 0.9v(500) , h2 = v(700) + 0.Sv(1200), h3 = 0.5v(1600) . 

The geometry of this channel is illustrated in Fig. 10-12. Let cI* and c2* denote the first and 
second row of the centralized linear MMSE detector of (10.87), assuming No = O.OS. The array 
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(a) 

steer MRC ZF MMSE 

(d) (e) 

Fig. 10-11. (a) Channel geometry and array patterns for Example 10-21. Also shown are the 
corresponding output constellations for (b) beamsteering, (c) MRC, (d) ZF, and (e) MMSE linear detectors. 

, , , , , , , , , 

(a) 

(b) 

Fig. 10-12. Illustration of space-division multiple access (SDMA). The array patterns for the first and 
second row of the MMSE linear detector (10.87) are labeled (a), and (b), respectively. 
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pattern for c1 and c2 are shown in Fig. 10-12. Observe that the array pattern for c1 steers beams 
towards the LOS and reflected paths of user I, while very nearly steering nulls towards the 
contributions from user 2 and user 3. Meanwhile, c2 steers beams towards the LOS and reflected 
paths of user 2, while nulling the contributions from users I and 3. 

10.3.4. Decision-Feedback Detection for MIMO Channels 

In this section we describe the zerolorcing decision-feedback (ZF-DF) detector, a 
nonlinear method for MIMO detection invented by Duel-Hallen [9). The ZF-DF detector can 
be viewed as a modification of the conventional ZF-DFE for lSI channels that operates in the 
spatial domain instead of the time domain. It is a powerful technique that can significantly 
outperform a linear detector. The ZF-DF detector is an example of a more general technique 
called successive interference cancellation (SIC) [10]. In array-to-array MIMO wireless links, 
the ZF-DF detector is known as the BLAST nulling and cancelling detector [11][12], while in 
packet transmission applications it is known as a generalized DFE (GDFE) [13). 

In the next five sections we will present five equivalent views of the DF detector: (1) an 
SIC view; (2) a matrix-valued DFE view; (3) a Gram-Schmidt view; (4) a Cholesky whitened
matched filter view; and (5) a linear prediction view. Each interpretation is valid in its own 
right, and each conveys additional insight into the workings of the DF detector. Although all 
five views apply to both the MMSE and ZF realizations of the DF detector, we will focus on 
the ZF version so as to simplify our presentation; the MMSE version will be considered 
separately in Section 10.3.5. 

The SIC View 

A DF detector for the memoryless channel r = Ha + n can be described as follows. First, 
a decision a1 about the first symbol is made by slicing the decision statistic Zl = WI *r, where 
the coefficients of the vector WI are chosen to suppress the interference from the interfering 
symbols a2, ... an- In other words, WI * is the decentralized ZF linear detector given by the first 
row of (10.70). This is the nulling step. The decision may be written as ill = Q{w1*r} , where 
Qfz} is the element of the alphabet closest to z. Second, the contribution to r from a1 is 
reconstructed and subtracted off, yielding r2 = r - ill h 1. This is the cancellation step. When 
the decision is correct, the result is r2 = H2a2 + n, where H2 = [h2 , ... hnl is what is left after 
the first column of H is removed, and a2 = [a2' ... aJT is what is left after the first symbol of 
a is removed. 

The cancellation produces a residual channel model r2 = H2a2 + n that is equivalent to the 
original, but with one less input, so we can follow a similar procedure to detect a2. The process 
can repeat in a recursive fashion for symbols a3, a4, etc., until all n symbols have been 
detected. The detector can be summarized succinctly by the following recursion: 

(10.94) 

which is iterated for i = 1 to n -1, with r1 = r initially. A block diagram of the DF detector is 
shown in Fig. 1O-l3. 
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The nulling vectors {WI, ... wn} for the ZF-DF detector are easily specified. Under the 
assumption of correct decisions, the i-th stage of the detector will face an effective channel of 
the fonn ri = Hiai + n, where Hi = [hi, ... h n] is what is left of the original matrix after the 
first i - 1 columns have been removed, and ai = [ai, ... anJT is what is left after the first i - 1 
symbols of a are removed. The role of the i-th nulling vector is to extract the desired symbol 
while rejecting the contributions from the undetected symbols ai + v ... an. In other words, the 
i-th nulling vector must satisfy the zero-forcing condition: 

wi*Hi = [1, 0, 0, ... 0] ; (10.95) 

The minimum-nonn (and hence minimum-MSE) solution is to apply the ZF linear detector 
(10.70) to the effective channel Hi. Specifically, the i-th nulling vector for the ZF-DF detector 
is the first row of C i = (H(Hi )-11\*, the Moore-Pemose pseudoinverse of Hi. 

The Matrix View 

In this section we develop a model of the DF detector based on matrices. We begin with 
Fig. 10-14, which shows an alternative implementation of the DF detector of Fig. 10-13. The 
two versions are precisely equivalent. The only difference is that the new detector cancels the 
interference from already detected symbols after each nulling vector Wi, whereas the original 
implementation of Fig. 10-13 perfonned the cancellation on the channel output r directly, 
before the nulling vectors. Subtracting the vector hI before the nulling filter W2 * is the same as 
subtracting the scalar W2 * hI after. Thus, choosing the coefficient b21 in Fig. 10-14 according 
to b21 = W2 * hI ensures that the input to the second slicer of the new detector is identical to 
that in the original detector. Similarly, by choosing all of the cancellation coefficients {bij} 
according to bij = Wi*hj' we ensure that Fig. 10-14 is equivalent to Fig. 10-13. 

The new version becomes conceptually simple when we adopt a matrix notation. Let 
Yi = wi*r denote the output of the i-th nulling vector in Fig. 10-14, before the cancellation. If 
we collect the n outputs into a single vector y = [yv .. ·Yn] \ we can express the n nulling 
operations by the single equation: 

n 

Fig. 10-13. The MIMO DF detector consists of n stages, one for each channel input. Each stage 
consists of four steps: nulling, detection, reconstruction, and cancellation. 
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y=Fr, 

w • n 

The matrix F will be called the forward filter; its i-th row is Wi*' 

50\ 

l (10.96) 

The cancellation step can also be expressed in matrix form. As shown in Fig. 10-14, 
b2lal is subtracted from the second component of y, producing Z2' Similarly, b3l al + b32a2 

is subtracted from the third component of y, producing Z3' In general, Zi = Yi - L~~\ bijaj. In 
terms of the decision vector a = [aI, ... an],\ the cancellation steps may be summarized by 
the single equation: 

z=y-Ba, (10.97) 

where B is a strictly lower triangular matrix (having zeros on and above the diagonal), with bij 
in row i and column j < i. With our definition of causality, B is a strictly causal spatial filter. 

Combining (10.96) and (10.97), the vector z of slicer inputs can be written in the compact 
form: 

z= Fr-Ba. (10.98) 

This is the matrix view of the OF detector, as illustrated in Fig. 10-15. Observe the similarities 
between Fig. 10-15 and the OFE of Chapter 8 (such as the ZF-OFE of Fig. 8-14). In both cases 
there is a fOlWard filter whose purpose is to suppress interference due to future (as-yet 
undetected) symbols, and in both cases there are decisions feeding a strictly causal feedback 
filter, whose purpose is to suppress interference due to past (already detected) symbols. The 
key difference here is that the symbols are ordered spatially rather than temporally, leading to 
a fOlWard filter F and feedback filter B that are spatial rather than temporal. 

n 

~_r ~l----"--l -~l _I ... 

~ 

--.~ ... 

Fig. 10-14. An alternative but equivalent implementation ofthe OF detector of Fig. 10-13. 
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At first glance it might appear that the feedback system in Fig. 10-15 cannot be 
implemented because of a causality problem; it appears that to calculate a, the receiver must 
know Z, and to calculate z, it must know a. However, there is no problem when the feedback 
is interpreted properly. Rather than trying to calculate the entire decision vector all at once, the 
components are calculated one by one, in keeping with the space-ordered notion of causality, 
beginning with the first. Because the feedback filter B is strictly causal (strictly lower 
triangular), the i-th component of the slicer input Zi depends only on the previous decisions 
{ (z 1, ... (zi _ 1}· The feedback system of Fig. 10-15 is thus self-consistent and can be 
implemented whenever the feedback filter is strictly triangular. 

Originally we defined the feedback filter B as the strictly lower triangular matrix whose 
entry in row i and columnj < i is bij = wi*hj- In terms of the forward filter F and channel H, 
the feedback filter can equivalently be defined as the strictly lower triangular part of the 
cascade FH: 

B = {FHhower . (10.99) 

This is not surprising. Regardless of how the forward filter is chosen, the cascade of it with the 
channel yields an effective channel of FH as seen by the decision device and feedback filter. 
Because of the causality constraint, the best that B can do is to completely cancel any 
interference due to past decisions. The result of (10.99) is directly analogous to the result of 
(9.83) in Chapter 9, where it was shown that - in the context of temporal lSI channels - the 
optimal feedback filter is always the strictly causal part of the channel-forward-filter cascade, 
regardless of how the forward filter was chosen. 

We have seen three equivalent block diagrams of the same DF detector. The first two 
(Fig. 10-13 and Fig. 10-14) may be preferable from an implementation standpoint, because 
they explicitly indicate the order in which the decisions are made. However, the last 
(Fig. 10-15) is often preferred for its compact form, conceptual simplicity, and its amenability 
to analysis. 

We previously identified the i-ili nulling vector for the ZF-DF detector as the first row of 
(HtHi )-1 ~*, where Hi = [hi, ... h nl. The following section uses geometric intuition to 
develop a more concise and conceptually simple specification of the nulling vectors. 

mxn n nxm 

~F 
nxn 

Fig. 10-15. A matrix-valued view of the DF detector that is equivalent to Fig. 10-13 and Fig. 10-14. 
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The Gram-Schmidt View 

The zero-forcing nulling vectors {Wi} are closely tied to a Gram-Schmidt (GS) basis for 
the columns of H. Hence, let us review the GS procedure for finding an orthonormal basis for 
the columns of H. Rather than beginning with the first column, we will perform the GS 
procedure in reverse order, beginning with the last column h n. 

Let qn = hnlGn,n be the n-th basis vector, where Gn,n = Ilhnll ensures a unit length. 
Following the GS procedure, we next compute Gn,n-1qn> the projection of h n - 1 onto the 
space spanned by q n' where the expansion coefficient is G n, n -1 = q n * h n _ l' The proj ection 
error en _ 1 = h n _ 1 - G n n -1 q n will be orthogonal to q n> so we need only normalize it to arrive 
at the next basis ~ction, qn-1=en - 1 /Gn- 1,n-b where Gn-1,n-l=llen-& (Our 
assumption that H is full rank ensures that the projection error will never be zero.) Repeating 
this procedure iteratively, the j-th basis vector is given by qj = e/Gjj, where ej = hj -
I?=j+lGijqi and Gij = qi*hj, withj decreasing from n to 1. Note that Gjj = lIej II can also be 
expressed as Gjj = q/ hj' 

The above procedure produces n vectors q1 ... qn that are unit length, orthogonal, and 
span the same space spanned by the columns of H. In particular, we can express each column 
ofH in terms of the basis vectors. The last column is h n = Gn,nqn; it depends only on the last 
basis vector. The second-to-Iast column is h n - 1 = Gn- 1 n-lqn-1 + Gn n-1qn; it depends only 
on the last two basis vectors. If we express all of the c~lumns of H as'linear combinations of 
the basis vectors, and write the result in matrix form, we get the following inlportant 
decomposition. 

Gram-Schmidt (GS) Decomposition. An m x n matrix H that has rank n can be factored 
uniquely according to 

H=QG, (10.100) 

where Q is an m x n matrix whose columns are unit length and orthogonal and span the range of 
H, and where G is an n x n lower triangular matrix with real and positive diagonal elements. 

As we have seen, the GS decomposition H = QG follows directly from application of the 
GS procedure to the columns of H, from last to first. The diagonal elements of G are real and 
positive because Gii is defined as the norm of a projection error vector. The GS decomposition 
is essentially equivalent to the so-called truncated QR (orthogonal-triangular) decomposition, 
except that the triangular matrix in (10.100) is lower triangular instead of upper triangular, and 
the diagonal components of G are necessarily real and positive. 

The m x n matrix Q has a special property - it satisfies Q*Q = I. We may think of Q as 
the first n columns of an m x m unitary matrix. It will not satisfY QQ* = I, and hence it is not 
a unitary matrix, unless the channel is square (m = n). 
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Before relating the zero-forcing nulling vectors {Wi} to the GS decomposition of (l 0.1 00), 
we first point out an important fact: the i-th ZF nulling vector is expressible as a linear 
combination of the column set {hi, ... h n}, or in other words: 

(10.101) 

To establish this result, observe that Wi does not need to contend with interference from 
symbols a1 through ai _ 1, because their impact has presumably already been cancelled. 
Hence, Wi sees an effective channel Hi = [hi' ... h,J, where the columns of H corresponding 
to a1 through ai _ 1 have been removed. A MF is known to provide sufficient statistics, and 
thus Wi* can without loss of performance be implemented as the cascade of an MF followed 
by another filter c* = [ci*' .. 'Cn *], so that wi* = c* Hi*' This implies that Wi = L J = i cjhj, 
which is clearly a linear combination of {hi, ... h n}. 

Now let us relate the zero-forcing nulling vectors to the GS basis {qi}, beginning with the 
last one. From (10.95), Wn is the minimum-norm vector satisfying Wn *hn = 1. There are no 
future symbols, so this is the only constraint. Since Wn E Span{hn } from (10.101), the 
solution must be Wn = hn111hn112, or equivalently Wn = qn11lhnll. Since Gn,n = Ilhnll, we can 
also write this as Wn = qnIGn,n. 

Having found Wn' we move on to Wn _ b which is known to lie in the span of {hn _ b h n}. 
To satisfy Wn-l *hn = 0, we must have wn -1 oc qn _ b and to satisfy Wn -l*hn-l = 1, we 
must have Wn-l = qn-1/Gn-1,n-l' Next we seek Wn -2 E Span{hn _ 2, h n - 1, h n}. Again, to 
satisfy Wn _ 2*hn -1 = Wn _ 2*hn = 0 we must have Wn _ 2 oc qn _ 2, and to satisfy Wn _ 2*hn - 2 

= 1, we must have Wn _ 2 = qn - 21 Gn- 2,n-2' 

By now it is clear that we will have Wi = qilGii for all i. Thus, except for a scaling 
constant, the zero-forcing nulling vectors are just the basis vectors found by applying the 
Gram-Schmidt procedure to the columns ofH in reverse order. 
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To see why the GS procedure produces the right zero-forcing nulling vectors, consider 
Fig. 10-16. With respect to a given i, the interference subspace for a DF detector is the span of 
{hi + 1, ... h n}. Let us decompose the column h j corresponding to the desired symbol aj 

according to: 

h· = h· + (h·-h·\ I I I II , (10.102) 

where hj is the projection of hi onto the interference subspace. The component of r in the 
direction of h j is discarded by a ZF nulling vector, because it will contain contributions from 
at least one interfering symbol. The second term is the projection error, and it is orthogonal to 
the interference subspace. The GS procedure forms the i-th basis vector qi by normalizing the 
projection error h j - hi. Thus, by choosing Wi proportional to qj, we ensure that wi is 
orthogonal to the interference subspace, and hence orthogonal to {hi + 1, ... hn }. (This is most 
of the zero-forcing constraint of (10.95).) Since Gjj = lihi - hill = qj*hj, the scaling factor in 
Wi = qi/Gii ensures that the desired symbol is passed by wi* with unity gain, so that wj*hi = 
1. (This is the rest of the zero-forcing constraint of (10.95).) 

Since the forward filter is defined as the n x m matrix whose i-th row is wi*' we find that 
the forward filter can now be expressed in compact form: 

F = r-1Q*, (10.103) 

where we have introduced the diagonal matrix r = diag{Gn , G22 ... Gnn}, which has real and 
positive diagonal elements. The implication of (10.103) is that we can view the forward filter 
F as the cascade of Q*, which projects the original m-dimensional observation onto an n
dimensional subspace, and also implements a change of basis or a rotation of coordinates, 
followed by a diagonal matrix r -1. The change of basis will not change the statistics of the 
noise, so that the white Gaussian noise before Q* will still be white and Gaussian after. After 
the diagonal matrix r -1, the different noise components will remain independent but with 
different noise variances. In particular, the real and imaginary parts of the i-th noise 
component will have variance (No/2)/G}. 

h· I 

~,c
: I 

:.i' 

Fig. 10-16. Decompqsing hi into the sum of hi. which is the projection of hi onto the interference 
subspace. and (hi - hi). which is the projection error. 
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The Cholesky View and the Whitened-Matched Filter 

We gain further insight into the OF detector by relating the forward filter F to a whitened
matched filter (WMF), as derived from a Cholesky decomposition, Consider the Hermitian 
matrix R = H*H, which may be interpreted as the cascade of the channel and its matched 
filter. In this sense, R is a spatial version of the folded spectrum of (5.66). Just as the 
minimum-phase spectral factorization expresses the folded spectrum as a product of a 
minimum-phase filter and its match, the Cholesky decomposition expresses a Hermitian 
matrix as a product of a minimum-phase spatial filter G and its match. 

Cholesky Decomposition. A nonsingular n x n matrix R that is positive definite and Hermitian 
(satisfying R* = R) can be factored uniquely according to 

(10.104) 

where G is lower triangular with real and positive diagonal elements {G ie O}. We will find it 
convenient to further decompose G according to G = rM, where r = diag{ Gn , G22 ••• Gnn } is 
a diagonal matrix consisting of the diagonal part of G, and M = r-1G is lower triangular and 
monic (having ones on its diagonal). 

We do not have to prove this result from scratch, because it is essentially a corollary of the 
GS decomposition (10.100). With our standing assumption that H has full column rank, 
R = H*H is nonsingular and Hermitian. Substituting H = QG from (10.100) into R = H*H 
immediately yields (10.104). In this case, the G matrix in the Cholesky decomposition is 
precisely the same as the G matrix of the GS decomposition. For the more general case where 
R is positive definite and Hermitian but not given in the form H*H, we need only apply the GS 
procedure to the square-root matrix H = A1I2V*, where R = VAV* is an eigendecomposition 
(see (9.35)). 

Before relating the OF detector to the Cholesky decomposition, let us first decompose the 
n x m forward filter into the product F = CH*, so that we may implement it using the cascade 
of a n x m matched filter H* followed by an n x n filter C. Such a decomposition does not 
hinder performance, since the matched filter is known to give sufficient statistics. In situations 
where there are many more channel outputs than inputs (m » n), this decomposition is also 
beneficial because it simplifies the filter design problem - rather than optimizing an n x m 
filter F, we need only optimize an n x n filter C. 

What choice of C maximizes SNR, subject to a zero-forcing constraint? Combining our 
earlier result that F = r-1Q* with the decompositions F = CH* and H = QG yields: 

(10.105) 

The second form of C is particularly illuminating because of its close match with the ZF-OFE 
of Section 8.1.3, where the forward filter after a sampled matched filter was shown to be the 
anticausal filter C(z) =y-2(M*(lIz*»-1. Here, C = r-2M""* is also anticausal (upper 
triangular). We interpreted C(z) as a noise-whitening filter, and the cascade of the sampled 
matched filter and C(z) was termed the whitened-matched filter (WMF). Here we have the 
analogous result for spatial channels: we may interpret the cascade of the MF and G-* as a 
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spatial whitened-matched filter; it produces sufficient statistics and white noise. From the GS 
decomposition, the spatial WMF G-*H* reduces to the projection matrix Q*. The relationship 
between the spatial WMF and the ZF-DF detector is illustrated in Fig. 10-17. 

The ZF-DF forward filter F = r-1Q* can also be understood by considering its impact on 
the channel; using the GS decomposition, the transfer function of the channel-forward-filter 
cascade can be written as: 

FH = (f-lQ*)(QG) 
=r-1G 
=M. (10.106) 

Thus, the ZF-DF forward filter transforms the channel into a monic, causal, and minimum 
phase transfer function. From (10.99), the feedback filter can now be expressed as 

B = {Mhower = M - I . (10.107) 

The optimal feedback filter is thus the strictly causal part of the monic and minimum-phase 
factor M. (Compare this result with the optimal feedback filter of the temporal ZF-DFE of 
Section 8.1.3, which was shown to be M(z) -1.) 

The MSE performance of the ZF-DF detector is easy to evaluate. The forward filter F = 
r-1Q* transforms the autocorrelation of the channel noise from NoI to Nor-2. Since the 
feedback filter does not affect the noise, the MSE for symbol i (under the assumption of 
correct decision feedback) is: 

(10.1 08) 

• DF • L 
If we define hi and hi as the projection of hi onto the subspaces spanned by {hi + 1> '" 

hn } and {hj *- i}, respectively, then the MSE for the ZF-DF and ZF-linear detectors become: 

MSgDF = N.llh. _ j"PF II-2 , 0, ! , (10.109) 

Since j"r will always be as close or closer to hi than hPF, the DF detector is always as good 
or better than the linear detector. 

Q* 
A , C 

, whitened-matched filter ' ._------------_. 
C~ ______ ~y~------~ nX n 

F 

Fig. 10-17. The forward filter of the ZF-OF detector consists of the WMF Q* = H*G-* followed by the 
diagonal matrix r-1. 
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The Linear-Prediction View 

A particularly useful way to interpret the DF detector is to begin with a linear detector and 
then apply linear prediction to reduce the noise variance. In particular, consider the centralized 
ZF linear detector of (10.70), which computes y = Cr with C = R-IH* and R = H*H. Since 
r = Ha + n, the output of the linear detector will be: 

y=a+ii, (10.110) 

where the noise ii is no longer white; instead, its autocorrelation matrix is NoCC* = NoR-I. 

Using linear prediction, we can exploit the correlation of the noise to reduce its variance. 
For example, if we knew the first i - 1 samples {nl' ... ni-I} of the noise, we could form an 
estimate ni of ni and subtract this estimate from Yi before any subsequent processing. This 
process is complicated by the fact that we do not have access to n i directly but rather the sum 
ai + n i. Thus, if we apply a linear prediction error filter 1 - P to y we would reduce the noise 
variance at the expense of reintroducing interference. Fortunately, however, the causality of 
the prediction process implies that the resulting interference will be strictly causal, and can 
thus be eliminated using decision feedback. In particular, the output of the prediction error 
filter is: 

(I - P)y = a - Pa + e , (10.111) 

where e = ii-it is the effective noise with reduced variance after prediction. Since P is 
strictly lower triangular, we can add P a to (10.111) using decision feedback. In this way we 
get the benefit of zero interference as well as reduced noise variance. This view of the DF 
detector is shown in Fig. 1O-18(a). An equivalent implementation is shown in Fig. 10-18(b), 
where the prediction filter and feedback filter are implemented using a single filter. 

F n ~ ______ ~A~ ______ ~ 

(a) .. -~--------. 
prediction error filter 

n 

(b) 

Fig. 10-18. The ZF-DF detector implemented using linear prediction: (a) with a separate prediction 
filter and feedback filter; (b) with a combined prediction filter and feedback filter. 
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The optimal prediction filter can be found by first performing a Cholesky decomposition 
ofthe autocorrelation matrix of n, according to NoR-1 = M-\Nor-2)M-*, and then applying 
(10.23). This leads to an optimal prediction-error filter of I - P = M. The cascade of the ZF 
linear detector and the prediction error filter I - P reduces to an effective forward filter of: 

(10.112) 

which agrees with (10.103). The corresponding feedback filter is B = -P = M - I, which 
agrees with (10.107). Thus, the linear-prediction approach yields precisely the same forward 
and feedback filters derived earlier. 

The LP view of the DF detector is useful because it illustrates vividly the relationship 
between the ZF linear and ZF-DF detectors. Since the feedback filter has no impact on the first 
component, it is clear that the first slicer operates directly on the output of the ZF linear 
detector. Under the assumption of correct decisions, it is also clear that the remaining 
decisions will be more reliable than after a linear detector, because they are subject to a 
reduced noise variance. 

10.3.5. The MMSE-DF Detector 

In this section we derive the MMSE-DF detector. It has the same form as the ZF-DF 
detector shown in Fig. 10-15, but we relax the requirement that fue forward filter completely 
force to zero the interference from future symbols; instead, the MMSE-DF detector chooses its 
forward and feedback filters so as to minimize the sum MSE E[\jz - a11 2], under the 
assumption that the decisions are correct. To aid analysis, we adopt the matrix view of the DF 
detector. Keep in mind that the rows of the forward filter are the nulling vectors of Fig. 10-13. 
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Our derivation will be aided by the block diagram of Fig. 10-19. Fig. 1O-19(a) shows how 
the DF detector of Fig. 10-15 simplifies when the decisions are assumed to be correct. The 
diagram of Fig. 1 0-19(b) is equivalent, but the contributions to the error signal e = z - a of the 
channel input a and noise n have been separated. Specifically, the symbols a see a transfer 
function FH - (I + B), and the noise sees a transfer function F. If we decompose the forward 
filter F into the product F = (I + B)C, then the equivalent diagram of Fig. 10-19(c) results. We 
may decompose F in this way because 1 + B is monic and triangular and thus always 
invertible. By expressing F in terms of C and B, we have changed the design problem from 
one of finding the best F and B to one of finding the best C and B. The benefit of this 
decomposition is that C and B may now be optimized separately. Indeed, from Fig. 10-19(c) 
we see that only the last block depends on B. And because 1 + B is a monic and causal filter, it 
can be interpreted as a linear-prediction error filter. Hence, optimizing B reduces to a linear 
prediction problem; regardless of how C is chosen, the best B will be determined by a 
Cholesky factorization of the autocorrelation matrix of the intermediate error signal E. 

Specifically, as shown in Section 10.1.4, the optimal B satisfies (I + B) = Mf-I, where 
Rf = Mfr f2Mi is a Cholesky decomposition ofthe autocorrelation matrix of the intermediate 
error signal E. 

The MSE after this predictor will be E[lleI1 2] = tr{rf 2 }. It remains now only to choose C 
so as to minimize tr{rf 2 }. From Fig. lO-l9(c), the autocorrelation matrix fOrE is: 

R f = (CH -I)(CH -1)* + NoCC*. (10.113) 

This is exactly the same as (10.84), the autocorrelation matrix for the error signal after a linear 
detector. Therefore, we can use our prior results for MMSE linear detection here: the best C is 
the MMSE linear detector given by (10.86) or (10.87). 

With this choice for C, the autocorrelation matrix of the residual error signal is the last 
term in (10.85), or RE =NoR-1, where we have introduced the new matrix: 

n 
a 

Fig. 10-19. Three equivalent block diagrams relating the channel input and noise to the error of a DF 
detector: (a) after assuming correct decisions; (b) after separating Signal from noise; (c) after factoring 
out the term I + B. 
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R =H*H +Nol. (10.114) 

It will be Hermitian and positive definite even when H is rank-deficient, as long as the noise is 
nonzero. Hence, we can factor it using a Cholesky decomposition: 

(10.115) 

where M is monic and lower triangular, and r is diagonal with real and positive diagonal 
elements. In terms of this decomposition, the residual error autocorrelation reduces to: 

(10.116) 

Since M-1 is itself a monic and lower triangular matrix, and since Nof-2 is a positive 
diagonal matrix, (10.116) itself defines a Cholesky decomposition of RE• The best feedback 
filter B will be such that (I + B) cancels M-1 ; or in other words: 

B= M-I. (10.117) 

Combining (10.87) and (10.117), we find that the forward filter of the MMSE-DF detector is: 

F = (I + B)C 

= M(H*H + Nol)-lH* 

= MR-1H* 

= MM-1 f-2M-*H* 

= f-2M-*H* = f-1d-*H* . (10.118) 

Equations (10.117) and (10.118) define the filters of the MMSE-DF detector. Compared to 
the corresponding filters of the ZF-DF detector, we see that the MMSE filters differ only in 
that M has replaced M, and f has replaced r. Equivalently, whereas the ZF filters were based 
on a Cholesky factorization of H*H, the MMSE filters are based on a factorization of 
H*H + Nol. In the limit of low noise, the MMSE-DF detector approaches the ZF DF detector. 
From (10.116), the MSE for the i-th output of the MMSE-DF detector is: 

(10.119) 

An important difference between the MMSE and ZF detectors is the impact of the forward 
filter. In (10.l06) we saw that the ZF forward filter transforms the channel into a monic and 
causal transfer function, FZFH = M. In contrast, the MMSE forward filter transforms the 
channel into something that is neither monic nor causal: 

FH = f-2M-*H*H 

= f-2M-*(H*H + Nol - Nol) 

= f-2M-*(M*f2M - Nol) 

= M-Nof-2M-*. (10.120) 



512 MIMO COMMUNICATIONS CHAP. 10 

The first tenn is monic and causal, but the second tenn is not. Thus, the second tenn in 
(10.120) will result in residual interference that will not be cancelled by the feedback filter. 
This interference is scaled by the noise variance and is often small relative to the desired 
signal. 

Like the temporal DFE of Chapter 8, the output of the MMSE-DF detector is slightly 
biased. If we assume correct decisions are fed back, the input to the slicer after an MMSE-DF 
detector is given by: 

z= Fr-Ba 
= F(Ha + n) - Ba 
= (FH-B)a +Fn 

= (M-Nor-2M-* - (M-I») a + Fn 

= (I -Nor-2M-*)a + Fn. (10.121) 

In particular, the coefficient in Zi ofthe desired symbol ai is (1- NoIrri), which from (10.119) 
can also be written as (1 - MSEJ. This factor represents a bias that will be small when the 
noise is small, but for best perfonnance (in tenns of error probability, not MSE) the receiver 
should nonetheless divide Zi by this factor before the slicer. 

We should point out that the matrix view of the DF detector used in this section was for 
convenience only. We can at any time revert back to the nulling-slicing-cancellation view used 
in Fig. 10-13 or Fig. 10-14 by interpreting the i-th row of the forward filter Fin (10.118) as the 
i-th nulling vector w/. Of course, unlike the ZF nulling vectors, the "nulling" vectors of the 
MMSE-DF detector do not completely reject the interference, they only attenuate it. 

10.3.6. Order of Detection 

Up to this point we have assumed that the DF detector detects the symbols in the natural 
order of first a10 then a2, and so on. However, this is not the only ordering possible. The 
receiver may detect the symbols in any order it desires. An important question is: of the n! 
possible orderings, which is best? The order in which the symbols are detected is an important 
degree of freedom at the receiver's disposition that can have a huge impact on perfonnance. 
(This is another example of a MIMO issue that has no counterpart in scalar lSI channels.) 

The ZF-DF detector does not treat each user the same. The first symbol derives no benefit 
from DF, and is in fact detected using a ZF linear detector. In contrast, under the assumption of 
correct decisions, the last symbol achieves the perfonnance of the perfect interference 
canceller or MFB. On fading channels (see Chapter 11), the diversity benefit varies from one 
symbol to the next. Specifically, as explained in Section 11.4, the first symbol sacrifices 
diversity in order to null the interferers, and achieves a diversity order of only m - n + 1. On a 
square channel, it has no diversity at all. In contrast, the last symbol achieves full diversity 
order m. 
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Let ij denote the index of the j-th symbol to be detected, so that the desired ordering is 
specified by an ordered set {iI' i2, ... in} that is a permutation of the integers {l, 2, '" n}. 
Analytically, the ordering of users is captured by a permutation matrix P, where the j-th 
column of P is the irth column of an n x n identity matrix, so that a' = pTa contains the 
elements of a in the desired order. The permutation matrix is orthonormal, satisfying ppT = I. 
Substituting a = Pa' into the channel model yields: 

r = Ha + n 
= HPa'+ n 
= H'a' + n, (10.122) 

where we have introduced H' = HP. We recognize this as equivalent to our original channel 
model, but with a and H replaced by a' and H', respectively. Since a' has the same statistics 
as a, we conclude that the main impact of changing the order of detection is to change the 
channel from H to H' = HP, which can also be expressed as: 

(10.123) 

Hence, changing the order of detection is equivalent to rearranging the columns of H. 

The probability that any of the symbol decisions is incorrect will be dominated by the 
largest MSEi, or equivalently by the smallest Gii. Hence, we would like the ordering to ensure 
that min{ Gii } is as large as possible. The ordering also impacts the probability of error 
propagation. If an early symbol (say the first) is detected incorrectly, then the cancellation step 
of its stage will not reduce interference but will instead increase it, thus making it very likely 
that the decisions to follow will also be incorrect. These observations lead to the following 
two-step heuristic for choosing the ordering: 

• Identify the ordering or orderings that maximize the worst-case SNR. 

• Of these, choose the ordering that maximizes J i = L~ ~ Pk~ for all i E {1, ... n}. 

The BLAST ordering procedure is a recursive algorithm in which the symbol index ik to be 
detected at stage k is chosen from the set of undetected symbols so as to minimize its MSE, as 
summarized by the following pseudocode [12]: 

fork~l:n, 

end 

Let ik = row of pseudo inverse ofH with smallest norm, excluding rows {i i , .. · ik - i } 

Replace the ik-th column of H by all zeros 

(10.124) 

It is a remarkable fact that this procedure attains both heuristic goals outlined above: it 
maximizes the worst-case SNR, and it maximally concentrates {Gkk } at small k. This is a local 
and greedy algorithm, in the sense that each symbol index is chosen without consideration of 
its impact on future symbols. Nevertheless, it is globally optimal. The complexity of the above 
procedure is high because it requires repeated computations of a matrix pseudoinverse; a 
reduced-complexity algorithm for finding the optimal ordering is explored in Problem 10-12. 
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Example 10-23. ----------------------------------------------------
Consider a two-input channel H = [hI> h2], and let A1 = IIh111, A2 = IIh211, and 
p = h2*h1/(A1A2), where the Cauchy-Schwartz inequality implies that Ipl::::; 1. The natural 
ordering would lead us to perform a Cholesky factorization of H*H, and the permuted ordering 
would lead us to perform a Cholesky factorization of [h2' h 1]*[h2, hd, yielding respective 
Cholesky factors of: 

G = [Ad1_IPI 2 

AlP 
(10.125) 

Whether the receiver should swap the order of detection or not depends on whether G or G' 
contains the minimum diagonal element. Comparing the two, we conclude that the detector should 
swap only if the second input has more energy than the first, or A2 > A 1. This simple result holds in 
general only for the case when there are two inputs; with more than two inputs, the optimal 
ordering cannot be found simply by sorting the signal energies. (See Example 10-24.) Observe 
from (I 0.125) that neither G nor G' will have its diagonal elements in decreasing order when (1 -
p2)112 < A21 A1 < (1 - p2r1l2, for example, when p = 0.1 and A1 = A2. 

Example 10-24. 
Consider a three-input channel H = [hI> h2' h 3], where h1 = [1, 0, 1, 0],\ h2= [1, 1, 0, 0],\ and 
h3= [1, 0, 1, 1]-r: There are 3! = 6 possible orderings, which lead to the following diagonal 
elements for G: 

123 132 213 231 312 321 

Gll: 0.77 0.77 1.22 1. 22 1. 1. 

G22: 1.29 1. 58 0.82 1. 1.22 1.22 

G33: 1. 73 1.41 1. 73 1. 41 1.41 1.41 

The last three permutations are preferable over the others, because they maximize the worst-case 
Gii . Of these, the 231 permutation is preferred over the other two, because its Gn is as big as 
possible, which minimizes the probability of error propagation. None of the permutations results in 
the condition Gn > G22 > G33. Observe that, although the third input has more energy than the 
first two, the optimal ordering does not detect it first. Thus, we have a counterexample to the 
proposition that the optimal detection order can be found by sorting signal energies. 

The following example demonstrates that an optimally ordered DF detector can outperform a 
naturally ordered DF detector by 5 dB. 

Example 10-25. -------------------------
Consider a two-input two-output memoryless MIMO channel with AWGN and independent 
Rayleigh jading, meaning that the channel coefficients {h ij } are i.i.d. zero-mean circularly 
symmetric Gaussian random variables. Both inputs are chosen independently and uniformly from a 
4-QAM alphabet. In Fig. 10-20 we show the performance of the ZF-DF and MMSE-DF detectors, 
both without sorting and with optimal sorting, as found using Monte-Carlo simulations after 
averaging over one million independently generated channel, symbol, and noise realizations. The 
figure illustrates that sorting improves performance by 2 dB with ZF-DF detection, and it improves 
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perfonnance by 5 dB with MMSE-DF detection. Clearly, the order in which the symbols are 
detected has a huge impact on perfonnance. 

Although the main purpose of this example was to demonstrate the benefits of sorting, it also 
illustrates the clear superiority of MMSE over ZF. Specifically, the gain of MMSE over ZF is 
4.4 dB with sorting. 
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10.3.7. Multistage Parallel-Interference Cancellation 

The DF detector of the previous section cancels interference from the symbols one by one, 
in sequential order. For this reason, it is characterized as a serial or successive interference 
cancellation (SIC) method. The performance is a strong function of the order in which the 
symbols are detected. In this section we describe the parallel-interference canceller (PIC) or 
multistage detector [14], a related MIMO detector in which the interference from all symbols 
is cancelled simultaneously, or in parallel. 

The PIC is easily motivated as a straightforward attempt at achieving the MFB 
performance of the genie-aided receiver. In fact, the PIC uses the same cancellation technique 
used by the genie-aided receiver of Section 10.3.2 (see (10.68)), except that a vector of 
tentative decisions li is used in place a: 

z=H*r-Bli , (10.126) 

where we have introduced B = R - Rd. This defines the PIC receiver. Comparing it to the DF 
detector of (10.98), we see the same basic structure, but with three important differences: 

• The forward filter F = H* is the MMF. 

• The "feedback" filter B = R - Rd is neither lower triangular nor upper triangular; in 
general, it has zeros only on the diagonal. 

• The input to the feedback filter is a vector of tentative decisions, not final decisions. 

The tentative decisions li may be found using any of the detectors described in the previous 
sections, including the linear and DF detectors, either ZF or MMSE. Thus, we may think of 
the PIC detector as additional processing that may be appended to another detector in an 
attempt to improve its performance. The ultimate performance of the PIC detector will depend 
on the reliability of the tentative decisions. Correct tentative decisions would imply that the 
PIC receiver would attain the MFB. (Of course, if correct decisions could be guaranteed then 

Fig. 10-21. Two views of the multistage PIC detector: (a) with separate stages shown explicitly, and 
(b) a recursive implementation. In (b), the input to the feedback filter is initialized to the tentative 
decisions iiI provided by the front-end detector, usually a ZF or MMSE linear detector. 
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there would be no room for improvement, and hence no need for the PIC structure in the first 
place.) 

The PIC naturally lends itself to a recursive or multistage implementation, where final 
decisions from stage k are used as tentative decisions for stage k + 1. The hope is that each 
iteration will improve the reliability of the decisions. Specifically, repeated application of 
(10.126) yields the recursion: 

(10.127) 

where ak is found by quantizing zk, and where al is initialized by a conventional linear or 
DF detector. 

Two equivalent views of the multistage PIC detector are shown in Fig. 10-21. In 
Fig. 10-21(a), the different stages are shown explicitly. In Fig. 10-21(b), the structure of the 
DF detector is used, and the recursion of (10.127) is implied. 

The multistage PIC detector of (10.127) is aggressive because it attempts to completely 
cancel all interference, despite the fact that the decisions at the initial stage may not be 
reliable. The reliability of the decisions does not necessarily improve from one stage to the 
next; in some circumstances, the detector can enter a limit cycle in which a sequence of 
decision vectors repeats periodically [7]. Divsalar et al. proposed a less aggressive multistage 
detector that aims to only partially cancel interference during the initial stages, leading to a 
partial PIC (PPIC) detector that adapts the slicer input according to [15]: 

(10.128) 

where the step size Pk is a number between zero and one that increases with each iteration. 
Typically, Zl is initialized using the linear MMSE detector of (10.87). If Pk is fixed at zero, 
then the PPIC detector does not deviate from the linear MMSE detector. On the other hand, if 
Pk = 1, the PPIC detector reverts to the conventional PIC of (10.127). A common strategy is to 
choose Pk as an increasing function of k, so that as the decisions get more and more reliable, 
the detector approaches the PIC. 

10.3.8. Tree-Based Spbere Detection 

In this section we return to the problem of joint ML detection, as described in 
Section 10.3.1. The complexity of an exhaustive search is exponential in the number of 
channel inputs n, since it enumerates all 1511 n possibilities. We might be discouraged by the 
fact that the joint ML detection problem is NP-hard, meaning that all known solutions have a 
worst-case complexity that is exponential in n. But that is a pessimistic view of the problem, 
because it focuses on the worst-case complexity. In practice, the complexity is a random 
variable that depends on the statistics of the channel input and noise, and the average 
complexity is often more relevant than its worst-case value. In this section we describe a tree
based algorithm for realizing the JML detector called a sphere detector [16] that can be 
significantly more efficient than an exhaustive search, attaining polynomial-time complexity in 
some circumstances [17]. 
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Recall that the JML detector chooses its decision a so as to minimize the total cost: 

J(a) = Ilr-Hall2 
= Ily- Ga l12 
_ ~n ~i G 2 
- L..i=lIYi- L..j=l ipjl , (10.129) 

where we have introduced y = Q*r, the WMF output, where H = QG is the Gram-Schmidt 
decomposition of (10.100), so that G is lower triangular with positive real diagonal elements. 

The sphere detector derives its name from the geometric picture shown in Fig. 10-22, 
which depicts each of the 15t I n possible candidate vectors {Ga} as they might appear in n
dimensional complex space, and the WMF output y (marked by x), which is one of the 
candidates perturbed by white Gaussian noise. The JML problem is to find the candidate 
closest to y. The sphere detector avoids the complexity of an exhaustive search by only 
considering candidates that fall within a given hypersphere centered at y. The radius of the 
sphere must be chosen carefully. If it is too small, there will be no candidates inside, and if it is 
too big, there will be little benefit over an exhaustive search. A common choice is to use the 
decision a from a reduced-complexity detector - such as a DF detector - to define the 
radius JJ of the sphere, according to J = Ily - Ga f This guarantees that there is at least one 
candidate within the sphere, namely Ga. Furthermore, at high SNR, the effectiveness of the 
DF detector ensures that there will not be many other candidates within the sphere. In the 
following we describe a tree-based algorithm that restricts the search to candidates within the 
sphere. 

We can evaluate the cost of (10.129) by assigning metrics to the branches of a tree, and 
then summing branch metrics along a path from the root to a leaf of the tree. In Fig. 10-23 we 
show such a tree for the special case of n = 3 inputs and a binary alphabet 5t = {± I}. The 
starting point is the left-most node, or root. The tree consists of three stages, or in general n 
stages, one for each input (and hence one for each WMF output). The root is connected to 15t1 
child nodes, one for each possible value for al> and each of these is connected to 15t I child 

Gii 
0 0 

0 

0 

0 0 
0 

0 

0 
0 

Fig. 10-22. The n-dimensional candidates {Ga}. marked by o. and the WMF outputy. marked by x. 



Sect. 10.3 Memoryless MIMO Channels 

Fig. 10-23. A tree for the case of 3 binary inputs. An upper branch corresponds to an input of ai = 1, 
and a lower branch to ai = -1. Each branch has been labeled by the branch metric of (10.130). 
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nodes, depending on a2, and so on. Thus, for each possible a there is a unique path through the 
tree that begins at the root and ends at one of the right-most nodes, or leaf nodes. For example, 
the path corresponding to [a1 a2 a3] = [1, -1, 1] has been highlighted. 

In terms of this tree, we may interpret (10.129) as the sum of n branch metrics, one for 
each branch in a path from the root to a leaf node, where the metric for a branch in the i-th 
stage with path history {a1' a2, ... ai} is defined as; 

(10.130) 

We see that the metric for a branch at the i-th stage depends only on the i-th observation Yi' 

With these labels, we can define the cost of any node as the sum of the branch metrics between 
it and the root. In terms of the geometry of Fig. 10-22, we may interpret the cost of a leaf node 
as the squared distance between the corresponding candidate and the WMF output. 

Once we construct a tree and label its branches, the JML detection problem can be 
reformulated as a problem of finding the path through the tree with the lowest cost. A brute
force search would consider all I Jt I n possible paths, one for each leaf node. At the other 
extreme is the ZF-DF detector, which can be interpreted as a greedy and short-sighted 
algorithm that travels through the tree, beginning at the root and ending at a leaf node, and at 
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each node always takes the branch ofleast cost. The DF detector is simple and fast, but it does 
not always yield the ML solution. This is because an early branch with a low cost may lead to 
a subtree with a high cost, as illustrated below: 

~ ZF-DFdecision 

~~~~:~ 0 __ -0 JMLdecision 
~~~ 

In the above example, the ZF-DF detector would choose the grey path, yielding a cost of 4, 
whereas the ML detector would choose the dashed path, yielding a cost of only 2. 

The sphere detector efficiently organizes its search by exploiting the structure of the tree. 
It begins by using any low-complexity detector, such as a DF detector, to arrive at a tentative 
decision ii with cost J = Ily - Gii 112. The key to the sphere detector is the observation that, 
once the cost of a particular node exceeds J, there is no need to extend this node any further, 
since additional branches will only add to the cost. We can thus eliminate this node and all of 
its children from further consideration. 

There are two ways to implement a sphere detector. The first is a breadth-first search that 
mimics the Viterbi algorithm, moving through the tree one stage at a time, and discarding 
those nodes whose cost exceeds J (because such nodes necessarily lead to a leaf node that is 
outside the sphere). The nodes that are not discarded are said to be survivors. 

A Breadth-First (Viterhi-Like) Sphere Detector 

1. Define J as the cost (10.129) for any decision ii, perhaps that of a DF detector. 
Initialize the set of survivors So to the root node, and initialize its cost to zero. 

2. For each tree stage i E {I, ... n}: 

Define the i-th set of survivors Si as the children of the previous survivors in Si _ 1, 

but excluding those children whose partial path metric exceeds J. 

3. The leaf node in Sn having the smallest cost determines the ML decision aML. 

Rather than pursuing all possible paths in parallel, a faster implementation arranges its search 
in a best-first manner by pursuing first the most promising paths. A leaf node will thus be 
reached faster, allowing us to decrease the threshold J, which ultimately allows us to discard 
more paths early on. When J decreases, the sphere radius of Fig. 10-22 shrinks. To facilitate 
the description of the algorithm, let 1](S) denote the node in Swhose cost is smallest. 

A Best-First Sphere Detector 

1. Initialize J as the cost (10.129) for any decision ii, perhaps that of a DF detector. 
Initialize the set of survivors S to the root node, and initialize its cost to zero. 

2. While 1](S) is not a leaf node: 

Eliminate 1](S) from S, replacing it by those of its children whose cost is less than J. 
If any of these children are leaf nodes, reset J to the cost of the leaf node that is smallest. 

3. The leaf node 1](S) having the smallest cost determines the ML decision a ML. 
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This best-first algorithm is essentially equivalent to a form of sequential decoding for 
convolutional codes known as a stack decoder. In discrete optimization problems it is 
characterized as a best-first branch-and-bound technique [18]. A disadvantage of this 
approach is the potentially large memory requirements needed to store the surviving nodes 
along with their costs, as well as the computational complexity of finding the node with the 
smallest cost. The memory requirement is actually a random variable that depends on the 
particular realization of the channel input and noise random variables. A practical 
implementation would allocate enough memory to make the probability of overflow 
sufficiently small, and then resort to a suboptimal decision whenever overflow does occur. 

As an alternative, one can formulate a local depth-first search technique with almost no 
storage requirements and no sorting, analogous to the Fano algorithm for sequential decoding. 
A Fano-like sphere detector steps forward through the tree from one node to the next, choosing 
the untraversed branch having the smallest cost, and adding branch metrics along the way, 
until it gets to a leaf node. The algorithm then backs up to the previous node - subtracting the 
branch metric - and repeats, updating the threshold J each time it gets to a low-cost leaf 
node, and backing up to a previous node whenever either all forward moves would increase the 
cost above the threshold J, or all forward moves have already been pursued. The search ends 
when no more moves are possible. 

The complexity of the sphere detector is governed by the number of nodes it visits, a 
random variable whose probability mass function is a strong function of SNR. As SNR 
increases, the mass becomes more and more concentrated near the minimal value n. In 
contrast, the DF detector always visits exactly n nodes, regardless of SNR, and an exhaustive 
search always visits every one of the ( 15t 1 n + 1 - 1.9/.1) / ( 15t 1 - 1) nodes in the tree. While the 
wort-case complexity of the sphere detector can be very high, the average complexity can be 
extremely small, sometimes comparable to that of the DF detector. 

Example 10-26. ----------------------------------------------------
Consider a 16-input, 16-output memory1ess channel in AWGN whose coefficients {h ij } are i.i.d. 
zero-mean complex Gaussian random variables, and assume the inputs are independent uncoded 
16-QAM symbols. An exhaustive search would have to consider 1616 = 264 leaf nodes, a near 
impossibility. Let N denote the number of nodes visited by a depth-first sphere detector, assuming 
the inputs are ordered optimally according to the BLAST ordering procedure. The probability mass 
function for N is easy to estimate using simulation. Two examples are shown in Fig. 10-24. When 
the SNR is 18 dB, as shown in Fig. 10-24(a), the sphere detector visits N = 3995 nodes on average, 
which is about 250 times bigger than the 16 nodes visited by the DF detector, but over one million 
times smaller than an exhaustive search. When the SNR is 24 dB, as shown in Fig. 1O-24(b), the 
sphere detector visits only N = 48.6 nodes on average, barely three times as big as the DF detector. 
In fact, from the figure we see that the sphere detector is most likely to visit 18 nodes, just two more 
than the DF detector. Thus, the JML performance of an exhaustive search is often attainable with 
complexity comparable to the DF detector. 
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Fig. 10-24. Estimated probability mass functions for N, the number of nodes visited by the depth-first 
sphere detector, at (a) SNR = 18 dB and (b) SNR = 24 dB, assuming a 16 x 16 Rayleigh-fading channel 
with 16-QAM inputs. These results were found by simulating the sphere detector T times, with 
independent noise, channel, and symbol realizations for each trial, then estimating the pmf for N 
according to Prob[N= n] = In/T, where In is the number of trials for which n nodes were visited. The 
number T of trials was 2.5 x 105 for (a) and 5 x 106 for (b). The area under the tail beyond 10000 in (a) 
and beyond 100 in (b) is about 8% and 9%, respectively. 

10.3.9. Performance Comparison 

In this section we briefly compare the performance of many of the detection methods 
described in previous sections. Rather than specializing to a particular channel matrix H, 
which might not be representative for an application of interest, we will instead average 
performance over an ensemble of randomly generated channel matrices. Specifically, we 
consider a two-input two-output channel whose coefficients {h ij } are i.i.d. zero-mean complex 
Gaussian random variables. Both inputs are chosen independently and uniformly from a unit
energy 4-QAM alphabet {±1 ± j} / J2. The results are found using Monte-Carlo simulations 
after averaging over one million independent channel realizations, and are shown in Fig. 10-25 
in the form of average BER (for both channel inputs) versus average SNR. 

In this example, we see that the MMSE-linear detector outperforms the ZF-linear detector 
by 1.8 dB. This gap jumps significantly for DF detectors: the MMSE-DF detector is 4.4 dB 
better than the ZF-DF detector. Comparing DF detection to linear detection, we see that the 
MMSE-DF detector is 6.4 dB better than the MMSE-linear detector. (The difference is less 
dramatic for ZF detectors: the ZF-DF detector outperforms the ZF-linear detector by only 
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Fig. 10-25. BER averaged over one million random two-input two-output Rayleigh fading channels. 
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3.6 dB.) The PPIC detector described in Section 10.3.7 (with {PI' ... P7} = {O.l, 0.2, ... 0.6, 
I}) is 3.2 dB better than the ZF-DF detector, but 1.2 dB worse than the MMSE-DF detector. 
Of the suboptimal schemes considered, the optimally sorted MMSE-DF detector offers the 
best performance, but is still 8.2 dB worse than the JML detector at BER = 10-4. The JML 
detector of Section 10.3.8 falls 1.3 dB short of the MFB. 
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10.4. MIMO Detection with Channel Memory 

In this section we show how the linear and decision-feedback detectors of the previous 
section - presented in the context of the one-shot memoryless channel - generalize to the 
continuous-time MIMO channel with memory of (1 0.31). 

10.4.1. Linear Detection 
In its most general form, a linear MIM 0 detector for the m x n channel of (10.31) consists 

of a continuous-time receive filter F(t) of dimension n x m, a symbol-rate sampler, and a bank 
of slicers, as shown in Fig. 10-26(a). Because the sampled-MF projects r(t) onto the signal 
space spanned by {H(t - kT)}, we can - without loss of generality - decompose F(t) into 
the cascade of the MF H*(-t), a sampler, and discrete-time filter C(z), as shown in 
Fig. 10-26(b). By projecting onto the signal space, the receiver discards only noise 
components that are statistically independent of the desired symbols, and hence irrelevant to 
their detection. Therefore, the optimal receiver filter F(t) with respect to any reasonable 
optimization criterion - whether it be with respect to minimizing MSE, minimizing BER or 
some other criterion - will have a frequency response given by F( f) = C(ei21t/T)H*( f), and 
can be implemented as shown in Fig. 1 0-26(b). By decomposing the receiver filter in this way, 
the receiver filter is completely specified by the discrete-time filter C(z). In Fig. 1O-26(c) we 
have replaced the cascade of the channel, the matched filter, and the sampler by the equivalent 
model: a discrete-time filter with transfer function S(z) equal to the folded spectrum, and noise 
with PSD equal to NoS(z). 

mxn nIt) nxm 

~L-_H_(t_)--,~ "., ~ '«' 
(a) " 

nXm nx; ..... 

""1 ~~ ·H°(-t) kT~ 

(b) 
, , 
, 

, , , 
, 

Fig. 10-26. (a) A linear detector; (b) a linear detector that is based on a sampled-MF front end. 
In (c), the cascade of the channel and sampled-MF is replaced by its equivalent model. 
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ZF Linear Detector 

The zero-forcing linear detector chooses C(z) so as to eliminate interference completely. 
Assuming that its inverse is stable, we have no choice but to choose C(z) = S-l(z). The output 
is given by: 

Zk = ak + nk , 

which is free of interference, and where the PSD of the filtered noise nk is: 

Sn (z) = C(z)Sn(z)C*(l I z*) 

= S-l(z){NoS(z)}S-*(l/z*) 

= NoS-1(z) , 

(10.131) 

(10.132) 

where we exploited the fact that S(z) = S*(lIz*). Therefore, the MSE E[ 1 Zk(i) - ak(i) 12] for 
the i-th symbol can be expressed as: 

1 f1t -1 "e,. MSEi = No 2n (S (eI· )ii de . 
-1t 

(10.133) 

MMSE Linear Detector 

The MMSE linear detector chooses C(z) of Fig. 10-26 so as to minimize the MSE sum 
E[IIzk - akll2] directly, without forcing the interference to zero. As discussed in Section 10.3 
for memoryless channels, the MMSE linear detector achieves an optimal balance between 
noise enhancement and interference suppression. The MSE sum can be expressed as: 

(10.134) 

where Se(z) is the PSD of the error signal ek = Zk - ak. From Fig. 1O-28(b) we see that the 
symbols contribute to ek through a filter with transfer function C(z)S(z) - I, whereas the noise 
nk contributes to ek through a filter with transfer function C(z). Therefore, the PSD of the 
error signal is (using C and C* as shorthand for C(z) and C*(lIz*), respectively): 

Se = (CS -I)(S*C* -I) + C{NoS}C* 

= (C - 8-1) 8S(C - 8-1)* + No 8-1, 

where we have introduced: 

S(z) = S(z) + NoI . 

(10.135) 

(10.136) 

(10.137) 

The last equality in (10.136) follows from completing the square and is easily verified. Only 
the first term in (10.136) depends on C, and we can do no better than to make this term zero. 
Hence, the MMSE solution is C(z) = 8-1(z). With this choice, the MSE performance is: 

1 f1t --1 "e,. 
MSEi = No 2n (8 (el )ii de . 

-1t 

(10.138) 
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As No ~ 0, S ~ S, and the MMSE detector approaches the ZF detector. 

10.4.2. MMSE-DF Detector 

In this section we describe the MIMO DF detector for the general MIMO channel of 
(10.31), as shown in Fig. 10-27. This detector is a straightforward extension of the 
memoryless DF detector considered in Section 10.3.4. The detector consists of a sampled 
MMF, which provides sufficient statistics, followed by a forward filter F(z), whose function is 
to mitigate interference from future (undetected) symbols. Interference due to past (already 
detected) symbols is reconstructed using a strictly space-time causal feedback filter B(z) and 
then subtracted, yielding the slicer input Zk' 

We now derive the MMSE-DF detector, which chooses its forward and feedback filters so 
as to minimize the sum MSE Erllzk - akIl 2], under the assumption that the decisions are 
correct. The derivation deviates from that of Section 10.3.5 because the filters under 
consideration have memory, and also because they operate on the sampled MF output, and are 
thus subject to noise that is not white. In Fig. 1O-28(a) we show how the block diagram of 
Fig. 10-27 simplifies when the decisions are correct, and when the contributions to the error 
signal ek = Zk - ak from the channel input ak and noise nk have been separated. Specifically, 
the symbols ak see a transfer function F(z)S(z) - (I + B(z», and the noise sees a transfer 
function F(z). Ifwe decompose the forward filter according to F(z) = (I + B(z»C(z), then the 
equivalent diagram of Fig. 1O-28(b) results. This diagram shows that only the last block 
depends on B(z). Furthermore, because 1 + B(z) is a monic and space-time causal filter, it can 
be interpreted as a linear-prediction error filter. Hence, optimizing B(z) reduces to a space
time linear prediction problem: regardless of how C(z) is chosen, the best B(z) will be 

mXn n(t) nxm nxn 

r(t) 
H(t) +}---.-I H*(-t) F(z) 

kT 

nxn 

Fig. 10-27. A MIMO OF detector applied to the continuous-time MIMO channel of (10.31). 

F(z)S(z) - (I + B(z» 

(a) 

Fig. 10-28. (a) A block diagram showing how the channel input and noise contribute to the error of a 
MIMO OF detector, assuming correct decisions; (b) after factoring out the term I + B(z). 
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detennined by a spectral factorization of the PSD of the intennediate error signal Ek. 
Specifically, as shown in Section 10.1.4, the optimal B(z) satisfies (I + B(z» = ME(zr\ where 
ME(z) is defined by the spectral factorization SE(Z) = ME(z)rE2M:(lIz*) of the PSD OfEk. 

After the linear prediction error filter is optimized, the MSE sum is EUJekll2] = tr{rE2}. 
We now must find the C(z) that minimizes tr{ rE 2 }. From Fig. 1 0-28(b), the PSD for Ek is: 

SE(Z) = (C(z)S(z) -1)(S*(l/z*)C*(l/z*) -I) + NoC(z)S(z)C*(l/z*) . (10.139) 

Recognizing this as the error PSD (10.135) after a linear detector, we immediately conclude 
that the solution is the MMSE linear detector, C(z) = S-l(z), where S(z) = S(z) + NoI. With 
this choice for C(z), the PSD of the residual error signal is the last tenn in (10.136), namely: 

- -1 SE(Z) = NoS(z) . (10.140) 

Observe that S(z) = S(z) + Nol is itself a valid PSD and it will be full rank even when S(z) is 
not, provided that the noise is nonzero. Hence, it admits a spectral factorization: 

S(z) = M*(1/z*)f2M(z) , (10.141) 

where M(z) is monic and space-time causal, and f is diagonal with real and positive diagonal 
elements. In tenns of this factorization, the residual error PSD reduces to: 

(10.142) 

Since M(z)-l is itself monic and space-time causal, and since Nof-2 is a positive diagonal 
matrix, (10.142) itself defines a spectral factorization of SE(Z), namely 
SE(z)=ME(z)rE2M:(1/z*) with ME(z)=M(z)-l and r E2 =Nof-2. As shown in 
Section 10.1.4, the best feedback filter B(z) will cause the space-time prediction error filter 
(I + B(z» to cancel M(z)-l: 

B(z) = M(z) - 1 . (10.143) 

This defines the feedback filter. Combining the result C(z) = S-l(z) with the definition 
F(z) = (I + B(z»C(z), we find that the forward filter of the MMSE-DF detector is: 

F(z) = (I + B(z»S-l(z) 

= M(z) M(z)-l f-2M -*( 11 z*) 

= f-2M-*(1/z*) . 

Equations (10.143) and (10.146) define the filters of the MMSE-DF detector. 

(10.144) 

(10.145) 

(10.146) 

As expected, the solutions (10.143) and (10.146) reduce to the scalar solutions of 
Chapter 8 when the channel has only one input and one output, namely B(z) = M(z) - 1 and 
F(z) = 1I(Y2M*(1/z*». Furthennore, the solutions reduce to the memoryless solutions of 
Section 10.3.5 when the folded spectrum S(z) = R is a constant, independent of z. 

From (10.142), the MSE for the i-th output of the MMSE-DF detector is: 
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(10.147) 

In the absence of noise, the MMSE-DF detector reduces to the MIMO ZF-DF detector. In this 
case, S(z) reduces to S(z), so that the forward and feedback filters are also given by (10.143) 
and (10.146), but with M(z) and r in place of M(z) and f, respectively. 

Example 10-27. -------------------------
Consider the continuous-time channel of (10.31) with two inputs and one output, so that 
H(t) = [h1(t), h2(t)]\ where h1(t) and h2(t) are as sketched below [7]: 

IT 
o T 

This model might arise in an asynchronous CDMA application, where hl(t) and h2(t) are the 
signatures assigned to user 1 and user 2, respectively. The two pulses would be orthogonal if they 
were transmitted synchronously, but the second pulse is delayed by an amount 0.T, which leads to 
multiuser interference. Assume that the normalized delay parameter a. is between 0 and 1, and 
assume that both signatures are normalized to have unit energy (i.e., perfect power control). The 
components of the 2 X 2 sampled autocorrelation matrix Sk, as defined by (10.38), are: 

Sk(l, 1) = [h1(t - k1)h1(t) dt = Ok 

SkO, 2) = [h1(t - k1)h2(t) dt = POk - POk-l 

Sk (2, 1) = [h2(t - k1)h1 (t) dt = POk - POk + 1 

Sk(2,2) = [h2(t-k1)h2(t) dt=Ok ' 

where the correlation parameter P E [0,../3/4] depends on a. E [0, 1] according to: 

p = [hI (t)h2(t)dt = J3 0.(1 - a.) . 

Therefore, the folded spectrum is: 

(10.148) 

(10.149) 

(10.150) 

Observe that the folded spectrum reduces to a constant (the identity matrix) when a. = 0, i.e., when 
the two waveforms are synchronized. It is easy to verify that the spectral factorization of the folded 
spectrum is given by S(z) = M*(I/ z*)r2M(z), where: 
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M(Z)=[p~r n+[~ -P~r]z-l, r=[~ ~], and Y=J~+J~_p2. (10.151) 

Let us consider the ZF-DF detector, which has the same structure as the MMSE-DF detector, but 
chooses its filters under the assumption that the noise is zero, even when it is not. Therefore, from 
(lO.143) and (10.146), the forward and feedback filters are given by: 

F(z) =r-2M-*(1/z*) = _l_rl -~] 
y2_pz L-~ 1 

B(z) = M(z) _ 1= [~ _~-l], (10.152) 

where we have introduced ~ = p/y2 E [0,0.5]. An implementation of the ZF-DF detector is 
shown in Fig. 10-29. The receiver front end consists of an MMF H*(-t), which reduces to a pair of 
scalar matched filters, followed by a pair of samplers. The forward and feedback filters of (10.152) 
are shown explicitly. In practice, the noncausal filters 11 (y2 - pz) and z 1 (y2 - pz) would have to 
be delayed sufficiently to make them approximately causal; this delay is not shown. Recall that for 
the memoryless DF detector, the first-user decision reduces to that of a linear detector. From 
Fig. 10-29 we see that this result is no longer true for asynchronous channels (channels with 
memory). Indeed, the user 1 decision at time k is based in part On the user 2 decision at time k - 1. 
The MSE for both users is No/y2, while the MFB attained by the genie-aided detector is 
MSEMFB = No. Thus, the MSE ofthe ZF-DF detector exceeds the MFB by a factor ofy-2. This 
penalty ranges from 0 dB to 1.25 dB as a ranges from 0 to 1/2. 

In contrast, the ZF-linear detector would take the form of Fig. lO-26 with C(z) = S(z)-l: 

C(z) = S(z)-l = [ 1 p(l- Z-l)]-l = 1 [ 1 -p(l- z-l~ 
p(l-z) 1 I-p2(1-Z-1)(1-z) -p(l-z) 1 J 

Therefore, from (lO.138), the MSE for both users is given by: 

where: 

1 It 2N. 
MSE = N. - J 1 de = 0 

ZFL 021t -It I_p211_e-jOI2 ~_p4/~ , 

l:_1-p2 J(1-pZj2 2. .,,- -2-+ -2--)-P 

Fig. 10-29. A two-input single-oulpul channel and ils ZF-OF detector. 

(lO.153) 

(10.154) 
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Relative to the MFB, the penalty is (~- p4 11;)-1, which ranges from 0 dB to 1.42 dB as a ranges 
from 0 to 1/2. It is at most 0.17 dB worse than theZF-DF detector. 

10.5. Further Reading 

The theory of spectral factorization for stationary vector processes was developed by 
Wiener et al. in 1957 [3][4]. Practical factorization techniques can be found in [19][20]. The 
capacity of the Gaussian MIMO channel was derived in [21]. Verdu provides comprehensive 
coverage of multiuser detection [7]. The ML sequence detector for MIMO channels was 
proposed in [22][23] and improved upon in [24]. The linear MMSE detector for MIMO 
channels was proposed in [25]. A DF detector for 2 x 2 channels with analytic symmetry was 
developed in [26]. Linear detection for the 2 x 2 dually polarized radio channel was proposed 
in [27]. Salz generalized the linear detector to arbitrary dimension, and also optimized the 
transmit filters [28]. A DF detector for the 2 x 2 dually polarized channel was proposed by 
Kavehrad and Salz [29]. This detector was extended to arbitrary dimensions by Duel-Hallen 
[30]. A joint optimization of the transmitter and receiver filters for a MIMO channel with DF 
detection can be found in [31]. Related to the successive and parallel interference cancellation 
methods is a hybrid method that adopts the PIC recursion but updates only a subset of symbols 
at each stage, perhaps even just one, as opposed to all [32][33]. A feature of the sphere 
detector not explored here is its ability to provide soft outputs [34]. Adaptive implementations 
of multiuser detectors are described in [7][35][36]. 

Appendix 10-A. Proof of Separability Result (10.45) 

In this appendix we prove the result (10.45), which states that, given an n-input m-output 
system with bandwidth Wand symbol rate liT, the receiver can linearly separate the n inputs 
only if n :s; m L W2 T J. We first observe that linear separability is possible only when the 
folded spectrum S(ej~ is full rank for all 9; this is because the MMF outputs are sufficient 
statistics, so separation is possible only if we can invert the folded spectrum. 

We now must show that ifS(ej~ is full rank for all 9, then we must have n:S; mL W2T J. 
Recall from (10.40) that the folded spectrum is: 

(10.155) 

We first claim that there exists a frequency f such that the number of nonzero terms in the 
summation of (10.155) is L W2T J. The frequency at which the number of nonzero terms is 
smallest will be f= 0 when L W2T J is odd, and it will be f= 1/(21) when L W2T J is even. 
Regardless, the number of nonzero terms is L W 2 T J . 
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We treat the case m > n and m ~ n separately. We assume that H(f) is full rank for 
If I ~ w. If m > n, then H*(f)H(f) has rank n, and we need only one term (L W2T J ~ 1) in the 
summation in (10.155) to equal the rank of the left-hand side. But LW2T J~ I implies n 
~ mLW2T J when m > n. On the other hand, if m ~ n, then each of the LW2T J nonzero 
terms in (10.155) has rank m. The right-hand side (which is a sum of LW2T J rank-m 
matrices) can equal the left-hand side (which is a rank n matrix) only if mL W2T J ~ n. 
Regardless of whether m ~ n or m > n, we always require that mL W2T J ~ n. 

Problems 

Problem 10-1. A conceptually simple numerical technique for performing the spectral factorization in 
(10.15) is the Bauer method, which creates an m(k + 1) x m(k + 1) matrix Rk of the form [20]: 

80 8_1 8_2 "'8-11 
8 1 80 8_1 

Rk = 82 81 

where S(z) = LkSkZ-k is the m x m PSD to be factored. To find the minimum-phase factor 
G(z) = LkGkZ-k such that S(z) = G(z)G*(l/z*), let Rk = LkLk* denote a Cholesky factorization 
of the above matrix, where Lk is lower triangular with real nonnegative diagonal elements. Under very 
mild conditions on S(z) [20], the last block row of Lk approaches [Gk, ••• Gl> Go] as k ~ 00. 

Convergence can be very fast, so that k need not be large to accurately estimate G(z). 

(a) Use the Bauer method with k = 1 to approximate the factor G(z) in S(z) = G(z)G*(l/z*), 
assuming: 

r 64.01 

S(z) = LO.2z + 8 + 1.6z-1 

1.6z + 8 + 0.2z-1 J 
1 • O.2z + 5.04 + 0.2z-

(b) How close is the part (a) approximation to the true solution? 

Problem 10-2. Find the transfer function H( z) ofthe following two-input three-output filter: 

(10.156) 
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Problem 10-3. Assume that uk (1) and uk (2) are i.i.d. ;;-.£(0, 1) in Problem 10-2, and let us define a two
dimensional random vector sequence xk = fyk (1), Yk (3)] by selecting the first and last outputs of the 
above system. 

(a) Find the autocorrelation function Rx( m) for xk' 

(b) Find the power spectrum Sx(z) for xk' 

Problem 10-4. Let Xk be a temporally white random vector sequence that is not spatially white, so 
that its power spectrum is a constant but not diagonal. In particular, suppose the power spectrum of Xk 
is S x< z) = Rxx, where Rxx is specified in (10.24). Consider the following system: 

(a) Find a transfer function H(z) so that the output power spectrum Sy(z) is given by (10.17). 

(b) Is the answer to part (a) unique? 

Problem 10-5. Consider a single-input double-output channel with received impulse responses 
hI (t) = u( t- T) and h 2( t) = u( t - 2T), where u( t) is the unit step. Find the folded spectrum S( z). 

Problem 10-6. Consider a single-input double-output channel. Find and sketch specific examples of 
received impulse responses hI (t) and h2( t) so that the folded spectrum is given by: 

[9 3Z] 
S(z) = 3z-1 3 . (10.157) 

Problem 10-7. Let A(z) = LkAkZ-k and B(z) = LkBkZ-k be stable transfer functions of dimension 
m x nand P x n, respectively. Prove or disprove the following proposition: 

21n( A(e j8 )B*(e j8 )d8 = I,; = _~ AkBk . 
-It 

(10.158) 

Problem 10-8. Let xk = [Xk (1), xk (2)]T be a random process with PSD given by (10.17). Let 
xk (1) = PI x~1J. 1 + P2x{2J. 1 be a linear-prediction estimate of xk (1). Find the prediction coefficients 
PI and P2 that minimize the prediction error variance. 

Problem 10-9. Consider a real-valued channel of the form r = al hI + a2h2 + n, which is a special 
case of(IO.61) with only two inputs. Assume al and a2 are independently and uniformly chosen from 
the binary alphabet {±1}, and assume that the noise components are real, independent and Gaussian 
with variance 0'2. This problem compares the jointly optimal (JML) detector, which jointly chooses al 
and a2 to maximize the conditional pdf f(r 1 al> a2), to the individually optimal (IML) detector for the 
first input, which chooses al to maximize f(r 1 al)' Let Yl = hI Tr, let Y2 = h 2Tr, and let p = hlh1· 

(a) Show that the JML decision for al can be expressed as [7]: 

aF = sign{ Yl + ~gO(Y2 - p) - ~gO(Y2 + p) }, (10.159) 

where we have introduced the nonlinearity go(x) = 1 x I. 
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Fig. 10-30. The function g,,( x) for Problem 10-9. 

(b) Show that the IML decision for a1 is also given by (10.159), but with go(x) = I x I replaced by 
gcr(x) = cr21ogcosh(x/ cr2) (1). This nonlinearity is sketched in Fig. 10-30. 

(a) Show thatgcr(x) ~ I x I as cr ~ O. It follows that aIML and a~ usually agree at high SNR. 

(b) Find a value for Y1 such that ~IML :¢:. aF, assumingY2 = 1, P = 1 and cr = 1. 

Problem 10-10. Show that (10.75) equals (10.76). 

Problem 10-11. Show that (10.86) equals (10.87). 

Problem 10-12. Consider the linear-prediction view of the DF detector shown in Fig. 10-31, where Cj 

is the i-th row of the pseudoinverse of H. With this view we can derive an alternative algorithm for 
finding the optimal ordering that is significantly less complex than the BLAST procedure of (10.124). 

(a) Show that the optimal choice for the first symbol index is i1 = argmin II Cj 112. 
le{l, ... n} 

(b) Once i1 is chosen according to part (a), show that the optimal choice for i2 satisfies: 

i2 = a!g.min II ci - pCilll2. (10.160) 
'*'1, p 

(c) Once {iv ... ik -I} are optimally chosen, show that the optimal ik is given by: 

Fig. 10-31. The noise-predictive view of the OF detector, equivalent to Fig. 10-18. 



534 MIMO COMMUNICATIONS 

ik = argmin /I ci- cdI 2 , 
ii!{ij, ... ik - 1} 
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(lO.161) 

where ci is the projection of ci onto the subspace spanned by {Ci1, ... Cik -I}' The recursion 
(10.161) can be implemented with O(n3) complexity using a modified version of the Gram
Schmidt procedure [37], as opposed to the O(n4) complexity of(IO.124). 

Problem 10-13. Consider the three-input memoryless channel H = [hI> h2' h3] of Example 10-24, 
where hI = [1, 0, 1, O]~ h2= [1, 1, 0, O]~ and h3= [1, 0, 1, 1]-Z: Suppose the inputs are U.d. 
uniformly chosen from {±1}, and the channel adds real white-Gaussian noise having the identity as an 
autocorrelation matrix. 

(a) Assuming the best-first sphere detector is used with the natural ordering, find a numerical value 
for the probability that the first node extended (besides the root node) is not a part of the actual 
transmitted path. 

(b) Repeat part (a) based on the 231 BLAST ordering, as described in Example 10-24. 

( c) Based on a comparison of (a) and (b), argue qualitatively why the BLAST ordering reduces the 
complexity of the sphere detector tree search. 
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11 
Fading and Diversity 

The previous chapter examined MIMO communications from an abstract point of view, 
with an eye towards all types of MIMO applications. In contrast, this chapter specializes to 
wireless MIMO applications, which suffer from not only additive noise and multiuser 
interference but also from multipath fading. 

A common theme running throughout this chapter is diversity, a strategy for mitigating the 
effects of multipath fading. Diversity is available whenever multiple, independently fading 
channels link the transmitter and receiver. Such multiple channels naturally occur in MIMO 
applications for which the transmitter or receiver use an antenna array. In fact, the hope for 
diversity is often what motivates the use of an antenna array in the first place. In this chapter 
we will define diversity more precisely, and we will describe various means for extracting 
diversity from a receiver antenna array. We will quantify the benefits of diversity for the case 
of Rayleigh fading. The last half of the chapter will be devoted to emerging techniques for 
achieving diversity with an antenna array at the transmitter instead of the receiver, such as 
delay-diversity transmission and space-time codes. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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11.1. Types of Diversity 

The effect of multiple paths of propagation at the receiver is a random multiplicative 
channel gain that can vary rapidly with time over a wide range of amplitudes and phases. In 
the Rayleigh-fading model, the complex gain is a random variable with a circularly symmetric 
zero-mean Gaussian distribution, so that its amplitude has a Rayleigh distribution, and its 
phase has a uniform distribution. Two examples of Rayleigh-fading channels are illustrated in 
Fig. 11-1. 

Diversity is a powerful technique for mitigating the effects of fading. The basic idea 
behind diversity is to simultaneously transmit across multiple channels that are fading 
independently; that way, it is very unlikely that all channels fade simultaneously. If the 
probability that anyone channel fades is p, the probability that m independent channels fade 
simultaneously is pm. For example, the two channels shown in Fig. 11-1 are fading 
independently, and it can be seen that the two channels rarely fade at the same time. 

m 
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Three important forms of diversity are time,frequency, and space diversity. 

• Time diversity exploits the time-varying nature of the fading channel, as illustrated in 
Fig. 11-1. For example, a transmitter might send the same symbol at three different 
times, with the delay between symbols chosen large enough to ensure that the three 
transmissions experience independent fading. In other words, the transmitter might 
employ a (3,1) repetition code followed by a block interleaver. More generally, 
exploiting time diversity requires some form of error-control coding (Chapter 12) and 
interleaving; the redundancy of the error-control code spreads the message symbols 
over multiple coded symbols, and the interleaver breaks up bursts of errors in an attempt 
to make the coded symbols experience independent fading. A slowly varying channel 
would require a very long interleaver, and the latency that results would be unacceptable 

·30 CHANNEL 2 

400~----~----+'20~--~----~4~O-----L----~OO~----~----~80~--~~--~100 

TIME (msec) 

Fig. 11-1. Two independent Rayleigh-fading amplitudes, as generated from Jake's model [2], assuming 
40 uniformly spaced angles of incidence with independent random phases and a maximum Doppler 
frequency of 100 Hz. The two channels are never in a deep fade at the same time. Instead, the minimum 
of the two gains is never smaller than -7 dB over the range shown. 
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in some applications. Hence, time diversity is not always available, especially in 
extreme cases such as a static environment (a user stopped at a red light, for example). 

• Frequency diversity exploits the frequency-selective nature of multipath fading 
channels, and in particular, the fact that the fading correlation at two different 
frequencies tends towards zero as the frequency separation increases. Being the dual of 
time diversity, frequency diversity is not always available; just as time diversity 
diminishes as the channel variation slows, and disappears altogether for a static 
environment, so does frequency diversity diminish as the delay spread decreases, and 
disappears altogether for a flat-fading channel. Frequency diversity can be exploited 
using a combination of OFDM and coding, spread-spectrum modulation and RAKE 
reception, or even conventional equalization (such as DFE) for the case of a single
carrier QAM system whose bandwidth is already large relative to the inverse of the 
delay spread. 

• Spatial diversity exploits the fact that the fading experienced by multiple antennas at a 
receiver will be independent when the distance between antennas is sufficiently large. 
The required separation distance depends on the details of the propagation environment, 
and can range from as little as one half wavelength (for rich scattering environments 
with paths arriving from all angles of incidence) to many wavelengths (for the case of a 
strong LOS component and a narrow range of angles of incidence). Compared to time 
and frequency diversity, spatial diversity has the advantage that it can be achieved 
without the latency of interleaving and without the bandwidth expansion of coding. 
Further, it does not require additional signal processing such as OFDM, DFE, or RAKE 
reception, although it does increase implementation complexity somewhat. 

All forms of diversity can be analyzed in a similar manner, but for simplicity, the 
remainder of this chapter will focus almost exclusively on spatial diversity. 

11.2. Receiver Diversity 

Consider the wireless link with receiver diversity shown in Fig. 11-2(a), consisting of a 
transmitter with a single antenna and a receiver with m antennas. In the narrowband case, this 
system is a special case of (10.61) with n = 1 input, leading to the following memoryless 
single-input multiple-output (SIMO) model: 

r=ah+n, (11.1) 

AWGN 

~»)) 
rl 

a: 
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> 
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TRANSMITTER w a: AWGN 
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Fig. 11-2. (a) A wireless link with receiver diversity; (b) its equivalent model for the narrowband case. 



540 FADING AND DIVERSITY CHAP. 11 

where a is the transmitted symbol chosen from a finite alphabet, where h = [hI> ... h,JT is a 
vector of channel gains, and where n is the noise. Here, hi denotes the complex channel gain 
from the transmitter to the i-th receiver antenna. A block diagram representation of this model 
is shown in Fig. 11-2(b). 

The fact that the channel is fading does not change the receiver design problem; we can 
build on the extensive results of Chapter 11. Specifically, given knowledge of h, the receiver 
that minimizes the probability of error is the ML detector, which - for a SIMO channel -
can be implemented by slicing the output of an MMF. However, the complexity of estimating 
and tracking h and implementing the MMF can be high when the channel varies rapidly. For 
this reason, suboptimal strategies are sometimes used. The most common strategies for 
combining the outputs of the antennas - a process referred to as diversity combining - are 
listed below: 

o Switched combining - The receiver switches to one of its antennas, say antenna i, and 
stays with it until its channel gain I hi I falls below a predetermined or adaptive 
threshold, at which time it switches blindly to the next antenna. 

o Selection combining - The receiver selects the antenna whose channel gain I hi I is 
largest at any instant. Mathematically, the decision statistic is: 

(11.2) 

This performs better than switched combining, but it requires that all m channel gains 
be estimated simultaneously, as opposed to only one. 

o Equal-gain combining - Let ai and 8 i denote the amplitude and phase of hi, 
respectively, so that hi = aidSi. In equal-gain combining, all antennas contribute to the 
decision statistic according to: 

(11.3) 

In other words, the phases of the different gains are adjusted so that the contributions 
add constructively. This performs almost as well as maximal-ratio combining, without 
requiring that the amplitudes {ai} be estimated. 

o Maximal-ratio combining - This is just another name for the MMF in the context of a 
memoryless SIMO channel. As in equal-gain combining, the phases are adjusted to 
ensure constructive addition, but then the different gains are scaled so as to maximize 
the SNR after combining, leading to: 

(11.4) 

This performs the best, but requires the estimation of all of the complex channel gains. 

The above strategies work best when there are no interferers. In the presence of interferers, we 
should add the ZF and MMSE linear detectors to the list; these detectors may be viewed as a 
means for diversity combining that take into account not only the fading but also the 
interference. 
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11.3. Performance Analysis for Rayleigh Fading 

The aim of this section is to quantify the benefits of receiver diversity. Our starting point is 
the model r = ah + n of (11.1), where for simplicity we specialize to the 4-QAM alphabet, so 
that a is chosen uniformly from {±1 ±j}JE;,. The alphabet is scaled so that the energy per 
symbol is 2Eb. Since 4-QAM conveys two bits of information, the energy per bit is Eb. 

Furthermore, we assume i.i.d. Rayleigh fading on the m subchannels, so that the channel gains 
{hi} are i.i.d. zero-mean unit-variance circularly symmetric complex Gaussian random 
variables, satisfying E[ 1 hi 12] = 1. Thus, the random vector h is completely characterized by 
its diagonal autocorrelation matrix E[hh*] = I. Finally, we assume AWGN, so that the real 
and imaginary parts of the components of n are independently Gaussian with zero mean and 
variance No/2. 

The next section analyzes the performance of a receiver that uses maximal-ratio 
combining. In Section 11.3.2, we analyze the performance with selection combining. 

11.3.1. Performance with Maximal-Ratio Combining 

Given knowledge of h, the detector that minimizes the probability of error is the ML 
detector, which slices the output y of an MMF, and thus performs maximal-ratio combining: 

y= h*r 
= jjhjj 2a + n , (11.5) 

where n = h*n is a complex Gaussian random variable satisfying E[ln 12] = Nollhll2. We can 
VIew (11.5) as the equation for an effective SISO channel whose instantaneous SNR per bit is: 

Eb 
Yeff= IIhl1 2 N 

o 

= L~= lYi 

where we have introduced the instantaneous SNR per bit for the i-th antenna: 

-Ih 12Eb Yi- i lIT· 
o 

(11.6) 

(11.7) 

The i.i.d. assumption implies that the average SNR per bit is the same for each antenna, 
namely: 

(11.8) 

The effective SNR of (11.6) is sometimes called the postdetection SNR, so as to distinguish it 
from the predetection SNR of EbiNo. Given h, the instantaneous BER for the effective SISO 
channel of(11.5) with Gray mapping is: 

Pr[errorl h] = Q(J2Yeff) . (11.9) 
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Because Yeff is a random variable that depends on the channel, the above conditional 
probability is also random. To find the average BER, this expression must be averaged over the 
pdfforYeff: 

BER = ('0 f~ rr< t) Q (J2t ) dt. 
Jo • 

(11.10) 

Since {hi} are i.i.d. complex Gaussian, each Yi has a central chi-square distribution with two 
degrees of freedom, and Yeff = 'i.iY i has a chi-square distribution with 2m degrees of freedom: 

f. (t)= 1 tm-1e-tNolEb fort~O. 
Y.IT (m-l)!(EbINo)m ' 

(11.11) 

Repeated integration by parts of (11.1 0) with (11.11) leads to the following closed-form 
expression for the average BER on Rayleigh-fading channels with diversity order m: 

BER = m ~m -l(m-l+k) (1 _ )k 
P £.Jk = 0 k p, (11.12) 

where we have introduced: 

1 1( 1 )-1/2 
P = 2 - 2 1 + E bl No . (11.13) 

In Fig. 11-3 we plot the average BER of (11.12) versus the average SNR per bit per antenna 
for m E {I, 2, 3,4,6, 10}. 

The parameter p has a useful interpretation - it is the average BER without diversity. This 
is because a SISO fading channel without diversity is just a special case of (11.1) with m = 1, 
in which case (11.12) reduces to: 

BER=p. (11.14) 

Of course, the performance of a SISO fading channel is of great practical interest, since 
diversity is not always available. Taking a closer look at (11.13) we see that, at high SNR, the 
BER without diversity is well-approximated by: 

1 
BER=p"" 4EbiNo (11.15) 

Hence, without diversity, the asymptotic BER on a Rayleigh-fading channel is inversely 
proportional to SNR, which implies a very slow decay as SNR increases; see the curve labeled 
no diversity in Fig. 11-3. A BER near 10-9 requires an astronomical SNR of 84 dB. This is in 
stark contrast to a static channel, for which BER decreases exponentially with SNR, and for 
which a BER of 10-9 requires an SNR of only 12.5 dB. Roughly speaking, the poor 
performance without diversity is due to the fact that the deep fades of Fig. 11-1 dominate the 
overall average BER, so that a low average BER is achieved only when the SNR is high 
enough that the instantaneous BER is always low, even during a deep fade. 
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Returning to the general diversity case of m > 1, we can derive a simplified expression 
when the SNR is high. Specifically, if Ebl No is so large that the term (1 - p) can be 
approximated by 1, then (11.12) simplifies to: 

(11.16) 

We see that the impact of order-m diversity is to raise the BER without diversity - namely 
p - to the power of m. Furthermore, since p:::::: (4Ebl No)-l when Ebl No is large, (11.16) is 
asymptotically: 

(11.17) 

Hence, when BER is plotted versus Ebl No on a log-log scale, the curve approaches a straight 
line at high SNR, with an asymptotic slope proportional to m. A higher diversity leads to a 
steeper slope. The straight-line asymptotes predicted by (11.17) are shown as dashed lines in 
Fig. 11-3, and they are seen to be accurate at high SNR, especially when m is small. 
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Fig. 11-3. Performance of a ML detector with order-m diversity for 4-QAM over a SIMO Rayleigh
fading channel with AWGN. The solid lines are exact, from (11.12). The dashed lines are the straight
line asymptotes of (11.17). 
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Comparing the curves labeled m = 1 and m = 2 in Fig. 11-3 at a BER of 10-3, we see that 
a receiver with order-two diversity requires 13 dB less SNR than a receiver with no diversity at 
this BER. The improvement is less dramatic but still significant as m increases from 2 to 3. 

The expression (11.17) shows that - with respect to average BER - the impact of order
m diversity on a fading channel is to raise the SNR to the power of m. In contrast, the impact 
of order-m diversity on a static (non-fading) channel is to only multiply the SNR by m, a much 
less dramatic improvement. 

11.3.2. Performance with Selection Combining 
In this section we perform analysis similar to that of the previous section, but assuming 

that the receiver performs selection combining instead of maximal-ratio combining. We will 
find that, as expected, selection combining performs somewhat worse than maximal-ratio 
combining, but it nevertheless achieves full diversity order. The channel model will be the 
same, namely 4-QAM with i.i.d. Rayleigh fading and AWGN, as described at the beginning of 
Section 11.3. 

The selection-combining strategy dictates that the receiver select the antenna whose gain 
is largest in magnitude, and discard the observations from the other antennas. The index of the 
selected antenna is imax = arg maxi{ 1 hi 1 }, so that the selected observation is: 

Y =h· a+ n· . tmax lmax (11.18) 

This is an effective SISO channel whose instantaneous (postdetection) SNR per bit is 
XEbl No, where we have introduced the random variable 

Thus, given a particular channel h, the bit-error rate with Gray-mapped 4-QAM is 

Pr[error 1 h] = Q(j2XEb INO ) • 

(11.l9) 

(11.20) 

Under the standard Rayleigh assumption that {hJ are i.i.d. zero-mean unit-variance complex 
Gaussian random variables, the cdf of X is straightforward to derive: 

The pdf of X is thus: 

Fx(x) = Pr[ 1 him• x 12 < x] 

=Pr[(lhl I2<x) and (lh212<x)and ... and (lhmI2<x)] 

=Pr[lhl I2<x]Pr[lh212<x] ... Pr[lhmI2<x] 

=FlhiI2(X)m 

= (1- e-x)mu(x). (11.21) 

f(x)= txFx(x) 

= m(1- e-~m-le-xu(x) 
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= ~m (_l)(k-l)(m)ke-kXU(X). 
L..k = 1 k 

(11.22) 

The average BER can now be found by averaging Q(J2XEbINO ) over this pdf, yielding: 

BER = L: = 1 (_l)(k-l>(~) Ioco ke-kxQ(J2XEbINO ) dx . (11.23) 

The k-th integral can be interpreted as the average BER when the SNR has an exponential 
distribution with mean Ebl(kNo), or in other words, the average BER with no diversity and a 
path loss of 1 I k. We have already evaluated an integral of this form and need not do it again; 
the k-th integral reduces to the quantity p defined in (11.13), but with Ebl No decreased by a 
factor of 11 k. Based on this observation, the BER of (11.23) reduces to: 

_ m (k_l)(m) {I 1( k )-1/2} BER- Lk=l(-l) k 2 - 2 1+ EblNo . 

(11.24) 

Am 
== ---.::~-

(EbINo)m' 
(11.25) 

where the coefficient Am satisfies the recursion Am = (m - ~ )Am _ 1 with initialization Al = ~ . 
Specifically, it takes on the values of Am = ~, ~, ~, ... for m = 1, 2, 3, etc. The approximation 
(11.25) is asymptotically tight, and it can be derived using a Taylor series expansion 
(Problem 11-3). The asymptotic expression clearly shows that selection combining achieves a 
diversity order of m, just like maximal-ratio combining. The performance is not quite as good 
as with maximal-ratio combining, however; comparing (11.24) with (11.17), we see that, 
when compared to maximal ratio combining, the BER with selection combining is 
asymptotically larger by a factor of2, 6, and 24 for m = 2, 3, and 4, respectively. 

11.4. The Diversity-Interference Trade-Off 

There are two key benefits to an antenna array at the receiver: 

• the ability to mitigate interference 

• the ability to mitigate small-scale fading (diversity) 

However, it is important to realize that these two benefits cannot be fully attained 
simultaneously using linear processing. An antenna array with linear processing that mitigates 
interference has a diminished capacity to mitigate fading, and likewise an antenna array that 
mitigates fading has a diminished capacity to mitigate interference. There is a fundamental 
trade-off between mitigating interference and mitigating fading, at least for the case of linear 
detection, as summarized by the following conservation result. 
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Conservation Theorem: The diversity order of a decentralized ZF linear receiver for an n-input 
m-output (m <! n) Rayleigh flat-fading MIMO channel is m - n + 1. Equivalently, since the aim of 
such a receiver is to null the contributions from the n - 1 interferers, this can be summarized as: 

diversity order + #interferers = #receive antennas . (11.26) 

In particular, if the channel is square (m = n), so that the number of antennas is equal to the 
number of users, then the linear receiver derives no diversity gain. Nulling the interferers 
exhausts all degrees of freedom of the array. At the other extreme, if there are no interferers, 
then all degrees of freedom are available to mitigate fading, and the diversity order is equal to 
the number of antennas. A proof of the theorem is given in Appendix II-A. 

The conservation theorem applies to the ZF linear detector only. In contrast, the JML 
detector is capable of simultaneously mitigating interference and achieving diversity. This is 
illustrated for the two-input, two-output Rayleigh channel in Fig. 10-25, where we see that the 
slope of the JML curve is twice as steep as that of the ZF linear detector. In this case, the JML 
detector achieves diversity order two, whereas the linear detector achieves diversity order one. 

Although the conservation theorem applies to the MMSE detector in the limit as the noise 
variance goes to zero, the effective diversity order achieved by an MMSE detector can be 
higher than that of the ZF detector, provided that the SNR is sufficiently small. Specifically, 
the MMSE diversity order will range from m - n + 1 to m, depending on the strength of the 
interfering signals relative to the desired signaL This is because an MMSE detector does not 
try to null those interferers that are already below the noise floor; instead, it simply ignores 
them. Roughly speaking, the diversity order achieved by an MMSE detector is m - neff + 1, 
where neff is the number of significant interferers. This notion is explored in the following 
example. 

Example 11-1. ----------------------------------------------------
Consider a two-user wireless Rayleigh-fading channel and a receiver with two antennas, where the 
user 2 signal is attenuated by a factor of ex relative to that of user I, so that the channel model is: 

(11.27) 

where {hij } are i.i.d. zero-mean complex Gaussian random variables. Both users use the same 4-
QAM alphabet. The effective diversity order achieved by the MMSE linear detector for user I 
ranges from two to one as the attenuation constant ex ranges from zero to infinity. This is illustrated 
in Fig. 11-4, where the average user-I BER after a MMSE detector is shown as a function of 
average user-I SNR for ex E {0.01, 0.1, 0.2,0.3,0.4, I, IO}, assuming 4-QAM alphabets for both 
users. The curves in Fig. 11-4 are labeled by the signal-to-interference ratio SIR = ex-2, which is 
the average power of the desired user relative to that of the interferer. When the desired user is 
20 dB weaker than the interferer, the linear MMSE detector is essentially identical to the linear ZF 
detector, yielding a diversity order of unity (i.e., no diversity). When the two users have equal 
power, the MMSE detector outperforms the ZF detector by about 1.3 dB. This gain of MMSE over 
ZF increases as the interferer weakens, until an SIR of 40 dB leads to essentially full diversity order 
of two, which is the MFB. At low SNR and high SIR, the MMSE curve appears to have a steeper 
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slope and thus a higher diversity order. Eventually, however, as SNR grow sufficiently high, the 
MMSE slope approaches the ZF slope. 

The main point of the previous example was to show that the MMSE detector can achieve a 
higher effective diversity order than that of the ZF detector. But it also reinforces our earlier 
result (see Example 10-20) that the performance of the MMSE detector does not always 
approach that of the ZF linear detector, even at high SNR, despite the fact that the coefficients 
of the MMSE detector approach those of the ZF detector at high SNR. This can be explained 
in part by the fading nature of the channel in this example. Regardless of how small the noise 
variance is, there is a nonzero probability that the channel coefficients will be even smaller, 
i.e., the channel will experience a deep fade. The performance during a deep fade tends to 
dominate the overall average BER performance, and during a deep fade, the MMSE and ZF 
filters differ substantially. 

1~' ~~~--~-------r-------'--------r-------.-------~ 

r£ 
w 
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10-3 

Diversity order 2 
(MFB) 

Diversify order 1 
(ZF linear detector) 

1~0~------~5------~1~0------~~~--~~--~--~~~--~' 

AVERAGE SNR, per bit per antenna (dB) 

Fig. 11-4. The average BER for user 1 after a linear MMSE detector for the 2 x 2 channel of 
Example 11-1, assuming LLd. Rayleigh fading, AWGN. and 4-QAM. The MMSE curves were found 
using Monte Carlo simulations over 107 trials. whereas the lower and upper gray curves were from 
(11.12) and (11.13). respectively. 
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The conservation theorem has an important consequence in the context of ZF-DF 
detection. Suppose a ZF-DF detector is applied to a memoryless n-input m-output Rayleigh
fading channel. Refer back to the nulling and cancelling view of the ZF-DF detector, as 
illustrated in Fig. 10-13, with nulling vectors {WI> ..• wn }. Because the first nulling vector 
must null the n - 1 remaining symbols, it provides a diversity order of m - n + 1. The second 
nulling vector, however, need only null the n - 2 undetected symbols, since the effects of the 
first symbol were subtracted off. Hence, it provides a diversity order of m - n + 2. In general, 
from (11.28), the diversity order for detecting the i-th symbol in a ZF-DF detector is: 

diversity orderi = m - n + i . (11.28) 

In particular, because the last symbol detected sees no interference at all, it enjoys a full 
diversity order of m. This result relies on the assumption of correct decisions; in practice, 
when the effects of error propagation are taken into account, the diversity order can be smaller 
than (11.28) [I). 

Example 11-2. --------------------------
Consider DF detection applied to a 2-input 2-output Rayleigh fading channel. In this case, (11.28) 
tells us that the first symbol derives no diversity benefit, whereas the second symbol enjoys a 
diversity order of two. The BER for the first input will thus be much higher than that for the second. 
When the overall BER is computed as the average over both inputs, the lower BER dominates, and 
hence the overall diversity order is only one. This claim is confirmed by two previous results: 
Fig. 10-28, which applies to the 2 x 2 Rayleigh channel of Example 10-25, and Fig. 10-25, which 
applies to the similar example of Section 10.3.9. In both figures, we see that the slope of the BER
vs.-SNR curve is twice as steep for the JML detector as for any of the DF detectors. Furthermore, 
from Fig. 10-25 we observe that, although the DF detectors outperform the linear detectors, the DF 
and linear detectors have the same diversity order. Of all of the detectors considered, only the JML 
detector achieves a diversity order of two. It should be mentioned that it is possible to recoup some 
of the diversity order lost by the DF detector through the use of error-correction coding, since the 
different diversity orders seen by the two inputs is essentially a form of time diversity. 

11.5. Transmit Diversity 

Unlike the receiver diversity schemes of the previous section, which exploited an antenna 
array at the receiver, a transmit diversity scheme uses linear or nonlinear processing to spread 
information across multiple antennas at the transmitter. Transmit diversity schemes can be 
classified as either indirect or direct. Indirect schemes include delay diversity and frequency
offset diversity. Direct schemes include closed-loop precompensation, space-time block codes, 
and space-time trellis codes. 

11.5.1. Delay Diversity and Frequency-Offset Diversity 

An indirect transmit diversity scheme transforms the spatial diversity of the transmitter 
array into either temporal diversity or frequency diversity, so that it can be harvested at the 
receiver using conventional single-antenna techniques. Examples of indirect transmit diversity 
include delay diversity and frequency-offset diversity. 
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Fig.11-S. Illustration of delay diversity: (a) flat-fading MI50 model; (b) equivalent block diagram 
representation; (c) equivalent 5150 channel with 151. 

The basic idea behind delay diversity is to transfonn a flat-fading channel into a 
frequency-selective (lSI) channel, so that conventional equalization methods such as DFE or 
MLSD can be used to extract diversity. The simplest fonn of delay diversity is shown in 
Fig. 11-5, where a narrowband transmitter with two antennas communicates to a receiver with 
one antenna across a flat-fading channel. The symbols transmitted from the first antenna are 
again transmitted from the second antenna, after being delayed by one signaling interval, so 
that if {xk} are the infonnation symbols, the vector of symbols transmitted during the k-th 
signaling interval is: 

"k = [x:~J 
Substituting this into (10.61) with n = 2 inputs and m = 1 output leads to 

rk = hoXk + hIxk-I + nk , 

(11.29) 

(11.30) 

as shown schematically in Fig. 11-5(b). This is the equation for a SISO channel that has 
frequency-selective fading, as might arise from a LOS path and an independently fading 
reflected path having the same energy, as illustrated in Fig. 11-5(c). When the transmitter has 
n antennas, the delay-diversity strategy can be generalized by letting "k = [xk, Xk _ 1, ... Xk
n + l]T be the vector of symbols transmitted at time k, which leads to an equivalent SISO 
channel with n independently fading propagation paths. Conventional equalization techniques 
such as DFE or MLSD will not only recover the transmitted symbols, but they will also extract 
the full diversity benefit of order n [3]. 

Example 11-3. --------------------------
Let us explicitly derive the BER of a ZF-DFE applied to the delay-diversity scheme of Fig. 11-5. 
As illustrated in Fig. 11-6, the optimal DFE filters depends on whether the effective lSI channel 
H(z) = ho + hIz-I is minimum phase. If I ho I > I hI I , the channel is minimum phase, in which 
case the optimal ZF-DFE has an identity forward filter and hIz-I as a feedback filter, as sketched in 
Fig. 11:6(a). On the other hand, If I ho I < I hI I , the ZF-DFE would consist o(an all-pass forward 
filter H(z)/ H(z) that transforms the channel into its minimum-phase cousin H(z) = hI + h(JZ-l, 
followed by a feedback filter of h(JZ-l, as sketched in Fig. 11-6(b). The all-pass filter effectively 
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swaps ho with hI' In either case, the gain with the smaller magnitude will always be in the 
feedback filter, whereas the gain with the larger magnitude will always scale the slicer input, so that 
the slicer input (assuming correct decisions) is given by: 

(11.31) 

where hmax = ho when I ho I > I hI I, and hmax = hI when I hI I > I ho I. The expression 
(11.31) is essentially identical to that produced by a receiver array using the selection combining 
strategy of (11.2). In fact, there is a 3-dB difference between the two schemes. With a single 
transmit antenna and 4-QAM, the alphabet energy is 2Eb (see Section 11.3), but since the delay
diversity scheme has two transmit antennas, the alphabet energy is only Eb for each. In other 
words, the 4-QAM alphabet for this example is xk E {±l ±j}jEbI2. Thus, the average BER can 
be found by cutting the SNR in halffor the selection diversity result of (I 1.24), with m = 2: 

{I l( 2 )-I/2} {I l( 4 )-I/2} 
BER = 2 2 - 2 1 + Eb / No - 2 - 2 1 + Eb / No (11.32) 

(11.33) 

The last approximation comes from (11.25) and is asymptotically tight. Since the SNR is squared in 
(11.33), we conclude that the combination of a two-antenna delay-diversity transmitter and an ideal 
ZF-DFE achieves diversity order two. 

A second example of indirect transmit diversity is frequency-offset diversity, which 
transforms the spatial diversity into time diversity. This can be accomplished, for example, by 
forcing each transmit antenna to use a slightly different carrier frequency. More generally, the 
upconverter for the i-th antenna could include an extra factor of e jem, so that its output is 
related to its input 8j( t) by: 

(11.34) 

When all transmit antennas send the same symbol, so that 8j(t) = ag(t), then the above 
strategy leads to an effective SISO channel whose time-varying gain is given by: 

(11.35) 

This gain can vary rapidly, even when the channel coefficients {hi} are static. Thus, by 
artificially inducing time variations in the channel, the above strategy is able to convert a static 

Fig. 11-6. The optimal ZF-OFE for H(z) = ho + h1z-1, when the channel is (al minimum-phase 
(I ho I > I hill and (b) non-minimum phase (I ho I < I hII). There is no forward filter in (a), and the forward 
filter in (b) is the all-pass filter that essentially swaps hI for ho and ho for hi. 
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fading channel into a time-selective fading channel. The resulting diversity can be harvested 
using error-correction coding and interleaving, as discussed at the beginning of this chapter. 

11.5.2. Closed-Loop Transmit Diversity 

In contrast to the indirect transmit diversity schemes of the previous section, a direct 
transmit diversity scheme leaves the spatial diversity in the spatial domain, and does not 
require any additional processing like coding or interleaving. In this section we describe the 
closed-loop form of direct transmit diversity for the case when the transmitter has knowledge 
of the channel [4]. Consider the MISO fading channel of Fig. 11-7(a), consisting of a 
narrowband transmitter with n antennas and a receiver with a single antenna. When all 
transmit antennas use the same pulse shape and carrier frequency, the equivalent baseband 
model is: 

r=Ha + n , (11.36) 

where H = [hI> ... h,J is a row vector and hi is the complex Rayleigh-fading channel gain 
from the i-th transmit antenna to the receiver, where a = [a1' ... a,JT and ai is the complex 
symbol transmitted from the i-th antenna, and where n is complex Gaussian noise satisfying 
E[I n 12] = No. A block diagram representation of this model is shown in Fig. 11-7(b). 

Despite the lack of an antenna array at the receiver, the transmitter can ensure diversity 
gain by sending the same complex symbol - say x - from each antenna, but adjusting the 
phases so that they add constructively at the receiver, and adjusting the amplitudes so as to 
maximize the SNR at the receiver. With this strategy, the channel input may be expressed as: 

a=xw, (11.37) 

where w = [W1' ... w,JT and Wi is the complex weight for the i-th transmit antenna. In the 
absence of multipath, the transmitter might choose the weights so as to steer a beam towards 
the receiver, a strategy referred to as transmit beamforming. More generally, subject to a unit
norm constraint, the optimal choice for the i-th weight is Wi = ht IIiHII, which leads to a 
vector of combining weights w = H* IIiHIl that resembles a matched filter at the transmitter. 
(See Problem 11-1.) With this choice for w, the receiver output reduces to: 

r= IIHllx+ n . (11.38) 
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Fig. 11-7. (a) A wireless link with transmit diversity; (b) its equivalent narrowband model. 
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This is just a scalar multiple of the output (11.5) obtained using conventional receive diversity. 
Hence, the analysis for receiver diversity applies directly to the case of transmit diversity, and 
we immediately conclude that a transmitter with n antennas may achieve a diversity order of n 
by using matched-filter precompensation at the transmitter. Clearly, this is possible only when 
the transmitter knows the channel values {hi}, which is difficult in rapidly varying mobile 
applications [5]. 

11.5.3. The Alamouti Space-Time Block Code 

This section describes the Alamouti space-time block code, a simple and effective method 
for achieving spatial diversity when the transmitter has an array with two antennas. This is an 
example of a direct and open-loop method for transmit diversity because, unlike the indirect 
methods described earlier, it does not transform spatial diversity into temporal or frequency 
diversity, and unlike closed-loop methods, it does not require channel knowledge at the 
transmitter. 

To send a pair of complex symbols {Xl' X2} chosen from some QAM or PSK constellation, 
a transmitter with two antennas that uses the Alamouti space-time block code requires two 
signaling intervals. During the first, Xl and X2 are transmitted from the first and second 
antennas, respectively, and during the second, -x2 * and Xl * are transmitted from the first and 
second antennas, respectively. In other words, the pair of information symbols x = {Xl' X2} are 
transformed into the space-time codeword or codematrix: 

A(x) = [:: -:::] sl TIME (11.39) 

where the first column identifies the symbols transmitted during the first signaling interval, 
and the second column identifies the symbols transmitted during the second interval. The rows 
of the space-time codeword correspond to the spatial dimension, while the columns 
correspond to the time dimension. In the following we show that the JML detector for this 
code is simple to implement, and that it achieves a (maximal) diversity order of twice the 
number of receiver antennas. Furthermore, we will see that the encoder does not incur a 
penalty in capacity when the receiver has a single antenna. One can thus cleanly separate the 
functions of diversity and channel coding. Because of these advantages, the Alamouti code has 
been incorporated in the IEEE 802.1la and IEEE 802.16a wireless standards and also a third
generation standard for wideband COMA [6]. 

The observations during the first and second signaling interval at a receiver with a single 
antenna are given by, respectively: 

and (11.40) 

where nl and n2 represent the additive noise during the two signaling intervals. We have 
assumed that the channel does not change over the span of two signaling intervals. 
Equivalently, combining rl and r2* (note the conjugation) into a single vector yields: 
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(11.41) 

Observe that the Alamouti code transforms a MISO (two-input single-output) channel into an 
effective MIMO (two-input two-output) channel with transfer function Heff. Since n2 and n2* 
are identically distributed, the complex noise vector n is white and Gaussian with the usual 
distribution: zero-mean with covariance matrix E[nn*] = NoI. The conjugation of r2 may be 
unexpected, but it serves a useful function: it makes the columns of Heff orthogonal. 
Specifically, Hefr*Heff is proportional to the identity matrix, namely Heff*Heff = II H1I21, where 
II H 112 = I h l l2 + I h212 is the squared norm of the underlying MISO channel H = [hl • h 2]. 

The receiver that minimizes the probability of detecting either Xl or X2 erroneously is the 
joint ML detector of Section 10.3.1, which chooses x = [xl> x2f so as to minimize: 

IIr- HeffxII2. 

Passing r through the MMF yields the following sufficient statistics: 

y= Heff*r 
= Heff*(Heffx + n) 

= IIH112x+ it , 

(11.42) 

(11.43) 

where we exploited the orthogonality condition, Heff*Heff = II H 1121, and where we introduced 
it = Heff*n. The fact that the columns of Heff are orthogonal has two key implications. First, 
there is no crosstalk between Xl and X2 after the MMF, as shown by (11.43). In other words, 
the MMF diagonalizes the effective channel. Second, the noise after the MMF is white: 

E[itit*] = Heff*E[nn*]Heff 

= Heff*(Nol)Heff = Noll H 1121 . (11.44) 

Together, these two results dramatically simplify the implementation of the JML detector. 
Specifically, since the MMF produces no crosstalk and independent noise, the JML decisions 
may be calculated by applying the pair of outputs of the MMF to a pair of independent, scalar 
slicers. This amounts to the computation and comparison of at most 2 I 51:1 scalar distances, as 
opposed to the 151:1 2 vector distances implied by (11.42). 

Comparing (11.43) to (11.5), we immediately see that the MMF output for a two-input 
single-output channel with Alamouti transmit-diversity coding is statistically identical to the 
MMF (or maximal-ratio combiner) output (11.5) for a single-input two-output channel with 
receive diversity and no space-time coding. Hence, the Alamouti scheme leads to order-two 
diversity, without an array at the receiver, without channel knowledge at the transmitter, and 
with only simple linear combining and slicing at the receiver. Because of the equivalence, we 
need not analyze (11.43) anew, but can apply the analysis of Section 11.3 directly, with one 
minor modification: the Alamouti transmit-diversity scheme suffers a 3 dB penalty relative to 
a receive-diversity scheme. This penalty arises because, to achieve the same error probability, 
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the energy of Xi in (11.43) must be identical to the energy of a in (11.5), which implies that the 
total signal energy emitted from an Alamouti-encoded transmitter - having two antennas -
is twice that emitted by an uncoded single-antenna transmitter. Thus, from (11.17), the average 
BER with Alamouti encoding, 4-QAM and i.i.d. Rayleigh fading at high SNR is: 

BER", 3/4 
(Eb/NO)2 

(ll.4S) 

As a reminder, Eb = E[ 1 Xi 12]E[ 1 hi 12] is the average received energy per bit. 

When the receiver uses m antennas instead of one, the JML detector is still easily 
implementable using linear processing and scalar slicing, and it still achieves maximal 
diversity order, namely 2m. To see why, consider a two-input m-output channel with m x 2 
channel matrix H = [hI' h2], and suppose the transmitter uses the Alamouti code of (11.39). If 
rl and r2 denote the m-dimensional receiver observations during the two signaling intervals, 
respectively, the 2m-dimensional vector r = [rl r, r2*]T is related to the information symbol 
vector X = [Xl' x21 T by: 

(11.46) 

and where the AWGN satisfies E[nn*] = Nol. Once again we see that the columns of the 
2m x 2 matrix Heff are orthogonal, so that the MMF - which is known to provide sufficient 
statistics - diagonalizes the channel: 

y = Heff*r 

= IIHII2x+ n , (11.47) 

where E[iiii*] = Noll H 1121. This is precisely the same as the case of m = 1, see (11.43), 
except that the underlying channel H has dimension m x 2 instead of 1 x 2, and thus the 
squared Frobenius norm IIHII2 = IIhl 1l2 + IIh2112 has a chi-squared distribution with 4m 
degrees of freedom instead of 4. It follows that independent slicing of the outputs of the MMF 
will yield a diversity order of 2m, the maximal possible for a two-input m-output channel. 

Interestingly, although the Alamouti code applied to a two-input m-output channel 
achieves full diversity for any value of m, it is only capacity-preserving when m = 1. In other 
words, the capacity of the channel (11.47) after Alamouti coding is strictly less than the 
capacity of the underlying channel whenever m > 1, even though the two capacities are equal 
whenm= 1. 

Example 114. --------------------------------------------------
The cascade of an Alamouti encoder, a static m x 2 AWGN channel H, and an MMF Heff* results 
in an effective scalar (SISO) channel whose capacity is easily calculated, assuming the infonnation 
symbols are constrained to satisfy E[ 1 X 12] = E. Let {)"l' A2} denote the eigenvalues of H*H. 
They are real, nonnegative, and satisfy Al + A2 = II H 112. From (11.47), the capacity with Alamouti 
coding is then C A = log2(I + II H 112 E I No) bits per signaling interval. In contrast, the capacity of 
the underlying channel without knowledge of the channel at the transmitter is [7] 
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c= log2(1 + AIEl No) + log2(1 + A2EI No). When m = 1, we have Al = IIHII2 and A2 = 0, so 
that C A = C. However, when m > 1, and assuming the two columns of H are linearly independent 
so that both eigenvalues are nonzero (which happens with probability one with i.i.d. Rayleigh 
fading), we have C A < C, since then: 

2C = (1 + AIEl No)(l + A2EI No) 

= 1 + AIEl No + A2EI No + AlA2(EI NO)2 
> 1 + AIEl No + A2E I No 

=2CA • (11.48) 

The previous example illustrates a key benefit of the Alamouti code - it allows the 
transmitter to separate the spatial processing from the temporal processing, without penalty. 
Specifically, to approach the capacity of the underlying two-input single-output channel, the 
transmitter need only choose a channel code that approaches capacity on the equivalent SISO 
channel, perhaps one based on turbo or LDPC codes, without regard for the spatial dimension 
of the channel. Likewise, the Alamouti encoder and MMF combiner can ignore the fact that 
the information symbols are coded. At least on the two-input single-output channel, the 
channel code need not be designed jointly with the space-time code. 

11.5.4. S pace-Time Block Codes 

The Alamouti space-time code, which maps information symbols {Xl> X2} to the space
time codeword A of (11.39), has three key features: it does not require channel knowledge at 
the transmitter, it makes JML detection easy to implement, and it provides maximal diversity 
order. More generally, a space-time block code is a mapping of K complex information 
symbols {xl> ... xK} to a codeword A with dimension n x L, such that the L columns of A are 
transmitted during L consecutive signaling intervals. The aim is to achieve maximal diversity 
with minimal complexity at the receiver. Preferably, JML detection may be implemented using 
linear processing only, and a full diversity order of mn is achieved. The rate of a space-time 
code is the average number of information symbols {xi} conveyed per signaling interval, and 
is equal to the ratio KI L. For example, since the Alamouti code requires two signaling 
intervals to transmit two information symbols, its rate is unity. 

The design of space-time codes is often based on the union bound for word-error 
probability. Consider a space-time code consisting of 1.9/.1 K codewords, one for each possible 
sequence of input symbols {Xl' ... xK}' Assume that the codewords are normalized so that a 
randomly chosen column has unit energy, and that E[ 1 hij 12] = E, which implies that EI No is 
the average SNR per receive antenna. If all codewords are equally likely, the union bound for 
the avemge probability that the ML detector makes a decision error is: 

1 IJW I~IK 
Pe ~ I-IK L' lL· ,Pi~j .9/. 1= 1"#1 

(11.49) 

(11.50) 
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where Pi ~ j = Pr[li R - HAj 112 < II R - HAill21 Ai transmitted] is the pairwise-error probability, 
namely, the probability that an ML receiver would prefer Aj over Ai, given that Ai was 
transmitted. The looser bound of (11.50) results when each pairwise probability is replaced by 
its worst-case value. It is shown in Appendix 11-B that, under the assumption of i.i.d. static 
Rayleigh fading and AWGN, the pairwise error probability is related to the average SNR per 
antenna by: 

(11.51) 

where r is the rank of the following n x n matrix: 

B = (Ai-A}(Ai-A}*, (11.52) 

and where II = 0"lA2 ... Ar)lIr is the geometric mean of the nonzero eigenvalues ofB. 

Because of the exponent mr in (11.51), each pairwise error probability has an effective 
diversity order of mr. The diversity order of the total error probability will be dominated by 
the diversity order of the worst-case pairwise error probability. Therefore, the diversity order 
of the space-time code is mr min' where r min is the minimum value for the rank of B over all 
distinct codewords Ai and Aj . This relationship leads to the rank criterion, a simple litmus test 
that helps guide the design of full-diversity space-time codes: 

Rank Criterion - A space-time code achieves maximal diversity order (namely mn) if and only 
if the n x L difference matrix A(x) - A(x,) has rank n whenever x *" x'. 

The factor II = (A1A2 ... Ar)l/r in (11.51) can be viewed as a pairwise coding gain, since its 
impact is to amplify the SNR; when error probability is plotted versus SNR, the coding gain 
shifts the curve to the left, but does not change its slope. The coding gain llmin for the code as 
a whole is the minimum pairwise coding gain over all distinct codeword pairs for which 
r = rmin. When comparing two candidate space-time codes, both having the same diversity 
order, the one with the higher coding gain is preferred. 

The Alamouti code is an example of a linear and orthogonal space-time block code; it is 
linear because the real and imaginary components of the codeword matrix A(x) are linear 
combinations of the real and imaginary components of the information symbols {xi}' and it is 
orthogonal because the rows of A are orthogonal with equal norm, namely IIxll. Linearity 
implies that the difference A(x) - A(x') reduces to A(e), where e = x - x'. Orthogonality has 
two important implications. First, it implies that simple linear processing is sufficient for JML 
detection. Second, it implies that B of (11.52) is B = A(e)A(e)* = lIell2I, which clearly 
satisfies the rank criterion. Hence, space-time block codes that are linear and orthogonal 
automatically achieve full diversity. Furthermore, because the matrix of (11.52) reduces to 
B = IIx - x'1I2I for linear orthogonal codes, its eigenvalues are all equal, and the coding gain 
llmin = (A1A2 ... Ar)l/r reduces to minx¢x·llx-x'1I2, the squared minimum Euclidean 
distance between the information symbol vectors. 
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Example 11-5. -------------------------
The Alamouti code of (11.39) is clearly linear and clearly orthogonal. Hence, from the above 
discussion, it follows that the Alamouti code achieves a diversity order of 2m with JML detection 
for any number of receive antennas m. (This same result was derived earlier, but in a different way.) 
Furthermore, with a 4-QAM alphabet normalized so that IIx 112 = 1, the geometric mean 11 = IIx
x'1I2 satisfies 11 E {I, 2, 3, 4}, depending on x and x'. The coding gain is thus 11min = 1. 

It has been shown that, within the class of linear and orthogonal space-time block codes, a 
rate-one code exists only when there are n = 2 transmit antennas [8]. In this sense, the 
Alamouti code is unique. For the special cases of n = 3 and n = 4 antennas, the highest-rate 
linear and orthogonal space-time block codes have rate 3/4. Linear orthogonal codes are 
known for all n ~ 5 as well, but none with rate greater than 1/2 [8]. 

Example 11-6. ---------------------------
Tarokh et al. [8] proposed the following rate-3/4 space-time block code that maps three 
information symbols {Xl, X2, X3} to four antennas over four signaling intervals: 

[ ~, -2x2* .fh3* ~,' 1 A (x) =! 2X2 2Xl* ./2x3* -./2X3* 
(11.53) 

I 2 ./2x3 ./2x3 -xl-Xl*+X2- x2* x2 + x2 * + Xl - Xl" . 

./2x3 -./2x3 -x2-x2* +Xl-xl* -xl-xl* -x2+x2* 

Similarly, Tirkkonen and Hottinen proposed the following somewhat simpler rate-3/ 4 code [9]: 

(11.54) 

Both examples are clearly linear, and it is easily verified that rows of A are equal-norm and 
orthogonal. Thus, the rank criterion is satisfied, so that full diversity is achieved. Furthermore, the 
JML detector reduces to a combination of linear processing and scalar slicing at the receiver, 
greatly simplifying detection. If there are three antennas instead of four, a suitable rate-3/4 space
time block code can be constructed from either ofthe above codes by deleting one ofthe rows of A. 

11.5.5. Space-Time Trellis Codes 

In later chapters we will see that error-correction codes -- which mitigate noise -- can be 
classified as either block codes or trellis codes. Similarly, space-time codes -- which primarily 
mitigate fading -- can be classified in the same way. The space-time block codes of the 
previous section are analogous to block codes, mapping a fixed block of information symbols 
to a fixed block of antenna outputs. We now consider space-time trellis codes, which map an 
arbitrary number of information symbols to antenna outputs according to a finite-state 
machine. They are extensions of convolutional codes and trellis-coded modulation for the case 
of multiple transmit antennas. Beyond the above analogy, however, there is a philosophical 
difference that distinguishes space-time block codes from space-time trellis codes. Whereas 
space-time block codes aim to mitigate fading only, with little or no coding gain, space-time 
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trellis codes aim to jointly mitigate fading and noise, by providing both diversity gain and 
coding gain. In other words, whereas space-time block codes separate the tasks of mitigating 
fading and mitigating noise, space-time trellis codes perform the tasks jointly. 

The simplest example of a space-time trellis code is the delay-diversity technique 
described earlier, as illustrated in Fig. 11-5(a), and repeated here for convenience: 

z Xk l)) 
0 

Xk ~ w 

»)) Q. 
w 
0: 

r£ 

This transmitter can be modeled as a finite-state machine whose state at time k is Xk _ 1> the 
previous input symbol, and a sequence of input symbols uniquely defines a path through a 
trellis, where the number of trellis states is equal to the size of the input alphabet. The receiver 
can implement ML sequence detection using the Viterbi algorithm. 

If we fix the number of input syttlbols to K, the delay-diversity transmitter defines an 
equivalent rate-KI (K + 1) space-time block code, as follows: 

(11.55) 

The two zeros in the first and last columns may be replaced by any idle symbol chosen from 
the same alphabet used by {Xi}; they serve to initialize and terminate the trellis to a known 
state. Having transformed the delay-diversity scheme into a space-time block code, we can 
now use the rank criterion to determine its diversity order. This is clearly a linear code, and 
hence the difference A(x) -A(x') between two distinct codewords reduces to A(e), where at 
least one element of e=x-x' is nonzero. It is easy to verify that the columns of A(e) 
containing the first and last nonzero element of e are linearly independent; therefore, the rank 
criterion is satisfied, and delay diversity achieves full diversity. 

Example 11-7. -------------------------
A slightly more efficient rate-I encoder results by moving xK from the last column to the first: 

(11.56) 

thereby eliminating the idle symbols. This is an example of a tail-biting code because it begins and 
ends in the same state. However, since the rank of the difference matrix will be one when all 
elements of x-x' are identical, the rank criteriQn is not satisfied, and hence this code does not 
achieve full diversity. 

The motivation for space-time trellis codes is simple - to improve the performance of 
delay diversity, without increasing complexity. A good example of such an improvement can 
be described for the special case of the 8-PSK alphabet, .f<l= {eiht/4} with IE {O, 1, ... 7}. If 
we identify symbols by their integer labels t, the (2, I) repetition code can be expressed as 
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c= {OO, 11, 22, 33, 44, 55, 66, 77}; its mmlmum Euclidean distance is dmin = (4-
2.12 )1/2:::: 1.082. In contrast, the optimal (2, 1) block code of 8-PSK symbols (maximizing 
dmiJ is C = {OO, 15, 22, 37, 44, 51, 66, 73}; it achieves a maximal minimum Euclidean 
distance of dmin = 2. The optimal code obeys a simple rule: if lk is the index of the k-th 
information symbol, the parity symbol index is 5lk (modulo 8). Ifwe use this code in place of 
the repetition code, but keep the structure of the delay-diversity transmitter, we arrive at the 
two-antenna 8-state 8-PSK space-time trellis code of [10]: 

G ak(l) ») ) 
;:::-

Xk !i 
...J »)) « :::; 
~ a. 
0 

It has better performance than the delay-diversity scheme, but with exactly the same decoding 
complexity. The space-time codeword that results has the form: 

(11.57) 

so that the length-two codewords from C appear diagonally within the space-time codeword. 

Both the delay-diversity scheme and the space-time trellis code described above satisfy 
the rank criterion, and hence achieve full diversity, but the latter performs better because its 
coding gain Tlmin is larger. Even better performance can be achieved when the encoder 
operates on information bits instead of complex symbols, and when the encoder is designed to 
simultaneously maximize diversity order and coding gain. 

Example 11-8. -----------------------------------------------------
The best-known 4-state 4-PSK space-time trellis code for two transmit antennas and mUltiple 
receiver antennas consists of a convolutional code with generator polynomial: 

G(D) = [g §] + [~ 5]D (11.58) 

followed by a pair of 4-PSK mappers [11], but with arithmetic performed modulo-4 instead of 
modulo-2, as sketched in Fig. lI-8(a). The delay-diversity scheme with 4-PSK can also be viewed 
in this way, except its generator is: 

(11.59) 

In either case, the encoder accepts a pair of bits bk = [bk(l), bk(2)f during the k-th signaling 
interval, which together with the encoder state "'k = [bk_1 (1), bk_1(2)]\ defines the two symbols 
ak (1) and ak (2) transmitted simultaneously from the two antennas. One stage of the trellis is shown 
in Fig. 11-8(b). It has the same spectral efficiency and complexity as 4-QAM with two-antenna 
delay diversity, but its performance is significantly better (see Fig. 11-10). 
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o 00230221 

20032201 

2 12311033 

3 32113013 

(a) (b) 

Fig. 11-S. A space-time trellis code for 4-PSK and two transmit antennas [11]. The encoder structure 
is shown in (a). The mappers convert an integer IE {O.1.2.3} into a 4-PSK symbol a according to 
a = exp(jI1t/2). One trellis stage is shown in (b). where the state labels are 2bk_l(l) + bk_1(2). and the 
branch labels are {lk(1). lk(2)}. 

The 4-state space-time trellis code of the previous example was constrained to use a 4-
PSK alphabet. In doing so it conveys two bits per signaling interval, so that its spectral 
efficiency is 2 bits/sec/Hz. We can achieve the same spectral efficiency with less SNR by 
relaxing the constraint that the alphabet be 4-PSK. A particularly effective strategy for two 
transmit antennas is to concatenate an outer code with an inner Alamouti space-time block 
code. Since the Alamouti code transforms the MIMO channel into an effective SISO channel, 
a good conventional code - such as a trellis code - may be used as an outer code to achieve 
good overall performance. In order to achieve the same spectral efficiency, a trellis code uses a 
larger alphabet. 

Example 11-9. --------------------------
Consider the concatenated strategy illustrated in Fig. 11-9. The inner Alamouti space-time block 
code transforms the m x 2 underlying channel into an effective SISO channel, as seen by the outer 
coder and decoder. The outer code is chosen as a four-state 8-PSK trellis code; this makes for a fair 
comparison, because it has the same complexity (4 states) and the same spectral efficiency 
(2 b/s/Hz) as the space-time trellis code of Fig. 11-8. The performance of this concatenated 
strategy is shown in Fig. 11-10, where average word-error rate is plotted versus average SNR, 
assuming two transmit antennas and m = 1,2, and 4 receive antennas over a Rayleigh block-fading 
channel. For comparison purposes, the performance of two-antenna delay diversity with 4-PSK and 
the space-time trellis code of Fig. 11-8 are also shown. The concatenated scheme consistently 
outperforms the delay-diversity scheme by 2.4 dB, regardless of the number of receive antennas. 
The performance of the space-time trellis code, however, depends strongly on the number of 
receive antennas. With only one receive antenna, the space-time trellis code performs about the 
same as delay diversity; with m = 2 receive antennas, it is I dB better, and with m = 4 receive 
antennas, it is about 2 dB better, and roughly as good as the concatenated scheme. 

We will see much more about trellis codes in Chapter 13. 
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Fig. 11-9. A concatenated space-time coded system. The transmitter consists of an outer trellis code and 
an inner Alamouti space-time block code. At the receiver, the MMF and parallel-te-serial converter 
transform the Alamouti-encoded MIMO channel into an effective SISO channel, so that a conventional 4-
state Viterbi-based TCM decoder may be used. 

_ (A) DELAY DIVERSITY 

- -&. (B) SPACE· TIME TRELLIS CODE 
__ (C) CONCATENATION: TCM + ALAMOUTI 

10-1 

1~2 L-~ __ ~ ____ ~-L-L __ ~ __ ~~ __ ~~ __ ~~~~~ __ ~~ __ ~~ __ ~~ 

o 5 10 15 20 
SNR PER BIT PER ANTENNA (dB) 

Fig. 11-10. A performance comparison of three alternative space-time coding techniques: (A) 4-PSK with 
delay diversity (11.59), (8) 4-PSK with G(D) from (11.58), and (C) trellis-coded 8-PSK with Alamouti 
space-time block coding, as shown in Fig. 11-9. All three strategies achieve 2 b/s/Hz with two transmit 
antennas, and the complexity of the 4-state Viterbi algorithm at the receiver is the same for all three cases. 
The word length is 131 symbols, and the results are averaged over independent Rayleigh fading channels 
that are constant over the duration of one codeword, and independent from one codeword to the next. 
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11.6. Layered Space-Time Modems 

Multiple antennas at a transmitter can provide diversity against fading using the transmit
diversity strategies of Section 11.5. These strategies are most appropriate when the receiver 
has only one or two antennas, in which case receive diversity alone may be insufficient to 
provide adequate protection against multipath fading. Alternatively, when the receiver already 
has many antennas, so that there is minimal benefit to supplementing the receive diversity with 
additional transmit diversity, the mUltiple transmit antennas may be used to increase the data 
rate instead, a concept known as spatial multiplexing. The basic idea is to use the multiple 
transmit antennas to simultaneously transmit multiple independent streams of symbols, 
without spatial redundancy. 

The simplest form of spatial multiplexing is known as V-BLAST (vertical Bell Labs 
layered space-time) transmission, where independent sub streams are transmitted from each 
antenna. From the receiver's point of view, each transmitting antenna represents an 
independent user, and hence the receiver can use centralized multiuser detection techniques to 
simultaneously recover the symbols transmitted from all antennas. A V-BLAST transmitter is 
sketched below: 

Xl 
ENCODE1 

X2 
BITS 

SIP 
ENCODE2 

Xn 
ENCODEn 

The source bits are demultiplexed into n independent substreams, one for each transmitting 
antenna. Each sub stream is coded independently using a conventional one-dimensional code 
of length L, such as a trellis code or LDPC code, and then transmitted from its own dedicated 
antenna. The complexity of the transmitter is reduced because the bit rate seen by each 
encoder is a fraction lin of the overall bit rate. If we define Xi = (xP), ... x/L)] as the i-th 
coded substream, corresponding to the i-th transmit antenna, then this strategy results in the 
following space-time codeword: 

(11.60) 

In contrast to prior sections, the codeword is organized by rows instead of columns. A receiver 
with m antennas will observe the following m x L matrix over L signaling intervals: 

H (11.61) 

or R=HA+N, (11.62) 
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where ri = [rp), ... r/L)] represents the L observations at receiver antenna i, and where 
"iii = [Tip), ... Ti/L)] is the corresponding AWGN satisfying E[ 1 Tip) 12] = No. A BLAST 
receiver can use ZF-DF or MMSE-DF detection; for simplicity we describe the ZF-DF 
detector. IfH = QG is a Gram-Schmidt decomposition ofH, then application of the WMF Q* 
yields: 

Y=Q*R=GA+N, (11.63) 

where G is lower triangular, and where N has the same statistics as N. The first row of Y is 
Yl = Gnxl +nb with no interference from the other substreams {x2' ... xn }; thus, we may 
pass Yl to the first sub stream decoder to arrive at the decision codeword Xl. If the decision is 
correct, subtracting G2l Xl from the second row of Y yields Z2 = G22X2 + n2, which can be 
decoded to yield x2 . This process can be repeated for each of the n sub streams, as illustrated 
in Fig. 11-11. This detector is the same in spirit as the ZF-DF detector of Section 10.3.4, but 
with one important distinction: the coding is taken into account. In particular, the detector of 
Fig. 11-11 decodes the entire first row of A before making any decisions about the second row 
of A. This is in contrast to a ZF-DF detector that ignores coding, which would make tentative 
decisions about A column by column, and would perform decoding only after the decision
feedback process had been completed. 

A drawback of V-BLAST is that, because the different antennas send independent 
information, there is no possibility for transmit diversity. If there is to be diversity, it must 
come from the receiver array. Furthermore, with ZF-DF detection, the SNR seen by the i-th 
substream is proportional to Gil = II hi -hdI2, where hi is the projection of hi onto the 
subspace spanned by {hi + 1, ... hn }. The problem is that some of these Gi/s can be very 
small. This might happen because all of the gains associated with the i-th transmitter are small 
(in which case hi has a small norm), or perhaps because hi is nearly expressible as a linear 
combination of {hi + 1> ••• hn }. For the special case of Rayleigh fading, Gii2 is a chi-square 
random variable with 2(m - n + i) degrees of freedom (see (11.28) and (11.67)), so Gn has the 

N 
~e--_R_~ ___ ---. ______ ...---___ ...... 

.. .. 

Fig. 11-11. The ZF-OF detector for a coded V-BLAST transmitter. Unlike the ZF-OF detector of 
Fig. 10-14, the decision devices are now decoders, which produce codewords of length L as outputs. 
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smallest diversity benefit and is the most likely to be small. In any case, if anyone of the 
substreams sees a bad subchannel, its poor performance will dominate the overall error rate 
performance. 

The diagonal-BLAST (D-BLAST) strategy was proposed by Foschini as a means for 
overcoming the drawbacks of V-BLAST [12]. The basic idea is simple: rather than assigning 
each substream to a dedicated antenna, the assignment is periodically cycled, with a dwell 
time of W symbol periods, as sketched below: 

BITS SIP 

This effectively decomposes the i-th coded substream of length L is into J = L / W subblocks, 
Xi = [xp>, ... x/J)), where each x/J) represents a block of W coded symbols. The coded 
sub streams thus fill the space-time codeword in a block-diagonal fashion, as illustrated below 
for the case of n = 3 antennas: 

I X IO) X2(1) x S(I) X I(4) ~(4) X3(4) .. . I (J-X2 2) X3(J- 2l 0 0 

0 X I(2) X2(2) xP) (5) X2(5) X3(5) ... XI 
~(J-I) X3(J-I) 0 .(11.64) 

0 0 X 1(3) X2(3) X3(3) X 1(6) X2(6) xl6) I X2(J-l) X 3(J) 

Comparing this space-time codeword with the delay-diversity scheme of (11.55), we see that 
delay diversity is a special case of D-BLAST for which the encoders are repetition codes and 
the dwell time is one symbol period. Comparing to (1l.57), we see that the two-antenna 8-
state 8-PSK space-time trellis code of [10] can also be viewed as a special case of D-BLAST. 

Without cycling, the i-th substream is obliterated when the i-th gain Gii is small. The 
advantage of cycling is that it spreads the bad gains evenly across all substreams. By giving all 
sub streams access to all transmit antennas, cycling ensures that all sub streams encounter a 
channel with the same statistics, namely, one with a time-varying gain that cycles through all 
{Gn , ... Gnn }. Cycling converts the spatial diversity potential of the transmitter array into 
time diversity potential. Sometimes the channel is good, sometimes it is bad. The error
correction capabilities of the code are able to compensate for the bad times. 

A receiver for D-BLAST based on DF detection can be implemented in two ways. It can 
use tentative decisions and DF to detect A column by column, and decode a substream only 
after all of its subblocks have been detected. At the expense of increased complexity, improved 
performance can be achieved by detecting the elements of A diagonal by diagonal (substream 
by sub stream), using decision feedback after decoding to cancel previously detected 
diagonals, and using linear processing to mitigate interference from undetected diagonals. 
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Appendix 11-A. Proof of Conservation Theorem 

The conservation theorem of (11.26) is easily proved. It applies to the flat-fading Rayleigh 
MIMO channel, where the m x n matrix H has i.i.d. zero-mean unit-variance complex 
Gaussian entries, satisfying E[ 1 h ij 12] = 1. Without loss of generality, assume user 1 is the user 
of interest. As discussed in Section 10.3.3, the ZF linear detector is proportional to the 
projection error h1 - h1' where h1 is the projection of h1 onto the interference space spanned 
by the interfering columns {h2' ... hn}. 

The key to the proof is the following thought experiment. Suppose we were to make the 
following two changes to the channel model: 

• Zero the interfering columns {h2' ... hn} 

• Replace the first column h1 by h1 - h1 

Since the ZF linear detector is orthogonal to the interference subspace, its output would not be 
affected by the above changes. But these changes would transfonn the original MIMO channel 
into the SIMO fading channel of (11.1) with an effective m x 1 transfer function of h1 - h1' 
and in tenns of this new channel model, the ZF linear detector would actually be the MF 
detector, or maximal-ratio combiner. Hence, just as in (11.5), its output can expressed as 

y = (h1 - h1)*r 
• 2 

=lIh1-h111 an+N, 

where Nis a complex zero-mean Gaussian RV satisfying E[I N12] = Nollh1 - h1112. 

(11.65) 

To establish the conservation theorem, we need only show that IIh1 - h1112 has a chi
square distribution with 2(m - n + 1) degrees of freedom. Let Q1 = [ql> ... qn-1] contain an 
orthononnal basis for the interference subspace, as found by applying the Gram-Schmidt 
procedure to {h2' ... h n}, and let Q2 = [qn' ... qm] contain a completion of that basis that does 
not exploit knowledge of hI> so that Q = [Ql, Q2] is a unitary matrix that is statistically 
independent of h 1. The projection error hI - hI will be orthogonal to {ql' ... qn-l}, and 
hence it may be expressed as a linear combination of the columns of {qn> ... qm}, namely: 

(11.66) 

where we have introducedgi = qi*h1 for i E {n, ... m}. Therefore, 

(11.67) 

Since g = [gn' ... gmf = Q2*h1 is a linear transformation of a jointly Gaussian vector, it is 
itself jointly Gaussian, and is thus characterized by its autocorrelation matrix: 

(11.68) 
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We see that the components {gil are i.i.d. with precisely the same distribution as the 
components {hi} of the original Rayleigh-fading channel. Therefore, the diversity order is 
equal to the number of terms in the sum (11.67), namely m - n + 1. This completes the proof. 

Appendix 11-B. Bound on Pairwise Error Probability 

In this appendix we derive the bound of (11.51). We assume that the codeword columns 
are normalized so that E[ilazIl2] = 1, and that {hij} are i.i.d. zero-mean unit-variance Gaussian 
random variables satisfying E[ 1 hi) 12] = E, so that E1No is the average SNR per receive 
antenna. The pairwise-error probability Pi ~ j is the probability that HAi + N is closer to HAj 
than to HAi, where the elements ofN are i.i.d. zero-mean complex Gaussian random variables 
satisfying E[ 1 nij 12] = No. In this appendix, as usual, the norm of a matrix is assumed to be the 
Frobenius norm, defined by IIHII2 = IIh l ll2 + ... + IIhn ll2 when H = [hv .,. hn]. The pairwise
error probability may be expressed as: 

Pi~j= Pr[ilH(Ai -A) + Nil < IINIIJ 

= E[ Pr[ljH(Aj - Aj } + Nil < II Nil 1 H] ] 

= E [Q('IH~A)II)J 

=E[Q(~)J 

~E[exp(;~)J ='I'X(4~J, (11.69) 

where we have introduced the random variable X = II H(Ai - A) 112 and its characteristic 
function 'l'x<s) = E[eSXj. The inequality follows from (3.43}.The key step is to find'llX<s). 

Let r denote the rank of the n x n Hermitian matrix B = (Ai - Aj)(Ai - A)*, whose 
eigendecomposition is B = UAU*, where U is unitary, and where A is a diagonal matrix with 
real, nonnegative, nonincreasing diagonal elements {A.v ... A,., 0, ... O}. In terms of this 
decomposition, and by exploiting the identity II MII2 = tr{MM*}, we may write X as: 

(11.70) 

Because H is Gaussian and U is unitary, HU and H are identically distributed. Hence, if we 
were to eliminate U from (11. 70), we would not change its probability distribution. In other 
words, X has the same probability distribution as: 

(11.71) 

Therefore, 



Problems 

'Vx<S) = E[exp(sLiAill h ill2)] 
r 

= nE [exp(sAili h iIl2)] 
i = 1 

r 

= n'Vy,(SAi) 
i = 1 ' 

r 
= n (1 - sAiE)-m , 

i = 1 
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(11.72) 

where we introduced Yi = IIhi ll2, a chi-square random variable with 2m degrees of freedom 
and mean mE, and exploited the fact that its characteristic function is 'Vli(s) = (1- sE)-m. 
Substituting (11. 72) into (11.69) yields: 

r ( A-E)-m 
Pi~j ~ lJl 1 + 4No 

r (AoE)-m < n -'
i= 1 4No 

= (TJE)-mr 
4No ' 

(11.73) 

where we have introduced TJ = (1..11..2 ... Ar)llr, the geometric mean of the nonzero eigenvalues 
of B = (Ai - Aj)(Ai - Ai>*. 

Problems 

Problem 11-1. For the MISO model of (11.36), show that the combining weight vector w in (11.37) 
that maximizes the SNR at the receiver, subject to the constraint that II w II = 1, is w = H* III H II. 

Problem 11-2. Let n = [nv ... , n4]T with {nil i.i.d. C!/Il(O, No). Let n denote the projection of n 
onto the subspace spanned by x = ~ [1,-1, 1, -If andy = ~ [1,1, -1, -I]~ 
Characterize the pdf of II nl1 2 . 

Problem 11-3. Derive (11.25) from (11.24). The following two identities may be helpful [13]: 

(1 + x)-1/2 = ~oo (2k -l)!!(_x)k 
~k = 0 (2k)!! ' 

if n E {O, 1, 2, ... , m - I} 
(11.74) 

ifn=m 

The double factorial notation is short for (2k - I)!! = l' 3· 5 "'(2k - 1) and (2k)!! = 2 ·4·6···(2k). 

Problem 11-4. Consider the SIMO channel of (11.1), assuming i.i.d Rayleigh fading, AWGN and 4-
QAM. As described at the beginning of Section 11.3, the received average SNR per bit per antenna is 
Ebl No. However, the effective (or postdetection) average SNR per bit is generally larger. 
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(a) Show that maximal-ratio combining increases the average postdetection SNR by a factor of m. 

(b) Show that selection combining increases the average postdetection SNR by a factor of k~l ~ . 
Problem 11-5. Suppose a transmitter with two antennas somehow knows the response of the 
narrowband channel between it and a receiver with a single antenna. Instead of using matched-filter 
precompensation, suppose the transmitter uses selection instead, i.e., only transmits from the antenna 
with the largest gain. Find an approximate expression for the bit-error probability as a function of 
Ebl No for Gray-mapped 4-QAM with AWGN and i.i.d. Rayleigh fading. 

Problem 11-6. An OFDM transmitter that was originally designed for use with only a single transmit 
antenna, suddenly acquires a second transmit antenna. To avoid a total redesign of the transmitter, it 
would be nice if delay diversity could be used, so that the signal that was originally transmitted from the 
first antenna will be transmitted again from the second antenna, only delayed relative to the first. 
Describe the changes that will be necessary at the receiver in order for this delay-diversity scheme to 
achieve the benefit of transmit diversity. 

Problem 11-7. Consider the following set of space-time codes: 

(I1.7S) 

(a) Find the diversity order achieved by each, assuming that the information symbols {Xi} are 
independently and uniformly selected from a 4-QAM alphabet, and assuming the receiver has a 
single antenna. 

(b) For those that achieve full diversity in (a), find the coding gain. 
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Error Control 

Error-control coding is the name given to the process of converting source bits into 
transmitted symbols so as to make possible reliable communications despite the presence of 
noise. As shown in Fig. 12-1, a channel coder precedes the mapping of bits to symbols at the 
transmitter. The channel coder constrains the symbol sequence {ak} so that only a strict subset 
of all possible symbol sequences can be transmitted. There is thus redundancy in the coded 
sequence, which can be exploited at the receiver to improve the robustness to noise. 

Even the most rudimentary communication system will use some form of error-control 
coding. For example, error-control coding can be used to facilitate the detection of errors at the 
receiver; the receiver may then repeatedly request retransmissions until no errors are detected. 
A more ambitious goal is error correction, where the receiver not only detects an error but also 
corrects it. Instead of correcting errors after they occur, a still more ambitious goal is to 
prevent errors before they occur, by a combination of detection and decoding known as soft 

TO CHANNEL 

Fig. 12-1. A channel coder translates source bits into coded bits to protect them from noise. 

J. R. Barry et al., Digital Communication
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decoding. The ultimate aim of error-control coding is to close the gap between the 
perfonnance of uncoded modulation and the Shannon limit, allowing a practical system to 
communicate reliably at a rate close to the Shannon capacity. To be concrete we will examine 
the subject for the special case of the AWGN channel. 

In previous chapters we saw a fundamental tradeoff between bandwidth and signal power. 
Orthogonal modulation schemes were seen to be appropriate when bandwidth is more 
plentiful than power, whereas large-alphabet PAM was seen to be the better choice when 
power is more plentiful than bandwidth. There is a similar dichotomy in choosing an 
appropriate error-control strategy. Specifically, let us distinguish between the low-SNR regime, 
where bandwidth is relatively plentiful so that the target spectral efficiency is 1 bl slHz or 
lower, and the high-SNR regime, where bandwidth is relatively scarce and the target spectral 
efficiency is higher than 1 bl s/Hz.I In the low-SNR regime, binary error-control coding in 
combination with binary modulation is nearly optimal. Binary coding is the subject of this 
chapter. On the other hand, the high-SNR regime calls for signal-spacing coding using larger 
PAM alphabets, as described in the next chapter. 

There is an important fundamental difference between binary coding and signal-space 
coding. The binary coding strategies described in this chapter fix the alphabet size and 
increases the symbol rate by inserting extra transmitted symbols which depend 
detenninistically on the infonnation bits. The higher symbol rate implies a lower spectral 
efficiency. Because bandwidth is proportional to the symbol rate, binary coding increases the 
bandwidth requirement. In contrast, signal-space coding of Chapter 13 fixes the symbol rate 
and increases the size of the alphabet. The bandwidth requirement does not increase. Signal
space coding is most appropriate for bandwidth-limited media where the target spectral 
efficiency is high. 

Two fundamentally different types of decoding are used, hard and soft, as illustrated in 
Fig. 12-2. With hard decoding, the receiver first makes hard decisions about the transmitted 
symbols using a memoryless slicer. The hard decoder operates on these hard decisions. Since 
not all bit patterns are permitted by the code, the decoder can detect or correct bit errors. From 
the perspective of the coder, the channel is binary and makes transmission errors. Often a 
binary symmetric channel (BSC) noise generation model is used (Fig. 7-2). 

A soft decoder, by contrast, makes direct decisions about the infonnation bits without 
making intennediate decisions about the transmitted symbols. As shown in Fig. 12-2, a soft 
decoder operates directly on the continuous-valued samples of the received signal. Instead of 
correcting errors after they occur, as done by a hard decoder, a soft decoder prevents errors by 
combining slicing with channel decoding. We can think of soft decoding as a combination of 
slicing and removing redundancy. 

I. The value of SNR = PI (NoW) is natural choice for distinguishing power-limited channels from bandwidth-limited 
channels, since SNR is proportional to power and inversely proportional to bandwidth. Furthennore, SNR also 
determines the Shannon limit on spectral efficiency, namely log2(1 + SNE). 
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Fig. 12-2. In hard decoding (upper branch). decisions are made about the incoming symbols by a slicer. 
the symbols are decoded into bits by a demapper. and the channel decoder maps these coded bits into 
uncoded bits. A soft decoder (lower branch) operates direcUy on continuous-valued samples of the 
incoming signal rather than on the detected bits. 
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Although more complex to implement, soft decoding performs better than hard decoding 
becal:lse it makes use of information that the slicer would otherwise throwaway. For example, 
if the slicer input is halfway between slicer levels, the hard decoder would be forced to make a 
decision, whereas the soft decoder would make note of the uncertainty and incorporate that 
uncertainty in the final decision. When we have no control over the modulation and 
demodulation process, however, hard decoding is the only option. For example, error-control 
coding is sometimes applied to an existing digital communication system that has already been 
designed and implemented, but for which the error rate is too large for our intended purpose. 
This scenario is illustrated in Fig. 12-3. The error rate can be decreased using binary coding at 
the transmitter and hard decoding at the receiver, at the expense of a lower information rate. 

Within the class of binary codes we will consider block codes and convolutional codes. 
Both hard and soft decoding are used for block and convolutional codes, while only soft 
decoding is used for signal-space codes (Chapter 13). A block code maps blocks of k source 
bits into blocks of n coded bits where n > k. Such a block code is said to have code rate k / n, 
where the terminology refers to the fraction of the total bit rate devoted to information bits. A 
convolutional coder also produces coded bits at a higher rate than the source bits, but it does so 
without dividing the source bits into blocks. Instead, a convolutional encoder acts on a stream 
of message bits that in theory might last forever. In both cases there are more coded bits than 
source bits, and the coded bits have redundant information about the source bits. 

Fig. 12-3. A channel coder and hard decoder added to an existing digital communication system. 
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A new class of codes called turbo-like codes has emerged in the last decade that promises 
both performance near the Shannon limit as well as low-complexity implementation. 
Examples of turbo-like codes include serially and parallel-concatenated turbo codes, repeat
accumulate codes, and low-density parity-check codes. They behave very differently from the 
algebraic and convolutional codes that came before. For many decades the usual approach to 
code design has been to maximize minimize distance, which will in turn minimize the value of 
the largest Q( . ) function in the union bound. This strategy has two flaws: it ignores other 
distances that may contribute nonnegligible Q( . ) terms, and more importantly, it ignores the 
number of neighbors at that minimum distance; in other words, it ignores the error coefficient 
that multiplies the Q( . ) function. The problem is that the union bound is not very tight when 
the operating SNR is near the Shannon limit. The turbo-like codes described later in this 
chapter can approach capacity not because they have a large minimum distance (in fact their 
minimum distance can be relatively small), but because they have a good distance spectrum. 

The remainder of this chapter is organized as follows. In Section 12.1 we examine the 
optimality of binary coding when the spectral efficiency is low. In Section 12.2 and 
Section 12.3 we describe binary block codes and convolutional codes, respectively. In 
Section 12.4 we describe low-density parity-check codes, and in Section 12.5 we describe 
turbo codes, which include repeat-accumulate codes and turbo equalization as special cases. 

Error correction coding is a large subject, and in this book we hope to convey the most 
important concepts and leave the details to the extensive and excellent literature on the subject. 

12.1. The Capacity Penalty of Binary Coding 

The capacity of an AWGN channel is achieved only when the input symbols are chosen 
according to a Gaussian distribution. However, we will now argue that there is very little 
penalty in capacity when the input alphabet is constrained to be binary antipodal, provided that 
the system is operating in the low-SNR regime where the target spectral efficiency is small. 

To understand the near-optimality of binary coding at low spectral efficiencies, consider 
the Shannon capacity of the real-valued memoryless AWGN channel 

r=a+n, (12.1) 

where the noise is real, zero-mean and Gaussian with variance No/2. In Chapter 4 we learned 
that the capacity of this channel, subject to an energy constraint of E = E[a2] , is: 

c = ~ log2(1 + SNR) bits per real symbol, (12.2) 

where SNR = 2EI No. 

The above model directly applies to baseband PAM, but it also applies to one dimension 
(real or imaginary) for passband PAM. Either way, a power constraint of P on the underlying 
continuous-time channel implies a per-dimension energy constraint of E = PI (2 W), assuming 
zero excess bandwidth. (For baseband, E = PT where W= 11(21), while for passband, the 
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energy is split in half for each dimension, E = PT 12, where W = 1 I T.) This implies that the 
SNR of the discrete-time channel (12.1) is identical to the SNR of the continuous-time 
channel, SNR = PI No W = 2EI No. 

Since spectral efficiency is the number of bits conveyed by two real symbols, or 
equivalently by one complex symbol, we can invert the above capacity equation and solve it 
for SNR as a function of the spectral efficiency b = 2C: 

(12.3) 

This is the Shannon limit on SNR. Any practical and reliable system achieving a spectral 
efficiency of b (b/s/Hz) must have an SNR at least as large as 2b -1. For example, the SNR 
must be at least 0 dB for a spectral efficiency of 1 b/s/Hz. 

Recall that the energy per bit is defined as the ratio of signal power to bit rate, which is 
Eb = PI (b W) when b is the spectral efficiency in bl s/Hz. It follows that Ebl No = SNRI b, so 
that the Shannon limit on Ebl No is: 

Ebl No = (2b -1)lb . (12.4) 

In Fig. 12-4 we plot this Ebl No requirement as a function of the spectral efficiency. It 
achieves a minimum value of log(2) = -1.59 dB in the limit as the spectral efficiency goes to 
zero, which might happen when the channel bandwidth is unlimited. On the other hand, when 
the target bit rate and channel bandwidth coincide, so that the spectral efficiency is one, the 
per-bit SNR requirement is exactly 0 dB. The shaded region below this limit is unattainable. 

Also shown in Fig. 12-4 is a plot of the EblNo requirement as a function of the mutual 
information between the channel output and input when the input is constrained to be chosen 
uniformly from the binary antipodal alphabet {±JE}. This mutual information has no closed
form solution but it can be calculated numerically using (4.25), or equivalently, it can be 
expressed in terms of a zero-mean unit-variance Gaussian random variable U as [1]: 

Cb = 1- E[log2(1 + e-2U'/SNR -2SNR)] bits per real symbol. (12.5) 

The key observation from the figure is that the binary-input constraint has a negligible impact 
on the Ebl No requirement when the spectral efficiency is lower than about 0.5 b/s/Hz. Even 
at 1 blslHz, the penalty is only 0.19 dB. The penalty grows quickly thereafter. At the modest 
spectral efficiency of 1.9 blslHz, the penalty due to a binary alphabet is over 2.5 dB, and the 
penalty grows without bound as the spectral efficiency approaches 2 b/s/Hz. 

Example 12-1. -------------------------
The communication link from a deep-space probe to an earth-based receiver is a classic example of 
a low-SNR, power-limited channel. Signal power is scarce because of the great distance between 
transmitter and receiver. In contrast, the bandwidth is plentiful, especially relative to the modest 
data rates required. For example, the spectral efficiency for the Mars Pathfinder and Jupiter Cassini 
deep-space probes is less than 0.2 bl s/Hz [2]. Not surprisingly, in light of Fig. 12-4, deep-space 
communications relies exclusively on binary coding. 
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Fig. 12-4. Capacity of the AWGN with various constraints on the input and output. The lower curve is 
the Shannon limit (2b - l)/b, which is achieved when the channel inputs have a Gaussian distribution. 
The next curve above is the Shannon limit when the input alphabet is constrained to be binary. The 
penalty due to binary inputs disappears at low spectral efficiency. The uppermost curve constrains the 
input alphabet to be binary and also constrains the receiver to perform hard decoding. The extra penalty 
due to hard decoding is seen to range from 2 dB down to 1 dB as the binary code rate ranges from 0 to 
0.98. The three circles mark the performance of specific codes to be described later in the chapter. 

At this point we should point out that when we say binary modulation in this chapter we 
really mean binary modulation per dimension, in the sense that the inputs to the real-valued 
channel model of (12.1) are binary. In this sense, 4-QAM with alphabet {±1 ± j} is actually a 
form of binary modulation, since both the real and the imaginary components of the 
transmitted symbols are binary, and the two components independently experience an identical 
channel. We can thus constrain our discussion to real binary modulation without loss of 
generality. 

When the transmitted symbols are binary, one might be tempted to insert a one-bit 
quantizer at the front-end of the receiver, which would memoryless1y convert each noisy 
observation into a hard decision about which symbol was transmitted. The remainder of the 
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receiver would then be easier to implement because it would operate only on bits. This 
quantization would transform the binary-input real-output channel into a binary-input binary
output channel which, because of the symmetry of the Gaussian noise, is actually a BSC with 
crossover probability p = Q(JSNR). A decoder that operates on these binary decisions is said 
to be a hard decoder, while in contrast, a decoder that operates on the original real-valued 
samples is a soft decoder. 

In theory we can quantify the penalty due to hard decoding by evaluating the BSC 
capacity 1 + plog2P + (1 - P)log2(1 - p) from (4.18) using p = Q(JSNR). The results are 
represented by the uppermost curve in Fig. 12-4. The capacity penalty due to hard decoding
on top of the binary-input penalty - is seen to range from 2 dB down to 1 dB as the spectral 
efficiency increases from zero to 2 b/s/Hz. 

The performance of three representative turbo-like codes is illustrated in Fig. 12-4. All 
three codes have rate 1/2 (unity spectral efficiency) and block lengths of one million bits, and 
the points in the figure identify the value of Ebl No required to achieve a bit-error rate of 10-6, 

as described in [3]. The uppermost point (labeled (3, 6) LDPC) is a regular low-density parity
check code [4], described in Section 12.4, which falls within 1 dB of the Shannon limit. The 
point below that (labeled turbo) is a turbo code [5], described in Section 12.5.1. The 
lowermost point (labeled irregular LDPC) is an irregular LDPC code, described in 
Section 12.4, which is only 0.13 dB shy of the Shannon limit for binary inputs. 

12.2. Binary Linear Block Codes 

An (n, k) binary block coder maps blocks of k source bits, or message bits, into blocks of 
n coded bits, where n > k. The n coded bits depend only on the k source bits, so the coder is 
said to be memoryless. Assume that the k source bits are collected in a shift register, as shown 
in Fig. 12-5, and the n coded bits are serialized to be sent to the symbol mapper. The block 
coder circuitry itself often consists only of modulo-two adders (exclusive-or gates). 

rno Co 

S llli 
BLOCK 

illllll CODER 

OURCE BITS rn3 Cs CODED BITS 

rnk SHIFT Ck T 
REGISTER 

SHiFf REGISTER 
o MAPPER 

SERIAL·T().PARALLEL CONVERTER PARALLEL·T()'SERIAL CONVERTER 

Fig. 12-5. A block coder collects k incoming bits in a shift register, codes them, and shifts them out 
serially to the symbol mapper. The example shown is an (n, k) = (7,4) block code. 
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Example 12-2. --------------------------
A singJe-parity-check coder takes a block of k message bits [mo, ... mk-l] and appends an extra 
bit, called a parity bit ck, yielding a codeword ofthe form c = [mo, ... mk-l' ck]. Furthermore, the 
extra bit ck is chosen so that the total number of ones in the codeword is even, which occurs if and 
only if the extra bit is the modulo-two summation of the message bits: 

Ck = mo e··· E9 mk - 1 , 

where E9 denotes modulo-two addition. 

(12.6) 

A general linear code or parity-check code is a code for which all coded bits are modulo-two 
summations of subsets of the message bits. This implies the existence of a generator matrix G 
with k rows and n columns, consisting of zeros and ones such that the coded bits c are related 
to the message bits by: 

c=mG, (12.7) 

where the addition that occurs in the matrix multiplication is modulo-two. 

Example 12-3. -------------------------
The generator matrix for the single-parity-check code of Example 12-2 is 

[

100 ... 01] o 1 0 0 1 
G=00101. 

J 0 0 :.:. 1 i 
Codes like that of Example 12-3 which have a generator matrix of the form 

G = [Ik IP] , 

(12.8) 

(12.9) 

where Ik is the k-dimensional identity matrix, are called systematic. The first k coded bits are 
exactly the message bits, so that a systematic codeword takes the form c = [m, x], where x is a 
set of n - k parity bits. The single-parity-check code of Example 12-3 is systematic. 

Example 124. ---------------------------
A more elaborate systematic parity-check code is the (7,4) Hamming code, which has generator 
matrix 

[
1 0 00 1 0 1] 

G= 0100111 
0010110· 
0001011 

(12.1 0) 

For a particular binary row vector m, c = mG is called a codeword. A code is the set of all 
possible codewords. Contrast this with an encoder, which is a rule for mapping message bits to 
coded bits. It is thus possible that two distinct encoders generate the same code. Every 
codeword is a modulo-two summation of rows of the generator matrix, with the zero vector 
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being a degenerate example. Clearly, therefore, the modulo-two sum of any two codewords is 
a codeword, and parity-check codes are said to be closed under modulo-two summation. This 
is a desirable property for codes, and is elaborated in Appendix 12-A. In fact, it is shown in the 
appendix that all parity-check codes are linear subspaces over the binary field, or just linear 
for short, and that all linear block codes are parity-check codes with some generator matrix. 
Furthermore, all linear block codes are equivalent to a systematic code, obtained by reordering 
the coded bits. In the following we specialize to linear codes and exploit their special 
properties. This constraint does not cost us much, since linear codes are sufficient to approach 
the capacity of symmetric binary-input channels like the BSC and AWGN channels 
considered here [6]. 

An important goal is to compare the performance of soft decoding to hard decoding. The 
basic difference between the two cases is that in the soft decoding case the detector chooses 
the codeword closest to the reception in Euclidean distance, and in the hard decoding case the 
detector uses Hamming distance. Furthermore, we will find, not unexpectedly in view of the 
analysis in Chapter 7, that the probability of error is dominated by the two codewords that are 
closest in Euclidean or Hamming distance at high SNR. To compare the two approaches, we 
need to find a relationship between Euclidean and Hamming distance between a given pair of 
codewords; this depends on the symbol mapper, that is, the mapping from coded bits Ck into 
symbols ak in Fig. 12-1. The Euclidean distance is measured in terms of the symbols, whereas 
the Hamming distance is measured in terms of coded bits. Comparisons below assume that 
binary antipodal signaling is used, so that the symbol mapper maps {a, I} into {±JE}. 

Exercise 12-1. 
Show that for a binary antipodal alphabet, the Hamming distance and Euclidean distance between a 
pair of codewords are related by 

(12.11) 

When the code is linear, it is shown in Appendix 12-A that the minimum Hamming distance 
between codewords is equal to the minimum Hamming weight (number of ones) among all the 
nonzero codewords, 

d Hmin = min wH<c). 
, CEC,Ci'O 

(12.12) 

Example 12-5. -----------------------------------------------------
In the single-parity-check code of Example 12-2, all codewords have an even-valued Hamming 
weight. Thus, the smallest Hamming weight among all nonzero codewords is two. This is also the 
minimum Hamming distance between codewords. Thus, the minimum Euclidean distance with 
binary antipodal signaling is dE,min = 2./2E . 
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12.2.1. Performance of Soft Decoders 

The value of error-control coding is often quantified by the coding gain, defined as the 
amount by which the signal power may be decreased with coding to achieve the same bit-error 
probability as an uncoded system. Implicit in this comparison is the assumption that both 
systems are operating at the same information bit rate over the same channel with the same 
noise power spectrum No/2. Furthermore, for the binary codes of this chapter, both the coded 
and uncoded systems are assumed to use binary antipodal signaling. 

Because signal power is proportional to Ebl No when the bit rate and noise power 
spectrum are fixed, we can equivalently define coding gain as the decrease in the Ebl No 
required to achieve the desired bit-error probability because of the code: 

( E b I No ) required 
coding gain = unc~ded . 

( EblNo )~~a~J.red 
(12.13) 

A coding gain of 3 dB, for example, indicates that the coded system can achieve the same 
performance as the uncoded system with half as much signal power. The coding gain is 
generally a function of the desired bit-error probability. 

For the soft decoding case, the input to the decoder is the sample stream before it is 
applied to a slicer. Assume the equivalent channel is a discrete-time additive Gaussian noise 
channel with independent noise components and no lSI. A codeword c is transmitted as a 
vector a with components chosen from {± JE }, and the noise. samples have variance 
(}"2 = No/2. Critical to our analysis is the fact that the energy E per symbol decreases with the 
code rate R = kl n according to: 

(12.14) 

where Eb is the energy per bit. This relationship can be partially justified by examining the 
units: [energy per symbol] = [bits per symbol]· [energy per bit]. But it is more instructive to 
attach a physical explanation to this relationship. A code of rate R will result in more coded 
bits than message bits, requiring that the symbol rate be increased by a factor of 1 I R in order 
to maintain the same bit rate. Therefore, to avoid an increase in signal power, the energy per 
symbol must decrease by a factor of R. In other words, with a fixed power constraint, the 
energy available per pulse decreases as we increase the rate at which we send pulses. 

The received samples Yk can be collected into the vector 

y=a+n, (12.15) 

where n is a vector of i.i.d. Gaussian random variables. This detection problem is familiar 
from Chapter 7, where we showed that the ML detector selects the valid signal vector a 
closest in Euclidean distance to the observed vector y. Hence, the union-bound approximation 
gives 

Pr[bJock error] :::: KQ(d ~.::n ) 
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(12.16) 

where dE, min = UEdmin = UREbdmin' and where dmin is the minimum Hamming distance 
of the code. The coefficient K is the average number of codewords with Hamming distance 
dmin from a given codeword. 

In contrast to the above expression for a coded system, the bit-error probability for an 
uncoded binary antipodal system has a simple closed-form solution, namely: 

Pr[bit error, uncoded] = Q( J ~ b ). (12.17) 

In fact, the union-bound estimate becomes exact in this case, since (12.16) reduces to (12.17) 
for the uncoded case where R = dmin = K = 1. At high SNR, the probability of error for a 
block of k uncoded bits is then: 

Pr[block error, uncoded] == kQ(J ~b ). (12.18) 

We can now directly compare the block-error performance of the coded and uncoded systems. 
If we ignore the constant multipliers of Q( . ), which is reasonable at high Ebl No, we can 
equate the arguments of the Q( . ) in the coded and uncoded cases, yielding: 

Rd . (Eb INoyequired = (Eb INo)required. mm coded uncoded (12.19) 

This implies that the asymptotic coding gain is simply the product of the code rate and 
minimum Hamming distance: 

asymptotic coding gain = Rdmin . (12.20) 

This gain is asymptotic because it only applies in the limit of large Ebl No, or equivalently 
small probability of error. The true coding gain is usually somewhat less. 

Example 12-6. ------------------------
For the (n, n - 1) single-parity-check code (Example 12-2), the code rate is R = (n -l)/n, and 
the minimum Hamming distance is dmin = 2, so that the asymptotic coding gain is: 

Rdmin = 2(n -l)/n. (12.21) 

With n = 3, for example, the asymptotic coding gain is 4/3 or 1.25 dB. In Fig. 12-6(a), we 
compare the bit-error probability Pb with ML decoding of the (3,2) single-parity-check code to the 
bit-error probability (12.17) of an uncoded system. The true coding gain increases from 0.72 dB at 
Pb = 10-3 to 0.89 dB at Pb = 10-5. The 1.25 dB predicted by the asymptotic coding gain is seen 
to be somewhat optimistic at these values of Pb. 
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Fig. 12·6. Illustration of coding gain with soft decoding for (a) the (3, 2) single-parity-check code, and (b) 
the (7, 4) Hamming code, assuming AWGN with binary signaling. Also shown is the bit-error probability for 
an uncoded system. In (a), we see that the coding gain for the (3, 2) single-parity-check code is 0.89 dB at 
Pb = 10-5, which is close to the 1.25 dB predicted by the asymptotic coding gain. The coding gain for the 
(7, 4) Hamming code is 1.86 dB at Pb = 10-5, about 0.5 dB short of the 2.34 dB asymptotic coding gain. 

Example 12-7. ----------------------------------------------------
For the (7,4) Hamming code (Example 12-4), the code rate is R = 4/7, and the minimum 
Hamming weight of all nonzero codewords is dmin = 3. This is easily seen by considering all 
possible linear combinations of the rows of the generator matrix. Hence, the asymptotic coding 
gain with soft decoding is: 

Rdmin = Ii = 2.34 dB. (12.22) 

The bit-error probability of the (7,4) Hamming code with soft decoding is shown in Fig. 12-6(b). 
The coding gain grows from 1.46 dB at Pb = 10-3 to is 1.86 dB at Pb = 10-5. The 2.34 dB 
predicted by the asymptotic coding gain becomes more and more accurate as the bit-error 
probability gets smaller. More precise comparisons can be made. However, it is clear that the 
asymptotic coding gain is accurate to within a fraction of a dB for reasonable probabilities of error. 

The soft decoder can be expensive to implement because computing the distance between 
the observed vector and each possible codeword is usually impractical for large n. Fortunately, 
practical algorithms have been developed [7][8][9][10][11]. 
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12.2.2. Performance of Hard Decoders 

A hard decoder operates on the output of the slicer. If the discrete-time channel up to the 
slicer has a noise generation model with independent noise components, then after the slicer 
the equivalent binary channel will usually be a BSC (Fig. 7-2). With a code of rate R and 
binary antipodal signaling in AWGN, the crossover probability is: 

(12.23) 

Clearly, this crossover probability increases as the code rate decreases. In other words, the 
introduction of a code makes the "raw" bit-error rate worse. A useful code will more than 
compensate for this increase, resulting in an overall bit-error rate after decoding that is smaller. 

Let c denote the transmitted codeword and let r denote the corresponding bits emerging 
from the BSC. In this case we showed in Chapter 7 that the ML detector selects the codeword 
c closest in Hamming distance to r. 

Example 12-8. ------------------------
For the (7, 4) Hamming code, if c = 0000000 is transmitted and r = 0001010 is received, the ML 
detected codeword is c = 0001011, which is closer in Hamming distance than the all-zero 
codeword. 

The question that arises now is how many bit errors can be corrected by an ML detector 
for a given code. It is clear that if r is closer to c than to any other codeword then any errors in 
r will be corrected by the ML detector. Certainly if r has fewer than 

t = l dH,~n-l J (12.24) 

errors then those errors can be corrected, where L· J denotes the "floor" function, or the 
greatest integer less than or equal to the argument. This value t appeared before (see (7.22». 

Example 12-9. ------------------------
In the single-parity-check code of Example 12-2 and Example 12-3, each codeword has an even 
number of ones, so dH,min = 2. The code can correct 

(12.25) 

bit errors. Hence this code is not useful at all for hard error correction. It can detect any odd number 
of bit errors. Note that with soft decoding, this code is useful for reducing the error rate at a given 
signal level, but not with hard decoding. 

Example 12-10. ------------------------
The (7, 4) Hamming code has dH,min = 3 and t = 1, and hence can correct all single bit errors. 
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It is difficult to quantify analytically the coding gain when hard decoding is used, but we 
can get a rough estimate by making several approximations. In Section 7.2 we derived upper 
and lower bounds on the probability of error for vectors of bits transmitted over a BSC. We 
found the following union-bound approximation (7.25) for the probability of a block error: 

Pr[block error] :::K'" ~min (~in) pi(l _ p)dmin - i, 
LJ, = t + 1 ~ 

(12.26) 

where dmin is the minimum Hamming distance of the code. For small p, the first term 
dominates, so that this can be approximated by: 

Pr[block error] :::K{ t : 1) pt + 1. (12.27) 

Usingp =Q(J2REbINo) and Q(x)::: e-x2/2 yields: 

Pr[blockerror] :::K{t: 1)e-R(t+1)Eb INo. (12.28) 

Using the same approximation Q( x) ::: e-x2/2 for the un coded case yields: 

Pr[block error, uncoded] ::: kQ(J2Ebl No)::: ke-EblNo . (12.29) 

Comparing the uncoded and coded cases and ignoring the multiplying coefficients leads to an 
asymptotic coding gain for hard decoding of: 

asymptotic coding gain(hard) = R( t + 1) . (12.30) 

This is almost half the asymptotic coding gain of Rdmin that arises from soft decoding. This 
approximate analysis suggests that hard ML decoding should perform almost 3 dB worse than 
soft ML decoding. In reality the difference is usually closer to 1.5 dB or 2 dB. 

Example 12-11. -------------------------
Like all Hamming codes, the (15,11) Hamming code has dmin = 3 and t = 1, and hence can 
correct all single bit errors. The asymptotic coding gains for hard and soft decoding are thus: 

R(t + 1) = i! = 1.66 dB (hard) , Rdmin = i~ = 3.42 dB (soft) . (12.31) 

The anticipated difference is thus 1.76 dB. The bit-error probability for this code with hard 
decoding over the BSe can be found analytically through a straightforward but tedious counting 
exercise, yielding: 

Pb,hard = 21p2 + 119p 3+ 392p4 + 1036p 5 + 2093p 6 + 3067p 7 + 3368p 8 + 

+ 2912p9 + 1967p lO + 973pll+ 336p12 + 84p13 + 15p14 + p15, (12.32) 

where p = Q(J2H,Ebl No). The bit-error probability with soft decoding can be found via 
simulations. The results are shown in Fig. 12-7, which reveals that the actual coding gain 
for hard and decoding at Pb = 10-5 are: 

coding gain = 1.2 dB (hard), coding gain = 2.6 dB (soft) . (12.33) 
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In particular, we see that the soft decoder outperfonns the hard decoder by 1.4 dB. 

The union-bound estimate is not necessary for some codes. For any code we can be 
certain of correcting up to t bit errors, but some error patterns with more bit errors may be 
correctable also, unless the code is a so-called perfect code. A perfect binary code has the 
property that all bit patterns of length n are within Hamming distance t of one and only one 
codeword. All Hamming codes are perfect. The performance of the ML detector is easy to 
determine for perfect codes. With independent noise components, the probability of m bit 
errors in a block of n bits has a binomial distribution. For perfect codes, a block decoding error 
is sure to occur if more than t bit errors occur, so 

Pr[blockerror] =~n (n)pm(l_p)n-m 
.Lim=t+l m 

10-4 

2 

= 1 _ ~t (n)pm(l_ p)n- m . 
.Lim = 0 m 

4 6 

Eo/No (dB) 

(15.11) HAMMING 
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1.4dB 1.2dB 

(12.34) 

Fig. 12-7. A comparison of bit-error probability for the (15,11) Hamming code with soft and hard 
decoding on the AWGN channel with binary signaling. At Pb = 10-5, the coding gain is 1.2 dB with 
hard decoding, and 2.6 dB with soft decoding. 
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Example 12-12. -------------------------
The (7, 4) Hamming code is a perfect code, so all seven-bit patterns are either a codeword or one bit 
distant from exactly one codeword. It follows that 

Pr[block error] = 1- (1- p)7 -7p(l- p)6 . (12.35) 

The usefulness of (12.34) is limited to perfect codes. For those codes that are not perfect, 
(12.34) is an upper bound, 

Pr[block error] :::; ~n (n)pm(l_ p)n - m , 
£Jm = t+ 1 m 

(12.36) 

because some error patterns with more than t bits errors will be corrected by the ML decoder. 
This bound often gives a good estimate. Many practical codes are quasiperfect, meaning that 
although some error patterns with t + 1 bit errors are corrected, none with t + 2 or more are 
corrected. For these we can get a lower bound: 

Pr[block error] ~ ~n (n) pm(1 _ p)n - m . 
£Jm =t+2 m 

(12.37) 

Together these upper and lower bounds lead to good estimates of the performance of codes 
that are sometimes easier to use than the bounds of Section 7.2. 

Many other bounds, both tighter and looser, are known. We refer the interested reader to 
the extensive coding literature. 

12.2.3. Parity·Check Matrix 

ML soft and hard decoders find the codeword closest (in Euclidean or Hamming distance) 
to the received block. Direct implementation becomes difficult for large k and n, since there 
are 2k distances that need to be computed and compared. Fortunately, for hard decoding, 
efficient techniques have evolved. The basic approach is to design the code to have a rich 
algebraic structure, and then exploit that structure in the decoding process. Recently, algebraic 
techniques have also been applied to soft decoding. Although we cannot give a comprehensive 
treatment of decoding techniques, we can at least illustrate some of the most important 
concepts. 

Consider a systematic linear (n, k) binary block code, which has a generator matrix of the 
form 

G = [Ik I P] . (12.38) 

Given a row vector m of k bits, the corresponding codeword is c = mG, a row vector which 
can be written 

c=[m, x], 

where x = mP is a row vector with n - k parity-check bits. Note that since x = mP, 

mPex=o, 

(12.39) 

(12.40) 
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where the modulo-two addition is performed element-wise. This can be written 

1m, Xl P ]=0, (12.41) 

I n- k 

or cHT=O (12.42) 

where H = [ pT I I n- k ] (12.43) 

H is called a parity-check matrix, because it can be used to test if a vector c is a codeword by 
checking (12.42). 

Example 12-13. ------------------------
The parity-check matrix for the (k + 1, k) single-parity-check code of Example 12-2 and 
Example 12-3 is 

H = [1 1 ... 1 1] . (12.44) 

As we already knew, we can check a bit vector to see if it is a codeword by summing (modulo-two) 
all ofthe bits and checking to see if the sum is zero. 

Example 12-14. ------------------------
A parity-check matrix for the (7, 4) Hamming code of Example 12-4 is 

[
1110100] 

H= 0111010. 
1 1 0 1 001 

(12.45) 

An example of a codeword is c1 = [0110001], which satisfies c1HT= O. By contrast, c2 = 
[0 1 1 0 1 0 1] is not a codeword, since c2HT = [1 0 0]. 

Although we have shown only how to get a parity-check matrix given the generator matrix of a 
systematic code, it is possible to find one for any linear block code. In fact, the parity-check 
matrix can be a compact and useful representation of the code. 

For a received vector r, calculation of the distance to every codeword can be avoided by 
using a parity-check matrix. Write 

r=c$e (12.46) 

where c is the transmitted codeword and e is the error pattern. Define the syndrome to be 

(12.47) 

Thus the syndrome depends only on the error pattern e and not on the transmitted codeword. 
The syndrome is zero if and only if e is a codeword (recall that 0 is always a codeword of a 
linear code). Efficient decoders use the syndrome to represent the error pattern, which can then 
be corrected. 
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12.2.4. Hamming Codes 

Quite a variety of block codes have been developed, each with its advantages and 
disadvantages. We will describe a very small subset, beginning with Hamming codes. 

Hamming codes of length n are designed to correct any single-bit error within a block of n 
bits. This is possible only if the syndrome for each such error pattern is distinct and nonzero. 
(The all-zero syndrome is already reserved for the all-zero codeword.) Equivalently, in light of 
(12.4 7), this can happen only if the columns of the parity-check matrix H are nonzero and 
distinct. If m is the number of rows in H, then there can be at most 2m - 1 distinct and nonzero 
columns in H. When all such columns are used, the resulting code is known as a Hamming 
code. The (7, 4) Hamming code is one example for which m = 3. For any positive integer m, 
there exists a Hamming code with parameters 

(n, k) = (2m -1, 2m -1- m) 

The rate of the code approaches unity as m grows large. 

(12.48) 

Example 12-15. -------------------------
We have already seen the parity-check matrix for the (7, 4) Hamming code: 

[
1110100] 

H= 0111010. 
1 1 0 100 1 

(12.49) 

The columns consist of all possible nonzero three-bit vectors, here arranged in systematic form. 

Once H is found, the generator matrix G for a systematic code can be found by comparing 
(12.43) and (12.38). 

Exercise 12-2. 
Show that every Hamming code has dHmin = 3. Consequently, all Hamming codes can correct 
single errors (t = 1). ' 

Hamming codes are perfect codes with minimum distance 3, meaning that every length n bit 
pattern has distance 0 or I from exactly one codeword. 

12.2.5. Cyclic Codes 

Many practical block codes are cyclic codes, which have rich algebraic properties that lead 
to efficient encoding and decoding techniques. Some of the flavor of this algebra can be 
obtained from the discussion of Galois fields in Appendix 12-A. See Section 8.6 for some 
further reading on this topic. 

An (n, k) linear block code is said to be cyclic if any cyclic shift of a codeword produces 
another codeword. All Hamming codes can be put into cyclic form. 
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Exercise 12-3. 
Verify that all cyclic shifts of 1000101, namely 

1100010 0110001 1011000 0101100 0010110 0001011 1000101 

are codewords of the (7, 4) Hamming code. 

The algebraic properties of cyclic codes pennit collapsing the information contained by the 
generator matrix into a single polynomial, not surprisingly called the generator polynomial. 
Manipulations of this polynomial representation are powerful, pennitting the synthesis of 
good codes and efficient coding and decoding techniques. 

12.2.6. BCH and Reed-Solomon Codes 

BCH codes, named after the inventors, Bose, Ray-Chaudhuri, and Hocquenghem, are a 
large class of multiple-err or-correcting codes invented around 1960. For any positive integers 
m and t, there is a t-error-correcting binary BCH code with 

n = 2m - 1 , k 2:': n - mt . (12.50) 

In order to correct t errors, it is clear that the minimum Hamming distance is bounded by 

dH,min 2:': 2t + 1 . (12.51) 

BCH codes are important primarily because practical and efficient decoding techniques have 
been found [13], and because of the flexibility in the choice of parameters (n and k). 

An important class of nonbinary BCH codes are Reed-Solomon codes, in which the 
symbols are blocks of bits. Their importance is again the existence of practical decoding 
techniques, as well as their ability to correct bursts of errors. 

12.2.7. Maximal-Length Shift Register Codes 

In order to give a taste of cyclic codes without getting involved with the algebraic 
techniques that are required for a general treatment, consider a class of codes called maximal
length shift register codes. They are practically much less important the BCH and Reed
Solomon codes, but can be described without introducing any new techniques. Maxirnal
length shift registers are described in Appendix 12-B. 

Example 12-16. ----------------------------------------------------
A maximal-length feedback shift register with m. = 4 stages is shown in Fig. 12-8. 

A block coder using a circuit such as that in Fig. 12-8 operates as follows: source bits are 
divided into blocks oflength m. The shift register is loaded with these bits and clocked 2m - 1 
times. The output from the circuit is then regarded as a codeword oflength 2m - 1. The result 
is an (n, k) = (2m - 1, m) block code. By picking the appropriate output from the circuit, the 
code is easily made systematic. 
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Example 12-17. --------------------------------
A systematic linear (15,4) block code is generated by the system illustrated in Fig. 12-8 if the 
output codeword is ck = Xk _ 4' The first four bits out are the source bits. 

The rate of maximal-length shift register codes is 

kin = m/(2m -1) , (12.52) 

which becomes very small as m becomes large. This limits the usefulness of these codes. 

Exercise 12-4. 
Show that a systematic maximal-length shift register code is a parity check code, and hence is 
linear. 

Exercise 12-5. 
Show that the Hamming weight of all nonzero codewords of a maximal-length shift register code is 
2m - 1, where m is the length of the shift register. 

Example 12-18. 
In the (15,4) maximal-length shift register code, all nonzero codewords have Hamming weight 8. 
Since the code is linear, the minimum Hamming distance is 8, and the code can correct up to 3 bit 
errors. 

Maximal-length shift register codes are cyclic codes. This is easily seen by examining a state 
transition diagram of a maximal-length shift register. 

Example 12-19. ------------------------------------------
A state transition diagram for the m = 4 maximal-length shift register is shown in Fig. 12-9. From 
its circular structure we see that the initial condition determines where in the circle to start. 
Consequently, every nonzero codeword is a cyclic shift of every other nonzero codeword. 

x.~_' D D D D 

EB 

Fig. 12-8. A feedback shift register with m = 4 stages. If the shift register is loaded with an initial 4-bit 
pattern, then as the shift register is clocked, the output will be a periodic bit sequence with period 2m - 1 
= 15. This example is a maximal-length feedback shift register. 
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Fig. 12-9. A state transition diagram for the circuit in Fig. 12-8. From its circular structure we see that 
the block code that it generates is cyclic. 

(a) (b) 

591 

Fig. 12-10. Two convolutional coders. (a) A rate-l/2 convolutional coder denoted conv(1I2). (b) A rate-
2/3 convolutional coder denoted conv(213). The coder in (b) is systematic because the source bits 
appear directly in the coded bits. 

12.3. Convolutional Codes 

A convolutional coder is a finite-memory system (rather than a memoryless system, as in 
the case of the block coder). The name refers to the fact that the added redundant bits are 
generated by modulo-two convolutions. 

Example 12-20. ------------------------
Two convolutional coder examples are shown in Fig. 12-10. We will use these example coders 
often in this section. 

Convolutional codes are often preferred to block codes, primarily because they are 
conceptually and practically simpler, and their performance generally exceeds that of good 
block codes when complexity is constrained [31]. Their good performance is attributable in 
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part to the availability of practical soft decoding techniques. Convolutional codes become 
particularly simple to describe once block codes are understood. 

In describing convolutional codes it is convenient to adopt the D-transform notation. 
Given any binary sequence bk (deterministic or random), the modulo-two D-transform is 

(12.53) 

where ® denotes modulo-two addition. In other words, it is just like a Z-transform, except that 
the additions are modulo-two and the symbol D is used instead of z-l. Now any convolution of 
two sequences 

(12.54) 

can be written in the "D-domain" as 

cD) = g(D)b(D) . (12.55) 

Just as for block codes, linear convolutional coders are constructed using modulo-two 
adders with the addition of delay elements. A convolutional coder can be described using a 
generator matrix where instead of the entries being zero or one, the entries are polynomials in 
D with coefficients that are either zero or one. 

Example 12-21. ------------------------
The generator matrix for the conv(1I2) coder of Fig. 12-IO(a) is 

G(D) = [1 EB .02, 1 EB D e .02] , 
and the generator matrix for conv(2/3) in Fig. 12-IO(b) is 

G(D) = [1 0 lEaD]. OlD 
The entries in the generator matrix are transfer functions. Define the row vectors 

m(D) = [m(O)(D), ... , m(k-l)(D)] 

c(D) = [c(O)(D), ... , c(n-l)(D)] 

(12.56) 

(12.57) 

(12.58) 

(12.59) 

where m(i)(D) and c(i)(D) are modulo-two D-transforms of mp) and cP) (see Fig. 12-10). 
The convolutional coder is defined by the matrix D-transform relation 

c(D) = m(D)G(D) . (12.60) 

The notation for a general convolutional coder is summarized in Fig. 12-11. Just as with block 
codes, a convolutional code has a parity-check matrix. 

Example 12-22. ------------------------
Comparing (12.57) with (12.38) and (12.43), a parity-check matrix for conv(2/ 3) is 

H(D) = [ 1 eD, D, 1 ] . (12.61) 
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Exercise 12-6. 
Verify that for conv(2 1 3) and H(D) given by (12.61), 

c(D)HT(D) = 0 (12.62) 

for all code sequences c(D). 

Just as with block codes, the parity-check matrix is a compact specification of the code. If the 
code is systematic, the generator matrix is easy to derive from the parity-check matrix, or vice 
versa. If the code is not systematic, then some modulo-two algebra may be required. 

Example 12-23. ------------------------
Consider again conv(l 12). From (12.56) and (12.60) we know that 

c(O)(D) = (1 E±l Ji2)m(D) 

c(l)(D) = (1 E±l D E±l Ji2)m(D). (12.63) 

Multiply both sides of the first equation by (1 E±l D E±l Ji2) and of the second equation by (1 E±l Ji2) 
and notice that the two right hand sides are equal. Hence the left hand sides are equal, 

(12.64) 

or 

(12.65) 

Hence a parity-check matrix is 

H(D) = [1 E±l D E±l Ji2, 1 E±l Ji2] (12.66) 

The memory 1-1 of a nonrecursive convolutional code may be defined as the maximum degree 
of the polynomials in the generator matrix (the maximum length of any impulse response): 

m(D) 

1-1 = max [deg(gi/D))] 
i,j 

m(O)(D) 

· · G(D) · 
m(k-l)(D) 

(12.67) 

c(O)(D) 

· · · c(D) 

c(n-l)(D) 

Fig. 12-11. A general convolutional coder. The modulo-two D-transform input and output sequences 
are shown, as is the generator matrix. 
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The constraint length of a nonrecursive convolutional code is ~ + 1. The conv(1I2) coder in 
Fig. 12-1O(a) has memory ~ = 2 and constraint length 3, while conv(2/3) in Fig. 12-10(b) has 
memory ~ = 1 and constraint length 2. Note that both encoders have only two memory 
elements. (These definitions of memory and constraint length are common but not universal in 
the literature.) 

Given a parity-check matrix, it is often easy to design a systematic encoder. 

Example 12-24. ----------------------------------------------------
Given the parity-check matrix for conv(2 / 3) discussed previously, namely 

H(D) = [1 (;B D, D, 1], 

we will now derive the encoder shown in Fig. 12-10(b). From (12.62) we know that 

To get a systematic code, assign 

c(O)(D) = m(O)(D) 

Then note from (12.69) that 

and 

or 

c(2)(D) = (1 (;B D)c(O)(D) (;B Dc(1)(D) , 

c(2)(D) = (1 (;B D)m(O)(D) (;B Dm(l)(D) 

In the time domain this is 

ck (2) = mk (0) (;B mk-1 (0) (;B mk-1 (1) , 

which is implemented in Fig. 12-1O(b). 

(12.68) 

(12.69) 

(12.70) 

(12.71) 

(12.72) 

(12.73) 

Given a parity-check matrix, it is not always quite so simple to find a systematic 
implementation. 

Example 12-25. ----------------------------------------------------
Consider the parity-check matrix for conv(1I2) given in (12.66). The encoder given in 
Fig. 12-1O(a) is not systematic, but there is an encoder that is systematic and has the same parity
check matrix. In all important respects the resulting code will be equivalent. From (12.62), 

(1 (;B D (;B d)c(O)(D) (;B (1 (;B d)c(1)(D) = 0 . (12.74) 

Again, to get a systematic code, set c(O)(D) = m(D). From (12.74), 

(1 (;B D (;B d)m(D) = (1 (;B d)c(1)(D) . (12.75) 

Given this equation we can construct the system shown in Fig. 12-12(a) that generates cP) from 
mk' It is a cascade of two linear subsystems, the order of which can be reversed to get the 
implementation in Fig. 12-12(b). Those readers familiar with the design of recursive digital filters 
will recognize this procedure. 
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The above generalizes so that any rate-1I2 nonrecursive, nonsystematic convolutional 
encoder of the form G(D) = [gl (D) g2(D)] can be transformed into a recursive, systematic 
convolutional encoder G'(D) = [1, g2(D) I gl(D)] that generates the same set of codewords. The 
encoder of Fig. 12-12 is an example of a recursive systematic encoder. The encoder is 
recursive because of the feedback path. In signal-processing parlance, a recursive encoder is 
an infinite-impulse response (IIR) filter. As we will see in Section 12.5, such encoders playa 
crucial role in turbo codes. 

For every k input bits, n bits are produced by the coder, so the rate of the convolutional 
coder is R = kin. As with block codes, the rate is defined as the ratio of the input bit rate to 
output bit rate. In the performance calculations to follow, assume that the output bit stream is 
transmitted by a binary symbol alphabet, requiring an increase in symbol rate due to the 
coding. 

The representation of convolutional codes using generator matrices highlights their 
similarity to block codes. However, to do ML detection of the coded sequence, it is more 
convenient to represent convolutional codes as Markov chains. It is clear from Fig. 12-10 that 
a convolutional code is a shift register process. If the input sequence mk is i.i.d., then the 
output Ck of the coder is a Markov chain, and we can define the state of the Markov chain to be 
the bits stored in the delay elements in the coder. 

Example 12-26. ------------------------
For conv(1 12), define the state of the Markov chain at time k to be the previous two message bits: 

(12.76) 

The state transition diagram is shown in Fig. 12-14, and the trellis diagram is shown in Fig. 12-14. 
Recall the trellis illustrates the progression through states over time. The transitions in the trellis in 
Fig. 12-14(b) are labeled with the (input, output) pairs (mk, [ck (0), ck (1)]). In Fig. 12-14(c) they are 

mk Et> mk _lEt> mk_ 2 

mk ~ 

(a) (b) 

Fig. 12-12. Two versions of a systematic coder that has the same parity-check matrix as conv(1/2). 
The one on the right is. obtained by inverting the order of the two stages in the one on the left and 
combining the two delay lines into one. These are examples of recursive-systematic encoders. 
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labeled with the transmitted symbols instead of the coded bits, assuming binary antipodal signaling. 

Example 12-27. 
For conv(2/3) the state is 

(12.77) 

The state transition diagram for this code is fully connected, as shown in Fig. 12-15. 

If the noise generation model has independent noise components, as we usually assume, then 
we can use the Viterbi algorithm (Section 7.4) for ML detection of the coded signal. In the soft 
decoding case with Gaussian noise a Euclidean distance branch metric is appropriate, while in 

Fig. 12·13. The state transition diagram of conv(1I2) of Fig. 12-10(aJ. The arcs are labeled 
(bk , [Ck(O), ck(1)]), where bk is the input bit that triggers the transition and Ck( ) and Ck(l) are the outputs 
produced. 

Fig. 12-15. A state transition diagram for a Markov chain modeling the convolutional coder of 
Fig. 12-10(b). 
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the hard decoding case with a BSC it is Hamming distance. Alternatively, we can perfonn 
APP decoding using the BCJR algorithm (Section 7.5). We will see in Section 12.5 that a key 
building block of turbo codes are rate-1 /2 recursive systematic convolutional encoders similar 
to the one shown in Fig. 12-12(b). 

12.3.1. Performance of Soft Decoders 

A coded transmission system with a soft decoder is shown in Fig. 12-16. Assume additive 
white Gaussian noise with variance 0'2 = No/2, and binary antipodal signaling with alphabet 
.9l.= {±JREb }. 

Example 12-28. ------------------------
For conv(1/2) of Fig. 12-1O(a), the coded system transmits at twice the symbol rate, so there is 
half as much energy available for each symbol, namely: 

k =0 k = 1 k =2 k=K k=K+~ 
Ij/ =0 

Ij/ = 1 

1j/=2 

Ij/ =3 

(a) 

(0, [0,0]) 

(b) 
(c) 

(1, [-a,a]) 

Fig. 12-14. (a) A four-state trellis illustrating all possible state transitions of the Markov chain in 
Fig. 12-13, which represents conv(1I2), assuming the initial and termination states are zero. (b) One 
stage of the trellis is shown with the transitions labeled with (mk, [Ck (0), Ck (1)]), where mk is the input bit 
that triggers the transition and Ck(O) and Ck(l) are the outputs produced. (c) The branches of the trellis 
labeled with the transmitted symbols rather than the bits out of the coder for binary antipodal signaling 
with levels fa, where a = JE . 
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(12.78) 

We will see that the power of the code more than makes up for this attenuation. Otherwise the 
coding scheme would not be useful! 

For the coded system with soft decoder, instead of labeling trellis branches with output bits, 
they should be labeled with output symbols. 

Example 12-29. 
For conv(1I2) of Fig. 12-IO(a), the trellis is shown in Fig. 12-14(c). Every transition is triggered 
by an input bit and produces a pair of output symbols. Given the corresponding pair of noisy 
observations Yk and Yk+l' and for a branch corresponding to symbols [ak' ak + 1]' the ML 
detector computes the branch metric 

(12.79) 

The path metric, the sum of branch metrics, is the square of the Euclidean distance between the 
observation and the transmitted symbols for that path. 

The ML detector for a soft decoder selects the path through the trellis with the minimum path 
metric, as shown in Section 7.4. From Section 7.6, the probability of symbol error at high SNR 
is 

Pr[symbol error] "" CQ(dmin /2cr) , (12.80) 

where dmin is the minimum Euclidean distance of an error event and C is a constant between P 
and R given in Appendix 7-B. 

Example 12-30. -------------------------
For the trellis of Fig. 12-14(c), the error event with the minimum distance is shown in Fig. 12-17 
when the correct path is the all-zero sequence. The square of the Euclidean distance between the 
correct path and the error event is 

d~in = 20E. (12.81) 

Every possible correct path through the trellis has exactly one minimum distance error event, and 
each such error event e has one symbol error, w( e) = 1, so P = C = R = 1, and 

SERIAL· TO-PARALLLEL CONVERTER PARALLEL·TO-SERIAL CONVERTER 

Fig. 12·16. A coded transmission system with a soft decoder (the ML sequence detector). 
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Fig. 12-17. Minimum-distance error event forconv(1/2). 

Pr[symbol error] == Q( J~:) = Q( ~) . (12.82) 

Each symbol represents one bit, so this is also the bit-error probability. In contrast, the bit-error 
probability for the uncoded case is given by (12.17). Setting the arguments of Q( . ) equal for the 
coded and uncoded case, we see that the coding gain is: 

5 2 =4dB. (12.83) 

This is a significant improvement over the uncoded system, and also is considerably better than the 
specific block codes considered in Section 12.2. The approximations are valid when the probability 
of error is low. 

The above coding gain is nothing more than the product of the code rate (R = 1/2) and the 
minimum-Hamming distance (dmin = 5) of the convolutional code. If we consider only high 
SNR so that we may ignore the error coefficients, the asymptotic coding gain for a general 
convolutional codes is Rdmin, just as it was for binary block codes. 

In Example 12-30, finding C was easy because P and R were both equal to one. In general, 
however, finding P and R is more difficult. Furthermore, finding dmin can be tedious. The 
general technique described in Section 7.6.2, which uses the Viterbi algorithm to find dmin, 

works for all cases. If the code is linear (Appendix 12-A), then the task is greatly simplified 
because only one actual path through the trellis must be considered. In this case, either the 
Viterbi algorithm technique of Section 7.6.2 or the signal flow graph technique of Appendix 
12-C can be used. Fortunately, exhaustive searches for encoders with maximal free distance 
for a given memory have already been performed, and the results are tabulated in the literature 
[44][45]. 

12.3.2. Performance of Hard Decoders 
Next we compare the hard decoder to both the soft decoder and the uncoded system. For 

the hard decoder, the channel and receiver front end can again be modeled as a BSC. In this 
case the appropriate branch metric is the Hamming distance between the received bits and the 
transmitted bits corresponding to that branch. Each branch has a set of L output bits associated 
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with it (L = 2 in conv(1/2) and L = 3 in conv(2/3». The Hamming distance branch metric is 
an integer between 0 and L. The path metric is the sum of these branch metrics. We can use the 
Viterbi algorithm to implement the ML detector, which chooses the path through the trellis 
with minimum path metric. The analysis is similar to the Gaussian noise case, but Q( . ) is 
replaced by Q( . , . ) given by (7.23). Suppose the codeword c is transmitted and the channel 
error probability is p. Then the probability that the received bits are closer in Hamming 
distance to another codeword r is Q(d, p), where d is the Hamming distance between c and r. 

Example 12-31. -------------------------
For the coder conv(1/2) in Fig. 12-10(a), the minimum-distance error event has length K = 2 and 
is the same as for the soft decoder shown in Fig. 12-17. We will bound the probability that this 
particular error event begins at some time k = i. Write the noise-free input codeword as 

(12.84) 

where each ck is a pair of bits determined by a state transition. (We can consider codewords of 
finite length only because we are considering an error event of finite length.) Assume a zero state 
trajectory, 'Ilk = 0 for all k, so c = [(0,0), (0,0), (0,0)]. The minimum distance error event in 
Fig. 12-17 has a corresponding codeword r = [(1,1), (0,1), (1,1)] and is Hamming distance five 
from c. This is exactly the situation described in Example 7-17! The observation r will be closer to 
r than to c if three or more bits are changed in the five positions in which the two codewords differ. 
The probability of this occurring is given by (7.24), so 

Pr[this error event] ~ Q(5, p) = 10p3(1 _ p)2 + 5p4(1 _ p) + p5 . (12.85) 

This is the same bound given in (7.146). 

Appendix 7-B shows that when p is small, the probability of a detection error is approximately 
CQ(dmin,p) (see (7.161» for some constant C between P and R given by (7.157) and (7.150). 
As in the Gaussian case, the situation is simple if every possible actual path through the trellis 
has exactly one minimum distance error event, and that minimum distance error event has 
exactly one detection error. In this case, P = R = C = l. 

Examp~12-32. --------------------------
The minimum distance error event in Example 12-31 has exactly one detection error (the first 
detected bit of the three erroneous stages will be incorrect, see Fig. 12-14(b». Furthermore, since 
the code is linear, every actual path through the trellis also has exactly one minimum distance error 
event with exactly one detection error. From (7.161) we can assert 

Pr[bit error] = Pr[detection error] :::: 10p3(1- p)2 + 5p4(1- p) + p5 . (12.86) 

It is assumed that other error events are far less likely than the minimum distance error event. 
Compare (12.86) to the probability of bit error p of an uncoded system. If p = 0.1, then the 
uncoded system has a probability of bit error of 0.1, while the coded system has probability of bit 
error approximately 0.0086. 

In general, evaluating Q(dmin, p) exactly can be tedious. Fortunately, for p close to zero, the 
first term in the summation in (7.23) will dominate, so 
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Q(d. p)""(dmin)pt+1(1_P)d-t+1,,,,(dmin)pt+1 
mIn' t+1 t+1' 

(12.87) 

where t = l dmi; - 1 J. 
Example 12-33. -------------------------
Continuing Example 12-32, using (12.87) we get 

Pr[bit error] "" 10p3 , (12.88) 

as long as p is close to zero. In order to compare hard and soft decoders, we must relate the error 
probability of the BSC to the SNR on the channel prior to the slicer. To make a rough 
approximation, we can detennine the Ebl No required to achieve a particular probability of error, 
say 10-5. Solving 

(12.89) 

for p we findp "" 0.01. Hence p is close to zero and our approximation is valid for this probability 
of error. To achieve a crossover probability of p "" 0.01 on an additive Gaussian white noise 
channel with binary antipodal signaling and a code rate of 1 12 it is necessary that 

(12.90) 

To achieve the same error probability without coding would require 

(12.91) 

The coding gain with hard decoding is thus about 2.3 dB, far short of the 4 dB coding gain 
predicted for soft decoding. 

Although our analysis has been limited to simple examples, we conclude that just as with 
block codes, hard decoders for convolutional codes yield less coding gain than do soft 
decoders. As with block codes, this does not mean that hard decoders are not used. Their 
implementation may be simpler, they can improve existing transmission systems with minimal 
modification, and the gain on channels with other than Gaussian white noise may be better. 

12.4. Low-Density Parity-Check Codes 

As the name suggests, low-density parity-check (LDPC) codes are block codes defined by 
a parity-check matrix that is sparse. They were first proposed in 1962 by Gallager [4][14], 
along with an elegant iterative decoding scheme whose complexity grows only linearly with 
block length. Despite their promise, LDPC codes were largely forgotten for several decades 
until they were rediscovered by MacKay and Neal [15]. Today the value of LDPC codes is 
widely recognized. Their remarkable performance ensures that they will not be forgotten 
again. In contrast to many codes that were invented well after 1962, LDPC codes offer both 
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better performance and lower decoding complexity. In fact, it is an irregular LDPC code (with 
block length 107) that currently holds the distinction of being the world's best-performing 
rate-I 12 code, falling only 0.04 dB short of the Shannon limit [16]. 

12.4.1. Parity-Check Codes 

It is useful to think of a parity-check code of length N as a code whose codewords all 
satisfy a set of M linear parity-check constraints. Such a code is uniquely defined by its M x N 
parity-check matrix H, whose M rows specify each of the M constraints. For example, if the 
first constraint specifies that bits 3 and 7 must be equal, then the first row of H contains a I in 
position 3 and 7 and zeros elsewhere. The parity-check code is the set of binary vectors 
satisfying all constraints, i.e., the set of binary vectors c satisfying cHT = O. Each linearly 
independent constraint cuts the number of valid codewords in half. Thus, if r = rank(H) ::; Mis 
the number of linearly independent rows in H, then the number of codewords is 2N - r, and the 
code dimension is K = N - r. Because each codeword of length N conveys K information bits, 
the code rate is KI N. 

A low-density parity-check (LDPC) code is defined by a parity-check matrix that is sparse [4]. 

Definition: A regular (j, k) LDPC matrix is an M x Nbinary matrix having exactly j ones in each 
column and exactly k ones in each row, where j < k and both are small compared to N. 

The "low density" terminology stems from the fact that the fraction of ones in a regular (j, k) 
LDPC matrix is kl N, which approaches zero as N ~ 00. An irregular [3] LDPC matrix is still 
sparse, but not all rows and columns contain the same number of ones. To simplify our 
discussion we will focus on regular LDPC matrices in this section. 

By definition, every parity-check equation of a regular LDPC code involves exactly k bits, 
and every bit is involved in exactly j parity-check equations. The restrictionj < k is needed to 
ensure that more than just the all-zero codeword satisfies all of the constraints, or equivalently, 
to ensure a nonzero code rate. Indeed, the total number of ones in H is Mk = Nj, since there 
are M rows, each containing k ones, and there are N columns, each containingj ones. The code 
rate R = 1 - MIN is then R = 1 - j I k, assuming the M rows are linearly independent. The 
need for j < k is thus clear. For best performance, j :2: 3 is also required [4]. 

An M x N regular (j, k) LDPC matrix can often (but not always) be conveniently expressed 
in terms of the following shorter parity-check matrix Ho: 

[

111 ... 1 
'---v--"' 1 1 1 ... 1 

Ho = k '---v--"' 
k 

(12.92) 

It has Nlk = Mlj rows and N columns. The m-th row contains ones in columns (m -l)k + 1 
through mk and zeros elsewhere. By itself, Ho would define a code consisting of N I k 
independent single-parity check constraints, with the first row constraining the parity of the 
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first block of k coded bits, the next row constraining the parity of the second block of k bits, 
etc. In this code, every parity check involves k bits, and each bit is involved in one and only 
one parity check. Hence, Ho alone defines a (1, k) regular LDPC code. However, the 
performance of this code would be poor. In fact, because the first two columns of Ho are 
linearly dependent (or equivalently because 0000 ... 0 and 1100 ... 0 are both valid codewords), 
the minimum distance for the code would be two. 

We can construct a regular (j, k) LDPC matrix by stacking j column permutations of Ho 
one atop another: 

(12.93) 

Here 1ti(Ho) denotes a matrix whose columns are a permuted version of the columns of Ho. 
Since each row of Ho has k ones, each row of H also has k ones. Similarly, since each column 
of Ho contains a single one, each column of H contains j ones. We remark that not all valid 
(j, k) regular LDPC matrices H can be expressed in the form of (12.93). We also remark that 
the building block Ho in (12.92) was chosen somewhat arbitrarily; any column permutation of 
Ho could have been used in its place. For example, we can equivalently use Ho = [I I I ... I] 
in place of(12.92), where Ho is a concatenation of k identity matrices IN / k . 

A proper choice of the permutations will allow the minimum distance of the code defined 
by H to increase beyond two. The prospect of designing j different permutations of length N 
may at first seem daunting, especially for large N. However, Gallager proved that a totally 
random choice will on average produce an excellent code [14]. In particular, if each 
permutation is chosen independently and uniformly from the set of all N! possible 
permutations, then the expected minimum distance that results will increase linearly with N. A 
code with such a property is said to be "good." The idea of designing codes randomly did not 
originate with Gallager, but dates back to Shannon's original work [17]. The beauty of 
Gallager's design is that, unlike Shannon's random codes, we will see that it is possible to 
decode Gallager's codes with complexity that grows only linearly with N. 

Example 12-34. ------------------------
The following is an example of a LDPC matrix with word length N = 20, j = 3, and k = 4 [4]: 

H= 

11110000000000000000 o 0 0 0 1 1 1 100 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
00000 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

1 000 1 000 1 000 1 0 0 0 000 0 o 1 000 1 000 1 0 0 000 0 1 000 o 0 1 000 100 0 000 100 0 100 
000 1 0 0 0 0 0 0 1 000 1 0 0 0 1 0 o 0 0 0 0 0 0 100 0 1 000 1 000 1 

10000100000100000100 o 100 0 0 1 000 1 0 0 0 0 100 0 0 o 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 
000 1 0 0 0 0 1 0 0 0 0 100 1 0 0 0 o 0 0 0 1 0 0 0 0 1 0 000 1 0 000 1 

(12.94) 
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The horizontal lines sepamte Ho and its two pennutations. We see that each column contains j = 3 
ones, and each row contains k = 4 ones. The corresponding pennutations are 1t1 = [12 ... 20],1t2 
= [1 5 9 1326 10 17 3 7 14 184 1115 198 12 1620], and 1t3 = [1 59 13 17 2 6 10 14 18 
7 3 11 15 19 8 16 4 12 20]. It can be shown that the tenth row of H is the sum of the first nine 
rows, and that the fifteenth row is the sum of rows one through five and rows eleven through 
fourteen. Thus rows ten and fifteen are linearly dependent on the remaining rows. It can be shown 
that the remaining 13 rows are linearly independent. Hence, the mnk of H is 13, the dimension of 
the LDPC code is K = 7, and the code mte is KI N = 0.35. 

The previous parity-check matrix has 15 rows, but only 13 of them are independent. We 
could define a new full-rank parity-check matrix ii by eliminating the redundant rows from 
H. Then ii would describe the same code as H, since cHT = 0 if and only if c ii T = o. 
However, the number of ones in k columns of ii would decrease each time a redundant row is 
removed, so that ii would no longer obey the regularity property of a regular LDPC matrix. 
For this reason it is sometimes convenient to describe an LDPC code by a rank-deficient but 
regular LDPC matrix, as opposed to its more efficient but irregular full-rank equivalent. 

Any parity-check code (including an LDPC code) may be specified by a Tanner 
graph [18][19], which is essentially a visual representation of the parity check matrix H. 
Recall that an M x N parity-check matrix H defines a code in which the N bits of each 
codeword satisfy a set of M parity-check constraints. The Tanner graph contains N "bit" 
nodes, one for each bit, and M "check" nodes, one for each of the parity checks. The bit nodes 
are depicted using circles, while the check nodes are depicted using squares. The check nodes 
are connected to the bit nodes they check. Specifically, a branch connects check node m to bit 
node n if and only if the m-th parity check involves the n-th bit, or more succinctly, if and only 
if H m•n = 1. This means that H is the adjacency matrix for the graph. The graph is said to be 
bipartite because there are two distinct types of nodes, bit nodes and check nodes, and there 
can be no direct connection between any two nodes of the same type. 

Example 12-35. ----------------------------------------------------
The Tanner graph associated with the 15 x 20 LDPC matrix of(12.94) is shown in Fig. 12-18. The 
bit nodes are represented by the N = 20 circles at the top, while the check nodes are represented by 
the M = 15 squares at the bottom. The first (left-most) five check nodes correspond to Ho, the 
second five to 1t2(Ho), and the last five to 1t3(Ho). 

For the special case of a (j, k) regular LDPC code, each bit is involved in j parity checks. 
Hence, the number of branches emanating from a bit node is alwaysj. Similarly, because each 
parity check involved k bits, the number of branches emanating from each check node is 
always k. Observe that the graph of Fig. 12-18 satisfies these properties. 

The value of the Tanner graph will become clear in the next section, where we describe a 
decoding algorithm for LDPC codes. There, the graph will be used to describe a parallel 
implementation of a decoder, with the different nodes representing separate processors, and 
edges representing communication between processors. 

An irregular LDPC code is a generalization of LDPC codes for which the parity-check 
matrix is still sparse, but for which not all bit nodes have the same degree, and/or not all check 
nodes have the same degree. The design ofLDPC matrices, regular or irregular, is beyond our 
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scope. Good LDPC codes have been designed using random constructions. For irregular 
LDPC codes, a fruitful approach is to optimize the distribution of the node degrees according 
to the theory of density evolution (see Section 12.4.3) [49][50][16]. Unfortunately, randomly 
generated LDPC codes suffer from high encoding complexity. The fundamental problem is 
that a randomly generated sparse parity-check matrix will almost surely lead to a dense 
generator matrix. Therefore, for a fixed code rate, the number of computations required to 
multiply a message of length K by a generator matrix of dimension K x N grows as N 2 for 
large N. Under certain constraints on the distribution of node degrees, some optimized LDPC 
codes can be encoded with complexity that grows only linearly with N [51]. An alternative 
approach is to constrain the parity-check matrix in such a way that the encoder has low 
complexity [52]. We will have to wait until our discussion on repeat-accumulate codes 
(Section 12.5.2) to see an LDPC code that can be both encoded and decoded with complexity 
that grows only linearly in N [34]. 

12.4.2. Decoding Parity-Check Codes 

Before describing a decoding strategy for LDPC codes we need to establish some notation 
and background results. The probability distribution for a binary random variable c E {O, I} is 
uniquely specified by the single parameter Pc(1) = Pr[c = 1], since it must be that Pc(O) = 1 -
Pc(l). Alternatively, the probability distribution is uniquely specified by the logarithm of the 
ratio: 

1 -1 Pe(1) 
/1.- og--. 

Pe(O) 
(12.95) 

To recover Pc(1) from A, we can solve this equation for Pc(l), yielding Pc(1) = 11(1 + e-A). 
The sign of A indicates the most likely value for c; A is positive when 1 is more likely than 0, 
and A is negative when ° is more likely than 1. Moreover, the magnitude I A I is a measure of 

Fig. 12-18. The Tanner graph for the regular LPDC matrix of (12.94). 
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certainty. At one extreme, if A = 0 then 0 and 1 are equally likely. At the other extreme, if 
A = co then c = 1 with probability I, and A = --00 implies c = o. 

Given a random bit c E{O, I}, let r denote an observation whose pdf depends on c 
according to f(r I c). When c is fixed and f(r I c) is viewed as a function of r, it is called a 
conditional pdf. On the other hand, when r is fixed, then f(r I c) as a function of c is called the 
likelihood function. 

Before making an observation, the a priori probabilities for care Pc(O) and Pc(l). After 
making an observation, these probabilities change to the a posteriori probabilities (APP) 
Pcl r(O I r) = Pr[c = ° I r] and Pc I r(11 r) = Pr[c = 11 r]. Because of Bayes rule, the a posteriori 
probability is proportional to the likelihood function: 

Pc(11 r) = f (r I c = l)pc(I)lf(r) . (12.96) 

Hence, the logarithm of the ratio of a posteriori probabilities can be expressed as: 

1 Pclr(llr)_l f(rlc=l)+l Pc(l) og - og og--. 
Pclr(Olr) f(rlc=O) Pe(O) 

(12.97) 

The first term on the right-hand side is called the log-likelihood ratio (LLR). Strictly speaking, 
the second term on the right-hand side is a log-probability ratio, and the left-hand side is a log
APP ratio. However, with an abuse of notation, the second term on the right-hand side is more 
commonly called the a priori LLR, and the left-hand side is called the a posteriori LLR. If cis 
equally likely to be zero or one, then the a priori LLR is zero, and the a posteriori LLR is 
equal to the LLR. 

The Tanh Rule 

Let cI> = L~ = 1 Ci denote the parity (modulo-two summation) of a set of n bits {Cl, ... cn}, so 
that cI> = 0 if there are an even number of ones, and cI> = 1 if there are an odd number. If the bits 
are independent, the LLR for the parity obeys the tanh rule [20][16]. 

Exercise 12-7. 
(The Tanh Rule.) Let {Cl, ... cn} be a set of independent bits with a priori probabilities defined 
by the LLR's Ai = 10g(Pcj(I)IPcj(O». Show that the LLR ~= 10g(Pell(I)IPeIl(0» for the parity 
cI> = L~ = 1 ci is related to {Ai} by the so-called tanh rule: 

(12.98) 

Solution. See Appendix 12-D. 

Solving (12.98) for Aell yields the following equivalent relationship: 

-l(rrn (-Ai) ) AeIl=-2tanh i:l tanh 2"" . (12.99) 
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Alternatively, if we treat the signs and magnitudes of the LLR's separately, then Appendix 12-D 
shows that (12.99) can equivalently be expressed as [4]: 

where cr~ = -IIi=l sign(-Aj), and where we have introduced the special function: 

eX + 1 
f(x)=logeX_l =-log(tanh(x/2» . 

(12.100) 

(12.101) 

In hardware implementations, (12.100) has advantages over the tanh rule because it involves 
the sum of n terms instead of the product n terms. Nevertheless, the tanh rule is preferred in 
analysis because of its conceptual simplicity. 

The function f(x) has some interesting properties. As shown in Fig. 12-19, it is positive 
and monotonically decreasing for x> 0, with f(O) = co and {(co) = o. Furthermore, f(x) is its own 
inverse! That is, f(f( x» = x for all x > o. This property is easily verified by direct substitution. 

Let CjE{O, I} denote the most likely value for the i-th bit, namely cj=l if Ai>O, 
else ci = o. The sign of A~, which indicates the most likely value for cp, is completely 
determined by the parity ~ = L~ = 1 ci of { ci }, since: 

(12.102) 

This is to be expected, since the parity is most likely even when an even number of Aj's are 
positive, and odd when an odd number are positive. 

On the other hand, the magnitude of A~, which measures the certainty that cp is its most 
likely value, is given by I A~ I = f("Ed( IAj I». Suppose the k-th bit Ck is equally likely to be 0 or 
1, so that Ak = o. The k-th term in the sum "Ed( IAi I) is then infinity, so that the entire sum is 
infinite. Because f(co) = 0, it follows that (12.100) reduces to Aq, = 0 whenever anyone of the 
bits has zero log-likelihood ratio. This makes intuitive sense, since if one bit is equally likely 
to be zero or one, then the parity of the entire vector is equally likely to be zero or one, 

2 3 x 

Fig. 12-19. Thefunctionf(x)of(12.101). 
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regardless of the probabilities of the remaining bits. More generally, whenever one bit is 
significantly less certain than the others, so that the summation is dominated by f( I Amin I), 
where I Amin I = mini{ I Ai I }, then the magnitude of A<iI simplifies to: 

IA<j)1 = f(~d( IAi I» 

== f(f< I Amin I» 

= IAminl· (12.103) 

The certainty in the parity of a vector can thus be approximated by the certainty of the least 
certain bit. Substituting (12.103) into (12.100) yields the following approximation: 

A<j) == -(-1) ~ I Amin I. (12.104) 

In the next section we will show how (12.99) can be used in the decoding problem, but a 
lower-complexity approximation would use (12.104) in place of (12.99). 

The Decoding Problem 

Let us consider the problem of decoding a code with parity-check matrix H, given that the 
channel adds white Gaussian noise, so that the receiver observation r = [rl ... rN] is related to 
the transmitted codeword c = [Cl ... cN] by: 

r=2c-1 +n, (12.105) 

where the components of the noise vector n are independent zero-mean Gaussian random 
variables with variance cr2. (This implies an antipodal bit-to-symbol mapping 0 ~ -1, 1 ~ 1.) 

The detector that minimizes the probability of error for the n-th bit would calculate the a 
posteriori LLR: 

An = logPr[cn = llrJ 
Pr[cn=Olrl 

=logPrlcn=llr", {r;"n}l , 

Pr[cn = ° I r", {r; "n}l 
(12.106) 

and then decide cn = 1 if An > 0, and cn = 0 otherwise. Applying Bayes rule, the numerator in 
(12.106) can be written as: 

Pr[cn = 11 rw {ri .. n}] _f(rn,cn = I,{r;"n}) 
f(r", {r;"n}) 

= f(rnlcn = 1,{r;"n})f(cn = I,{r;"n}) 

f(rn I {r; "n})f(h "n}) 

= f(rn ICn = I)Pr[cn = 11 {r;"n}l 

f(rnl{r;"n}) 
(12.107) 

The last equality exploits the fact that, given Cn> rn is independent of {ri .. n}' The denominator 
of (12. 106) can be similarly expressed. Hence, (12.106) simplifies to: 
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intrinsic extrinsic 

609 

(12.108) 

where we used the fact that {(rn I cn) = (21tc?r"2 exp(-(rn-2cn + 1)2/(202» for the AWGN channel. 

The first tenn in (12.108) represents the contribution from the n-th channel observation, 
and is called the intrinsic infonnation, while the second tenn represents the contribution from 
the other observations, and is called the extrinsic infonnation [21]. Interestingly, the 
contributions are combined by simply adding. Further, the intrinsic infonnation is proportional 
to the n-th channel observation. The constant of proportionality 2/02 is called the channel 
reliability [20]. 

Exercise 12-8. 
Consider a binary symmetric channel (BSC) with input and output alphabet {±l}, as opposed to 
the usual alphabet {O, I}. Show that the a posteriori LLR is again given by (12.108), except that 
the channel reliability is log( 1 ~ P) instead of 2 / 0 2, where p is the crossover probability. 

Before we can simplify (12.108) further, we must examine more closely the structure of the 
Tanner graph. Consider Fig. 12-20, where we draw the graph of an LDPC code from the 
perspective of the n-th bit node, and where we have rearranged the bit nodes and check nodes 

Fig. 12-20. The graph for an irregular LDPC code. from the perspective of the n-th bit node cn
Removing anyone of the edges incident on cn would create two separate graphs. In fact. if the dotted 
edge did not exist. then all edges would have this property. and the graph would form a tree. This 
particular code is not regular. because some bit nodes (for example. the leaf nodes) are involved in 
only one parity-check equation. while others (for example. the n-th bit node) are involved in more than 
one. 
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SO as to avoid crossing edges. The n-th bit is involved in exactly j parity checks, numbered 1 
throughj, and each of the checks involve k - 1 other bits. As shown in the figure, let c(i) = [Ci,2 

.. , Ci,k] denote the set of bits involved in the i-th ofthej parity check equations, excluding Cn' 

A cycle is a path through the graph that begins and ends at the same bit node. The length 
of the cycle is the number of edges traversed. Because the graph is bipartite, the minimum 
length of a cycle is four. For example, for the graph shown in Fig. 12-20, the existence of a 
cycle depends on the dotted edge. With the dotted edge in place, the graph contains a single 
cycle of length four. However, if we were to remove the dotted edge, the graph would have no 
cycles. A graph without cycles is called a tree. A cycle-free graph has the following properties: 

• removing any edge creates two separate sub graphs. 

• there is a unique path connecting any pair of bit nodes. 

• As a special case of the above, from the point of view of the bit node cn: Every bit node 
is reachable from Cn through one and only one of the edges incident on Cn' 

• If bit nodes Cj and Ck are reachable from Cn through different edges, then Cj and Ck are 
conditionally independent, when the n-th observation is excluded: Pr[ Cj , Ck I {ri *- n}] = 
Pr[cj I {ri *- n}]Pr[ck I {ri *- n}]· 

Let <I>(c) denote the parity of a set of bits c. Because the j parity constraints of the code ensure 
that Cn = <1>( C(i») for all i = 1 ... j, we can rewrite (12.108) as: 

1 _ 2 +1 Pr[cj>(c(i)=lfori=I ... j Ih;tn}l 
An - 2 rn og . 

o Pr[Ijl(c(i)=Ofori= I ... j I{r;;tn}l 
(12.109) 

If the graph is cycle-free, the vectors c(l)' c(2), ... , c(j) are conditionally independent given 
{ri *- n}, and furthermore, the components of c(i) are themselves conditionally independent 
given {ri*-n}. Hence, (12.109) reduces to: 

j 

2 n Pr[cj>(c(;» = II {r; ;tn} 1 
An = 0 2 r n + log.:..' ;,1 ______ _ 

11 Pr[ljl(c(i) = 0 I h ;tn} 1 
l = 1 

(12.110) 

(12.111) 

where because the bits are conditionally independent, each Acj>(c(;~ satisfies the tanh rule of 
(12.99). In particular, if we introduce 

1 -1 Pr[ci/=II{r;;tn}l Ai,Z- og , , 
Pr[c;,l = 0 I {r; ;tn} 1 

(12.112) 

then substituting (12.99) into (12.111) yields: 
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(12.113) 

With the aid of the Tanner graph of Fig. 12-20, we may interpret (12.111) in terms of 
messages passed from node to node. Suppose the bit node associated with ci,l passes the 
"message" Ai I to the i-th check node. In turn, the i-th check node collects the k - 1 incoming 
messages fro~ the other bits c(i) involved (beside c,J, computes the a posteriori LLR AIjI(C(i» 

for their parity, and passes this "message" to the n-th bit node. Finally, the n-th bit node 
computes An according to (12.111) by summing all of the incoming messages and adding 
(2/cr2)rn· 

The Message-Passing Algorithm 

But how to calculate Ai I? The key result is that Ai I can be calculated recursively, again 
using an equation of the fo~ (12.111), as long as the ~ph is cycle-free. 

Consider the bit node labeled ci,l in Fig. 12-20. Obviously it is dependent on Cn> since both 
take part in the same parity-check equation. However, when conditioned on {ri;tn}, ci,l is 
independent of Cn. Even stronger, when we exclude the n-th observation r no we also exclude 
all of the observations that pass through r n. This means that, for Fig. 12-20, two-thirds of the 
other observations are excluded when r n is excluded. Only the remaining third that are in the 
same subgraph as ci,l are relevant in computing Ai,l. In effect, by excluding r n we are cutting 
the graph on the edges leaving bit-node n, producing j disjoint graphs. Since the resulting 
graphs are disjoint, they can be treated independently, and since they are all cycle-free, we can 
directly apply (12.111) to calculate the a posteriori LLR's. This recursion may then progress 
through the tree, until the leaves of the tree are reached. 

The message-passing algorithm is a decoding technique in which messages are passed 
from node to node through the Tanner graph. The nodes act as independent processors, 
collecting incoming messages and producing outgoing messages. There is no global control 
over the timing or the content of the messages; instead, the bit and check nodes follow a 
common local rule: Send a message as soon as all necessary incoming messages have been 
received. When the graph is cycle-free, the message-passing algorithm is a recursive algorithm 
that always converges to the true a posteriori log-likelihood ratios defined by (12.106) after a 
finite number of messages have been passed. 

However, most (if not all) "good" codes have cycles in their Tanner graphs. With cycles it 
no longer makes sense to have each node wait for all incoming messages before sending a 
message, because those nodes involved in a cycle would end up waiting forever. Instead it is 
common to modify the message-passing algorithm as described below. When applied to codes 
with cycles, this modified version of the message-passing algorithm is no longer an exact, 
recursive solution to the APP decoding problem but is instead an iterative and approximate 
solution. Fortunately, even when the graph has cycles, the message-passing algorithm 
performs remarkably well, and its complexity is extremely low. 
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The iterative message-passing decoder for a binary code with parity-check matrix H can 
be summarized concisely in terms of the index sets !Mn = {m: Hm n = I} and 9{m = {n: 
H m, n = I}, as follows. Let u~,l~ denote an ''upward'' message from ch~ck-node m to bit-node 
n during the l-th iteration, and let A~l) denote an estimate of the n-th a posteriori LLR (12.106) 
after 1 iterations. The message-passing decoder is: 

Initialize -

u~?~ =0, forallmE{I, ... M}andnE9{m; 

• A~O) = ;2 r n' for all n E { 1, ... N} . 

Iterate - for iteration counter 1 = 1, 2, ... lmax: 

• (Check-node update) 
formE{I, ... M}andnE9{m: 

um,n = -2tanh-1 .n tanh -lI.i Um,i ( I) ( ( 1 (1-1) + (1-1) )) 

IE'lI[m- n 2 

• (Bit-node update) 
for n E{I, ... N}: 

A(l)=.!r + ~ U (l) 
n 0 2 n £.J m,n 

mE M. 

(12.l14) 

(12.115) 

In practice the algorithm can stop iterating as soon as all of the parity checks are satisfied. 
This algorithm can be interpreted in terms of passing messages through the Tanner graph. At 
the zero-th iteration, the message passed from the n-th bit node to each of its participating 
check nodes is (2/cr2)rn' The m-th check node collects its incoming messages, and passes as 
an outgoing message the LLR for the parity of the bits involved in the m-th check, excluding 
the recipient. Each bit node receives j messages, and the n-th bit node produces a new estimate 
for An by adding (2/ cr2)r n to the summation of all of the incoming messages, as dictated by 
(12.111). The process then repeats: the check nodes pass their new estimates for {An} to the 
check nodes, excluding the contribution from the recipient, and so on. As illustrated in 
Fig. 12-21, the messages sent across an edge are a simple function of all messages incoming 
on the other edges. 

The message-passing view of the iterative decoder makes it possible to realize a parallel 
implementation based on the Tanner graph, in which each of the M check nodes is a separate 
processor, and each of the N bit nodes is simply a summing node. Such an implementation 
makes feasible the use of LDPC code and iterative decoding at extremely high bit rates [22]. 
The memory requirements would be minimal, although layout of such a decoder would be 
difficult when N is large. At the other extreme is a fully serialized implementation, consisting 
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Fig. 12-21. (a) The message sent by a bit node down a particular edge is simply the sum of all 
messages incoming on the other edges, including the intrinsic information from the channel 
observation. (b) The message Uj sent by a check node up a particular edge is the tanh rule applied to 
the incoming messages on the other edges. 
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of a single check-node processor that computes each of the Mk check-to-bit messages one by 
one. The memory requirements can be significant. A software implementation works 
essentially this way. 

Example 12-36. -------------------------
Simulation results for the message-passing decoder of (12.114) and (12.115) are shown in 
Fig. 12-22, assuming the (3,4) regular LDPC code of (12.94). The code rate is R = 0.35. After 
1000 iterations, the code requires 6 dB to achieve a BER of 10-4. In contrast, an uncoded BPSK 
system requires 8.4 dB to achieve the same BER; hence, this simple length-20 code offers a coding 
gain of 2.4 dB. The performance is far (about 6.4 dB) from the Shannon limit of -0.4 dB for a 
binaty code with rate R = 0.35. The figure shows that 30 iterations is enough to come within 
0.2 dB of a receiver that performs 3000 iterations. 

Example 12-37. -------------------------------------------------------
Even though the Tanner graph for the (7,4) Hamming code has cycles, the message-passing 
decoder is still effective. In Fig. 12-23, we show the BER performance after 7 iterations, and see an 
improvement of more than 1.5 dB when compared to a hard ML decoder. 

12.4.3. Density Evolution 

Analysis of the convergence properties of the message-passing decoder is difficult when 
the block length N is finite, but it simplifies considerably if we allow N to tend towards infinity 
[49][50][16]. Roughly speaking, for a fixed iteration number t, the probability that a randomly 
chosen bit node from a randomly constructed LDPe graph is part of a cycle of length less than 
t tends towards zero as N ~ 00. This fact allows us to ignore cycles as N ~ 00, in which case 
the messages incident on any node will be independent. 
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Fig. 12-22. Simulation results for the (3,4) regular LDPe code of (12.94), with block length 20 and rate 
R = 0.35, decoded using the message-passing algorithm of (12.114) and (12.115). 
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Fig. 12-23. Performance results for the (7,4) Hamming code over an AWGN channel. The message
passing decoder outperforms the hard decoder by more than 1.5 dB after 7 iterations. 
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Density evolution is a technique for tracking the pdf's of the messages in the Tanner graph 
of an LDPC code, under the assumption that N ~ 00. By symmetry of the code, the channel, 
and the decoding algorithm, we may assume without loss of generality that the all-zero 
codeword was transmitted. (To avoid minus signs and thus simplify notation we also assume a 
o ~ 1, 1 ~ -1 bit-to-symbol mapping in this section, in contrast to our prior discussion. 
Therefore, the initial message sent from the n-th bit node for the AWGN channel is: 

A~O) = (2/0"2)(1 + <J.f!,o, 0"2» . (12.116) 

Observe that the variance of A~O) is twice its mean: 

A~O) - 9(m, 2m) , (12.117) 

where m '= (2/0"2). A Gaussian random variable with this property is said to be consistent. 

Although the initial messages are Gaussian, subsequent messages are not. Nevertheless, to 
simplify analysis even further, it is convenient to assume that all messages have a consistent 
Gaussian pdf. In this way, the problem of tracking an infinite-dimensional pdf collapses to one 
of tracking only a single parameter: the mean. In the following we briefly summarize the 
Gaussian approximation to density evolution [23][24][25][26]. We will assume that the LDPC 
code is regular with bit-node degree j and check-node degree k, although the analysis can be 
extended to irregular codes. 

Let u(l) denote a randomly chosen upward (check-to-bit) message after I iterations, as 
calculated by a message-passing decoder using (12.114), and let III denote its mean, 
III = E[u(l)]. Then, according to the tanh rule, this message satisfies: 

u(l) k-I v.U\. 
tanh( 2") = IT tanh ( T)' 

i = 1 

(12.118) 

where VI (l), ... vk _ 1 (l) are the relevant downward (bit-to-check) message after I iterations, 
each with mean ml = E[uP)]. We will assume that both u(l) and u(l) are consistent Gaussian 
random variables, so that u(l) - .9\[(llt, 21lt) and v(l) - .9\[(mt, 2mt). Taking the expectation of 
both sides of(12.118), and exploiting the independence of {uP)}, we have: 

(12.119) 

where we have introduced the function: 

'I1(m) = E[ tanhq .9\[(m, 2m»] . (12.120) 

This function is shown in Fig. 12-24, where it is seen to have behavior similar to tanh(m/2). 
In particular, the function is invertible. 

We now relate ml of (12.119) to Ill- 1. The i-th downward message uP) in (12.118) can be 
expressed as: 

u·(l) = u.<O) + ~j-Iu (l-I) 
! ! L..n == 1 n , (12.121) 
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where vlO) is the initial downward message (which is a consistent Gaussian with mean 2 I cr2), 

and where U1 (1- 1), ... Uj _ 1 (1- 1) are the relevant upward messages impinging on the bit node, 
which are mutually independent, each with mean ~1-1' Thus, averaging (12.121) yields: 

ml=2/cr2+(j-1)~1_1' (12.122) 

Substituting (12.122) into (12.119) yields 

(12.123) 

Inverting 'If( . ) leads to the following recursive relationship for the mean III of a randomly 
chosen upward message after 1 iterations: 

(12.124) 

As dictated by the message-passing decoder, the initial upward message is zero, so that ~o = O. 
With this initialization, (12.124) can be iterated to determine the evolution of~l' The dynamics 
of this recursion are completely determined by three parameters: the bit-node degree i, the 
check-node degree k, and the SNR through 2/cr2. 

Example 12-38_ -------------------------
Let i = 4, k = 6, and suppose we fix the SNR per bit at Ebl No = 1.72 dB. (Recall that 
Ebl No = 1/(2Rcr2), where the rate is R = 1-ilk = 113 in this example.) Then by iterating 
(12.124) we find that the mean ~l approaches a constant of ~l ~ 0.375. In Fig. 12-25, we plot 
(using a dashed line) the pdf of a consistent Gaussian pdf with mean 0.375. We see that there is a 
significant probability that the randomly chosen message will be negative, even after a large 
number of iterations. This implies that the probability of decoding error is nonzero. 

Example 12-39. -----------------------
Continuing the above example, suppose we again fix i = 4 and k = 6, but increase the SNR per bit 
from 1.72 dB to 1.73 dB. By iterating (12.124), we find that this small increase in SNR has a huge 
impact on Ill, causing III ~ 00 as 1 ~ 00. The solid curves in Fig. 12-25 show the pdf of a 
consistent Gaussian random variable with the corresponding mean ~l for iteration 1 E {630, 631, 
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u 

632, 633, 634}. As the mean gets larger, the probability of a negative message diminishes, until an 
infinite mean implies a vanishingly small probability of decoding error. 

For any set of values of j, k, and 0 2, the recursion (12.124) always converges. 
Furthermore, there exists a SNR threshold y such that III ~ 00 as I ~ 00 for all Ebl No> y, 
indicating that the decoding error probability approaches zero, while III converges to a finite 
number for all Ebl No < Y as 1 ~ 00, indicating that the decoding error probability is nonzero. 

Example 1240. --------------------------------------------------
Continuing the previous example, in Fig. 12-26 we plot the mean III as a function of iteration I for 
different values of Ebl No, as found by iterating (12.124) withj = 4 and k = 6. The figure clearly 
illustrates the threshold phenomenon, with a threshold value near y = 1.73 dB. The Shannon limit is 
-0.50 dB for rate-I /3 binary codes. In contrast, the results of Fig. 12-26 suggest that a sufficiently 
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long (4,6) regular LDPC code can achieve vanishingly small error probability at Ebl No = 
1.73 dB. Hence, the gap to capacity is 2.2 dB. This gap can be reduced to negligible levels using 
irregular LDPC codes [16][3]. 

12.5. Turbo Codes 

Although they were invented only a decade ago, turbo codes are already a part of many 
commercial standards, including the digital-video broadcasting return link (DVB-RCS), third
generation wireless standards 3GPP (wideband-CDMA) and 3GPP2 (CMDA 2000), as well as 
deep-space telemetry [22]. The idea behind turbo codes is to construct a powerful error-control 
code out of simple building blocks. Two or more easily decodable codes are concatenated 
either in parallel or in serial, separated by an interleaver that rearranges the bits in a 
pseudorandom fashion. The receiver consists of two or more low-complexity decoders, one for 
each of the component codes, that share information so that together they approximate a joint 
decoder. In Section 12.5.1 we describe parallel-concatenated turbo codes. In Section 12.5.2 we 
describe serially concatenated turbo codes, which include as special cases repeat-accumulate 
codes and turbo equalization. 

12.5.1. Parallel Concatenated Codes 

The original turbo code of Berrou et al. [5] uses a pair of simple-to-decode encoders and 
an interleaver, connecting them in parallel as shown in Fig. 12-27. First, a long block of 
message bits m is encoded using a rate-l 12 recursive systematic convolutional encoder with 
generator G(D) = [1,g2(D)lg1(D)], producing a systematic codeword of the form [m,xd. 
Next, the message bits are rearranged (or shuffled, or permuted) according to a pseudorandom 
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Fig. 12-27. A classical turbo encoder (a) is a parallel concatenation of recursive systematic 
convolutional encoders separated by a pseudorandom interleaver. The turbo decoding algorithm (b) 
iterates between two low-complexity APP decoders with a flow described by a figure eight. 
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interleaver 1t and then encoded a second time using the same generator, yielding a second set 
of parity bits X2' The output codeword is the original message along with the two sets of parity 
bits, c = [m, Xv x2], so that the overall rate is nominally 1/3. Let r = [ro, rl, r2] denote the 
corresponding vector of observations after an AWGN channel. To achieve a code rate higher 
than 1/3 it is common to puncture (discard) a fraction of the parity bits. The component 
encoders are generally identical. The codes need not be systematic but they must be recursive 
for best performance [27]. 

True APP or ML decoding of the turbo code is not feasible because the memory of the 
encoder is governed by the length of the interleaver, which might be thousands or tens of 
thousands of bits. Instead, a turbo decoder approximates the APP decoder by decoding the two 
constituent codes separately but cooperatively, as shown in Fig. 12-27(b). 

First, ignoring r2' the receiver performs APP decoding for the first encoder based on the 
relevant observations ro and rl' The result is a set ofa posteriori LLR's {}"1' ... AK}, one for 
each message bit, given observations ro and rl but not r2: 

(12.125) 

Because the code is systematic, the n-th bit mn is transmitted directly across the channel; let 
ro(n) denote the corresponding observation. Then, according to (12.108), this a posteriori LLR 
decomposes into: 

1 _ 2 (n) + 1 Pr[mn =11{ro(i"n)}, r 1 1 
II.n - - ro og . 

cr2 Pr[mn = 0 I {ro (i" n)}, r11 
(12.126) 

Let us use Ai~~xt to denote the extrinsic LLR, defined as the second term above; it represents 
the contribution to the n-th LLR that was not evident from the systematic observation ro(n) 

alone. In other words, taken as a whole, the set of extrinsic LLR's {Ai~~xt} represents the 
incremental information added by the first set of parity observations, beyond what can be 
learned from observing ro only. 

Next, the extrinsic information about the message bits is isolated by subtracting the 
systematic LLR from the APP decoder output. This extrinsic information is then passed to the 
second APP decoder, which uses it as a priori information for estimating the LLR's based on 
the observations ro and r2, ignoring rl' The resulting LLR's for the unpermuted message can 
be written as the sum: 

~ r (n) + A(n) + A(n) 
cr2 0 1, ext 2. ext ' (12.127) 

which implicitly defines the second-decoder extrinsic LLR A2(n) t as the contribution to the . ex 
second-decoder LLR's from the second set of parity observations, beyond what can be learned 
from the systematic and a priori information. As before, the extrinsic information quantifies 
the difference between the LLR's based on systematic and a priori information only and the 
LLR's based on systematic, a priori, and parity observations. 
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The turbo-decoding algorithm proceeds iteratively: decoder 2 passes its extnnslc 
infonnation to decoder 1, which uses it as a priori infonnation and then passes new extrinsic 
infonnation to decoder 2, and so on. The flow of infonnation follows a figure-eight pattern, as 
illustrated in Fig. 12-27. The algorithm can stop after a predetennined number of iterations, 
typically 10-20, or earlier if the magnitudes ofthe LLR's indicate reliable decisions. The final 
estimates of the LLR's for the message bits can be found by adding the systematic LLR's to 
the two extrinsic LLR's, as shown in the figure. Ifhard decisions are desired, these LLR's can 
be quantized. 

If we are willing to define a new APP decoder block that produces only extrinsic 
infonnation as its output, then the block diagram of Fig. 12-27 simplifies. Specifically, we 
need not explicitly perfonn the subtractions indicated by ilie dashed lines in the figure; they 
can be implicitly moved inside the APP decoder block to define a new extrinsic APP decoder. 
The two shaded regions surrounding each APP decoder define the extrinsic APP decoders. The 
advantage of showing the subtractions explicitly is that the APP block of Fig. 12-27 is 
precisely identical to the BCJR algorithm of Chapter 7. Thus, once the BCJR algorithm of 
Chapter 7 is understood, a turbo decoder is easily implemented by simply connecting two 
BCJR blocks as shown in the figure. 

In pseudocode, the turbo-decoding algorithm can be described succinctly as follows: 

1..0 = ~ ro 

1.. 2, ext = [0, ... 0) 

for i = 1 to 20, 

A 1 ,ext=bcjr(rO' r1' A 2,ext) - 1..0 - A 2,ext 

A 2,ext= 1t-1 (bcjr(1t(ro), r2' 1t(A1 ,ext))) - 1..0 - A 1 ,ext 

end 

m = sign(Ao + 1.. 1 , ext + 1.. 2, ext) 

The first two inputs to ilie function bcjr ( . , . , .) specify ilie channel observations and the 
iliird specifies the a priori infonnation; this function can be implemented as described in 
Section 7.5 with outputs calculated according to (7.77). 

The minimum distance dmin of turbo codes is generally small. This means that there exists 
some low-weight message vectors for which both parity vectors have low weight. However, 
the pseudorandom interleaver has the important benefit that such message vectors are very 
rare. In other words, the number of nearest neighbors with minimum distance dmin is small. 
Therefore, although a small minimum distance implies that some Q( . ) tenns in the union 
bound are large, the interleaver ensures that the corresponding error coefficients are small. In 
fact, the number of nearest neighbors is inversely proportional to the interleaver length 
(message length), a phenomenon known as interleaver gain [28]. Because of this, turbo codes 
are most effective when the block length is long. 

Example 12-41. -------------------------
The original turbo code had a block length of 217 = 131072 bits and came closer to the Shannon 
limit than any practical code had before [5]. The encoder was as shown in Fig. 12-27 with 
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gl (D) = 1 + IJi and g2(D) = 1 + D + n2 + D3 + D4, which implies that each APP decoder has 
16 states. Alternating parity bits were punctured to increase the code rate to 1/2. After 
18 iterations of the iterative turbo-decoding procedure, a bit-error probability of 10-5 was achieved 
at Ebl No = 0.7 dB, only 0.5 dB from the Shannon limit for binary inputs. 

Consider a single rate-lin convolutional encoder with memory ~ and K input bits. To 
terminate the trellis (i.e., force the state to zero at time K + ~) requires that a sequence of ~ 
pad bits be fed into the encoder immediately after the message bits. For nomecursive encoders 
the pad bits are all zero. However, for recursive encoders the pad bits needed to terminate the 
trellis are nonzero and are a deterministic function of the message bits. In the context of a 
parallel-concatenated turbo code there is a complication: it is very unlikely that the same set of 
pad bits will terminate both trellises. Instead, each encoder will require its own set of pad bits. 
This poses no problems to the receiver, which decodes each encoder separately anyway, and so 
expects to see two sets of pad bits, one for each encoder. To ensure that both sets of pad bits 
are transmitted, the first set of pad bits can be appended to the parity bits generated by the first 
encoder, and the second set of pad bits can be appended to the second set of parity bits. Thus, 
the encoder outputs Xl and X2 in the figure are each of length K + 2~, with K + ~ representing 
parity bits and the remaining ~ representing pad bits. The overall rate of the unpunctured 
terminated trellis code is then KI (3K + 4~), which is essentially 1/3 as long as ~«K. 

12.5.2. Serially Concatenated Codes 

Unlike the parallel concatenation of codes described above, serially concatenated codes 
have a long history, dating back to the 1960's [29], and are still used today in many 
applications [30]. The archetypical concatenated code consists of a convolutional inner code 
with low-enough complexity that ML soft decoding using the Viterbi algorithm is feasible and 
practicaL The error rate need only be in the range 10-2 to 10-3 [31]. Then, a high-rate Reed
Solomon code is used as an outer code to push down the error rate to an acceptable level with 
very little redundancy overhead. Since the errors after a Viterbi algorithm tend to cluster in 
bursts defined by error events that span multiple trellis stages, Reed-Solomon codes are an 
ideal choice as an outer code because of their excellent burst-error correcting capabilities. A 
regular symbol-wise interleaver can be inserted between the inner and outer code to spread 
longs error bursts into separate smaller bursts. 

Example 1242. ----------------------------------------------------
Concatenated codes are a mainstay on NASA spacecraft. For several decades the standard coding 
strategy consisted of a (255, 233) 8-bit Reed-Solomon outer code, a row-column interleaver, and a 
rate-I 12, 64-state convolutional code. Minor variations of this code were used on many spacecraft, 
including the Voyager (1977), Galileo (1989), and Cassini (1997) missions [30]. 

Serial-concatenated turbo codes are similar to classical concatenated codes, in that they 
both consist use an outer coder and an inner coder separated by an interleaver. However, there 
are three distinguishing features of a serial-concatenated turbo code. First, the interleaver is 
not regular but pseudorandom; second, the outer code must be easily APP decodable and thus 
is not a Reed-Solomon code; and third, the intent is to decode the concatenation iteratively 
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using a pair of APP decoders. The inner code must be recursive for best performance, while 
the outer code need not be. On the other hand, the outer code should have a large minimum 
distance, preferably an odd minimum distance [32]. 

In Fig. 12-28(a) we show a generic serial-concatenated turbo encoder. In Fig. 12-28(b) we 
illustrate how the turbo-decoding algorithm can be applied to a serial concatenation of codes. 
The turbo decoder iterates between a pair of APP decoders, one for the inner code and another 
for the outer code. Unlike the parallel-concatenated turbo code, however, the information 
exchanged between the two decoders is not LLR's for the message bits, but rather, LLR's for 
the bits after the outer code but before the interleaver, i.e., the bits labeled c in the figure. 

Although the BCJR algorithm of Chapter 7 was originally described so as to compute the 
message-bit LLR's, it is easily modified to compute those for the coded bits instead. 
Specifically, consider a rate-l 12 convolutional code, so that each stage of the trellis represents 
two coded bits. The a posteriori LLR for each one can be calculated following the basic 
approach of adding up a posteriori state transition probabilities, as specified by (7.77). To 
calculate the LLR's for the first coded bit, however, the numerator would sum over the 
transitions for which the first coded bit (not the message bit) is one, and the denominator 
would sum over the remaining transitions. This process would be repeated for the second 
coded bit, so that (7.77) would be calculated twice for each stage of the trellis. 

There are two further subtleties in turbo decoding for serial-concatenation codes. First, the 
outer decoder has no direct access to the channel observations. (In contrast, both APP 
decoders for parallel-concatenated turbo codes had access to the channel observations.) 
Instead, the outer decoder is fed only a priori information. Second, unlike the a priori 
information fed to the APP decoders of a turbo decoder for parallel concatenation, the a priori 
information is regarding the coded bits and not the message bits. Fortunately, in the binary 
case these issues are easily accounted for by creating effective observations {ri} from the a 
priori LLR's {Ai} according to ri = ~ Ai. These effective observations may then be used 
directly in the branch metric calculations of (7.65), along with uniform a priori probabilities 
for the message bits. 

Repeat-Accumulate Codes 

The repeat-accumulate (RA) code is the simplest nontrivial example of a serial
concatenated turbo code [54]. The outer code is a (n, 1) repetition code, the simplest code 
capable of correcting a bit error. It has a low rate but a large minimum distance. The inner code 
is a rate-l recursive convolutional code with generator 1/(1 + D); it is known as an 
accumulator because its output is the modulo-two summation or accumulation of the inputs. 
This is the simplest recursive coder imaginable. The inner and outer code are separated by a 
pseudorandom interleaver. For example, the following is a rate-II 3 RA encoder: 

MESSAGE~ [ 
BITS 

1>--_---1~~CODED 
BITS 
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Fig. 12·28. A serial·concatenated turbo coder (a) consists of an outer code, a pseudorandom 
interleaver, and a recursive inner code. A turbo decoder (b) in this case iterates between a pair of APP 
decoders. 
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Individually, the three pieces of a RA code are themselves poor codes: the repetition code, the 
interleaver, and the accumulator by themselves each have zero coding gain. However, the RA 
code as a whole has remarkably good performance. 

In principle one could decode an RA code using the generic structure of Fig. l2-28(b), for 
which the outer APP decoder would be trivial while the inner APP decoder would be based on 
a two-state BCJR algorithm. However, complexity can be significantly reduced by using a 
message-passing decoder instead. Consider for a moment a systematic RA code in which the 
original message bits are transmitted in addition to the accumulator output. Such a code is 
clearly linear, since the concatenation of linear codes is always linear, and the interleaver does 
not change this. Therefore, it can be represented by a parity-check matrix H, or equivalently 
by a Tanner graph. 

Example 12-43. The Tanner graph for a systematic version of an RA code with a (3, 1) repetition 
outer code is sketched in Fig. 12·29 for the case of only two message bits. Unlike the Tanner graphs 
of Section 12.4, we have moved the bit nodes for the message bits down below the check nodes, to 
help distinguish them from the bit nodes for the parity bits at top. This graph is easily justified. The 
accumulator forces each output to be the modulo·two sum of the previous output and the input. 
Each of the check nodes enforce this constraint. The first (leftmost) check node constrains the first 
parity bit to be equal to the first interleaved bit, which happens to also be the first message bit in this 
example. Each succeeding check node constrains the parity bit to be equal to the modulo-two sum 

PARITY·BIT NODES 

CHECK NODES 

INTERLEAVER { 
MESSAGE·BIT NODES 

Fig. 12-29. The Tanner graph for a systematic RA code that results from the cascade of a (3,1) 
repetition code, an interleaver 1t = [1 4 6 2 3 5], and an accumulator, for the special case of two message 
bits. 
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of the previous parity bit and the corresponding accumulator input. The interleaver defines the 
connections between the message bit nodes and the check nodes. Observe that this graph is not 
regular: neglecting end effects, the message bit nodes have degree three, the parity bit nodes have 
degree two, and the check nodes have degree three. 

Once the RA code is represented by a graph, the message-passing decoder of Section 12.4 
is immediately applicable. To accommodate a nonsystematic RA code for which the systematic bits are 
not transmitted, we need only set the corresponding channel observations to zero. In other words, we 
can view the RA code as a punctured version of a systematic RA code. The Tanner graph and decoding 
algorithm would not change, except that the channel observations for the punctured bits would be zero. 

An important advantage of the RA code over randomly generated LDPC codes is the low 
complexity ofthe encoder. Despite their conceptual simplicity and the ease with which they can be both 
encoded and decoded, RA codes perform surprisingly well. 

Example 12-44. When decoded in the traditional manner, the Galileo concatenated code 
consisting ofa rate-ll 4 convolutional inner code with 214 states and a (255, 223) 8-bit outer Reed
Solomon code can achieve a bit-error probability of 10-5 at Ebl No = 0.8 dB. According to 
McEliece, a rate-l 14 RA code with message length 4096 can achieve the same bit-error probability 
at the same Ebl No, but using message passing the decoding complexity is 100 times smaller [33]. 

An irregular repeat-accumulate (IRA) coder has the same basic structure as the RA coder, 
but instead of repeating all K message bits an equal number of times, each of the first block of 
f2K bits is repeated two times, each of the next block of f3K bits is repeated three times, etc., 
where fq denotes the fraction of bits repeated q times. The check nodes for the graph shown in 
Example 12-59 have total degree three but lower degree one. A further generalization is to 
increase the check-node lower degree to a ~ 1. The Tanner graph for a generic IRA graph is 
thus illustrated in Fig. 12-30. 

CHECK·NODE { 
LOWER DEGREE a 2; 1 

h K NODES f3K NODES 
REPEAT 2 REPEAT 3 

fqK NODES 
REPEATq 

Fig. 12-30. The Tanner graph for an irregular repeat-accumulate code [34). 
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MESSAGE·BIT NODES 
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The code parameters {a, fi} can be optimized using density evolution so as to minimize 
the SNR threshold [34]. The resulting codes have similar performance to comparable irregular 
LDPC codes, outperforming turbo codes. In fact, from the Tanner graph we see that a 
systematic IRA code is a special case of an irregular LDPC code. However, IRA codes have 
the important advantage that their encoder can be implemented with low complexity. 
Specifically, for large block lengths N, the encoder complexity grows only linearly with N. 

Example 12-45. A systematic IRA encoder is easy to implement in software as well as hardware. 
Using MATLAB, for example, one can encode a binary message vector msg with only a single line: 

c = [msg, rem(cumsum(sum(msg(Pi))), 2)]; (12.128) 

where Pi is a matrix of integers representing both the repetitions and the permutation, with the 
integers 1 through fzK appearing twice, integers fzK + 1 through (f2 + f3)K appearing three times, 
etc. The placement ofthese integers within the matrix would be random. 

Turbo Equalization 

The concept of turbo decoding for serial-concatenated codes extends beyond the realm of 
just error-control coding. For example, consider the scenario in which a sequence of symbol 
are encoded by a classical (non-concatenated) error-control encoder, perhaps a simple 
convolutional encoder, interleaved to disperse the impact of nonstationary noise, and then 
transmitted across a channel that introduces lSI. A traditional receiver would first mitigate the 
lSI using an equalizer, ignoring the presence of the error-control code, and then perform 
decoding based on the equalizer outputs, ignoring the presence of the lSI. 

Without interleaving, one might consider the possibility of performing the tasks of 
equalization and error-control decoding jointly, since the cascade of the error-control coder 
and the lSI channel may be viewed as a single finite-state machine, with a number of states 
equal to the product of the number of states of the encoder and the number of states of the lSI 
channel (assuming binary modulation). However, the interleaver would cause the number of 
states to grow exponentially with the length of the interleaver, making a joint equalizer and 
decoder impractical. 

Fortunately, a simple change of view suggests a low-complexity alternative: by viewing 
the lSI channel as an inner "coder", the principles of turbo decoding for serial-concatenated 
codes can be applied directly to this scenario. The result is turbo equalization: an iterative 
method for approximating the joint equalizer and decoder that follows the turbo principle [53]. 
The block diagram of a turbo equalizer is identical to the serial turbo decoder of Fig. 12-28, 
except that the inner APP "decoder" is now the APP equalizer based on the BCJR algorithm 
(Section 7.5). 
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12.6. Historical Notes and Further Reading 

In 1948, Shannon started the field of coding theory by demonstrating that through coding 
it is theoretically possible to achieve error-free transmission on noisy communication channels 
(Chapter 4). His results did not bound decoding complexity and delay, but nevertheless 
suggested that improvements in error probability could be achieved using practical codes. The 
first block codes, introduced in 1950 by Hamming, were capable of correcting single errors in 
hard-decoding system, but fell disappointingly short of the capacity predicted by Shannon. 
The next major advance emerged only after another 10 years, with the BCH codes in 1959 and 
the closely-related Reed-Solomon codes in 1960. The strong algebraic properties of these 
codes led to efforts to find efficient coding and decoding algorithms. Convolutional codes 
appeared in 1957. Initially, they lacked the algebraic properties relating to distance in block 
codes, but this shortcoming has been partially remedied. During the 1970s, these avenues of 
research continued, but the next major breakthrough did not occur until 1982 with the 
description of trellis codes (Chapter 13). The introduction of turbo codes in 1993 dramatically 
changed the way coding is looked at today. 

A classic coding theory book, concentrating on block codes with algebraic (hard) 
decoding, is that of Berlekamp [35], who will convince any reader of the beauty of the subject. 
More recent comprehensive texts are Blahut [36] and Wicker [37]. A standard textbook that is 
still used, 35 years after its publication, is Gallager [6], which includes an extensive discussion 
of the performance of various block codes. A comprehensive treatment of block codes is 
MacWilliams and Sloane [38]. A particularly useful paper on convolutional codes is Massey 
[39]. McEliece [40] gives a very readable treatment of both information theory and coding. 
The chapter on convolutional codes is an excellent introduction to the subject. More detailed 
information about convolutional codes can be obtained from Forney [41], where equivalent 
realizations of codes are discussed. The second edition of a classic book by Peterson, written 
with Weldon, discusses efficient encoding and decoding of cyclic codes [13]. A more 
advanced text with a comprehensive treatment of convolutional codes is Viterbi and Omura 
[42]. Wilson gives a readable explanation of the interaction between coding and modulation 
[43]. Tables of good convolutional codes can be found in [44][45]. 
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In order to treat linear codes in a general way, it is helpful to review some definitions from 
algebra. Linear codes turn out to be important enough to justify this digression. 

A ring R is a set with two operations defined; we will call these operations addition and 
multiplication although they may bear little resemblance to ordinary addition and 
multiplication. To emphasize that they may be different, we denote addition by 9) and 
multiplication by " . " . 

The most important feature of the addition operation is that adding any two operands in R 
produces a result in R. 

Example 12-46. -------------------------
The set of real nwnbers 9t is a ring, and addition is ordinary. The swn of any two real numbers is a 
real nwnber. The set of binary digits Z2 = {O,l} is a ring, where addition is modulo-two. 

As with ordinary addition, e must be associative 

(12.l29) 

and commutative 

(12.130) 

Furthermore, the ring must have an additive identity, denoted "0", such that reo = r for any r 
in R. Finally, every element r must have an additive inverse which when added to r produces 
the zero element. 

Example 1247. -------------------------
The additive identity in 9t is zero, and the additive inverse of any r E 9t is -r. The additive identity 
in Z2 is zero, and the additive inverse of Z E Z2 is z itself. 

The multiplication operation ". " is similarly defined to operate on two elements in the 
ring to produce an element in the ring. Like ordinary multiplication it must be associative, but 
need not be commutative. It must however be distributive over addition, 

(12.l31) 

To summarize, a ring has (1) closure under e and"· ", (2) associativity for e and"· ", (3) 
distributivity of"·" over e (12.131), (4) commutativity of e, (5) an additive identity 0, and 
(6) an additive inverse -r. 

Exercise 12-9. 
Show from the above properties that r . 0 = 0 for all r E R. 

Afield is a ring where 

• There is a multiplicative identity in the ring, denoted 1, such that r . I = r, 
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• Multiplication is commutative (r1 . r2 = r2 . r1), and 

• There is a multiplicative inverse l/r ER for every element of the field except the 
additive identity O. The multiplicative inverse satisfies r· (1/r) = l. 

Example 12-48. 
Both 9t and Z2 from Example 12-46 are fields, but the set of positive integers Zoo is not because 
there is not a multiplicative inverse for all elements of the field. The set of all integers (positive and 
negative) is also not a field, but unlike Zoo it is a ring. 

A field with a finite number of elements is called a finite field, or a Galois field. It turns out that 
all finite fields have pm elements, where p is a prime number and m is any integer. 

Example 12-49. ------------------------
There is no field with six elements, but there is a field with three elements. Let Z3 = {a, 1, 2}, EEl 
be modulo three addition, and" . "be modulo three multiplication. It is easy to verify that all of the 
above properties of fields apply, with the possible exception of the multiplicative inverse. We can 
verify that the multiplicative inverse exists for all elements from the following table: 

element inverse 

o none 
1 1 
2 2 

Exercise 12-10. 
Verify that Z5 = {a, 1, 2, 3, 4} is a field with addition and multiplication modulo 5. List the 
multiplicative inverses. 

For both Z3 and Z5, the number of elements is prime. If the number of elements is not prime, 
but is q = pm for m > 1 and p prime, then multiplication in the field is more complicated than 
simple modulo-q multiplication. 

Exercise 12-11. 
Verify that multiplication in the field Z4 = {a, 1, 2, 3} is not simple modulo-four multiplication. 
Construct a multiplication table that satisfies the requirements for multiplication in a field. 

Fortunately, in this book we are primarily interested in Z2, so we need not get distracted by 
these complications. Suffice it to say that it is possible to define addition and multiplication so 
that GF(q) is a field for any q = pm, p prime. 

All finite fields with q elements are equivalent and are denoted GF(q). Hence any two
element field is equivalent to Z2, or GF(2). 

A vector space Vn(GF(q» over the field GF(q) is a set of n-tuples of elements from the 
field. These are much like the vector spaces of Section 2.6, the only difference being that they 
are defined over Galois fields rather than the fields of real or complex numbers. Addition (EEl) 
of two vectors is defined element-wise, and must produce a vector in the vector space (in other 
words the vector space is closed under vector addition). Vector addition is commutative and 
associative, and there is an additive identity (the zero vector) and an additive inverse (the 
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negative of a vector). A vector can be multiplied element-wise by a scalar in the field, and the 
vector space is closed under scalar multiplication. Scalar multiplication is associative and 
distributive, from the properties of multiplication in the field. 

Using these definitions, we first study the linear block codes, and then turn to 
convolutional codes. 

Block Codes 

An (n, k) block code is a set of 2k vectors of length n in Vn(GF(2». The Hamming 
distance dfficl c0 between Cl and C2 in Vn(GF(2» is the number of differing bits between Cl 

and C2' The Hamming weight wffic) of c in Vn(GF(2» is the number of ones in c. Clearly 

dfficl> c0 = Wfficl $ c0 (12.132) 

because Cl $ C2 has a component equal to one only in positions where Cl and C2 differ. To 
determine the performance of a code we are interested in finding 

which from (12.132) is 

dH,min = min dfficl' c0 , 
Cl. c2 EC 

Cl ""C2 

dH,min = min wffiCl $ c0 
Cl' C2 EC 

Cl ""C2 

(12.133) 

(12.134) 

To find this minimum distance it appears that we have to search over all pairs of codewords Cl 

and C2' Fortunately for linear codes this is not necessary. 

An (n, k) linear block code C is a k-dimensional subspace of Vn(GF(2». By subspace we 
mean that Citse1f is a vector space, and hence is closed under vector addition. I.e., if Cl and C2 

are in C, then Cl $ C2 E C. Hence (12.134) becomes 

dHmin = min wffic) . 
, CE C 

(12.135) 

c*o 

To find the minimum Hamming distance in a linear code we need only find the minimum 
Hamming weight in the linear code. Equivalently, set Cl = 0 and let C2 vary over all codewords 
in (12.134). In other words, when trying to find the probability of the most likely decoding 
error, assume that the zero vector is transmitted and then consider the probability of decoding 
to a non-zero codeword. 

A basis of a vector space is a set of vectors such that every element in the vector space can 
be expressed as a linear combination of the vectors in the basis. Since the vector space is 
closed under scalar multiplication and vector addition, every linear combination of basis 
vectors must be in the vector space. We can use this fact to show that every linear block code 
can be generated using a generator matrix as shown in (12.7). Simply let the rows of the 
generator matrix G be a set of basis vectors for the code. Then any codeword may be written 
mG, where m is a binary vector of length k. It can also be shown that any linear block code 
has a systematic generator matrix (simply permute the columns of G). 
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Associated with any (n, k) linear code C is a dual code C..l.. The dual code is an (n, n - k) 
linear code consisting of the set of vectors orthogonal to all vectors in C (The vector x is 
orthogonal to c if xcT = 0, where cT is the transpose of c.) If G is the generator matrix and H is 
a parity-check matrix for C, then H is a generator matrix for C..l., and G is a parity-check 
matrix. 

Exercise 12-12. 
Show that the rows of H are orthogonal to all codewords in C Then show that G is a parity-check 
matrix for the code generated by H. 

Convolutional Codes 

To study the linearity of convolutional codes we use the definition from (12.60), 
reproduced here, 

c(D) = m(D)G(D) , (12.136) 

where m(D) is a k-tuple of polynomials in D, c(D) is an n-tuple of polynomials in D, and G(D) 
is a k x n matrix of polynomials in D. Each polynomial has coefficients in GF(2). 

Exercise 12-13. 
Let FD be the set of polynomials in D with coefficients in GF(2). Verify that FD is a ring. 

If we augment F D to include rational polynomials in D, then it is a field as well. Define a 
vector space Vn(FD) of n-tuples of polynomials in FD. The codewords c(D) are in Vn(FD)' 
Furthermore, from (12.136), c(D) is formed by linear combinations of the rows ofG(D). The 
rows of G(D), which are also in Vn(FD), form a basis for the code. The code is therefore a 
subspace and hence linear. 

To find dHmin for the code, define the Hamming distance dH<c}(D), c2(D» between two 
codewords to be the total number of differing coefficients in the polynomials Cl (D) and c2(D). 
The Hamming weight wH<c(D» of c(D) is the total number of non-zero coefficients in c(D). 
Then just as with block codes, 

(12.137) 

Since the code is linear, c} (D) EB c2(D) is a codeword and 

dHmin = min wH<c(D». 
, C(D)EC 

(12.138) 

c(D)*O 

We conclude that linear convolutional codes behave like linear block codes in that the 
minimum Hamming distance is the minimum Hamming weight. Put another way, we can 
safely assume the transmitted sequence is all zero and find the probability of the code 
sequence that is closest in Hamming distance to the zero sequence. 

Linearity in Signal Space 

From the above results we can find the minimum Hamming distance for linear block and 
convolutional codes with relative ease. The performance of hard decoders is determined 
primarily by this distance. However, the performance of soft decoders and signal space codes 
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(e.g. trellis codes, covered in Chapter 13) is determined by the minimum Euclidean distance 
between coded symbol sequences, rather than Hamming distance between bit sequences. 
Often, when considering symbol sequences, linearity does not apply, so we cannot safely 
assume that the zero codeword is transmitted and find the minimum distance from it. An 
important exception is when the symbol alphabet is binary, meaning that the alphabet has only 
two symbols. Assume the codeword Ci (a binary vector) with corresponding symbols ai is 
transmitted. Assume binary signaling, with symbols selected from the set YI. = {a, b}. The 
Euclidean distance between ai and aj is 

dEf..ai,a) = la-bIJdH(Ci,Cj) (12.139) 

where dH<ci' c) is the Hamming distance. 

Example 12-50. ------------------------
Two codewords of a (3,2) simple parity-check code are cl = [1,0, 1] and c2 = [1, 1,0]. Then 
dH<cv c2) = 2. Ifbinary antipodal signaling with YI.= {±1} is used, then al = [1, -1,1] and a2 
= [1,1, -1]. The Euclidean distance is dEf..av a0 =2./2, in agreement with (12.139). 

Hence the minimum Euclidean distance between a transmitted sequence ai and any other 
sequence aj is 

dE, min = la- b I JdH,min (12.140) 

From the above arguments, if the code is linear, dH,min can be found by assuming the zero 
codeword is being transmitted and finding the Hamming distance of all other codewords from 
the zero codeword. 

When the signaling is not binary, things are not so simple. It is still not necessary to 
consider all possible pairs of codewords, however, in order to find the minimum Euclidean 
distance between pairs of codewords. Some straightforward simplifications are possible. 
Again, let ai and aj be two blocks of symbols corresponding to two codewords. Then 

dEf..ai, a) = wEf..e) , (12.141) 

where wEf..e) is the Euclidean weight of the vector e = ai - aj (the square root of the sum of the 
squares of the elements). Now to find dE, min' observe 

dE, min = min wEf..e) . 
eE 0" 

It is important to note, however, that ~ is not the set of permitted symbol sequences. 

(12.142) 

Example 12-51. ------------------------
Continuing the previous example, note that 

WEf..al -a0 = wEf..[O, -2,+2]) = 2./2, (12.143) 

in agreement with previous results. The vector e = [0, -2, 2] does not consist of symbols. 
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The set Q e is generally significantly smaller than the set of all possible pairs of codewords, so 
the search space for dE min is reduced. This is essentially the same technique used in 
Section 7.6.2 in the dete~ination of the minimum distance oflSI sequences. The complexity 
can be reduced further by observing that wE< e) = wE<I e I) and searching over Q 1 e I' 

Example 12-52. 
Continuing Example 12-51, Q 1 e 1 is 

Q 1 e 1 = {[O, 2, 2], [2, 0, 2], [2, 2, OJ} , (12.144) 

so again dE min = 2./2. A similar reduction of the search space is used in Section 7.6.2 to find the 
minimum distance between transmitted signals in an lSI channel. 

Appendix 12-8. 
Maximal-Length Feedback Shift Registers 

Pseudorandom sequences are generated by a feedback shift register as pictured in 
Fig. 12-32. This device is governed by the relation 

(12.145) 

where the summation is modulo-two, the output Xk is binary assuming the values "0" and "1", 
and similarly the coefficients of the shift register are binary. The zero coefficients correspond 
to no feedback tap, whereas the one coefficients correspond to the direct connection of the 
shift register output to the modulo-two summation. 

In this appendix we will consider the properties of a periodic sequence generated by the 
shift register circuit of Fig. 12-32 with generator polynomial h(D). While a full treatment of 
this problem requires some sophisticated mathematics, we can understand most of the 
properties of this generator using only elementary concepts. We will limit ourselves here to 
generator polynomials having binary coefficients, and all arithmetic will be modulo-two. 

Fig. 12-31. A linear feedback shift register with binary input. The coefficients are binary, and the 
summation is modulo-two. 
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Example 12-53. ------------------------
As an illustration of polynomial arithmetic over GF(2), multiplying the polynomials (1 $ D) and 
(l$D$n2), 

(1 $D)(l $D$n2) = 1 $D$D$n2$n2$IY = 1 $D3. (12.146) 

We have used the fact that, for example, 

D$D =(1 $l)D =0· D =0 (12.147) 

We know that n-th order polynomials with real-valued coefficients always have n roots, 
but only if we allow those roots to be complex-valued. In general a polynomial with real 
coefficients cannot always be factored into a product of lower-order polynomials with real 
coefficients (for example )(2 + 1). Similarly, a GF(2) polynomial cannot always be factored 
into two or more polynomials with GF(2) coefficients. 

Example 12-54. ------------------------
Continuing Example 12-53, the polynomial (1 $ D $ n2) cannot be factored into the product of 
two first order polynomials over GF(2). In fact, the only first-order polynomials over GF(2) are D 
and (1 $ D), and the reader can readily verify that they cannot be factors of (1 Ef) D $ n2). 

A polynomial that has no factors other than itself and 1 is called an irreducible polynomial 
over GF(2). In the sequel we will assume that the generator polynomial h(D) is irreducible. 

Returning to the feedback shift-register, the state (xk _ 1, ... , Xk -,J can assume at most 2n 

distinct values. From this fact, and other properties of the register, we can discern the 
following properties: 

o If the state of the shift-register is all-zero (00 ... 0) at any time, then it must always be 
all-zero. Thus, we must ensure that this state is never visited unless we are satisfied with 
a complicated circuit that just generates all-zeros at the output. 

o If the state ever stays the same from one time increment to the next, then it will forever 
be the same. Thus, if the output is to be interesting (anything but all-zeros or all-ones), 
then we must ensure that the state always changes upon every time increment. 

o The sequence of states must be periodic. Since there are only 2n distinct states, the 
sequence of states must always return to an initial state, after which the sequence of 
states repeats. Since the output xk is a function of the state, it must also be periodic. 

Fig. 12-32. A linear feedback shift register with binary input. The coefficients are binary, and the 
summation is modulo-two. 
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• Combining the first three, the maximum period of the states and outputs must be (2n -
1) time increments. This maximum period would correspond to a periodic sequence of 

states which change at every time increment and which cycle through every state except 
the all-zero state. 

A feedback shift-register is called maximal-length if the period of the output is r = 2n-l. 

Example 12-55. ------------------------
Consider a shift-register base on the polynomial h(D) = 1 (B D (B]]2. From Example 12-54 this 
generator polynomial is irreducible. We can verify that the shift register is maximal-length, that is 
has period 22 - 1 = 3. Starting with state (0,1), the following table specifies the state and output vs. 
time for four cycles: 

1 
1 
o 
1 

o 
1 
1 
o 

1 
o 
1 
1 

Note that the state has returned to its initial value at the fourth time increment, and therefore the 
shift-register will continue with the same sequence of states. Also note that if we initialized the 
state with any of the other two values, the same sequence of states would result, but we would just 
start at a different point in the sequence. 

We could easily envision that the period of a shift-register sequence could be less than 
2n - 1 in length. 

Exercise 12-14. 
Show that the shift-register sequence corresponding to polynomial h(D) = 1 (B]]2 has period one 
or two depending on the initial state. 

We would like to have some criterion to establish when a generator polynomial corresponds to 
a maximal-length shift-register sequence. When an irreducible polynomial h(D) of degree n 
does not divide any polynomial (1 (B Dm) for m< 2n - 1, it is said to be primitive. A shift
register sequence is maximal-length if and only if the genera,tor polynomial is primitive [55]. 

Example 12-56. --------------------------------------------------
We can verify that the generator polynomial of Example 12-55, h(D) = 1 (B D (B ]]2, is primitive. 
This is because it obviously does not divide (1 (B ]]2), while it does divide (1 (B D3) since 

(12.148) 

from Example 12-53. 

Fortunately, there exist primitive polynomials of all orders. The polynomials with minimum 
weight, that is with the minimum number of shift-register taps, of all orders up to n = 34 are 
listed in Table 12-1. 

Example 12-57. -------------------------
A maximal-length shift-register of order 12 can be found from Table 12-1. The octal entry is 
"10123," which corresponds to binary "1000001010011" and hence polynomial 
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h(D) = 1 $D$U$D6 $D12 . (12.149) 

Hence the shift-register is characterized by difference equation 

(12.150) 

An interesting property of maximal-length sequences is that if we look at n-bit segments 
of the sequence, we will see all possible n-bit words, with the exception of the all-zero word. 
This follows from the fact that the state of the shift-register passes through all possibilities 
except all-zeros, and the state is equal to the past n bits of the output. The maximal-length 
sequence therefore satisfies a minimal condition for "randomness," since we would expect to 
see all combinations of bits (except the all-zero) in such a sequence. 

The output of a maximal-length shift register is often called a pseudorandom sequence. 
This is because, even though the sequence is deterministic and periodic, it displays many of 
the properties of a random sequence (analogous for example to a numerical algorithm for 
random number generation). We can see these properties reflected in the relative frequency 
and in the autocorrelationfonction. 

The relative frequency of observing particular sequences of i bits in a maximal-length 
sequence is close to the probability of observing the i bits in an i.i.d. random sequence as long 
as i ~n, since all possible sequences of n bits occur once in one period of 2n -1 bits, with the 
exception of the all-zero sequence. 

Table 12-1. Minimal weight primitive polynomials of orders two through 34 [551. Each entry in the table is 
an octal number, which when converted to binary specifies the coefficients of the polynomial h(D). The 
most significant (left-most) bit is h,. = 1 and the least significant (right-most) bit is ho = 1. 

Order Polynomial Order Polynomial 

2 7 -19- 2000047 
3 13 20 4000011 
4 23 21 10000005 
5 45 22 20000003 
6 103 23 40000041 
7 211 24 100000207 
8 435 25 200000011 
9 1021 26 400000107 
10 2011 27 1000000047 
II 4005 28 2000000011 
12 10123 29 4000000005 
13 20033 30 10040000007 
14 42103 31 20000000011 
15 100003 32 40020000007 
16 210013 33 100000020001 
17 400011 34 20\ 000000007 
18 1000201 
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Exercise 12-15. 
Show that the relative frequency of any particular sequence of i ~ n bits in the maximal-length 
sequence is 

(12.151) 

for the case where the i bits do not constitute the all-zero sequence, and for the all-zero sequence of 
i bits 

2n-i_l . ___ ::::; 2-1 • 

2n-l 
(12.152) 

The approximations apply to large n, and hence for this case the sequence looks random on a 
relative frequency basis as long as we don't observe blocks of bits greater than n. 

The autocorrelation function can be determined using the cycle-and-add property of the 
maximal-length sequence [56]. This property says that if we modulo-two add the maximal
length sequence to itself, where one of the sequences has been shifted in time, we get another 
version of the same sequence shifted in time, 

(12.153) 

for 1 E {O, 1, ... , r - I}, where j depends on l. Of course, when 1 = 0 the sum is the all-zero 
sequence (this is a degenerate case of a maximal-length sequence). The cyc1e-and-add 
property follows from the fact that if h(D)X(D) = 0, then obviously (1 Ejj D1)h(D)X(D) = 0, and 
therefore (1 Ejj D1)X(D) must also have generator polynomial h(D). Many interesting properties 
can be derived from (12.153). 

Example 12-58. ----------------------------------------------------
Since xk Ejj xk + 1 = 0 if and only if xk = xk + Z, it follows that xk = xk + 1 for precisely (r - 1) /2 
values of k within one period k E {O, 1, ... , r - I}, and xk "* Xk + 1 for precisely (r + 1)/2 values 
of k. Again, r = 2n - 1 is the length of the sequence. 

In terms of the autocorrelation, we are usually interested in the autocorrelation of a binary 
antipodal sequence Sk obtained by mapping Xk = 0 into Sk = -1 and Xk = 1 into Sk = + 1. We will 
call this new sequence the binary antipodal maximal-length sequence. The autocorrelation 
function of this sequence is defined as 

(12.154) 

This is a time-average autocorrelation function averaged over one period of the sequence. Of 
course it is a periodic function of 1, and hence we need only be concerned with the value for 
1 E {O, 1, ... , r - I}. Similarly, we can define a time-average mean value of the sequence as 

l~r-l 
Ils = ,L.Jk = aSk' (12.155) 
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Exercise 12-16. 
Using the relative frequency property, show that 

(12.156) 

which approaches zero as n (and hence r) gets large. 

Exercise 12-17. 
Use the cyc1e-and-add property to show that the autocorrelation function is given by 

Rs(l) = { 1, 
-1/r, 

l;/:O 

Ie {I, 2, ... , r-l} 
(12.157) 

Hence, when r is large, the time-average autocorrelation function approaches zero except at 
multiples of the period. Except for the periodicity, this approaches the autocorrelation of a white 
sequence, and hence is another indication of the pseudo-random property. 

Using this time-average autocorrelation, we can infer another important property of the binary 
antipodal maximal-length sequence; namely, its harmonic structure. Since this sequence is 
periodic, we can expand it using a DFT, 

_ 1 ~r-l S j21tmklr 
sk - ,.L.Jm = 0 me , 

where 

s = ~r-l S e-j21tmklr 
m L.Jk = 0 k , me{O,l, ... ,r-l} . 

We can easily relate the harmonics of the sequence to the autocorrelation function. 

Exercise 12-18. 

(a) Show that 

~r-l S e -j21tmklr = ej21tmklr~r-l S e -j21tmklr. 
L.Jk = 0 k+l L.Jk = 0 k 

(b) Show that 

~ ISmI2=L;:~Rs(l)e-j21tmklr. 

(c) Evaluate this DFT to show that 

m=O 

me {I, 2, ... , r-l} 

(12.158) 

(12.159) 

(12.160) 

(12.161) 

(12.162) 

Hence, the harmonics of the sequence are all equal to one another in magnitude, except for the 
d.c. component, which is relatively small. This resembles the power spectrum of a white 
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sequence, and this property makes these sequences desirable as spreading sequences in spread 
spectrum (Section 6.4.3). 

Appendix 12-C. 
Path Enumerators 

To estimate the perfonnance of convolutional codes we need to find the most probable 
error event. For simple examples it can be found by inspection, but this method is seriously 
prone to error. In Section 7.6.2 we described a general technique that requires assuming an 
actual state trajectory and then using the Viterbi algorithm to find the minimum-distance error 
event for that state trajectory. In general, all possible actual state trajectories must be 
considered. In Section 7.6.2 we showed that this is not necessary for lSI examples, because we 
can exploit the linearity of the signal generation model. Fortunately, it is also not necessary for 
linear codes, which turn out to be even simpler than the lSI case. As shown in Appendix 12-A, 
for linear codes it is sufficient to consider only one actual path through the trellis. Hence, we 
can use the Viterbi algorithm to find the minimum-distance error event for any assumed actual 
path through the trellis, as detailed in Section 7.6.2, and the distance will be the global 
minimum distance. As indicated in the Appendix 12-A, this will work for linear codes using a 
hard decoder, or a soft decoder with binary antipodal signaling. In this appendix, we give an 
alternative technique using signal flow graphs (as in Section 3.3). Although this is not 
necessarily simpler than using the Viterbi algorithm, the technique can be used to 
simultaneously compute essentially all the infonnation about the error events, such as their 
length, the number of bit errors in each one, and the number of error events at each distance. It 
gives much more infonnation than just the minimum distance. 

The general technique requires an assumption that the correct state trajectory remains in 
the zero state. This is why the technique is restricted to linear codes! An error event is 
therefore a path that leaves the zero state and later returns. We can enumerate all such paths, as 
shown in the following example. 

Example 12-59. ------------------------
Consider the convolutional coder in Fig. 12-38 (this coder is studied in Problem 12-10). The state 
transition diagram is shown in Fig. 12-33. The branches in the diagram are labeled with the variable 
z raised to a power equal to the Hamming distance of that branch from the zero branch. For 

Fig. 12-33. The state transition diagram for the convolutional coder in Problem 12-10. 
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instance, the label zO = 1 follows from the fact that this branch is the zero branch, and hence its 
distance is zero. We are interested in the distance of all paths from the zero state back to the zero 
state. To find it, break the zero state into two states as shown in Fig. 12-34. Ifwe view this graph as 
a signal flow graph, then the gain from the 01 state to the 02 state is a polynomial in z that 
enwnerates the weights of all possible paths from the zero state back to itself. By inspection that 
polynomial is 

(12.163) 

It is easy to see that error event with the minimum Hamming distance has Hamming distance 3, the 
error event with the second smallest Hamming distance has distance 4, etc. The polynomial T(z) is 
called a path-enumerator polynomial. It can be expressed more compactly as 

Z3 
T(z) = -. 

l-z 
(12.164) 

It can be readily verified that this is the same as (12.163) by carrying out the long division. The 
same technique can be used to enumerate the Euclidean distances of error events in order to 
determine the performance of a soft decoder as long as the alphabet is binary (see Problem 12-16). 

The convolutional coder considered above does not have nearly as much coding gain as 
others of comparable complexity that we have considered. Unfortunately, for most useful 
linear codes, constructing the path enumerator polynomial by inspection can be difficult. 
Fortunately, a computer program or well-documented techniques from the literature can be 
used (for example, Mason's gain formula [46][47][48] is useful). 

Example 12-60. ----------------------------------------------------
The convolutional coder state transition diagram of Fig. 12-13 is modified as shown in Fig. 12-35. 
The branch weights are again the variable z raised to the power of the Hamming distance of the 
branch from the zero branch. It is possible to show that 

By long division 

Z5 
T(z) = 1-2z . (12.165) 

Fig. 12-34. To enumerate the paths from the zero state back to itself, break the zero state in two as 
shown. The weights on the arcs are a variable z raised to the power of the Hamming distance from the 
zero path. 
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Fig. 12-35. The state transition diagram of Fig. 12-13 is modified for the purpose of enumerating the 
paths from the [0, 0] state back to itself. The branch weights are equal to z raised to the Hamming 
weight of the branch. 

(12.166) 

This says that there is one error event with Hamming distance 5 (which we knew already), two 
error events with Hamming distance 6, four with distance 7, etc. 

The path enumerator technique can be used to obtain a variety of information about a code 
in addition to the distances of the error events. The extension is simple. In Problem 12-17 we 
show how to enumerate the number of bit errors in the error events and the length of the error 
events. 

Appendix 12-0. 
Derivation of the Tanh Rule 

Here we derive the multiplicative and additive forms «12.100) and (12.100)) of the tanh 
rule. 

Multiplicative Form 

The parity <I> = L7 = 1 ci (modulo-two sum) of a set of n bits {cl> ... cn} can be expressed as: 

. 
II> = ~(1-II (1 - 2Ci) ) , (12.167) 

i= 1 
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since an even number of ones in {Ci} yields q, = 0, while an odd number yields q, = 1. The 
probability that the parity is odd is then the expected value of q,: 

Pr[q, = 1] = E[q,] 

n 

= ~(1- E[ll(l- 2Ci)]) 
i= 1 

n 

= ~(1-II (1 - 2E[ cd») (because of independence) 
i= 1 

n 2 Ai 
= ~(I-ll(l- ~.») 

i= 1 1 + e • 

n 

= ~(I-lltanh(-Ai/2»). 
i = 1 

Since Pr[q, = 0] = 1- Pr[q, = 1], the LLR for q, becomes: 

1.$ = 10gPr[1jl = 11 
Pr[Ijl=01 

= 10 ~ ~ ( l-rHanh(-A.f2») 
g 1 + ITitanh(-A/2) . 

Using tanh(-A/2) = (1- eA)/(1 + eA), and letting n = ntanhC-Ai/2), we get: 
i = 1 

( I-IT) 
1 - 1 + TI (1 + TI) _ (1- TI) n 

tanh(-A",/2) = = = IT = ntanh(-A·/2) 
'+' (1 - TI) (1 + IT) + (1 - IT) . " 1+ __ .=1 

I+IT 

which proves the tanh rule of (12.98). 

Additive Form 

(12.168) 

(12.169) 

(12.170) 

(12.171) 

(12.172) 

(12.173) 

(12.174) 

(12.175) 

(12.176) 

We now derive the additive form of the tanh rule, namely (12.100). Substituting 
-Ai = sign(-A.J· I Ai I into (12.98) yields the pair of equations: 

n 

sign(-AQJ> = n sign(-AJ , (12.177) 
i = 1 

(12.178) 
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Taking -log( . ) of both sides of (12.178) yields: 

(12.179) 

where f(x) is defined by (12.101). Because f(f(x» = x for all x > 0, we can apply f( . ) to both 
sides of (12.179), yielding: 

(12.180) 

Combining (12.177) and (12.180) yields (12.100). 

Problems 

Problem 12-1. An (n, 1) repetition code is one where each bit is repeated n times. 

(a) Compute the minimum Hamming distance dB,min of such a code as a function ofn. 

(b) How does this coding technique compare with the (7, 4) Hamming code with a hard decoder? 

Problem 12-2. Consider a linear block code C with parity-check matrix H and minimum Hamming 
distance dB,min between codewords. 

(a) Show that dH min is equal to the minimum number of columns of H that can be added to produce 
o. ' 

(b) Use part (a) to show that for all linear block codes 

dB,min~n-k+ 1 . 

Problem 12-3. Given the generator matrix for a (7,3) linear block code 

[
0011101] 

G= 0100111, 
1001110 

(a) Construct the generator matrix of an equivalent systematic code. 

(b) Find the parity-check matrix H. 

(12.181) 

(12.182) 

(c) Construct a table of all possible syndromes s and find the error pattern e most likely to have 
resulted in that syndrome. 

(d) What is the relationship of this code to the (7, 4) Hamming code? 

(e) Find dB,min. How many bit errors in a block can be reliably corrected? 

(f) Find the codeword c = mG for m = [1 0 1] and verify that cHT = o. 
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Problem 12-4. 

(a) Give the generator and parity-check matrices in systematic form for the (15,11) Hamming code. 

(b) Find a parity-check matrix for a non-systematic (15,11) Hamming code such that the syndrome 
of any bit pattern with one bit error can be interpreted as a binary number that identifies the 
position of the bit error. 

Problem 12-5. Compare the performance of a (15,11) Hamming code with a soft decoder to an 
uncoded system with the same source bit rate. Assume that both the coded and uncoded systems use a 
binary antipodal symbol alphabet {±a}. You may ignore the constant multiplying the Q( . ) function. 

Problem 12-6. Estimate the power advantage of the (15,4) maximal-length shift register code with a 
soft decoder. You may ignore the constants in front of the Q( . ) term. To get the power advantage, 
compare to an uncoded system that also uses binary antipodal signaling, and a sufficiently lower symbol 
rate that the source bit rate is the same. Assume additive white Gaussian noise on the channel. 

Problem 12-7. Consider the non-systematic convolutional coder in Fig. 12-36( a). 

(a) Find the parity-check matrix. 

(b) Show that Fig. I2-36(b) has the same parity-check matrix. 

Problem 12-8. Consider transmitting bits mk over a BSC channel using the convolutional coder 
conv(1/2) of Fig. I2-1O(a). Assume that mk = 0 for k < 0 and k? K. Suppose K = 3 and the 
observation sequence is {O,I, 0,1,1,1,1,0,0,0, ... }. Draw the trellis for the Markov model and label 
the transition weights. What is the ML estimate of the incoming bit sequence? 

Problem 12-9. Consider the rate-I /2 convolutional coder shown in Fig. 12-37. 

(a) (b) 

Fig. 12·36. Two encoders with the same parity-check matrix, where (b) is systematic and (a) is not. 

Fig, 12·37. A rate-1 /2 convolution coder studied in Problem 12-9. It is not as good as the coder in 
Fig. 12-10(a}. 
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Fig. 12-38. A convolutional coder studied in Problem 12-10 and Problem 12-17. 

(a) Draw the state transition diagram and trellis with each transition labeled with (mk, [ck (0), ck (1»)). 

(b) Assume that ck (0) and ck (1) are interleaved on a BSC with probability p of flipping a bit. Find the 
error event with the minimum Hamming distance. Find the probability of the error event and 
compare with the probability computed in (12.85). 

(c) Assume that ck (0) and ck (1) are to be interleaved over an additive white Gaussian noise channel. 
Assume Ai is the symbol sequence chosen from the alphabet {-a, +a}. Assume an ML soft 
decoder. Estimate the probability of error event and compare it to the uncoded system and to 
conv(1/2) with soft decoding whose perfonnance is approximated in (12.82). Give the 
comparison in dB. 

Problem 12-10. Consider the convolutional coder shown in Fig. 12-38. 

(a) Find the Hamming distance of the minimum distance error event and give an upper bound (like 
that in (12.85» for the probability of this error event using a hard decoder. 

(b) Assuming binary antipodal signaling with alphabet {±a}, find the error event with the minimum 
Euclidean distance. Estimate the coding gain using a soft decoder, assuming that this error event 
dominates. You may neglect the constant multiplying the Q( . ) function. 

Problem 12-11. Is the code consisting of the following codewords linear? 

0010 0100 1110 1000 1010 1100 0110 (12.183) 

Problem 12-12. List the codewords of the dual of the (7,4) Hamming code. What are n, k, and 

dH,min? 

Problem 12-13. Consider the (3, I) repetition code with binary antipodal signaling over an AWGN 
channel. Find numerical values for the three observations ro, r1' and r2 such that the hard ML decision 
differs from the soft ML decision. If no such values exist, explain why. 

Problem 12-14. Let G(D) be a matrix with one row and n :::: 2).1 + 1 - 1 columns consisting of all 
possible nonzero polynomials of order I-l or less. (For example, when I-l :::: 1, G(D) :::: [1, D, 1 + D].) 
This defines a family of rate-lin convolutional codes, parameterized by the encoder memory I-l. Find a 
closed-form expression for the minimum Hamming distance d min of the convolutional code for an 
arbitrary I-l, expressed as a function of I-l. 

Problem 12-15. Find the minimum Hamming distance dmin between all distinct binary codewords 
generated by the rate-I 14 convolutional encoder with generator polynomial: 
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Fig. 12-40. A signal flow graph with branch weights shown. 

G(D) = [1 + D + .02, 1 + D + .02,1 + D + .02, 1 + .02] (12.184) 

Problem 12-16. Assuming binary antipodal signaling for the convolutional coder of Example 12-59, 
find an enumerator polynomial for the squares ofthe Euclidean distances. 

Problem 12-17. In this problem we show how to use the path enumerator polynomials to find the 
distances, number of bit errors, and lengths of all error events simultaneously (for linear codes). 
Consider the convolutional coder in Fig. 12-38. To find just the Hamming distances of the error events 
we use the broken state transition diagram of Fig. 12-34. To find the number of bit errors and lengths of 
the error events we use the labels in Fig. 12-39. 

(a) Find an expression for the gain from 01 to O2, It will be a polynomial T(x, y, z) in x, y, and z. 

Fig. 12-39. The state transition diagram of Fig. 12-34 has been modified so that the exponent of x 
denotes the length of the branch (always one) and the exponent of y denotes the number of bit errors 
that occur if that branch is selected by the decoder (assuming the zero path is correct). The exponent of 
z still shows the Hamming weight of the branch. 
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(b) What is the distance and number of bit errors in the error event with length four (i.e. the error 
event that traverses five incorrect branches, or four incorrect states, before returning to the zero 
state)? 

(c) Suppose you are told that the gain from 01 to 02 in Fig. 12-40 is 

T= ACG(l-E)+ABFG 
1-DC-E-BFD+EDC' 

(12.185) 

For the convolutional coder of Example 12-60, determine the number of distance 6 error events 
and their lengths, and the number of length 4 error events and their distances. 

Problem 12-18. Consider the (3, 1) repetition code. 

(a) Show that the Tanner graph has no cycles. 

(b) Show that the message-passing algorithm converges to the true a posteriori LLR's after two 
iterations. 

Problem 12-19. Does there exist a positive integer m for which the Tanner graph for the (2 m - 1, 
2m - 1 - m) Hamming code has no cycles? Explain. 
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13 
Signal-Space Coding 

The binary error-control schemes of Chapter 12 were designed specifically for binary 
modulation formats. They are ideally suited for the low-SNR regime where the target spectral 
efficiency is small. This chapter treats the problem of error control when the target spectral 
efficiency is large. In this scenario, one might be tempted to concatenate a binary encoder with 
an independently designed QAM symbol mapper, but the resulting performance will usually 
be poor. 

The optimal receiver in white Gaussian noise uses soft decoding, a minimum-distance 
detection strategy based on a Euclidean signal-space distance rather than a Hamming distance. 
The resulting error probability is accurately predicted by the signal-space minimum distance. 
That minimum distance is affected in turn by how we do the mapping of bits to symbols. In 
this chapter, we introduce a superior approach to designing codes for soft decoding. We 
directly consider the geometry of signal sets within signal space, with the goal of maximizing 
the minimum distance, while meeting power and bandwidth constraints. This does not mean 
that the algebraic techniques emphasized in Chapter 12 (groups, fields, etc.) must be 
abandoned, but rather that these algebraic tools should be used in conjunction with geometric 
considerations. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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Codes designed by choosing signal sets in signal space with desirable geometric (as well 
as algebraic) properties are called signal-space codes. They are advantageous on channels 
where spectral efficiency is at a premium (such as radio or voiceband telephone channels). To 
be practical, these signal-space codes must have a regular geometric and algebraic structure 
that can be used to simplify their implementation. 

The key to obtaining large coding gains is to design codes in a subspace of signal space 
with high dimensionality, where a larger minimum distance in relation to signal power can be 
obtained. This is the essence of the channel coding theorem of Chapter 4. This high 
dimensionality does not necessarily imply a large bandwidth. For example, if we group 
together a large number of successive symbols in a PAM system, the resulting "vector" symbol 
is multidimensional. In other words, the dimensionality 2Bto can be increased for fixed 
bandwidth B by increasing the time interval to, making it multiple symbol intervals. 

Our starting point will be to consider the problem of designing a signal constellation (in 
N-dimensional Euclidean space) that has a large minimum distance in relation to its average 
power. This is identical to the problem of designing baseband or passband signal 
constellations considered in Chapter 5 for N = 1 and N = 2, except that higher dimensionality 
is desired. We will show that it is advantageous to extend this design to N> 2, as illustrated in 
Fig. 13-1(a) in the context of passband PAM modulation. A sequence of N/2 two-dimensional 
(complex-valued) transmitted symbols can be considered as a single point in an N dimensional 
constellation. Each member of the constellation alphabet (called a codeword) is a vector in N
dimensional Euclidean space. Analogous to the mapper in Chapter 5, but generalized to N 
dimensions, a set of K input bits are used to choose one of 2K codewords in the 
multidimensional constellation. That codeword is transmitted serially as N 12 data symbols 
over a passband PAM modulation system. 

KINPUT 
BITS 

(a) 

N·DIMENSIONAL 
CONSTELLATION 

N/2COMPLEX 
SYMBOLS 

KINPUT MACHINE N 

BITS DIMENSIONAL 

TO PASSBAND PAM 
MODULATOR 

{

FINITE STATE 

=========:1 CONSTELlATION 

(b) 
N/2COMPLEX 

SYMBOLS 

TO PASSBAND PAM 
MODULATOR 

Fig. 13-1. Two basic ways of generating signal-space codes in conjunction with passband PAM 
modulation. (a) The signal constellation is generalized from two dimensions to N dimensions. 
corresponding to a vector of N /2 transmitted symbols. (b) A finite state machine (FSM) is used to 
choose a vector from an N-dimensional constellation. 
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An example of a multidimensional constellation is a lattice code, which is a generalization 
of some of the rectangular constellations of Chapter 5, and has geometric and algebraic 
structure that makes it practical to synthesize, analyze, and implement. Although lattice codes 
can approach capacity for large N, the exponential increase in the number of codewords with 
N rules out their use for large N. 

A way to achieve significant coding gain without the implementation complexity of lattice 
codes is to extend the dimensionality of the transmitted signal by basing it on a finite state 
machine (FSM). As shown in Fig. 13-1 (b), a group of K input bits is divided into two groups. 
The first group drives an FSM, which introduces redundancy by generating more bits at its 
output than there are at its input. The FSM output, together with the second group of input bits, 
specifies one from among a set of codewords in an N-dimensional signal constellation. The 
extra bits produced by the FSM implies an inherent increase in the number of points in the 
constellation. As in the multidimensional constellation, the codewords are transmitted serially 
as N /2 complex symbols. Not only are significant coding gains possible this way, but the 
implementation ofthe receiver maximum-likelihood detector (Chapter 7) can be based on the 
Viterbi algorithm, greatly reducing the complexity of soft decoding. 

In Section 13.1 we will consider the design of multidimensional signal constellations, 
followed by trellis codes based on the FSM approach in Section 13.2. A generalization of the 
trellis code, the coset code, is introduced in Section 13.3. Finally, Section 13.4 discusses the 
combination of signal-space coding with lSI. 

13.1. Multidimensional Signal Constellations 

When passband PAM systems were designed in Chapter 5, a signal constellation was 
designed for a complex-valued data symbol, and this same constellation was used for each 
successive symbol. In Chapter 5, several intuitive design approaches for improving signal 
constellations were described, two of which are illustrated in Fig. 13-2. Three constellations 
are shown in Fig. 13-2 with the same minimum distance and 256 points. Thus, the three 
constellations will have the same spectral efficiency and, to accurate approximation, the same 

EXAGONAL CIRCULAR 

Fig. 13-2. A square QAM constellation, and two alternative constellations that illustrate shaping and 
coding gain. All three constellations have the same minimum distance, and each has 256 points. 
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error probability. Where they differ is in the variance of the data symbols, which (assuming 
equally probable points) are clearly different. Using the square QAM constellation as a 
reference, the other two constellations illustrate two basic approaches to improving 
constellation design. 

The first idea is to change the shape or outline of the constellation without changing the 
relative positioning of points (on a regular square grid). The "circular" constellation 
approximates a circular shape. This circular constellation will have a lower variance than the 
square constellation, because every point that is moved from outside the circle to the inside 
will make a smaller contribution to the variance as a result. On these same grounds, a circular 
shape will have the lowest variance of any shaping region for a square grid of points. The 
resulting reduction in signal power is called shaping gain. 

Significantly, shaping the constellation changes the marginal density of the real part or 
imaginary part of the data symbol. This is illustrated in Fig. 13-3, where the marginal density 
of the real-valued component of the complex symbol is compared for the square and circular 
constellations, assuming the points in the signal constellation are equally likely. For the 
circularly shaped constellation, the one-dimensional marginal density becomes nonuniform, 
even though the two-dimensional density is uniform. 

A second approach to improving a constellation, also illustrated in Fig. 13-2, is to change 
the relative spacing of points in the constellation. The hexagonal constellation, in which points 
fall on a grid of equilateral triangles, also reduces the variance for the same minimum distance. 
(Alternatively, we could keep the variance constant, in which case the hexagonal constellation 
would have a larger minimum distance than the square constellation.) This decrease in power 
for the same minimum distance or increase in minimum distance for the same power through 
changing the relative spacing of the points is called coding gain. 

SQUARE CIRCULAR 

1111111111111111, ttt111111111111ttr. 
Fig. 13-3. The marginal probability density functions of one dimension for a an unshaped (square) and 
shaped (circular) two-dimensional constellation. The two-dimensional density is assumed to be uniform. 
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Coding and shaping gain can be combined, for example by changing the points in the 
circularly shaped constellation to a hexagonal grid while retaining the circular shaping. 

If we define a constellation for a single data symbol ak, as was done in Chapter 5, then it 
will be one-dimensional for the baseband case, and two-dimensional for the passband 
(complex) case. The square constellation of Fig. 13-2 is simply the Cartesian product of a pair 
of identical one-dimensional constellations. However, introducing either shaping gain or 
coding gain, or both, implies the two-dimensional constellation is no longer the Cartesian 
product of one-dimensional constellations. The advantages of shaping and coding gain imply 
that it is preferable to design a two-dimensional constellation directly as an alphabet of points 
in two-dimensional space, rather than taking the "lazy" approach of forming a Cartesian 
product of one-dimensional constellations. 

Neither shaping nor coding gain is feasible in one dimension, but both are available in two 
dimensions. If going from one to two dimensions is beneficial, could it be that moving to even 
higher dimensions is a good idea? In this section, we will introduce the third fundamental idea 
in constellation design, the multidimensional signal constellation. Taking the passband case, 
consider a sequence of complex-valued data symbols {ak' -00 < k < oo}. A subset of N 12 
successive symbols {ak, ak + 1, ... , ak + N /2 -I} (where of course N is even), can be 
considered as a vector in N-dimensional real-valued Euclidean space. Our convention is that a 
data symbol drawn from this N-dimensional constellation is transmitted once every N 12 
symbol intervals. When we design a two-dimensional constellation, and choose the NI2 
successive symbols to be an arbitrary sequence of two-dimensional symbols drawn from that 
constellation, the resulting N-dimensional constellation is a Cartesian product of NI2 two
dimensional constellations. An alternative is to design an N-dimensional constellation that is 
not constrained to have this Cartesian-product structure. This is then called an N-dimensional 
signal constellation. Whenever N > 2, it is called a multidimensional signal constellation. 

Greater shaping and coding gains can be achieved with a multidimensional constellation 
than with a two-dimensional constellation. In Section 6.7 it was shown that two-dimensional 
constellations, on a Gaussian channel, suffer an "SNR gap to capacity." This gap can be closed 
completely with a multidimensional constellation as N ~ 00. This result is a straightforward 
application of the capacity theorem (Chapter 4) if the multidimensional constellation is not 
constrained, since it is simply a general channel code anticipated by the channel capacity 
theorem. Significantly, as will be cited below, there exist constellations that have an imposed 
structure (that are a multidimensional generalization of the square and hexagonal 
constellations) that can also completely close the gap as N ~ 00. 

Practically speaking, significant shaping and coding gains can be achieved for modest N. 
However, multidimensional constellations suffer from a complexity that increases 
exponentially with dimensionality. To mitigate this, multidimensional constellations can be 
used in conjunction with trellis codes, as described in Section 13.3. Multidimensional 
constellations also serve to further our understanding of the structure of signal-space codes, 
and particularly the relationship between coding and shaping gain. 
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13.1.1. Lattice Codes 

The two-dimensional constellations of Fig. 13-2 are special cases of lattice codes. Let the 
dimension of the constellation be N, and let {xl> ... , XI} be a set of I linearly independent 
basis vectors in N-dimensional Euclidean space. Of course, we must have that I ~ N. Consider 
the set of points in N-dimensional Euclidean space that can be expressed in the form 

x= ~I k .. x. 
L.Ji = I I I' 

(13.1) 

where the {kl, ... , kI} are integers. This countably infinite set of points is called a lattice, and 
is denoted by A. The regularly spaced set of points in a lattice is an appropriate choice for a 
multidimensional signal constellation for three reasons: 

• Since the probability of error is determined by the minimum-distance, it is 
advantageous to choose regular arrays of points as in a lattice, where all points are 
equidistant from their neighbors. 

• From an implementation perspective, the points in the constellation can be described 
and manipulated in terms of the vector of integers, using fixed-point integer arithmetic. 

• The lattice has a convenient geometric and algebraic structure. Algebraically it is a 
group, meaning that it is closed with respect to vector summation and difference. One 
implication of this is that the zero vector must be a member of any lattice. This 
algebraic structure can be exploited in both implementation and in deriving various 
properties of the lattice. 

A lattice code is made up of three constituents. First, there is the lattice A. Second, there is 
a translation vector a, and a translation of the lattice A + a consisting of all points in the lattice 
translated by a. The motivation for this translation is that a lattice is constrained to have a 
point at zero (corresponding to all-zero integers), and the translation frees us from the 
constraint, for example to minimize the transmitted power. Third, there is a finite region S, 
with the convention that the lattice code is the intersection of A with S. This results in a finite 
number of points in the lattice code, and also gives another degree of control over the 
transmitted power. To display all these parameters at once, we write the lattice code in the 
form (A + a) n S. 

Examplel3-l. -----------------------------------------------------
The two-dimensional hexagonal constellation of Fig. 13-2 can be described as a lattice code, as 
illustrated in Fig. 13-4. The first step is to choose two basis vectors corresponding to the sides of an 
equilateral triangle, 

Xl = [d, 0] , (13.2) 

In this case, d will be the minimum distance for the code. The second step is to choose some 
translation vector a (a = 0 shown). The third step is to choose a region S, shown as a circle (two
dimensional sphere). Finally, the lattice code consists of all points on the lattice that fall within S. 

This example shows that many of the constellations illustrated in Chapter 5 (with the notable 
exception of the AM-PM constellations) can be formulated as lattice codes. The greatest 
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significance of the lattice code fonnulation is that it readily extends to higher dimensions. 
Since it is difficult to draw or visualize dimensions higher than three, the mathematical 
structure of lattice codes becomes particularly important. 

There are two properties of a lattice that influence its effectiveness as a code: 

• The minimum distance dmin(A) of points in the lattice relates directly to the error 
probability of the lattice code (for an additive Gaussian noise channel at high SNR). 

• The fundamental volume V(A) is the volume of N-dimensional space associated with 
each lattice point. It is the inverse of the number of lattice points per unit volume. The 
fundamental volume is important because it relates directly to the number of lattice 
points within a given region S, and hence affects the spectral efficiency. (The spectral 
efficiency is affected by other factors as well, such as S, the PAM pulse bandwidth, etc.) 

There is a direct relationship between the minimum distance and fundamental volume; 
increasing one tends to also increase the other. That is, for fixed transmit power, increasing the 
minimum distance tends to reduce the spectral efficiency. 

13.1.2. Normalized SNR and Error Probability 

For purposes of this chapter, we can assume that a symbol-rate discrete-time channel has 
been derived by demodulation and the sampled matched filter (Chapter 5). If the continuous
time channel has no lSI (the pulse autocorrelation Ph(k) = bk), then the noise samples at the 
matched filter output will be white and Gaussian. Thus, assume the equivalent discrete-time 
channel is 

(13.3) 

.---;"-------;t-------il-------iL------i!-------,~---
I I I I I I 

I I I I I 
I I I I I 
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Fig. 13-4. Illustration of a two-dimensional lattice code, where S is a circle (twCKIimensional sphere). 
The lattice points fall at the intersection of the dotted lines. 
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where Xk and Yk are complex-valued inputs and outputs and Nk is circularly symmetric white 
Gaussian noise. Define 0 2 = No/2 as the noise variance per dimension, so that the noise 
energy (per two dimensions) is E[ 1 Nk 12] = 202 = No. Further, define E as the upper bound on 
the input signal energy per two dimensions for the input to this discrete-time channel, 

(13.4) 

The spectral efficiency v is defined as the number of bits of information communicated per 
complex sample, or the bits per two dimensions. 

Example 13-2. -----------------------------------------------------
A passband PAM system operating at the maximum symbol rate relative to the bandwidth of the 
underlying channel will have a spectral efficiency v bits/ sec-Hz, since the symbol rate is equal to 
the bandwidth of the channel. Thus, for this idealized continuous-time channel, and only for this 
channel, the spectral efficiency as defined in Section 5.2.3 (in bits/sec-Hz), and the spectral 
efficiency of the discrete-time channel of (13.3) (in bits per two dimensions), will be numerically 
equal. 

The Shannon limit on spectral efficiency for the channel of (13.3), Vo is given by (4.36) 
for N= 2, 

vc =log2(1+SNR) , SNR=EINo · 

Equivalently, (13.5) can be written in the form 

SNR = 1. 
2v'-1 

(13.5) 

(13.6) 

As in Chapter 6, a rate-normalized signal-to-noise ratio can be defined for a system operating 
over channel (13.3) with signal-to-noise ratio SNR and spectral efficiency v, 

SNR SNRnorm = ----
2v -1 

(13.7) 

SNRnorm has the interpretation that the Shannon limit v ::; v c is equivalent to SNRnorm > 1. 

If complex symbols Xk = Ak are transmitted over (13.3), then from Chapter 7 the error 
probability of a minimum-distance receiver is accurately approximated by the union bound as 

(13.8) 

where dmin is the two-dimensional Euclidean minimum distance between known signals. If 
(13.3) is used to transmit a vector signal, then Pe is likewise given by (13.8), except dmin is 
now the minimum Euclidean distance between vector signals, and the error coefficient C may 
be changed. 

The error probability can be expressed in terms of the SNRnorm' v, and P, by expressing 
the squared argument of Q( . ) as 

d!in _ d!in(2 V -1) 
402 - 2E 

E = Y . SNRnorm , 
2cr2(2V -1) 

(13.9) 



Sect. 13.1 Multidimensional Signal Constellations 

where (13.5) and (13.7) have been used to define SNRnorm' and 

d 2 . (2V -1) 
y= mm 

2E 

Given this definition, 
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(13.10) 

(13.11) 

This expression for y is similar to that derived in Chapter 6, except that it applies to vector 
signals, v is measured by bits per two dimensions, and E is energy per two dimensions. 

As shown in Fig. 6-31, the parameter y relates directly to the SNR gap to capacity, and in 
particular the larger y, the lower the error probability and the smaller the SNR gap to capacity. 
It was also shown in Chapter 6 that y = 3 for a square two-dimensional QAM constellation, 
independent of the constellation size. 

13.1.3. Coding and Shaping Gains for Lattice Codes 

We will now show that for lattice codes with a large number of points, y can be 
approximated in a particularly simple and insightful way. This will allow us to extend the 
concepts of shaping and coding gains as illustrated in two dimensions in Fig. 13-2 to 
multidimensional constellations. 

The Continuous Approximation 

The spectral efficiency and energy of a constellation can be expressed in terms of the 
parameters of the lattice and the shaping region. Considering first the spectral efficiency, if the 
volume of an N-dimensional shaping region S is defined as V( S), then the number of points in 
(A + a) n S falling within S is accurately approximated by V( S) 1 V( A), especially as this 
ratio gets large. Then for a given (A + a) n S, 

2 V(S) 
v :::: N1og2V(A)' (13.12) 

since the points are divided over N 12 complex symbols. 

To calculate the energy a constellation, the starting point is the probability density of the 
data symbols, which consists of delta functions at the constellation points. When the number 
of points in (A + a) n S is large, then the points in the lattice within region S are closely 
spaced at regular intervals, and their probability density can reasonably be approximated as 
continuous rather than discrete. When the signal points are equally likely, then the appropriate 
continuous density is uniform over the region S. In calculating the energy of the constellation, 
a continuous uniform density is just the Riemann integral approximation to the sum that would 
correspond to the discrete density. Denote as P( S) the variance of a uniform distribution over 
S. Since the uniform distribution has height 11 V( S), 

P(S) = vts)f IIxl12 dx . 
s 

(13.13) 
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This is the continuous approximation, first invoked in Chapter 8 to study the properties of 
transmitter precoding. P( S) is an approximation to the energy per N dimensions, and thus the 
continuous approximation for the energy per two dimensions is 

E "" 2P(S)/N . (13.14) 

Example 13-3. -------------------------
When N = 2, and the shaping region S is an 2R X 2R square, V( S) = (2R)2, and 

1 fRfR 2 2 2 2 E "" P( S) = -2 (Xl + X2 ) dXI dX2 = 3 R . 
4R -R-R 

(13.15) 

Example 13-4. -------------------------
When N = 2 and the shaping region S is a circle with radius R, then V( S) = nR2. If X = (Xl, X2) 
is uniformly distributed over the circle, then by symmetry the marginal distributions of Xl and X2 
will be the same. The energy is then 

(13.16) 

where 

2 1 fR 2fJR2-xr E[XI 1 = -2 Xl dX2dxI . 
nR -R _JR2- xr 

(13.17) 

This integral readily evaluates to R2 I 4, and thus P( S) = R2 I 2. 

The continuous approximation will now be used to study the coding and shaping gain oflattice 
codes. 

Shaping and Coding Gain 

The coding gain is a function of the relative spacing of points in A, but is independent of 
S. The transmit power, and hence shaping gain, is a function of both A and S, but the 
continuous approximation discards the dependence on A. Based on this simplification, we will 
now characterize the shaping and coding gains. 

The continuous approximation gives a useful approximation for y, which in turn 

summarizes the error probability of the constellation based on a lattice code. From (13.10), 
(13.12) and (13.14), 

(( V(S»)2/N -1)d2. (A) 
V(A) mm 

4P(S)/N 
= 3· YA' Ys, (13.18) 

where 

(13.19) 
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_ NV2!N(S) 
Ys - 12P(S) (13.20) 

The approximation for Ys assumes that the unity term can be ignored, which will be accurate 
for large constellations. The motivation for the factor of 3 is that Y = 3 for a two-dimensional 
square constellation, which we take as a baseline against which to compare other shapes. (It 
will be shown shortly that the multidimensional cube, which is a generalization of the two
dimensional rectangle, also has y = 3.) We will see that both Ys and YA are normalized to unity 
for a square QAM constellation, our reference constellation. 

Example 13-5. -----------------------------------------------------
For the square constellation of Example 13-3, the shaping gain is 

= 2V(S) = 2· 4R2 = 1 
YA 12P(S) 12. 2R2/3 . 

(13.21) 

Similarly, for a square lattice of points, if the spacing between adjacent points is dmin, then the 
fundamental volume is V(A) = d!in and thus YA = l. Thus, for this case Y = 3, as we knew 
already. 

The factor YA includes all terms that are a function of A, and is defined as the coding gain. The 
factor Ys includes all terms that are a function of S, and is defined as the shaping gain. For 
lattice codes with a large number of constellation points, the coding gain and the shaping gain 
are factors that can be manipulated independently of one another, the former by choosing A 
and the latter by choosing S. 

The coding gain compares the minimum distance of a lattice A against a two-dimensional 
square lattice A2, our reference lattice. Comparing two lattices is tricky since often both 
minimum distance and fundamental volume will be different, and the lattices may also have 
different dimensionality. A fair minimum distance comparison requires that the two lattices 
have the same density of points, that is, the same number of points per unit volume. If A and 
A2 are the same dimensionality and have the same shaping region S, then this implies the 
spectral efficiency will be the same (to an accurate approximation). 

An additional complication is that the two lattices may have different dimensionality. 
Thus, we scale the two lattices such that their density of points per two dimensions is the same. 
This implies that, for the same shaping region, the codes based on the two lattices will have the 
same spectral efficiency and energy. The energy is the same because, in accordance with the 
continuous approximation, it is a function the shaping region only. 

To compare A to the reference lattice A2, first scale A2 by a factor a to get a new square 
two-dimensional lattice a . A2 with minimum distance a . dmin(A2) and fundamental volume 

(13.22) 

For a square lattice, the fundamental volume is the square of the minimum distance. Second, 
determine the fundamental volume of A per two dimensions, and then set it equal to V(a· A2) 
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SO that both lattices have the same density of points per two dimensions. According to the 
continuous approximation, the number of points in A per two dimensions is 

2V = V2IN(8) 
V2IN(A) , 

(13.23) 

implying that the volume of 8 per two dimensions is V2IN( 8) and the fundamental volume of 
A per two dimensions is V2I N( A). Finally, set the fundamental volume per two dimensions of 
Cl . A2 and A equal, 

(13.24) 

which defines the scaling factor Cl. Now that these fundamental volumes (and hence spectral 
efficiency for any 8) are equal, the coding gain is the ratio of the square of the minimum 
distance of A to that of Cl . A2, 

d~in (A) d~in (A) 
YA = 2d2 = 21N ' a. min (A2) V (A) 

(13.25) 

consistent with (13.19). This establishes an interpretation ofYA as the ratio of the square of the 
minimum distance of A to that of a scaled version of A2 (the reference lattice), where the 
scaling forces the spectral efficiency of the two lattices to be the same for any 8. 

A slightly different interpretation of YA is to assume that A and A2 have the same 
minimum distances, and compare their fundamental volumes per two dimensions. If we 
assume that A2 has minimum distance dmin(A), then the fundamental volume of A2 is 
d min 2(A) (since it is a square lattice). Since the fundamental volume per two dimensions of A 

is V 21N(A) , it follows that YA is precisely the ratio of the fundamental volume per two 
dimensions of A2 to that of A. Since the fundamental volume is inversely proportional to the 
number of points in the constellation per two dimensions (for the same shaping region), the 
coding gain is the ratio of the number of points in the constellations for equal minimum 
distances. 

A similar interpretation can be applied to the shaping gain. Again, the idea is to compare 
the energy of the shaping region 8 against the energy of a two-dimensional square region 8 2, 

where both 8 and 8 2 have the same volume per two dimensions. Let the reference shaping 
region 8 2 be an 2R x 2R two-dimensional square, with each of the two dimensions in the 
range x E [-R, R]. The "radius" R will be chosen to force the spectral efficiency to be the same 
as 8, which will occur if the two shapes have the same volume per two dimensions. Since 8 
has volume per two dimensions V2I N(S), and 8 2 has volume (2R)2, R is chosen to satisfy 

(13.26) 

The shaping gain Ys is then the ratio of the energy per two dimensions of 82 to that of 8. The 
energy of 8 per two dimensions is 2/N times the energy P(8) per N dimensions. 
Furthermore, from Example 13-3, P(82) = 2R2/3. Thus, the shaping gain is 
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_ 2R2/3 _ NV2!N(S) 
Ys - 2P(S)/N - 12P(S) , (13.27) 

consistent with (13.20). This establishes an interpretation ofys as the ratio ofthe energy per 
two dimensions of a two-dimensional square shape to the energy per two dimensions for S, 
where the square shape is scaled so that the volumes per two dimensions (and hence spectral 
efficiencies) are the same. 

It will be shown shortly that the maximum possible shaping gain as N --7 00 is Ys max = 
1.53 dB. As a result, the SNR gap to capacity for lattice codes can be divided into two distinct 
parts, as shown in Fig. 13-5. The Y = 3 curve shows the SNR gap to capacity for a square two
dimensional constellation, where YA = Y s = 1. The maximum shaping gain reduces the SNR 
gap to capacity, and the remaining SNR gap, labeled the "maximum coding gain" is 
potentially reduced by the choice of the code. A result of de Buda [1] shows that 
asymptotically as N --7 00 there exist lattice codes that achieve channel capacity, in the sense 
that they drive Pe to zero for any bit rate below the Shannon limit. (While there are flaws in the 
original proof of de Buda, a new proof has been provided by Loeliger.) This answers a long
standing question in information theory; namely, is it possible to achieve the channel capacity 
limits with codes that have a structure that allows them to be implemented? The answer is yes, 
although unfortunately it is still not practical to implement soft decoding for lattice codes at 
high dimensionality. 

I 
I MAXIMUM SHAPING GAIN 
I 

1.53 dB I MAXIMUM CODING GAIN 
I 

10-15 

10 SNRnorm. (dB) 

Fig. 13-5. The SNR gap to capacity for lattice codes with large constellations is divided into shaping 
gain and coding gain. The curve is Pe for a square QAM constellation (y = 3). The maximum shaping 
gain (for S an N-sphere as N ~ 00) reduces the SNR gap to capacity by 1.53 dB. 
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Cartesian Product Constellations 

When we use a two-dimensional constellation and transmit a sequence of K symbols 
drawn from this constellation, we can consider that sequence as a vector in 2K-dimensional 
Euclidean space. This sequence is actually drawn from a multidimensional constellation 
consisting of the Cartesian product of K two-dimensional constellations. Provided that coding 
and shaping gains are properly defined, we would expect that the coding and shaping gains of 
this 2K-dimensional constellation would be equal to the coding and shaping gains of the 
underlying two-dimensional constellation. This is true, and in fact, we will now prove a more 
general result: given any lattice code C = (A + a) n S, the coding and shaping gains of any K
fold Cartesian product constellation CK is the same those of C. 

Let C = (A + a) n S be a lattice code in L-dimensional Euclidean space. We must define 
the K-fold Cartesian product CK. A vector x that is a point in cK is a vector in KL-dimensional 
Euclidean space of the form 

(13.28) 

where {xi, 1::; i ::; K} are each points in C. 

First consider the coding gain of CK . The coding gain is independent of S, so we can work 
with A and A K, where the latter is an LK-dimensional lattice consisting of a K-fold Cartesian 
product of L-dimensional lattices A. (It is simple to see that AK is in fact a lattice.) The 
distance-squared between x E A K and yEA K, x "* y, can be written as 

(13.29) 

where the Xi. Yi EA. Since all the Xi can be chosen independently of one another, and similarly 
the Yi. the minimum distance will occur when all terms but one are zero, and the minimum of 
the one non-zero term is dmin(A). Thus, 

(13.30) 

so the Cartesian product does not affect the minimum distance. Likewise, we can show that the 
fundamental volumes per two dimensions are the same, 

(13.31) 

establishing that the coding gains are identical for C and CK . This follows directly from the 
following exercise, with U equal to the region corresponding to the fundamental volume of A. 

Exercise 13-1. 
Let U be a region of L-dimensional Euclidean space, and let UK be a region that is the K-fold 
Cartesian product of U. 

(a) Show that V(UK ) = VK( U). 

(b) Let X be a uniformly distributed random vector on region UK. Show that its variance is P( UK) 
=KP(U). 

We can also show that the shaping gain of a Cartesian-product region SK is 
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_ LKV2ILK(SK) _ LKV2IL(S) _ LV2IL(S) _ 
YSK- 12P(SK) - 12KP(S) - 12P(S) -Ys· (13.32) 

In words, the shaping gain of cK is equal to the shaping gain of C. 

This result is fundamental to the understanding of multidimensional constellations (and 
more generally signal-space coding). Taking a Cartesian product of lattice codes does not 
affect the coding or the shaping gain. The way to achieve an increase in coding and shaping 
gains as the dimensionality is increased is to choose the components of the code dependently. 

Maximum Shaping Gain 

Fig. 13-5 shows the SNR gap to capacity at any Pe. We now know that y, and hence this 
gap, is divided between two factors, the coding gain and the shaping gain. The question arises 
as to how much gain is available from coding and how much is available from shaping. The 
answer is that the shaping gain is limited to 1.53 dB, which establishes that the remainder must 
be the available coding gain. We will now derive this result. 

The maximum shaping gain is achieved by a spherical multidimensional constellation, as 
seen in the following argument. For a fixed A, a shaping region S that is not spherical and an 
N-sphere with the same volume will have, to accurate approximation, approximately the same 
number of lattice points and hence the same spectral efficiency. The continuous-approximation 
uniform density has the same height in both cases, since the volume is the same. If we move 
that region of S that is outside the sphere to the inside, the energy will be reduced, since II x 112 
will be made smaller over that region. 

The maximum shaping gain, that of the N-sphere, can be determined as follows. Define 
S tv<. R) to be an N-dimensional sphere of radius R, and let x be an N-dimensional vector with 
real-valued components. Then 

(13.33) 

and the volume is 

V[Stv<.R)] = f dx. (13.34) 
SN(R) 

Changing the variable of integration to r = x I R, this volume can be expressed in terms of the 
volume of a unit sphere, 

V[Stv<.R)]=V[Stv<.l)]·RN , 

where V[Stv<. 1)] will be determined shortly. 

(13.35) 
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Suppose that X is a random vector uniformly distributed over Srv<R); X is called a 
spherically uniform random vector. The probability density function of X, fx( x), is 
V-I[Srv<R)] for x E Srv<R) and zero elsewhere. The marginal density of one component of X, 
say Xl> can then be calculated. This marginal density fXI (xl) is fx( x), a constant, integrated 
over the region 

(13.36) 

This region is itself an (N-l)-dimensional sphere SN _ 1 (JR2 - xf), and the integral is the 
volume of that sphere. Thus, the marginal density is 

_ V[SN_I(JR2- x f)] _ V[SN_I(I)] 1 ( (Xl)2)(N-I)/2 
fX1(XI) - V[SN(R)] - V[SN(I)] ·If 1- R (13.37) 

The marginal density allows us to determine the volume of a unit sphere. Since it must 
integrate to unity, 

V[SN(I)] _JI 2-.(N-I)/2 
V[S (1)]- (l-pJ dp, 

N-I -1 
(13.38) 

where the change of variables p = Xl 1 R has been performed. The volume of a circle (N = 2) is 
rr.R2, so V[S2( 1)] = n. Integral (13.38) is known as a Beta junction, and can be evaluated in 
closed form for integer values of N. For even N (the case of greatest interest), the result is, 

V[SN(I)] 21t 

V[SN_2(1)] - N ' 
1tN/2 

V[Srv< 1)] = (N 12)! ' Neven. (13.39) 

The energy P[SN<R)] can also be determined from this marginal density, since the 
components of a spherically uniform vector are clearly identically distributed, 

P[Srv<R)] =EUIXII2] =E[Lf= IXi2] =N·E[XI2] 

_ NR2V(Sn_I(I» fl 2 2 (N-I)/2 
- V(SN(l» -1 p (l-p) dp. 

Again, the integral can be evaluated for integer N, 

2 N 
p[Srv<R)] =R ·N+2 . 

The variance of one component of X is thus R2/(N + 2). 

(13.40) 

(13.41) 

Finally, the shaping gain of an N-sphere can be determined from the volume and energy; it 
is 

1t(N + 2) 
YSN(R) 12[(N 12)!]2/N· 

(13.42) 
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Using the Stirling limit k! ~ (kle)k as k ~ 00, we find that Y8 ~ nel6 asymptotically as 
N ~ 00. When this maximum shaping gain is achieved without coding gain, then the SNR gap 
to capacity is closed by 10 . log lOne I 6 = 1.53 dB, as shown in Fig. 13-5. This is the best that 
shaping the multidimensional constellation can do. 

On the other hand, any transmitter that does not use shaping will suffer a 1.53 dB penalty 
at high SNR. This is illustrated in Fig. 13-6, which compares the capacity with equiprobable 
QAM symbols to the unconstrained capacity of the AWGN channel. (These curves were 
discussed in more detail in Chapter 4.) At high SNR, the unshaped QAM alphabets can get no 
closer than 1.53 dB to the Shannon limit. The only way to close this gap is to discard the 
uniform distribution in favor of a Gaussian-like distribution that favors constellation points 
near the origin more than those near the edges. 

Marginal Density for Spherical Shaping 

For two-dimensional constellations, we saw in Fig. 13-3 that shaping resulted in a non
uniform marginal density. We can now explore the marginal density for higher dimensionality 
using the continuous approximation. The marginal density fX1(Xl) is plotted in Fig. 13-7 for 
some even values of N, assuming spherical shaping. As the dimension N increases, the one
dimensional marginal density gets narrower, as also manifested by a decreasing variance 
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Fig. 13-6. Constraining the input alphabet to be equiprobable (unshaped) PAM or QAM results in an 
asymptotic penalty of 1.53 dB on the AWGN channel at high SNR. (These curves were shown over a 
wider range of SNR in Fig. 4-4.) 
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R2/(N + 2). (This is a natural consequence of spreading a total energy of roughly R2 over an 
increasing number of dimensions.) Of more interest is the "bell shaped" appearance, similar to 
a Gaussian density, that emerges for large N. 

Could it be that the density is in fact approaching Gaussian as N ~ oo? To find out, define 
a normalized unit-variance random variable Y I = Xl IN + 21 R. Then Y I has a density with the 
same shape, but its maximum value is IN + 2 rather than R. Its density is (for some 
appropriate constant C), 

( ( 
y )j(N-I)/2 {Y(YI) =C· 1- _1_ . 

1 IN +2 
(13.43) 

As N ~ 00, both (N + 2) and (N - 1) can be replaced by N, and 

(13.44) 

where the limit (1 + xl k)k ~ ex as k ~ 00 has been used. Thus, Xl does approach Gaussian. 
(This is shown in [2] by a less direct conditional-entropy argument.) It can be shown by an 
identical method (Problem 13-7) that a K-dimensional marginal density of an N-dimensional 
spherically uniform random vector approaches a joint Gaussian density with independent 
components for fixed K as N ~ 00. In this sense, a spherically shaped lattice code approaches 
a white Gaussian source for large constellation sizes and high dimensionality. 

Approaching channel capacity for the Gaussian channel requires that the transmitted 
signal be Gaussian. Multidimensional lattice codes with spherical shaping have approximately 
this property for high dimensionality in accordance with the continuous approximation. This is 
consistent with the de Buda result [1] that there exist lattice codes that approach capacity as 
N~oo. 

N=20 

Fig. 13-7. The first-order marginal density of any component of a spherically uniform random vector is 
plotted for R = I and even N. 
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Relation of Spectral Efficiency and Energy 

The spectral efficiency of a constellation and its energy are always directly related. For 
example, for a two-dimensional constellation, if we keep the minimum distance constant but 
increase the spectral efficiency by increasing the number of points, the constellation gets larger 
and the energy increases. This basic tradeoff holds for multidimensional constellations as well, 
and it is important to quantify it. 

First, consider the tradeoff between energy and volume. In (13.18), since y is not affected 
by any scaling of the signal constellation, and the coding gain YII. is not a function of S, it 
follows that the shaping gain Ys is independent of any scaling of S. Since 

P(S) = l~s V2IN(S) , (13.45) 

and the first factor is independent of any scaling of the region S, as S is scaled, P( S) is 
proportional to V21 N( S). 

Example 13-6. -------------------------
For an N-sphere with radius R and fixed dimension N, the volume is proportional to RN, and the 
energy is proportional to R2, which is the volume raised to the power 2/N. 

A fundamental relationship between spectral efficiency and signal energy follows from 
(13.45). Substituting for the energy per two dimensions, 

E=2p(S)/N (13.46) 

and using (13.12), 

_ V2IN(A) v 
E- ·2 . 

6ys 
(13.47) 

Thus, for a fixed lattice A (and hence fixed coding gain), the energy per two dimensions is 
proportional to 2v, where v is the spectral efficiency in bits per two dimensions (bits per 
complex symbol). Thus, if we add one bit per complex symbol while holding the coding gain 
constant, the energy per complex symbol is doubled. 

13.2. Trellis Codes 

Lattice codes are useful for a modest number of dimensions. For large dimensionality, 
their implementation complexity becomes excessive, because the number of points in the 
signal constellation grows exponentially and the receiver multidimensional slicer becomes 
impractical to implement. Significant coding gains can be achieved with lower complexity by 
using an FSM in the transmitter (as was illustrated in Fig. 13-1), possibly in conjunction with 
a multidimensional signal constellation. The lower complexity comes from the inherent 
simplicity of the transmitter FSM and the availability of the Viterbi algorithm for ML 
detection in the receiver. 
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The basic advantage of signal-space coding is the same for both approaches in Fig. 13-1. 
Namely, by going to a higher dimensionality space we can increase the minimum distance in 
relation to the transmit signal energy. In both cases, the sequence of data symbols is not a 
Cartesian product of two-dimensional symbols. Rather, the symbols are dependent on one 
another, and, as was seen in Section 13.1, this dependence is the essence of achieving coding 
and shaping gain. The FSM introduces dependence of the successive symbols by its symbol
to-symbol state memory. The coding gain due to the FSM can augment the coding and shaping 
gain due to constellation design. A signal-space coder based on an FSM is often called a trellis 
coder, because the FSM is conveniently represented by its trellis (Chapter 5). 

The convolutional coder of Chapter 12 is a convenient FSM to use in a signal-space code. 
In Chapter 12 we thought of the additional bits introduced by the convolutional coder as 
increasing the bit rate. In signal-space coding, this redundancy is normally mapped into a 
larger symbol constellation, rather than an increased symbol rate. The bandwidth required for 
transmission is not increased, nor is total noise admitted by the receive filter. Of course, a 
penalty is paid in an increase in the number of points per multidimensional symbol, which 
taken by itself will either reduce the minimum distance or increase the transmitted energy. 
However, the advantages of working in a multidimensional space more than makes up for this 
penalty. 

A simple form of trellis coding proposed by Ungerboeck [3] uses a two-dimensional 
constellation, and is illustrated in Fig. 13-8. In Fig. 13-8(a), an uncoded PAM data symbol is 
generated by a mapper (two-dimensional symbol constellation). The size of the constellation 
is 2k, and the information bit rate is k bits per symbol. The trellis coder of Fig. 13-8(b) 
modifies this configuration by adding a rate kin channel coder, for example based on the 
convolutional coder of Chapter 12. The symbol mapper is modified to use a constellation of 
size 2n, where n > k. Significant coding gains can be achieved in this way. 

Example 13-7. -----------------------------------------------------
A trellis code designed by Wei [4] is a crucial part of9600 bl s voiceband data modems compatible 
with the CCnT V.32 standard. In that standard, the symbol rate is 2400 symbols per second, so a 
16 point constellation would suffice without coding to support 9600 b/s. The standard uses a rate-
2/3 convolutional code and a 32-point constellation. Most voiceband data modem standards faster 
than 4800 bl s depend on trellis codes. 

kBITS 
nBITS 

kBITS 
Ak 

CHANNEL MODIFIED "> CODER MAPPER -----L ____ -1 SYMBOL SYMBOL 

(a) (b) 

Fig. 13-8. (a) An uncoded system transmitting k bits per two-dimensional symbol with a constellation of 
size 2k. (b) A signal-space trellis coder. The rate k / n channel coder introduces redundancy and the 
mapper accommodates that redundancy by using a constellation of size 2n. 
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Assume that for a particular additive white Gaussian noise channel, an acceptable 
probability of error is achievable without coding at some SNR using a constellation of size M. 
Using coding we can reduce the SNR at the same error probability, or reduce the error 
probability at the same SNR; the improvement is limited by the Shannon channel capacity. 
The key observation made by Ungerboeck is that most of this theoretical reduction can be 
achieved using a constellation of size 2M plus a channel coding algorithm. It is not greatly 
advantageous to use a constellation of size greater than 2M, and it is not necessary to increase 
the symbol rate. 

The justification for Ungerboeck's observation depends on Fig. 4-4. This figure shows 
theoretical channel capacity (the maximum information rate for error free transmission) under 
various assumptions. In the figure, the left-most curve is the Shannon bound for discrete-time 
channels with additive Gaussian white noise. No assumption is made about the input 
constellation. The rest of the curves constrain the input constellation to be discrete-valued with 
equally likely symbols, and show the resulting channel capacity as a function of SNR. For 
example, at low SNR we can get close to the Shannon bound using a four level PAM signal, 4-
PAM. As the SNR increases, with 4-PAM the information rate cannot exceed two bits per 
symbol. 

A set of dots are plotted on the curves that show the SNR at which a probability of error of 
10-5 is achievable for a particular constellation without coding. For example, from Fig. 4-4 we 
see that at about 19 dB SNR we can achieve 10-5 with a 4-PAM constellation. Without coding, 
4-PAM transmits two bits per symbol. But with coding, using an 8-PAM constellation we can 
theoretically transmit 2 bits per symbol (error free) down to about 13 dB SNR. Hence, using a 
coded 8-AM constellation, we should be able to design a code with a total gain (coding plus 
shaping gain) of 19 - 13 = 6 dB. Using larger constellations cannot improve the total gain by 
more than about 1 dB, because the 6 dB gain is already so close to the Shannon bound. 
Furthermore, since there is no increase in bandwidth with coding, the gain is fully realized. 
There is no more noise for the coded system than for the uncoded system, unlike some 
situations considered in Chapter 12, in which the additional noise offset some of the gain. 

13.2.1. Simple Trellis Codes 

Designing trellis codes with total gains of 3 to 4.5 dB is easy, and the resulting codes are 
reasonably easy to implement. Simple trellis codes consist of convolutional coders followed 
by symbol mappers that accommodate the redundancy with a larger alphabet. In this section 
we will make no attempt to separate the coding gain from the shaping gain. We will also make 
no attempt to separate the coding gain due to the FSM from the coding gain due to 
constellation design. We will instead evaluate the overall gain of some simple trellis codes by 
comparing them to uncoded systems that achieve the same overall bit rate in the same 
bandwidth. Then in Section 13.3 we develop a model that separates the gains from the various 
sources. 

Example 13-8. -----------------------------------------------------
Consider the concatenation of a convolutional coder and a 4-PSK mapper shown in Fig. 13-9. The 
trellis is shown in Fig. 13-10(a). The only difference between this trellis and the one in 
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Fig. 12-14(b) is that the transitions are labeled (Bk , AkJ rather than (Bk , [Ck(1), Ck(2)]). (Two 
slightly simpler but equivalent trellis codes are given in Problem 13-9 and Problem 13-10.) The 
performance advantages apply equally to all three coders. 

13.2.2. Total Gain of Trellis Codes 

The total gain that can be achieved with a trellis code depends on the number of states in 
the FSM. Roughly speaking, it is easy to get coding gains of about 3 dB with 4 states, 4.5 dB 
with 16 states, and close to 6 dB with 128 or more states [5]. In this section we illustrate how 
to determine the performance of a trellis code by directly comparing it to an uncoded system. 
In Section 13.3 we will show how shaping, constellation design, and the FSM individually 
contribute to this overall gain. 

Because of the FSM convolutional coder, trellis codes lend themselves to soft decoding 
using the Viterbi algorithm. This type of decoding is the most common in practice, so we 
restrict our attention to it. In Appendix 7-B we showed that at high SNR 

Ck(l) 

SYMBOL 
MAPPER 

Bk 01 
6 

Ak 

* 10 

Ck (2) 

Fig. 13-9. A trellis coder consisting of a convolutional coder followed by a mapper. 

(a) (b) 

Fig. 13-10. (a) One stage of the trellis for the trellis code in Fig. 13-9. where c =$. (b) The minimum
distance error event. assuming the correct state trajectory is the all-zero state trajectory. 
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Pr[symbol error] :::: CQ(dE,min/2cr) (13.48) 

where C is the error coefficient, lying between P and R defined by (7.157) and (7.150). Hence, 
as with soft decoded convolutional codes, the performance of trellis codes is dominated by the 
error events with the minimum Euclidean distance dE,min. However, caution is in order when 
calculating this distance. In general, trellis codes are not linear even when the underlying 
convolutional code is linear (see Appendix 12-A and Problem 13-11), so it is usually unsafe to 
simply find the error event closest to the zero state trajectory (see Problem 13-11). Instead, we 
may have to be more careful and systematically find the minimum distance error event for 
each possible correct path through the trellis, as done in Section 7.6.2. (The model of 
Section 13.3 separates the contribution of the FSM, and in most cases this leads to linearity 
and simplified methods for calculating minimum distance.) 

Example 13-9. -----------------------------------------------------
In Fig. 13-IO(b) we show the minimum-distance error event assuming the correct state trajectory is 
zero; it has a distance of Jl6 c = JlOE. This distance is calculated using complex arithmetic, 

(13.49) 

For this case it is easy to verify that there is no error event with distance less than Jl6 c. Observe 
simply that all branches diverging from the same node have distance 2c from each other, and all 
branches converging on the same node have distance 2c, so the minimum distance is bounded from 
be10wby 

(13.50) 

We can further determine that after two paths diverge, all possible combinations of subsequent 
branches have distance J2 c so 

(13.51) 

Hence 

d E,min ~ .[f6 c (13.52) 

for all possible state trajectories. It is also easy to verify that for all possible state trajectories there 
is exactly one error event at distance .[f6 c. 

In Example 13-9 every state trajectory has exactly one error event at distance dE,min, and this 
error event has exactly one symbol error, so C = P = R = 1. Consequently, at high SNR, 

Pr[symbol error] :::: Q(d ~;in) . (13.53) 

To compare this performance to an uncoded system, the noise variance cr2 is the same in both 
cases because the signal bandwidth is the same. We need to simply find an uncoded system 
with the same average transmit power that carries the same number of bits. 
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Example 13-10. -------------------------
Continuing the previous example, dE,min =,jlOE so 

Pr[symbol error] z Q( J~~~ = Q( J5 ~) . (13.54) 

Using the pessimistic assumption that Pr[bit error] z Pr[symbol error] (see (7.164», we get 

Pr[biterror] z Q(J5~). (13.55) 

An uncoded 2-PSK system with alphabet Jl = ±e has the same transmit energy as the coded 4-PSK 
system with alphabet Jl = {ie, ±je}, e =$, and carries the same number of source bits. It has a 
probability of error 

Pr[bit error] = Q( J2 ~) (13.56) 

The coded system is better by approximately 

1O.10g(~) z 4 dB . (13.57) 

We have achieved the same improvement over the uncoded system as was achieved by 
convolutional coding with soft decoding, but without any increase in the bandwidth! 

In more complicated cases (where Pi:- R) we can find P and R to estimate C in (13.48), as 
illustrated in Appendix 7-B.11 is more common, however, to assume that C is reasonably small 
and ignore it. A widely used rule of thumb is that at error rates on the order of 10-5 or 10-6, if 
C is not too large, every increase in C by a factor of2 costs about 0.2 dB of coding gain [6]. 

Trellis coding is usually preferred over convolutional or block coding for bandlimited 
channels with additive white Gaussian noise, unless severe nonlinearities or hardware 
complexity make the increased alphabet size impractical. 

13.2.3. More Elaborate Trellis Codes 

In the previous examples of trellis codes, one source bit was processed with a rate 1/2 
convolutional coder to yield two coded bits. Representing the two coded bits requires an 
alphabet of size four. The technique is easily extended to make use of alphabets larger than 
four. 

Example 13-11. ---------------------------
A simple extension of the trellis code described in the previous section is illustrated in Fig. 13-11. 
This trellis code uses an alphabet of size eight, and can be built with any of the rate 112 
convolutional coders in Fig. 13-9, Problem 13-9, or Problem 13-10. Note that Bk (1) has no effect 
on the shape of the trellis. The transition from one state to another is controlled entirely by Bk(2). 

Each transition from one state to another, therefore, occurs for two possible values of Bk (1), zero 
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and one. This can be represented by showing two parallel transitions between every pair of states, 
as shown in Fig. 13-12. 

The general technique, illustrated in Fig. 13-13, can be stated as follows. Given a channel with 
a bandwidth limitation, detennine the symbol rate that can be transmitted. Detennine the size 

Bk(l) Ck(l) 
g..PSK 

MAPPER 

Ck(2) 
Ak 

B (2) 

* ~ CONVOLUTIONAL 
Ck(3) 

CODER 
o 0 

Fig. 13-11. A simple extension of the previous trellis code increases the number of source bits per 
symbol by using one uncoded bit and a larger alphabet. 

Fig. 13-12. The extra uncoded bit in Fig. 13-11 can be represented in the trellis using parallel branches, 
as shown. One of two parallel branches is taken, depending on the value of the extra bit. 

MAPPER 

r~ SYMBOL 
FROM 

Ak ) SUBSET 

RATE m/(m + 1) }~~cr CONVOLUTIONAL SUBSET 
CODER 

Fig. 13-13. Trellis coders made by cascading a oonvolutional coder and a mapper can divide the 
inooming source bits into m bits to code and m -m bits to leave uncoded. The required oonvolutional 
coder has rate m/(m + I), and the trellis will have 2m - m parallel transitions between every pair of 
states. 
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2m of the alphabet that would be required (without coding) to transmit the source bits at the 
desired bit rate. Then double the size of the alphabet to 2m + 1 and introduce a channel coder 
that produces one extra bit. The coder need not code all incoming bits, as shown in Fig. 13-13. 
However, leaving some bits uncoded may affect performance. 

A trellis with m - m uncoded bits has 2 m - m parallel transitions between every pair of 
states. When there are parallel transitions, a very short error event consists of mistaking one of 
these parallel transitions for the correct one. The coding does not defend at all against this 
error event. To minimize its probability, we should ensure that the Euclidean distance between 
the symbols corresponding to parallel transitions is maximized. 

Example 13-12. To complete the design of the coder in Fig. 13-11, we need to design the mapping 
of bits into 8-PSK symbols. Designing the mapping is the same as assigning symbols to transitions 
in the trellis Fig. 13-12. Divide the 8-PSK constellation into four subsets, as shown in Fig. 13-14. 
To ensure that parallel transitions in Fig. 13-12 have symbols as far apart as possible, symbols for 
parallel transitions are selected from the same subset. Hence, in Fig. 13-11, Ck(2) and Ck(3) select 
the subset, A, B, C, or D, and Ck (1) = Bk (1) selects the point within the subset. Now assign subsets 
to pairs of transitions to try to maximize the minimum distance. A simple heuristic is to try and 
keep the distance between diverging or merging branches as large as possible. For example, C is the 
furthest subset from A, so the two pairs of branches emerging from state zero should be assigned 
subsets C and A. Using this rule, the mapping is shown in Fig. 13-15. 

As usual, the performance of the code will be dominated by the error event with the smallest 
distance from the correct path. For coders with parallel transitions, we need to check the 
distance between parallel transitions to see if these are the closest error events. 

Example 13-13. ----------------------------------------------------
Continuing the previous example, assume IAk I = c =$ for all symbols in the 8-PSK alphabet. 
Then using the mapping developed in the previous example, the distance between parallel 
transitions is 2c. The next closest error event turns out to be at distance c J6 - J2 = 2.14c > 2c, so 
dE,min= 2c (see Problem 13-13). Hence the probability of an error event is approximately 

Pr[errorevent] '" Q(J2~) . (13.58) 

A 

Fig. 13-14. The 8-PSK symbol set is divided into four subsets. To ensure that parallel transitions in 
Fig. 13-12 have symbols as far apart as possible, symbols for parallel transitions are selected from the 
same subset. 
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These most probable error events result in exactly one bit error out of two (the uncoded bit), and 
there is only one such error event for each correct path, so we can assert 

Pr[biterror] '" ~Q(~) . (13.59) 

To compare this to the uncoded system, note that the uncoded system requires an alphabet of size 
four to achieve the same source bit rate. Such an alphabet resulting in a signal with identical energy 
is the 4-PSK alphabet {fa, ±ja}. So, for the uncoded system, dE min =,/2 a, and the probability 
of bit error is 

Pr[bit error] = Q( !a) . (13.60) 

Ignoring the constant coefficient in (13.59), the total gain is 

20·10g,/2 =3dB. (13.61) 

Hence the parallel transitions degrade the performance by about 1 dB compared to the system in 
Fig. 13-9, which does not have parallel transitions. 

Mapping by Set Partitioning 

In Example 13-13, we developed a mapping between the coded bits [Ck(l), Ck(21, Ck(3)] 

and the transmitted symbols Ak . That mapping has the property that parallel transitions 
correspond to symbols that are as far apart as possible. A systematic way to design such 
mappings in general is known as mapping by set partitioning, proposed by Ungerboeck [3]. 

Fig. 13-15. Parallel branches (shown here as single lines) are aSSigned a subset of the signal set in 
such a way as to maximize the distance of diverging or merging branches. 
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From bandwidth and bit-rate considerations we can determine the number of symbols 
required in the alphabet. If the number is 2m for an uncoded system, we have proposed using 
2m + 1 for the coded system. However, we still have considerable freedom in choosing how to 
map the coded bits into symbols. The choice of mapping can drastically affect performance of 
the code. A good heuristic technique was proposed by Ungerboeck [3]. 

Example 13-14. ----------------------------------------------------
In Fig. 13-14 we divided an 8-PSK constellation into four subsets. Another way to view this 
partition is illustrated in Fig. 13-16. The constellation is first divided into two subsets that 
maximize the distance within the subsets, and then subdivided again. 

The same principle can be applied to more elaborate constellations. A 16-QAM constellation 
is partitioned in Fig. 13-17. Consider the trellis coder in Fig. 13-13. It is indicated that the 
uncoded bits select a signal from the subset, and the coded bits select the subset. Hence there 
must be 2 m + 1 subsets. 

~ 
~ 

/~+ 
+++'+ A C D B 

Fig. 13-16. Systematic partitioning of an 8-PSK constellation. 

d=2 ~ 
~ 

/' ~ 
d=2J2 + + 

I \ I \ 
d=4 +w + x + y +z 

/\ /\ /\ /\ 

d=4J2 ++++++++ 
ABC 0 E F G H 

Fig. 13-17. A 16-QAM constellation is partitioned into subsets so that the distance between the 
symbols within the subset is maximized. 
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Example 13-15. ------------------------
If m = 1 as in the previous examples, then 4 subsets are required. Thus the subsets in the third row 
of Fig. 13-17 can be used in the coder shown in Fig. 13-18. The uncoded bits select the symbol 
within the subset, and since there are two uncoded bits, each subset requires 4 symbols. 

To use the subsets in the fourth row in Fig. 13-17, we need a trellis coder with m = 2. 

Example 13-16. 
A trellis coder with one uncoded bit and two coded bits that uses the subsets in the fourth row in 
Fig. 13-17 is shown in Fig. 13-19. The convolutional coder is from Fig. 12-36(b). It is an 8-state 
systematic rate 2/3 convolutional coder of the feedback type. A reasonable mapping between the 
coded bits and the subsets from the fourth row of Fig. 13-17 is shown in Fig. 13-20. The total gain 
of this coder is approximately 5.33 dB [7]. We could of course add one more uncoded bit and use a 
32-point cross constellation, in which case the total gain reduces to about 3.98 dB. Adding yet one 
more uncoded bit and using a 64-point QAM constellation reduces the total gain to about 3.77 dB 
(compared to a 32 point cross constellation used without coding). 

It should be emphasized that these total gain coding gains compare the overall performance of 
the given trellis coder against an appropriate uncoded system. Not all the gain is due to the 
redundancy introduced by the convolutional coder; some of it is due to the constellations 
chosen for the comparison. This issue is addressed further in Section 13.3, where absolute 
measures of coding gain are developed. 

The general rules for mapping by set partitioning are: 

• First, maximize the distance between parallel transitions. 

• Next, maximize the distance between transitions originating or ending in the same state. 

CONVOLunONAL 
CODER 

Fig. 13-18. A trellis coder with m = 1 and two uncoded bits. 

16-QAM 
MAPPER 

MAPPER 

o 0 0 0 

o 000 

o 0 0 0 

o 0 0 0 

Fig. 13-19. A trellis coder with one uncoded bit and two coded. Also note that the convolutional coder is 
recursive (it has feedback). which is conimonly used. 
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• Finally, use all symbols with equal frequency. 

These rules are heuristic; they do not necessarily lead to a code that is optimal in any sense. In 
Section 13.3, we develop a more systematic approach to constellation partitioning based on 
cosets of a lattice. 

Catastrophic Codes 

Considering only minimum-distance error events has its hazards. In most of our examples, 
we argued that there was only one minimum distance error event, and consequently it 
dominates the performance. In this section we give an example at the other extreme, where 
there are an infinite number of minimum-distance error events. More specifically, R in (7.150) 
may not be bounded, so C in (13.48) also may not be bounded. Such a code is called 
catastrophic. 

Fig. 13-20. A mapping between the coded bits of Fig. 13-19 and the subsets of the 16-QAM 
constellation in the fourth row of Fig. 13-17. 

+ ++ 
A B 

Fig. 13-21. Set partitioning for a four pOint constellation. 



Sect. 13.2 Trellis Codes 681 

Example 13-17. ------------------------
A four-point constellation can be partitioned as shown in Fig. 13-21. Consider transmitting 2 bits 
per symbol, using one bit to select subset A or B, and the other bit to select the point within the 
subset. This can be represented with a two-state trellis, as shown in Fig. 13-22. A minimum
distance error event is iIIustrated in Fig. 13-22(b). The minimum distance is 2, which is 3 dB better 
than the minimum distance of J2 in the uncoded system. If we assume that this is the only 
probable error event, then the total gain is about 3 dB. But we cannot expect this total gain. There 
are an infinite number of error events with the same minimum distance, some of which are shown 
in Fig. 13-22(c). In fact, it is easy to show that R in (7.150) is unbounded (see Problem 13-16). We 
should not expect any gain at all, because we are representing two source bits with an alphabet of 
size four, so there is no redundancy! 

Catastrophic codes have the property that there are error events with finite distance but infinite 
length. The decoder may get into an error event during a burst of channel noise, and not get out 
again for a long time, especially if the channel quality improves! This will cause an infinite 
number of decoding errors. An interesting way of correcting the problem is illustrated in the 
following example. 

Example 13-18. -------------------------
Suppose that the two-state trellis is forced to return to state zero every fourth symbol, as shown in 
Fig. 13-23. Note that in the fourth symbol interval the coder does not have a choice of set A or B. 
Thus only one bit instead of two can be transmitted in the fourth symbol interval. In fact, the 
resulting code is a simple parity-check block code! Assuming the rate loss is not important, we can 
compare its performance with that of uncoded 4-PSK at high SNR. Now there are at most three 
error events with minimum distance starting at any given time, so the probability of a minimum-

A A A 

~ 
(b) 

--~-o--~-- --~-- --~--

(c) 

Fig. 13-22. a. A trellis for the code in Example 13-17. b. A minimum-distance error event. c. A set of 
minimum-distance error events. There are an infinite number of minimum-distance error events, so this 
code is catastrophic. 

Fig. 13-23. The trellis of Fig. 13-22(a) is modified so that it is forced to return to the zero state every 
fourth symbol. This converts the code to a block code, and reduces the message bit rate. 
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distance error event can be approximated as 3Q(dE,min/2cr) where dE,min = 2. The factor of 3 is 
not important at high SNR, so nearly the full 3 dB improvement is realized. The code transmits 
only an average of7 / 4 source bits per symbol, so there is some room for redundancy in the 4-PSK 
alphabet. 

Any trellis code can be converted into a block code of block size n by forcing the trellis to pass 
through a particular state every n symbols. 

Trellis Codes using Nonlinear Convolutional Codes 

In practice, there is little reason to restrict ourselves to linear convolutional coders (see 
Appendix 12-A). Some desirable trellis codes use nonlinear convolutional coders. 

Example 13-19. 
A trellis code using a nonlinear convolutional coder is shown in Fig. 13-24. The coder was invented 
by Wei [4], and has been adopted in CCITT recommendation V32 for voiceband modems 
operating at 9600 bits per second. Its main advantage is that the code is invariant under 90 degree 
phase shifts. This advantage will become clearer when we discuss carrier recovery in Chapter 15. 
Some of the symmetry is evident from examining the constellation in Fig. 13-24. It is evident that 
Ck (1) and Ck (2) are the same at all points 90 degrees apart. Furthermore, Ck (3) and Ck (4) 

differentially encode the quadrant (see Chapter 15). That is, to move -90 degrees, simply add one 

Ck(l) ,----.., 
~----------------------------------------------~~ Ck(2) 

DIFFERENTIAL 
ENCODER 

01 0 11111 00011 
o 0 

00010 10100 01010 

o 0 ~ 0 0 
01001 10101 11001 00101 

o 0 0 0 
00000 11110 01000 10110 11000 

32·SYMBOL 
MAPPER 

(SEE BELOW) 

~ o 'uu" 0 v.". 0 v.v" 0 .v". 0 

11100 10010 01100 11010 00100 

o 0 ~ 0 0 
00001 11101 10001 01101 

o 0 
01110 10000 00110 SYMBOL LABELS ARE 

00111 11011 01 0 Ck (l)Ck (2)Ck (3)Ck (4)Ck (5) 

Fig. 13-24. A nonlinear convolutional coder uses modulo-two multiplication (and-gates) in addition to 
adders and delays. The example shown here is from the CCITT recommendation V.32. 
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(modulo-four) to these two bits. This differential encoding is deliberately introduced by the 
differential encoder in the figure. The symmetry of the final bit is more subtle, but can be seen as 
symmetry in the trellis [4]. 

Multidimensional Trellis Codes 

In Section 13.1, the multidimensional signal constellation was described. It is realized by 
grouping one- or two-dimensional data symbols and treating them as a multidimensional 
vector. The general idea of trellis codes was presented in Fig. 13-1 in terms of a 
multidimensional constellation, but all the examples thus far are two-dimensional. 

In the context of a trellis code, the benefit of using a multidimensional constellation can be 
explained as follows. Recall the observation that doubling the symbol alphabet is sufficient to 
achieve almost all the available coding gain determined by the Shannon limit. However, 
doubling the size of the constellation, for the same minimum distance, will increase the signal 
energy. The coding gain must overcome this immediate disadvantage. In Section 13.1, the 
continuous approximation predicted that doubling the size of the constellation increases P, the 
signal energy per two dimensions, by 221 N for an N-dimensional constellation. Thus, as the 
dimension of the constellation increases, the power penalty decreases. Expressed in dB, this 
penalty is 

(13.62) 

Thus, it decreases from 3 dB for a two-dimensional constellation to just 1 dB for a six
dimensional constellation. 

Exercise 13-2. 
Show that the 32-point cross constellation in Fig. 5-14 has 3 dB more energy than the 16-point 
QAM constellation in Fig. 5-13. Assume the points are all of the form Ak = [aI' a21 where 
ai E {±5, ±3, ±l}. Thus, as predicted by the continuous approximation, the signal energy is 
increased by 3 dB for a doubling ofthe number of points in the constellation. 

Exercise 13-3. 
Consider a four-dimensional symbol 

(13.63) 

where ai E {±3, ±l}. Show that the average squared energy of this alphabet is 20, assuming all 
symbols are equally likely. There are 44 = 256 symbols in this alphabet. Now construct a four
dimensional alphabet with 512 symbols by adding symbols of the form: 

[±5, ±l, ±l, ±l] (13.64) 

and all its permutations (for a total of 64 possibilities) and symbols of the form 

[±5, ±3, ±l, ±l] (13.65) 

and all its permutations (for a total of 192 possibilities). Show that the average squared energy of 
the 512 point constellation is 27, only 1.3 dB more than the average squared energy of the 256 point 
constellation. The continuous approximation predicts a 1.5 dB penalty. 
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While four-dimensional constellations like the one derived in Exercise 13-3 are difficult to 
draw, they are easy to use. Given a two-dimensional modulation system (a passband system), 
the first two coefficients Ul and U2 of the four-dimensional symbol are transmitted in one 
symbol interval as the real and imaginary parts of a complex symbol, and the last two 
coefficients U3 and U4 are transmitted in the next symbol interval. It is now easy to construct a 
trellis coder that makes use of this. 

Example 13-20. -------------------------
Continuing the previous example, the four-dimensional alphabet has 512 symbols, and hence can 
represent 9 coded bits. The trellis coder in Fig. 13-25 will do the job. Three bits are coded to get 
four bits, and five bits are used uncoded. Calderbank and Sloane proposed this configuration in 
1985 [8], and Forney, et. al proposed a similar configuration one year earlier [9]. Using an 8-state 
convolutional coder, they found a total gain of about 4.7 dB, ignoring the error coefficient C. They 
compared this performance to a two-dimensional trellis coder with the same source bit rate (4 bits 
per symbol) which has a total gain of about 4 dB. This suggests that use of a multidimensional 
trellis code yields an additional total gain of about 0.7 dB in this example. However, the error 
coefficient C in this case is large enough to nullity much of this advantage. 

Ungerboeck tabulates several possible four and eight-dimensional trellis coders and their 
performance [7]. Many good multidimensional trellis codes are given by Wei [10]. Forney [6] 
and Ungerboeck [7] also tabulate good multidimensional trellis codes and their properties. 

13.3. Coset Codes 

In Section 13.2 we compared the performance of trellis coded systems against uncoded 
systems with the same transmit energy and spectral efficiency. Although such comparisons are 
useful, they fail to properly account for the sources of improvement in performance. In 
particular, they mix coding gain with shaping gain, and they mix coding gain due to 
constellation design with coding gain due to the FSM. Moreover, the methods do not scale 
well to large constellations and to multidimensional constellations. 

4·0 
MAPPER 

512 POINT 
CONSTELLATION 

Fig. 13-25. A four-dimensional trellis coder. For every set of 8 bits that come in at the left, one four
dimensional symbol is produced by the mapper. These are actually transmitted, however, as two 
successive two-dimensional symbols. 
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Fig. 13-26. An illustration of portions of a lattice and two sublattices. Assume the lower left is the origin. 
(a) The integer lattice z2. (b) The sublattice RZ2 (defined by the squares). (c) The sublattice 2Z2 (also 
defined by the squares). 

685 

In this section, we introduce a more systematic approach based on the cosets of a lattice, 
as introduced by Calderbank and Sloane [11]. Trellis codes based on this coset partition are 
called coset codes by Forney [6]. Coset codes allow us to separate the coding gain due to the 
lattice, the shaping gain, and additional coding gain due to the FSM. Moreover, Ungerboeck's 
set partitioning generalizes to a simple systematic method that is easy to apply. 

13.3.1. Lattice Partitions and Cosets 

For a lattice A, a sublattice N is a subset of the points in the lattice that is itself a lattice. 
Recall that a lattice is algebraically a group, meaning that it is closed under vector sums and 
differences. Any lattice must therefore include the zero point, and must be infinite in extent. 

Example 13-21. ----------------------------------------------------
Let the one-dimensional integer lattice be written Z = { ... , -1, 0, 1, 2, ... }. Then the two
dimensional integer lattice in Fig. 13-26(a) is the Cartesian product A = Z2. A sublattice is defined 
by the squares in Fig. 13-26(b). Note that this sublattice is equal to a rotated and scaled version of 
the original lattice. Thus if A is a vector representing a point in the original lattice (a two
dimensional vector with integer entries), then RA is a vector representing a point in the sublattice, 
where 

R=[l 1J. 1 -1 
(13.66) 

Thus we write the sublattice N = RZ2. The sublattice defined by the squares in Fig. 13-26(c) is 
simply a scaled version of A, A" = 2z2. Notice that 2Z2 is a sublattice of RZ2. 

Given a sub lattice N of A, a coset of N is the set 

{A' + c; for all A' EN} (13.67) 

for some c E A. Since c identifies the coset, it is called the coset representative. Each coset is 
written N + c. 
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RATE ml(m + 1) COSET SELECTOR 
CONVOLUTIONAL AIA' CODER 

COSET 
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SIGNAL POINT 

SELECTOR :;> 

Fig. 13-27. A view of trellis coding that enables deeper understanding of the sources of performance 
gain. 

x A x A X A 

C • C • C • 
X A X A X A 

C • C • C • 
X A X A X A 

C • C • C • 

Fig. 13-28. A portion of four easets of An = 2z2 identified by four distinct shapes. 

Example 13-22. ---------------------------
The sublattiee A" = 2z2 in Fig. 13-26(c) has a total of four unique eosets, shown in Fig. 13-28. 
The coset representatives are c E {(O, 0), (1, 0), (0, 1), (1, I)}. Only the coset identified by 
squares, the one with c = (0, 0), is itself a lattice, since it is the only coset that includes the zero 
vector. Similarly, the sublattiee A' = Rz2 in Fig. 13-26(b) has two eosets. 

A partition of A induced by A', written AI A', is the set of all cosets of A' in A, including A' 
itself. The order of a lattice partition, written I A I A' I , is the number of distinct cosets, and is 
finite. 

13.3.2. Application to Trellis Coding 
In contrast to Fig. 13-13, consider the view of trellis coding shown in Fig. 13-27. The 

output of a convolutional coder (or more generally, an FSM) is used to select a coset from a 
partition AI A'. The FSM does not define which point to use within the coset. The output of 
the coset selector, therefore, is a coset representative. 
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The point within the coset is selected by the "signal point selector," which therefore 
applies shaping. It might also translate the lattice by some vector a so that the mean of the 
points it uses is zero. Thus, given a coset representative c, the signal point selector chooses a 
constellation point in the set (A' + c + a) n S, where S is the shaping region and a is a vector 
not constrained to lie on the lattice 1\.. 

The model in Fig. 13-27 describes some trellis codes, but not all. The 8-PSK constellation 
of Fig. 13-11, for example, cannot be described as cosets of a lattice. However, when 
constellations get large, practical considerations dictate using regular structures, and lattices 
have compelling advantages. Thus, the model in Fig. 13-27 includes as special cases most 
practical examples of trellis codes with large constellations. 

Example 13-23. -------------------------
The trellis coders of Example 13-15, Example 13-16 and Example 13-7 can all be described in 
terms of Fig. 13-27. Multidimensional trellis codes are also generally coset codes, except that the 
output of the signal point selector will be a vector of N / 2 complex symbols, rather than just a 
single complex symbol. 

There are potentially three distinct sources of performance gain in Fig. 13-27: 

• The lattice I\. may have coding gain, as discussed in Section 13.1. 

• The signal point selector will use some shaping region S that may have shaping gain, 
also as discussed in Section 13.1. 

• The convolutional coder will allow only particular sequences of cosets to be sent to the 
signal point selector, and thus introduces its own coding gain by increasing the 
minimum distance between sequences. 

In Section 13.2, we made no attempt to separate the gain due to these three effects. The first 
two effects have been thoroughly studied in Section 13.1, so the third is the only addition. 

13.3.3. Coding Gain due to Redundancy 

The convolutional coder in Fig. 13-27 allows only a subset of all possible sequences of 
cosets. Thus, there is redundancy in such sequences. This means that the minimum distance 
between any two allowable sequences will be larger than the minimum distance between pairs 
of points in the lattice. 

Let dmin(C) be the minimum distance between any two sequences of cosets allowed by the 
convolutional coder C, where the distance between two cosets is taken to be the minimum 
distance between any point in one coset and any point in the other. This minimum distance 
will dominate the performance of the overall system. Let dmin(A) be the minimum distance 
between any two points in I\.. Then the convolutional coder has increased the minimum 
distance by a factor of dmin(C)/ d min(I\.). 
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There is a price paid, however, for this increase in minimum distance. Since there is 
typically one more bit emerging from the convolutional coder than going into it, twice as many 
points in the lattice will be needed within the shaping region to transmit the coded signal. Thus 
the size of the shaping region must increase. This constellation expansion reduces the gain, 
since it increases the energy. 

To quantifY the effect of the constellation expansion, define the redundancy r(C) of the 
convolutional code C to be the number of redundant bits generated by the convolutional coder 
per N dimensions. In other words, it is the number of bits at the output of the convolutional 
coder minus the number of bits at its input. Usually r(C) = 1, as shown in Fig. 13-27. Define 
the normalized redundancy (per two dimensions) as 

_ r(C) 
p(C) - N/2 . (13.68) 

The transmitted energy is increased by approximately 2 P(C). Note that with the typical r(C) = 
1, the transmitted energy is increased by 221 N. Thus, as explained in Section 13.1, if N = 2, the 
energy is doubled to accommodate the redundancy of the convolutional coder. This is intuitive, 
because the number of points in the transmitted (two-dimensional) constellation doubles. 
However, if N = 4, then the energy increases by only a factor of J2 because the number of 
points is doubled in a four-dimensional constellation, and this increase is divided between two 
successive two-dimensional symbols. 

Combining the positive and negative effects of the convolutional coder, we get the coding 
gain due to the convolutional coder, 

(13.69) 

This is simply the increase in minimum distance due to the convolutional coder divided by the 
increase in energy (per two dimensions) due to the constellation expansion. We would expect 
the overall coding gain compared to an uncoded rectangular lattice with a rectangular shaping 
region to be, from (13.18), 

(13.70) 

where YA is the coding gain of the lattice defined in (13.19), and Ys is the shaping gain of the 
lattice defined in (13.20). Thus, the convolutional coder adds additional coding gain Yc on top 
of the lattice coding gain and the shaping gain. This is verified in the following exercise. 

Exercise 13-4. 
Show that (13.70) reduces to (13.10) where d~in = d~in(C)' 
Hint: It might be helpful to use (13.46) and (i3.12). 

The formulation in Fig. 13-27 leads to another view of Ungerboeck's set partitioning, 
shown in Fig. 13-29. Given a lattice A, form a sublattice A' or order two. For example, the 
sublattice RZ2 in Fig. 13-26(b) is a sublattice of Z2 of order two. A coset induced by such a 
sub lattice is therefore selected by one bit. Then form a sub lattice A" of A' with order two. A 
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coset for this partition is selected by another bit. Continue partitioning the lattice until there 
are enough partitions to encode all the bits from the convolutional encoder. For example, the 
set partitioning in Fig. 13-17 is obtained by applying this procedure to A = Z2. 

13.4. Signal-Space Coding and lSI 

Trellis coding is advantageous on many media where bandwidth is at a premium. On 
some, such as radio transmission between fixed antennas, or satellite transmission, lSI is not a 
significant problem. On others, like wire-pair and coaxial cable, lSI must be equalized or 
cancelled. The best techniques for countering lSI described in Chapters 8 and 9 are not 
immediately compatible with trellis coding or other signal-space codes. The reason is simply 
delayed decisions. In theory, the ML detector using the minimum-distance criterion may have 
to wait forever before it can make a decision. In practice, the Viterbi algorithm is used with 
some truncation depth (see Section 5.4.4). However, even a modest truncation depth 
introduces enough delay in the decision to compromise any decision-directed or decision
feedback technique. Thus, the straightforward combination of equalization for lSI with signal
space coding is not always possible. We now discuss some of these problems and ways around 
them. 

13.4.1. Trellis Coding and Linear Equalization 
Linear equalization (Chapter 8) is the simplest way to counter lSI. The LE is fortunately 

easy to combine with Viterbi decoding of a trellis code, since the input to the Viterbi detector 
is nominally free ofISI. The price paid for this simple solution, as opposed to ML detection or 
decision-feedback equalization, is higher noise enhancement. 

There is potentially a problem when the adaptation of an LE is decision-directed 
(Chapter 9). A similar problem occurs with other decision-directed algorithms, such as carrier 
recovery (Chapter 15). Because of the delay in making decisions, the dynamics of the 
adaptation algorithm is altered. For example, in the receiver shown in Fig. 5-21, the slicer is 
replaced with a sequence detector and the decisions are delayed. To ensure stability of the 
adaptation algorithms, their step sizes must be reduced, so the convergence time and tracking 

RATE m/(m + 1) 
CONVOLUTIONAL 

CODER 

COSET SELECTORS 

lI.' 1/\" I PA 
AIA' I) 

RTInON 
AIN CH 

/\ (ni) 1/\ (in + 1) I 
COSET 
REPRESENTA TIVE 

SIGNAL POINT F> SELECTOR 

Fig. 13-29. Set partitioning can be viewed as a sequence of second order lattice partitions. 
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ability suffers. An alternative approach is to make tentative decisions with a conventional 
slicer, and use those tentative decisions to update the filter taps and carrier phase. Since these 
tentative decisions do not benefit from the coding gain, a minor degradation is suffered in the 
performance of the adaptive filters. 

13.4.2. Trellis Coding and Transmitter Precoding 

In Chapter 8, it was shown that decision-feedback equalization (DFE) results in less noise 
enhancement than the LE, since postcursor lSI is cancelled rather than equalized. The DFE 
depends on past decisions to cancel the postcursor lSI, and any delay in the availability of 
decisions due to sequence detection implies that only postcursor lSI with a compatible delay 
can be cancelled. For all practical purposes, this renders the DFE useless in the presence of 
ML trellis decoding, since it is typically the low-delay postcursor lSI that is most 
consequential. A way to combine the DFE and trellis coding, called "parallel decision
feedback equalization," will be discussed in the next subsection. Here we describe an 
alternative that is compatible with trellis coding. 

Transmitter precoding (Section 8.1.4) was shown to achieve a performance essentially 
identical to the DFE by doing the postcursor cancellation in the transmitter rather than the 
receiver. The price paid is the need for knowledge of the channel response in the transmitter, a 
requirement that is compatible only with channels that are stationary or slowly time varying. 
This rules out, for example, rapidly fading radio channels. 

Transmitter precoding was explained in the context of a one-dimensional signal 
constellation, although it is compatible with multidimensional constellations as well. For 
simplicity, we will explain the combination of precoding with trellis coding for one
dimensional data symbols. Recall that if the data symbol ak is chosen from an alphabet of size 
M (where M is even) consisting of odd integers less than M in magnitude, then the transmitter 
is designed in such a way that the channel output symbol is an extended data symbol 

(13.71) 

where ik is a sequence of integers chosen to minimize the peak transmitter power. The 
alphabet of Ck consists of all odd integers. This channel output data symbol is also corrupted 
by additive noise at the receiver, and in the absence of trellis coding is detected by applying an 
extended slicer that finds the closest odd integer to the received signal. The original data 
symbol ak can be obtained uniquely from Ck by reducing it modulo 2M. 

Transmitter precoding is immediately compatible with trellis codes, if the constellation 
design and set partitioning is done in a compatible fashion. It requires no modification to the 
trellis coder, but the trellis decoder does have to be modified slightly. This is illustrated by an 
example. 

Example 13-24. ------------------------
An eight-point baseband constellation is shown in Fig. 13-30(a). It consists of all odd integers 
between -7 and 7, and can be partitioned using set partitioning into the four subsets shown. Given a 
rate one-half convolutional coder with one input bit, and a second input uncoded bit, the two 
convolutional coder output bits can be used to select the subset (from among four possibilities) and 
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the uncoded bit can be used to select the point (from among two possibilities) within the selected 
subset. Suppose we are working with the extended constellation for ck rather than ak, as shown in 
Fig. 13-30(b). This extended subset is the lattice on which the constellation is based. Although ck 
consists of all odd integers, it can still be partitioned into four subsets, the cosets induced by the 
specified partition. As before, the two coded bits select the subset, except that now the subsets are 
extended. The point within the subset, however, is chosen differently. The uncoded bit chooses one 
of the two points closest to the origin, and then, after ik is determined, 2M· ik = 16· ik is added to 
that choice. Adding 16· ik chooses one of the points in the extended partition. 

This example illustrates that, to be compatible with trellis coding, the symbol in an extended 
constellation is chosen in a two-stage process, as illustmted in Fig. 13-31. The trellis coder is 
unchanged (except to make sure it is compatible with precoding). The output data symbol ak 

with an M-ary alphabet is input to the transmitter precoder. The precoder output symbol Xk is 
determined so as to force the channel output signal component Ck = ak + 2M· ik to be a point 
on the extended constellation, and at the same time minimize the peak power of the symbol Xk' 

The trellis decoder must deal with an extended signal constellation. The trellis is 
unchanged, as determined by the trellis coder, and each pair of successive states in the trellis 
corresponds to a subset. The only difference is that each subset has an infinite set of points, 
extended by adding some unknown multiple of 2M. There are now an infinite number of 
pamllel branches between pairs of states, corresponding to the possible points in that subset. In 

ak 
~ ORIGINALM=8CONSTELLATION 

<a> o PARTITIONED 
INTO FOUR SUBSETS 

<b>~ 0 
o o 

o 
o 

o o o 

Fig. 13-30. Constellation set partitioning for an extended constellation. (a) Original M = 8 constellation 
for ak. consisting of all odd integers less than eight in magnitude. (b) An extended constellation for Ck 
consisting of all odd integers (only 24 points shown). Also shown in both cases is the partitioning into 
four subsets (corresporiding to two coded bits). 
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Fig. 13-31. A combination of trellis coding with transmitter precoding for compensation of channel lSI. 
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principle, the ML detector must consider all parallel branches. In practice, ik will be bounded, 
based on worst-case channel assumptions, so that only a finite number of parallel branches 
need be considered. 

This particular example is easily extended to larger constellations, or to two or more 
dimensions. The trick is to start with a full lattice, rather than a lattice as limited by the 
shaping region, before performing the set partitioning. The mathematical framework of the 
sub lattice and co sets can be helpful here. The number of sets in the partition is determined by 
the number of coded bits, and is typically four or perhaps eight. Finally, the transmitter trellis 
is designed assuming a cubic shaping, but the receiver decoder is designed assuming the full 
(extended) lattice. 

Coding Gains on Channels with lSI 

It was established in Section 8.5.7 that ifISI is canceled by the DFE-ZF, then the SNR gap 
to capacity is the same at high SNR regardless of the nature of the lSI (including no lSI). Of 
course, the DFE-ZF is not directly compatible with trellis coding. However, in Section 8.1.4 it 
was shown that transmitter precoding can obtain essentially the same SNR at the slicer (or 
more generally decoder) input as the DFE-ZF. The conclusion is perhaps a surprising one; 
namely, the SNR gap to capacity at low probabilities of error can be closed to the same extent 
on channels with lSI as it can on channels that are free of lSI. 

This is not to imply that lSI has no impact on capacity; in fact, as illustrated in 
Section 8.5.6, lSI does have an impact on the capacity of the channel. Thus, the capacity is 
affected by the lSI, but what does not change is the SNR gap between uncoded square QAM 
(at a given Pe) and capacity, and the extent to which that gap can be closed by coding and 
shaping gain. 

Again it should be emphasized that this statement applies only at high SNR. The SNR gap 
to capacity is constant at all SNR for the MMSE-DFE-U, even at low SNR. It is, however, 
difficult to exploit this property at low SNR because the combination of noise and residual lSI 
at the slicer is not white. 

Trellis Coding and Shaping Gain 

Thus far, we have emphasized the application of trellis coding to obtaining coding gain. 
Trellis coding in conjunction with transmitter precoding can achieve shaping gain as well. 

Recall from Section 8.1.4 that when we apply the continuous approximation to transmitter 
precoding, the conclusion is that the precoded symbols Xk are uniformly distributed and 
independent from symbol to symbol. That is, the shaping is cubic; there is no shaping gain. 
Thus, choosing ik in the precoder to force the precoded sample Xk to obey II Xk II ~ M 
minimizes the energy of each precoded symbol, but doesn't minimize the average power of a 
sequence of symbols. 

In fact, if the shaping is spherical, and the energy per complex-symbol is kept constant at 
E. then the radius of an N-sphere is R =JE(N 12 + 1). Since each coordinate is limited to R, 
as we move to spherical shaping the peak value of each coordinate actually increases (in 
proportion to IN), and the marginal distribution approaches a truncated Gaussian. The 
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conclusion is that to obtain shaping gains, we want to increase the allowed peak value of each 
symbol (which is precisely what we tried to avoid in the design of the transmitter precoder), 
and we want the distribution of the precoded symbols to be "Gaussian-like." 

In light of these observations it is not surprising that shaping gain can be achieved by 
choosing the precoding ik appropriately, and in particular not choosing them to minimize the 
peak value of the precoded symbol as we did in Chapter 8. A specific technique is proposed by 
Eyuboglu and Forney [12]. The basic idea is to choose the ik to force the transmitted power 
averaged over time to be approximately equal to the allowed value, rather than the unshaped 
approach of minimizing the peak transmitted power of each individual symbol. 

13.4.3. RSSD of Trellis Codes 

On time-varying channels, the transmitter precoding requirement for knowledge of the 
channel response is problematic. In this case, there is an alternative, reduced-state sequence 
detection (RSSD) [13][14][15] in the receiver. With a trellis coder but no precoding in the 
transmitter, and channel lSI modeled as an FIR filter, the concatenation of the coder and the 
channel is an FSM signal-generation model. The received signal is the output of that FSM 
signal-generation model corrupted by noise. The ML detector for this signal-generation model 
is the Viterbi algorithm, which can in principle be implemented assuming the channel impulse 
response is known to the receiver (but not necessarily the transmitter). The problem is the 
explosion in the number of states, which is the number of states in the trellis coder multiplied 
by the number of states in the channel model. RSSD reduces the complexity by retaining only 
a subset of the most important states. 

The most attractive of these techniques essentially implements the Viterbi algorithm for 
the original trellis coder, but performs decision-feedback equalization on each path survivor in 
the trellis based on the history of that path. This is called parallel decision-feedback 
equalization. If there are n states in the trellis, then n distinct postcursor equalizer filters are 
used. Each filter uses the decisions from one of the n survivor paths to construct the next 
decoder input. 

13.4.4. Signal-Space Coding and Multicarrier Modulation 
In the presence of lSI, multicarrier modulation (MCM) is an interesting alternative. In 

OPAM (combined orthogonal modulation and PAM), the transmitted signal is represented by 

S(t) = L: = -00 L:: ~ ak (n)gn(t - kT) , (13.72) 

where the gn(t - kT) are a set of N orthogonal waveforms (orthogonal for all values of nand 
k). MCM is a special case where the pulses are time-limited sinusoids at equally spaced 
frequencies. As described in Chapter 6, in typical applications of MCM the bandwidth of the 
channel is kept constant, but the dimensionality of the signal set N is increased by increasing 
the symbol interval and decreasing the spacing between adjacent carriers. 
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Regardless of the particular choice of orthogonal pulses, if the MCM signal is transmitted 
through an additive white Gaussian noise channel, and matched filtering is applied at the 
receiver, then the equivalent channel model for the k-th symbol interval is a received vector of 
real- or complex-valued symbols (ak(O), ak(1), ... , ak(N-l» corrupted by additive independent 
Gaussian random noise samples. This channel is mathematically indistinguishable from an 
ordinary PAM channel. However, with MCM there are more interesting degrees of freedom. 
For example, we can take the stream of data symbols corresponding to each dimension, {ak (n>, 
-00< k < oo}, as an independent stream of data symbols for each n E {O, 1, ... , N - 1}, and 
independently apply a trellis coder/decoder to each one. Alternatively, we can serialize all the 
data symbols, generating {ak (n>, 0:::; n :::; N - 1, -00 < k < oo}, with a single trellis coder. In that 
case, the trellis coder is operating first across frequencies, and then across time. 

As explained in Section 6.4, one of the benefits ofMCM is that it offers inherent immunity 
to lSI, at least as N gets sufficiently large. The effect of lSI is twofold. First, it introduces 
dispersion within the data stream corresponding to each carrier. Second, it causes crosstalk 
between adjacent carriers, since they are typically overlapping in frequency and their 
orthogonality depends on a particular amplitude and phase characteristic. As N increases, each 
carrier is modulated at a lower symbol rate, and eventually the dispersion of each carrier 
becomes insignificant. Similarly, adjacent-carrier crosstalk will become insignificant as the 
distance between carrier frequencies shrinks, and the channel transfer function becomes 
essentially constant across the bandwidth occupied by each pair of adjacent carriers. 

Since MCM offers immunity to lSI, when N is chosen large enough it is also compatible 
with trellis coding (or other signal space coding). This is an alternative way to achieve 
significant coding and shaping gains on channel~ with lSI, at the expense of the delay 
associated with a long symbol interval. 

13.5. Further Reading 

The paper that established the importance of trellis coding is by Ungerboeck [3]. It 
followed a patent by Csajka and Ungerboeck [16]. Useful overviews including tables oftrellis 
codes are [6][5][7][9]. An extensive treatment of trellis codes is given in the book by Biglieri, 
Divsalar, McLane, and Simon [17]. An alternative method of describing and specifying trellis 
codes is due to Calderbank and Mazo [18][19]. For an introduction to lattice codes, coset 
codes, and the combination of coding with lSI, the Dec. 1991 issue of the IEEE 
Communications Magazine is recommended, and the article by Forney and Eyuboglu is 
particularly helpful [20]. The August 1989 issue of IEEE Journal on Selected Areas in 
Communications includes a number of articles referenced in this chapter. 

Some advanced techniques have been incorporated into the Y.Fast modem standard [21], 
including an improved technique for shaping called shell mapping [22], and a new method for 
combining transmitter precoding with trellis coding and shaping known as flexible precoding 
[21]. 
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Problems 

Problem 13-1. Describe how you would achieve two-dimensional shaping or coding gain (as in the 
circular or hexagonal constellations of Fig. 13-2) in a baseband PAM system. Be sure to describe both 
the transmitter and receiver. 

Problem 13-2. 

(a) Calculate the continuous approximation for the shaping and coding gains for two-dimensional 
square lattice constellation with a circular shaping. 

(b) Compare the results of (a) against a two-dimensional constellation with square shaping. What is 
the shaping gain in dB? 

Problem 13-3. Calculate the coding gain YA for the two-dimensional hexagonal constellation of 
Fig. 13-2. You can use the fact that the area of a hexagon with inscribed circle with radius r is 
6,-2· tan(n/6). 

Problem 13-4. Show that the coding gain YA is invariant to the scaling the lattice A. Specifically, 
suppose A is scaled by multiplying all the basis vectors by a constant a, and call the new scaled lattice 
ex: . A. Show that Ya . A = YA· 

Problem 13-5. Define CMR) as an N-cube that is 2R on a side; that is, each dimension has range 
[-R, R]. This N-cube is the Cartesian product of N one-dimensional regions C1(R) = [-R, R]. We 
know that the shaping gain of CMR) is unity, the same as the shaping gain of C1(R). Show this 
directly by calculating the volume and power of CM R). 

Problem 13-6. Suppose we transmit a spherically shaped N-dimensional lattice code with spectral 
efficiency V bits per complex symbol and energy (variance) E per complex symbol. Suppose 
hypothetically that you can choose a lattice AN for each N such that the fundamental volume V(AN) 
stays constant. 

(a) What is the increase in V when we go from N = 2 to N = 4 to N = 6? 
(You can use the continuous approximation.) 

(b) What is the asymptotic increase in V between N = 2 and N ~ oo? 

Problem 13-7. Let XK be a K-dimensional vector consisting of K components of an N-dimensional 
vector XN, the latter being a spherically unifonn random vector. Show that for fixed K, as N ~ 00, XK 
is a Gaussian vector with identically distributed independent components. Hint: Assume the radius is 
chosen so that each component ofXN is nonnalized to unity variance. Then show that XK approaches a 
Gaussian density with unit-variance components. 

Problem 13-8. Let X be a spherically unifonn random vector with radius R and dimension N. Show 
that for any 0 <c ~ R, 

Pr{IIXII~R-E}~O as N~oo. (13.73) 

Thus, as N ~ 00, almost all the volume of a sphere is near its surface, and II X 112 becomes R2 almost 
surely. An interpretation is that the multidimensional sphere is making maximum use of the available 
energy by nearly always transmitting vectors that have this maximum energy. 
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Problem 13-9. Design a 4-PSK mapper so that the slightly simpler trellis coder in Fig. 13-32 has the 
same performance as the trellis coder in Fig. 13-9. This convolutional coder (by itself, without the 
mapper) was shown in Problem 12-9 to be inferior to the one in Fig. 13-9 in that the minimum 
Hamming distance is 3 instead of 5. However, with a properly designed mapper, the trellis code is not 
inferior. In fact it is equivalent to the coder in Fig. 13-9. Another equivalent coder is studied in 
Problem 13-10. 

Problem 13-10. Show that the trellis coder in Fig. 13-33 has the same performance as the one in 
Fig. 13-9. Just as with Problem 13-9, the convolutional coder alone has dH,min = 3, which is inferior to 
the dH,min = 5 of Fig. 13-9. But the trellis coder is equally good. 

Problem 13-11. Show that for the trellis coder in Fig. 13-34 the distance of the minimum distance 
error event depends on the correct state trajectory. The code is nonlinear even though the convolutional 
coder used to make it is linear. 

.--___ --'~ MAPPER 

Fig. 13-32. A four-state trellis coder with the same performance as that in Fig. 13-9 can be made with a 
slightly simpler convolutional coder. The convolutional coder by itself is inferior in Hamming distance to 
the convolutional coder in Fig. 13-9 (see Problem 12-9). 

ck(l) MAPPER 

01 
Ak 

c k(2) 1~ 
10 

Fig. 13-33. A four state trellis coder made with a feedback-type convolutional coder. This coder is 
discussed in Problem 13-10. 
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Fig. 13-34. A nonlinear trellis code made using a linear convolutional coder. The minimum-distance 
error event depends on the correct state trajectory. 
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Problem 13-12. Suppose you are asked to design a 400 bit per second modem for a noisy bandlimited 
and power-limited passband channel. You determine that with reasonable excess bandwidth, a symbol 
rate of 100 symbol per second is possible. 

(a) For an uncoded system, what is the required alphabet size? Choose a constellation. 

(b) For a two-dimensional trellis coded system, what is the required alphabet size? Choose a 
constellation. 

(c) Suppose that to get an acceptable probability of error the uncoded system requires 4 dB more 
power than the channel can tolerate. How would you overcome this problem? 

Problem 13-13. Find the distance of the second shortest error event for the trellis coder in Fig. 13-11, 
assuming its mapper uses the 8-PSK constellation in Fig. 13-14, I Ak I = a, and the trellis is defined by 
Fig. 13-15. 

Problem 13-14. Consider the M = 5 cross constellation in Fig. 5-14. Assume that symbols are of the 
form [al a2l where ai E{±5, ±3, ±1}. 

(a) Do set partitioning and determine the minimum distance between symbols in the set for all levels 
of partitioning, as in Fig. 13-17. 

(b) What is the difference (in dB) in average energy between this 32-cross constellation and a 16-
QAM constellation where symbols are of the form [aI, a2l where ai E {±3, ±1}? 

(c) Suppose that you need a total gain of about 3 dB compared to a 16-QAM uncoded system. What 
is the minimum value of in (the number of coded bits) that you could select for the code? 
Roughly how many states should the convolutional coder have? 

(d) Repeat part (c) assuming that a total gain of about 5 dB is required. 

Problem 13-15. Consider the coder in Example 13-15. Assume a convolutional coder equivalent to 
that in Fig. 13-9. 

(a) Assuming that the parallel transitions form the minimum-distance error events, find the total gain 
ofthe trellis coder. Hint: Compare to an 8-PSK uncoded system. 

(b) Assign subsets from the third row of Fig. 13-17 to transitions in the trellis, and find the distance 
of a length three error event, assuming the correct state trajectory is all zero. Does the assumption 
in part (a) look reasonable for this coder? 

Problem 13-16. Show that R defined by (7.150) is unbounded for the code in Example 13-17. 

Problem 13-17. Consider the trellis coder in Fig. 13-35. The mapping is given by 

(a) Draw the state transition diagram and trellis with each arc labeled with the pair (Bk , A0. 

4-PSK 
MAPPER 

+ 
Fig. 13-35. A Trellis coder with a 4-PSK output alphabet. 
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Cj,l) Cj,2) Ak 

o 0 +1 
o 1 +j 
1 0 -1 
1 1 -j 

CHAP. 13 

(b) Find the minimum-distance error events and their distance, and estimate their probability of 
occurring. Assume the channel adds white Gaussian noise with variance 0'2. 

(c) Compare this coded system with an uncoded 2-PSK system. 

(d) Consider the related system shown in Fig. 13-36. Use set partitioning to design the mapper. 

(a) Estimate the total gain at high SNR (compare to uncoded 4-PSK). 

Problem 13-18. Consider the convolutional coder with feedback shown in Fig. 13-37. Use set 
partitioning to design a mapping so that this trellis code performs as well as the 8-PSK trellis code with 
trellis shown in Fig. 13-15. 
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14 

Phase-Locked Loops 

In a continuous-time world, establishing a common time base at physically separated 
locations presents some serious challenges. Typical systems use independent time bases, 
frequently derived from crystal oscillators, as shown in Fig. 14-1. Although crystal oscillators 
provide extremely accurate timing references at low cost, "extremely accurate" is not adequate 
to maintain the integrity of discrete-time data. Timing references often have to be identical, at 
least in the sense of long term averages. In other words, systems must be synchronized. 
Underlying most synchronization techniques is the phase-locked loop (PLL). In this chapter 
we derive the basic principles ofPLLs. Two practical applications, carrier and timing recovery, 
are treated in-depth in Chapters 15 and 16. 

The basic PLL structure is shown in Fig. l4-l. The voltage-controlled oscillator (VCO) 
attempts to produce a signal v( t) that tracks the phase of the input y( t). A phase detector 
measures the phase error between the input y( t) and the VCO output v( t). The resulting error 

CRYSTAL 
OSCILLATOR I~,-_M_OD_E_M_~ ::::::~ ~_MO_D_EM--,[SI 

" / DIFFERENT FREQUENCIES 

Fig. 14-1. Typical systems use independent time bases, frequently derived from crystal oscillators, at 
physically separated locations. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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signal can be filtered to become a control signal that drives the yeo. The basic idea is 
obvious - if the veo phase gets ahead of the phase of the input, the control signal should be 
reduced. If the veo phase gets behind, the control signal should be increased. As with any 
feedback system, the parameters must be chosen to ensure stability. 

The goal in design of the PLL varies with the application. 

Example 14-1. 
In timing recovery (Chapter 16) on a single point-to-point link, such as in a voiceband data modem, 
the objective is to generate a stable single-frequency tone at the output of the VCO. The frequency 
of this tone should equal the average symbol rate ofthe input, but transient variations in the symbol 
rate should be ignored, as should noise or other interference. In fact, any fluctuations in the symbol 
rate detected by the timing recovery can be assumed to be a consequence of interference such as 
noise, because there is no mechanism in most channels for introducing significant fluctuations in 
the symbol rate. 

Example 14-2. ----------------------------------------------------
In carrier recovery (Chapter 15), by contrast, the objective is to track the phase of the carrier on the 
input signal as closely as possible, while at the same time minimizing the effect of noise. Unlike 
timing phase, several important channels can introduce significant fluctuations in the carrier phase 
and frequency. To properly demodulate the signal, these fluctuations should be replicated on the 
carrier used by the receiver for demodulation. The output of the VCO is therefore not a single
frequency tone (unless the phase of the carrier on the input does not vary). 

Other applications usually fall into one of these two categories as well. The objective is either 
a single-frequency, or closely-tracked phase, or a compromise between the two. 

In practice, many PLLs look very different from that shown in Fig. 14-2. There may be no 
explicit yeO, or the veo may be built using digital circuitry arranged as a controllable 
countdown chain. The phase detector can be very complicated, sometimes actually consisting 
of an entire receiver, complete with adaptive equalizer, or very simple, consisting of an 
exclusive-or gate. A PLL may be implemented completely or partly in discrete-time, and 
completely or partly with digital circuits. Although the relationship between the model in 
Fig. 14-2 and an actual implementation may be subtle, the basic principles are the same for all 
implementations. 

We will concentrate on the steady-state, in-lock behavior of the PLL, using only linearized 
analysis, ignoring important issues such as acquisition and non-linear behavior. 

Fig. 14-2. Basic structure of a continuous-time PLL. The VCO produces a signal or clock that tracks the 
phase of the input signal. 
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14.1. Ideal Continuous-Time PLL 

PLLs are conceptually simple, but they are inherently non-linear systems and their 
analysis can be difficult. However, with some carefully crafted simplifying assumptions we 
can develop some powerful analytical tools that simplify the analysis. 

14.1.1. Assumptions 

First assume a particular form for the input 

y( t) = AyCOS(Olvt + 8( t» , (14.l) 

where Ay and Olv are constants. Of course in practice the input is likely to be more 
complicated, having amplitude variations in addition to phase and frequency, for example, but 
as long as the design of the phase detector is appropriate for the form of a particular input, our 
analysis will be valid. The output of the veo is assumed to have a similar form 

(14.2) 

When cp( t) is a constant the frequency of the veo output is 0l1J' called the natural or free
running frequency of the yeo. It is for convenience that we express the input (14.1) in terms 
of the natural frequency of the yeo. 

14.1.2. The Ideal Phase Detector 

Assuming forms (14.1) and (14.2) the output of an ideal phase detector is 

£( t) = W(8( t) - cp( t » (14.3) 

where the function W(·), shown in Fig. 14-3, reflects the 21t ambiguity in the phase 
difference. Because of the shape of W( . ), this phase detector is called a sawtooth phase 
detector. We have assumed unity slope for the function W( . ), although in practice the phase 
detector may exhibit some other gain, often written Kp. That gain is easily modeled as part of 
the loop filter gain, so its explicit inclusion is not necessary. Because of the 2n ambiguity in an 
ideal phase detector, sudden changes of 21t in 8( t) or cp( t) have no effect on the system (they 
are not detected by the phase detector). Such changes are called clicks, and are usually 
detrimental. 

We will see many variations of this basic phase detector. It is also often possible to design 
frequency detectors that do not suffer this 2n phase ambiguity [1]. 

Fig. 14-3. An ideal phase detector can only detect phase errors 1jI modulo 2lt. This is equivalent to 
applying this function W( . ) to the phase error 1jI. Because of the shape of W( . ), this phase detector is 
called a sawtooth phase detector. 
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14.1.3. The Ideal veo 
The ideal yeO, with properties summarized in Fig. 14-4, produces the output (14.2), 

which has instantaneous frequency 

(14.4) 

Again, a practical veo may have gain, often written KIJ> that can be modeled as part of the 
gain of the loop filter. Intuitively, we would like to directly control the instantaneous frequency 
with the control input c( t). The veo should therefore be designed so that 

d 
dt<l>(t) =c(t). (14.5) 

Example 14-3. -------------------------
A constant control signal c( t) = K will produce the constant frequency ffiv + K at the output. 

It is sometimes convenient for analysis to take the Laplace transform of (14.5), 

s<I>( s) = C( s) = L( s )E( s) , (14.6) 

where C( s ) is the Laplace transform of the control signal and E( s ) is the Laplace transform of 
the error signal E( t). 

14.1.4. Phase and Average-Frequency Lock 

The ideal PLL is phase locked if 

<1>( t) = 8( t) + <I> (14.7) 

for some constant <1>. If <I> = 0, the PLL is perfectly phase locked. In other words, the veo 
output is exactly tracking the phase of the input. It is locked to an average frequency ffiv + Kif 

<1>( t) =Kt (14.8) 

for some constant K. The veo output frequency is presumably exactly the same as the input 
average frequency. In Example 14-1 it is more important to have average-frequency lock than 
phase lock, while in Example 14-2 the situation is reversed. 

Intuitively, there must be some limitations on the input phase 8( t) for the PLL to be phase 
or average-frequency locked because the phase detector output is bounded by ±n. To find the 
limitations, assume a simple form for the phase of the input, 

c( t) 
vco 

Fig. 14-4. An ideal veo. The instantaneous frequency of the output is Wv + c( t). 
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e( t) = (Oot + e . (14.9) 

In other words, the input y( t) is a sinusoid with frequency (Ov + (00 and phase e, a constant. 
Assume the PLL is phase locked. In order for it to remain phase locked, the frequency offset 
(00 must not exceed a limited range called the lock range or hold-in range of the PLL. It is easy 
to derive the lock range. 

Exercise 14-1. 
Assuming that the input phase has the form (14.9), show that the PLL can only maintain phase lock 
if 

I (00 I :::; 1t I L(O) I, (14.10) 

where L(O) is the d.c. gain of the loop filter (the Laplace transform evaluated at s = 0). Assume an 
ideal phase detector and yeo. 

14.1.5. Analysis of the Linearized Dynamics 

Phase and average-frequency lock are static concepts - they assume the PLL is in steady 
state. If we assume that the phase error is small enough for all t, 

I e( t) - <1>( t) I < 1t 

then the phase detector is operating in its linear range (see Fig. 14-3), 

E( t) = e( t) - <1>( t) . 

(14.11) 

(14.12) 

and the analysis of the dynamics of the PLL is simple. The transfer function from the phase 
e( t) of the input to the phase <1>( t) of the VCO follows by taking the Laplace transform of 
Fig. 14-12, 

E( s) = e( s ) - <1>( s) , 

and from (14.6), 

E( ) = s<ll(s) 
s L(s). 

Combining these and solving for <1>( s) le( s) we get the phase transfer function 

<II(s) _ L(s) 
e(s) - L(s)+s . 

The phase transfer function summarizes many of the important features of the PLL. 

Exercise 14-2. 

(14.13) 

(14.14) 

(14.15) 

Assume that L( s) = N( s ) I D( s) is a rational Laplace transform where the degree of N( s ) (the 
number of zeros) is less than or equal to the degree of D( s ) (the number of poles). Show that the 
number of poles in <1>( s) le( s) (called the order of the PLL) is one plus the number of poles in 
the loop filter L( s ). 
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Example 144. -----------------------------------------------------
Afirst-order PLL is characterized by having the simple loop filter 

L(8) =KL . 

In this case, the transfer function can be written 

<1>(8) _ K L 

8(8)- K L +8' 

(14.16) 

(14.17) 

This is a single-pole lowpass filter with its pole at 8 = -KL. It is stable as long as KL > 0, and its 
lock range is found from (14.10) to be 

(14.18) 

Its lowpass characteristic is a very useful property for many applications. When the application 
requires average-frequency lock, as in Example 14-1, then a narrowband lowpass PLL will be 
useful. Even when phase tracking is required, as in Example 14-2, a lowpass PLL can help reject 
some of the noise, particularly if it is known that the phase variations that we wish to track are 
relatively slow. 

Evaluating transfer function (14.15) at 8 = 0, the PLL has unity gain for d.c. phase errors. 
In other words, when the input phase is constant, O( t) = K, then the output phase is the same 
constant, <1>( t) = K. In this case we get perfect phase lock with any loop filter. 

Exercise 14-3. 
Show that if the input has frequency offset, O( t) = O)ot + K, 0)0 * 0, then the first-order PLL of 
Example 14-4 cannot achieve perfect phase lock. It can achieve phase lock if 0)0 is within the lock 
range, but there will always remain a phase error. 

The bandwidth of a PLL is loosely defined to be the bandwidth of the transfer function 
<1>( 8 ) / 8( 8 ). Lowering the bandwidth means increasing the attenuation of high frequency 
components in the input phase or noise, but for the first order PLL, it also reduces the lock 
range. It is possible to reduce the bandwidth without reducing the lock range by using a 
second-order PLL. 

Example 14-5. -----------------------------------------------------
Consider a type I second-order PLL with loop filter 

(14.19) 

From Exercise 14-1 the lock range is 

(14.20) 

From (14.15) the phase transfer function is 
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<1>(S) _ KLs+KLK1 
8(s) s2 + (KL +K2)s + KLKl 

(14.21) 

It can be shown that this is stable as long as K2> -KL and KLK1> 0 (see Problem 14-3). 

Example 14-6. -----------------------------------------------------
Suppose that 

s+1 
L(s) = s-0.5. (14.22) 

The loop filter itself is not stable, but the closed-loop PLL is. The transfer function is 

<1>(sL s + 1 
8(s) - s2+0.5s+ 1 

(14.23) 

which has poles at -0.25 ± jO.97, both in the left half plane. 

Since the transfer function of a second-order PLL has a zero and two poles, the rolloff at high 
frequencies is the same (20 dB/decade) as for the first-order PLL. Three possible Bode plots 
of the phase transfer function are shown in Fig. 14-5. The bandwidth of the PLL is determined 
primarily by KLK1. But the lock range (14.20) is determined by both KLKl and K2, as shown 
in (14.20). In principle, we can make the lock range as large as we like by decreasing K2 while 
keeping the bandwidth constant by keeping KLKl constant. This is the main advantage of the 
type I second-order PLL. However, there is potentially one serious problem. Although the gain 
at d.c. is always unity (evaluate (14.21) at s = 0), the closed-loop gain may be greater than 
unity in some range of frequencies. In this case, some components of the phase of the input 
will be amplified, which is often not desired. This phenomenon is known as peaking. 

Example 14-7. -----------------------------------------------------
In Example 14-6, Kl = KL = 1, so the bode plot is given by Fig. 14-5(b). The magnitude response 
is 

I <1>(f)1 2 = 1 j2rtf + 1 12 
8(n - 4rt2f2 + jrtf + 1 

20log 1 <1>(f) / elf) 1 20log 1 <1>(f) / elf) 1 

o '.2ocz 
I &~ 

o 
20 dB/DECAD o~ 

°"10 log(2ltf) 

log IKll 0.5Iog(KLK1) 

(a) (b) 

(14.24) 

20log 1 <1>(f) / elf) 1 

o 
+- -40 dB/DECADE 

y -20dB/DECADE 

log(2ltf) 

(c) 

Fig. 14-5. Three possible Bode plots of the phase transfer function (14.21) of the type I second-order 
PLL, assuming the poles are complex. If 1 z 1 is the magnitude of the zero and Ip 1 is the magnitude of 
the poles, then in (a) Iz 1 < Ip I, in (b) Iz 1 = Ip I, and in (c) Iz 1 > Ip I. Note that the bandwidth of the PLL 
is independent of K2. 
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If we evaluate this at the natural frequency ron = 21Cfn = 1 (the natural frequency is equal to the 
magnitude of the poles), we find that 

\<1>(1)\2 = Ij + ~12 = 8. 
8(1) 0.5J 

(14.25) 

If the input phase 8( t) has a component at ron = 1, then the output phase <1>( t) wiIl have that same 
component eight times larger! The frequency response is sketched in Fig. 14-6. 

Peaking is not always a serious impainnent, but sometimes it is devastating. 

Example 14-8. 
In some systems, such as long transmission lines with many repeaters (Chapter 1), many PLLs are 
cascaded in series. If the PLLs have greater than unity gain for a phase at the input that varies at any 
particular frequency, the amplification ofthat phase can become quite severe after just a few PLLs. 
This issue is explored in Chapter 16 for the specific example of timing recovery PLLs in the 
repeaters. 

The peaking properties of type I second-order PLLs are studied in detail in Problem 14-6. In 
particular, it is shown that if peaking is disallowed, the lock range of a second-order PLL is 
actually smaller than the lock range of a first-order PLL with comparable bandwidth. Hence, if 
peaking cannot be tolerated then the primary advantage of second-order loops evaporates. 

The following type II second-order PLL is a special case of the type I PLL when K2 = 0, 

( s + Kl) 
L(s) = KL -s- . (14.26) 

This is sometimes called a proportional plus integral loop filter. From (14.21) the closed-loop 
phase response is 

<I>(s)_ KLKI +KLs 

8(s) - KLKI +KLs+s2 . 
(14.27) 

As with the previous PLLs, this one has unity gain at d.c. Unlike the previous PLLs, however, 
it has an integrator in the loop filter. In fact, by convention, the "type" of a PLL is the number 
of integrators in the loop filter plus one. Its main advantage is that the integrator leads to 

2010g I <I>(f) /8(f) I 

20log(8) 
o 

/ ACTUAL FREQUENCY RESPONSE 

~ BODE PL~T , , , 
" log(/) 

Fig. 14-6. The frequency response of the type I second-order PLL in Example 14-6 exhibits peaking in 
which the phase at certain frequencies is amplified by the PLL. 
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perfect phase lock even in the face of frequency offset. A disadvantage is that it always 
exhibits peaking (see Problem 14-7). Two other second-order PLL loop filters are studied in 
Problem 14-1 and Problem 14-8. 

14.1.6. Steady-State Response 

It is often useful to know precisely the steady-state operating point of a PLL given certain 
inputs. The steady-state phase error is defined to be 

Ess = lim E( t) . (14.28) 
t -'> 00 

If the PLL does not achieve perfect phase lock then Ess -:f:; o. If E( t) = 0 for t < 0 then we can 
(usually) find Ess using thefinal value theorem for Laplace transforms, 

Ess = lim sEC s) . 
s-,>o 

(14.29) 

Combining (14.14) and (14.15) we get the Laplace transform of E( t) in terms of the input 
phase, 

E(s)= s8(s) 
L(s)+s' 

_. s28(s) 
Ess- hm L-() . 

s-,>o s +s 
(14.30) 

Example 14-9. --------------------------
Suppose the input phase is 

8( t) = cootu( t), (14.31) 

where u( t) is the unit step. In other words, at time t = 0 the input suddenly acquires a frequency 
offset of coo. There will of course be transients in the response of the PLL, but after the transients 
die out, from (14.30) the steady-state phase error will be 

. COo 
£88= hm L-() . 

s-,>o s +s 

For the first-order PLL, L( s) = KL and 

(14.32) 

(14.33) 

The steady-state error is non-zero, but can be reduced by increasing the loop gain (at the expense of 
increasing the bandwidth of the loop, see Problem 14-2). For the type I second-order PLL with loop 
filter given by (14.19), 

(14.34) 
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The steady-state error is again non-zero, but can be reduced this time by making K2 small. 
However, this may lead to peaking, or greater than unity gain for inputs at some frequencies (see 
Problem 14-6). If K2 = 0, we have the type II loop of(14.26) which has zero steady-state error, css 
= O. This is the main advantage of type II second-order PLLs. Intuitively, the integrator in the loop 
filter holds a constant at its output proportional to the frequency offset. As shown in Problem 14-7, 
there is always peaking in this PLL, but the peaking can be made small by making Kl small. 

At least one integrator in the loop filter is required to get zero steady-state error in the face 
of frequency offset. 

14.1. 7. Transients 

The previous analysis assumes that the phase error is always small, so that the phase 
detector operates in its linear range. When the PLL is locked to an input signal, this is a 
reasonable assumption. But during capture, it is not. Consider a PLL that is locked to an input 
signal with frequency equal to the natural frequency ffiv of the VCO. Then the control signal 
c( t) is zero. Suppose that suddenly the frequency of the input changes. Because of the loop 
filter and practical limitations of the yeO, the VCO will not respond instantly to lock onto the 
new frequency. As a consequence, for a period of time the phase difference between the input 
and VCO output can get large, and in-fact can easily slip cycles (making sudden jumps of 
magnitude 2n for the ideal phase detector). During this time, the linearized analysis is not 
valid. 

The lock range is the range of input frequencies over which an in-lock PLL will stay 
locked. But even within this range the PLL may not be able to capture the input frequency if it 
starts out unlocked. The capture range is defined as the range of input frequencies over which 
an initially unlocked PLL can lock. The pull-in time is the amount of time it takes the PLL to 
lock. A subset of the capture range into which the PLL can lock without cycle slipping also 
has a name, the seize range. Complete analysis of these effects is complicated by the non
linear nature of the PLL, and is left to references in Section 14.5. 

14.2. Discrete-Time PLLs 

In digital communications systems, completely analog continuous-time PLLs like those 
studied in Section 14.1 are rare. Most are hybrid analogi digital or mixed continuous and 
discrete-time. We will begin with the discrete-time PLL. Mixed systems are considered in 
Sections 14.3 and 14.4 where alternative phase detector and VCO designs are discussed. 

14.2.1. The Basic Model 
A discrete-time PLL is shown in Fig. 14-7. Assumptions about the form of the input signal 

and the output of the VCO are shown in the figure, and are analogous to those for the 
continuous-time PLL. The phase detector is a discrete-time version of that considered before, 
and has output 
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(14.35) 

where W( . ) is shown in Fig. 14-3. 

The discrete-time yeO, although analogous to the continuous-time yeo, is not quite as 
obvious. Analogous to differential equation (14.5), the phase <l>k satisfies the difference 
equation 

<l>k+1 - <l>k = Ck • 

Using this, the output ofthe veo can be written 

Vk+l = Avcos(wv(k + l)T+ <l>k+1) = Avcos(wvkT + <l>k + wvT+ c~. 

This leads to the structure in Fig. 14-8. Taking the Z transform of (14.3 6) we get 

<I>(z) = _1_ C(z) = L(z) E(z) , 
z-l z-l 

(14.36) 

(14.37) 

(14.38) 

where L(z) is the loop filter transfer function and E(z) is the Z transform of the error signal Ek' 

Exercise 14-4. 
Assume the input has frequency offset Wo, 

where e is some constant and T is the sample interval. Show that the lock range is 

IWol ~ f,IL(l)l. 

DISCRETE 
TIMEVCO 

Fig. 14-7. A discrete-time PLL with assumptions about the form of the input and the output shown. 

(14.39) 

(14.40) 

Fig. 14-8. A discrete-time veo consists of an accumulator and cosine computation, along with some 
constant additions and multiplications. The modulo-21t adder reflect the fact that the numbers being 
added are angles (in radians). 
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14.2.2. Analysis of the Dynamics 

As before, to analyze the dynamics we assume that the phase error is small enough that the 
phase detector is linear. The phase detector output is 

(14.41) 

or taking Z transforms 

E(z) = 8(z) - $(z) . (14.42) 

Combining (14.42) with (14.38) we get the phase transfer function of the PLL, 

$(z) _ L(z) 
8(z) - L(z)+z-l . 

(14.43) 

By evaluating this at z = 1 we see that just as with the continuous-time PLL, discrete-time 
PLLs have unity gain to d.c. phase inputs. 

Example 14-10 . . ,-------------------------
A first-order discrete-time PLL has loop filter L(z) = K L, so 

$(z) _ KL 
8(z) - KL +z-l 

(14.44) 

This has a pole at z = 1 - KL and hence is stable if and only if 0< KL < 2. Unlike the continuous
time PLL, there is an upper limit on the loop gain imposed by the stability requirement. Also, the 
phase transfer function is only a lowpass filter if 0< KL < 1 (see Problem 14-11). In fact, if 
1 < KL < 2 then inputs at all frequencies are amplified, which is probably not what we had hoped 
for! 

Example 14-11. ------------------------
A general second-order discrete-time PLL has loop filter 

(14.45) 

The transfer function to phase is 

(14.46) 

14.2.3. Steady-State Error 

Just as with continuous-time PLLs, the steady-state error is 

(14.47) 

If tk = 0 for k<O we can (usually) use the final value theorem for Z transforms to write 
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Ess = lim (z - 1)E(z) . 
z~l 

Combining (14.42) and (14.43) we get an expression for E(z), 

E(z) = 9(z)(z - 1) 
L(z)+z-1 
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(14.48) 

(14.49) 

Example 14-12. ------------------------
Suppose that the input frequency is exactly the natural frequency of the yeO, but a phase offset is 
introduced at time k = 0, 

where e is a constant and uk is the unit step. The Z transfonn is 

Hence 

z9 
9(z)=

z-1 

_. (z-1)9 
Ess - hm L( ) 1 . 

z~l z +z-

For any L(z) such that L(1) ;;J:. 0, Ess = 0, and the phase error decays to zero. 

(14.50) 

(14.51) 

(14.52) 

Example 14-13. ------------------------
Suppose that the input has frequency offset introduced at time k = 0, 

The Z transfonn is 

Hence 

Zffio 
9(z) = --. 

(z-I)2 

. Zffio 
Ess = hm L( ) 1 ' z~l z +z-

(14.53) 

(14.54) 

(14.55) 

which will be zero if and only if L(z) has a pole at z = 1. Thus to have perfect phase lock in the face 
of frequency offset, the discrete-time loop filter must have a pole at z = 1, just as the continuous
time loop filter has to have a pole at s = o. 

The "type" of a discrete-time PLL is defined to be one plus the number of poles at z = 1. From 
the previous example we see that a type II PLL has Ess = 0 when there is frequency offset. 
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14.3. Phase Detectors 

So far we have assumed an ideal phase detector with the characteristic shown in Fig. 14-3. 
As a result of its shape, this phase detector is called a sawtooth phase detector. A wide variety 
of other phase detectors are used, ranging from simple to complicated. Much of the design 
effort in carrier and timing recovery is in the design of the phase detector (Chapters 15 and 
16). In this section we describe some variations on the basic sawtooth phase detector. 

14.3.1. Sinusoidal Phase Detectors 

Prevalent throughout the history of PLLs is the sinusoidal phase detector. In fact it is so 
prevalent that some books on PLLs never consider any other type. Its dominance is a 
consequence of its easy implementation in analog circuitry. The structure is shown in 
Fig. 14-9. 

One significant difference between this phase detector and the sawtooth phase detector 
previously considered is that the VCO will tend to phase lock to the input in quadrature (with 
a 90 degree phase difference). In other words, <1>( t) in (14.2) will have a constant nl2 term (or 
equivalently the cos(·) will be replaced with a sin(·». Assuming (14.1) and (14.2) are the 
input signal and the VCO output, the output of the multiplier is 

AA 
~ Y [ cos(S(t) - <I>(t» + cos(2rout + Set) + <I>(t» l (14.56) 

Assuming the second term is removed by the LPF in Fig. 14-9 we can write 

AA 
£( t) = ~ Y cos(S( t) - <1>( t». (14.57) 

At first glance this does not look like a good estimate of the phase error S( t) - <1>( t). In fact, 
E( t) is at its maximum when S( t) = <1>( t) (see Problem 14-14). Suppose that the PLL tries to 
minimize E( t) anyway. It will be minimized (in fact E( t) = 0) when 

1t 
[S( t) - <1>( t)] mod 2n = 2 . (14.58) 

Thus, this PLL will minimize E( t) by maintaining a constant 90 degree (n I 2 radian) 
difference between the phase of the input and the phase of the VCO. Such a PLL is said to be 
phase locked in quadrature. Define 

AycOS(O:!vt + 8( t » e( t) 

Fig. 14-9. A sinusoidal phase detector uses a multiplier and a lowpass filter. It is relatively easy to 
implement using analog circuits. 



Sect. 14.3 Phase Detectors 715 

'V( t) = q,( t ) + ~ . (14.59) 

Then the PLL will be in quadrature phase lock if 'V( t) = 9( t). The output of the veo can be 
written 

(14.60) 

This explicitly shows the 90 degree phase difference. We can now consider 'V( t) to be the 
phase of the yeO, and write the phase error 

£( t) = ~ AvAysin(9( t) - 'V( t» . (14.61) 

Now £( t) is a much more reasonable estimate of the phase error. In fact, the only difference 
now between this PLL and the continuous-time PLL of Section 14.1 is the function W(·) 
which is now defined to be 

W(x) = ~ AvAysin(x) , (14.62) 

where x is the phase error 9( t) - 'V( t). This is plotted in Fig. 14-10. The polarity of W( . ) is 
the same as that of the sawtooth phase detector for all x. For small phase errors x, the two 
phase detectors are very similar, and have approximately linear characteristics, since 

sin(x) "" x, (14.63) 

so when 9( t ) is close to 'V( t ), 

(14.64) 

This differs from (14.12) only by a constant, so the analysis carried out in Section 3.1 applies 
without modification if the phase error is assumed to be small. 

One major practical difference between the sinusoidal phase detector and the ideal phase 
detector of Section 14.1 is the dependence of £( t) on the input signal level ~ which in 
practice may be time-varying. This effect can be analyzed, as can the non-linearity that occurs 
for larger phase errors, but the analysis is much more difficult, and is beyond the scope of this 
book (see for example [2]. 

W(9-\jI) 

9-\jI 

Fig. 14-10. A sinusoidal phase detector operates much like the sawtooth phase detector except for two 
things: the veo output is in quadrature with the input, and the W( . ) function is sinusoidal. as shown in 
this figure. Also shown for reference is W( . ) for the sawtooth phase detector. 
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14.3.2. Complex Phase Detectors 

For passband PAM systems it is common to do much of the signal processing on the 
complex-valued baseband equivalent signal, as shown in Chapter 5. A simple extension of the 
sinusoidal phase detector for complex signals is shown in Fig. 14-11. For small phase errors, 
the phase detector is approximately linear, 

c( t) '" AvAy[8( t) -<1>( t)] (14.65) 

14.3.3. Sampling Phase Detectors 

PLLs in digital communication systems are often a mixture of discrete and continuous
time subsystems. A common scenario is that the PLL determines when the incoming signal is 
sampled, and the samples are used to estimate the phase error. A simple system of this type is 
shown in Fig. 14-12. The same forms for the input and veo output are assumed (although in 
practical situations a digital veo is more common, see Section 14.4 below). The sampling 
instants are at the upward-going zero crossings of the veo output v( t). Denote these 
sampling instants t = 'tk, and note that the upward-going zero crossings of v( t) occur when 'tk 

satisfies 

(14.66) 

Hence we can write 

(14.67) 

Thus we almost have a discrete-time sinusoidal phase detector; the measured phase error ck is 
almost a discrete-time version of (14.61). The reason we say "almost" is that since 'tk is 
controlled by the veo, the sampling times are non-uniform! However, we can often assume 
that 8( t) and <1>( t) are varying slowly enough that the non-uniform sampling has little effect. 
With this approximation, the behavior of the PLL will be the same as that of discrete-time PLL 
with a sinusoidal phase detector. 

e(t) =AvAysin(8(t) -$(t» 

Fig. 14-11. A simple extension of the sinusoidal phase detector for complex signals is shown here. 

y( t) =A cos(wvt + 8( t » 

Fig. 14-12. A mixed discrete and continuous-time PLL with a sampling phase detector. The sampling of 
the input is directed by a continuous-time VCO. 
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The sampling phase detector in Fig. 14-12 is commonly used for timing recovery (see 
Chapter 16). The PLL in Fig. 14-12 is sometimes called a digital PLL, but this terminology is 
confusing because many other PLLs have digital elements. For a more detailed analysis, 
including the effect of the non-uniform sampling, see [3][4][5]. 

14.3.4. Exclusive-Or Phase Detectors 

Another commonly used phase detector is the exclusive-or phase detector, illustrated in 
Fig. 14-13 assuming that the inputs are square waves (digital continuous-time signals) rather 
than sinusoids (analog signals). In some applications the signals are square waves to begin 
with (see Section 14.4), but even when they are not, square waves are easily generated from 
sinusoidal signals using hard limiters. The output x( t) of the exclusive-or gate is high 
whenever the two input signals are different, as shown in Fig. 14-13(b). The average duty 
cycle is proportional to the phase error. Thus if x( t) is lowpass filtered to perfectly extract the 
d.c. component while rejecting the fundamental and harmonics, the result is the function w( t ) 
shown in Fig. 14-13( c). This is not directly useful because it is not linear near zero phase error. 
Subtracting a constant, the triangular phase detector characteristic illustrated in Fig. 14-13(d) 
is obtained. If the constant K is correct, the VCO phase locks in quadrature, just like the 
sinusoidal phase detector. 

When the input signal is not a square wave, but rather is sinusoidal, a square wave can be 
synthesized by hard limiting. 

14.3.5. Phase Domain PLLs 

For many application it is unnecessary to generate the VCO output explicitly. In other 
words, the sinusoid (or square wave) phase locked to the input is not needed, only its phase is 
needed. An example of a PLL that works entirely in the phase domain is shown in Fig. 14-14. 
The phase of the input is measured with respect to a fixed clock, and that phase provides the 

~t) K 

FREOh ~ x( t)~w(t) + .?\E( t >-

~~ 
I ~~~? FREOh (a) 

* \. / .6(t)-cIl(t) 
-It It 

(e) 

6(t)-cIl(t) 
...::

y(t)--rT-L....J~ 

v(t)~~ 
x(t)~ 

(b) 

t E(t) 
\. A. 16. / .6(t)-1jf(t) 

V -It"Yj ltV 
(d) 

Fig. 14-13. An exclusivEKlr phase detector (a) assumes that the inputs are square waves (b) (digital 
continuous-time signals) rather than sinusoids (analog signals). The output of the lowpass filter (c) is 
proportional to the average amount of time that the two inputs signals differ in each cycle. After 
subtracting a constant. the result is a triangular phase detector characteristic (d). 
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input to the loop. We can call the frequency of the fixed reference clock ffil» and the phase 
measurement 9k . The phase measurement itself can be implemented digitally, for example by 
measuring the time between zero crossings in the reference and the input. The basic operation 
of this PLL is no different from those considered above. 

Exercise 14-5. 
Show that the phase transfer function ofthe PLL in Fig. 14-14 is the same as (14.43). 

An application of a phase domain PLL to the demodulation of PSK signals is given in 
Chapter 15. 

14.3.6. Frequency Detectors 

The phase detector is sufficient for maintaining phase lock for a PLL when the input 
frequency is within the lock range. We have also seen that the lock range is dependent on the 
loop bandwidth and the design of the phase detector. This leads to an undesirable tradeoff 
between the acquisition properties of a PLL and the in-lock performance. For most designs 
these problems are manageable. However, there are cases where adequate lock range cannot 
be achieved while maintaining a sufficiently narrow loop bandwidth. 

Example 14-14. ----------------------------------------------------
In a digital radio system (Section 14.4) the carrier frequency of the radio is determined by the free
running frequency of a microwave oscillator. The veo in the receiver is also a microwave 
oscillator. Even if these oscillators have extremely accurate free-running frequencies, the offset can 
be large relative to the IF carrier frequency. These carrier frequency offsets are often on the order of 
500 kHz or even larger. A PLL design which has a lock range this large would have much too large 
a closed-loop bandwidth to maintain adequately small phase jitter. 

In this instance, something must be done to increase the lock range without affecting the in
lock loop bandwidth. Two techniques are available for this purpose: frequency sweeping and 
the addition of afrequency detector to the phase detector. 

Fig. 14-14. A PLL that works entirely in the phase domain. The phase of the input is measured with 
respect to a fixed clock, and that phase provides the input to the loop. 
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A frequency detector is intuitively simple - it compares the frequency of the incoming 
signal to the local oscillator rather than comparing its phase. This is equivalent to measuring 
the phase without the 21t ambiguity exhibited by phase detectors. See [1][6] for a description 
of frequency detectors. A class of phase detectors known as adaptive phase detectors can also 
function as frequency detectors and are described in [7][8][9]. 

14.4. Variations on a Theme: veos 

Just as with phase detectors, there are many variations on the design of veos. We 
describe two important examples. 

14.4.1. Digital VCOs 

Analog veos are complicated circuits, difficult to design and sensitive to environmental 
factors such as temperature. A frequently used alternative is the digital yeO, shown in 
Fig. 14-15. The veo produces a square wave that is generated from a local high frequency 
clock using a variable countdown chain (a frequency divider). By controlling the frequency 
divider, the frequency of the veo output can be controlled. The digital logic is such that if 
c( t) < -K, for some threshold K, the frequency of v( t) is decreased by dividing by N + 1 
instead of the nominal N. Similarly, if c( t) > K, the divider divides by N - 1 to increase the 
output frequency. In a typical operating condition, c( t) is hovering near ±K, and the frequency 
divider is either alternately dividing by Nand N + 1 or N - 1 and N. 

For digital veos, the lock range is not determined by the 21t ambiguity of the phase 
detector, but rather by N, the nominal divide ratio of the yeo. The reason is obvious: the 
maximum frequency the veo can produce occurs when the divider is always dividing by 
N - 1, and the minimum frequency occurs when the veo is dividing by N + 1. Thus any input 
frequency outside this range cannot be held (see Problem 14-15). 

Although digital veos are economical and are commonly used, for some applications 
they have a serious disadvantage. Namely, since the frequency divider i& alternating between 
two divide ratios at all times, the square wave at its output has considerable jitter. This jitter 

INPUT 

y(t) 

CLOCK 

• ' '--r---''--r---' 
+N +N+l +N 

Fig. 14-15. A digital veo uses a controllable countdown chain (a frequency divider) to generate the 
output, a square wave. 
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can be minimized for large N, but large N implies a high frequency oscillator. Depending on 
the nominal frequency rov of the VCO, it may not be practical to implement an oscillator and 
frequency divider at frequency Nrov for N large enough to produce acceptably low jitter. In 
these situations, it is necessary to either develop algorithms that are insensitive to jitter, or 
resort to the use of an analog PLL. For a practical example of such a situation, see 
[10](11][12]. 

14.4.2. Frequency Synthesizers 

It is possible to design PLLs that maintain phase lock when the VCO output frequency is 
not equal to the input frequency, but is related by a fixed rational multiple. Such a PLL is 
called afrequency synthesizer, shown in Fig. 14-16. When the PLL is phase locked, 

(14.68) 

Frequency synthesizers are widely used in multiplexers, where it IS often necessary to 
synchronously generate one frequency from another. 

Example 14-15. -------------------------
Given a clock at 1,544 kHz, what are M and N such that we generate a clock at 2,048 kHz? We 
could use N = 2,048 and M = 1,544, and the inputs to the phase detector would be on the order of 
1 kHz. Suppose that an exclusive-or phase detector (Fig. 14-13) is used. Then the output x( t) of 
the exclusive-or will be periodic with frequency 1 kHz (see Fig. 14-13(b». The LPF in 
Fig. 14-13(a) has to have sufficiently narrow bandwidth to remove this fundamental and its 
harmonics. In addition to complicating the design of the LPF, the narrow bandwidth means that the 
PLL will respond slowly to changing conditions. 

This design is easily improved so that the bandwidth of the LPF can. be larger. Observe that 
1,544 = 193 x 8 and 2,048 = 256 x 8. Consequently we can use N = 256 and M = 193. This 
results in inputs to the phase detector on the order of 8 kHz, significantly relaxing the 
specifications of the LPF. 

INPUT 

FREofin 
f----<r---.... OUTPUT 

FREOfout 

Fig. 14-16. A frequency synthesizer produces an output signal with frequency equal to N / M times the 
input frequency. 
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14.5. Further Reading 

The understanding of noise performance, acquisition, and non-linear behavior of PLLs is 
advanced, and we have largely omitted these topics. The available literature, however, is 
heavily biased towards continuous-time, analog PLLs. In digital communications, many PLLs 
are either entirely discrete-time or a mixture of discrete and continuous-time. Fortunately, 
extending the continuous-time results to discrete time is often easy, as illustrated in 
Section 14.2. 

A number of books give comprehensive coverage of analog, continuous-time PLLs. 
Gardner [3] was the first widely used for design purposes. The first four chapters of Viterbi 
[13] are devoted to PLL theory. The third chapter gives a particularly good description of an 
analysis technique called phase-plane analysis. Van Trees [14] uses non-linear estimation 
theory for the analysis of PLLs. Klapper and Frankle [15] give a detailed treatment biased 
towards the application of PLLs as FM discriminators. Lindsey [16] gives a thorough 
theoretical treatment with emphasis on weak signal applications. Blanchard [17] emphasizes 
design of coherent receivers for analog modulation schemes. Two other important books are 
by Best [18] and Lindsey and Simon (editors) [19]. A brief overview of advanced PLL topics 
is given by Gupta [20] with an extensive bibliography. The October 1982 issue of IEEE 
Transactions on Communications is devoted to PLLs, providing an excellent source of more 
up-to-date papers. A description of frequency detectors is given by Messerschmitt [1]. Of 
historical importance is perhaps the first paper on PLLs by Appleton in 1922 [21]. We have not 
described the adaptive PLL, in which the loop filter is adaptive rather than fixed [22][23]. The 
filter can adjust itself to changing phase characteristics on the input. 

Problems 

Problem 14-1. Consider the PLL shown in Fig. 14-2. Suppose L(s) =KLls. 

(a) What is the order of the loop? 

(b) Is the loop stable? Why? 

Problem 14-2. The lock range of the first-order PLL in Example 14-4 can be increased by increasing 
the loop gain KL. Show that as KL tends to infinity the output of the VCO will achieve perfect phase 
lock for any input phase 9( t). What happens to the bandwidth of the PLL? When might this be useful, 
and when might it not be useful? 

Problem 14-3. 

(a) Show that 82 + as + b has all roots in the open left half plane if and only if the real-valued 
coefficients satisfy a > 0 and b > O. This basic result can be used to detennine the stability of 
any second-order continuous-time PLL. 
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(b) Show that an ideal PLL with loop filter given by (14.19) is stable if and only if K2> -KL and 
KLK1>0. 

Problem 14-4. Suppose the loop filter ofa continuous-time second-order PLL with an ideal VCO and 
phase detector is given by 

1 
L(8) = --. 

8+J2 
(a) Find the poles of the phase transfer function. Is the PLL stable? 

(b) Show that the gain 1 cI>( f) / elf) 1 is never greater than unity, so there is no peaking. 

(c) Sketch the magnitude ofthe frequency response. 

Problem 14-5. Consider a type I second-order PLL with the loop filter given by (14.19) and 

Kl =0.5 . 

(a) Give the closed loop transfer function to phase cI>( 8) /e( 8). 

(b) Is the PLL stable? 

(c) Sketch the Bode plot for phase transfer function. 

(d) Show that the PLL does not exhibit peaking. 

Problem 14-6. For the type I second-order PLL of (14.19), 

(a) Show that there is peaking if and only if 

K22:5 2KLKl 

(14.69) 

(14.70) 

(1<1.71) 

(b) Find the range of frequencies CO for which the gain is greater than unity, 1 cI>(f) / elf) 12> 1. 

(c) The bandwidth ofa type I second-order PLL with complex poles can be estimated as JKL2K 1 
(see Fig. 14-5) where KL2 is KL for the second-order PLL. By contrast, the bandwidth of a first
order PLL can be estimated as KLh which is KL for the first-order loop. Assume these two PLLs 
have equal bandwidth, 

(14.72) 

Show that if there is no peaking, then the lock range of the second-order loop is actually smaller 
than the lock range of the first-order loop. 

Problem 14-7. 

(a) Use the result stated in Problem 14-6a to show that a stable type II second-order PLL always 
exhibits peaking. 

(b) Show that 

1
cI>(f n)12 = Kl + K L , 

e(f n) KL 
(14.73) 

where in = JK LK 1/(21t) the natural frequency. We see that the magnitude of the peaking at fn 
can be made small by choosing a small K1• 
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(c) Show that this type II loop will be stable if and only if Kl and KL are each greater than zero. This 
observation combined with (14.73) is another way of showing that this PLL always exhibits 
peaking, but it also shows that the gain at In can be made as close to unity as we like by selecting 
asmallK1· 

Problem 14-8. Consider the type I second-order PLL with a loop filter of the form 

This is different from (14.19) in that there is no zero for finite s. 

(a) Find the transfer function and show that it is a lowpass filter with unity gain at d.c. 

(b) Show that this PLL is stable if and only if Kl > 0 and K2 > O. 

(14.74) 

( c) Find the range of frequencies lover which components elf) in the input phase will be amplified. 
Under what conditions is there no amplification (peaking)? 

Problem 14-9. Consider the PLL in Fig. 14-2. Suppose that L( s) = KL, a positive constant, and e( t) 
is given below. Find the steady-state response 

Ess = lim E(t). 
t~oo 

(a) e( t) = ~u( t), where u( t) is the unit step function. 

(b) e(t) =~t2u(t). 

Compare these results to the result derived in Example 14-9 for e( t) = oootu( t). 

(14.75) 

Problem 14-10. Consider the PLL in Fig. 14-2. Show that all loop filters L(s) with one or more poles 
at s = 0 satisfy Ess = 0 when 8( t) = ffiotu( t), which corresponds to a steady frequency offset of 000' 

Assume L( s ) is chosen so that the PLL is stable. 

Problem 14-11. Consider the first-order discrete-time PLL of Example 14-10. Sketch the magnitude 
of the frequency response \ <1>( eJ'9) / e( ej6 ) \ when: 

(a) KL = 0.5. 

(b) KL = 1. 

(c) KL = 1.5. 

(d) Compare the relative merits ofthe PLLs in (a) through (c). 

Problem 14-12. Consider the second-order polynomial with real coefficients 

D(z) =z2 + az + b = (z- p)(z- q) . (14.76) 

Show that the roots p and q lie inside the unit circle (have less than unity magnitude) if and 
only if \ b \ = \pq \ < 1 and \ a \ < 1 + b. 

Problem 14-13. Use the result proven in Problem 14-12 to find conditions under which the discrete
time PLL with loop filter given by (14.45) is stable. 
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Problem 14-14. Consider a continuous-time PLL with a sinusoidal phase detector, Fig. 14-9. Suppose 
that this PLL is in perfect phase lock, 8( t) = ~( t) (not quadrature phase lock). Find an expression for 
the input phase 8( t) as a function ofthe PLL parameters and time. 

Problem 14-15. Consider the digital VCO in Fig. 14-15. Suppose that the clock frequency is 1 MHz 
and N = 100. Suppose that the input has the form COS(ffi1 t + 8) where 8 is a constant. Find the range of 
ffi1 such that the PLL can maintain phase lock. 

Problem 14-16. Consider the design of a frequency synthesizer (Fig. 14-16) that synthesizes a 
2,048 kHz signal given a 1,512 kHz input. 

(a) Find the minimum values of M and N. 

(b) Consider doing the frequency synthesis with two cascaded frequency synthesizers. Select M 1, 

N 1, M2 and N2 for each of the frequency dividers. What advantages does this design have over 
the one with a single frequency synthesizer? 

(c) What is the maximum number of cascaded frequency synthesizers that can be used effectively? 
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15 

Carrier Recovery 

In passband systems, the carrier frequency is generated in the transmitter from a local 
timing reference such as a crystal oscillator. As we saw in Chapters 5 and 6, coherent 
demodulation of a passband signal requires exactly the same carrier frequency and phase to 
perform the demodulation. But the receiver usually has an independent timing reference, as 
illustrated in Fig. 14-1. Deriving the carrier frequency and phase from the data bearing signal 
is the topic of this chapter. 

In previous chapters we have assumed that both the symbol timing and the carrier 
frequency are known at the receiver. In this chapter we will assume the symbol timing is 
known, and derive the carrier frequency. Chapter 16 will show that symbol timing can be 
derived without knowledge of the carrier phase. Hence, when a receiver first starts receiving 
data, it should first derive timing using the techniques of Chapter 16, then estimate the carrier 
phase using the techniques in this chapter, and finally adapt the equalizer (Chapter 9). 

If the symbol timing is known, it may be that the carrier frequency can be derived from it. 
If the carrier frequency used at the transmitter is a fixed rational multiple of the symbol rate, 
then the frequency synthesizer of Fig. 14-16 can derive a high quality carrier, even if there is 
considerable jitter on the derived timing signal. However, even if the transmitter uses a carrier 
frequency and symbol rate that are related by a rational multiple, that relationship may be lost 
by the time they get to the receiver. 

J. R. Barry et al., Digital Communication
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Example 15-1. -----------------------------------------------------
The telephone channels often introduce frequency offset. If the passband PAM signal 

x( t) = J2 Re{ s( t)e j2ltfct} (15.1) 

is subjected to frequency offset of fo (and no other impairments) then the received signal will be 

(15.2) 

Frequency offset therefore is indistinguishable from using a different carrier frequency fc - fo. The 
symbol rate, however, cannot be changed by the channel because the receiver can only receive 
exactly as many symbols per unit time as are sent. Consequently, even if the symbol rate and carrier 
frequency start out as rational multiples of one another at the transmitter, their relationship at the 
receiver is dependent on the unknown frequency offset. 

Example 15-2. -----------------------------------------------------
In microwave radio applications where either the transmitter or the receiver is in motion, the carrier 
frequency is subject to a Doppler shift, but the symbol timing is not. The resulting frequency offset 
is similar to that found in telephone channels, although it is more likely to be time-varying as the 
velocity changes. 

In addition to frequency offset, it is common for a channel to introduce phase jitter which 
appears as fluctuations in the phase of the carrier. It is desirable to track the phase jitter so that 
it does not degrade the perfonnance of the system. So even in the absence of frequency offset, 
it is still desirable to derive the carrier independently from the timing so that phase jitter can be 
tracked. 

We will describe two techniques for tracking the carrier in the receiver. The first is a 
decision-directed technique, and the second is the power of N method. 

15.1. Decision-Directed Carrier Recovery 

Consider a noiseless passband PAM analytic signal that has been subjected to frequency 
offset and/ or phase jitter 

e j(2ltfc + 8( t )r~:: = --00 AmP(t - mT) , (15.3) 

where p( t) accounts for the transmit pulse shape, the linear distortion in the channel, and the 
receive filter, and 9( t) models the frequency offset and phase jitter. In order to have this 
analytic signal available at the receiver, we assume either an analytic receiver bandpass filter 
or a phase splitter, as discussed in Section 5.3.4. If there is frequency offset then 9( t) will have 
a linear tenn 2nfot. Suppose that (15.3) is demodulated with the carrier 

e -j(2ltfc + $( t» , (15.4) 

where $( t) is the receiver estimate of the carrier phase. Sample at the symbol rate t = kTto get 
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qk = e j (9k -'ilk)L: = --00 AmPk - m , (15.5) 

where 9k, CPk, and Pk are samples of 9( t), cp( t), and p( t). If the carrier recovery follows a 
bandpass equalizer, as shown in Fig.5-2l, then the equalized pulse shape should 
approximately satisfy the Nyquist criterion, 

Pk = Ok, (15.6) 

and consequently 

(15.7) 

Example 15-3. -------------------------
If the receiver demodulates with a constant phase error 9k - CPk = 'lI, and there is no other 
degradation, then the received constellation will be a tilted version of the transmitted constellation, 
as shown in Fig. 15-1(a). 

If left uncorrected, the tilt will degrade the immunity of the receiver to noise by bringing the 
received signal points closer to the boundaries of the decision regions. 

Example 154. -----------------------------------------------------
If the receiver demodulates with the wrong frequency 9k - CPk = 21tfokT, then the received 
constellation rotates, as illustmted in Fig. 15-1(b). 

If left uncorrected, the rotating constellation will make errors every time a received symbol 
rotates past the boundary of a decision region. To correct both problems, carrier recovery is 
needed. Assuming a PLL is used for this function, we will now design a decision-directed 
phase detector. It is also possible to avoid decision direction in carrier recovery, as illustrated 
in Section 15.2. 

Exercise 15-1. 
Given (15.7), show that the phase error in the demodulator is 

\ 
\ 

(a) (b) 

Fig. 15-1. Ifthe receiver demodulates with a constant phase error then the received constellation will be 
a tilted version of the transmitted constellation, as shown in (a). The O's are the transmit constellation 
and the X's are the received symbols. If the receiver demodulates with the wrong frequency, the 
received constellation will rotate, as illustrated in (b). 
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(15.8) 

We have the beginnings of a phase detector, but in practical systems the assumptions that 
Pk = Ok and that there is no noise are unrealistic. With any amount of noise and intersymbol 
interference we can write the received symbols as 

(15.9) 

where the real-valued Ck > a accounts for amplitude errors and Ek accounts for phase errors. 
Some of the phase error will be due to noise and intersymbol interference, and some will be 
due to phase jitter and frequency offset. 

Exercise 15-2. 
Given (15.9), show that 

(15.10) 

We are now closer to a practical phase detector, but there is still a problem. The symbols Ak 
are not known in the receiver (or there would be no need to transmit them) except perhaps 
during a brief training period at the initiation of a connection. Just as we did with adaptive 
equalizers in Chapter 9, we can use decisions Ak instead of the actual symbols Ak . The 
resulting carrier recovery loop is shown in Fig. 15-2. 

This PLL is closely related to those in Chapter 14, of course, but the phase detector is 
significantly different. One major difference: since the phase detector is decision-directed, 
errors in the decision will result in errors in phase detection. 

fPHASEDETEcTOR---------------------------------! 

Fig. 15-2. A carrier recovery loop using a .phase detector that measures the angular difference between 
the received sample qk and the decision Ak . 
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Example 15-5. -------------------------
Consider a 4-PSK signal with constellation and decision regions shown in Fig. 15-3(a). If the 
received sample has a phase error greater than n / 4 in magnitude, the decision will be incorrect, 
and the measured phase error will be incorrect. Equivalently, the measured phase error is 

(15.11) 

where W( . ) is shown in Fig. 15-3(b). An immediate consequence is that the derived carrier can 
have any of four phases, depending on the first few decisions. 

Decision-directed carrier recovery generally suffers from a phase ambiguity in the derived 
carrier, as shown in the previous example. This problem is easily overcome by using a 
differential encoder. 

Example 15-6. 
A differential encoder and decoder for a 4-PSK signal is shown in Fig. 15-4. Information is carried 
by the change in phase, rather than by the absolute phase. For example, an increase in the 
transmitted phase by n indicates the transmission of the pair of bits 10, regardless of the absolute 
phase. 

Exercise 15-3. 
Assume the only degradation between the coder and the slicer in Fig. 15-4 is a rotation by a 
multiple M of n/2, or in other words a multiplication by e jM1t12 . Such a degradation could be 
introduced by carrier recovery that uses a phase detector with the characteristic in Fig. 15-3(b). 
Show that the output bits from the decoder are the same regardless of the multiple M (with the 
possible exception ofthe first two bits out of the decoder). 

, / , 

/ 

, / , / , / 

/' DECISION 
/' REGION 

/ , 
/ , 

(a) 

W(x) 

x 

(b) 

Fig. 15-3. a. The constellation and decision regions for a 4-PSK signal. b. The characteristic of an ideal 
decision-directed phase detector. It cannot detect angular errors greater than 7t/4 in magnitude. 

CODER 

C::;:.;:....::.t-rI-;Ol±OO 
10~11 

SLICER 

~ 
1Of11 

Fig. 15-4. A differential encoder can be used in the transmitter to overcome the 7t/2 phase ambiguity in 
the carrier recovery loop. Information is carried by the change in phase, rather than by the absolute 
phase. The decoder shown reverses the encoding. 
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Proper operation of a differential decoder depends on the decisions being correct in the 
receiver. In fact, if a single decision is incorrect, two symbol intervals will be incorrectly 
decoded, so there is error propagation. The impact of this error propagation is usually 
minimal. 

For constellations larger than 4-PSK, the phase ambiguity of the carrier recovery loop can 
be more serious (see Problem 15-2). It is common to differentially encode two bits of the M 
bits needed for a constellation of size 2M. The coder then uses the two differentially encoded 
bits to determine the quadrant. Thus phase errors of multiples of nl2 do not cause decision 
errors, although smaller phase errors might. 

The phase error measurement in (15.10) can be simplified. Observe that for small phase 
errors, Ek '" sin(Ek), and 

(15.12) 

We can write this as 

(15.13) 

where W(·) is shown in Fig. 15-5 and W(·) is shown in Fig. 15-3(b) for the 4-PSK case. 
From Fig. 15-5 we see that (15.12) makes a reasonable phase detector. With small angular 
errors, the characteristic is close to linear. It is common to simplify still further and omit the 
denominator in (15.12) so as to avoid having to perform the division, using as the estimate of 
the phase error 

(15.14) 

A first-order carrier recovery loop (L(z) = K L) using this angular error estimate is shown in 
Fig. 15-6. The complex multiplications are shown explicitly so that the total complexity of the 
algorithm can be understood at a glance. This carrier recovery loop, or a variant of it with a 
continuous-time VCO, is commonly used, and is quite effective. 

Many of the techniques from Chapter 14 can be applied to adapt this basic technique to 
particular situations. For example, a natural extension of the basic PLL in Fig. 15-6 uses a 
higher order loop, obtained by inserting a more complicated filter L(z). Careful design of 
L( z) can lead to carrier recovery loops that perfectly track frequency offset or phase jitter at 
some frequency. 

l/1<X) 
/1/1 ~ 

) V:" ~ V; 
2 2 

x 

Fig. 15-5. The phase detector characteristic when (1S.12)is used to estimate the angular error. Except 
for a slight curvature, it is very similar to that in Fig. 1S-3b. 
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One practical difficulty arises when an adaptive equalizer is used in conjunction with a 
decision-directed carrier recovery loop. Baseband adaptive equalizers assume that the input 
has been demodulated. The solution to this difficulty, given in Section 9.5, is to use a passband 
equalizer. We can now understand why this is so important. The overall structure of a passband 
PAM receiver is shown in Fig. 5-21. By placing the forward equalizer before the carrier 
recovery demodulation, we avoid having the equalizer inside the carrier recovery loop. By 
contrast, a baseband equalizer would follow the demodulator and precede the slicer. This 
means that it is inside the carrier recovery loop. Consequently, the loop transfer function of the 
carrier recovery includes the time-varying equalizer, causing considerable complication. At 
the very least, the long delay (several symbol intervals) associated with the baseband equalizer 
would force the loop gain of the carrier recovery to be reduced to ensure stability, impairing its 
ability to track rapidly varying carrier phase. The passband equalizer shown in Fig. 5-21 
mitigates this problem by equalizing prior to demodulation. 

Another important practical difficulty arises with decision-directed carrier recovery loops 
when trellis coding is used (Chapter 13). Unlike a slicer, a trellis decoder does not make 
immediate decisions. Decisions may be postponed several (say M) symbol intervals. This is 
equivalent to inserting a delay z -M in the carrier recovery loop. The delay can undermine the 
validity of the PLL (see Problem 15-3). To overcome this practical difficulty, a slicer is added 
to the receiver and the slicer decisions are used to compute the phase error. The slicer 
decisions will not be as accurate as the decisions made by the trellis decoder, but at least they 
are made promptly. 

fCOS 
I 
I 
I 
I 
I 
I 
I 

I 

TO DECODER 

veo 

Fig. 15-6. A first-order carrier recovery loop using (15.14), a particularly simple estimate of the angular 
error. 
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Fixed Reference Detector 

A particularly simple variation on decision-directed carrier recovery is possible for PSK 
signals. It is a phase-domain PLL like that in Fig. 14-14, but modified as shown in Fig. 15-7. 
The phase of the input signal is compared against a fixed reference generated by a local 
oscillator. This phase difference (which is modulo 2n) will reflect the phase modulation of the 
input plus a drift with time due to the fact that the local oscillator is not synchronized with the 
remote carrier. The function of the PLL is to remove the drift at the first subtractor. The slicer 
determines which of N phases was transmitted using a simple threshold test, and the difference 
between the decision and the input to the slicer is a measurement of the residual drift Ek (or 
residual phase error). This phase error is filtered (if desired), and integrated. The integrator 
comes from the structure in Fig. 14-14. The main advantage of the fixed reference detector in 
Fig. 15-7 is that it can be implemented using inexpensive and fast digital logic. 

15.2. Power of N Carrier Recovery 

Although decision-directed carrier recovery is a common technique for coherent 
demodulation, decision errors will be a problem at low SNR. In this event it is possible to 
avoid decision direction. We will illustrate this with a popular alternative, power of N carrier 
recovery. Consider again the sampled passband PAM analytic signal 

= e j(21tfckT + 9k)L: = -00 lAm I ejL(Am)Pk - m . 

Assume that there is no lSI so that Pk = Ok and 

Xk = e j (21tfckT + 9k ) I Ak Ie jL(Ak) 

If we raise this signal to the NIh power we get 

xf = e jN(21tfckT+ 9k) IAk I NejNL(Ak) . 

Now suppose that we can find an integer N such that 

ejNL(Ak) = 1 

for all Ak. For example, this is possible for PSK and AM-PM signals. Then 

FIXED REFERENCE 

Fig. 15-7. A fixed-reference detector for PSK signals. 

(15.15) 

(15.16) 

(15.17) 

(15.18) 
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(15.19) 

This signal has a strong spectral line at frequency Nfc' as is evident from the following 
breakdown, 

XkN = ejN(21tfckT+ 9k)E[ IAk IN] + ejN(21CfckT+ 9k )( IAk IN - E[ IAk IN]) . (15.20) 

The first tenn is a tone that can be extracted with a bandpass filter or a PLL. The second tenn 
may be zero (e.g. for PSK), or may contribute amplitude modulation to the tone. 

Except for the possibly time-varying amplitude tenn IAk IN, (1S.19) has the same fonn 
that we assumed in Chapter 14 for the complex phase detector (see Fig. 14-11). It can be fed 
into a complex phase detector, as shown in Fig. lS-8. The natural frequency OOv of the VCO 
should be selected so that Nooc is always within the lock range of the PLL (see Problem lS-S). 

Example 15-7. -------------------------
Consider a 4-PSK signal with IAk I = 1, and no lSI or noise, just phase jitter and frequency offset 
represented by Ok in (15.15). Let N = 4 so from (15.19) 

(15.21) 

In the presence of noise or lSI this signal will have phase jitter which can be attenuated by the PLL. 

To demodulate the PAM signal, the complex sinusoid with frequency Nfc must be converted to 
a complex sinusoid at frequency fc' This can be done using the frequency synthesizer in 
Fig. 14-16, which can actually be incorporated into the loop in Fig. lS-8 (see Problem lS-S). 

In practical situations, of course, noise and lSI will be present and will contribute to phase 
jitter in the derived carrier. This jitter can be attenuated with a narrowband filter or a PLL. 

Another practical difficulty is that it may not always be possible to find a value of N such 
that (lS.18) is true (see Problem lS-4). In this case, we can raise the signal to the Nth power 
anyway as in (lS.17) and the breakdown similar to (lS.20) becomes 

xf = ejN(21tfckT+ 9k )E[AkN] + ejN(21tfckT+ 9k )(AkN - E[AkN]) . (15.22) 

The first tenn will yield the desired tone as long as E[Af] -:f. O. It is usually easy to find an N 
for which this is true (see Problem lS-4). 

Not surprisingly, continuous-time versions of power of N timing recovery are also used 
(see Problem lS-6). 

PHASE DETECTOR . 

Fig. 15-8. A power of N carrier recovery loop. 
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15.3. Further Reading 

A useful tutorial on carrier and timing recovery is given by Franks [1]. The interaction of 
carrier recovery and adaptive equalization was resolved in the seminal paper by Falconer [2]. 
Further information about decision-directed carrier recovery can be obtained from 
[3][4][5][6][7]. An interesting variation of 4-th power carrier recovery is given in [8]. 
Simultaneous maximum likelihood carrier and timing recovery is considered in [9]. The use of 
an adaptive loop filter for carrier recovery is proposed in [10][11]. 

Problems 

Problem 15-1. A common problem that must be avoided in carrier recovery isfalse lock. For example, 
in Fig. 15-I(b), for four-phase PSK if the constellation rotates precisely nl2 radians in every sample 
time, the samples qk will fall on the correct signal constellation points and it will be difficult to tell that 
the carrier frequency is off. 

(a) Find the carrier offset frequencies that result in this false lock. 

(b) For a carrier frequency of75 MHz and a baud rate of 15 MHz, what is the minimum false-lock 
carrier-offset frequency? 

(c) Suggest one or more possible ways to deal with this problem. 

Problem 15-2. Suppose that a decision-directed phase detector given by (15.10) (with Ak replaced by 
the decisions Ak) is used in a carrier recovery loop. We can write ck as a function of the phase error, 

(15.23) 

(a) Sketch W( . ) for an 8-PSK constellation. 

(b) Sketch W(·) for a 16-QAM constellation. Assume radial decision regions, as shown in the 
following figure: 

The decision boundary angles are halfway between the angles of the symbols. (These decision 
regions are far from optimal, but they simplify the problem.) Hint: W( . ) depends on A k. 

Problem 15-3. Consider the discrete-time carrier recovery loop in Fig. 15-2 with a first-order loop 
filter L( z) = KL. Suppose that the decisions made by the slicer are delayed by M samples (for example 
the slicer is replaced with a trellis decoder that has truncation depth M). This extra delay can be 
modeled as a loop filter 
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(15.24) 

instead of K£- Suppose that KL = O.l. 

(a) For no delay, M = 0, find the pole location of the transfer function to jitter <I>(z) /8(z) and 
sketch the frequency response. 

(b) Repeat for M = 1. Is this PLL useful? 

( c) Find the poles when M = 2. 

(d) Find M such that the loop becomes unstable (may require a computer program). 

Problem 15-4. 

(a) Show that there is no value of N such that (15.18) is satisfied for a 16-QAM signal. 

(b) Find N such that E[ I Ak IN] "* 0 for a 16-QAM signal. 

Problem 15-5. Consider the design of a power of N carrier recovery loop for a 4-PSK signal with 
I Ak I = 1. Suppose that fc = 400 Hz ± 2 %. 

(a) For the PLL in Fig. 15-8, findfv that leads to the smallest required lock range for the PLL. What 
is the lock range (the range of frequency offset fo at the input to the phase detector)? 

(b) Suppose you wish to design the PLL with fv = fc = 2400 Hz. Modify the design in Fig. 15-8 so 
that this will work. 

Problem 15-6. Consider the passband PAM signal 

R( t) = Re{ e j(21tfct + 8( t » S(t)} , (15.25) 

where 

S( t) = L: = -00 AmP(t - mT) . (15.26) 

(a) Show that 

(15.27) 

(b) Show that for 4-PSK E[R2( t)] has no periodicity at the carrier frequency or multiples of the 
carrier frequency. Hence power of 2 carrier recovery will not be a good choice for 4-PSK. 

(c) Find conditions onAk such that power of2 carrier recovery will work, assuming thatAk is white. 
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16 
Timing Recovery 

The purpose of timing recovery is to recover a clock at the symbol rate or a multiple of the 
symbol rate from the modulated waveform. This clock is required to convert the continuous
time received signal into a discrete-time sequence of data symbols. 

Many digital systems transmit a clock separate from the data stream. This is commonly 
done in systems which range from the size of an integrated circuit up to perhaps the size of a 
room. For digital communication systems, however, the transmission of a separate clock 
would be inefficient, since it requires additional facilities, bandwidth, or power. Hence, it is 
more economical to implement the additional circuitry which is required to derive the clock 
from the received modulated waveform itself. This is called self-timing, and requires that the 
timing information be implicit in the received waveform, which is not necessarily the case for 
all signaling methods. 

Example 16-1. -----------------------------------------------------
Consider a baseband system using an AMI line code, in which "0" bits are transmitted as a zero 
voltage, and "I" bits are transmitted alternately as positive or negative-going pulses. If the user 
transmits a long sequence of zeros, the transmitted waveform will be identically zero, and there will 
be no timing information. 

The need to do timing recovery imposes additional requirements on the modulation technique 
which are not present where a separate clock is available. The strength of the timing 
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infonnation in a signal is affected by the statistics of the signal, the line code, and the pulse 
shape. 

Example 16-2. -----------------------------------------------------
To correct the problem in the previous example, we can use a scrambler to randomize the data bits. 
In effect, we alter the statistics of the signal to ensure that a timing signal can be extracted at the 
receiver. The user can stilI foil the system by transmitting just the right bit sequence so that the 
output of the scrambler is zero, but for most practical cases, the probability of this occurring is 
negligible. 

Practical timing recovery circuits cannot perfectly duplicate the clock used at the remote 
transmitter. The most basic requirement is that the average frequency of the derived timing 
must exactly equal the average frequency of the transmitted signal. Obviously, the receiver 
must only generate as many bits as were transmitted, over the long tenn. Although the average 
frequency of the derived timing must be exact, the timing signal usually has phase jitter, or 
timing jitter. Timing jitter is not a fundamental impainnent, but can be reduced to any desired 
level. We will see that the only barrier is cost. 

There are fundamentally two types oftiming recovery techniques which we call deductive 
and inductive. Deductive timing recovery directly extracts from the incoming signal a timing 
tone, which has an average frequency exactly equal to the symbol rate. The timing tone is used 
to synchronize the receiver to the incoming digital infonnation, as shown in Fig. 16-1. If the 
timing tone has unacceptable jitter, that jitter can be reduced using a PLL, as shown in 
Fig. 16-2. This PLL will usually be of the type considered in Example 14-1 rather than 
Example 14-1, in that its objective will be produce a single-frequency rather than to track the 
jitter. 

_R-'-'<t):.....-_______________ -r; ~ DETECTOR I 
TIMING 
TONE 

DETECTOR TIMING TONE 

Fig. 16-1. In deductive timing recovery, a timing tone, which is a Signal with average frequency is 
exactly equal to the symbol rate, is extracted from the data signal. Typically, the zero crossings of the 
timing tone are used to determine when to sample the data signal. 

R_<_t_) ,.....-----------------------------------------r; ~ DETECTOR I 
TIMING 
TONE 

DETECTOR 

Fig. 16-2. Timing jitter can be reduced using a PLL 
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Inductive timing recovery does not directly process the received signal to get a timing 
tone, but rather uses a feedback loop as shown in Fig. 16-3. Inductive timing recovery uses a 
PLL not as an added optimization to reduce timing jitter, but rather as an integral part of the 
method. One obvious advantage of this method is that most of the timing recovery can be done 
digitally and in discrete-time. A disadvantage is that the sampling rate of the received signal 
may have to be higher than the symbol rate in order to be able to estimate the timing error 
(although we will see baud-rate techniques that work). The phase detector in Fig. 16-3 is the 
sampling phase detector of Fig. 14-12. 

First we establish the criteria by which we will evaluate timing recovery techniques, and 
then discuss the most popular deductive timing recovery technique, the spectral-line method. 
After this, we describe an inductive technique, MMSE timing recovery and approximations. 
Finally, we describe a class of inductive techniques, baud-rate timing recovery, that allows 
sampling at the symbol-rate. 

16.1. Timing Recovery Performance 

Comparing the performance of alternative timing recovery methods analytically is usually 
very difficult. Some of the criteria for performance are discussed in this section. 

16.1.1. Timing Phase 
It is necessary to know not only how often to sample the data bearing signal, but also 

where to sample it. The choice of sampling instant is called the timing phase. For some signal 
schemes and some receivers, the performance of the receiver is critically dependent on the 
timing phase. The sensitivity to timing phase can be quantified by examining the eye diagram 
of a signal (see Section 5.1.3). In Fig. 16-4 we show eye diagrams for 25% and 100% excess 
bandwidth raised cosine binary antipodal PAM signaling. Clearly, the 25% excess bandwidth 
signal is more sensitive to timing phase because the eye closes more rapidly as the timing 
phase deviates from the optimum. With zero excess bandwidth, the signal is infinitely sensitive 
to timing phase, because the horizontal eye opening becomes zero (see Problem 5-5). It should 
not be inferred, however, that all signals without excess bandwidth have zero eye width. It is 

R(t) 

TlMINGTONE 

Fig. 16-3. In inductive timing recovery, a current estimate of the timing tone is used to sample the 
signal. Then the timing error is estimated and the timing tone estimate is updated. This is effectively a 
PLL. 
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possible, using partial response line coding, to construct a signal with no excess bandwidth 
and an open eye. In effect, through coding we can disallow the sequences Am that lead to large 
lSI. 

Example 16-3. -------------------------
A zero excess bandwidth modified duobinary pulse Pmdb( t) is formed by subtracting two sinc 
pulsespo(t) = sin(ntl1)/(ntl1), 

Pmdb( t) = POe t) - poet - 21) , (16.1) 

as shown in Fig. 16-5. Modified duobinary can be used to get a signal with zero excess bandwidth 
and an open eye. The eye width has been computed by Kabal and Pasupathy [1] and is about 36% 
ofthe symbol interval for zero excess bandwidth. To understand intuitively how this can be so, note 
that the tails of the two sinc pulses tend to cancel each other, so the influence that the MDB pulse 
can have on distant symbols is considerably less than the influence that either sinc pulse alone 
would have. 

VIABLE 
TIMING PHASES 

OPTIMAL 
TIMING PHASE 

(a) 

VIABLE 
TIMING PHASES 

OPTIMAL 
TIMING PHASE 

(b) 

Fig. 16-4. Eye diagrams for (a) 25% and (b) 100% excess bandwidth raised cosine pulses. The vertical 
lines indicate the range of possible timing phases (sample points) such that positive and negative pulses 
can be distinguished. In each case, the optimal timing phase is in the center where the eye opening is 
greatest. 

T 4T 5T 

Fig. 16-5. The modified duobinary impulse response with 0% excess bandwidth. 
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Practical signals with zero excess bandwidth have an important advantage for timing 
recovery. Zero excess bandwidth signals are bandlimited to half the symbol rate frequency, so 
no aliasing occurs in sampling at the symbol rate. Even more remarkably, such a signal is 
entirely insensitive to timing phase if an adaptive equalizer (with enough taps) is used (see 
Problem 16-1). Thus, a fractionally-spaced equalizer (Section 9.4) is not required. 

16.1.2. Timing Jitter 
The timing tone recovered from a data signal always has timing jitter. This jitter can be 

reduced to any desired level by the design of timing recovery circuits, or by use of an 
additional phase-locked loop. Timing jitter introduces two degradations. First, the PAM signal 
is sampled at a sub-optimal point in the eye, increasing the lSI and thereby reducing noise 
immunity. Second, the bit stream emerging from the detector will generally have the same 
timing jitter produced by the timing recovery circuit. Usually, this is not a problem since 
consumers of the data (such as terminals or computers) are tolerant of limited amounts of 
jitter. When the data is a digital representation of a continuous-time signal such as speech, 
however, the jitter will cause the reconstructed speech to have non-uniform sampling, resulting 
in distortion. Timing jitter can have another serious consequence. For long distance 
transmission, a signal is often transmitted through a chain of many repeaters (Chapter 1). Each 
repeater reconstructs the digital signal and retransmits it, including the timing jitter on the 
input as well as timing jitter introduced in the repeater itself. The accumulation of timing jitter 
after a number of repeaters must be accounted for in the design of the timing recovery circuits 
(Section 16.5). 

16.2. Spectral-Line Methods 

A baseband PAM signal carrying discrete-time digital information 

(16.2) 

is not stationary. In fact, it is cyc/ostationary, meaning that its moments vary in time and are 
periodic with period T, the symbol interval. Consider the new random process 

Z( t) = f(R( t)), (16.3) 

where f( .) is a memoryless nonlinearity. Often we will find that the mean-value of Z( t ), 
E[Z( t)], is non-zero and periodic with period T. We can think of this mean-value as a 
deterministic component of the random process Z( t ), consisting of a fundamental at the baud 
rate and harmonics. We can exploit this fact for timing recovery by forming Z( t) and passing 
it through a bandpass filter centered at the baud rate. This is known as spectral-line timing 
recovery. 

If the mean-value of R(t) (corresponding to the identity function f(x) =x) contains a 
spectral line at the baud rate, we can simply pass R( t) itself through a bandpass filter to obtain 
a timing waveform. This is known as the linear spectral-line method, and it is discussed in 
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Section 16.2.1. Most often, however, the mean-value is zero but higher moments of R( t) are 
periodic. When f( t) is nonlinear, this is called the nonlinear spectral-line method, and is 
discussed in Section 16.2.2 

16.2.1. The Linear Spectral Line Method 

When the mean-value of the data symbols is non-zero, the baseband PAM waveform may 
contain a spectral line at the baud rate. To determine whether a spectral line at the symbol 
frequency exists for a particular signal (16.2), partition the signal into a data independent 
(deterministic) component and a data dependent, zero mean stochastic component 

(16.4) 

The first term is independent of the data Ak, is periodic with period T, and can be thought of as 
a deterministic timing signal. Its periodicity implies a fundamental at the symbol rate 1/ T and 
harmonics. If this fundamental has non-zero amplitude, it can be extracted with a bandpass 
filter, producing a timing tone. The second (data dependent) term is zero-mean and random, 
and results in jitter on the recovered timing tone. 

Example 16-4. -----------------------------------------------------
Consider a binary on-off signal with alphabet Ak E {O, I} in (16.2). Let the received pulse shape be 
a 50% duty cycle square pulse, 

{
I, 

p(t) = 
0, 

for tE [0, T 12), 
(16.5) 

otherwise 

Using this pulse shape, and observing that E[Ak] = 1/2, the deterministic part of (16.4) is shown in 
Fig. 16-6. Clearly this signal has a strong spectral component at the symbol frequency. 

Even when the mean-value of R( t) is non-zero, it does not contain a spectral line at the baud 
rate unless the excess bandwidth is at least 100%. 

Exercise 16-1. 
Define x( t) to be the deterministic term of (16.4), 

112 

-T o T 2T 

Fig. 16-6. The deterministic part of a binary on-off Signal when the pulse shape is a 50% duty cycle 
square pulse. 
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x( t) = E[Akl L.; = -oop(t - k1) . (16.6) 

Show that the Fourier transfonn PU) of the pulse must be nonzero at f = ±1 / T in order for XU) 
to have a component at f = ±1 / T Hint: The results of Appendix 16-A may be helpful. 

The requirement that the data symbols Ak have a non-zero mean (which implies a power 
penalty, Section 5.2.2), and that the excess bandwidth be at least 100%, usually rules out the 
linear spectral line method. 

16.2.2. The Nonlinear Spectral Line Method 

Often, even when the mean-value of R( t) is zero, the second and higher moments are non
zero and periodic. In 1958, in his classic paper on self-timing, Bennett observed that this can 
be exploited by passing the received signal though a memoryless nonlinearity [2]. The 
resulting waveform often has a deterministic mean-value that is periodic in the symbol rate, 
and a timing tone can be derived from it using a bandpass filter. To illustrate this, we will use 
the magnitude-squared nonlinearity f(x) = Ix 12. Assume a baseband PAM waveform of the 
form of (16.2), and for generality assume that Ak and p( t) are both complex-valued. The 
magnitude squared of this process depends on the correlation function of the data symbols, so 
assume they are white, 

(16.7) 

This assumption is reasonable, particularly when a scrambler is used. It is then straightforward 
to show that 

(16.8) 

This expected value can again be considered a deterministic component of the process 
I R( t) 12, and it is obviously periodic with period T, the symbol rate. The fundamental of this 
signal, if it has non-zero amplitude, will be extracted by the bandpass filter in Fig. 16-7 to 
yield a timing tone at the symbol frequency. Some of the random component in I R( t) 12 will 
pass through the bandpass filter and result in timing jitter. In this case, any non-zero excess 
bandwidth is sufficient to guarantee a non-zero fundamental at the baud rate. 

Exercise 16-2. 

_R_( t.,..) _________ --r; ~ DETECTOR I 

Fig. 16-7. The squarer produces a deterministic periodic component. and the bandpass filter extracts 
the symbol frequency. 
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(a) Using the Poisson's sum formula (Appendix 16-A), show that 

~oo Ip(t _ m1) 12 = .! ~oo znej21tntIT, 
£Jm =~ T£Jn =~ 

(16.9) 

where 

Zn = [p(f)Pif -~) df . (16.10) 

Note that 1 Zl I> 0 as long as the bandwidth of P(f) is greater than half the baud rate, 1/(21). 

(b) Show that Z_n = Z; for all n. 

Usually p( t) has less than 100% excess bandwidth, in which case it is easy to show that the 
Fourier series coefficients are all zero except for the d.c. and the fundamental, and thus 

(16.11) 

In this practical case the timing function contains no higher harmonics, although the bandpass 
filter is still required to reject as much as possible of the random portion of IR( t) 12 and any 
other noise or interference present. 

Example 16-5. -------------------------
Consider a received real-valued baseband signal formed with a binary antipodal signal constellation 
{tal. Since the signal is real-valued, the magnitude-squared signal is the same as the squared 
signal, and 

(16.12) 

Since Am 2 = a2, the first term is the deterministic timing tone, and the second term is the random 
portion that will be reflected in jitter at the bandpass filter output. There is no requirement that the 
data symbols have a non-zero mean, as in the linear spectral line method. 

It is generally desirable to have a larger timing tone, and hence large 1 Zl I, since then the 
random components and noise will contribute relatively less to the timing jitter. Observe from 
(16.10) that the size of 1 Zl 1 can generally be expected to increase as the amount of excess 
bandwidth increases, since there will be a larger overlap between P(f) and P(f- nl1). We 
conclude therefore that greater excess bandwidth is generally favorable, and doubly so when 
coupled with the fact that the eye usually becomes less sensitive to timing jitter (wider eye) 
with larger excess bandwidth. 

The analysis of the timing jitter is a little tricky. It may be tempting to compare the power 
in the deterministic timing tone to the power in the remaining random component that gets 
through the narrowband filter. We could find the power spectrunl of the random part using the 
results of Appendix 3-A. Appendix 3-A assumes a random phase epoch in order to get a WSS 
random process. In timing recovery, we are exploiting precisely the fact that the PAM signal is 
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not WSS to derive the timing tone, and assuming wide-sense stationarity to detennine timing 
jitter leads to significant inaccuracies. Accurate techniques have been developed for assessing 
the amount oftimingjitter compared to the strength of the timing tone [3]. 

So far we have considered only a magnitude-squared nonlinearity, but there are other 
possibilities. For some signals, particularly when the excess bandwidth is low, a fourth-power 
nonlinearity 1 R( t) 14 is better than the magnitude-squared. In fact, fourth-power timing 
recovery can even extract timing tones from signals with zero excess bandwidth. An 
alternative nonlinearity is the magnitude 1 R( t) I, which for a real-valued signal is easily 
implemented as a full-wave rectifier. Although the analysis is more difficult, simulations show 
that absolute-value circuits usually out-perform square-law circuits for signals with low excess 
bandwidth [4]. Like fourth-power circuits, absolute-value circuits can extract a timing tone for 
signals with zero excess bandwidth. For signals with low excess bandwidth, however, a fourth
power timing circuit may be preferable. Simulations for QPSK [4] suggest that fourth-power 
circuits out-perform absolute-value circuits for signals with less than about 20% excess 
bandwidth. 

If timing recovery is done in discrete-time, aliasing must be considered in the choice of a 
nonlinearity. Any nonlinearity will increase the bandwidth of the PAM signal, and in 
continuous time this is not a consideration since the bandpass filter will reject the higher 
frequency components. In the presence of sampling, however, the high frequency components 
due to the nonlinearity can alias back into the bandwidth of the bandpass filter, resulting in 
additional timing jitter. This is obviously true if the nonlinearity precedes the sampling, but is 
also true even if the nonlinearity is performed after sampling. This is because preceding a 
sampling operation with a memoryless nonlinearity is mathematically equivalent to reversing 
the order of the sampling and the nonlinearity. Therefore, in a discrete-time realization, a 
magnitude-squared nonlinearity usually has a considerable advantage over either absolute
value or fourth-power nonlinearity. In particular, raising a signal to the fourth-power will 
quadruple its bandwidth, and full-wave rectifying spreads its bandwidth even more. Each 
situation must be considered independently to determine whether the aliasing is detrimental. 

The advantages of absolute-value and fourth-power circuits over square-law circuits can 
be at least partly compensated by pre filtering of the PAM signal prior to the nonlinearity. This 
prefilter can reduce the timing jitter substantially, particularly for low excess bandwidth. 
Prefiltering is based on the observation that often much of the spectrum of the PAM signal 
does not contribute to the timing tone, so a filter that eliminates the unnecessary part of the 
spectrum will reduce timing jitter. This is best seen by example. 

Examplel~6. ---------------------------------------------------
Consider a real-valued baseband PAM signal with 12.5% excess bandwidth and a symbol rate of 
1800 baud. We will show that the timing tone of a square law timing recovery circuit is not altered 
by prefiltering the signal using an ideal bandpass filter with passband from 787.5 Hz to 1012.5 Hz. 
Such prefiltering, however, removes much of the noise and signal components that would only 
contribute to the jitter. The strength of the timing tone will be determined by the Fourier series 
coefficient Zl' This can be found using (16.10), and in particular 
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(16.13) 

P(f) is shown in Fig. 16-8(a). To get Z1, the spectrum in Fig. 16-8(a) is multiplied by the spectrum 
in Fig. 16-8(b) and the product is integrated, per (16.13). Only the cross-hatched regions will 
contribute to Z1, which will not change if the received signal is first filtered with the prefilter shown 
in Fig. 16-8( c). Since the receiver must work with 1 R( t) 12 and not its expected value, parts ofthe 
PAM signal that would contribute to the jitter and not to the timing tone have been removed, as well 
as undoubtedly some noise components. The bandwidth of the prefilter depends on the excess 
bandwidth of the pulse. Given 12.5% excess bandwidth, the ideal prefilter bandwidth is 225 Hz, as 
shown. 

Prefiltering is not as helpful for signals with large excess bandwidths (see Problem 16-5). 

16.2.3. The Spectral Line Method for Passband Signals 

For a baseband PAM system, the previous results apply directly. For a passband PAM 
system, since a complex-valued baseband signal was considered, they would also apply if 
demodulation was performed first. However, there are a couple of problems with this 
approach: 

• As described in Chapter 15, demodulation is usually performed last, after timing 
recovery and equalization. 

• Carrier recovery loops are typically decision-directed, and thus depend for their 
operation on availability a stable timing phase. If the timing recovery depends on carrier 
recovery, and vice versa, there might be serious problems in initial acquisition. 

Fortunately, it is not necessary to demodulate before performing timing recovery. By deriving 
timing directly from a passband signal, we completely decouple timing recovery from other 

225 
(a) P(f) ........ 

/ 
-l~UU 1800 f 

(b) p(800 -f) 

\ 
9 0 1~00 f 

(c) ~ 
r(f) 

225 ........ 

0 0 
-900 900 f 

Fig. 16-8. Illustration of the computation of the Fourier series coefficient Zl for a baseband PAM signal 
with a pulse whose Fourier transform is shown in (a). To get Zl, the function in (a) is multiplied term-wise 
by the function in (b) and the product is integrated. Only the cross-hatched regions will contribute to the 
answer. In (c), the prefilter shown applied to PAM signal prior to the square nonlinearity would not affect 
Zl but would reduce jitter. 



Sect. 16.2 Spectral-Line Methods 749 

functions in the receiver. For the spectral-line method, a passband signal can be passed directly 
through a non-linearity such as a magnitude-square, and a timing tone that can be bandpass 
filtered will result. This technique is sometimes called envelope derived timing, because the 
squaring and filtering operation is similar to extracting the envelope of the signal. 

The simplest case results when we have an analytic bandpass filter, or equivalently 
bandpass filter and phase splitter, at the front end of the receiver (Section 5.3.4). The output of 
this front end will be an analytic signal 

Y( t) = R( t )ej21tfct , 

where R( t) is a complex-valued baseband signal as given by (16.2). Since 

IY(t)1 = IR(t)I·lei21tfctl = IR(t)L 

(16.14) 

(16.15) 

we arrive at the conclusion that applying the analytic signal to a magnitude, magnitude-square, 
or fourth-power nonlinearity is equivalent to applying the demodulated baseband signal. 

However, there are some possible difficulties with deriving timing from the analytic 
signal. 

Example 16-7. -----------------------------------------------------
Often the front-end of the receiver consists of a bandpass filter, sampler, and discrete-time phase 
splitter. The sampler would usually be controlled by the derived timing. Thus, the analytic signal 
depends on the timing recovery output through the sampling phase and frequency, and using this 
signal to derive timing may lead to undesirable interactions and acquisition problems. 

Fortunately, there is a simple alternative to using the analytic signal; namely, to apply just the 
real part Re{ Y( t )} to the nonlinearity. Since Re{ Y( t )} is the phase splitter input, and not 
output, this approach eliminates any problems encountered in Example 16-7. Considering 
again the squarer nonlinearity, 

(16.16) 

Under reasonable assumptions, the expected value of the last two tenns in (16.16) is zero. 

Exercise 16-3. 
Assume the zero-mean complex-valued data symbols Ak are independent of one another and have 
independent real and imaginary parts with equal variance. Show that E[AmAn] = 0 for all m and n. 
(If this result looks strange, recall that the variance of the symbols is E[ IAk 12] and not E[Ak 2]). 

It follows directly from Exercise 16-3 that E[y2( t)] = 0 under these same assumptions on the 
data-symbol statistics. Thus, we get that 

(16.17) 

and the square of the real part of the analytic signal contains the same timing function (albeit 
half as large) as the magnitude-squared of the analytic signal. However, we do pay a price: 

• The timing function is half as large, making sources of jitter more important. 
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• In (16.16), the second and third terms are additional inputs to the bandpass filter. These 
terms have zero mean, and hence do not affect the timing function. However, they do 
represent an additional source of randomness that contributes to a larger timing jitter. 

The same relative merits of squaring, absolute-value, and fourth-power techniques apply 
to passband timing recovery as to baseband. In particular, absolute-value and fourth-power are 
usually better than squaring, except when aliasing is a problem indiscrete-time 
implementations. As with baseband signals, it is sometimes advantageous to prefilter the 
signal before squaring. 

16.3. MMSE Timing Recovery and Approximations 

Although the spectral-line method is the most popular, it is not always suitable. It can be 
difficult to use when the timing recovery has to be done in discrete-time. 

Example 16-8. -------------------------
When an echo canceler is used is used to separate the two directions in a full-duplex connection 
(Chapter 17), the inherently discrete-time echo cancellation must be perfonned prior to timing 
recovery. It is often convenient to avoid reconstruction of a continuous-time signal, and perfonn 
timing recovery in discrete time. The echo canceler complexity is proportion to the sampling rate, 
and therefore there is motivation to minimize the sampling rate for the timing recovery function. 

In this section we describe minimum mean-square error (MMSE) timing recovery, a technique 
that is not practical in its exact formulation, but which has numerous practical approximations. 
MMSE timing recovery is also sometimes called LMS timing recovery, and is similar to 
maximum likelihood timing recovery [5]. The MMSE family of techniques fit the general 
framework of Fig. 16-3, so they are inductive. The phase detector is essentially the sampling 
phase detector of Fig. 14-12, the main difference being that the input signal has a more 
complicated form than the simple sinusoid assumed in Chapter 14. 

16.3.1. The Stochastic Gradient Algorithm 

In Fig. 16-9, the received signal (assumed baseband) is sampled at times (kT + 'rh). The 
symbol interval is T, and thus 'rk represents the timing error in the k-th sample. After some 
possible front-end processing, the notation for the k-th sample is Qk('rh), rather than just Qk, to 
emphasize the dependence on the timing phase. Usually, 'rk is determined by zero crossings of 
the timing tone (see Problem 16-6). Ideally, 'rk is a constant corresponding to the best sampling 
phase, but in practice 'rk has timing jitter. Inductive timing recovery is best understood as a 
technique for iteratively adjusting 'rk. 

MMSE timing recovery adjusts 'rk to minimize the expected squared error between the 
input to the slicer and the correct symbol, 

(16.18) 

with respect to the timing phase 'rk, where Ak is the correct data symbol. This is the same 
criterion used for adaptive equalizers in Chapter 9. Just as with adaptive equalizers, MMSE 



Sect. 16.3 MMSE Timing Recovery and Approximations 751 

timing recovery can use the stochastic gradient algorithm to try to find the optimal timing 
phase. If correct data symbols Ak are available at the receiver (for example during a training 
sequence at system startup), the structure is shown in Fig. 16-9. This criterion directly 
minimizes the slicer error, and hence should result in close to the minimum error probability. 
Unfortunately, the input to the slicer Qk('t/J is a complicated non-linear function of the timing 
phase 'tk, so unlike the adaptive equalizer case there may not be a well-defined unique 
minimum MSE timing phase. In addition, finding an analytic closed-form solution may be 
impossible. 

Instead of seeking a closed-form solution, we can try to minimize the expected squared 
error by adjusting the timing phase in the direction opposite the derivative of the expected 
value of the squared error, 

Exercise 16-4. 
Show that for any complex function Ek('t/J of the real variable 'tk, 

Since Ak does not depend on 'tk, we can write 

dEk(t:k) _ dQk(t:k ) 
dt:k - dt:k 

Hence, to adjust the timing phase in the direction opposite the gradient, we use 

SAMPLE AT TIME 

kT+'k 

~ 

CORRECT 

ESTIMATE 
TIMING 
ERROR 

SYMBOLSL...-_...J 

(16.19) 

(16.20) 

(16.21) 

(16.22) 

Fig. 16-9. MMSE timing recovery adjusts the timing phase to minimize the squared error between the 
input to the slicer and the correct symbols. 
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We have dispensed with the expectation in (16.19), so this is a stochastic gradient algorithm. 
The step size a is usually determined empirically to ensure stability, minimize timing jitter, 
and ensure adequate tracking ability. 

The signal Qk(T:k) consists of samples of some continuous-time signal Q( t) taken at 
t = kT + T:k, so 

(16.23) 

Hence (16.22) is equivalent to 

(16.24) 

This update is shown in Fig. 16-10. 

As with equalization, there would normally be an acquisition or training period during 
which the symbols Ak are available, followed by a decision-directed tracking period during 
which the actual symbols Ak are replaced by decisions Ak. Furthermore, since Ek(T:k> is not a 
linear function of T:k, 1 Ek(T:k) 12 is not a quadratic function of T:k, and the stochastic gradient 
algorithm is not guaranteed to converge to the optimal timing phase. In practice, some other 
technique should be used during acquisition to get a reasonable initial estimate of the correct 
timing phase [6]. This has the disadvantage of requiring two different timing recovery 
techniques during acquisition and tracking. 

R( t ) CONTINUOUS-TIME Q( t) t 
RECEIVER 1-----,.--; ---,r-ti 

FRONT END I 
I 
I __ J 

Fig. 16-10. Stochastic gradient timing recovery using a continuous-time version of the input to the 
slicer. 
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The method of (16.24) still doesn't accomplish the basic objective of using only samples 
of the received signal, since the receiver front end up to the slicer must be implemented in 
continuous-time. One approach is to differentiate the continuous-time received signal R( t), 
sampling this derivative and processing it with a replica of the receiver front end [5], but this 
approach requires two receiver front ends and is often incompatible with echo cancellation. 
More approximations are needed to eliminate the need for a continuous-time version of the 
slicer input, as discussed in the next subsection. 

The stochastic gradient timing recovery operates on the input to slicer, which has been 
equalized and demodulated. It therefore relies on the convergence of the equalizer (Chapter 9) 
and, for passband PAM, the acquisition of carrier (Chapter 15). The equalizer and carrier 
recovery themselves usually assume that the timing recovery has acquired! This potentially 
leads to a serious interaction among these three functions. This problem is overcome at least 
partially if the timing phase is estimated at startup by some other method not requiring 
equalizer convergence [6]. More recently [7] the interaction with carrier acquisition in 
passband systems has been eliminated by modifying the error criterion to 

(16.25) 

For passband PAM signals, an incorrect carrier phase will only rotate the received signal 
Qk('t,J in the complex plane; its magnitude squared is not affected. Hence timing recovery 
based on this error criterion will not be sensitive to carrier phase. 

16.3.2. Other Approximate MMSE Techniques 

The need for a continuous-time version of the slicer input, Q( t ), can be avoided by one of 
two techniques. The first, published by Qureshi in 1976, assumes that Nyquist-rate samples of 
Q( t) are available [6]. Since the derivative is an LTI system, it can be realized as a discrete
time filter. In Appendix 16-B we show that if Q( t) is sampled at the Nyquist rate, then 

CJQk('tk) 
(iT = Qk('tk) * dk , 

k 
(16.26) 

where dk is given by (16.51). It is necessary to assume that 'tk varies slowly for this to be valid 
(see the appendix). This suggests that if the received signal is sampled at the Nyquist rate, 
timing recovery can be implemented as shown in Fig. 16-11. The derivative is computed by a 
discrete-time filter with impulse response dk, which for practical reasons is approximated by 
an FIR filter. A particularly simple approximation is given by (16.52), yielding 

(16.27) 

where 

(16.28) 
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The assumption of Nyquist sampling often complicates the receiver front end, which may 
otherwise get away with a lower sampling rate. There are exceptions to this. 

Example 16-9. -------------------------
Using partial response signaling like the modified duobinary response of Example 16-3, it is 
possible to use zero excess bandwidth. In this case, the symbol rate is the Nyquist rate, and this 
method imposes no computational penalty. 

Example 16-10. -------------------------
It is common to use fractionally-spaced equalizers (Section 9.4) so that the receiver is relatively 
insensitive to timing phase. In this case, the equalizer itself may operate on Nyquist-rate samples. 
Hence all parts of the receiver that precede the equalizer must operate on Nyquist-rate samples. 
However, there is stiII a penalty in complexity for the technique in Fig. 16-11. Usually, the output 
of a fractionally spaced equalizer is immediately decimated down to the symbol rate. This means 
that the output of the equalizer needs only to be computed at the symbol rate. To use this timing 
scheme, we would have to compute the output of the equalizer at the Nyquist rate. 

A second approach to avoiding a continuous-time front-end to the receiver is explored in 
[7]. From (16.20), it is sufficient to directly compute the derivative of the error signal with 
respect to timing phase. This derivative can be approximated by taking each sample either 
slightly ahead or slightly behind the current estimate 'tk of the timing phase. The two phases 
are alternated, and the difference between the error at even samples and the error at odd 
samples is an indication of the derivative of the error with respect to timing phase. 

SAMPLE AT THE 
NYQUIST RATE 

R~~_-t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

a 

SUBSAMPLE AT THE 
SYMBOL RATE 

Fig. 16-11. Stochastic gradient timing recovery when the received signal is sampled at the Nyquist rate. 
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16.3.3. Approximate Maximum-Likelihood Methods 
Many ad hoc timing recovery techniques have appeared over time, mostly justified first 

heuristically and then empirically. Several of these have been shown to be approximations to a 
maximum likelihood (ML) timing recovery [5][8], and bear a strong resemblance to MMSE 
methods. 

One such method, called the sample-derivative method, is shown in Fig. 16-12 [9] for a 
baseband PAM system. This technique can be justified heuristically by observing that it will 
attempt to move the sampling phase until the derivative is zero, which occurs at the peaks of 
the signal, presumably a good (but not optimal) place to sample. For discrete time systems, 
approximations to the derivative (Appendix 16-B) are used. 

A related technique, shown in Fig. 16-13, is called the early-late gate method [8]. In this 
technique, the received waveform is sampled two extra times, once prior to the sampling 
instant by fj. / 2 and once after the sampling instant by the same amount. The sampling instant 
is adjusted until the two extra samples are equal. 

16.4. Baud-Rate Timing Recovery 

Interest in realizing timing recovery using symbol-rate sampling, especially in conjunction 
with echo cancellation, has led to interest in a class of techniques known as baud-rate timing 
recovery. Interestingly, the timing phase update given by (16.27) works even when the samples 

R(t) TIMING 
RECEIVED TONE 
SIGNAL 

Fig. 16-12. Sample-derivative timing recovery. The box labeled sgn(·) computes the signum of the 
input, and can be implemented as a hard limiter. 

R(t) 

RECEIVED 
SIGNAL 

Fig. 16-13. Early-late gate timing recovery. 
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are taken at the symbol rate and not at the Nyquist rate! First we will justify this claim, and 
then describe a family of related baud-rate techniques that are similar to but better than 
(16.27). Any of the baud-rate techniques derived in this section can be used in the receiver 
configuration shown in Fig. 5-21. An additional frequency synthesizing PLL may be required 
to generate the multiple sampling frequencies. 

Define the timing function to be the expected timing update, given the current timing 
phase'rk, 

(16.29) 

From (16.28), 

i('r~ =-Re{ E[Qk('r~Qk+l('r~] - E[Qk('r~Qk_l('r~] - E[AkQk+1('r~] + E[AkQk_l('r~]}. (16.30) 

If Qk('r~ is WSS random process, and'rk varies insignificantly from one sample to the next, 
then the first two terms are equal, and 

(16.31) 

We can show, under benign assumptions for a baseband PAM signal, that Qk('r~ is WSS. 

Exercise 16-5. 
Write the input to the slicer as samples of a continuous-time PAM signal, with the kth sample taken 
at time t = kT + 'rk, 

(16.32) 

Assume that Ak and Nk in (16.32) are WSS random processes, and that Nk is zero mean and 
independent of Ak. Show that Qk('r~ is WSS. Show that under these assumptions, and also 
assuming that Qk('rk) is real-valued, the first two terms in (16.30) are equal and hence cancel. 

Exercise 16-6. 
Assume that all the decisions are correct, Ak = A k, that Ak is white, and that p( t ) is real. Show that 
the timing function is 

(16.33) 

If p( t ) is symmetric about zero, the timing function will be zero at time zero, ik(O) = O. This is 
the condition under which the average timing phase update in (16.27) is zero, and hence the 
point to which the timing recovery algorithm will converge. In the case of a symmetric p( t ) 
this is also a good timing phase. 
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For a given pulse p( t), it is a good idea to check the timing function in (16.33) to ensure 
that it is monotonic and has a unique zero-crossing, and that this zero-crossing is at a good 
timing phase. Equation (16.33) is plotted in Fig. 16-14 for raised cosine pulses with various 
excess bandwidths. Notice that if'tk is early, the timing function is positive, so the expected 
timing phase update is positive, which is what we want. 

The timing function was derived without assuming Nyquist-rate sampling, so this 
technique should work with symbol-rate samples. However, it can be improved. In 
Exercise 16-5 we showed that the first two terms in (16.30) cancel. However, since the timing 
phase update is Zk not E[Zk], these two terms will contribute to the timing jitter. A closely 
related baud-rate technique that does not have these two terms was given by Mueller and 
Muller in 1976 [10]. In fact, they gave a general technique that can yield a variety of timing 
functions, of which (16.33) is only one. Another suitable one is 

The general technique uses timing updates of the form 

Zk =Xk'Qk, 

(16.34) 

(16.35) 

in (16.27), where Qk is a vector of the last m samples and Xk is a (yet unspecified) vector 
function of the last m symbols 

-T 
2" 

u=O.O 

(16.36) 

1 {(,]) 

-1 

Fig. 16-14. The timing function {(,]) is the expected value (over all possible symbol sequences) of the 
timing phase update as a function of the timing phase 'k' It is shown here for the timing phase update in 
(16.28), for three raised-cosine pulse shapes with rolloff factors u. Notice that in each case it has a 
unique zero crossing at the optimal timing phase, and that the polarity is correct to ensure that the timing 
phase will tend to be adjusted towards the zero crossing. (After Mueller and MOiler [10)). 
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To get the timing function in (16.33), simply choose 

(16.37) 

(see Problem 16-7). This technique will have less timing jitter than that given by (16.28). Of 
course, to make this decision directed, use Ak instead of Ak. 

16.5. Accumulation of Timing Jitter 

In digital transmission systems there are often long chains of regenerative repeaters. We 
saw in Chapter 1 how beneficial regeneration was in preventing the accumulation of noise and 
distortion through the transmission medium. However, the regenerative repeaters 
unfortunately allow an accumulation of timing jitter, which can become a critical problem if it 
is not properly controlled through the careful design of the timing recovery circuits [11]. This 
accumulation of jitter will typically result in a limit in the number of repeaters of a given 
design before the accumulated jitter becomes intolerable. 

When considering accumulation of jitter it is important to distinguish between two basic 
sources of jitter. Consider, for example, the spectral-line method of Fig. 16-7. The timing 
recovery circuit responds to the timing function, which is the deterministic mean-value 
component of 1 R(t) 12. The jitter arises from the random components of this signal. One 
random component is the random portion due to the PAM signal itself, and this is called the 
systematic or data-dependent jitter. The second component of jitter is due to any noise or 
crosstalk signals present in R( t). This is called the random jitter. 

In a long chain of repeaters, the systematic jitter greatly dominates the random jitter. This 
is because, in the absence of transmission errors, the systematic jitter component is the same in 
each and every repeater, and therefore adds coherently. A model for the accumulation of this 
type of jitter is shown in Fig. 16-15. Any dependency of the jitter introduced in one repeater on 
the jitter introduced upstream will be slight as long as the total introduced jitter remains 
modest, and therefore we can assume that the jitter introduced in each repeater is additive. 
Each repeater has an equivalent transfer function to jitter, H(f). 

Example 16-11. ----------------------------------------------------
H( f) is typically a low-pass filter response. When timing recovery is implemented using a PLL, 
the closed-loop response is a lowpass filter, as shown in Chapter 14. For the spectral-line methods, 
the output of the bandpass filter can have only frequencies in the vicinity ofthe baud rate, and thus 
the jitter components are also low frequency. 

I/I(t) q,( t) I/I( t) I/I( t) 

~q,Mt) 
q,( t) 

Fig. 16-15. A model for the accumulation of systematic data-dependent jitter. 
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The response H( f) is applied not only to the jitter introduced in the same repeater, but also the 
jitter introduced in all repeaters upstream. The overall transfer function to jitter at the output is 

(16.38) 

for N repeaters. For a given H(f) and jitter power spectrum, this relation allows us to predict 
the total jitter as a function of the number of repeaters. 

Since the bandwidth of the jitter transfer function is generally narrow relative to the baud 
rate, the jitter spectrum is not expected to vary substantially within the bandwidth of H(f), and 
it is a good approximation to assume that it has a white power spectrum <1>0' The power 
spectrum of the jitter at the output of the line is then <1>0 • 1 H TOTAL( f) 12, from which we can 
predict the total mean-square jitter. Our main concern is in how this jitter varies with N, since 
this accumulation of jitter may limit the number of allowable repeaters for a given timing 
recovery design. 

It is instructive to consider three cases: 

• At frequencies where 1 H(f) I> 1, we can readily see that 1 HTOTAL(f) l---t 00 as N ---t 00. 

It is therefore a very bad idea to allow any jitter gain at any frequency for a repeatered 
line. This rules out any PLL with peaking, for example, many second-order PLLs. 

• For frequencies where 1 H(f) 1« 1, we can see that HTOTAL ---t H / (1 - If) as N ---t 00. 

Thus, at frequencies where h 1 is close to zero there is no jitter accumulation, and the 
only significant jitter is that introduced in the last repeater. 

• The critical case to examine is when 1 H( f) 1 "" 1, which will occur within the passband 
of the single-repeater jitter transfer function. A simple application of L'Hospital's rule 
establishes that 1 HTOTAL(f) l---t N as 1 H( f) l---t 1. Thus, the jitter at frequencies where 
the jitter transfer function is precisely unity accumulates coherently as expected - N 
repeaters results in N times the jitter amplitude. 

Example 16-12. -----------------------------------
Assume the jitter transfer function of each repeater is an ideal lowpass filter with bandwidth fl. 
Then the overall jitter power spectrum is <1>0 • N2 within the passband and zero elsewhere, so the 
jitter power is 2fl <l>0N2. Thus, the jitter power increases as the square of the number of repeaters, 
or the jitter amplitude increases in proportion to N. For any desired N we can limit the accumulated 
jitter by making the bandwidth ofthe lowpass filter small. 

Example 16-13. ----------------------------------
A much more realistic assumption is that the jitter transfer function in each repeater is a single-pole 
lowpass filter, obtained, for example, by using a first order PLL with loop filter L(s) = KL, 

KL 
H(f) = K '2 f ' L +} 1t 

(16.39) 

in which case the accumulated jitter transfer function is 
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H =_L_1_ L K ( KN) 
TOTAL(f) j2n{ (K L + j2n{)N . (16.40) 

The total jitter power in this case can be shown [12][11] after evaluation of a rather complicated 
integral to be KL4>oN In. Thus, the jitter amplitude has been reduced from an N dependence for an 
ideal lowpass filter (see Example 16-12) to a IN dependence. Even though the jitter transfer 
function is always N at very low frequencies, as N increases the bandwidth over which this 
dependence is valid narrows, thus slowing the rate of accumulation of jitter (see Problem 16-9). In 
this case the departure ofthe lowpass filter from ideality is beneficial! 

For digital transmission of continuous-time signals, the limit on accumulated timing jitter 
will be the distortion suffered due to the irregular spacing of the received samples. While 
repeatered digital communications systems suffer from this problem of jitter accumulation, it 
is not a fundamental impairment. To reduce the jitter to any desired level, we can pass the bit 
stream through a timing recovery circuit with a bandwidth much smaller than the bandwidth of 
the regenerator timing circuits. 

16.6. Further Reading 

Tutorial articles on timing recovery are rare, perhaps because the ideas are subtle and the 
analysis is relatively difficult. One of the few such articles is by Franks [3]. Another basic 
reference was written by Gitlin and Hayes [13]. The classic article by Bennett, published in 
1958 [2], is well worth reading because of its fine craftsmanship and historical value. Another 
classic article with a lucid discussion of the topic is written by Aaron [14]. 

The relationship between fractionally-spaced equalizers and timing recovery has been 
extensively studied [15][16). Baud-rate timing recovery is described by Mueller and Muller 
[10] and others [17][18]. The effect of timing jitter on echo cancelers has been examined 
[19][20][21]. Even the oldest techniques are still being pursued, as for example in [22] where 
block codes that permit linear timing recovery are studied. Of historical interest is one of the 
earliest discussions of self-timing by Sunde [23], in which a linear spectral-line method is 
proposed. Discrete-time timing recovery for voiceband data modems is described in [24]. 
Other papers with interesting techniques or analysis are [25][9]. 

Appendix 16-A. 
The Poisson Sum Formula 

In the analysis of the spectral-line method, we need to relate the Fourier series of a 
periodic signal in summation form 
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x( t) =~co g(t - kT) • 
£Jk =-eo 

(16.41) 

with the Fourier transform of g( t). In the process, we will get Poisson's sum formula, a well 
known result. Any periodic signal with period Tean be written in summation form (16.41). 

Because of the periodicity of x( t), we can express it using a Fourier series 

where the Fourier coefficients are 

Exercise 16-7. 
Show that (16.43) reduces to 

Xm = f[ g(t)e-j21tmtlTdt . 

Except for the 1 / T factor, this is the Fourier transform of g( t ) evaluated at f = m / T, 

1 
Xm = T G(m/T). 

(16.42) 

(16.43) 

(16.44) 

(16.45) 

Thus, the Fourier coefficients of the periodic signal in summation form are simply samples of 
the Fourier transform of the function g(t). Putting (16.45) together with (16.42) we get 
Poisson's sum formula 

~co g(t _ kT) = 1:. ~co G(m/T)ej21tmtlT. 
£Jk = -eo T £Jm =-eo 

Appendix 16-8. 
Discrete-Time Derivative 

(16.46) 

Consider a continuous-time signal Q( t) for which we have available only Nyquist-rate 
samples 

(16.47) 

where T is the sampling interval and t is the sampling phase. If the sampling phase is varying 
with time, we must assume it is varying slowly enough that we can consider it essentially 
constant. We wish to compute the derivative of Qk(t) with respect to t for all k. From the 
interpolation formula (2.19) we can write 
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Q(t) =,",,00 Qm(t)sin[1t(t-T-mT)/T] 
£.im = -- 1t(t -T - mT)/T 

(16.48) 

The derivative of Qk(t) with respect to the timing phase t is the same as the derivative of Q( t) 
sampled at the same sampling instants, 

dQk(T) = [ dQ(t) ] 
dT dt t = kT+tk 

= ~oo Q (t)[COS[1t(t - t- kT)/T] _ sin[1t(t -t - kT)/T]] 
m=-"" m 1t(t-T-kT)/T 1t(t-T-kT)2/T t=kT+t 

(16.49) 

The last equality follows from putting the quantity in brackets over a common denominator, 
and evaluating everywhere except at m = k. At that point, use ofL'Hospital's rule shows that 
the value is zero. The sum in (16.49) can be rewritten as a convolution 

where 

1 0, 

dk = (_I)k 

kT 

(16.50) 

k=O 
(16.51) 

Hence the derivative of the sampled signal with respect to the timing phase can be obtained by 
filtering the sampled signal with the filter whose impulse response is given by (16.51). 

A filter with impulse response given by (16.51) would be difficult to implement. In 
practice, the impulse response can be truncated, and the filter can be implemented as an FIR 
filter. Reducing it to three taps, we get the approximation 

(16.52) 

Note, however, that the impulse response in (16.51) decays only linearly with increasing Ik I, 
so any truncated FIR filter will have substantial error. 
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Problems 

Problem 16-1. Consider a signal Q( t) bandlimited to If I < 1/(21) and samples of the signal Qk(t) 
given by 

where the sampling phase t is arbitrary. Give the impulse response of a filter whose input is Qk(t) and 
output is Qk(a), for any arbitrary a different from t. This suggests that given Nyquist-rate samples of a 
received signal, an equalizer can compensate for any timing phase. If the equalizer is adaptive, it will 
automatically compensate for an erroneous timing phase. Most adaptive filters, however, are 
implemented as FIR filters. Can this filter be exactly implemented or approximated as an FIR filter? 

Problem 16-2. Suppose a received real-valued baseband PAM signal has 100% excess bandwidth 
raised cosine Nyquist pulses given in (5.8) (with a = 1). Find the Fourier series coefficients of 
E[R2( t )). Would square law timing recovery work well with this signal? 

Problem 16-3. Show that a baseband real-valued PAM signal with a 0% excess bandwidth raised 
cosine Nyquist pulse has no timing tone for the squarer timing recovery circuit of Fig. 16-7. Note that 
although it has a timing tone for a fourth-power circuit, it has a zero-width eye (shown in Problem 5-5) 
and hence cannot be used anyway. 

Problem 16-4. Consider the WSS random process R(t + 8) where R( t) is defined by (16.2) and 8 is 
a uniformly distributed random variable over the range 0 to T Assume Ak is white, RA(m) = ac)m 
(which implies zero mean), and independent of 8. Show that R(t + 8) cannot have any spectral lines 
not present in p( t). In other words, in order to get a spectral line at the symbol frequency, p( t) would 
have to be periodic with period T 

Problem 16-5. Consider a 600 baud signal with 100% excess bandwidth. Design a prefilter for square 
law timing recovery. Will the prefilter improve performance? 

Problem 16-6. Consider the inductive timing recovery of Fig. 16-3. Write the output of the VCO 

v( t) = cos(21tfut + <1>( t» . (16.53) 

Samples of the input signal are taken at times kT + 'Ck, which correspond to the zero crossings of v( t). 
Consider only the zero crossings from positive to negative, so for small enough £ > 0, 

Find an equation relating tk and cjl( t). 

v(kT+t~ = 0 
v(kT + tk - £) < 0 
v(kT + 'Ck + £) > 0 . (16.54) 

Problem 16-7. Suppose that the input to the slicer is given by (16.32). Assume that Ak is real-valued, 
zero mean, white, and independent of Nk, which also has zero mean. For an implicit timing recovery 
technique using the update given by (16.27), (16.35), and (16.37), 

(a) Show that the timing function (16.29) is given by (16.33). 
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(b) Suppose that p( t ) is the triangular pulse given in the following figure: 

ILK I 
-T T 't 

Sketch the timing function. 

Problem 16-8. Suppose again that the input to the slicer is given by (16.32), where Ak is real-valued, 
zero mean, white, and independent of Nk . For an implicit timing recovery technique using the update 
given by (16.27), (16.35), and 

(16.55) 

(a) Find the timing function (16.29). 

(b) Suppose that p( t) is the same triangular pulse used in Problem 16-7. Sketch the timing function. 

(c) Will this timing update work with the triangular pulse? Will it work with raised cosine pulses? 

(d) Repeat parts (a) through (c) for 

(16.56) 

Problem 16-9. Explain the N dependence of the mean-square jitter in Example 16-13 by examining 
the bandwidth over which the total jitter transfer function is approximately N. In particular, show that 
this bandwidth is proportional to 1/ N, and thus, the jitter power is proportional to lf2 . (1/ N) = N. 
Thus, the jitter does not accumulate at nearly the same rate as for an ideal lowpass filter of 
Example 16-12. (Hint: Do a Taylor series expansion of HNU), retain only first- and second-order 
terms.) 
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17 

Multiple Access 
Alternatives 

Thus far in this book we have discussed the signal processing necessary for digital 
communications from one point to another over a communications medium. The remainder of 
the book will begin to address the realization of a digital communications network in which 
many users simultaneously communicate with one another. One of the key issues that must be 
resolved in moving from a single digital communication system to a network is how we 
provide access to a single transmission medium for two or more (typically many more) users. 
In moving from a single transmitter and receiver to the sharing of media by multiple users, we 
must address two primary issues. First, how do we resolve the contention that is inherent in 
sharing a single resource. This issue is discussed in this chapter. Secondly, how do we 
synchronize all the users of the network as an aid to resolving the contention. 

Important practical applications of multiple access techniques include: 

• Full-duplex data transmission on a single medium. Here we want the two directions of 
transmission to share a single transmission medium such as a wire pair or voiceband 
channel. An important application of this is data transmission on the subscriber loop, 
between telephone central office and customer premises, where only a single wire pair 
is available for both directions of transmission. 

J. R. Barry et al., Digital Communication
© Kluwer Academic Publishers 2004
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o Multiple channels sharing a common high-speed transmission link. By building very 
high speed transmission links using, for example, coaxial cable or optical fiber, and then 
sharing that link over many users, economies of scale are realized. The cost of the 
transmission link when divided by the number of users can be very much lower than the 
cost of an equivalent lower speed link. The process of sharing many channels on a 
single high speed link is called multiplexing. A network, which provides a 
communications capability between any pair of users on demand, can be constructed 
from communications links, multiplexers, and switches. The latter provide the 
rearrangement of the connections through the network necessary to provide this service 
on demand. 

o Many users can share a common transmission medium in such a way that when one user 
broadcasts to the others, with only the user for which the communication is intended 
paying attention. By this means, it is possible to provide access between any user and 
any other user without a switch. This is commonly known as multiple access, although 
we use this term more generally in this part of the book to describe any situation where 
two or more users share a common transmission medium. Particularly for small 
numbers of users and within limited geographical areas, multiple access to a single 
medium can be more economical than using switches. This type of multiple access is 
often exploited in local-area networks within a customer premises, and in satellite 
networks in the context of a wide geographical area. 

All these multiple access techniques require that the messages corresponding to different 
users be separated in some fashion so that they do not interfere with one another. This is 
usually accomplished by making the messages orthogonal to one another in signal space. We 
can then separate out the different signals using some form of matched filtering or its 
equivalent, which because of the orthogonality of the signals will respond to only a single 
signal. 

Orthogonality of two or more signals can be accomplished in several ways. 

o The messages can be separated in time, insuring that the different users transmit at 
different times. 

o The messages can be separated in frequency, insuring that the different users use 
different frequency bands. 

o The messages can transmitted at the same time and at the same frequency, but made 
orthogonal by some other means. Usually this is done by code division, in which the 
users transmit signals which are guaranteed to be orthogonal through the use of 
specially designed codes. 

There are also cases where the signals are not separated by orthogonality. In the particular case 
of full duplex transmission on a common medium, the signal which is interfering with the 
received data stream is the transmit data stream generated by the same user. We can use the 
fact that the interfering signal is known, and use echo cancellation to separate the two 
directions, even though they are not orthogonal (although we do use the fact that they are 
uncorrelated). In this chapter we cover the first three multiple access techniques, separation by 
time, frequency, and code division. We also describe the cellular concept, which allows spatial 
reuse of frequencies for serving large numbers of users. 
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17.1. Medium Topology for Multiple Access 

In any discussion of multiple access techniques, it is appropriate to begin by pointing out 
the importance of the topologies of the medium. This term refers to the geometrical 
configuration of the medium which is being shared by two or more users. Each ofthe common 
media have preferred topological configurations, and each topology suggests appropriate 
techniques for providing multiple access. Multiple access media are most common over 
geographically limited areas, such as the local-area and metropolitan-area networks, but can 
also span large geographical areas when radio and satellite media are used. In this section we 
discuss briefly the most common topologies, and in the remainder of the chapter describe 
multiple access techniques in the context of these topologies. 

Some representative topologies are shown in Fig. 17-1. In Fig. 17-1(a) the simplest and 
most common situation is shown, where we have a single unidirectional communications link 
that we wish to share over two or more users. To do so we implement a multiplexer and 
demultiplexer, represented by the boxes, which accept information from the users and transmit 
it over the link. This topology inherently has contention, in that two or more users may wish to 
use the medium simultaneously. The multiplexer, since it has a form of central control, can 
easily avoid collisions (two or more users transmitting simultaneously) since it controls what 
is transmitted. In Fig. 17-1(b) we show the bus, in which two or more users are connected in 
parallel to a common medium, with the result that every transmission by any user is received 
by every other user. The most common medium for a bus is coaxial cable or wire-pair, where 
the users are simply connected in parallel. A set of radio transmitters and receivers with non
directional antennas are also connected, in effect, by a bus, as are a set of transmitters and 
receivers communicating through a satellite transponder. In the later cases this is known as a 
broadcast medium. The bus has no central control, which makes it more difficult to avoid 
collisions. The ring is shown in Fig. 17-1(c), where the users are connected to their nearest 
neighbor in a circle. In this case, we cannot allow broadcast, since the information would 
circulate indefinitely. Therefore, we must have active nodes in this topology, which means that 
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Fig. 17-1. Common topologies for multiple access. A line corresponds to a communication link, one
way if it includes an arrow, a box is a central controller that controls access to the medium, and a circle 
represents a user. (a) A link, where multiple users share a common one-way communication channel 
using a multiplexer and demultiplexer. (b) A bus, where every user receives the signal from every other 
user. (c) A ring, in which each user talks to one neighboring user. (d) A tree, in which users 
communicate through a central hub. (e) A bus with centralized control. 
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all communications pass through them rather than just by them. This allows users to remove 
communications as well as initiate them (typically they remove their own transmissions so that 
they will not circulate forever). Rings are the topology of choice for local area networks based 
on fiber optics media, since they require only point-to-point connections and the bus topology 
is difficult to realize using optical components. The tree is shown in Fig. l7-l(d), in which all 
users are connected to one another through a central controller. Finally, the bus with central 
control is shown in Fig. l7-l(e). This topology is very similar to the tree in that all users 
communicate through a central controller, and requires two unidirectional busses. 

A special application of multiple access is the sharing of a single medium for digital 
transmission in both directions. This is called full-duplex transmission, and is pictured in 
Fig. 17-2. We have two transmitters, one on the left, and one on the right, and two receivers. 
The goal is to have the transmitters on each end transmit to the receivers on the opposite end. 
Unfortunately, most media have the characteristic that each receiver must contend with 
interference from the local transmitter in addition to the signal from the remote transmitter. In 
fact, it will often be the case that the local transmitter interference is much larger than the 
remote transmitter signal. The receiver must find some way to separate the local and remote 
transmitter signals. 

When data signals are transmitted through the network, they encounter echos at points of 
four-wire to two-wire conversion. In half-duplex data transmission (in only one direction), 
echos present no problem since there is no receiver on the transmitting end to be affected by 
the echo. In full-duplex transmission, where the data signals are transmitted in both directions 
simultaneously, echos from the data signal transmitted in one direction interfere with the data 
signal in the opposite direction as illustrated in Fig. 17-3. 

Most digital transmission is half-duplex. For example, the high speed trunk digital 
transmission systems separate the two directions of transmission on physically different wire, 
coaxial, or fiber optic media. The two directions therefore do not interfere, except perhaps 
through crosstalk resulting from inductive or capacitive coupling. However, full-duplex data 
transmission over a common media has arisen in two important applications. In both these 
applications, the need for a common media arises because the network often only provides a 
two-wire connection to each customer premise (this is because of the high cost of copper wire, 
and the large percentage of the telephone network investment in this facility). 

Examplel7-l. -----------------------------------------------------
The first application shown in Fig. 17-4 is digital transmission on the subscriber loop, in which the 
basic voice service and enhanced data services are provided through the two-wire subscriber loop. 
Total bit rates for this application that have been proposed are 80 and 144 kb/ s in each direction, 

~'m'j)' X ·tt~~~ 
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Fig. 17-2. Illustration of full-duplex transmission. 



Sect. 17.1 Mediwn Topology for Multiple Access 771 

where the latter rate includes provision for two voice/data channels at 64 kb/ s each plus a data 
channel at 16 kb/ s, and the first alternative allows only a single 64 kb/ s voice/ data channel. This 
digital subscriber loop capability is an important element ofthe emerging integrated services digital 
network (ISDN), in which integrated voice and data services will be provided to the customer over 
a common facility [1]. Voice transmission requires a codec (coder-decoder) and anti aliasing and 
reconstruction filters to perform the analog-to-digital and digital-to-analog conversion on the 
customer premises, together with a transceiver (transmitter-receiver) for transmitting the full
duplex data stream over the two-wire subscriber loop. Any data signals to be accommodated are 
simply connected directly to the transceiver. The central office end of the loop has another full
duplex transceiver, with connections to the digital central office switch for voice or circuit-switched 
data transmission, and to data networks for packet switched data transport capability. 

Example 17-2. -----------------------------------------------------
The second application for full-duplex data transmission is in voiceband data transmission, 
illustrated in Fig. 17-3. The basic customer interface to the network is usually the same two-wire 
subscriber loop. In this case the transmission link is usually more complicated due to the possible 
presence of four-wire trunk facilities in the middle of the connection. The situation can be even 
more complicated by the presence of two-wire toll switches, allowing intermediate four-two-four 
wire conversions internal to the network. 

The two applications differ substantially in the types of problems which must be 
overcome. For the digital subscriber loop, the transmission medium is fairly ideal, consisting 
of wire pairs with a wide bandwidth capability. The biggest complication is the higher bit rate 
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Fig. 17-3. Two modems connected over a single simplified telephone channel. The receiver on the right 
must be able to distinguish the desired signal (A) from the signal leaked by its own transmitter (8). 
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Fig_ 17-4_ A digital subscriber loop transceiver for full-duplex digital transmission. 
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and the presence in some countries of bridged taps The voiceband data modem, while 
requiring a lower speed of transmission, encounters many more impairments. In addition to 
the severe bandlimiting when carrier facilities are used, there are problems with noise, 
nonlinearities, and sometimes even frequency offset. Another difference is that the subscriber 
loop can use baseband transmission, while the voiceband data set always uses passband 
transmission. 

17.2. Multiple Access by Time Division 

By far the most common method of separating channels or users on a common digital 
communications medium is by ensuring that they transmit at different times. This is known as 
multiple access by time-division. This technique has many variations, the most common of 
which are described in this section. In all these variations, some method is used to avoid 
collisions, or two or more users transmitting simultaneously. Collision avoidance in link 
access is somewhat easier than in the other topologies, and therefore we discuss link access 
separately. 

17.2.1. Point-to-Point Link Access 

It is often desired to divide a high-speed bit stream over a point-to-point communications 
link into a set oflower-rate bit streams, each with a fixed and predefined bit rate. Where this is 
desired, it is appropriate to use a technique called time-division multiplexing (TDM). The bit 
streams to be multiplexed are called tributary streams. Where these tributary bit-streams are 
provided directly to a user, that is they do not themselves consist of tributary streams, then 
they are called circuits or connections. We interleave these tributary streams to obtain a higher 
rate bit stream. The purpose of the multiplex, shown functionally in Fig. 17-5, is to take 
advantage of the economies of scale of a high-speed transmission system. 

Example 17-3. -----------------------------------------------------
A simple multiplexing function for two tributary streams is shown below: 

LOW-SPEED 
LINKS 

INPUT TIME-SLOTS OUTPUT TIME-SLOTS 
......------, 

MULTIPLEX 

--I 

--I TIME-DIVISION SINGLE 
HIGH-SPEED LINK TIME-DIVISION 

DEMULTIPLEX 

MULTIPLEX 

--I 

-0-

-0-

-0-

Fig. 17-5. A time-division multiplex, which interleaves a number of lower-speed tributaries on a single 
higher-speed link. 
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Each tributary stream is divided continuously into groups of bits, known as time-slots, and then 
these time-slots are interleaved to form the output bit stream. Each slot on the output bit stream 
occupies half the time of an input slot since the bit rate is twice as great. 

In practice any number of tributary streams can be multiplexed, and a defined time-slot can 
have any number of bits. However, two cases are particularly common: a time-slot equal to 
one bit, known as bit-interleaving, and a time-slot equal to eight bits, which is known as octet
interleaving. In multiplexing, an octet is a common term for eight bits. Organization around 
octets is common because voice pulse-code modulation (PCM) systems commonly use eight 
bits per sample quantization, and because data communications systems typically transfer 
eight-bit groupings of bits, known in the computer world as bytes. In both cases it is necessary 
to maintain octet integrity at the destination, meaning that the bit stream is delimited into the 
same eight-bit boundaries defined at the origin. This octet integrity is assured by using octet
interleaving, although this is not the only means. 

On the high-speed output bit stream, the collection of bits corresponding to precisely one 
time-slot from each tributary stream is known as a frame. In Example 17-3 one frame 
corresponds to time-slots a and b. At the demUltiplex, all we have is a bit-stream originating at 
the multiplex. In order to realize the demultiplexing function, the boundaries of the time-slots 
must be known. Furthermore, to ensure that the correspondence between input and output 
tributary streams is maintained, demultiplexing requires knowledge of the beginning of the 
frame. For this purpose, the multiplex typically inserts additional bits into the frame known as 
framing bits. 

Example 174. ---------------------------------------------------
In a time-division multiplex, N tributary streams are multiplexed with M-bit time-slots into a single 
output bit stream. The number of bits in the output frame is N· M plus any added framing bits. 

The framing bits follow a deterministic pattern which can be recognized at the demultiplex as 
distinct from the information bits. Once the demultiplex has located these bits, through a 
process known as framing recovery, it has a reference point that enables it to locate the 
beginning of the frame. 

Since a multiplex cannot store an unbounded number of bits, we must ensure that the 
minimum bit rate of the output high-speed stream is greater than or equal to the sum of the 
maximum bit rates of the tributary streams plus the rate required for framing and any other 
overhead bits. 

Example 17-5. ----------------------------------------------------
The CCITT 30-channel system (recommendation G.732 [2]) is widely used in Europe and 
multiplexes 30 tributary streams, each at 64 kb/ s, appropriate for a voiceband channel, into a 
single 2048 kb / s bit stream. Note that 30· 64 = 1920, so that 128 kb / s is used for overhead 
functions such as framing. The organization of the frame is shown in Fig. 17-6. Each frame is 
divided into 32 eight-bit time slots, 30 of them taken from the tributary streams, and the remaining 
two used for overhead. Thus, in this case as in the case of most lower-speed multiplexes, octet
interleaving is used. The time for one frame corresponds to an octet on each tributary stream, or 
1.25 ~sec. There is also defined a superframe or multiframe of 16 frames, which is used to transmit 
and frame on-off hook information for each of the 30 tributary voiceband channels. This on-off 
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Table 17·1. Superframe structure of the M12 multiplex. The F bits are the framing bits, M are the 
superframing bits, and C are stuffing control bits. 481 means 48 information bits, 12 bit·interleaved bits 
from each of four tributary streams. 

Mo 481 C1 481 Fo 481 C1 481 C1 481 Fl 481 

Ml 481 C2 481 Fo 481 C2 481 C2 481 Fl 481 

Ml 481 Ca 481 Fo 481 Ca 481 Ca 481 Fl 481 

Ml 481 C4 481 Fo 481 C4 481 C4 481 Fl 481 

hook infonnation, transmitted in frames 0 and 16, is used to communicate between switching 
machines during call setup and takedown. Time-slot 0 always contains the octet "xOOllOll" and 
"x lOxxxxx" in alternate frames, indicating the beginning of the frame, and time-slot 16 contains 
"OOOOxOxx" in frame 0 of the superframe indicating the beginning of the superframe (''x'' indicates 
bits not assigned, which can be used for other purposes). Time-slot 16 in the remaining frames of 
the superframe contains the aforementioned signaling infonnation. 

Example 17-6. --------------------------
The CCITT 24-channel system used in North America (CCITT G.733 [2]) has a frame consisting 
of 193 bits, including 24 eight-bit time-slots for the tributary 64 kb/s channels and one 
framing/ superframing bit In a superframe of 12 frames, the framing bit contains the pattern 
"101010;', the framing pattern, interleaved with the pattern "001110," the superframe pattern. The 
bit rate is 193·8 = 1544 kb/ s. 

Example 17-7. -------------------------
The M12 multiplex used in the North American network mUltiplexes four tributary bit streams at 
1544 kb/s (often the G.733 signal of Example 17-6) into a into a 1176-bit superframe shown in 
Table 17-1 using bit interleaving. 

Each line of the table represents one frame as defined by the FoFl ... pattern, where Fo = 0 and 
Fl = 1. Similarly, the four-frame superframe is defined by the MoMIM1M1 ... superframe 
pattern. 

ONE SUPERFRAME = 16 FRAMES (2 msec) 

I 0 I 1 I 15 I 
. -----

------
ONE FRAME = 32 TIME SLOTS (125 msec) - - • 

101 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1311 

I 0 I I I I I I 171 ONE TIME·SLOT = 8 BITS (3.9I1sec) 

Fig. 17·6. The frame structure for the CCITI G.732 3D-channel PCM system. 
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Digital Circuit Switching 

TDM multiplexing provides a basic capability for the network to provide fixed bit-rate bit 
streams between users. These bit streams, which can be used to provide services such as a 
voiceband channel or video channel, are called circuits or connections through the network. 
This terminology comes from the early days of the telephone network, when voiceband 
channels were provided by a continuous metallic connection. In order for the network to 
provide the precise set of circuits requested by the users at any time, it is necessary to provide 
a set of digital circuit switches. The function of a digital circuit switch, and particularly the 
transmission interfaces, are similar to that of a TDM multiplex, so they will be described 
briefly here. The switch differs from the multiplex in that it typically has the same number of 
output bit streams as inputs. Typically each stream is itself composed of time-division 
multiplexed lower-speed streams, so that it has a defined framing structure with time-slots 
corresponding to each tributary stream. Further, each of these time-slots typically corresponds 
to a circuit, or bit stream provided directly to users, since the purpose of the digital circuit 
switch is to connect different users together. The specific purpose of the switch is to perform 
an arbitrary permutation of the input circuits (time-slots) appearing on the output. 

Example 17-8. -------------------------
A simple example is shown below: 

:: :: :1""""1 :: ::: 
INPUT TIME·SLOTS OUTPUT TIME-SLOTS 

Each of the input time-slots represents a circuit, where there are two circuits corresponding to each 
TDM input and output in this example. Thus, in total there are four input and four output circuits, 
and the purpose of the switch is to perform an arbitrary permutation of the input circuits as they 
appear at the output. (If this switch were used for voiceband channels, each tributary would be 64 
kb/ s). In the figure, input circuit a replaces b at the output, c replaces a, etc. To perform its 
function, the switch must be able to transfer the bits corresponding to one time-slot on one of the 
input TDM streams to a time-slot on a different output TDM stream (for example Ba and Bc in the 
figure), which is known as space-division switching. Also, it must be able to transfer the bits from 
one time-slots to another (for example Ba and Bd in the figure), which is known as time-division 
switching. 

Of course, most practical switches are much larger than this example. 

Example 17-9. -------------------------
The No.4 ESS is a large toll digital switching machine used in the North American network. It has 
5120 input bit streams, each of which is the G.733 signal of Example 17-6 containing 24 tributary 
voiceband channels, for a total of 122,880 tributary 64 kb/ s bit streams (the total input and output 
bit rate is 7.86 Gb/ s, or actually double this because each channel is bidirectional). This switch is 
not capable of providing all possible permutations of input-output connections, but reasonable 
traffic demands can be served with high probability. 
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Circuit switching enables the network to provide a connection between two users for the 
duration of their need. When the circuit is no longer needed, the switch tenninates the 
connection and uses the associated time-slots on the transmission facility to provide another 
connection. In this fashion, we avoid provisioning transmission capacity for every possible 
connection in the network, but rather provide only sufficient capacity for those connections 
likely to be required at any give time. In Section 17.2.3 we will see an alternative model for 
providing a connection between two users, called packet switching. 

17.2.2. Time-Division Multiple Access 

Thus far this section has addressed the use of time-division techniques for access control 
to a point-to-point link and to a full-duplex channel. Time-division using the circuit switching 
approach can also be applied to other multiple access topologies, such as the bus or the ring. 
The appropriate technique is highly dependent on the topology. For example, on the ring 
topology it is straightforward to define a scheme for time-division mUltiplexing. 

Exercise 17-1. 
Describe a method for forming a frame and fixed time-slot structure on a ring topology, and the way 
in which a circuit could be formed. This approach is called a slotted ring. 

On the other hand, TOM is difficult to apply to the bus topology. The reason is simply that 
TOM requires a fixed frame known to all nodes of the network, but in a bus, particularly a 
geographically large broadcast network such as a satellite network, the propagation delays on 
the medium will typically be large relative to one bit-time. It is still common to apply TDM 
techniques in this situation, but they must be modified to account for the significant 
propagation delays between users. This modification leads to an approach known as time
division multiple access (TDMA). TOMA is applicable to any bus or broadcast topology, 
where there is a set of transmitters and a set of receivers, all of which hear each transmission. 
It has been extensively applied to satellite networks in particular [3][4]. 

TDMA requires a centralized control node, a feature that can be avoided using the random 
access techniques discussed in Section 17.2.4. The primary functions of the control node are 
to transmit a periodic reference burst, akin to the added framing bits in TOM, that defines a 
frame and forces a measure of synchronization of all the other nodes. The frame so-defined is 
divided into time-slots, as in TOM, and each node is assigned a unique time-slot in which to 
transmit its infonnation. The resulting frame structure is illustrated in Fig. 17-7, including one 
frame plus the succeeding reference burst. Each node, of which there are N, transmits a traffic 
burst within its assigned time-slot. Thus far, the approach is similar to TOM, but there are 
significant differences. First, since there are significant delays between nodes, each node 
receives the reference burst with a different phase, and thus its traffic burst is transmitted with 
a correspondingly different phase within the time slot. There is therefore a need for guard 
times to take account of this uncertainty. Each time-slot is therefore longer than the period 
needed for the actual traffic burst, thereby avoiding the overlap of traffic bursts even in the face 
of these propagation delays. Second, since each traffic burst is transmitted independently with 
an uncertain phase relative to the reference burst, there is the need for a preamble at the 
beginning of each traffic burst to allow the receiver to acquire timing and carrier phase. 
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Finally, there must be a centralized control mechanism to assign time-slots and communicate 
those assignments to the nodes. Time-slots can be pre-assigned, implying that changes are 
infrequent and only as a result of rearrangements, or demand-assigned, meaning that frequent 
reassignments are made to match the ebb and flow of traffic demands. 

The reference burst is composed of three parts. A deterministic carrier and bit-timing 
sequence of approximately 30 to 300 symbols enables each node to do accurate carrier 
recovery and timing recovery for detection of the subsequent information bits. This is 
followed by a unique word with good autocorrelation properties, enabling each node to 
establish an accurate time-reference within the reference burst. The unique word is entirely 
analogous to the added framing bits in a TDM frame. Finally, there is the control and delay 
channel, which is a set of information bits used for control of the nodes. It enables the central 
control to assign time-slots, and can even be used to control the phase of a node's traffic burst 
within a time-slot, thereby reducing the size of the guard time. The traffic burst preamble has a 
very similar structure. The control algorithms can get fairly complicated, and the reader is 
referred to [3] for a more detailed discussion. 

Early satellite systems utilized multiple access by FDM, to be described later, but the 
current trend is to use TDMA. 

Example 17-10. ------------------------
The INTELSAT system uses TDMA for high-volume international traffic. The basic bit rate is 
120.832 Mb/ s using four-phase PSK so that the baud rate is 60.416 MHz. The basic frame is 2 ms 
in length, this being 16 times the frame period of both of the standard primary multiplex standards 
in the world (Example 17-5 and Example 17-6). Each time-slot is assigned to one of these primary 
bit streams. For a G.732 bit stream (Example 17-5), the traffic burst will contain (2 ms)· (2.048 kb/ 
s) = 4096 information bits. At a bit rate of 120.832 Mb/ s, the information portion of the traffic 
burst consumes 33.9 ~sec. Forgetting the reference burst, guard times, and traffic burst preambles, 
the frame has room for 59 of these G.732 bit streams. 

17.2.3. Packetiziog 
The circuit switching approach described in Section 17.1 allocated a fixed bit rate, 

corresponding to a reserved time-slot, to each of the multiple users of a given transmission 
system. This approach is simple to implement, but also cannot provide a time-varying 
bandwidth or a bandwidth on demand. It is also inflexible in that a fixed maximum number of 
users can be accommodated on any given transmission system. There are many examples of 
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Fig. 17-7. The frame structure of a TDMA system. 
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services that inherently require a time-varying bit rate, and in this case using circuit switching 
we must provide a circuit commensurate with the maximum bit rate requirements. Circuit 
switching is therefore somewhat inefficient for these services. 

Example 17-11. -------------------------
In conversational speech, normally only one direction of the conversation is active at any given 
time. During the resulting silence intervals, a smaller or even zero transmission capacity is 
required. Circuit switching is therefore no better than 50% efficient. 

Example 17-12. 
In video transmission, the image can be reconstructed with high accuracy from past images during 
periods of limited motion. Therefore, for a given fidelity higher bit rates are inherently required 
during periods of high motion than during periods of reduced motion. 

Example 17-13. --------------------------
In interactive data transmission, transmission capacity from a user typing at a keyboard is sporadic, 
depending on when keys are pressed. For this case, circuit switching is grossly inefficient. 

Example 17-14. -------------------------
An alarm system connected to an alarm service bureau requires transmission capacity only 
infrequently to transmit "all is well" messages and even more infrequent "panic" messages. 

An additional problem with circuit switching is that mixing different services with different bit 
rate requirements, even when their bit rates are constant with time, becomes administratively 
complicated. 

Packet switching or store-and-forward switching provides these capabilities lacking in 
circuit switching. It allows us to mix bit streams from different users that vary in bit rate, and 
dynamically allocates the available bandwidth among these users. In this subsection we will 
describe the simple technique of packetizing as applied to multiplexing multiple users onto a 
single communications link, and in the following subsection we discuss multiple access using 
packetizing. 

The basic idea of packetizing a bit stream as a flexible approach for multiplexing a number 
of such streams together is very simple. The information bits from each user are divided into 
groups, called information packets or just packets. A packet is therefore analogous to a time
slot in TDM, although packets are typically much larger (hundreds or thousands of bits as 
opposed to one or eight). Packets can contain a fixed number of information bits, the same for 
each packet, or more often the number can be variable from one packet to another (usually 
with a maximum). The basic idea is then to interleave the packets from different users on the 
communications link, not unlike in TDM except that by not pre-determining the order of 
packets from different users or the size of packets we can readily vary dynamically the bit rate 
assigned to each user. 

Example 17-15. 
End users sitting at terminals and communicating to central computers typically type a line of 
characters, followed by a "carriage return," and then expect some response from the computer. 
Thus, it would be natural to form a packet of user information bits corresponding to this line of 
characters plus carriage return. 
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Example 17-16. -------------------------
Conversational speech consists of active speech intervals interspersed with silence intervals. It 
would be natural to associate a packet with each active interval. In practice, since active intervals 
can get quite long, we can associate two or more packets with a single interval of active speech. 

In TDM we identified at the output of the link the individual time-slots corresponding to 
different users by adding framing bits and doing framing recovery at the receiver. We must 
realize the analogous function in packet switching, although by a somewhat more flexible 
mechanism. First recognize that since the bit rates provided to each users is varying 
dynamically, we have a problem if the sum of the incoming bit-rates is instantaneously higher 
than the total bit-rate of the communications link. We will defer this problem until the next 
subsection, and for the moment assume that the incoming bit-rates sum to less than the link 
bandwidth. This implies that there must be idle-time on the link. During this idle-time, by 
mutual convention between transmitter and receiver, we transmit a deterministic sequence, say 
all-zeros. We must then have some way of identifying at the receiver the beginning and end of 
a transmitted packet. Since the beginning and end of packets do not occur at predetermined 
points in time, we say that the packets are asynchronous. The process of determining the 
beginning and end of packets at the receiver is called synchronization to the packets, and is 
analogous to framing recovery in TDM. 

For purpose of synchronization, we append to the beginning and end of a packet additional 
bits, called synchronization fields. The combination of the packet, together with the 
synchronization field and other fields yet to be described is actually the unit of bits transmitted 
on the link, called a link frame. Thus, this frame is analogous to the frame defined in TDM, 
except that in TDM the frame corresponds to bits from all users, whereas in packet switching 
it corresponds to the bits from a single user. The synchronization fields are entirely analogous 
to added framing bits in TDM, since they provide a deterministic fixed reference in the bit 
stream for the start and end of the bits corresponding to one user. The term field applies in 
general to any fixed-length collection of bits added to the information packet to form the link 
frame. We will see examples of other fields shortly. 

Example 17-17. ---------------------------
An internationally standardized packet switching format is high-level data link control (HDLC) 
[5][6]. Many specific formats are subsets of HDLC, such as the common international packet 
switching interface standardX25. HDLC uses one synchronization field at the beginning and one 
at the end ofa link frame. Each field is called aflag, and consists of the octet "01111110." Since by 
convention an idle link contains all-zeros, it is easy to recognize the beginning of a link frame by 
observing this particular octet. However, we still have a problem with reliably detecting the end of 
a link frame, since the octet "01111110" may occur in the information packet, thus prematurely 
ending the link frame. To bypass this problem, we use a form of variable-rate coding. We simply 
insert within the packet any time that five consecutive one-bits appear, an additional zero-bit. Thus, 
within the packet, before appending the flags to form a link frame, we use the encoding rule 

11111 ~ 111110 

and at the demultiplexer we apply the decoding rule 

111110 ~ 11111 
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to recover the original packet. Note that this bit-stuffing encoding increases the number of bits in 
the packet by the maximum ratio 6/5 or 20%. This is the price we pay for avoiding the replication 
of the end flag in the information packet. This scheme allows a variable number of bits per packet, 
since there is no presumption of the length of a packet. In fact, the variable-rate encoding ensures 
that the link frames, if not the packets, will be variable length, since the number of added coding 
bits will depend on the information bits. 

Of course in the presence of bit-errors on the link, we can lose synchronization of the 
beginning and end of a link frame (Problem 17-3). In this eventuality we must have a recovery 
procedure analogous to framing recovery in TDM. 

Once we have synchronized to the beginning and end of a link frame at the receiver, there 
is still need to identify the user corresponding to each packet. For this purpose, we include the 
concept of a connection, where one user (a human being or computer) may have multiple 
connections. In TDM each connection corresponded to a time-slot, and the identification of 
connections was implicit in the location of a time-slot within the frame. In packetizing we 
usually also identify the concept of a connection, but the flexibility of the packetizing 
approach results in no fixed correspondence between connections and the sequence of packets. 
Therefore we must add an address field to the link frame. Each connection through a link is 
assigned a unique address, and the size of the address field places a restriction on the number 
of simultaneous connections (in contrast to TDM where the number of time-slots in a frame 
limits the number of connections). 

Example 17-18. 
For HDLC in Example 17-17, an address field of one octet immediately follows the start flag. Thus, 
there are 256 possible simultaneous connections. The full HDLC link frame is shown in Fig. 17-8. 
There are two additional fields, the control and error check fields. Each packet has appended six 
octets or 48 bits to form the link frame. Obviously, if only very short packets are transmitted, the 
overhead is substantial. On the other hand, if the packets average thousands of bits, the overhead as 
a fraction of the entire link bandwidth is insignificant. 

Statistical Multiplexing 

We have seen a packetizing technique for sharing a link among a set of connections in a 
much more flexible manner than in TDM. However, we have ignored some important 
problems that are brought out when we consider the design of a multiplexer that takes a 
number of lower-speed links, each packetized, and multiplexes them together in a higher
speed link. This device is called a statistical multiplexer, and is the packetizing equivalent of a 
TDM multiplex. 

START ADDRESS 
FLAG FIELD 

CONTROL 
FIELD 

INFORMATION 
PACKET 

Fig. 17-8. The data link frame defined for HDLe. 

ERROR CHECK 
FIELD 

END 
FLAG 
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The two problems that must be addressed are the probability of two or more packets 
arriving simultaneously at the statistical multiplexer, or more generally the possibility that 
since each connection has a variable bit rate, the total incoming bit rate exceeds the bandwidth 
of the link. If the latter condition persists indefinitely, since the multiplexer has a finite internal 
memory it is inevitable that some packets must be lost. The probability of this occurring can 
be minimized by using some sort of flow control, which is a mechanism for telling the 
originators of the packets that they must reduce their bit rate due to over-utilization of some 
link. 

Even in the absence of over-utilization in the long-tenn sense, it is inevitable that the 
instantaneous bit rate into the multiplex will sometimes exceed the total link bit rate out of the 
multiplex. If this were not true, the output bit rate would exceed the sum of the maximum bit 
rates into the multiplex, in which case we would consider using the simpler TDM. This leads 
to the conclusion that the multiplex must include internal buffer memory for storage of the 
excess bits. Statistical multiplexing makes more efficient use of the link bandwidth by 
reducing the output bit rate below the maximum instantaneous sum of incoming bit rates. 
When the input bit rate exceeds the output rate, it stores the excess bits until the input bit rate 
is subsequently lower than the output, at which time it transmits the bits in memory. It 
therefore takes advantage of the statistics of the variable-rate inputs to make more efficient use 
of the output link. The price we pay for this efficiency is the queueing delay that is an 
inevitable consequence of temporarily storing packets in internal buffers before transmission. 
This delay is statistical in nature, so that we must speak in tenns of the average delay, the 
distribution of the delay, and so forth. The impact of this delay depends on the service that is 
being offered by packetizing. 

Example 17-19. ------------------------
In interactive data transmission, the queueing delay results in a slower response time from a remote 
computer. This delay can be disturbing if it gets to be large. 

Example 17-20. ------------------------
Using packetizing for speech transmission results in a random change in the temporal 
characteristics of the speech unless we take additional measures. One approach is to add to each 
packet a time-stamp which indicates roughly the time elapsed since the end of the last packet (Le. 
duration ofthe silence interval). At the receiver we can restore the rough temporal relationship by 
adding another buffer that forces a constant rather than variable delay. Based on knowledge of the 
currently experienced delay variation, this buffer adds a delay to each packet so that the total delay 
(queueing delay plus buffer delay) adds to a constant. This constant delay will be subjectively better 
than a variable delay, although it introduces its own conversational and echo problems. 

We always have to cope with lost packets in statistical mUltiplexing. This is because with 
some non-zero probability, the instantaneous input bit rate will exceed the capacity of the 
output link for a sufficiently long period of time that the finite buffer capacity of the multiplex 
will be exceeded, and bits will be lost. 

With these concepts in mind, the statistical multiplex is easy to understand, and is 
illustrated in Fig. 17-9 [7]. Associated with each input link to the multiplex is an input buffer 
which stores packets as they arrive. The remainder of the link frame, with the exception of the 
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address, can be discarded. The address must be retained and attached to the information packet 
on the output link. Separate buffers are required because packets may be arriving 
simultaneously on the input links. A control unit examines the input buffers for packets, and 
when it finds them places them in the output buffer in the order in which they are to be 
transmitted. Strictly speaking, the output buffer would not be required, since packets could be 
removed from the input buffers and transmitted directly. However, the use of an output buffer 
allows the control unit more freedom in its operation, and also conveniently keeps the packet 
in memory so that it can be retransmitted if it is lost (should the protocol in use dictate that). 
Each of the buffers is afirst-infirst-out (FIFO) buffer, meaning that the packets are read out in 
the order they arrived at the buffer input. 

The designer of the multiplex must decide on some strategy for moving packets from input 
buffers to output. This is called the queue management discipline, and affects the distribution 
of queueing delays experienced by packets passing through the multiplex. The most obvious 
discipline would be to take the packets out of input buffers in order of arrival, called afirst-in 
first-out discipline. The FIFO discipline would make the whole multiplex equivalent to a 
single FIFO queue, which is simple to analyze. However, this disciple is difficult to 
implement, since each packet stored in a buffer would have to have an associated time-of
arrival stamp, and the control unit would have to examine this stamp for the oldest packet in 
every buffer prior to choosing one for transmission. A much more practical discipline is roll
call polling, in which the control unit systematically goes through the buffers in order, 
removing all waiting packets at each buffer. Other disciplines are possible (Problem 17-4). In 
the evaluation of different strategies, the primary considerations would be implementation and 
the delay characteristics. Most disciplines are very difficult to analyze, and occasionally we 
must resort to simulation. 

In order to illustrate the essential delay characteristics of a statistical multiplex, we will 
analyze the discipline that is the most analytically tractable. This is the FIFO discipline, 
because in this case the multiplex is equivalent to a single FIFO queue, for which we can 
directly use the analytical results in Chapter 3. For purposes of calculating the delay, two 
characteristics are important other than the queue management discipline. One is the process 
modeling the arrival of packets at the multiplex, and the other is the distribution of service 
times. For a statistical multiplex, the service time is the time required for transmission of the 
packet, which for a fixed bit rate output link is proportional to the length of the packet. The 

NINPUT 
UNKS 

Fig. 17-9. Block diagram of a statistical multiplexer. 

OUTPUT 
UNK 
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analytically simplest case is the MIMI! queue analyzed in Section 3.4, where the packet 
arrivals are Poisson, the queue has an unlimited number of waiting positions, and the service 
time is exponentially distributed. Let the total arrivals on all N input links be a Poisson process 
with arrival rate A, and let the service time have mean-value 1/J.1. (the service rate is J.I.). The 
quantity 

p=A/J.I. (17.1) 

is the average server utilization, or in this case link utilization; that is, the average fraction of 
the time that the output link is transmitting packets. Obviously we would be happiest if this 
quantity were as close to unity as possible, but as we will see this leads to large queueing 
delays. The average queueing delay, or the average time a packet sits in the buffer before 
beginning transmission, is given by (3.152), 

1 P D=-·-. 
J.I. 1-p 

(17.2) 

The term 1/J.I. is the average transmission time, and the queueing delay can be smaller (when 
P < 1/J or larger (when p > 1/2)' The important point to realize is that the queueing delay gets 
very large as the output link utilization approaches unity. This places an upper bound on the 
link utilization that can be achieved. Intuitively, by keeping the utilization low, we enhance the 
probability that the link will be free when a packet arrives. 

Packet Switching 

The statistical multiplex can be modified to provide a switching function as well. A packet 
switch has an equal number of input and output links. The function of the switch is to route 
packets on each incoming link to the appropriate output link. Thus, the switch maintains an 
internal table which translates from an address and input link number to a corresponding 
output link and associated address. The internal configuration of the packet switch is similar to 
Fig. 17-9, except that there are N output buffers and N output links. 

In practical implementations packet switching involves many complexities that we have 
barely touched on here. There are many complex procedures for establishing and taking down 
connections and for recovery from every conceivable kind of error. These procedures plus the 
details of the link frame constitute the set of protocols used to form a complete 
communications network based on packet switching. Packet switching has many advantages 
over circuit switching to exchange for its greater complexity. In addition to the ones mentioned 
earlier, a particularly important distinction is that packet switching encourages the user to 
establish many simultaneous virtual connections through a communications network. As such, 
it is an extremely flexible approach for situations in which users wish to access many 
computational or peripheral resources simultaneously or in quick succession. 

Example 17-21. ------------------------
In an office environment, many users may wish to access the same printer or storage device. Packet 
switching encourages this, because it allows that device to establish simultaneous connections to 
many users. 
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17.2.4. Packet Switching Multiple Access 

Thus far we have discussed packet switching in the context of an important special case of 
multiple access, the link topology. It is applicable more generally, and in fact most of the 
practically useful multiple access techniques are based on packet transmission. The techniques 
are distinguished mainly by the degree of centralized vs. distributed control and by their 
efficiency and stability. Efficiency refers to the degree to which they can successfully use the 
available bandwidth on the multiple access medium, since they all require some overhead and 
idle time, and stability refers to the possibility that during high utilization the frequency of lost 
packets can increase uncontrollably. 

Collision Avoidance by Polling 

In the typical multiple access situation, as opposed to the statistical multiplex, the nodes 
transmitting on the medium are distributed, and have significant propagation delays between 
them. Each node can be considered to contain a buffer, in which packets are queued awaiting 
transmission. The goal is to allow the nodes to transmit their packets, but to coordinate the 
transmissions so that they do not collide. In TDMA we accomplished this through the 
relatively inflexible time-slot assignment. By using packetization approaches, we can allocate 
the medium bandwidth much more dynamically among the nodes. 

We already mentioned in connection with the statistical mUltiplex a valuable approach 
directly applicable to this problem - polling. Polling comes in two forms, roll-call polling 
which is managed by a central controller, and hub polling which is more distributed. In roll
call polling, a central controller sends a message to each node in turn, letting it know that it is 
allowed to transmit. That node then either transmits the packets waiting in its buffer (or 
perhaps only one packet maximum, depending on the discipline), or sends back a message 
indicating that its buffer is empty. Every node is aware of the status of the medium at any given 
time, and in particular which node (including the central controller) is currently authorized to 
transmit. There is therefore no possibility of a collision on the medium. 

Example 17-22. -------------------------
Roll-call polling is widely used in dispersed networks of voiceband data modems accessing a 
centralized computer facility, as for example an airline reservations system. The wide use of polling 
techniques with voiceband data modems motivates the desire for these modems to acquire timing 
and carrier quickly, and has led to a lot of research in fast acquisition. As will be shown in a 
moment, reducing the acquisition time, and therefore the overhead in polling, enhances the 
performance of the polling technique. 

Hub polling, called token-passing in the context of local-area networks, eliminates the 
central controller except for initialization. In this case, a token is possessed by precisely one 
node in the network at any given time. This token is not a physical object, but rather an 
authorization to transmit on the medium. The node possessing the token can transmit, and at 
the end of that transmission must pass the token on to a predetermined next node (the token is 
passed through a message transmitted on the medium). In this fashion, as the token is passed 
among all the nodes each has an opportunity to transmit its packets. 
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Example 17-23. -------------------------
A popular LAN architecture is the token-passing ring. The topology is a ring, and the token is 
passed around the ring from one station to another. The technique is relatively simple because each 
node passes the token to its nearest neighbor on the ring by transmitting a generic message that is 
intercepted and removed by the next node. There is no need to know the details of who the nearest 
neighbor is, its address, etc. 

We can understand polling techniques better by performing a simple calculation of the 
average polling cycle time, or the time required for each node to be given the opportunity to 
transmit its packets. Assume that the total overhead time for one polling cycle is W - this 
includes the time for the messages to pass from the controller to nodes and back, or the time to 
transmit the tokens. Then we get that the polling cycle time is 

(17.3) 

where 1i is the time it takes node i to transmit all its packets when polled. Taking the expected 
value of this, 

E[Tcl = W + N· E[TJ , (17.4) 

assuming that each node has the same utilization. If each node has utilization p, that is it 
transmits a fraction p of the time, then considering that each node transmits the packets 
accumulated during one polling cycle, 

E[TJ = P . E[Tcl , (17.5) 

and combining these two equations we get 

w 
E[Tcl = I-Np . (17.6) 

As expected, as the total utilization N . P approaches unity, the polling cycle lengthens, and as 
it approaches zero the polling cycle time approaches the overhead W. The fraction of the 
polling cycle devoted to overhead is 

w _ 
E[Tc]-l-NP. (17.7) 

This equation illustrates a very important advantage of polling; namely, as the total utilization 
approaches unity, the fraction of the time devoted to overhead decreases to zero. Thus, the 
overhead is only appreciable when the utilization is low, a situation in which we don't care, 
and is insignificant when the utilization is high, which is precisely what we would hope. 
Intuitively this is because during high utilization the polling cycle is very long, and the fixed 
overhead becomes insignificant as a fraction of this cycle. 

An undesirable feature of polling is that the overhead time W increases with the number of 
nodes in the network. Thus, it becomes inefficient for networks with a very large number of 
nodes, each with low utilization of the medium. In this situation the polling cycle becomes 
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dominated by the overhead. For these types of networks, random access techniques as 
described in the following subsection are very desirable because they can obtain comparable 
performance but without the complexity of the centralized control. 

Random Access 

Thus far in this chapter the focus has been on avoiding collisions in multiple access to a 
common medium. On media that are used with a low utilization, the complexities associated 
with avoiding collisions can be circumvented by a strategy of allowing collisions to occur, 
detecting those collisions, and retransmission with a random delay. This enables each node of 
the network to operate autonomously, with no central control required. 

The first and simplest such strategy was invented by N. Abramson of the University of 
Hawaii in 1970 [8] and is known as pure ALOHA. ALOHA is appropriate for broadcast 
topologies, such as the bus or satellite, where collisions are easy to detect because each node 
listens to all transmissions including its own. If a node cannot successfully monitor its own 
transmission packet, it can assume that a collision has occurred. The technique is then very 
simple: each node simply transmits a packet as desired, regardless of conditions on the 
medium, and monitors the medium for a collision. When a collision occurs, the node waits for 
a random delay time, and retransmits. The random delay time makes it less probable that the 
retransmissions of the colliding nodes will again collide. 

We can analyze this system easily if we make a simplifYing assumption. Even if the 
incoming packets to the system have Poisson arrivals, we would not expect that the aggregate 
of packets on the medium, including retransmitted packets, would be Poisson. However, we 
assume this to be the case, yielding an approximate analysis that has proven on further 
examination to be accurate as long as the random retransmission times are long relative to a 
packet length. Further assume that packets are a fixed length 1 I fl, for simplicity of calculating 
the probability of a collision. Let the total rate of arrivals of packets to the system be ~n and 
let the rate of arrivals of packets on the medium including retransmissions be Aout > ~n. Due 
to the fixed-length packet assumption, if we transmit a packet at time to, then a collision occurs 
if someone else transmits a packet in the interval [to - l/fl, to + l/fl]. Due to the Poisson 
assumption, the probability of no collision is the probability of zero Poisson arrivals for a 
Poisson process with rate Aout over an interval of time 2/f.l, or e -2Aout / J.L. But the probability of 
no collision is also the ratio of the rate of incoming packets to packets on the medium, 
Ain/Aout, since the excess are retransmissions due to collisions. Setting these two expressions 
equal, we get 

(17.8) 

It is convenient to express this in terms of the utilization due to incoming packets and the total 
utilization of the medium, 

Ain 
Pin=Il' 

in which case we get the interesting relation 

Aout 
Pout =!l' (17.9) 
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_ -2P 
Pin- Poute out. (17.10) 

In this equation, Pin is the independent variable, the incoming traffic, and Pout is the dependent 
variable, the traffic on the medium. This implicit relation is plotted in Fig. 17-10 with the 
independent variable on the abscissa. Note that the utilization of the medium can exceed unity, 
as we would expect in the case of a large number of collisions and retransmissions. What is 
most interesting about the curve is that the incoming traffic can never exceed 0.18, or in other 
words the random access technique can only work for very low utilizations. 

Exercise 17-2. 
Show that the maximum input traffic in Fig. 17-10 corresponds to Pin = 1I(2e) = 0.18 and Pout = 
1/2• 

Another interesting feature is the double-valued nature of the curve - for each Pin in the 
allowed region, there are two operating points possible, one with a small number of collisions 
and the other with a large number of collisions. This implies a form of instability, since the 
system performance cannot be predicted unambiguously. 

Since the original concept of pure ALOHA, a great deal of effort has been expended to 
increase the throughput of random access techniques and to ensure stability. A simple 
refinement, known as slotted ALOHA (Problem 17-7) results in a doubling of throughput to 
0.37. A class of control algorithms known as collision-resolution algorithms, first conceived 
by 1. Capetanakis at M.I.T. [9] can ensure stability on a random access channel. The maximum 
throughput that can be achieved on such a channel is known only to fall in the range of 0.45 to 
0.59. Many have speculated that it must be 0.5. See [10] for an excellent review of results on 
this topic. 

Pout 
2 

0+'""=----.----,...- Pin 
o 0.2 0.4 

Fig. 17·10. The throughput of the pure ALOHA discussed in the text and the slotted ALOHA derived in 
Problem 17·7. 
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CSMA/CD 

Random access protocols are widely used in local-area networks, although using a 
modification of the ALOHA system in which collisions are largely (but not entirely) avoided. 
The most common approach is for each node to first listen to the medium to determine if a 
transmission is in progress before proceeding to transmit. This is known as carrier-sense 
multiple access (CSMA). This greatly reduces the probability of a collision, but does not rule it 
out because due to propagation delays it is not always possible to detect that another node has 
just started a transmission. It is therefore common to use collision-detection (CD) by listening 
to one's own transmission, and if a collision is detected to transmit a special jam signal that 
serves to notify other nodes to that effect and then suspend transmission. A substantial 
improvement in throughput is obtained by reducing the number of collisions and by aborting 
transmissions in progress when a collision occurs. 

Example 17-24. 
CSMA/CD schemes differ in the.retransmission strategy once a collision occurs [6]. The best
known CSMA/ CD system is the popular Ethernet local-area network, usually implemented on a 
coaxial cable at a bit rate of IO Mb/ s. In Ethernet [II] after a collision is detected and transmission 
is aborted, a node retransmits after a random delay. This retransmission interval is doubled upon 
each successive collision, up to some maximum. 

17.3. Multiple Access by Frequency Division 

The separation of many users on a common medium in analog transmission invariably 
uses frequency division. For example, on the familiar AM radio dial, the stations are selected 
by tuning a variable frequency filter. Frequency division can also be used for digital 
transmission, where independent data streams are transmitted in non-overlapping frequency 
bands. This occurs most commonly when data streams are transmitted over existing analog 
carrier systems. But it is also used when data streams are transmitted by radio or satellite, and 
for full duplex data transmission. 

Frequency-division multiplexing is very simple, as illustrated in Fig. 17-11, in this case 
for just two users. The two transmitters sharing the medium have output power spectra in two 
non-overlapping bands, where they usually use passband PAM modulation to achieve this. To 
ensure that this is the case, it is common to put bandpass filters at the output of the 
transmitters, particularly where strict requirements on spectral utilization are in force (as in the 
case of the FCC mask for terrestrial microwave radio). At the two receivers, similar bandpass 

Fig. 17-11. Sharing a medium between two users using frequency-division multiplexing. 
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filters eliminate all but the desired data signals. The path to a receiver from the undesired 
transmitter contains two bandpass filters with non-overlapping passbands, and therefore we 
can make the loss of the crosstalk path as large as we like through the filter design. A 
consideration in many microwave media (terrestrial radio and satellite) is nonlinearity of the 
amplifiers in the transmitter or the satellite transponder. These nonlinearities will create out
of-band energy that can interfere with other FDM channels, and it is common to use bandpass 
filtering after the amplifier to reduce these spectral components. 

FDM has both advantages and disadvantages over TDM. A major disadvantage on all 
media is the relatively expensive and complicated bandpass filters required, whereas TDM is 
realized primarily with much cheaper logic functions. Another disadvantage of FDM is the 
rather strict linearity requirement of the medium. However, some of the propagation-delay and 
crosstalk problems ofTDM are eliminated by FDM. The technique of choice then depends on 
the situation. 

Example 17-25. ------------------------
On microwave radio channels, FDM techniques have been used primarily, but TDM is in the 
process of taking over. The primary advantage ofTDM, and particularly TDMA in the case of the 
satellite channel, is the lowered susceptibility to nonlinearity of amplifiers. Using TDM, the 
amplifiers can be used nearer saturation, giving a greater available power. The reduction of filtering 
requirements is an added benefit. 

Example 17-26. -------------------------
In full-duplex data transmission, TDM in the form of TeM is impractical on media with long 
propagation delays, such as for voiceband channels. Lower-speed voiceband data modems 
therefore use FDM for full-duplex transmission, as shown in Fig. 17-12. The hybrids tum the two
wire medium into an effective four-wire medium, and the stopband loss of the bandpass filters is 
added to the hybrid loss resulting in good isolation ofthe two directions. FSK modulation is used to 
generate a passband signal, with two different carrier frequencies used for the two directions, at 300 
bl s, and passband PAM (PSK and QAM) is used at higher frequencies. 

Example 17-27. --------------------------
For the digital subscriber loop, FDM has the major advantage of eliminating near-end crosstalk, 
and is not susceptible to propagation delay like reM. However, it is not used because of the 
complicated filtering and the larger bandwidth (as compared to echo cancellation) on a medium 
with an attenuation increasing rapidly with frequency. 

Example 17-28. --------------------------
In direct detection optical fiber systems, FDM in the form of wavelength-division multiplexing is 
sometimes used. A few channels are separated by transmitting them at different wavelengths. In the 

Fig. 17-12. Frequency-division multiplexing of two directions in full-duplex transmission. 
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future, coherent optical fiber will encourage the use of FDM multiplexing of large numbers 
(hundreds or thousands) of digital streams. This looks like a very promising use of FDM. 

17.4. Multiple Access by Code Division 

Separating signals in time or frequency is a relatively simple way to ensure that the signals 
will be orthogonal. However, it is by no means the only way. In this section we briefly describe 
the design of orthogonal signals by code division, which is closely related to spread-spectrum 
(Section 6.4). 

With code-division multiple-access (CDMA), the objective is to transmit signals from 
multiple users in the same frequency band at the same time. We can place this alternative in 
perspective by comparing it to TDMA and FDMA. Suppose we have B Hz of available 
bandwidth, and want to share this bandwidth over N users. Several options are available: 

• TDMA. A single stream of PAM pulses with symbol rate 1 IT = B can be transmitted. 
(We assume throughout passband PAM with maximum symbol rate consistent with the 
Nyquist criterion.) We can divide the stream of pulses into Ntime slots, assigning each 
timeslot to one of the N users, so that each user has available a net symbol rate of 
lI(N1) = BIN. 

• FDM or FDMA. Divide the frequency band B into N disjoint frequency bands, and 
assign one to each user. Each user then gets a frequency band BIN Hz wide, and the 
highest symbol rate that each user can achieve is 1IT=BIN, the same as with TDMA. 

• CDMA. In accordance with the generalized Nyquist criterion, design N orthogonal 
pulses. These pulses each satisfy the Nyquist criterion with respect to symbol interval T, 
and are mutually orthogonal for all translates by multiples of T sec. A requirement of 
the generalized Nyquist criterion is that B 2: NIT. Each user is assigned one of these 
orthogonal pulse shapes to use within bandwidth B Hz, and transmits with symbol rate 
liT Hz. The receiver for each user consists of a sampled matched filter, which and has 
no lSI at the output and does not respond to the orthogonal pulses. The maximum 
symbol rate that each user can achieve is liT = BIN, the same as TDMA and FDMA. 

Each of these approaches can achieve, in principle, the same aggregate spectral efficiency, 
since each one achieves the same symbol rate per user, the same number of users, and the same 
total bandwidth. Each approach has its advantages and disadvantages. In this section, we 
concentrate on CDMA. 

As shown in Section 6.4, pulses with large bandwidth relative to the symbol rate can be 
generated using a combination of a chip waveform and a spreading sequence. This is known as 
direct-sequence spread spectrum. Further, maximal-length shift register sequences have the 
appropriate properties to be used as spreading sequences, and are very easy to generate in the 
transmitter and receiver. For CDMA, we can assign one period of a maximal-length shift 
register sequence to each user to use as their spreading sequence. All users use the same chip 
waveform. (This constrains the spreading factor N to be of the form 2n - 1 for some integer n. 
By assigning different generator polynomials to each user, orthogonality can be achieved. An 
example of a set of generator polynomials that achieve orthogonality is the Gold code [12]. 
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In principle CDMA achieves the same spectral efficiency as TDMA or FDMA, but in 
practice there are factors that give it much different characteristics. Two considerations are the 
near-far problem, and the partial correlation problem. Partial correlation arises where no 
attempt is made to synchronize the transmitters sharing the channel, or when propagation 
delays cause misalignment even when transmitters are synchronized. This is shown in 
Fig. 17-13, where the symbol interval for one transmitter is delayed by 't seconds relative to 
the other. In order to avoid crosstalk between the two users i and j, two partial correlations 
must be zero, 

(17.11) 

(17.12) 

Thus, simple orthogonality of the isolated pulses is not sufficient - these two partial 
correlations must also be zero, or at least small, for any value of't. This property is not 
guaranteed by the generalized Nyquist criterion of Chapter 6, which assumes a known 
relationship between the different symbol intervals. The partial correlations can be reduced by 
proper choice ofthe spreading sequences, but cannot be totally eliminated. This implies that in 
practice, complete orthogonality of the different pulses assigned to different users cannot be 
maintained. CDMA system capacity is thus typically limited by the interference from other 
users, rather than by thermal noise. 

The near-far problem is analogous to near-end crosstalk on wire-pair media, and results 
when geographically dispersed users are sharing a common medium such as a radio channel. 
If all the users transmit at the same power level, then the received power is higher for 
transmitters closer to the receiving antenna. Thus, transmitters that are far from the receiving 
antenna are at a disadvantage with respect to interference from other users. This inequity can 
be redressed by using power control. Each transmitter can accept central control of its 
transmitted power, such that the power arriving at the common receiving antenna is the same 
for all transmitters. In other words, the nearby transmitters are assigned a lower transmit 
power level than the transmitters far away. 

TRANSMITTER 1 

, t 

TRANSMITTER 2 

I. ____ . hp + 't) - - - - - - J+ - -- -- hi(t + 't - 1') - - - - J 
-'t T-'t 2T-'t 

Fig. 17-13. Illustration of the phase relationship between symbol intervals of two users of a COMA 
system. 
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When there are N total users in a CDMA system, then from the perspective of one 
particular transmitter there are N -1 interferers. If power control is used, then each 
transmission arrives at the receiver with the same power 8. The SNR is defined as the ratio of 
signal power to total interference power, and is 

8 _ 1 
8NR= (N-1)8- N-1' (17.13) 

By the central limit theorem, the interference, consisting of a superposition of independent 
transmissions, will be approximately Gaussian. For large N the SNR is very poor, and one 
might expect unreliable system operation. However, as we saw in Chapter 5, it is not the SNR 
that matters when a matched filter receiver is used, but rather the ratio of the signal energy per 
symbol to the interference spectral density. The signal energy per symbol interval is T· 8 for 
symbol interval T. If we model the interference signal as white Gaussian noise, then it has total 
power (N -1)8 and bandwidth 2B (for positive and negative frequencies), and hence has 
power spectrum No/2 = (N - l)8/2B. Thus, the ratio of energy per symbol to noise density is 

<TE _ 2BT 
N o/2- N-1' (17.14) 

which reflects the spread-spectrum processing gain 2BT (Section 6.4.3). Thus, for a given 
number of users N, by making 2BT large enough we can always make Pe sufficiently small. 
The minimum value, 2BT = N (in accordance with the generalized Nyquist criterion), results 
in a poor Pe' but we can always make 2BT larger than this minimum. 

Processing gain is important for CDMA as well as spread spectrum. For N users, where 
the received power of each user is fixed at 8 through power control, the N - 1 interferers 
represent a signal analogous to the jamming signal discussed in Section 6.4.3. The total power 
of the interference stays constant as we increase the bandwidth (processing gain), and hence 
the spectral density of the interference decreases. This decrease in spectral density results in a 
Pe that decreases as the bandwidth (and processing gain} increases. 

Since 2BT» N in a CDMA system with a small Pe' it appears that CDMA systems have a 
lower spectral efficiency than TDMA or FDMA systems, which achieve close to 2BT = N. 
However, this perspective is oversimplified for many multiple access applications, as 
illustrated by some examples. 

Example 17-29. -------------------------
CDMA has been proposed for the North American digital cellular telephone network, and a higher 
capacity has been estimated for CDMA than TDMA or FDMA [13][14]. In part, these estimates are 
based on another factor, voice activity. The transmitter is activated only during periods when the 
user is talking, and it can be assumed that some fraction of the users are talking at any given time. 
For a given acceptable interference power (based on the maximum Pe)' the number of telephone 
users can be increased if each user is transmitting only a portion of the time. TDMA and FDMA 
systems can also take advantage of voice activity, but only by much more complicated mechanisms. 
Another factor in favor of CDMA is cellular frequency assignment, as discussed in Section 17.5. 



Sect. 17.5 The Cellular Concept 793 

Example 17-30. -------------------------
On a local area network (LAN), each station is typically only transmitting a portion of the time. The 
CDMA capacity is expressed in terms of the number of active stations at any given time, not the 
number of total stations. CDMA is advantageous for this type of network because it requires no 
synchronization of the multiple communications sessions occurring at any given time. It also 
naturally takes advantage ofthe low duty cycle of transmission of the stations. 

17.5. The Cellular Concept 

Thus far in this chapter, we have discussed multiple access by frequency, time, and code 
division. There is a fourth alternative, which is space division. On cables and fibers, this is 
manifested by parallel communications on physically separate cables or fibers.· A more 
interesting manifestation of space-division multiple access is the cellular concept used in 
mobile radio systems. 

In radio systems where a large geographic coverage is desired and large numbers of 
mobile transceivers must be supported, it is common to divide the region into cells. This is 
illustrated in Fig. 17-14, where a regular array of base stations (including transmitter and 
receiver) is deployed, each one dedicated to mobile users in its immediate area. Each mobile 
transceiver communicates with the nearest base station, resulting in hexagonal regions 
associated with each base station as shown in Fig. 17-14(a). The motivation is to allow the 
same carrier frequency to be re-used in different cells, increasing the overall system capacity. 
Transceivers in two different cells can be assigned the same carrier frequency and time slot, 
providing that the two cells are far enough apart, since the remote transc~iver will suffer a 
much larger propagation loss. A given mobile transceiver will pass through a succession of 

8>-----::-(c) n--8 
Fig. 17-14. Cellular mobile radio uses a regular hexagonal array of transmitters. (a) The total coverage 
area is divided into hexagonal cells. (b) A given mobile user will pass through a succession of cells. (c) 
Each cell has radius R. and is located at a distance D from the nearest cell aSSigned the same carrier 
frequency. 
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cells, as shown in Fig. 17-14(b). As it passes from one cell to the next, it must establish 
communication with the base station associated with the new cell, possibly requiring a 
reassignment of carrier frequency and timeslot. 

The key parameter of a cellular configuration and frequency assignment is the ratio of D to 
R, where D is the distance to the nearest cell that uses the same carrier frequency and R is the 
diameter of one cell (see Fig. 17-14(c». The larger the ratio DI R, the lower the interference 
from nearby cells assigned the same carrier frequency. 

Example 17-31. -------------------------
If in a radio system, the propagation obeys the fourth-power law, then given two mobile 
transmitters with the same transmit power, the desired transmitter at maximum distance R and the 
interfering transmitter at distance D, then the signal-to-interference ratio is 

R-4 = (DIR)4 
n--4 ' 

(17.15) 

or 40 ·loglODI R dB. Thus, the larger DI R, the smaller the interference in relation to the signal. 
The tradeoff is 12 dB increase in signal-to-interference ratio for each doubling of the DIR ratio. 

One goal in designing a modulation scheme for a cellular radio system is to decrease the 
allowable DI R. All else being equal, this will increase the total system capacity by allowing 
the same frequency to be assigned to cells closer to one another. Another goal is to design a 
modulation and multiple access scheme within each cell that is least susceptible to 
interference from other cells. 

Example 17-32. -------------------------
IfFDMA is used, generally the same carrier frequency cannot be assigned to users in adjacent cells. 
This is because two transmitters using the same carrier frequency can be very close to one another 
at the boundary between the cells, and cannot be separated at their respective base station sites. 
However, it is generally permissible to assign the same carrier frequency to cells that are not 
adjacent, presuming that a DIR ratio on the order of three is permissible. Thus, there is typically a 
seven-cell frequency reuse pattern, where each carrier frequency is assigned to only one out of each 
cluster of seven adjacent cells. 

Example 17-33. ---------------------------
In the North American IS-54 digital cellular standard for mobile telephony, a combination of 
FDMA and CMDA is used. Each carrier frequency is modulated with a bit stream that is in turn 
divided into three (or ultimately six) time slots. Three different users are assigned distinct time slots 
on that single carrier. The same carrier frequency can be assigned to transceivers in adjacent cells, 
providing they are assigned to non-overlapping time slots. In this fashion, there will be no 
interference from adjacent cells. 

Example 17-34. 
If CDMA multiple access is used, then transceivers within cells can be assigned the same carrier 
frequency and time slot, but are assigned distinct spreading codes. It follows that each carrier 
frequency can be reused in adjacent cells. The transceivers in adjacent cells manifest themselves as 
an increase in interference power that can be compensated by increasing the processing gain. That 
increase in processing gain is reduced by the greater distance to transmitters in adjacent cells. Like 
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the voice activity factor (Section 17.4), this complete frequency reuse in adjacent cells is a factor 
that helps compensate for the spectral inefficiency of having to use processing gain to combat 
interference. A major advantage of CDMA in cellular telephony is the elimination of the need for 
frequency and timeslot coordination among cells. 

Problems 

Problem 17-1. For the MI2 framing format of Example 17-7, assume that synchronous multiplexing 
is used so that all the 481 information bits originate on the tributary streams at 1,544 kb/ s. (In actuality 
pulse-stuffing synchronization is used, so this is a hypothetical problem.) For this assumption, 
determine the following: 

(a) The output bit rate. 

(b) The time corresponding to one frame and superframe. 

Problem 17-2. Rework the parameters of the INTELSAT TDMA system of Example 17-10 assuming 
that the inputs are G.733 bit streams (Example 17-6). Assume each time slot is assigned to a G.733 bit 
stream. Given the practical need for guard-times, etc., which primary stream, the G.732 or G.733, is 
likely to yield the largest number of 64 kb/ s voiceband channels over the TDMA system? 

Problem 17-3. For the HDLC synchronization method described in Example 17-17, describe 
qualitatively what will happen or can happen when a single bit-error occurs in the following: 

(a) The link frame start flag. 

(b) The link frame end flag. 

(c) The information packet. 

This will identify the situations which will be encountered and suggest recovery procedures that are 
required. 

Problem 17-4. Describe a minimum of two disciplines for the control unit in Fig. 17-9 in addition to 
FIFO and roll-call polling. 

Problem 17-5. 

(a) For the FIFO queueing discipline in a statistical multiplex, show that the average number of 
packets waiting in the multiplex buffers is p/(l- p). 

(b) Show that the probability that the buffer contains M or more packets is to for M = 110gE . 
ogp 

(c) What can you conclude about the size of a finite buffer required to maintain a certain probability 
of buffer overflow? 

Problem 17-6. Assume a statistical multiplex using a FIFO discipline has ten incoming links, each at 
I Mb/ s, and one outgoing link at 2 Mb/ s. Each incoming link has packets with exponentially 
distributed lengths, with an average length of 500 bits, and packets arriving on average every 3 msec. 

(a) What is the utilization of each of the incoming links? 
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(b) What is the utilization of the output link? 

(c) What is the average queueing delay through the multiplex? 

Problem 17-7. Slotted Aloha [15]. Show that the following simple modification of pure ALOHA 
results in a doubling of the throughput. Define time-slots with duration equal to the duration of one 
packet, and make these time-slots known to each node on the network. Each node then transmits its 
packets in alignment with the next time-slot after arrival of a packet. 
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Exercise Solutions 

Chapter 1 

Chapter 2 

Exercise 2-1. Addition of two complex-valued signals is illustrated below: 

X(t~) x(t) + y(t) 

y(t 

and multiplication below: 

x(t)~t) 

y(t~ 

Re{X(t)}r Re{x(t)+y(t)} 
Im{x(t)} + Im{x(t) + y(t)} 

Re{y(t)} 
Im{y(t)} 

Re{x( t)}-,--~>Q--;-,( 

Im{x( t )}.--trf1'l.:r-...... 

Im{y( t )}.-~-wc:r---, 

Re{y( t )}.--+"'--<{XJf--o(: 

Re{x( t )y( t)} 

Im{x(t)y(t)} 

Complex addition is accomplished by two real additions, and complex multiplication by four real 
multiplications and two real additions. 

Exercise 2-2. A complex system with a real-valued input: 

Re{y(t)} 

lm{y(t)} 

A real system with a complex-valued input: 

Re{x(t)}--/&{h(t)} ~Re{y(t)} 

Im{x(t)}--IIm{h(t)}~m{y(t)} 

x(t)~y(t) 

x(t)==@==>y(t) 

Exercise 2-3. We can treat the convolution x( t) * h( t) just like complex mUltiplication, since the 
convolution operation is linear - an integration. To check linearity, for a complex constant A and two 
input signals Xl (t) and X2( t), 
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following the rules of complex arithmetic. This establishes linearity. 

Exercise 2-4. Y(J) = r r h('t)x(t - 't)d'te -j21Cft dt . 
-<X> -00 

Observe that e -j21tft = e -j21tfC e -j21tf(t - T) 

so that Y(f) = r h('t)e-j21tfCd't r x(t - 't)e -j21tf(t -T)dt = H(f)X(f) , 
-00 -<X> 

after a change of variables. 

Exercise 2-5. Take the Fourier transform of both sides of (2.2), getting 

x (f) = (L: = -<X> xmO(t - m1)e -j21tftdt 

= L: =-00 xm( O(t - m1)e -j21tftdt 

= L: = -<X> xme -j21tfmT = X(e j21tfT) . 

(18.1) 

(18.2) 

(18.3) 

(18.4) 

Exercise 2-6. The impulse response of the system is gk = g(k1), and hence (2.17) gives the frequency 
response directly, 

G(ej21tfT) =1. ~oo G(j - miT). 
T L.Jm =-<x> 

Exercise 2-7. Given X( f) = 0 for all 1 f 1 > 11 (21), (2.17) implies that 

X(e j21tfT) = 1.X(f) forall Ifl< 1/(21). 
T 

To get x( t) from xk, therefore, we can use, in Fig. 2-1, the following filter: 

F(f) = J T; Ifl<1I(21) 
lo; otherwise 

Exercise 2-8. From (2.24), the modulus-squared of the complex envelope s (t) is 

(18.5) 

(18.6) 

(18.7) 

(18.8) 

Since the Hilbert transform is a phase-only filter, it doesn't change the energy, so the energy of s( t) and 
its Hilbert transform 8 (t) are the same. Hence, the complex envelope energy is identical to that of s( t). 

Exercise 2-9. From (2.24), the real envelope is e( t) = J2 1 s ( t)1 = (s2( t) + 82 ( t ) } 1/2, which is the 
magnitude of the phase splitter output, before the complex exponential, and is clearly independent of the 
carrier frequency. 

Exercise 2-10. First show that S < 00 implies BIBO. Suppose the input is bounded by xk ~ L. Then 
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(18.9) 

Then show that if S = 00 there exists a bounded input such that the output is unbounded. Such an input 

is k such that hk * 0 

k such that hk = 0 
(18.10) 

Exercise 2-11. 

(a) If the sequence is left-sided (2.37) becomes 

L:=...co Ihk 1·lzl-k 
<00 (18.11) 

for some K. This sum can be rewritten 

(18.12) 

and we recognize that the I z I-K cannot affect convergence except at I z 1= 0 and I z I = 00. All 
the terms in the sum are positive powers of I z I, and hence if they converge for some I z I = R 
they must converge for all smaller I z I (except possibly I z I = 0). 

(b) If K > 0, the sequence is not anticausal, and there is a K-th order pole at z = 0, the ROC does not 
include z = O. If K = 0, then H(O) = hK' the ROC includes z = O. If K < 0, there is a K-th order 
zero at z = 0, which is therefore included in the ROC. 

Exercise 2-12. This follows directly from the observation that xk -I for a fixed integer I has Z 
transform z -I X(z). Taking the Z transform of both sides of (2.41), we get the desired results. 

Exercise 2-13. This is a straightforward evaluation. For example, 

(y(t), x(t» = f y(t)x*(t) dt =(f x(t)y*(t) dt)* =( x(t),y(t»*. (18.13) 
...co ...co 

Exercise 2-14. The inequality is obviously true (with equality) if X = 0 or Y = 0, so assume that 
X * 0 and Y * O. Then we have the inequality 

0~IIX-a·YII2 

o ~ IIXI12 - 2Re{a*(X,y)} + la 1211Y 112 

Ifwe let a =(X,Y)/IIY 112, 

then the previous inequality becomes 

from which the Schwarz inequality follows immediately. 

(18.14) 

(18.15) 

(18.16) 
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Chapter 3 

Exercise 3-1. This follows from 

E[es(X + Y)] = E[eSx]E[esY] 

= [[ esxfJl., . .x)esyfy(y) dxdy 

= r esxfx<x)d.xr eSYfy(y)dy = <I>X<x)<I>y(y) . (18.17) 
-00 -00 

Exercise 3-2. Evaluating the derivatives, 

<I>X<s)I S =O=1 , (18.18) 

:s <I>X<s) Is =0 = E[XeSX] Is=o = E[X] (18.19) 

(18.20) 

Exercise 3-3. 

(a) The distribution function can be written in terms of a unit step function u(x) as 

1- FX<x) = r u(y - x)fx(J)dy = r fx(J)dy, 
-00 x 

(18.21) 

and since u(y - x) is bounded by eS(Y - x) for s 2': 0, 

1- FX<x) ~ [e (y -x)sfx(J)dy = e-sx<I>X<s). (18.22) 

(b) Obtained by a similar technique. 

(c) Take the derivative of the bound with respect to s and set to zero. 

Exercise 3-4. Suppose that y is a discrete value that Y takes on with probability a. Then 

fy(a) = aO(a - y). (18.23) 

Integrate (3.30) over small intervals about y, or over (y - c,y + c) for small enough c. Equation (3.32) 
follows similarly, or it can be easily derived from the definition of conditional probabilities (3.27). 

Exercise 3-5. By direct calculation we have 

00 22 00 2 (X_II) Pr[X> x] = _1_ f e -(a -IJ.) I2cr da = _1_ f e -w 12crdw = Q __ r , 
J2rr.02 x J2rr.o2 (x -11)10 cr 

(18.24) 

where we have used the change of variables w = (a - ~)/cr. 

Exercise 3-6. 
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(a) The moment generating function can be obtained by evaluating the integral 

00 2 2 
<l>x(S) =_1_ f rfxe -{x -11) 120" dx . 

,)21tcr2 -00 

(18.25) 

Combining the two exponents and completing the square in the resulting exponent in the integral, it 
becomes -«x -a)2 -b) /2a2, where b = 21la2s + o4s2. The ebl2cr2 tenn can be taken outside the 
integral, and the remaining integrand is just a Gaussian density function and therefore integrates to 
unity. Thus, the moment generating function is <l>x(s) = eb 12cr2, and substituting for b we get the 
claimed result. 

(b) The value of s giving the tightest bound can be solved as 

s=x-Il 
0 2 ' 

(18.26) 

and hence the bound is valid as long as x ~ Il. Substituting this value of s into the bound, we get 

(18.27) 

which looks remarkably like the Gaussian density. Note than when x = Il, the actual probability is 1/2 
and the Chernoff bound is e =0 2.28, so the bound is rather loose. It becomes much tighter for larger 
values ofx. The relation (3.43) follows by letting Il = 0 and a = l. 
Exercise 3-7. Consider a scaled Gaussian, Y = aX. If the variance of X is a2, then the variance of Y is 
a2a2. Hence the moment generating function of Y is 

The moment generating function is 

2-22 
<l>y(s) = ea-u s 12 . 

2 2 2 2 <l>z{s) =e(al + ... +aN)cr s 12. 

(18.28) 

(18.29) 

This is the moment generating function of a zero mean Gaussian random variable with variance (3.46). 

Exercise 3-8. We only need to show 

E[XYJ = E[X]E[Y] ~ fx.Y(x, y) = fx(x)fy(y). (18.30) 

From (3.48) and the fact that the random variables have zero-mean, p = O. Now (3.47) is easily factored 
into two parts. 

Exercise 3-9. Define X+y ~ X+Y 

a:·X~a:·X 

o ~ 0 (the zero random variable) 

-X ~ -X 

(18.31) 

(18.32) 

(18.33) 

With these definitions, verification of the properties is straightforward, relying on similar linearity 
properties of random variables. 
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Exercise 3-10. This is very straightforward. For example, 

(Y,X) =E[YX*] = E[XY*] * =(X,Y)*. (18.34) 

Exercise 3-11. First show that 

Rw('t) = E[W(t + 't) W*( t)] = h*(-'t) * Rwx('t) , (18.35) 

by substituting for one of the W(t) in terms of X(t). Then show that 

Rwx('t) = h('t) * Rx('t) , (18.36) 

completing the first result. Finally, show that the Fourier transform of h *(-'t) is H*(f), and that the 
Laplace transform of h*(-'t) is H*(-s*). Both of these are easily done using the Fourier and Laplace 
transform definitions. 

Exercise 3-12. Calculating first the cross-correlation of the input and output, 

Then calculating the output correlation function, 

Finally, show that the Fourier transform of h~m is H*( eJ8 ) and the Z transform is H*(l / z*). 

Exercise 3-13. First we can calculate that 

RWY<'t) = Rn('t)*h('t) 

and then Rwu('t) = RWY<'t) * g*(-'t) = Rn('t) * h('t) * g*(-'t) 

Taking the Fourier transform we get the desired result. 

(18.37) 

(18.38) 

(18.39) 

(18.40) 

Exercise 3-14. Since A(z) is all pass, we must have 1 A(eJ€) 12 = 1 for all S. Taking the arithmetic 
mean, and using Parseval's relationship, implies that L; = ~I ak 12 = 1. By itself, this would imply 
that 1 ao 1 ~ 1. But since there are at least two nonzero coefficients {ak}, we must have 1 aO 1 < 1. 

Exercise 3-15. This relation can be obtained by exactly the same method as Appendix 3-A, although 
it is tedious. 

Exercise 3-16. We use the fact that the next state 'P k+ 1 of a Markov chain is independent of the past 
states 'Pk -l,'Pk _ 2, ... given the present state 'Pk to show that all future samples ofthe Markov chain 
are independent of the past given knowledge of the present. 

We wish to show that for any n > 0 and any k, 

(18.41) 
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This is easily shown by induction. Observe that it is true for n = 1, by the definition of Markov chains 
(3.112). We can assume that it is true for some n and show it is true for n+l. A fact about conditional 
probabilities similar to that in (3.33) tells us that 

P('IIk+n+l l'IIk,'IIk -1>"') 

=L Q P('IIk+n+l I 'IIk+l,'IIk,'IIk-1>" .)P('IIk+l l'IIk,'IIk-l, ... ). 
"'k+! E • 

(18.42) 

Since we assume that (18.41) is true for n, 

(18.43) 

It is also therefore true that 

(18.44) 

Furthermore, from the definition of Markov chains, 

(18.45) 

Substituting (18.44) and (18.45) into (18.42) we get 

(18.46) 

Using the same fact about conditional probabilities (3.33) we can eliminate the summation to get 

(18.47) 

which shows that (3.113) is valid for n + l. 

Exercise 3-17. Multiplying both sides of(3.117) by z-k and summing from k = 0 to k = 00, 

Changing variables and letting m = k + 1, 

or 

Exercise 3-18. We have 

(18.48) 

But the latter summation can be evaluated using a derivative, 
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The result follows immediately. 

Exercise 3-19. 

(a) Given the power series 

and differentiating it once 

and differentiating it twice 

The moments follow immediately. 

(b) The moment generating function is 

00 (aeS)k 8 <IIMS) =e-a~ __ =e ae -a, 
£.Jk = -<>0 k! 

and taking the logarithm we get (3.142). 

(18.49) 

(18.50) 

(18.51) 

(18.52) 

Exercise 3-20. For these initial conditions, we get qk(tO) = 1, and the Laplace transform becomes 

sQ/s) + "AQ/s) = "AQj_l (s), j :t; k , 

SQk(S) -Qk(tO)e -sto +"AQk(S) = "AQk-l (s) . 

By iteration, we can establish that Q/s) = ° for j < k and for j ~ k 

Q.(s) = ").j - k e -sto 
J (s + A)j - k + 1 . 

The result follows immediately by taking the inverse Laplace transform. 

Exercise 3-21. The state transition diagram is shown in the following figure: 

The equations become for this case 

with initial condition 

d 
dt qn(t) + n~qn(t) = 0, 

:t qi t ) + j~q/t) = (j + l)Mj+1(t), ° -5:j < n, 

q-(O) = ' {D. 
J 1 ; 

0-5:j<n 

j=n 

(18.53) 

(18.54) 

(18.55) 

(18.56) 
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Taking the Laplace transform, we get 

sQn(S) - qn(O) + nJ1Qn(S) = 0 , 
sQis) + jJ1Qis) = (j+1)J1Qj+1 (S), 0 ~j < n . (18.57) 

It follows that qn(t) = e -nllt 

qi t) = (j+1)J1e -jilt * qj+ 1 (t) , (18.58) 

and the reader can verify by induction that (3.144) is valid. 

Exercise 3-22. This is a two-state birth and death process with transition diagram shown in the 
following figure: 

E,,-~ -+:--@ 
Jl 

State 0 corresponds to the server idle, and state 1 corresponds to the server busy. When the system is in 
state j = 0, arrivals occur at rate A, and there are no departures because the server is idle. Similarly, in 
state j = 1, where the single server is busy, arrivals immediately depart from the system, have no effect, 
and therefore are not reflected on the state transition diagram. Also in this state, departures occur with 
rate J1 due to the completion of service. The differential equations governing the system are 

d 
dt qo( t) = J1ql (t) - AqO( t) , 

d 
dt dq1(t) =AqO(t)-J1Q1(t). 

Since the sum of the two probabilities must be unity, 

we can clear one variable to yield a single differential equation for qo( t), 

and the result follows immediately by taking the Laplace transform. 

Exercise 3-23. Rewriting (3.149), we get 

J1Qj+1 - Aqj = J1Qj - AQj -1 , 

and since this recursion starts at zero, 

qj+1 = PQj = pi+1qO' 

Using the fact that the probabilities must sum to unity, we can find that qo = 1 - p. 

Exercise 3-24. We get 

(18.59) 

(18.60) 

(18.61) 

(18.62) 

(18.63) 

(18.64) 
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(18.65) 

and setting s = 0 we get the mean of (3.159). Taking the second derivative, we get 

(18.66) 

and setting s = 0 we get the second moment. Subtracting the square ofthe mean, we get the variance of 
(3.160). 

Exercise 3-25. The exact moment generating function is 

(18.67) 

where all the other terms are of order 11 Jj'i or smaller and become insignificant as ~ ~ 00. 

Exercise 3-26. Note that 

E[G G ] = { E[G2] ; 
m n E[G]2; 

m=n 
(18.68) 

and also note that from Campbell's theorem 

(18.69) 

since this is a shot noise process with impulse response h2( t). The rest is straightforward but tedious 
algebra. 

Exercise 3-27. Part (a) is straightforward, so let's concentrate on part (b). Integrating, 

t 
eA(t)x(t) - eA(to)x(to) = f b(u)eA(u)du. 

to 
(18.70) 

The solution of (3.194) follows directly from the observation that 

A(t) =A(t) -A(to) , (18.71) 

and some algebraic manipulation. 

Exercise 3-28. Noting that (3.155) is true for j = 0, assume it true for j. Then using (3.196) to 
determine the distribution for j + 1, 

. (t) = -A(t)ft '( )A(u)Aj(t) d %+1 e /I. u ., U. 
to J. 

(18.72) 
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But noting that A ( t) = 1..( t), this becomes 

q o (t) =e-A(t)Jt A (u)Ai(t) du 
J+l JO

, ' 

to . 
(18.73) 

which can be integrated directly because it is a perfect differential to yield (3.155) for j + 1. 

Chapter 4 

Exercise 4-1. Let the K outcomes have probabilities Pi, 1 $ i $ K. Using the inequality 

(18.74) 

we get the inequality 

(18.75) 

Exercise 4-2. 

(a) From(4.l2) and (4.11) we get 

I(X,Y) = - L p;/-x)log'JP;/-x) + L L PX,y(x, y)log'JPx,y(x, y). (18.76) 
XE Qx XE QxYE Q~ 

From Bayes rule this becomes 

[
PYIX(YIX)PX(X)] 

I(X,y) = - L p;/-x)log'JP;/-x) + L L Px,yCx, y)log2 P (y) , 
XE Qx XE QxyE Q y Y 

(18.77) 

which reduces directly to (4.13) after algebraic manipulation. 

(b) We can show this by substituting into (4.14) in terms of the input and transition probabilities, and 
showing algebraically that the result is equivalent to (4.14). 

Exercise 4-3. 

(a) The easiest method is to use the formula 

I(X,y) =H(Y)-H(YIx). (18.78) 

We want to show that the second term is independent of q. When the input is X = 0, the two 
outputs have probability P and 1 - p, and similarly when input is X = 1 the outputs have the 
same probabilities. Hence the entropy of the output is the same in both cases, and the conditional 
entropy, the average of these two entropies over the input distribution is independent of the input 
distribution. The result follows immediately. 

(b) We know from Fig. 4-2 that H(Y) $ 1 with equality if and only if the two outputs have equal 
probability. Because of the symmetry of the channel, they will have equal probability when 
q = 1/2, and this is therefore the distribution that achieves channel capacity. 
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Exercise 4-4. From the inequality log(x) :::; x-I, it follows that: 

r fy(y)log g(y) dy :::; r fy(y)( g(y) -1) dy 
-00 f y(y) -00 f y(y) 

= [ g(y)dy - [fY(Y)dY = 1 - 1 = O. (18.79) 

This leads directly to (4.22). Equality in (18.79) holds when g(y) = fy(y). Substituting a zero-mean 
Gaussian with variance (j2 for g(y), we get (4.21). The right-hand equality in (4.21) holds when Y is 
Gaussian. 

Exercise 4-5. From (4.23), using the observation that fYIx.<Y I x) = fllY - x), 

H(Y I X) = L p:x(x)f~ fllY - x)log2fllY - x)dy 
xEQ~ -00 

= L p:x(x)f~ fN<n)log2fN<n)dn 
XE Q~ -00 

= [fN<n)log2fN<n)dn = H(N) . (18.80) 

Exercise 4-6. 

leX, Y) = H(Y) - H(YIx) 

=-f fy(y)log2fy(y)dy + L p:x(x)f fYIx.<Y Ix)log2fYIx.<Y Ix) dy 
Q y XE Q~ Q y 

=-f [fy(y)log2fY(Y)-L P:x(x)fYIx.<Ylx)log2fYIX(Ylx)]dy. (18.81) 
Q y XE Q~ 

Using fY(Y) = L. r> p:x(x)fYlx(Y Ix), 
x E •• ~ 

(18.82) 

we get leX, Y) = f L p:x(x) [fYIx.<Y I x)(log2fYIx.<Y Ix) -log2fy(y»]dy 
Q y XE Q~ 

(18.83) 

from which the result follows. 

Exercise 4-7. 

(a) Using the inequality log(x) :::; (x - 1), 

f fy(y)log2 t;[;) dy:::; f (g(y) - fy(y» dy = 0 , (18.84) 

for any valid pdf g( . ). 

(b) In particular, when g( . ) is the prescribed Gaussian pdf, we have 
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With this choice for g( . ), (4.31) reduces to 

H(Y) :::; - f fy(y)log~(y)dy 
= ! ~N log (21t(0- 2 + 0-2» 

2 L.Jn = 1 2 x,n 

1 ~N log2e f .2 
+ :2 L.Jn = 102 + 0 2 fY(y);yn dy 

x,n 
N 

= ! ~ log (21te(0- 2 + 0-2» . 
2 L.Jn = 1 2 x,n (18.86) 

(c) Substituting (18.86) and (4.30) into (4.29), we get 

I(X,Y) :::; ~ r: = lOg2( 1 + cr!2n J . (18.87) 

(d) Calculating the difference, 

(18.88) 

with equality if and only if o-;'n = o-} / N. 

Chapter 5 

Exercise 5-1. 

T 
h( t) * h(-t) = f h(t)h(r: - t)dr: . 

o 
(18.89) 

Outside the range [-T, 1'] the two integrands do not overlap, likewise at the endpoints of this interval 
there is an overlap at only one point, and the integral will be zero. 
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Chapter 6 

Exer~se 6-1. Let x( t) = J2 Re{ x (t)ei21tfct} and y( t) = J2 Re{ ji (t )ei21tfct}. By definition, we 
haveX(f) = J2u(f + fo)X(f + fo) and Y(f) = J2u(f + fo)X(f + fo). Then: 

[x(t)y(t)dt = [X(f)Y*(f)df =2 (X(f)Y*(f)df 

=2[ u(f)X(f)[Y(f)]*df = [ J2u(f)X(f)[J2u(f)Y(f)]*df 

= [ J2 u(f + fo)X(f + fo)[J2 u(f + fo) Y(f + fo)] *df 

= [X(f)Y*(f) df = [ x(t)ji*(t) dt. (18.90) 

The first and last equalities follow from Parseval's relationship, while the second equality follows from 
the Hermitian symmetry of the Fourier transform of real signals. Thus, we see that the inner product of 
the real signals is precisely equal to that of the corresponding complex envelopes. Hence, orthogonality 
at baseband implies orthogonality at passband. 

Exercise 6-2. The pulses in (6.52) consist of a sinc pulse modulating a cosine. Using the tables in 
Appendix 2-A, the Fourier transform of the sinc pulses is 

(18.91) 

Multiplying the pulse in the time domain by a cosine offrequency (n -1;0/(21) will scale the Fourier 
transform by % and shift it up and down in frequency by (n - 1/0/(21). The frequency-domain plots in 
Fig. 6-8 result. These plots make it clear that 

(18.92) 

Thus, for any i *- j, the sum in (6.56) is zero. So it remains to be shown only that when i =j, the sum is 
constant, or 

~ ~oo Hi(f- ml1) = 1 . JT£.Jm =-= 
(18.93) 

Equivalently, we require that JT Hn(f) satisfy the Nyquist criterion, so that JT hi(t) is zero at all 
nonzero integer multiples of T. From (6.52), 

(18.94) 

verifying that they are Nyquist pulses. 

Exercise 6-3. To see this, note first that 

hn( t )hn(t - k1) = ~ w( t)w(t - k1)( cos[(n + 1;0k1t] + cos[(2n + l)1ttIT - (n + 1;2)k1t]) . 
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Since w(t) is bandlimited to 11(21), w(t)w(t - k1) is bandlimited to liT, and thus when it is 
multiplied by a cosine with frequency (2n + 1) / (21) 2: 3/ (21), the spectrum does not overlap d.c. 
This term must therefore integrate to zero, so 

[ hn( t )hn(t - k1) dt = ~ cos[(n + 1/2)kn] [ w( t )w(t - k1) dt . (18.95) 

For k = 0, this integral reduces to the energy of hn( t). For k even but not zero, (6.57) implies that the 
integral has value zero. For k odd, the integral is zero because cos«n + %)kn) is zero. Hence, (6.53) 
holds. 

Exercise 6-4. Writing out the convolution in (6.55), we need to show that 

~ ( sin(ffin 1:)sin(ffiz(1: - k1)w(1: - k1)d1: = bkbZ_ n , 
o 

(18.96) 

for I, n E {O, I}, and for any integer k, where ffin = 2nfn. When k *- 0, w(1: - k1) = 0 within the range 
of the integral, so it will suffice to show that 

or equivalently, that 

~ ( sin(ffin 1:)sin(ffiz1:)d1: = bz_ n , 
o 

1 IT T [COS«ffin - ffiz}1:) - COS«ffin + ffiz}1:)]d1: = bz- n . 
o 

Using (6.71), we need to show that 

1 IT T [cos«Mn -Mz}2n1:/1) - cos«Mn + Mz}2m/1)]d1: = bz_ n . 
o 

(18.97) 

(18.98) 

(18.99) 

When n *- I, both terms under the integral are cosines that are integrated over an integer number of 
cycles, and hence integrate to zero. When n = I, the second term integrates to zero, but the first term 
integrates to T, thus establishing the result. 

Exercise 6-5. The sampled receive filter output is 

go( t) * f( t) It = 0 = ~ ( sin(ffi01:)sin(ffi01: + 8)d1: 
o 

1 IT = T [cos(8) - cos(2ffio1: + 8)]d1:. 
o 

(18.100) 

The second term in the integral integrates to zero for any fixed 8, and the first term is constant, so 

go(t) * f(t) It = 0 = cos(8). (18.101) 
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Exercise 6-6. 

(18.102) 

When n = k, this clearly equals unity. When n -:f. k, we are integrating over an integer number of cycles 
of a complex exponential, getting zero. 

Exercise 6-7. 

C gn(t) gk* (t)dt = NL~=-Ol L~=-0\j21tin/Ne-j21tlk/NCp(t - iTI N)p*(t -lTI N)dt 

= l. ~N -1 ~N -le j21t(in-Ik)/ NJoo p(t _ iT I N)p(t -IT I N)dt 
Nk.J1=0 k.JI=O -00 

_ 1 LN -1 LN - 1 j21t(in -Ik)/ N~ __ 1 LN - 1 j21t(n - k)i/ N~ - - e u' 1 - - - e u' I. N i=O 1=0 I, N i=O I, 
(18.103) 

We have now reached the discrete-time version of the final equation n in the previous exercise. When n 
= k, this clearly equals unity. When n -:f. k, we are adding N complex numbers equally spaced on the 
unit circle, yielding zero. 

Exercise 6-8. Evaluate (6.117) at the boundary between two symbols, t = kT, and find that for the 
phase to be the same on either side of the boundary we need 

which easily reduces to the desired form. 

Exercise 6-9. Letting x = N(M1 / N - 1) where N = WT, we get 

M = (1 + xl N)N ~ eX as N ~ 00 • 

Hence x ~ 10geM as N ~ 00. 

Chapter 7 

Exercise 7-1. From Bayes' rule we can write 

From the Markov property this becomes 

Repeat with the second factor, and iterate until the desired form results. 

(18.104) 

(18.105) 

(18.106) 

(18.107) 

Exercise 7-2. This is easily done by considering each of the four possible paths oflength two through 
the trellis and computing the distances of the shortest error events. It is easy to argue that all longer error 
events have greater distances. 
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Exercise 7-3. Writing z = Ae j 4>, the integral on the right hand side of (7. 103) is 

(18.108) 

Since the integral is over one period ofthe periodic integrand, the value of the integral is independent of 
<\>, and hence the result follows for <\> = O. 

Chapter 8 

Exercise 8-1. A plot of xk as a function of ak, for a given Uk, is shown below: 

___ - M 

A given threshold x is shown, the probability that xk ::s; x corresponds to the range of ak that is shaded. 
Assuming that Ak is uniformly distributed, then Pr[xk ::s; x] is easily seen to be proportional to x, 
regardless of the value of uk' Hence xk is uniformly distributed. 

Exercise 8-2. By straightforward manipulation, 

Se = Sr 1 C 12 - Sa<HC + H*C*) + Sa 

=S IC-S S -lH*1 2 +S -S 2S -11H1 2 r ar a a r , (18.109) 

and from there it is just some minor algebra. 

Exercise 8-3. The Fourier transform of the inputf,ulse is ej2rtftoH(f), and hence at the output of the 
matched filter the pulse has Fourier transform e J rtf to 1 H(f) 12. After sampling we get the result of 
(8.100). 

Exercise 8-4. Assuming less than 100% excess bandwidth, a sampling rate of 2 IT suffices to 
represent the matched filter impulse response, 

(18.110) 

and the matched filter can be represented in discrete time as a filter with impulse response h'!m' When 
we double the sampling rate in C(z), yielding a new filter with coefficients ck', we have 
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, _ {Ck/2' k odd ck -
0, keven 

The FSE has impulse response 

and the transfer function ofthis filter is 

L~ = _ike -jrtfkT = L~ = ~ e -jrtfkTL~ = ~ crh{r- k 

= ~oo cr~oo h2~- ke-jrtfkT 
£..J r = -<X) L.J k = -ex 

and letting m = 2r - k this becomes 

(18.111) 

(18.112) 

(18.113) 

L~ = ~ crL~ = ~ h,; e -jrtf(2r - m)T = L~ = ~ cre -j2rtfr~: = -oc h,; e -jrtfmT 

= C(e j2rtfT)H*(f) . (18.114) 

Exercise 8-5. Consider Fig. 8-18(b), we will show it is equivalent to Fig. 8-18(a). Since the transfer 
function C1 (e j2rtfT) is periodic in frequency, it can be expanded in a Fourier series, 

C (ej2rtfT) = ~ c e -j2rtfmT 
1 £Jm m , (18.115) 

and hence it has impulse response 

(18.116) 

If the matched filter output is called x( t) and the output ofthe filter Cl(ej2rtfT) is called y( t), then 

yet) = Lm cmx(t - mT) , 

and therefore Yk = y(kT) = Lm cmx((k - m)T) , 

which is evidently Fig. 8-18(a). 

Exercise 8-6. We get Pr[wk 1:- 0]= ~ (Pr[wk = 2] + Pr[wk = -2]) 

= ~ (Pr[nk < -1 - Vkl + Pr[nk > 1- uk]) 

= ~ (1- Pr[-1- uk:5 nk:5 1- uk]):5 1/2 , 

(18.117) 

(18.118) 

(18.119) 
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Chapter 9 

Exercise 9-1. Write: 

(18.120) 

Taking the expected value, we get the stated result. 

Exercise 9-2. Rk is the sum of a signal and a noise term, which are uncorrelated and can thus be 
considered directly. From Exercise 3-11, the autocorrelation of the signal component is 

(18.121) 

Similarly, neglecting the signal component, the noise component can be determined directly: 

E[Rk+mRk *] = No[ f*(t - (k + m)T)e -j2rtfctf(t - k1)ej2rtfctdt = NoPr( m) . (18.122) 

Exercise 9-3. 

(a) By the definition of <I> , 

<1>* = E[rkrl1* = E[(r{)*(r0*] = E[rkr{] = <1>. (18.123) 

(b) The Toeplitz property follows directly from the assumption that the Rk input random process is 
wide-sense stationary. 

(c) The positive semidefinite property follows from 

(18.124) 

Exercise 9-4. The easiest method is to note that if the MSE reduces to a Hermitian form, the matrix 
must be <1>. Hence, we assume the form of the result, 

(18.125) 

for unknown constants a and Copt, and multiply out and equate terms to determine the constants. 

Exercise 9-5. 

(a) From the Hermitian property we get 

(<I>R + j<l>I) * = <l>R + j<l>I (18.126) 

and the result follows from equating real and imaginary parts. 

(b) We have that 

(18.127) 

and multiplying out and taking the real part (note we don't need to bother with the imaginary part 
at all since we know in advance it is zero), 

(18.128) 
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or equivalently 

Taking the gradients, we get the desired results. Similarly, 

Re{ c*o.} = Re(cR - jCI)T(o.R + 0.1) = CRTo.R+C{o.I. 

(c) By the given definition of (9.23), 

V cc*<I>c = 2(<I>RcR - <I>IcV + j2(<I>RcI + <I>IcW 

which is the same as V cc*<I>c = 2(<I>R + j<I>I)(cR + jCI). 

Similarly, V cRe{ c*o.} = o.R + jo.I = a.. 

Exercise 9-6. 

(a) From the eigenvalue equation 

Av =A.V 

(18.129) 

(18.130) 

(18.131) 

(18.132) 

(18.133) 

(18.134) 

where A. is an eigenvalue and v is an associated eigenvector, we can take the conjugate and 
transpose to get 

v*A* = v*A =A.*v* 

Premultiplying and postmultiplying the two forms by appropriate vectors, we get 

v*Av =A.v*v 

v* Av = A. *v*v 

and subtracting these two equations 

o = (A - A *)(v*v). 

(18.135) 

(18.136) 

(18.137) 

(18.138) 

Since the second term is a vector norm and is therefore positive for v =F- 0, it follows that A = 1..* 
and A. is real. 

(b) Assume that 1..1 =F- 1..2 are eigenvalues of A. Then we get 

AVI =A.IVI 

AV2 =A.2V2 

(18.139) 

(18.140) 

and taking the conjugate-transpose and premultiplying and postmultiplying by the appropriate 
vector we get 

Subtracting these equations, 

vl*Av2 =AIVl*V2 

vI * Av2 = A.2Vl *v2· 

(18.141) 

(18.142) 

(18.143) 
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which implies that vI and v2 are orthogonal. 

(c) From the definition ofthe modal matrix, 

V*V = [Vl*' ... vN*][vr. ... vN] =1 (18.144) 

from part (b). 

(d) This follows from replacing the modal matrix by its constituent eigenvectors and multiplying out. 

(e) Let v be an eigenvector and A be an associated eigenvalue, then we get 

v*Av 1..=
v*v ' 

which is non-negative by assumption. 

(18.145) 

Exercise 9-7. This follows directly from multiplying out the diagonalizing transformation of (9.35). 

Exercise 9-8. Noting that 

(18.146) 

it follows that vi is an eigenvector and (1 - ~AJ is an eigenvalue of (I - ~<I». 

Exercise 9-9. By straightforward manipulations, with x = ck - Copt, we get: 

X*<I>x = x*(~n A-v-v-*)x = ~n A-x*v-v-*x = ~n A-I x*v'1 2. k.Ji =] ! ! ! k.Ji = I! !! k.Ji =] ! ! 
(18.147) 

Exercise 9-10. Substituting into (9.53), 

qk+1 = f kqk + (f k -I)copt + ~Akrk . (18.148) 

Simplifying the term (f k -I), we get 

(18.149) 

which is the desired result. 

Exercise 9-11. The causal coefficients will be different because the input is data symbols rather than 
the data symbols filtered by the channel and receive filter impulse responses. The non-causal 
coefficients will be different because the causal coefficients do not cause noise enhancement, and hence 
there is more freedom in the choice of non-causal coefficients. 

Exercise 9-12. The error is given by 

where 

and 

Ek =Ak - CTWk' 

wk = [W-{N _ 1), ... wO]T , 

wk =L/Elh/Ak-/' 

(18.150) 

(18.151) 

(18.152) 
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where the index set I consists of all integers except {I, 2, ... , M}. The value of E [ 1 Ek 12] is identical 
to (9.8) except that cI> and a. are 

(18.153) 

All that remains is to determine the elements of this matrix and vector. We have 

E[Wk+i*Wk+j] = E[I,hz-i*Ak-Z* I,hm-jAk+j-ml =EaI,hz~ihZ+j-n' (18.154) 
leT mel leI 

Similarly, E[AkI,hz:ihk'-zJ = hi' (18.155) 
Ie I 

Exercise 9-13. First, let's ignore f( t), and later replace b( t) by b( t) * f( t). Secondly, lets eliminate 
the real-part and phase splitter by dealing only with the analytic signal. Then the output of the channel is 

e-j21tf1tC b(1:)LkAJil;(t -1: _k1)ej21tfc(t-T:) d1: 

= ej21tt.ftLk AkC b(1:)e -j21tfc'tg(t - kT - 1:) d1: 

Exercise 9-14. By direct calculation, 

(18.156) 

(18.157) 

Hence, the rotated symbols are wide-sense stationary and the power spectrum relation follows directly. 

Exercise 9-15. Let Rk = e + jd and write 

and using the fact that 

we get (9.lD7). 

E[ Ie + jd 14] = E[c4 + d4 + 2c2d2] , 

E[e2] = E[d2] = 1/2<110 ' 

E[c4] = E[d4] = 3 . (1/2<110)2 , 

(18.158) 

(18.159) 

(18.160) 
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Chapter 10 

Exercise 10-1. Since xk = [Xk(l), ... , Xk(n)rr: the (i,})-th component of the autocorrelation matrix 
R(d) is: 

(18.161) 

On the diagonal, setting i = j, we get: 

(18.162) 

which is the scalar autocorrelation function of the i-th random sequence {Xk(i), -<X> < k < co}. 
The Z-transforrn is the power spectrum of the i-th sequence, and also the i-th diagonal element 
ofS(z), namely: 

S- (z) = [S(z)] 0 • = LdRo (d)z-d . l,l l,Z 1,1 (18.163) 

(a) Evaluating Rj,j( d) at lag zero (d = 0) yields the power of the i-th sequence, 

( 0) 2 lJlt 09 
Rj,j(O) = E[ IXk I I ] = 21t Sij(e J )d9, 

-It 

(18.164) 

where the second equality is the inverse-Fourier transform of Sii( e j9) evaluated at lag zero. 

(b) First, we have 

E[JIxkIl2] = E[Lj/ Xk(i) /2] = E[LjRii(O)] = tr{R(O)} = tr{E[Xk+OXk *]}. (18.165) 

That takes care of the first three equalities that were to be proven. The last two follow from 
(18.164). 

(c) By definition, R*(-d) = E[Xk+(-d)Xk*] * = E[(Xk*)*(Xk+(-d)*] = E[XkXk-d*]' Substituting 
n = k - d yields: 

(18.166) 

(d) Since S(z) is the Z-transform of R(d), and since we just showed that R(d) = R*(-d), it 
follows that: 

S(z) = LdR*(-d)z-d = LkR*(k)zk = (LkR(k)z*~* 
= (LkR(k)(l / z*)~* = S*(l / z*) . 

(e) Let X = u*S(ej~u, and let Yk = U*Xk' Substituting the definition ofS(eJ~ yields: 

X = u*(LdR( d)e-jd9)u = u*(LdE[xk+~k *]e-id9)u 

= LdE[u*Xk+dxk*u]e-id9 

= LdE[Yk+dYk *]e-id9 = Syy(efo) , 

(18.167) 

(18.168) 

We see that X is equal to the scalar power spectrum of the scalar sequence Yk = u*xk' Since a 
scalar power spectrum cannot be negative, we have X= u*S(eJ~u ~ O. 



822 

(f) By contradiction: Suppose u is the eigenvector corresponding to a negative eigenvalue, so that 

S(eiE)u =Au (18.169) 

for some A < O. This would imply that u*S(eiE)u = All u 112 < 0, contradicting property (e). 

Chapter 11 

Chapter 12 

Exercise 12-1. The square of the Euclidean distance is the square ofthe distance in one component 
(2c)2 times the number of components that differ, which is the Hamming distance. Since c = JE , the 
result follows immediately. 

Exercise 12-2. We need to find the weight of the minimum weight codeword. This is easy to do if we 
observe that cHT = 0 is a linear combination of wNCc) columns ofH. Therefore, the minimum number 
of columns of H that add to zero is dH min For Hamming codes, no two columns add to zero (because 
they would have to be identical). Ho~ever, it is easy to find three columns that add to zero for any 
Hamming code. For example, every Hamming code H contains the following three columns: 

000 

0' 0' 0 
o 1 1 
101 

(18. I 70) 

Exercise 12-3. Verify that each of the cyclic shifts can be formed by linear combinations of rows of 
the generator matrix. Alternatively, write down a list of all 16 codewords in the (7, 4) Hamming code, 
by considering all possible linear combinations of rows of the generator matrix, and you will see that all 
cyclic shifts of 1000101 are in the list. 

Exercise 12-4. Do this by induction. The first k = m bits are source bits. The (k + l)st bit is a 
modulo-two sum of a subset of the first k bits, and hence is a parity-check bit. The (k + 2)nd bit is a 
modulo-two sum of a subset of the second through kth source bits and the (k + l)st bit, which is itself a 
modulo-two sum ofthe source bits, and hence is also a parity-check bit. Etc. 

Exercise 12-5. Define the state of the shift register to be the four bits in the shift register at any time. 
As long as the initial state is not zero, in the process of generating the codeword all 2m - 1 nonzero m 
bit patterns will occur in the shift register. Hence a codeword consists of the right-most bit of all of these 
m bit patterns, where the exact order is determined by the initial state. For all m, exactly 2m -1 of these 
right-most bits are ones, so the Hamming weight of the code must be 2m -1. This implies that the 
(2m - 1, m) code with hard decoder can correct 2m - 2 - 1 errors. 

Exercise 12-6. Note from Fig. 12-IO(b) that 

cP) = Ck(O) ED ck _ 1(0) ED ck _ P) (18. 171) 

or c(2)(D) = (1 G;> D)c(O)(D) G;> Dc(l)(D) (18.172) 
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Hence, 

which is what we wanted to verify. 

Exercise 12-7. (The solution appears in Appendix 12-D, beginning on page 640.) 

Exercise 12-8. For the BSe where the input en and output rn are {±1}, we have: 
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(18.173) 

(18.174) 

As expected, this reduces to 1 - P when r n = en> and it reduces to p when r n * en. Therefore, 
according to the first line of (12.108), the intrinsic contribution to the LLR is: 

f (r Ic =1) (l_p)dH(rn,-I)-dH(rn,l) Al (l- P) 
log n n = log -- = L.l og -- , 

f(rnl cn=-1) p p 
(18.175) 

where we have introduced: 

(18.176) 

Looking closer at this expression we see that d reduces to 1 when r n = 1, and d reduces to -1 when 
r n = -1. In other words, d = r n. The result follows. 

Exercise 12-9. From the distributive law, 

(18.177) 

so rl· 0 = 0, the additive identity. 

Exercise 12-10. All properties are easy to verify. The multiplicative inverses are: 

element inverse 

0 none 
I 1 
2 3 
3 2 
4 4 

Exercise 12-11. There is no multiplicative inverse for 2 under modulo-four multiplication. Trying all 
possible values, 2 . 0 = 0, 2 . 1 = 2, 2 . 2 = 0, 2 . 3 = 2, so there is no element in the field that we can 
multiply by 2 to get 1. Instead of using modulo-four arithmetic, we may instead construct the following 
multiplication table: 

o 1 2 3 
o 000 0 
1 0 1 2 3 
2 0 2 3 1 
3 0 3 1 2 

Note that in this case there is a I in every non-zero row and column, so the multiplicative inverse exists 
for all elements in the field. 
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Exercise 12-12. For any c E C, cHT = 0, hence if h is a row ofH, then chT = 0, and the vectors are 
orthogonal. As a consequence, if h is a row of H then hGT = O. Furthennore, if cD is any linear 
combination of the rows of the rows ofH (i.e. a codeword generated by H), then cDGT = 0, so G is a 
parity check matrix for the code generated by H. 

Exercise 12-13. Addition and multiplication over FD are ordinary polynomial addition and 
multiplication except that arithmetic on the coefficients is all modulo two. All the properties are easy to 
verify. 

Exercise 12-14. The shift-register output obeys the difference equation xk = xk _ 2' It is easily shown 
that with either initial state (0,1) or (1,0) the output alternates between 0 and I (period two), and with 
initial state (1,1) the output is always one (period one). 

Exercise 12-15. We can consider that we are observing the first i bits out of n bits in the sequence. 
Given a particular i-bit sequence which is not all zeros, the remaining n - i bits will assume all of the 
2n - i possible values. There are 2n - 1 possible n-bit sequences, and therefore the relative frequency of 
seeing this particular i bit sequence is the ratio of these two numbers. Similarly, if the i-bit sequence is 
all-zeros, then the remaining n - i bits cannot be all-zeros. Hence for this case there are only (2n - i_I) 
possible n - i bit sequences. 

Exercise 12-16. The maximal-length binary sequence xk will have, in a period of r bits, (r + 1)/2 
"ones" and (r - 1)/2 "zeros." Hence, the average of sk over one period is 

~=!(r+l_r-l)=!. (18.178) 
s r 2 2 r 

Exercise 12-17. In the autocorrelation definition of (12.154), the tenns for which xk xk + I 
contribute + 1 while the remaining tenns contribute -1. Hence the sum is 

l(r-l r+l)_-1 (18.179) r -2---2- - r ' 

for 1 :=:; I :=:; r - 1. The answer is straightforward when I = O. 

Exercise 12-18. 

(a) In evaluating the DFT, let n = k + I, so that the DFT of sk + 1 becomes 

j21[mllrLI + r-1 -j21[mn/r e sne. 
n=1 

The sum can be split into two parts 

",1+r-1= ",r-1 + ",1+r-1 
£..in = 1 £..in = 1 £..in = r 

where the second summation is 

'" 1 + r -1 -j21[mn/r = ",1- 1 SP -j21[m(k + r)/r 
£..in = r Sne £..ik = 0 k + ,..... 

(18.180) 

(18.181) 
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(18.182) 

The substitution k = n - r was used, as well as the periodicity in r of all terms in the summation. 

(b) This is straightforward given the results of ( a), since 

~r-l1 ~r-l -j21tmllr _ 1 ~r-l ~r-l -j21tmllr 
£..il = 0 r £..ik = oSkSk + ze - r £..ik = OSk£..il = OSk + ze 

(c) Substituting from (12.157), 

= ej21tmklr~r -1 sze -j21tmllr. 
£..il = 0 

~r-l Rs(l)e -j21tmllr = 1 + ~r-l (=!) e -j21tmllr 
£..il = 0 £..il = 1 r 

=1+!_!~r-le-j21tmllr = 1+! 
r r £..il = 0 r 

(18.183) 

(18.184) 

when 1 ~ m ~ r - 1. When m = ° the value can be evaluated directly as 1/ r. We then multiply by r to 
get 18m 12. 

Chapter 13 

Exercise 13-1. 

(a) The volume V(uK) is given by the integral 

V(uK) = J i .. J dx1 dx2 .•• dXK , 
U U U 

and the integral can be written as the product of K integrals, each equal to V(U). 

(18.185) 

(18.186) 

Exercise 13-2. The average squared power of the l6-point constellation is 10 and of the 32-point 
constellation is 20, which is a 3 dB difference. 

Exercise 13-3. The 256 point constellation can be thought of as two successive points from the 16 
point constellation and hence the average squared power is double that of the 16 point QAM 
constellation. From the previous exercise, the 16 point constellation has average squared power 10. Now 
we get the average squared power of the 512 point constellation. Note that the squared power of all 
symbols of the form (13.64) is 25 + 1 + 1 + 1 = 28, and the squared power of all symbols of the form 
(13.65) is 25 + 9 + 1 + 1 = 36, so the average squared power of the constellation is 

5~2 (256 X 20 + 64 X 28 + 192 X 36) = 27 . (18.187) 

Exercise 134. Substituting (13.69), (13.19), and (13.20) into (13.70) we get 
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NV2IN(S)d~in(C) 

y= 4V2IN(A)p(S)2 P(C)' 
(18.188) 

Recall that the spectral efficiency V is the number of information bits communicated per two 
dimensions. Thus the constellation size is 

analogous to (13.12), so 

N2Vd~in(C) 
y = 4P(S) 

From (13.46) we can write this as 

Recognizing that for large constellations 2v :::; 2v - 1, (13.10) follows. 

Chapter 14 

Exercise 14-1. Assume the PLL is phase locked, 

Then from (14.5), 

From (14.7) and (14.3), 

This is a constant (d. c.) so 

</>( t) = B( t) + </> = (Oot + B + </> 

d 
c(t) = dtcj>(t) =(00' 

£(t) = we-</»~ . 
c( t) = L(O)£( t) = L(O) W(-</» 

Comparing (18.195) with (18.190) we see that 

(00 = L(O) W( -</» 

From Fig. 14-3 we see that I we-</»~ I::; 1t so 

I (00 I ::; 1t I L(O) I . 

Exercise 14-2. 

<1>(s) _ N(s)/D(s) _ N(s) 
8(s) - N(s)/D(s) + s - N(s) + sD(s) , 

from which the result follows. 

Exercise 14-3. By contradiction. Assume phase lock, 

(18.189) 

(18.190) 

(18.191) 

(18.192) 

(18.193) 

(18.194) 

(18.195) 

(18.196) 

(18.197) 

(18.198) 
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so 

This is a d.c. signal, so: 

so 

<p( t) = B( t) = root + K, 

d 
c(t) = dtd<P(t) = roo . 

1 0>0 
£(t) = W(<p(t) - Set»~ = L(O) c(t) = L(O) * 0, 

<p(t) * S( t) . 

Exercise 14-4. Assume phase lock, 

<Pk = Bk + <p = rookT + S + <p . 

Consequently, from (14.36) ck = <Pk + 1 - <Pk = rooT. 

The phase error is 10k = W(<Pk - Sk> = W(-<I» , 

a d.c. signal, so ck = L(l)£k = L(l) W(-<I» . 

Combining (18.206) with (18.204) we get 

1 roo = T L(l) W(-<I» 

so since I W( . ) I ~ n, I roo I~ f IL(l) I . 

Exercise 14-5. By inspection, C(z) = L(z) (8(z) - <I>(z» 

and 

so (z + l)<I>(z) = C(z) = L(z)(8(z) - <I>(z» , 

which easily reduces to the desired result. 
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(18.199) 

(18.200) 

(18.201) 

(18.202) 

(18.203) 

(18.204) 

(18.205) 

(18.206) 

(18.207) 

(18.208) 

(18.209) 

(18.210) 
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Chapter 15 

Exercise 15-1. Multiply both sides of(15.7) by A{ and look at the imaginary part of both sides to get 

(18.211) 

The result follows easily. 

Exercise 15-2. Multiply both sides of(15.9) by Ak* and examine the imaginary part to get 

(18.212) 

Then use the fact that 1 qk 1 = ck IAk 1 to get the result. 

Exercise 15-3. In the decoder, after the initial conditions are cleared, the output of the z-l boxes is 
exactly the same as the output of the z-l boxes in the transmitter, regardless of M. Hence the subtractor 
removes what the adder inserted. 

Chapter 16 

Exercise 16-1. x(t) is periodic with period T, and so can be written as a Fourier series. Its Fourier 
series coefficients are 

(18.213) 

which are scaled samples of the Fourier transform of the pulse P(f). For X( f) to have a component at 
f = ±1IT, it is necessary that Xl and X_I be nonzero, which will only occur if P(f) is nonzero at 
f=±lIT. 

Exercise 16-2. 

(a) The results of Appendix 16-A apply directly, where 

g(t) = Ip(t) 12 , (18.214) 

and using the fact that multiplication in the time domain is equivalent to convolution in the 
frequency domain, and the fact that the Fourier transform of p*( t) is P*( -f), the result follows. 

(b) Writing 

Z_n = [ P(f)P*(f + niT) df, (18.215) 

and changing variables by letting u = f + niT, (18.83) becomes Zn *. 

Exercise 16-3. For m :;:. n, by independence 

(18.216) 
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by the zero-mean assumption. For m = n, let Am = C + jD then 

(18.217) 

which has mean value zero since by assumption C and D have equal variance, and since the real and 
imaginary parts are independent they are uncorrelated. 

Exercise 16-4. Dropping the dependence on k, write E( -r) in terms of its real and imaginary parts 

and 

so 

Exercise 16-5. 

E(-r) = ER(-r) + jE1(-r) , 

1 E(-r) 12 = ER2(-r) + Ei(-r) , 

a 2 aER(,r:) aE1(t:) 
at: 1 E(-r) 1 = 2ER(-r) -a:r- + 2E1(-r)-a:r 

= 2Re[ E*(-r) a~~t:)J. 

(18.218) 

(18.219) 

(18.220) 

(a) It easy to show that E[Qk(-r01 is independent of k. To show that RQQ(k, ~) depends only on k-i 
we use the assumptions about Nk to write 

Using two variable changes, r = k -m and q = i -n we get 

where we have also exchanged expectations with summations. This can be written 

which depends only on k - i. 

(b) With Qk(-r,J real valued, wide sense stationarity implies that 

E[Qk(-r,JQk+1(-r,Jl =RQ(l) 

and E[Qk(-r0Qk_l(-r,Jl =RQ(-l) 

From the symmetry of the autocorrelation function these are equal. 

Exercise 16-6. Plugging (16.32) into (16.31) we get that the timing function is 

(18.224) 

(18.225) 
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(18.226) 

Using the assumptions, this simplifies to get the result. 

Exercise 16-7. Exchange the integral and summation and change variables inside the integral, 
replacing t with t = 't + kT, getting 

This can be simplified by observing that 

Xm = ~ i (12 get - k1)e -j21CmtIT dt 
k=~-TI2 

-~ i JTI2 g('t)e-j21Cm(Hk1)IT d't. 
k=~ -T12 

e -j21Cm('t + k1) 1 T = e -j21Cm't 1 T . 

(18.227) 

(18.228) 

Observe that the summation is a sum of finite integrals with adjoining limits, which may be replaced 
with a single infinite integral, getting the desired result. 

Chapter 17 

Exercise 17-1. We can define a fixed frame structure with a number of time-slots and added bit 
framing. One node ofthe ring is defined as the master, and it inserts the framing bits onto the ring. Each 
of the other nodes can detect this frame, thus defining the same frame and set of time slots. Now 
suppose a circuit is desired from station A to station B, and that time-slot n is allocated to this circuit. 
Then station A can identify time-slot n, and insert its information into that time-slot. For every other 
time-slot and the framing bits, station A simply retransmits whatever bits are incoming. At station B, it 
knows the position of time-slot n because it also has the framing. It therefore extracts the bits on this 
time-slot. Every other time-slot it also retransmits incoming bits. Note that a particular time-slot can be 
reused; that is can support two or more circuits as long as those circuits don't overlap one another on the 
ring topology. 

Exercise 17-2. Taking the derivative w.r.t. Pout, we get 

dPin -2P, -2P, 
a-p = e out - 2Poute out = 0 , 

out 
(18.229) 

which leads to Pout = 1/2 , 
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