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Preface

The study of digital communications is an essential element of the undergraduate and
postgraduate levels of present-day electrical and computer engineering programs. This
book is appropriate for both levels.

The introductory chapter is motivational, beginning with a brief history of digital
communications, and continuing with sections on the communication process, digital
communications, multiple-access and multiplexing techniques, and the Internet. Four
themes organize the remaining nine chapters of the book.

Mathematics of Digital Communications

The first theme of the book provides a detailed exposé of the mathematical underpinnings
of digital communications, with continuous mathematics aimed at the communication
channel and interfering signals, and discrete mathematics aimed at the transmitter and
receiver:

» Chapter 2, Fourier Analysis of Signals and Systems, lays down the fundamentals for
the representation of signals and linear time-invariant systems, as well as analog
modulation theory.

e Chapter 3, Probability Theory and Bayesian Inference, presents the underlying
mathematics for dealing with uncertainty and the Bayesian paradigm for
probabilistic reasoning.

e Chapter 4, Stochastic Processes, focuses on weakly or wide-sense stationary
processes, their statistical properties, and their roles in formulating models for
Poisson, Gaussian, Rayleigh, and Rician distributions.

* Chapter 5, Information Theory, presents the notions of entropy and mutual
information for discrete as well continuous random variables, leading to Shannon’s
celebrated theorems on source coding, channel coding, and information capacity, as
well as rate-distortion theory.

From Analog to Digital Communications

The second theme of the book, covered in Chapter 6, describes how analog waveforms are
transformed into coded pulses. It addresses the challenge of performing the transformation
with robustness, bandwidth preservation, or minimal computational complexity.

Signaling Techniques

Three chapters address the third theme, each focusing on a specific form of channel
impairment:

* In Chapter 7, Signaling over Additive White Gaussian Noise (AWGN) Channels, the

impairment is the unavoidable presence of channel noise, which is modeled as
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additive white Gaussian noise (AWGN). This model is well-suited for the signal-
space diagram, which brings insight into the study of phase-shift keying (PSK),
quadrature-amplitude modulation (QAM), and frequency-shift keying (FSK) as
different ways of accommodating the transmission and reception of binary data.

e In Chapter 8, Signaling over Band-Limited Channels, bandwidth limitation assumes
center stage, with intersymbol interference (ISI) as the source of channel impairment.

e Chapter 9, Signaling over Fading Channels, focuses on fading channels in wireless
communications and the practical challenges they present. The channel impairment
here is attributed to the multipath phenomenon, so called because the transmitted
signal reaches the receiver via a multiplicity of paths.

Error-control Coding

Chapter 10 addresses the practical issue of reliable communications. To this end, various
techniques of the feedforward variety are derived therein, so as to satisfy Shannon’s
celebrated coding theorem.

Two families of error-correcting codes are studied in the chapter:

e Legacy (classic) codes, which embody linear block codes, cyclic codes, and
convolutional codes. Although different in their structural compositions, they look
to algebraic mathematics as the procedure for approaching the Shannon limit.

* Probabilistic compound codes, which embody turbo codes and low-density parity-
check (LDPC) codes. What is remarkable about these two codes is that they both
approach the Shannon limit with doable computational complexity in a way that was
not feasible until 1993. The trick behind this powerful information-processing
capability is the adoption of random codes, the origin of which could be traced to
Shannon’s 1948 classic paper.

Analog in Digital Communication

When we think of digital communications, we must not overlook the fact that such a
system is of a hybrid nature. The channel across which data are transmitted is analog,
exemplified by traditional telephone and wireless channels, and many of the sources
responsible for the generation of data (e.g., speech and video) are of an analog kind.
Moreover, certain principles of analog modulation theory, namely double sideband-
suppressed carrier (DSB-SC) and vestigial sideband (VSB) modulation schemes, include
binary phase-shift keying (PSK) and offset QPSK as special cases, respectively.
It is with these points in mind that Chapter 2 includes

¢ detailed discussion of communication channels as examples of linear systems,
* analog modulation theory, and
* phase and group delays.

Hilbert Transform

The Hilbert transform, discussed in Chapter 2, plays a key role in the complex
representation of signals and systems, whereby

e a band-pass signal, formulated around a sinusoidal carrier, is transformed into an
equivalent complex low-pass signal;
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e a band-pass system, be it a linear channel or filter with a midband frequency, is
transformed into an equivalent complex low-pass system.

Both transformations are performed without loss of information, and their use changes a
difficult task into a much simpler one in mathematical terms, suitable for simulation on a
computer. However, one must accommodate the use of complex variables.

The Hilbert transform also plays a key role in Chapter 7. In formulating the method of
orthogonal modulation, we show that one can derive the well-known formulas for the
noncoherent detection of binary frequency-shift keying (FSK) and differential phase-shift
keying (DPSK) signals, given unknown phase, in a much simpler manner than following
traditional approaches that involve the use of Rician distribution.

Discrete-time Signal Processing

In Chapter 2, we briefly review finite-direction impulse response (FIR) or tapped-delay
line (TDL) filters, followed by the discrete Fourier transform (DFT) and a well-known fast
Fourier transform (FFT) algorithm for its computational implementations. FIR filters and
FFT algorithms feature prominently in:

* Modeling of the raised-cosine spectrum (RCS) and its square-root version
(SQRCS), which are used in Chapter 8 to mitigate the ISI in band-limited channels;

e Implementing the Jakes model for fast fading channels, demonstrated in Chapter 9;

* Using FIR filtering to simplify the mathematical exposition of the most difficult
form of channel fading, namely, the doubly spread channel (in Chapter 9).

Another topic of importance in discrete-time signal processing is linear adaptive filtering,
which appears:

e In Chapter 6, dealing with differential pulse-code modulation (DPCM), where an
adaptive predictor constitutes a key functional block in both the transmitter and
receiver. The motivation here is to preserve channel bandwidth at the expense of
increased computational complexity. The algorithm described therein is the widely
used least mean-square (LMS) algorithm.

e In Chapter 7, dealing with the need for synchronizing the receiver to the transmitter,
where two algorithms are described, one for recursive estimation of the group delay
(essential for timing recovery) and the other for recursive estimation of the unknown
carrier phase (essential for carrier recovery). Both algorithms build on the LMS
principle so as to maintain linear computational complexity.

Digital Subscriber Lines

Digital subscriber lines (DSLs), covered in Chapter 8, have established themselves as an
essential tool for transforming a linear wideband channel, exemplified by the twisted-wire
pair, into a discrete multitone (DMT) channel that is capable of accommodating data
transmission at multiple megabits per second. Moreover, the transformation is afforded
practical reality by exploiting the FFT algorithm, with the inverse FFT used in the
transmitter and the FFT used in the receiver.

Diversity Techniques

As already mentioned, the wireless channel is one of the most challenging media for
digital communications. The difficulty of reliable data transmission over a wireless
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channel is attributed to the multipath phenomenon. Three diversity techniques developed
to get around this practical difficulty are covered in Chapter 9:

* Diversity on receive, the traditional approach, whereby an array of multiple antennas
operating independently is deployed at the receiving end of a wireless channel.

* Diversity on transmit, which operates by deploying two or more independent
antennas at the transmit end of the wireless channel.

*  Multiple-input multiple-output (MIMO) channels, where multiple antennas (again
operating independently) are deployed at both ends of the wireless channel.

Among these three forms of diversity, the MIMO channel is naturally the most powerful in
information-theoretic terms: an advantage gained at the expense of increased
computational complexity.

Turbo Codes

Error-control coding has established itself as the most commonly used technique for
reliable data transmission over a noisy channel. Among the challenging legacies bestowed
by Claude Shannon was how to design a code that would closely approach the so-called
Shannon limit. For over four decades, increasingly more powerful coding algorithms were
described in the literature; however it was the furbo code that had the honor of closely
approaching the Shannon limit, and doing so in a computationally feasible manner.

Turbo codes, together with the associated maximum a posteriori (MAP) decoding
algorithm, occupy a large portion of Chapter 10, which also includes:

e Detailed derivation of the MAP algorithm and an illustrative example of how it
operates;

» The extrinsic information transfer (EXIT) chart, which provides an experimental
tool for the design of turbo codes;

* Turbo equalization, for demonstrating applicability of the turbo principle beyond
error-control coding.

Placement of Information Theory

Typically, information theory is placed just before the chapter on error-control coding. In
this book, it is introduced early because:

To elaborate:

» Chapter 6 presents the relevance of source coding to pulse-code modulation (PCM),
differential pulse-code modulation (DPCM), and delta modulation.

e Comparative evaluation of M-ary PSK versus M-ary FSK, done in Chapter 7,
requires knowledge of Shannon’s information capacity law.

e Analysis and design of DSL, presented in Chapter 8, also builds on Shannon’s
information capacity law.

* Channel capacity in Shannon’s coding theorem is important to diversity techniques,
particularly of the MIMO kind, discussed in Chapter 9.
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Except for Chapter 1, each of the remaining nine chapters offers the following:

Illustrative examples are included to strengthen the understanding of a theorem or
topic in as much detail as possible. Some of the examples are in the form of
computer experiments.

An extensive list of end-of-chapter problems are grouped by section to fit the
material covered in each chapter. The problems range from relatively easy ones all
the way to more challenging ones.

In addition to the computer-oriented examples, nine computer-oriented experiments
are included in the end-of-chapter problems.

The Matlab codes for all of the computer-oriented examples in the text, as well as other
calculations performed on the computer, are available at www.wiley.com/college/haykin.

Eleven appendices broaden the scope of the theoretical as well as practical material
covered in the book:

Appendix A, Advanced Probabilistic Models, covers the chi-square distribution,
log-normal distribution, and Nakagami distribution that includes the Rayleigh
distribution as a special case and is somewhat similar to the Rician distribution.
Moreover, an experiment is included therein that demonstrates, in a step-by-step
manner, how the Nakagami distribution evolves into the log-normal distribution in
an approximate manner, demonstrating its adaptive capability.

Appendix B develops tight bounds on the Q-function.
Appendix C discussed the ordinary Bessel function and its modified form.

Appendix D describes the method of Lagrange multipliers for solving constrained
optimization problems.

Appendix E derives the formula for the channel capacity of the MIMO channel
under two scenarios: one that assumes no knowledge of the channel by the
transmitter, and the other that assumes this knowledge is available to the transmitter
via a narrowband feedback link.

Appendix F discusses the idea of interleaving, which is needed for dealing with
bursts of interfering signals experienced in wireless communications.

Appendix G addresses the peak-to-average power reduction (PAPR) problem,
which arises in the use of orthogonal frequency-division multiplexing (OFDM) for
both wireless and DSL applications.

Appendix H discusses solid-state nonlinear power amplifiers, which play a critical
role in the limited life of batteries in wireless communications.

Appendix I presents a short exposé of Monte Carlo integration: a theorem that deals
with mathematically intractable problems.

Appendix J studies maximal-length sequences, also called m-sequences, which are
used for implementing linear feedback shift registers (LFSRs). An important
application of maximal-length sequences (viewed as pseudo-random noise) is in
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designing direct-sequence spread-spectrum communications for code-division
multiple access (CDMA).

» Finally, Appendix K provides a useful list of mathematical formulas and functions.

Typically, the square-root of minus one is denoted by the italic symbol j, and the
differential operator (used in differentiation as well as integration) is denoted by the italic
symbol d. In reality, however, both of these terms are operators, each one in its own way:
it is therefore incorrect to use italic symbols for their notations. Furthermore, italic j and
italic d are also frequently used as indices or to represent other matters, thereby raising the
potential for confusion. According, throughout the book, roman j and roman d are used to
denote the square root of minus one and the differential operator, respectively.

In writing this book every effort has been made to present the material in the manner
easiest to read so as to enhance understanding of the topics covered. Moreover, cross-
references within a chapter as well as from chapter to chapter have been included
wherever the need calls for it.

Finally, every effort has been made by the author as well as compositor of the book to
make it as error-free as humanly possible. In this context, the author would welcome
receiving notice of any errors discovered after publication of the book.

In writing this book I have benefited enormously from technical input, persistent support,
and permissions provided by many.

I am grateful to colleagues around the world for technical inputs that have made a
significant difference in the book; in alphabetical order, they are:

e Dr. Daniel Costello, Jr., University of Notre Dame, for reading and providing useful
comments on the maximum likelihood decoding and maximum a posteriori
decoding materials in Chapter 10.

e Dr. Dimitri Bertsekas, MIT, for permission to use Table 3.1 on the Q-function in
Chapter 3, taken from his co-authored book on the theory of probability.

e Dr. Lajos Hanzo, University of Southampton, UK, for many useful comments on
turbo codes as well as low-density parity-check codes in Chapter 10. I am also
indebted to him for putting me in touch with his colleagues at the University of
Southampton, Dr. R. G. Maunder and Dr. L. Li, who were extremely helpfully in
performing the insightful computer experiments on UMTS-turbo codes and EXIT
charts in Chapter 10.

* Dr. Phillip Regalia, Catholic University, Washington DC, for contributing a section
on serial-concatenated turbo codes in Chapter 10. This section has been edited by
myself to follow the book’s writing style, and for its inclusion I take full
responsibility.

e Dr. Sam Shanmugan, University of Kansas, for his insightful inputs on the use of
FIR filters and FFT algorithms for modeling the raised-cosine spectrum (RCS) and
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its square-root version (SQRCS) in Chapter 8, implementing the Jakes model in
Chapter 9, as well as other simulation-oriented issues.

Dr. Yanbo Xue, University of Alberta, Canada, for performing computer-oriented
experiments and many other graphical computations throughout the book, using
well-developed Matlab codes.

Dr. Q. T. Zhang, The City University of Hong Kong, for reading through an early
version of the manuscript and offering many valuable suggestions for improving it. I
am also grateful to his student, Jiayi Chen, for performing the graphical
computations on the Nakagami distribution in Appendix A.

I’'d also like to thank the reviewers who read drafts of the manuscript and provided
valuable commentary:

Ender Ayanoglu, University of California, Irvine
Tolga M. Duman, Arizona State University

Bruce A. Harvey, Florida State University

Bing W. Kwan, FAMU-FSU College of Engineering
Chung-Chieh Lee, Northwestern University
Heung-No Lee, University of Pittsburgh

Michael Rice, Brigham Young University

James Ritcey, University of Washington

Lei Wei, University of Central Florida

Production of the book would not have been possible without the following:

Daniel Sayre, Associate Publisher at John Wiley & Sons, who maintained not only
his faith in this book but also provided sustained support for it over the past few
years. In am deeply indebted to Dan for what he has done to make this book a
reality.

Cindy Johnson, Publishing Services, Newburyport, MA, for her dedicated
commitment to the beautiful layout and composition of the book. I am grateful for
her tireless efforts to print the book in as errorless manner as humanly possible.

I salute everyone, and others too many to list, for their individual and collective
contributions, without which this book would not have been a reality.

Simon Haykin
Ancaster, Ontario
Canada
December, 2012
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Introduction

Historical Background

In order to provide a sense of motivation, this introductory treatment of digital
communications begins with a historical background of the subject, brief but succinct as it
may be. In this first section of the introductory chapter we present some historical notes
that identify the pioneering contributors to digital communications specifically, focusing
on three important topics: information theory and coding, the Internet, and wireless
communications. In their individual ways, these three topics have impacted digital
communications in revolutionary ways.

In 1948, the theoretical foundations of digital communications were laid down by Claude
Shannon in a paper entitled “A mathematical theory of communication.” Shannon’s paper
was received with immediate and enthusiastic acclaim. It was perhaps this response that
emboldened Shannon to amend the title of his classic paper to “The mathematical theory
of communication” when it was reprinted later in a book co-authored with Warren Weaver.
It is noteworthy that, prior to the publication of Shannon’s 1948 classic paper, it was
believed that increasing the rate of transmission over a channel would increase the
probability of error; the communication theory community was taken by surprise when
Shannon proved that this was not true, provided the transmission rate was below the
channel capacity.

Shannon’s 1948 paper was followed by three ground-breaking advances in coding
theory, which include the following:

Development of the first nontrivial error-correcting code by Golay in 1949 and
Hamming in 1950.

Development of turbo codes by Berrou, Glavieux and Thitimjshima in 1993; turbo
codes provide near-optimum error-correcting coding and decoding performance in
additive white Gaussian noise.

Rediscovery of low-density parity-check (LDPC) codes, which were first described
by Gallager in 1962; the rediscovery occurred in 1981 when Tanner provided a new
interpretation of LDPC codes from a graphical perspective. Most importantly, it was
the discovery of turbo codes in 1993 that reignited interest in LDPC codes.
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From 1950 to 1970, various studies were made on computer networks. However, the most
significant of them all in terms of impact on computer communications was the Advanced
Research Project Agency Network (ARPANET), which was put into service in 1971. The
development of ARPANET was sponsored by the Advanced Research Projects Agency
(ARPA) of the United States Department of Defense. The pioneering work in packet
switching was done on the ARPANET. In 1985, ARPANET was renamed the Internet.
However, the turning point in the evolution of the Internet occurred in 1990 when Berners-
Lee proposed a hypermedia software interface to the Internet, which he named the World
Wide Web. Thereupon, in the space of only about 2 years, the Web went from nonexistence
to worldwide popularity, culminating in its commercialization in 1994. The Internet has
dramatically changed the way in which we communicate on a daily basis, using a
wirelined network.

In 1864, James Clerk Maxwell formulated the electromagnetic theory of light and
predicted the existence of radio waves; the set of four equations that connect electric and
magnetic quantities bears his name. Later on in 1984, Henrich Herz demonstrated the
existence of radio waves experimentally.

However, it was on December 12, 1901, that Guglielmo Marconi received a radio
signal at Signal Hill in Newfoundland; the radio signal had originated in Cornwall,
England, 2100 miles away across the Atlantic. Last but by no means least, in the early
days of wireless communications, it was Fessenden, a self-educated academic, who in
1906 made history by conducting the first radio broadcast, transmitting music and voice
using a technique that came to be known as amplitude modulation (AM) radio.

In 1988, the first digital cellular system was introduced in Europe; it was known as the
Global System for Mobile (GSM) Communications. Originally, GSM was intended to
provide a pan-European standard to replace the myriad of incompatible analog wireless
communication systems. The introduction of GSM was soon followed by the North
American IS-54 digital standard. As with the Internet, wireless communication has also
dramatically changed the way we communicate on a daily basis.

What we have just described under the three headings, namely, information theory and
coding, the Internet, and wireless communications, have collectively not only made
communications essentially digital, but have also changed the world of communications
and made it global.

The Communication Process

Today, communication enters our daily lives in so many different ways that it is very easy
to overlook the multitude of its facets. The telephones as well as mobile smart phones and
devices at our hands, the radios and televisions in our living rooms, the computer terminals
with access to the Internet in our offices and homes, and our newspapers are all capable of
providing rapid communications from every corner of the globe. Communication provides
the senses for ships on the high seas, aircraft in flight, and rockets and satellites in space.
Communication through a wireless telephone keeps a car driver in touch with the office or
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home miles away, no matter where. Communication provides the means for social
networks to engage in different ways (texting, speaking, visualizing), whereby people are
brought together around the world. Communication keeps a weather forecaster informed
of conditions measured by a multitude of sensors and satellites. Indeed, the list of
applications involving the use of communication in one way or another is almost endless.

In the most fundamental sense, communication involves implicitly the transmission of
information from one point to another through a succession of processes:

The generation of a message signal — voice, music, picture, or computer data.

The description of that message signal with a certain measure of precision, using a
set of symbols — electrical, aural, or visual.

The encoding of those symbols in a suitable form for transmission over a physical
medium of interest.

The transmission of the encoded symbols to the desired destination.
The decoding and reproduction of the original symbols.

The re-creation of the original message signal with some definable degradation in
quality, the degradation being caused by unavoidable imperfections in the system.

There are, of course, many other forms of communication that do not directly involve the
human mind in real time. For example, in computer communications involving
communication between two or more computers, human decisions may enter only in
setting up the programs or commands for the computer, or in monitoring the results.

Irrespective of the form of communication process being considered, there are three
basic elements to every communication system, namely, transmitter, channel, and
receiver, as depicted in Figure 1.1. The transmitter is located at one point in space, the
receiver is located at some other point separate from the transmitter, and the channel is the
physical medium that connects them together as an integrated communication system. The
purpose of the transmitter is to convert the message signal produced by the source of
information into a form suitable for transmission over the channel. However, as the
transmitted signal propagates along the channel, it is distorted due to channel
imperfections. Moreover, noise and interfering signals (originating from other sources) are
added to the channel output, with the result that the received signal is a corrupted version
of the transmitted signal. The receiver has the task of operating on the received signal so
as to reconstruct a recognizable form of the original message signal for an end user or
information sink.

Communication System

Source of ) . User of
. . Transmitter Receiver ’ :
information . information
Message Estimate of
signal message

> Channel -
Transmitted Re;ewed
signal signal

|
|
T
I
|
signal }
|
|
I
|

Elements of a communication system.
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There are two basic modes of communication:

Broadcasting, which involves the use of a single powerful transmitter and numerous
receivers that are relatively inexpensive to build. Here, information-bearing signals
flow only in one direction.

Point-to-point communication, in which the communication process takes place over
a link between a single transmitter and a receiver. In this case, there is usually a
bidirectional flow of information-bearing signals, which requires the combined use
of a transmitter and receiver (i.e., a transceiver) at each end of the link.

The underlying communication process in every communication system, irrespective of its
kind, is statistical in nature. Indeed, it is for this important reason that much of this book is
devoted to the statistical underpinnings of digital communication systems. In so doing, we
develop a wealth of knowledge on the fundamental issues involved in the study of digital
communications.

Multiple-Access Techniques

Continuing with the communication process, multiple-access is a technique whereby
many subscribers or local stations can share the use of a communication channel at the
same time or nearly so, despite the fact that their individual transmissions may originate
from widely different locations. Stated in another way, a multiple-access technique
permits the communication resources of the channel to be shared by a large number of
users seeking to communicate with each other.

There are subtle differences between multiple access and multiplexing that should be
noted:

e Multiple access refers to the remote sharing of a communication channel such as a
satellite or radio channel by users in highly dispersed locations. On the other hand,
multiplexing refers to the sharing of a channel such as a telephone channel by users
confined to a local site.

e In a multiplexed system, user requirements are ordinarily fixed. In contrast, in a
multiple-access system user requirements can change dynamically with time, in
which case provisions are necessary for dynamic channel allocation.

For obvious reasons it is desirable that in a multiple-access system the sharing of resources
of the channel be accomplished without causing serious interference between users of the
system. In this context, we may identify four basic types of multiple access:

Frequency-division multiple access (FDMA).

In this technique, disjoint subbands of frequencies are allocated to the different users
on a continuous-time basis. In order to reduce interference between users allocated
adjacent channel bands, guard bands are used to act as buffer zones, as illustrated in
Figure 1.2a. These guard bands are necessary because of the impossibility of
achieving ideal filtering or separating the different users.

Time-division multiple access (TDMA).

In this second technique, each user is allocated the full spectral occupancy of the
channel, but only for a short duration of time called a time slot. As shown in Figure
1.2b, buffer zones in the form of guard times are inserted between the assigned time
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slots. This is done to reduce interference between users by allowing for time
uncertainty that arises due to system imperfections, especially in synchronization
schemes.

Code-division multiple access (CDMA).

In FDMA, the resources of the channel are shared by dividing them along the
frequency coordinate into disjoint frequency bands, as illustrated in Figure 1.2a. In
TDMA, the resources are shared by dividing them along the time coordinate into
disjoint time slots, as illustrated in Figure 1.2b. In Figure 1.2c, we illustrate another
technique for sharing the channel resources by using a hybrid combination of
FDMA and TDMA, which represents a specific form of code-division multiple
access (CDMA). For example, frequency hopping may be employed to ensure that
during each successive time slot, the frequency bands assigned to the users are
reordered in an essentially random manner. To be specific, during time slot 1, user 1
occupies frequency band 1, user 2 occupies frequency band 2, user 3 occupies
frequency band 3, and so on. During time slot 2, user 1 hops to frequency band 3,
user 2 hops to frequency band 1, user 3 hops to frequency band 2, and so on. Such an
arrangement has the appearance of the users playing a game of musical chairs. An
important advantage of CDMA over both FDMA and TDMA is that it can provide
for secure communications. In the type of CDMA illustrated in Figure 1.2c, the
frequency hopping mechanism can be implemented through the use of a pseudo-
noise (PN) sequence.

Space-division multiple access (SDMA).

In this multiple-access technique, resource allocation is achieved by exploiting the
spatial separation of the individual users. In particular, multibeam antennas are used
to separate radio signals by pointing them along different directions. Thus, different
users are enabled to access the channel simultaneously on the same frequency or in
the same time slot.

These multiple-access techniques share a common feature: allocating the communication
resources of the channel through the use of disjointedness (or orthogonality in a loose

sense) in time, frequency, or space.

Frequency band 3
Guard band

Frequency band 2
Guard band

Frequency band 1

Time
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Illustrating the ideas behind multiple-access techniques. (a) Frequency-division

multiple access. (b) Time-division multiple access. (c) Frequency-hop multiple access.
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Networks

A communication network or simply network ', illustrated in Figure 1.3, consists of an
interconnection of a number of nodes made up of intelligent processors (e.g.,
microcomputers). The primary purpose of these nodes is to route data through the
network. Each node has one or more stations attached to it; stations refer to devices
wishing to communicate. The network is designed to serve as a shared resource for
moving data exchanged between stations in an efficient manner and also to provide a
framework to support new applications and services. The traditional telephone network is
an example of a communication network in which circuit switching is used to provide a
dedicated communication path or circuit between two stations. The circuit consists of a
connected sequence of links from source to destination. The links may consist of time
slots in a time-division multiplexed (TDM) system or frequency slots in a frequency-
division multiplexed (FDM) system. The circuit, once in place, remains uninterrupted for
the entire duration of transmission. Circuit switching is usually controlled by a centralized
hierarchical control mechanism with knowledge of the network’s organization. To
establish a circuit-switched connection, an available path through the network is seized
and then dedicated to the exclusive use of the two stations wishing to communicate. In
particular, a call-request signal must propagate all the way to the destination, and be
acknowledged, before transmission can begin. Then, the network is effectively transparent
to the users. This means that, during the connection time, the bandwidth and resources
allocated to the circuit are essentially “owned” by the two stations, until the circuit is
disconnected. The circuit thus represents an efficient use of resources only to the extent
that the allocated bandwidth is properly utilized. Although the telephone network is used
to transmit data, voice constitutes the bulk of the network’s traffic. Indeed, circuit
switching is well suited to the transmission of voice signals, since voice conversations
tend to be of long duration (about 2 min on average) compared with the time required for
setting up the circuit (about 0.1-0.5 s). Moreover, in most voice conversations, there is
information flow for a relatively large percentage of the connection time, which makes
circuit switching all the more suitable for voice conversations.

Boundary
of subnet

N4

Stations

Communication network.
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In circuit switching, a communication link is shared between the different sessions
using that link on a fixed allocation basis. In packet switching, on the other hand, the
sharing is done on a demand basis and, therefore, it has an advantage over circuit
switching in that when a link has traffic to send, the link may be more fully utilized.

The basic network principle of packet switching is “store and forward.” Specifically, in
a packet-switched network, any message larger than a specified size is subdivided prior to
transmission into segments not exceeding the specified size. The segments are commonly
referred to as packets. The original message is reassembled at the destination on a packet-
by-packet basis. The network may be viewed as a distributed pool of network resources
(i.e., channel bandwidth, buffers, and switching processors) whose capacity is shared
dynamically by a community of competing users (stations) wishing to communicate. In
contrast, in a circuit-switched network, resources are dedicated to a pair of stations for the
entire period they are in session. Accordingly, packet switching is far better suited to a
computer-communication environment in which “bursts” of data are exchanged between
stations on an occasional basis. The use of packet switching, however, requires that careful
control be exercised on user demands; otherwise, the network may be seriously abused.

The design of a data network (i.e., a network in which the stations are all made up of
computers and terminals) may proceed in an orderly way by looking at the network in
terms of a layered architecture, regarded as a hierarchy of nested layers. A layer refers to a
process or device inside a computer system, designed to perform a specific function.
Naturally, the designers of a layer will be intimately familiar with its internal details and
operation. At the system level, however, a user views the layer merely as a “black box”
that is described in terms of the inputs, the outputs, and the functional relationship
between outputs and inputs. In a layered architecture, each layer regards the next lower
layer as one or more black boxes with some given functional specification to be used by
the given higher layer. Thus, the highly complex communication problem in data networks
is resolved as a manageable set of well-defined interlocking functions. It is this line of
reasoning that has led to the development of the open systems interconnection (OSI)
reference model by a subcommittee of the International Organization for Standardization.
The term “open” refers to the ability of any two systems conforming to the reference
model and its associated standards to interconnect.

In the OSI reference model, the communications and related-connection functions are
organized as a series of layers or levels with well-defined inferfaces, and with each layer
built on its predecessor. In particular, each layer performs a related subset of primitive
functions, and it relies on the next lower layer to perform additional primitive functions.
Moreover, each layer offers certain services to the next higher layer and shields the latter
from the implementation details of those services. Between each pair of layers, there is an
interface. It is the interface that defines the services offered by the lower layer to the upper
layer.

The OSI model is composed of seven layers, as illustrated in Figure 1.4; this figure also
includes a description of the functions of the individual layers of the model. Layer k on
system A, say, communicates with layer k on some other system B in accordance with a set
of rules and conventions, collectively constituting the layer k protocol, where k=1, 2, ...,
7. (The term “protocol” has been borrowed from common usage, describing conventional
social behavior between human beings.) The entities that comprise the corresponding
layers on different systems are referred to as peer processes. In other words,
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communication is achieved by having the peer processes in two different systems
communicate via a protocol, with the protocol itself being defined by a set of rules of
procedure. Physical communication between peer processes exits only at layer 1. On the
other hand, layers 2 through 7 are in virtual communication with their distant peers.
However, each of these six layers can exchange data and control information with its
neighboring layers (below and above) through layer-to-layer interfaces. In Figure 1.4,
physical communication is shown by solid lines and virtual communication by dashed
lines. The major principles involved in arriving at seven layers of the OSI reference model
are as follows:

Each layer performs well-defined functions.

A boundary is created at a point where the description of services offered is small
and the number of interactions across the boundary is the minimum possible.

A layer is created from easily localized functions, so that the architecture of the
model may permit modifications to the layer protocol to reflect changes in
technology without affecting the other layers.

A boundary is created at some point with an eye toward standardization of the
associated interface.

A layer is created only when a different level of abstraction is needed to handle the data.
The number of layers employed should be large enough to assign distinct functions to
different layers, yet small enough to maintain a manageable architecture for the model.

Note that the OSI reference model is not a network architecture; rather, it is an
international standard for computer communications, which just tells what each layer
should do.

Digital Communications

Today’s public communication networks are highly complicated systems. Specifically,
public switched telephone networks (collectively referred to as PSTNs), the Internet, and
wireless communications (including satellite communications) provide seamless
connections between cities, across oceans, and between different countries, languages, and
cultures; hence the reference to the world as a “global village.”

There are three layers of the OSI model where it can affect the design of digital
communication systems, which is the subject of interest of this book:

Physical layer. This lowest layer of the OSI model embodies the physical
mechanism involved in transmitting bits (i.e., binary digits) between any pair of
nodes in the communication network. Communication between the two nodes is
accomplished by means of modulation in the transmitter, transmission across the
channel, and demodulation in the receiver. The module for performing modulation
and demodulation is often called a modem.

Data-link layer. Communication links are nearly always corrupted by the
unavoidable presence of noise and interference. One purpose of the data-link layer,
therefore, is to perform error correction or detection, although this function is also
shared with the physical layer. Often, the data-link layer will retransmit packets that
are received in error but, for some applications, it discards them. This layer is also
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responsible for the way in which different users share the transmission medium. A
portion of the data-link layer, called the medium access control (MAC) sublayer, is
responsible for allowing frames to be sent over the shared transmission media
without undue interference with other nodes. This aspect is referred to as multiple-
access communications.

Network layer. This layer has several functions, one of which is to determine the
routing of information, to get it from the source to its ultimate destination. A second
function is to determine the quality of service. A third function is flow control, to
ensure that the network does not become congested.

These are three layers of a seven-layer model for the functions that occur in the
communications process. Although the three layers occupy a subspace within the OSI
model, the functions that they perform are of critical importance to the model.

Typically, in the design of a digital communication system the information source,
communication channel, and information sink (end user) are all specified. The challenge is
to design the transmitter and the receiver with the following guidelines in mind:

¢ Encode/modulate the message signal generated by the source of information,
transmit it over the channel, and produce an “estimate” of it at the receiver output
that satisfies the requirements of the end user.

* Do all of this at an affordable cost.

In a digital communication system represented by the block diagram of Figure 1.6, the
rationale for which is rooted in information theory, the functional blocks of the transmitter
and the receiver starting from the far end of the channel are paired as follows:

¢ source encoder—decoder;
¢ channel encoder—decoder;
¢ modulator-demodulator.

The source encoder removes redundant information from the message signal and is
responsible for efficient use of the channel. The resulting sequence of symbols is called
the source codeword. The data stream is processed next by the channel encoder, which
produces a new sequence of symbols called the channel codeword. The channel codeword
is longer than the source code word by virtue of the controlled redundancy built into its
construction. Finally, the modulator represents each symbol of the channel codeword by a
corresponding analog symbol, appropriately selected from a finite set of possible analog
symbols. The sequence of analog symbols produced by the modulator is called a
waveform, which is suitable for transmission over the channel. At the receiver, the channel
output (received signal) is processed in reverse order to that in the transmitter, thereby
reconstructing a recognizable version of the original message signal. The reconstructed
message signal is finally delivered to the user of information at the destination. From this
description it is apparent that the design of a digital communication system is rather
complex in conceptual terms but easy to build. Moreover, the system is robust, offering
greater tolerance of physical effects (e.g., temperature variations, aging, mechanical
vibrations) than its analog counterpart; hence the ever-increasing use of digital
communications.
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Block diagram of a digital communication system.

Organization of the Book

The main part of the book is organized in ten chapters, which, after this introductory
chapter, are organized into five parts of varying sizes as summarized herein.

Mathematical Background

Chapter 2 presents a detailed treatment of the Fourier transform, its properties and
algorithmic implementations. This chapter also includes two important related topics:

e The Hilbert transform, which provides the mathematical basis for transforming
real-valued band-pass signals and systems into their low-pass equivalent
representations without loss of information.

e Overview of analog modulation theory, thereby facilitating an insightful link
between analog and digital communications.

Chapter 3 presents a mathematical review of probability theory and Bayesian

inference, the understanding of which is essential to the study of digital

communications.

Chapter 4 is devoted to the study of stochastic processes, the theory of which is

basic to the characterization of sources of information and communication channels.

Chapter 5 discusses the fundamental limits of information theory, postulated in

terms of source coding, channel capacity, and rate-distortion theory.
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Transition from Analog to Digital Communications

This material is covered in Chapter 6. Simply put, the study therein discusses the

different ways in which analog waveforms are converted into digitally encoded

sequences.

Signaling Techniques

This third part of the book includes three chapters:

* Chapter 7 discusses the different techniques for signaling over additive white
Gaussian noise (AWGN) channels.

* Chapter 8 discusses signaling over band-limited channels, as in data transmission
over telephonic channels and the Internet.

e Chapter 9 is devoted to signaling over fading channels, as in wireless
communications.

Error-Control Coding

The reliability of data transmission over a communication channel is of profound

practical importance. Chapter 10 studies the different methods for the encoding of

message sequences in the transmitter and decoding them in the receiver. Here, we

cover two classes of error-control coding techniques:

* classic codes rooted in algebraic mathematics, and

* new generation of probabilistic compound codes, exemplified by turbo codes and
LDPC codes.

Appendices

Last but by no means least, the book includes appendices to provide back-up
material for different chapters in the book, as they are needed.

Notes

1. For a detailed discussion on communication networks, see the classic book by Tanenbaum,
entitled Computer Networks (2003).

2. The OSI reference model was developed by a subcommittee of the International Organization for
Standardization (ISO) in 1977. For a discussion of the principles involved in arriving at the seven
layers of the OSI model and a description of the layers themselves, see Tanenbaum (2003).



Fourier Analysis of
Signals and Systems

Introduction

In this study, the representation of signals and systems features prominently. More
specifically, the Fourier transform plays a key role in this representation.

The Fourier transform provides the mathematical link between the time-domain
representation (i.e., waveform) of a signal and its frequency-domain description (i.e.,
spectrum). Most importantly, we can go back and forth between these two descriptions of
the signal with no loss of information. Indeed, we may invoke a similar transformation in
the representation of linear systems. In this latter case, the time-domain and frequency-
domain descriptions of a linear time-invariant system are defined in terms of its impulse
response and frequency response, respectively.

In light of this background, it is in order that we begin a mathematical study of
communication systems by presenting a review of Fourier analysis. This review, in turn,
paves the way for the formulation of simplified representations of band-pass signals and
systems to which we resort in subsequent chapters. We begin the study by developing the
transition from the Fourier series representation of a periodic signal to the Fourier
transform representation of a nonperiodic signal; this we do in the next two sections.

The Fourier Series

Let gTO(t) denote a periodic signal, where the subscript T;, denotes the duration of
periodicity. By using a Fourier series expansion of this signal, we are able to resolve it into
an infinite sum of sine and cosine terms, as shown by

gTO(t) = ag+2 i [a,cos(2nnfyt) + b, sin(2nnfyt)]

n=1

13
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where

1

f():i,;)

is the fundamental frequency. The coefficients a, and b, represent the amplitudes of the
cosine and sine terms, respectively. The quantity nf(, represents the nth harmonic of the
fundamental frequency f;. Each of the terms cos(2nnft) and sin(2mnft) is called a basis

function. These basis functions form an orthogonal set over the interval Tj), in that they

satisfy three conditions:

T,/2 B
cos(2mmfyt) cos(2mnfyt)dr = { Ty/2, m=n
_T0/2 09 m#n
T,/2
I cos (2nmfyt)sin(2nnfyt)dt = 0,  forall m and n
~Ty/2
Ty/2 B
sin(2nmf 1) sin(2nnfyt)de = { Ty/2, m=n
o2 0, m#n

To determine the coefficient ag, we integrate both sides of (2.1) over a complete period.
We thus find that a is the mean value of the periodic signal gTO(t) over one period, as
shown by the time average
ez 0
a, = — g, (1) dt
o7 T, ~T,/2 To
To determine the coefficient a,, we multiply both sides of (2.1) by cos(2nnfyt) and
integrate over the interval —Tj/2 to Tp/2. Then, using (2.3) and (2.4), we find that
T,/2
a = ij " g (eos@maf.nds,  no= 1,2
" Tyl To 0 U

Similarly, we find that
| Jo/2

b = L g (sin2rafo)de,  no= 1,2, ...
" TOI—TO/Z Ty 0

A basic question that arises at this point is the following:

To resolve this fundamental issue, we have to show that, for the coefficients a, a,,, and b,
calculated in accordance with (2.6) to (2.8), this series will indeed converge to gTO(t). In
general, for a periodic signal gTO(t) of arbitrary waveform, there is no guarantee that the
series of (2.1) will converge to gTO(t) or that the coefficients a, a,,, and b,, will even exist.
In a rigorous sense, we may say that a periodic signal gTO(t) can be expanded in a Fourier
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series if the signal gTO(t) satisfies the Dirichlet conditions:

The function gTO(t) is single valued within the interval T,
The function gTO(t) has at most a finite number of discontinuities in the interval 7.
The function gTO(t) has a finite number of maxima and minima in the interval Ty,
The function gTO(t) is absolutely integrable; that is,

T,/2
LTO/2 ‘gTO(t)‘ dt< e

From an engineering perspective, however, it suffices to say that the Dirichlet conditions
are satisfied by the periodic signals encountered in communication systems.

The Fourier series of (2.1) can be put into a much simpler and more elegant form with the
use of complex exponentials. We do this by substituting into (2.1) the exponential forms
for the cosine and sine, namely:

cos(2mnf,r) = %[exp(jZnnfot)+ exp(—j2mnfyr)]

sin(2mnfyr) = zlj[exp(jznnfot) _ exp(—i2mnfyn)]

where j = J——l . We thus obtain

gTo(t) = ay+ Z [(a,—jb,)exp(j2nrnfyt) + (a, +jb,)exp(=j2nnfyt)]

n=1

Let ¢, denote a complex coefficient related to a, and b, by

an—jbn, n>0

C, =194 n=20

an+jbn, n<0

Then, we may simplify (2.9) into

gTO(t) = Z c,exp(j2nnfyt)

n =—oo

where
T,/2

1 [0 s exp(qamnfyndr,  n=0£1,52, .
~Ty/2 0

c, = =
n T()
The series expansion of (2.11) is referred to as the complex exponential Fourier series.
The c,, themselves are called the complex Fourier coefficients.
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The integral on the right-hand side of (2.12) is said to be an inner product of the signal
gTO(t) with the basis functions exp(—j2nnfyt), by whose linear combination all square
integrable functions can be expressed as in (2.11).

According to this representation, a periodic signal contains all frequencies (both
positive and negative) that are harmonically related to the fundamental frequency f;. The
presence of negative frequencies is simply a result of the fact that the mathematical model
of the signal as described by (2.11) requires the use of negative frequencies. Indeed, this
representation also requires the use of complex-valued basis functions, namely
exp(j2mnfyt), which have no physical meaning either. The reason for using complex-
valued basis functions and negative frequency components is merely to provide a compact
mathematical description of a periodic signal, which is well-suited for both theoretical and
practical work.

The Fourier Transform

In the previous section, we used the Fourier series to represent a periodic signal. We now
wish to develop a similar representation for a signal g(¢) that is nonperiodic. In order to do
this, we first construct a periodic function g4 (#) of period T in such a way that g(?)
defines exactly one cycle of this periodic function, as illustrated in Figure 2.1. In the limit,
we let the period T, become infinitely large, so that we may express g(#) as
t) = lim t
g(1) ; 87,(1)

0=

8@®)

@

87,0

|
|
|
!
-To 0 To
b)

Illustrating the use of an arbitrarily defined function of time to
construct a periodic waveform. (a) Arbitrarily defined function of time g(z).
(b) Periodic waveform gTO(t) based on g().
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Representing the periodic function 87, (t) in terms of the complex exponential form of the
Fourier series, we write

2nnt
= ¥ ()
where

c, = LJ.TO/Z g (t)exp(—jzﬂ> dt
" Ty, 2”0 T,

Here, we have purposely replaced fy with 1/7 in the exponents. Define

1
Af = =
TO
fy= 3
and
G(f,) = ¢, T,

We may then go on to modify the original Fourier series representation of 87, (t) given in
(2.11) into a new form described by

oo

gr,() = Y G exp(2nf,nAf
where
Ty/2
() = | sr(nexp(-i2nf,n dr

_T0

Equations (2.14) and (2.15) apply to a periodic signal 87, (). What we would like to do
next is to go one step further and develop a Correspondmg pair of formulas that apply to a
nonperiodic signal g(f). To do this transition, we use the defining equation (2.13).
Specifically, two things happen:

The discrete frequency f,, in (2.14) and (2.15) approaches the continuous frequency
variable f.

The discrete sum of (2.14) becomes an integral defining the area under the function
G(f)exp(j2mft), integrated with respect to time z.

Accordingly, piecing these points together, we may respectively rewrite the limiting forms
of (2.15) and (2.14) as

G = | snexp(-j2nfrde

and

g = [ G(exp(ianfiyds
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In words, we may say:

Figure 2.2 illustrates the interplay between these two formulas, where we see that the
frequency-domain description based on (2.16) plays the role of analysis and the time-
domain description based on (2.17) plays the role of synthesis.

From a notational point of view, note that in (2.16) and (2.17) we have used a lowercase
letter to denote the time function and an uppercase letter to denote the corresponding
frequency function. Note also that these two equations are of identical mathematical form,
except for changes in the algebraic signs of the exponents.

For the Fourier transform of a signal g(f) to exist, it is sufficient but not necessary that
the nonperiodic signal g(¢) satisfies three Dirichlet’s conditions of its own:

The function g(¢) is single valued, with a finite number of maxima and minima in
any finite time interval.

The function g(7) has a finite number of discontinuities in any finite time interval.
The function g() is absolutely integrable; that is,

[ le@ldr<e

In practice, we may safely ignore the question of the existence of the Fourier transform of
a time function g(f) when it is an accurately specified description of a physically realizable
signal. In other words, physical realizability is a sufficient condition for the existence of a
Fourier transform. Indeed, we may go one step further and state:

A signal g(¢) is said to be an energy signal if the condition

0 2
[ el dr<e

holds.

Analysis equation:

oo

G(f)= £ g(t)exp(—j2mft)dt

/\L

Time-domain
description:

Frequency-domain
description:

g(1)

G

Synthesis equation:

g = f G(f)exp(j2nfi)df

Sketch of the interplay between the synthesis
and analysis equations embodied in Fourier transformation.
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The Fourier transform provides the mathematical tool for measuring the frequency
content, or spectrum, of a signal. For this reason, the terms Fourier transform and
spectrum are used interchangeably. Thus, given a signal g(f) with Fourier transform G(f),
we may refer to G(f) as the spectrum of the signal g(f). By the same token, we refer to
|G(f)| as the magnitude spectrum of the signal g(), and refer to arg[G(f)] as its phase
spectrum.

If the signal g(¢) is real valued, then the magnitude spectrum of the signal is an even
function of frequency f, while the phase spectrum is an odd function of f. In such a case,
knowledge of the spectrum of the signal for positive frequencies uniquely defines the
spectrum for negative frequencies.

For convenience of presentation, it is customary to express (2.17) in the short-hand form

G(f) = Flg(n)]
where F plays the role of an operator. In a corresponding way, (2.18) is expressed in the
short-hand form

g(1) = FIG()]
where F~! plays the role of an inverse operator.
The time function g(f) and the corresponding frequency function G(f) are said to
constitute a Fourier-transform pair. To emphasize this point, we write

g(t) = G
where the top arrow indicates the forward transformation from g(#) to G(f) and the bottom
arrow indicates the inverse transformation. One other notation: the asterisk is used to
denote complex conjugation.

To assist the user of this book, two tables of Fourier transformations are included:

Table 2.1 on page 23 summarizes the properties of Fourier transforms; proofs of
them are presented as end-of-chapter problems.

Table 2.2 on page 24 presents a list of Fourier-transform pairs, where the items
listed on the left-hand side of the table are time functions and those in the center
column are their Fourier transforms.

Binary Sequence for Energy Calculations

Consider the five-digit binary sequence 10010. This sequence is represented by two
different waveforms, one based on the rectangular function rect(f), and the other based on
the sinc function sinc(¢). Despite this difference, both waveforms are denoted by g(7),
which implies they both have exactly the same total energy, to be demonstrated next.

rect(f) as the basis function.

Let binary symbol 1 be represented by +rect(r) and binary symbol O be represented by
—rect(f). Accordingly, the binary sequence 10010 is represented by the waveform
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Binary sequence 1 0 0 1 0
8(1)
1.0
3
2
Time ¢
1 1 5 7 9
2 2 2 2 2
T-1.0

Waveform of binary sequence 10010, using rect(#) for symbol 1
and —rect(#) for symbol 0. See Table 2.2 for the definition of rect(z).

shown in Figure 2.3. From this figure, we readily see that, regardless of the
representation +rect(f), each symbol contributes a single unit of energy; hence the total
energy for Case 1 is five units.

sinc(?) as the basis function.

Consider next the representation of symbol 1 by +sinc(#) and the representation of symbol
0 by —sinc(f), which do not interfere with each other in constructing the waveform for the
binary sequence 10010. Unfortunately, this time around, it is difficult to calculate the total
waveform energy in the time domain. To overcome this difficulty, we do the calculation in
the frequency domain.

To this end, in parts a and b of Figure 2.4, we display the waveform of the sinc function
in the time domain and its Fourier transform, respectively. On this basis, Figure 2.5
displays the frequency-domain representation of the binary sequence 10010, with part a of
the figure displaying the magnitude response |G(f)|, and part b displaying the
corresponding phrase response arg[G(f)] expressed in radians. Then, applying
Rayleigh’s energy theorem, described in Property 14 in Table 2.2, to part a of Figure 2.5,
we readily find that the energy of the pulse, £sinc(?), is equal to one unit, regardless of its
amplitude. The total energy of the sinc-based waveform representing the given binary
sequence is also exactly five units, confirming what was said at the beginning of this
example.

8(1)
2w G(f)
1
2W
//-\ /\\t f
3 1 1 0 1 1 3 -w 0 w
v Tw “ow m\/w oW
@ ()

(a) Sinc pulse g(#). (b) Fourier transform G(f).
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Binary sequence 1 0 0 1 0

Magnitude
IG(I

1.0

@

[N ———
Njw [———— ]
N = —— — —
NN [ — — —

N
o
N[

Phase
argG(f)
(radians)

©

2

1 3 5 7
0 2 2 2 2
—
| | |
| | |
| | |
-

————> Frequency, Hz

(a) Magnitude spectrum of the sequence 10010. (b) Phase spectrum
of the sequence.

Observations

The dual basis functions, rect(f) and sinc(¢), are dilated to their simplest forms, each

of which has an energy of one unit, hence the equality of the results presented under
Cases 1 and 2.

Examining the waveform g(#) in Figure 2.3, we clearly see the discrimination
between binary symbols 1 and 0. On the other hand, it is the phase response
arg[G(f)] in part b of Figure 2.5 that shows the discrimination between binary
symbols 1 and 0.

Unit Gaussian Pulse

Typically, a pulse signal g(#) and its Fourier transform G(f) have different mathematical
forms. This observation is illustrated by the Fourier-transform pair studied in Example 1.
In this second example, we consider an exception to this observation. In particular, we use
the differentiation property of the Fourier transform to derive the particular form of a pulse
signal that has the same mathematical form as its own Fourier transform.

Let g(#) denote the pulse signal expressed as a function of time ¢ and G(f) denote its
Fourier transform. Differentiating the Fourier transform formula of (2.6) with respect to
frequency fyields

. . d

- 2 t t <~
j2mig(n) = Z60)
or, equivalently,

460

2mig(t) = jdf
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Use of the Fourier-transform property on differentiation in the time domain listed in Table
2.1 yields

d .
3,80 = 12nfG()
Suppose we now impose the equality condition on the left-hand sides of (2.19) and (2.20):
d
—g(t) = 2meg(t
3,8(1) = 2meg()

Then, in a corresponding way, it follows that the right-hand sides of these two equations
must (after canceling the common multiplying factor j) satisfy the condition

d
3o = 26

Equations (2.21) and (2.22) show that the pulse signal g(¢) and its Fourier transform G(f)
have exactly the same mathematical form. In other words, provided that the pulse signal
g(?) satisfies the differential equation (2.21), then G(f) = g(f), where g(f) is obtained from
g(?) simply by substituting f for ¢. Solving (2.21) for g(¢), we obtain

g(1) = exp(-nr’)
which has a bell-shaped waveform, as illustrated in Figure 2.6. Such a pulse is called a
Gaussian pulse, the name of which follows from the similarity of the function g(#) to the
Gaussian probability density function of probability theory, to be discussed in Chapter 3.
By applying the Fourier-transform property on the area under g(¢) listed in Table 2.1, we
have
j exp(-nrt)dr = 1

When the central ordinate and the area under the curve of a pulse are both unity, as in
(2.23) and (2.24), we say that the Gaussian pulse is a unit pulse. Therefore, we may state
that the unit Gaussian pulse is its own Fourier transform, as shown by

exp(—nt2) = exp(—nfz)

g(1)

Gaussian pulse.
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Fourier-transform theorems

23

Linearity

Dilation

Duality

Time shifting

Frequency shifting

Area under g(7)

Area under G(f)

Differentiation in the time domain

Integration in the time domain

Conjugate functions

Multiplication in the time domain

Convolution in the time domain

Correlation theorem

Rayleigh’s energy theorem

Parseval’s power theorem for
periodic signal of period 7},

ag (1) +bg,(1) = aG(f) +bG,(f)
where a and b are constants

glar) = éG(g) where a is a constant

If g(t) = G,
then G(r) = g(-f)

g(t—ty) = G(f)exp(—j2mft,)
g(n exp(=j2nfyt) = G(f-fy)

[ sar = G)

20 = [ Gnar

d N
T80 = P0G

! o1 G(0)
Log(f)df = jz—nfG(f)+T5(f)

If ¢(t) = G(f),
then g*(1) = G (=)

a6 2 | GAG,(- 1A
f_wgl(f)gz(t— ndr = G,(HG,(N

jigl(t)gﬁ(t— Ddr = G,(H)G,(f)

filg(t)lzdt = .[ZIG(;‘)fdf

L eobar = 3 j60,)
T,/2 "

2
TO

fn = n/TO

n =—oco
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Fourier-transform pairs and commonly used time functions

rect(%)

sinc(2Wt)
exp(—at)u(t), a>0
exp(-alt)), a>0

exp (—Tcl‘2)

l1]
T’
0, lf|>T

1- lf|<T

(1)

1

o(r—1,)
exp(j2nf.t)
cos(2nf,t)

sin(2nf,.t)

sgn(r)

1

Tt

u(t)

Z ot —iTy)

i=—o

T sinc(fT)

%Vrect( ﬁ)

1
a+j2nf

2a
o +(2nf)’

exp(-f’)

Tsincz(fT)

1

5(f)

exp(~j2nfry)
31,

SSG 1)+ 8 +£,)]
S8 f) - 8 +1,)]
i

=i sgn(/)

1 1
220 2y

Jo Z 5(f_nf0)a f0=TL
n=-o 0

Unit step function:

, >0

u(r) = =0

1
1
2
0, <0

Dirac delta function:
o(t) = 0 for t#0 and

j s(r)dt = 1
Rectangular function:

1 1
rect(t) = L, _§<tS§

0, otherwise

Signum function:

+1, >0
sgn(f) =4 0, t=0
-1, t<0

Sinc function:
sin(7t)

sinc(t) = ;
T

Gaussian function:

g(t) = exp(-nr’)
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The Inverse Relationship between Time-Domain and
Frequency-Domain Representations

The time-domain and frequency-domain descriptions of a signal are inversely related. In
this context, we may make four important statements:

If the time-domain description of a signal is changed, the frequency-domain
description of the signal is changed in an inverse manner, and vice versa. This
inverse relationship prevents arbitrary specifications of a signal in both domains. In
other words:

If a signal is strictly limited in frequency, then the time-domain description of the
signal will trail on indefinitely, even though its amplitude may assume a
progressively smaller value. To be specific, we say:

Consider, for example, the band-limited sinc pulse defined by

sinc(t) = sin(mt)

174
whose waveform and spectrum are respectively shown in Figure 2.4: part a shows
that the sinc pulse is asymptotically limited in time and part b of the figure shows

that the sinc pulse is indeed strictly band limited, thereby confirming statement 2.
In a dual manner to statement 2, we say:

This third statement is exemplified by a rectangular pulse, the waveform and
spectrum of which are defined in accordance with item 1 in Table 2.2.

In light of the duality described under statements 2 and 3, we now make the final
statement:

The statements we have just made have an important bearing on the bandwidth of a signal,
which provides a measure of the extent of significant spectral content of the signal for
positive frequencies. When the signal is strictly band limited, the bandwidth is well
defined. For example, the sinc pulse sinc(2Wr) has a bandwidth equal to W. However,
when the signal is not strictly band limited, as is often the case, we encounter difficulty in
defining the bandwidth of the signal. The difficulty arises because the meaning of
“significant” attached to the spectral content of the signal is mathematically imprecise.
Consequently, there is no universally accepted definition of bandwidth. It is in this sense
that we speak of the “bandwidth dilemma.”
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Nevertheless, there are some commonly used definitions for bandwidth, as discussed
next. When the spectrum of a signal is symmetric with a main lobe bounded by well-
defined nulls (i.e., frequencies at which the spectrum is zero), we may use the main lobe as
the basis for defining the bandwidth of the signal. Specifically:

For example, a rectangular pulse of duration T seconds has a main spectral lobe of total
width (2/7) hertz centered at the origin. Accordingly, we may define the bandwidth of this
rectangular pulse as (1/7) hertz.

If, on the other hand, the signal is band-pass with main spectral lobes centered around
1f., where f, is large enough, the bandwidth is defined as the width of the main lobe for
positive frequencies. This definition of bandwidth is called the null-to-null bandwidth.
Consider, for example, a radio-frequency (RF) pulse of duration T seconds and frequency
Jo» shown in Figure 2.7. The spectrum of this pulse has main spectral lobes of width (2/T)
hertz centered around %f,, where it is assumed that f, is large compared with (1/7). Hence,
we define the null-to-null bandwidth of the RF pulse of Figure 2.7 as (2/7) hertz.

On the basis of the definitions presented here, we may state that shifting the spectral
content of a low-pass signal by a sufficiently large frequency has the effect of doubling the
bandwidth of the signal; this frequency translation is attained by using the process of
modulation. Basically, the modulation moves the spectral content of the signal for negative
frequencies into the positive frequency region, whereupon the negative frequencies
become physically measurable.

Another popular definition of bandwidth is the 3 dB bandwidth. Specifically, if the
signal is low-pass, we say:

(€6

fe
2 2
« £ > <
T T

Magnitude spectrum of the RF pulse, showing the null-to-null bandwidth to be 2/7,
centered on the mid-band frequency f.
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For example, the decaying exponential function exp(—af) has a 3 dB bandwidth of (a/2m)
hertz.

If, on the other hand, the signal is of a band-pass kind, centered at %f, the 3 dB
bandwidth is defined as the separation (along the positive frequency axis) between the two
frequencies at which the magnitude spectrum of the signal drops to 1/ J2 of its peak value
at f.

Regardless of whether we have a low-pass or band-pass signal, the 3 dB bandwidth has
the advantage that it can be read directly from a plot of the magnitude spectrum. However,
it has the disadvantage that it may be misleading if the magnitude spectrum has slowly
decreasing tails.

For any family of pulse signals that differ by a time-scaling factor, the product of the
signal’s duration and its bandwidth is always a constant, as shown by

This product is called the time—bandwidth product. The constancy of the time—bandwidth
product is another manifestation of the inverse relationship that exists between the time-
domain and frequency-domain descriptions of a signal. In particular, if the duration of a
pulse signal is decreased by reducing the time scale by a factor a, the frequency scale of
the signal’s spectrum, and therefore the bandwidth of the signal is increased by the same
factor a. This statement follows from the dilation property of the Fourier transform
(defined in Property 2 of Table 2.1). The time—bandwidth product of the signal is therefore
maintained constant. For example, a rectangular pulse of duration T seconds has a
bandwidth (defined on the basis of the positive-frequency part of the main lobe) equal to
(1/T) hertz; in this example, the time—bandwidth product of the pulse equals unity.

The important point to take from this discussion is that whatever definitions we use for
the bandwidth and duration of a signal, the time—bandwidth product remains constant over
certain classes of pulse signals; the choice of particular definitions for bandwidth and
duration merely change the value of the constant.

To put matters pertaining to the bandwidth and duration of a signal on a firm mathematical
basis, we first introduce the following definition for bandwidth:

To be specific, we assume that the signal g(¢) is of a low-pass kind, in which case the
second moment is taken about the origin f = 0. The squared magnitude spectrum of the
signal is denoted by |G(f)|2. To formulate a nonnegative function, the total area under
whose curve is unity, we use the normalizing function

| l6oras
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We thus mathematically define the rms bandwidth of a low-pass signal g(7) with Fourier
transform G(f) as

oo 172
[ Flenlar
w - =

rms

| 60 ar

which describes the dispersion of the spectrum G(f) around f= 0. An attractive feature of
the rms bandwidth W ;¢ is that it lends itself readily to mathematical evaluation. But, it is
not as easily measurable in the laboratory.

In a manner corresponding to the rms bandwidth, the rms duration of the signal g(7) is
mathematically defined by

oo 1/2
2 2
[ rlg@lar

T =

rms

[ leol’a

where it is assumed that the signal g(#) is centered around the origin ¢ = 0. In Problem 2.7,
it is shown that, using the rms definitions of (2.26) and (2.27), the time—bandwidth product
takes the form

TWZL

rms " rms 4 T

In Problem 2.7, it is also shown that the Gaussian pulse exp(—ntz) satisfies this condition
exactly with the equality sign.

The Dirac Delta Function

Strictly speaking, the theory of the Fourier transform, presented in Section 2.3, is
applicable only to time functions that satisfy the Dirichlet conditions. As mentioned
previously, such functions naturally include energy signals. However, it would be highly
desirable to extend this theory in two ways:

To combine the Fourier series and Fourier transform into a unified theory, so that the
Fourier series may be treated as a special case of the Fourier transform.

To include power signals in the list of signals to which we may apply the Fourier
transform. A signal g() is said to be a power signal if the condition

1 T/2 )
= lg(n)|"dt < oo
T"-fr/z

holds, where T is the observation interval.

It turns out that both of these objectives can be met through the “proper use” of the Dirac
delta function, or unit impulse.
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The Dirac delta function or just delta function, denoted by (¢), is defined as having
zero amplitude everywhere except at r = 0, where it is infinitely large in such a way that it
contains unit area under its curve; that is,

) =0, t#0
and

j St)ydt = 1
An implication of this pair of relations is that the delta function d() is an even function of
time ¢, centered at the origin 7 = 0. Perhaps, the simplest way of describing the Dirac delta
function is to view it as the rectangular pulse

1 t
g(t) = T rect( T)
whose duration is 7 and amplitude is 1/7, as illustrated in Figure 2.8. As T approaches
zero, the rectangular pulse g(f) approaches the Dirac delta function () in the limit.

For the delta function to have meaning, however, it has to appear as a factor in the
integrand of an integral with respect to time, and then, strictly speaking, only when the
other factor in the integrand is a continuous function of time. Let g(7) be such a function,
and consider the product of g(#) and the time-shifted delta function o(f — #;). In light of the
two defining equations (2.29) and (2.30), we may express the integral of this product as

=)

[ sdtu-1)dr = g(1y)
The operation indicated on the left-hand side of this equation sifts out the value g(¢,) of the
function g(¢) at time ¢ = tj, where —oo <t <oco. Accordingly, (2.31) is referred to as the
sifting property of the delta function. This property is sometimes used as the defining
equation of a delta function; in effect, it incorporates (2.29) and (2.30) into a single
relation.

Noting that the delta function J(¢) is an even function of ¢, we may rewrite (2.31) so as
to emphasize its resemblance to the convolution integral, as shown by

(=

[ e@dt-ndr= g

8(1)

~|=

Area =1

= =7
Illustrative example of the Dirac delta function as the

limiting form of rectangular pulse % rect (71") as T approaches zero.
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In words, the convolution of any function with the delta function leaves that function
unchanged. We refer to this statement as the replication property of the delta function.

It is important to realize that no function in the ordinary sense has the two properties of
(2.29) and (2.30) or the equivalent sifting property of (2.31). However, we can imagine a
sequence of functions that have progressively taller and thinner peaks at t = 0, with the
area under the curve consistently remaining equal to unity; as this progression is being
performed, the value of the function tends to zero at every point except ¢ = 0, where it
tends to infinity, as illustrated in Figure 2.8, for example. We may therefore say:

It is immaterial what sort of pulse shape is used, so long as it is symmetric with respect to
the origin; this symmetry is needed to maintain the “even” function property of the delta
function.

Two other points are noteworthy:

Applicability of the delta function is not confined to the time domain. Rather, it can
equally well be applied in the frequency domain; all that we have to do is to replace
time ¢ by frequency fin the defining equations (2.29) and (2.30).

The area covered by the delta function defines its “strength.” As such, the units, in
terms of which the strength is measured, are determined by the specifications of the
two coordinates that define the delta function.

The Sinc Function as a Limiting Form of the Delta Function
in the Time Domain

As another illustrative example, consider the scaled sinc function 2Wsinc(2Wr), whose
waveform covers an area equal to unity for all W.

Figure 2.9 displays the evolution of this time function toward the delta function as the
parameter W is varied in three stages: W =1, W =2, and W = 5. Referring back to Figure
2.4, we may infer that as the parameter W characterizing the sinc pulse is increased, the
amplitude of the pulse at time # = 0 increases linearly, while at the same time the duration
of the main lobe of the pulse decreases inversely. With this objective in mind, as the
parameter W is progressively increased, Figure 2.9 teaches us two important things:

The scaled sinc function becomes more like a delta function.

The constancy of the function’s spectrum is maintained at unity across an
increasingly wider frequency band, in accordance with the constraint that the area
under the function is to remain constant at unity; see Property 6 of Table 2.1 for a
validation of this point.

Based on the trend exhibited in Figure 2.9, we may write

1) = lim 2W sinc(2Wr)
W— oo

which, in addition to the rectangular pulse considered in Figure 2.8, is another way of
realizing a delta function in the time domain.
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Evolution of the sinc function 2W sinc(2Wr) toward the delta function as the

parameter W progressively increases.
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Evolution of the Sum of Complex Exponentials toward the Delta Function in
the Frequency Domain

For yet another entirely different example, consider the infinite summation term
Z exp(j2rmf) over the interval —1/2 <f< 1/2. Using Euler’s formula

m= —oo

exp(j2nmf) = cos(2nmf) + jsin(2nwmf)

we may express the given summation as

oo oo

Z exp(j2nmf) = Z cos(2mmf) +j i sin (2mmy)

m = —co m = —oo m = —oo
The imaginary part of the summation is zero for two reasons. First, sin(2rtmf) is zero for
m = 0. Second, since sin(-2wmf) = —sin(2nwmf), the remaining imaginary terms cancel

each other. Therefore,

oo

Z exp(j2rmf) = z cos(2mmy)
m = —oo m = —oo

Figure 2.10 plots this real-valued summation versus frequency f over the interval
—1/2 < f< 1/2for three ranges of m:

-5<m<5S

-10<m<10

-20<m<20
Building on the results exhibited in Figure 2.10, we may go on to say

of) = z cos(2nmf), _% gf<%

m = —oo

oo

which is one way of realizing a delta function in the frequency domain. Note that the area
under the summation term on the right-hand side of (2.34) is equal to unity; we say so

because
o o 172
2 df = 2 d
J Z cos (2mmf) df Z J-l/zcos( nmf) df

-1/2 -

nm = —oo m = —oo

1/2

_ i [sin(anf)]l/z

2mm - =12

_ i [siné:im)}

m = —oo

{ 1 form=0
0 otherwise

This result, formulated in the frequency domain, confirms (2.34) as one way of defining
the delta function o(f).
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Fourier Transforms of Periodic Signals

We began the study of Fourier analysis by reviewing the Fourier series expansion of
periodic signals, which, in turn, paved the way for the formulation of the Fourier
transform. Now that we have equipped ourselves with the Dirac delta function, we would
like to revisit the Fourier series and show that it can indeed be treated as a special case of
the Fourier transform.

To this end, let g(¢) be a pulse-like function, which equals a periodic signal 87, (1) over
one period T}, of the signal and is zero elsewhere, as shown by

0, elsewhere

The periodic signal gTO(t) itself may be expressed in terms of the function g(f) as an
infinite summation, as shown by

er(0= Y gl-mTy)

m = —oo

In light of the definition of the pulselike function g(¢) in (2.35), we may view this function
as a generating function, so called as it generates the periodic signal 87, () in accordance
with (2.36).

Clearly, the generating function g(#) is Fourier transformable; let G(f) denote its
Fourier transform. Correspondingly, let G (f) denote the Fourier transform of the
periodic signal gTO(t) Hence, taking the Fourler transforms of both sides of (2.36) and
applying the time-shifting property of the Fourier transform (Property 4 of Table 2.1), we
may write

GTO(f) = G(f) Z exp(—j2rmfT,), —oo<f<oo

m= —oo

where we have taken G(f) outside the summation because it is independent of m.
In Example 4, we showed that

oo oo

> exp(j2nmf) = Y cos(j2mmf) = &), _% <f<

m = —oo m = —oco

N =

Let this result be expanded to cover the entire frequency range, as shown by

oo

Z exp(j2nmf) = i Of-n), —eo<f<oo

m = —oo n = —oo

Equation (2.38) (see Problem 2.8c) represents a Dirac comb, consisting of an infinite
sequence of uniformly spaced delta functions, as depicted in Figure 2.11.
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(a) Dirac comb. (b) Spectrum of the Dirac comb.
Next, introducing the frequency-scaling factor f; = 1/7, into (2.38), we

correspondingly write

oo

S exp(2umTy) = fy S Sf-nfy).  —e<f<os

m = —oo n = —oo

Hence, substituting (2.39) into the right-hand side of (2.37), we get

Gy (N = /GO S 8f-nfy)

n = —co

oo

=fo Y, GHIAf-1,),  —eo<f<ee
n = —oo
where f, = nf.
What we have to show next is that the inverse Fourier transform of G- (f) defined in (2.40)

is exactly the same as in the Fourier series formula of (2.14). Specifically, substituting (2.40)
into the inverse Fourier transform formula of (2.17), we get

oo

e, =] |Y GU)SU-1,) |exp(i2nsr) df

n=—oo
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Interchanging the order of summation and integration, and then invoking the sifting
property of the Dirac delta function (this time in the frequency domain), we may go on to
write

er=f S | GUexpl2n -1, df

n=—oo

oo

=fo Y, GUexp(i2nf, 1)

n = —oo

which is an exact rewrite of (2.14) with f, = Af. Equivalently, in light of (2.36), we may
formulate the Fourier transform pair

oo oo

Z g(t-mTy) = fy Z G(f,)exp(j2nrf,1)

m = —oo n = —oo

The result derived in (2.41) is one form of Poisson’s sum formula.

We have thus demonstrated that the Fourier series representation of a periodic signal is
embodied in the Fourier transformation of (2.16) and (2.17), provided, of course, we
permit the use of the Dirac delta function. In so doing, we have closed the “circle” by
going from the Fourier series to the Fourier transform, and then back to the Fourier series.

Consider a Fourier transformable pulselike signal g(¢) with its Fourier transform denoted
by G(f). Setting f,, = nfy in (2.41) and using (2.38), we may express Poisson’s sum formula

S gU-mTy) = fy 3 Gnfy) 8~ nfy)

m = —oo n = —oo

where f; = 1/T,,. The summation on the left-hand side of this Fourier-transform pair is a
periodic signal with period 7,. The summation on the right-hand side of the pair is a
uniformly sampled version of the spectrum G(f). We may therefore make the following
statement:

Applying the duality property of the Fourier transform (Property 3 of Table 2.1) to (2.42),
we may also write

T, Z g(mTy)o(t—mTy) — Z G(f-nfy)

n = —co

in light of which we may make the following dual statement:
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Transmission of Signals through Linear Time-Invariant Systems

A system refers to any physical entity that produces an output signal in response to an
input signal. It is customary to refer to the input signal as the excitation and to the output
signal as the response. In a linear system, the principle of superposition holds; that is, the
response of a linear system to a number of excitations applied simultaneously is equal to
the sum of the responses of the system when each excitation is applied individually.

In the time domain, a linear system is usually described in terms of its impulse
response, which is formally defined as follows:

If the system is also time invariant, then the shape of the impulse response is the same no
matter when the unit impulse is applied to the system. Thus, with the unit impulse or delta
function applied to the system at time 7 = 0, the impulse response of a linear time-invariant
system is denoted by A(7).

Suppose that a system described by the impulse response h(f) is subjected to an
arbitrary excitation x(¢), as depicted in Figure 2.12. The resulting response of the system
¥(1), is defined in terms of the impulse response A(¢) by

=)

y(1) =j x(Dh(t—1)d7

which is called the convolution integral. Equivalently, we may write

oo

(1) =j h(Dx(t—1)dr

Equations (2.44) and (2.45) state that convolution is commutative.

Examining the convolution integral of (2.44), we see that three different time scales are
involved: excitation time T, response time t, and system-memory time t — 7. This relation is
the basis of time-domain analysis of linear time-invariant systems. According to (2.44),
the present value of the response of a linear time-invariant system is an integral over the
past history of the input signal, weighted according to the impulse response of the system.
Thus, the impulse response acts as a memory function of the system.

A linear system with impulse response A(?) is said to be causal if its impulse response h(?)
satisfies the condition

h(t) = 0 for t<0

Excitation Linear system: Response
X(f) —— impulse response )
h(t)

lustrating the roles of excitation x(z), impulse response A(?),
and response y(f) in the context of a linear time-invariant system.
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The essence of causality is that no response can appear at the output of the system before
an excitation is applied to its input. Causality is a necessary requirement for on-line
operation of the system. In other words, for a system operating in real time to be
physically realizable, it has to be causal.

Another important property of a linear system is stability. A necessary and sufficient
condition for the system to be stable is that its impulse response h(f) must satisfy the
inequality -

j |h()|dt < o
This requirement follows from the commonly used criterion of bounded input—bounded
output. Basically, for the system to be stable, its impulse response must be absolutely
integrable.

Let X(f), H(f), and Y(f) denote the Fourier transforms of the excitation x(f), impulse
response h(f), and response y(f), respectively. Then, applying Property 12 of the Fourier
transform in Table 2.1 to the convolution integral, be it written in the form of (2.44) or
(2.45), we get

Y(f) = HHX(
Equivalently, we may write
Y(H)
H(f) = =%
=3 0

The new frequency function H(f) is called the transfer function or frequency response of
the system; these two terms are used interchangeably. Based on (2.47), we may now
formally say:

In general, the frequency response H(f) is a complex quantity, so we may express it in the form

H(f) = [H(Hlexp[iB)]
where |H(f)| is called the magnitude response, and S(f) is the phase response, or simply
phase. When the impulse response of the system is real valued, the frequency response
exhibits conjugate symmetry, which means that

IH(AI = [H(A)
and

B = =B
That is, the magnitude response |H(f)| of a linear system with real-valued impulse
response is an even function of frequency, whereas the phase S(f) is an odd function of
frequency.

In some applications it is preferable to work with the logarithm of H(f) expressed in

polar form, rather than with H(f) itself. Using In to denote the natural logarithm, let

ImH() = a(f) +i B
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where

a(f) = In[H(P)|
The function a(f) is called the gain of the system; it is measured in nepers. The phase S(f)
is measured in radians. Equation (2.49) indicates that the gain o(f) and phase B(f) are,
respectively, the real and imaginary parts of the (natural) logarithm of the transfer function
H(f). The gain may also be expressed in decibels (dB) by using the definition

o (f) = 20log,(|H(f)
The two gain functions a(f) and o/ (f) are related by
a2 (f) = 8.69a(f)
That is, 1 neper is equal to 8.69 dB.

As a means of specifying the constancy of the magnitude response |H(f)| or gain a(f)
of a system, we use the notion of bandwidth. In the case of a low-pass system, the
bandwidth is customarily defined as the frequency at which the magnitude response |H(f)|
is 1/4/2 times its value at zero frequency or, equivalently, the frequency at which the gain
o/ (f) drops by 3 dB below its value at zero frequency, as illustrated in Figure 2.13a. In the
case of a band-pass system, the bandwidth is defined as the range of frequencies over

which the magnitude response |H(f)| remains within 1/ J2 times its value at the mid-band
frequency, as illustrated in Figure 2.13b.

[H(p)

[H©)
V2

[H(f)l I

[H(£)I
V2

|
|
|
|
' f
. - B * . +B 0 f.-B +B
“Je (b) /i c

Tllustrating the definition of system bandwidth. (a) Low-pass system.

(b) Band-pass system.

fe
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A necessary and sufficient condition for a function &(f) to be the gain of a causal filter is
the convergence of the integral

—°<>1+f2

This condition is known as the Paley—Wiener criterion.” The criterion states that provided
the gain a(f) satisfies the condition of (2.51), then we may associate with this gain a
suitable phase A(f), such that the resulting filter has a causal impulse response that is zero
for negative time. In other words, the Paley—Wiener criterion is the frequency-domain
equivalent of the causality requirement. A system with a realizable gain characteristic may
have infinite attenuation for a discrete set of frequencies, but it cannot have infinite
attenuation over a band of frequencies; otherwise, the Paley—Wiener criterion is violated.

" |l gy

Consider next a linear time-invariant filter with impulse response h(f). We make two
assumptions:
Causality, which means that the impulse response A(f) is zero for ¢ < 0.
Finite support, which means that the impulse response of the filter is of some finite
duration 77, so that we may write A(f) = 0 for t = T.

Under these two assumptions, we may express the filter output y(f) produced in response
to the input x() as
Tf
y(1) = j h(Dx(t - 7 dr
0

Let the input x(¢), impulse response h(f), and output y(f) be uniformly sampled at the rate
(1/A7) samples per second, so that we may put

t = nAt
and
T = kAT

where k and n are integers and A7 is the sampling period. Assuming that A7 is small
enough for the product hA(7)x(f — 7) to remain essentially constant for kAT<7< (k + 1)AT
for all values of k and 7, we may approximate (2.52) by the convolution sum

N-1
y(nA7) = Z h(kADx(nAT—kADAT
k=0

where N A7 = T}. To simplify the notations used in this summation formula, we introduce
three definitions:

w, = h(kA7)AT
x(nA7)
y(nA7)

Xn

Yn
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Sampled input
x(nA7)

Delay Delay Delay Delay
At At e At At

Weights wq w1 wo

( b3 )
!

Sampled output
y(nA7)

Tapped-delay-line (TDL) filter; also referred to as FIR filter.

We may then rewrite the formula for y(nA7) in the compact form

N-1
V, = Zwkxn_k, n=0,%1,%2, ...
k=0

Equation (2.53) may be realized using the structure shown in Figure 2.14, which consists
of a set of delay elements (each producing a delay of A7 seconds), a set of multipliers
connected to the delay-line taps, a corresponding set of weights supplied to the
multipliers, and a summer for adding the multiplier outputs. The sequences x,, and y,, for
integer values of n as described in (2.53), are referred to as the input and output sequences,
respectively.

In the digital signal-processing literature, the structure of Figure 2.14 is known as a
finite-duration impulse response (FIR) filter. This filter offers some highly desirable
practical features:

The filter is inherently stable, in the sense that a bounded input sequence produces a

bounded output sequence.

Depending on how the weights {w k}g:_ 01 are designated, the filter can perform the

function of a low-pass filter or band-pass filter. Moreover, the phase response of the
filter can be configured to be a linear function of frequency, which means that there
will be no delay distortion.

In a digital realization of the filter, the filter assumes a programmable form whereby
the application of the filter can be changed merely by making appropriate changes to
the weights, leaving the structure of the filter completely unchanged; this kind of
flexibility is not available with analog filters.

We will have more to say on the FIR filter in subsequent chapters of the book.
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Hilbert Transform

The Fourier transform is particularly useful for evaluating the frequency content of an
energy signal or, in a limiting sense, that of a power signal. As such, it provides the
mathematical basis for analyzing and designing frequency-selective filters for the
separation of signals on the basis of their frequency content. Another method of separating
signals is based on phase selectivity, which uses phase shifts between the pertinent signals
to achieve the desired separation. A phase shift of special interest in this context is that of
190°. In particular, when the phase angles of all components of a given signal are shifted
by £90°, the resulting function of time is known as the Hilbert transform of the signal. The
Hilbert transform is called a quadrature filter; it is so called to emphasize its distinct
property of providing a £90° phase shift.

To be specific, consider a Fourier transformable signal g(¢) with its Fourier transform
denoted by G(f). The Hilbert transform of g(f), which we denote by g(7), is defined by

b =1 &8y

n__t-7
Hilbert-transform pairs*
m(t)cos(2mf.t) m(t)sin(27f.r)
m(t)sin(2mf 1) —m(t)cos(2Tf 1)
cos(2mf.1) sin(27f.1)
sin(2mf.t) —cos(2nf.1)
sint 1 - cost
t t
1 _
tniey
1
0] =
1 t
1+7 L+7
% = 20)

Notes: 6(t) denotes Dirac delta function; rect() denotes rectangular function; In denotes natural logarithm.
* In the first two pairs, it is assumed that m(#) is band limited to the interval -W < f< W, where W < f,..
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Clearly, Hilbert transformation is a linear operation. The inverse Hilbert transform, by
means of which the original signal g(¢) is linearly recovered from g(t), is defined by

_ 17
s(n = £lar
The functions g(f) and g(¢) are said to constitute a Hilbert-transform pair. A short table of
Hilbert-transform pairs is given in Table 2.3 on page 42.

The definition of the Hilbert transform g(7) given in (2.54) may be interpreted as the
convolution of g() with the time function 1/(n¢). We know from the convolution theorem
listed in Table 2.1 that the convolution of two functions in the time domain is transformed
into the multiplication of their Fourier transforms in the frequency domain.

For the time function 1/(mt), we have the Fourier-transform pair (see Property 14 in
Table 2.2)

1 . .
mf—Jsgn(f)

where sgn(f) is the signum function, defined in the frequency domain as

I, f>0
sgn(f) =4 0, f=0
-1, f<0

It follows, therefore, that the Fourier transform é(f) of §(t) is given by

G() = -isgn(HG()

Equation (2.57) states that given a Fourier transformable signal g(f), we may obtain the
Fourier transform of its Hilbert transform g(f) by passing g(f) through a linear time-
invariant system whose frequency response is equal to —jsgn(f). This system may be
considered as one that produces a phase shift of —“90° for all positive frequencies of the input
signal and +90° degrees for all negative frequencies, as in Figure 2.15. The amplitudes of all
frequency components in the signal, however, are unaffected by transmission through the
device. Such an ideal system is referred to as a Hilbert transformer, or quadrature filter.

The Hilbert transform differs from the Fourier transform in that it operates exclusively in
the time domain. It has a number of useful properties of its own, some of which are listed
next. The signal g(#) is assumed to be real valued, which is the usual domain of application
of the Hilbert transform. For this class of signals, the Hilbert transform has the following
properties.

A signal g(t) and its Hilbert transform g(t) have the same magnitude spectrum.

That is to say,

Gl = |G
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. [H(f)l
(a) Magnitude response and
(b) phase response of Hilbert o
transform. -
0
(a) f
arg[H(f)]
+90°
(b)
o f
-90°

If g(t) is the Hilbert transform of g(t), then the Hilbert transform of g(t) is —g(t).

Another way of stating this property is to write

arg[G(f)] = —arg{G()}

A signal g(t) and its Hilbert transform g(t) are orthogonal over the entire time interval
(—oo, °°) .

In mathematical terms, the orthogonality of g(f) and g(t) is described by

[ emgmar=o

Proofs of these properties follow from (2.54), (2.55), and (2.57).

Hilbert Transform of Low-Pass Signal

Consider Figure 2.16a that depicts the Fourier transform of a low-pass signal g(#), whose
frequency content extends from —W to W. Applying the Hilbert transform to this signal
yields a new signal g(t) whose Fourier transform, G(f),is depicted in Figure 2.16b. This
figure illustrates that the frequency content of a Fourier transformable signal can be
radically changed as a result of Hilbert transformation.
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G(f)
G(0)
(a) “w 0 p f
G
G(0)
b f
® -w 0 w
-G(0)

Ilustrating application of the Hilbert transform to a low-pass signal:
(a) Spectrum of the signal g(7); (b) Spectrum of the Hilbert transform g(t).

Pre-envelopes

The Hilbert transform of a signal is defined for both positive and negative frequencies. In
light of the spectrum shaping illustrated in Example 5, a question that begs itself is:

The answer to this fundamental question lies in the idea of a complex-valued signal called
the pre-envelope’ of g(t), formally defined as

g.(1) = g(1) +jg(1)

where g(t) is the Hilbert transform of g(¢). According to this definition, the given signal
g(t) is the real part of the pre-envelope g,(f), and the Hilbert transform g(r) is the
imaginary part of the pre-envelope. An important feature of the pre-envelope g (f) is the
behavior of its Fourier transform. Let G, (f) denote the Fourier transform of g, (¢). Then,
using (2.57) and (2.58) we may write

G,.(f) = G(f) +sgn(NG()

Next, invoking the definition of the signum function given in (2.56), we may rewrite (2.59)
in the equivalent form

2G6(), f>0

G.(Hh =1G), f=0
0, f<0
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where G(0) is the value of G(f) at the origin f = 0. Equation (2.60) clearly shows that the
pre-envelope of the signal g(f) has no frequency content (i.e., its Fourier transform
vanishes) for all negative frequencies, and the question that was posed earlier has indeed
been answered. Note, however, in order to do this, we had to introduce the complex-valued
version of a real-valued signal as described in (2.58).

From the foregoing analysis it is apparent that for a given signal g(¢#) we may determine
its pre-envelope g, (¢) in one of two equivalent procedures.

Time-domain procedure. Given the signal g(7), we use (2.58) to compute the pre-
envelope g,(?).

Frequency-domain procedure. We first determine the Fourier transform G(f) of the
signal g(#), then use (2.60) to determine G ,(f), and finally evaluate the inverse
Fourier transform of G ,(f) to obtain

8.(0) = 2| Ghexp(i2mfn) df

Depending on the description of the signal, procedure 1 may be easier than procedure 2, or
vice versa.

Equation (2.58) defines the pre-envelope g, (¢) for positive frequencies. Symmetrically,
we may define the pre-envelope for negative frequencies as

g (1) = g(H—jg(t)

The two pre-envelopes g, () and g_(¢) are simply the complex conjugate of each other, as
shown by

g_ (1) = gi(0)

where the asterisk denotes complex conjugation. The spectrum of the pre-envelope g,(7) is
nonzero only for positive frequencies; hence the use of a plus sign as the subscript. On the
other hand, the use of a minus sign as the subscript is intended to indicate that the
spectrum of the other pre-envelope g_(¢) is nonzero only for negative frequencies, as
shown by the Fourier transform

0, >0
G_(H=16G0), f=0
2G(H), [f<O0

Thus, the pre-envelope g, (7) and g_(¢) constitute a complementary pair of complex-valued
signals. Note also that the sum of g () and g_(¢) is exactly twice the original signal g(?).

Given a real-valued signal, (2.60) teaches us that the pre-envelope g,(?) is uniquely
defined by the spectral content of the signal for positive frequencies. By the same token,
(2.64) teaches us that the other pre-envelope g_(¢) is uniquely defined by the spectral
content of the signal for negative frequencies. Since g_(¢) is simply the complex conjugate
of g,(#) as indicated in (2.63), we may now make the following statement:
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In other words, given the spectral content of such a signal for positive frequencies, we may
uniquely define the spectral content of the signal for negative frequencies. Here then is the
mathematical justification for basing the bandwidth of a Fourier transformable signal on
its spectral content exclusively for positive frequencies, which is exactly what we did in
Section 2.4, dealing with bandwidth.

Pre-envelopes of Low-Pass Signal

Continuing with the low-pass signal g(#) considered in Example 5, Figure 2.17a and b depict
the corresponding spectra of the pre-envelope g, (¢) and the second pre-envelope g_(f), both
of which belong to g(f). Whereas the spectrum of g(¢) is defined for -W < f< W as in Figure
2.16a, we clearly see from Figure 2.17 that the spectral content of g, (¢) is confined entirely
to 0 <f< W, and the spectral content of g_() is confined entirely to -W < f< 0.

G 6N

26(0) 260

Another illustrative application of the Hilbert transform to a low-pass signal:
(a) Spectrum of the pre-envelope g, (f); (b) Spectrum of the other pre-envelope g_(t).

An astute reader may see an analogy between the use of phasors and that of pre-envelopes.
In particular, just as the use of phasors simplifies the manipulations of alternating currents
and voltages in the study of circuit theory, so we find the pre-envelope simplifies the
analysis of band-pass signals and band-pass systems in signal theory.

More specifically, by applying the concept of pre-envelope to a band-pass signal, the
signal is transformed into an equivalent low-pass representation. In a corresponding way, a
band-pass filter is transformed into its own equivalent low-pass representation. Both
transformations, rooted in the Hilbert transform, play a key role in the formulation of
modulated signals and their demodulation, as demonstrated in what follows in this and
subsequent chapters.

Complex Envelopes of Band-Pass Signals

The idea of pre-envelopes introduced in Section 2.9 applies to any real-valued signal, be it
of a low-pass or band-pass kind; the only requirement is that the signal be Fourier
transformable. From this point on and for the rest of the chapter, we will restrict attention
to band-pass signals. Such signals are exemplified by signals modulated onto a sinusoidal
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carrier. In a corresponding way, when it comes to systems we restrict attention to band-
pass systems. The primary reason for these restrictions is that the material so presented is
directly applicable to analog modulation theory, to be covered in Section 2.14, as well as
other digital modulation schemes covered in subsequent chapters of the book. With this
objective in mind and the desire to make a consistent use of notation with respect to
material to be presented in subsequent chapters, henceforth we will use s(f) to denote a
modulated signal. When such a signal is applied to the input of a band-pass system, such
as a communication channel, we will use x(¢) to denote the resulting system (e.g., channel)
output. However, as before, we will use A(7) as the impulse response of the system.

To proceed then, let the band-pass signal of interest be denoted by s(f) and its Fourier
transform be denoted by S(f). We assume that the Fourier transform S(f) is essentially
confined to a band of frequencies of total extent 2W, centered about some frequency f, as
illustrated in Figure 2.18a. We refer to f as the carrier frequency; this terminology is

IS¢
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(a) Magnitude spectrum of band-pass signal s(z); (b) Magnitude spectrum of
pre-envelope s_.(1); (c) Magnitude spectrum of complex envelope s(?) .
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borrowed from modulation theory. In the majority of communication signals encountered
in practice, we find that the bandwidth 2W is small compared with f,, so we may refer to
the signal s(f) as a narrowband signal. However, a precise statement about how small the
bandwidth must be for the signal to be considered narrowband is not necessary for our
present discussion. Hereafter, the terms band-pass and narrowband are used
interchangeably.

Let the pre-envelope of the narrowband signal s(7) be expressed in the form

s, (1) = s(t)exp(j2nf,1)

We refer to 5(¢) as the complex envelope of the band-pass signal s(f). Equation (2.65)
may be viewed as the basis of a definition for the complex envelope s(¢) in terms of the
pre-envelope s, (f). In light of the narrowband assumption imposed on the spectrum of
the band-pass signal s(¢), we find that the spectrum of the pre-envelope s, (f) is limited
to the positive frequency band f, — W < f < f, + W, as illustrated in Figure 2.18b.
Therefore, applying the frequency-shifting property of the Fourier transform to (2.65),
we find that the spectrum of the complex envelope 5() is correspondingly limited to
the band —W < f< W and centered at the origin f = 0, as illustrated in Figure 2.18c. In
other words, the complex envelope s(t) of the band-pass signal s(f) is a complex low-
pass signal. The essence of the mapping from the band-pass signal s(f) to the complex
low-pass signal s(¢) is summarized in the following threefold statement:

* The information content of a modulated signal s(#) is fully preserved in the complex
envelope s(1).

e Analysis of the band-pass signal s(¢) is complicated by the presence of the carrier
frequency f,; in contrast, the complex envelope 5(#) dispenses with f., making its
analysis simpler to deal with.

 The use of s(¢) requires having to handle complex notations.

Canonical Representation of Band-Pass Signals

By definition, the real part of the pre-envelope s,(f) is equal to the original band-pass
signal s(f). We may therefore express the band-pass signal s(f) in terms of its
corresponding complex envelope 5(f) as

s() = Re[3(t)exp(i2nf,0)]

where the operator Re[.] denotes the real part of the quantity enclosed inside the square
brackets. Since, in general, 5(¢) is a complex-valued quantity, we emphasize this property
by expressing it in the Cartesian form

s(t) = sy(1) +jsg(1)
where s1(f) and s(7) are both real-valued low-pass functions; their low-pass property is

inherited from the complex envelope s(¢). We may therefore use (2.67) in (2.66) to
express the original band-pass signal s(¢) in the canonical or standard form

s(t) = sI(t)cos(ZthCt)—sQ(t)sin(ZthCt)

We refer to s(¢) as the in-phase component of the band-pass signal s(f) and refer to sQ(t) as
the quadrature-phase component or simply the quadrature component of the signal s(z).
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This nomenclature follows from the following observation: if cos(2xf,t), the multiplying
factor of sy(#), is viewed as the reference sinusoidal carrier, then sin(27f,t), the multiplying
factor of sq(7), is in phase quadrature with respect to cos(27tf,.f).

According to (2.66), the complex envelope s(f) may be pictured as a time-varying
phasor positioned at the origin of the (s sg)-plane, as indicated in Figure 2.19a. With
time ¢ varying continuously, the end of the phasor moves about in the plane. Figure 2.19b
depicts the phasor representation of the complex exponential exp(27f,t). In the definition
given in (2.66), the complex envelope s(¢) is multiplied by the complex exponential
exp(j2mf.t). The angles of these two phasors, therefore, add and their lengths multiply, as
shown in Figure 2.19¢c. Moreover, in this latter figure, we show the (s, sg)-phase rotating
with an angular velocity equal to 27f, radians per second. Thus, in the picture portrayed in
the figure, the phasor representing the complex envelope s(¢) moves in the (s, sp)-plane,
while at the very same time the plane itself rotates about the origin. The original band-pass
signal s(#) is the projection of this time-varying phasor on a fixed line representing the real
axis, as indicated in Figure 2.19c.

Since both sy(7) and s(7) are low-pass signals limited to the band —W < f'< W, they may
be extracted from the band-pass signal s(¢) using the scheme shown in Figure 2.20a. Both
low-pass filters in this figure are designed identically, each with a bandwidth equal to W.

5q Imaginary
axis Rotate at the
rate 2mf,
SIZ+S
1
5
Q
-1 = .
tan (51 ) s 2nfet Real
0 ! 0 axis

(@) (b)

Rotate at the

wznfc

(©)
Illustrating an interpretation of the complex envelope s(¢) and its multiplication by
exp(j2mf.t).
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(a) Scheme for deriving the in-phase and quadrature components of a band-pass
signal g(#). (b) Scheme for reconstructing the band-pass signal from its in-phase and quadrature
components.

To reconstruct s(¢) from its in-phase and quadrature components, we may use the scheme
shown in Figure 2.20b. In light of these statements, we may refer to the scheme in Figure
2.20a as an analyzer, in the sense that it extracts the in-phase and quadrature components,
sp(H) and sQ(t), from the band-pass signal s(¢). By the same token, we may refer to the
second scheme in Figure 2.20b as a synthesizer, in the sense it reconstructs the band-pass
signal s(¢) from its in-phase and quadrature components, sy(f) and sQ(t).

The two schemes shown in Figure 2.20 are basic to the study of linear modulation
schemes, be they of an analog or digital kind. Multiplication of the low-pass in-phase
component sy(r) by cos(2mf.¢) and multiplication of the quadrature component sq(7) by
sin(2mtf,t) represent linear forms of modulation. Provided that the carrier frequency f is
larger than the low-pass bandwidth W, the resulting band-pass function s(#) defined in
(2.68) is referred to as a passband signal waveform. Correspondingly, the mapping from
sp(#) and sQ(t) combined into s(¢) is known as passband modulation.

Equation (2.67) is the Cartesian form of defining the complex envelope 5(¢) of the band-
pass signal s(¢). Alternatively, we may define s(t) in the polar form as

s(1) = a(t)exp[jh(1)]
where a(f) and ¢(r) are both real-valued low-pass functions. Based on the polar
representation of (2.69), the original band-pass signal s(¢) is itself defined by
s(t) = a(r)cos[2nf 1+ ¢(1)]

We refer to a() as the natural envelope or simply the envelope of the band-pass signal s(7)
and refer to ¢(¢) as the phase of the signal. We now see why the term “pre-envelope” was
used in referring to (2.58), the formulation of which preceded that of (2.70).
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The envelope a(f) and phase ¢(f) of a band-pass signal s(¢) are respectively related to the
in-phase and quadrature components si(7) and sq(7) as follows (see the time-varying
phasor representation of Figure 2.19a):

a(r) = Js(0) + (1)

(1) = tan*l(sQﬁ)

Sl(t)

and

Conversely, we may write

sy(1) = a(r)cos[@(1)]
and

so(t) = a(t)sin[¢(1)]

Thus, both the in-phase and quadrature components of a band-pass signal contain
amplitude and phase information, both of which are uniquely defined for a prescribed
phase @(), modulo 27.

Complex Low-Pass Representations of Band-Pass Systems

Now that we know how to handle the complex low-pass representation of band-pass
signals, it is logical that we develop a corresponding procedure for handling the
representation of linear time-invariant band-pass systems. Specifically, we wish to show
that the analysis of band-pass systems is greatly simplified by establishing an analogy,
more precisely an isomorphism, between band-pass and low-pass systems. For example,
this analogy would help us to facilitate the computer simulation of a wireless
communication channel driven by a sinusoidally modulated signal, which otherwise could
be a difficult proposition.

Consider a narrowband signal s(¢), with its Fourier transform denoted by S(f). We
assume that the spectrum of the signal s(7) is limited to frequencies within =W hertz of the
carrier frequency f.. We also assume that W < f.. Let the signal s(f) be applied to a linear
time-invariant band-pass system with impulse response A(¢) and frequency response H(f).
We assume that the frequency response of the system is limited to frequencies within B
of the carrier frequency f.. The system bandwidth 2B is usually narrower than or equal to
the input signal bandwidth 2W. We wish to represent the band-pass impulse response /(f)
in terms of two quadrature components, denoted by hy(f) and hq(z). In particular, by
analogy to the representation of band-pass signals, we express A(f) in the form

h(t) = hy(t)cos(2nf,t) - ho(1)sin(27f, 1)

Correspondingly, we define the complex impulse response of the band-pass system as

h(1) = hy() +jho(1)
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Hence, following (2.66), we may express A(f) in terms of ;z(t) as
h(1) = Re[h(1)exp(j2nf,1)]

Note that hy(f), hQ(t), and h(t) are all low-pass functions, limited to the frequency band
-B<f<B. .

We may determine the complex impulse response h(z) in terms of the in-phase and
quadrature components /1(#) and hq() of the band-pass impulse response A(#) by building
on (2.76). Alternatively, we may determine it from the band-pass frequency response H(f)
in the following way. We first use (2.77) to write

2h(1) = h(t)exp(j2nf.1) + h* (1) exp(—j2mf,1)

where h*(t) is the complex conjugate of h(t) ; the rationale for introducing the factor of 2
on the left-hand side of (2.78) follows from the fact that if we add a complex signal and its
complex conjugate, the sum adds up to twice the real part and the imaginary parts cancel.
Applying the Fourier transform to both sides of (2.78) and using the complex-conjugation
property of the Fourier transform, we get

2H(f) = H(f~f,) + H*(~f~f,)
where H(f) = h(r) and I:I(f) = iz(t). Equation (2.79) satisfies the requirement that

H*(f) = H(—f) for a real-valued impulse response h(f). Since H(f) represents a low-pass
frequency response limited to | f| < B with B < f,, we infer from (2.79) that

H(f-f) = 2H(p,  f>0
Equation (2.80) states:

Having determined the complex frequency response H (f), we decompose it into its in-
phase and quadrature components, as shown by

H(f) = Hi(f) +jHq(/)
where the in-phase component is defined by
~ 1 ~ ~
() = FIH +H*(=N)]
and the quadrature component is defined by
~ 1 ~ o~
Hq(f) = 2—j[H(f) —JH*(-N]

Finally, to determine the complex impulse response iNl(t) of the band-pass system, we take
the inverse Fourier transform of H(f), obtaining

h(r) = r, H(fexp(j2nft) df

which is the formula we have been seeking.
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Putting the Complex Representations of Band-Pass Signals
and Systems All Together

Examining (2.66) and (2.77), we immediately see that these two equations share a
common multiplying factor: the exponential exp(j27nf.t). In practical terms, the inclusion
of this factor accounts for a sinusoidal carrier of frequency f., which facilitates
transmission of the modulated (band-pass) signal s(f) across a band-pass channel of
midband frequency f.. In analytic terms, however, the presence of this exponential factor
in both (2.66) and (2.77) complicates the analysis of the band-pass system driven by the
modulated signal s(f). This analysis can be simplified through the combined use of
complex low-pass equivalent representations of both the modulated signal s(#) and the
band-pass system characterized by the impulse response A(f). The simplification can be
carried out in the time domain or frequency domain, as discussed next.

Equipped with the complex representations of band-pass signals and systems, we are
ready to derive an analytically efficient method for determining the output of a band-pass
system driven by a corresponding band-pass signal. To proceed with the derivation,
assume that S(f), denoting the spectrum of the input signal s(¢), and H(f), denoting the
frequency response of the system, are both centered around the same frequency f.. In
practice, there is no need to consider a situation in which the carrier frequency of the input
signal is not aligned with the midband frequency of the band-pass system, since we have
considerable freedom in choosing the carrier or midband frequency. Thus, changing the
carrier frequency of the input signal by an amount Af, for example, simply corresponds to
absorbing (or removing) the factor exp(£j2mAf,¢) in the complex envelope of the input
signal or the complex impulse response of the band-pass system. We are therefore justified
in proceeding on the assumption that S(f) and H(f) are both centered around the same
carrier frequency f.

Let x(¢) denote the output signal of the band-pass system produced in response to the
incoming band-pass signal s(¢). Clearly, x(¢) is also a band-pass signal, so we may
represent it in terms of its own low-pass complex envelope x(?) as

x(t) = Re[X(1)exp(j2nf.n)]
The output signal x(#) is related to the input signal s(#) and impulse response A(f) of the

system in the usual way by the convolution integral

x(1) = jw h(D)s(t— 1) dr

—o0

In terms of pre-envelopes, we have h(f) = Re[h (#)] and s(¢) = Re[s,.(f)]. We may therefore
rewrite (2.86) in terms of the pre-envelopes s, (f) and h_(f) as

x(f) = jw Re[h,(7)Re[s, (1 - 7)]d7
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To proceed further, we make use of a basic property of pre-envelopes that is described by
the following relation:

J-imRe[th( IRels, (D)]d7 = %Re“ﬁw h(Ds"(D) dr}

where we have used 7as the integration variable to be consistent with that in (2.87); details
of (2.88) are presented in Problem 2.20. Next, from Fourier-transform theory we note that
using s(—7) in place of s(7) has the effect of removing the complex conjugation on the
right-hand side of (2.88). Hence, bearing in mind the algebraic difference between the
argument of s,(7) in (2.88) and that of s,(t — 7) in (2.87), and using the relationship
between the pre-envelope and complex envelope of a band-pass signal, we may express
(2.87) in the equivalent form

x(t) = %RCU_ h(D)s,(1- 1) dz’}
- %Re“w h(7)exp(i2nf, D3(1 - Dexplj2nf, (1 - r)]dr}

1 . T~
= ERe[exp(Jznfct)j_ h(D3(t- 1) dr}
Thus, comparing the right-hand sides of (2.85) and (2.89), we readily find that for a large
enough carrier frequency f,, the complex envelope x(#) of the output signal is simply
defined in_terms of the complex envelope s(t) of the input signal and the complex impulse
response h(t) of the band-pass system as follows:

1) = %jw h(1)s(t— 1) dr

This important relationship is the result of the isomorphism between a band-pass function
and the corresponding complex low-pass function, in light of which we may now make the
following summarizing statement:

In computational terms, the significance of this statement is profound. Specifically, in
dealing with band-pass signals and systems, we need only concern ourselves with the
functions 5(t), x(¢), and h(t), representing the complex low-pass equivalents of the
excitation applied to the input of the system, the response produced at the output of the
system, and the impulse response of the system respectively, as illustrated in Figure 2.21.
The essence of the filtering process performed in the original system of Figure 2.21a is
completely retained in the complex low-pass equivalent representation depicted in Figure
2.21b.

The complex envelope s(z) of the input band-pass signal and the complex impulse
response h(t) of the band-pass system are defined in terms of their respective in-phase
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(a) Input—output description of a band-pass

model of the band-pass system.
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and quadrature components by (2.67) and (2.76), respectively. Substituting these relations
into (2.90), we get

h(t)%5(1)
[hy(1) +jhg (D] % [s1(0) +jsg(1)]

where the symbol % denotes convolution. Because convolution is distributive, we may
rewrite (2.91) in the equivalent form

2x(t) = [Ag() Jesp(2) - hQ(t)*sQ(t)] +]j [hQ(t)*sI(t) + hl*sQ(t)]

25(t)

Let the complex envelope x(#) of the response be defined in terms of its in-phase and
quadrature components as
x(1) = xy(1) + jxg(1)
Then, comparing the real and imaginary parts in (2.92) and (2.93), we find that the in-
phase component xy(#) is defined by the relation
2x,(2) = hl(t)*sl(t)—hQ(t)*sQ(t)
and its quadrature component xq(?) is defined by the relation

2xQ(t) = hQ(t)*sI(t) + hI(t)*sQ(t)

Thus, for the purpose of evaluating the in-phase and quadrature components of the
complex envelope x(¢) of the system output, we may use the low-pass equivalent model
shown in Figure 2.22. All the signals and impulse responses shown in this model are real-
valued low-pass functions; hence a time-domain procedure for simplifying the analysis of
band-pass systems driven by band-pass signals.

Alternatively, Fourier-transforming the convolution integral of (2.90) and recognizing that
convolution in the time domain is changed into multiplication in the frequency domain, we
get

X() = %ii(f)&(f)
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Block diagram illustrating the relationship between the
in-phase and quadrature components of the response of a band-pass
filter and those of the input signal.

where 5(t) = S(f), h(t) = H(f),and ¥(t) = X(f).The H(f) is itself related to the
frequency response H(f) of the band-pass system by (2.80). Thus, assuming that H(f) is
known, we may use the frequency-domain procedure summarized in Table 2.4 for
computing the system output x(¢) in response to the system input s(7).

In actual fact, the procedure of Table 2.4 is the frequency-domain representation of the
low-pass equivalent to the band-pass system, depicted in Figure 2.21b. In computational
terms, this procedure is of profound practical significance. We say so because its use
alleviates the analytic and computational difficulty encountered in having to include the
carrier frequency f, in the pertinent calculations.

As discussed earlier in the chapter, the theoretical formulation of the low-pass
equivalent in Figure 2.21b is rooted in the Hilbert transformation, the evaluation of which
poses a practical problem of its own, because of the wideband 90°-phase shifter involved
in its theory. Fortunately, however, we do not need to invoke the Hilbert transform in
constructing the low-pass equivalent. This is indeed so, when a message signal modulated
onto a sinusoidal carrier is processed by a band-pass filter, as explained here:

Typically, the message signal is band limited for all practical purposes. Moreover,
the carrier frequency is larger than the highest frequency component of the signal;
the modulated signal is therefore a band-pass signal with a well-defined passband.
Hence, the in-phase and quadrature components of the modulated signal s(?),
represented respectively by sy(7) and sq(¢), are readily obtained from the canonical
representation of s(¢), described in (2.68).

Given the well-defined frequency response H(f) of the band-pass system, we may
readily evaluate the corresponding complex low-pass frequency response H(f) ; see
(2.80). Hence, we may compute the system output x(¢) produced in response to the
carrier-modulated input s(¢) without invoking the Hilbert transform.
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Procedure for the computational analysis of a band-pass system
driven by a band-pass signal

Given the frequency response H(f) of a band-pass system, computation of the output
signal x(7) of the system in response to an input band-pass signal s() is summarized as
follows:

Use (2.80), namely H(f—f,) = 2H(f), for > 0 to determine H(/).

Expressing the input band-pass signal s(7) in the canonical form of (2.68), evaluate
the complex envelope 5(t) = sp(t) + st(t) where s1(?) is the in-phase component
of s(¢) and fQ(t) is its quadrature component. Hence, compute the Fourier
transform S(f) = F[5(1)]

Using (2.96), compute X ) = %I:I (f)S' (f) , which defines the Fourier transform of
the complex envelope x(¢) of the output signal x(z).

Compute the inverse Fourier transform of X (f) , yielding x(t) = F [5( N1

Use (2.85) to compute the desired output signal x(¢) = Re[x(t)exp(j 2rf 1)l

To summarize, the frequency-domain procedure described in Table 2.4 is well suited for
the efficient simulation of communication systems on a computer for two reasons:

The low-pass equivalents of the incoming band-pass signal and the band-pass system
work by eliminating the exponential factor exp(j27nf,¢) from the computation without
loss of information.

The fast Fourier transform (FFT) algorithm, discussed later in the chapter, is used
for numerical computation of the Fourier transform. This algorithm is used twice in
Table 2.4, once in step 2 to perform Fourier transformation, and then again in step 4
to perform inverse Fourier transformation.

The procedure of this table, rooted largely in the frequency domain, assumes availability
of the band-pass system’s frequency response H(f). If, however, it is the system’s impulse
response A(#) that is known, then all we need is an additional step to Fourier transform A(f)
into H(f) before initiating the procedure of Table 2.4.

Linear Modulation Theory

The material presented in Sections 2.8-2.13 on the complex low-pass representation of
band-pass signals and systems is of profound importance in the study of communication
theory. In particular, we may use the canonical formula of (2.68) as the mathematical basis
for a unified treatment of linear modulation theory, which is the subject matter of this
section.
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We start this treatment with a formal definition:

The message signal (e.g., voice, video, data sequence) is referred to as the modulating
signal, and the result of the modulation process is referred to as the modulated signal.
Naturally, in a communication system, modulation is performed in the transmitter. The
reverse of modulation, aimed at recovery of the original message signal in the receiver, is
called demodulation.

Consider the block diagram of Figure 2.23, depicting a modulator, where m(?) is the
message signal, cos(27f.?) is the carrier, and s(¢) is the modulated signal. To apply (2.68)
to this modulator, the in-phase component si(f) in that equation is treated simply as a
scaled version of the message signal denoted by m(#). As for the quadrature component
sq(0), it is defined by a spectrally shaped version of m(%) that is performed linearly. In such
a scenario, it follows that a modulated signal s(f) defined by (2.68) is a linear function of
the message signal m(f); hence the reference to this equation as the mathematical basis of
linear modulation theory.

Message signal Modulated signal
m(f) ——>| Modulator t—- (1)

[Carrier
cos(2Tf 1)

Block diagram of a modulator.

To recover the original message signal m(f) from the modulated signal s(), we may use
a demodulator, the block diagram of which is depicted in Figure 2.24. An elegant feature
of linear modulation theory is that demodulation of s(¢) is also achieved using linear
operations. However, for linear demodulation of s(7) to be feasible, the locally generated
carrier in the demodulator of Figure 2.24 has to be synchronous with the original
sinusoidal carrier used in the modulator of Figure 2.23. Accordingly, we speak of
synchronous demodulation or coherent detection.

Modulated signal Demodulated signal
5(f) ————————————| Demodulator j——— m(t)

Locally
generated
carrier
cos(2mf.t)

Block diagram of a demodulator.
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Depending on the spectral composition of the modulated signal, we have three kinds of
linear modulation in analog communications:

* double sideband-suppressed carrier (DSB-SC) modulation;
» vestigial sideband (VSB) modulation;
* single sideband (SSB) modulation.

These three methods of modulation are discussed in what follows and in this order.

DSB-SC modulation is the simplest form of linear modulation, which is obtained by
setting

sp() = m(1)
and
SQ(t) =0
Accordingly, (2.68) is reduced to
s(t) = m(t)cos(2mf,t)

the implementation of which simply requires a product modulator that multiplies the
message signal m(7) by the carrier cos(2nf_t), assumed to be of unit amplitude.

For a frequency-domain description of the DSB-SC-modulated signal defined in (2.97),
suppose that the message signal m(f) occupies the frequency band —-W < f < W, as depicted
in Figure 2.25a; hereafter, W is referred to as the message bandwidth. Then, provided that
the carrier frequency satisfies the condition f, > W, we find that the spectrum of the DSB-
SC-modulated signal consists of an upper sideband and lower sideband, as depicted in
Figure 2.25b. Comparing the two parts of this figure, we immediately see that the channel
bandwidth, B, required to support the transmission of the DSB-SC-modulated signal from
the transmitter to the receiver is twice the message bandwidth.

M(f)
M(0)
@ w0 W !
S(f)
Lm(0)
,,,,,,,,,,,,,, Upper sideband
Lower —~_ -
sideband
So=W —f, St W 0 Je=W fo S+ W

(a) Message spectrum. (b) Spectrum of DSB-SC
modulated wave s(f), assuming f, > W.
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One other interesting point apparent from Figure 2.25b is that the spectrum of the DSB-SC
modulated signal is entirely void of delta functions. This statement is further testimony to the
fact that the carrier is suppressed from the generation of the modulated signal s(¢) of (2.97).

Summarizing the useful features of DSB-SC modulation:

* suppression of the carrier, which results in saving of transmitted power;

e desirable spectral characteristics, which make it applicable to the modulation of
band-limited message signals;

» ease of synchronizing the receiver to the transmitter for coherent detection.

On the downside, DSB-SC modulation is wasteful of channel bandwidth. We say so for
the following reason. The two sidebands, constituting the spectral composition of the
modulated signal s(f), are actually the image of each other with respect to the carrier
frequency f; hence, the transmission of either sideband is sufficient for transporting s(z)
across the channel.

In VSB modulation, one sideband is partially suppressed and a vestige of the other
sideband is configured in such a way to compensate for the partial sideband suppression
by exploiting the fact that the two sidebands in DSB-SC modulation are the image of each
other. A popular method of achieving this design objective is to use the frequency
discrimination method. Specifically, a DSB-SC-modulated signal is first generated using a
product modulator, followed by a band-pass filter, as shown in Figure 2.26. The desired
spectral shaping is thereby realized through the appropriate design of the band-pass filter.

Suppose that a vestige of the lower sideband is to be transmitted. Then, the frequency
response of the band-pass filter, H(f), takes the form shown in Figure 2.27; to simplify
matters, only the frequency response for positive frequencies is shown in the figure.
Examination of this figure reveals two characteristics of the band-pass filter:

Normalization of the frequency response, which means that

1 for f.+f,<Ifl<f.+W
H() =1
5 for Il =1,

where f,, is the vestigial bandwidth and the other parameters are as previously
defined.

0dd symmetry of the cutoff portion inside the transition interval f, — f, <| f| < f. + fy»
which means that values of the frequency response H(f) at any two frequencies
equally spaced above and below the carrier frequency add up to unity.

Frequency-discrimination method
for producing VSB modulation
where the intermediate signal sy(f)
is DSB-SC modulated.

Message signal Modulated signal
mo(r) Product s1(1) Band—pass s(f)
EEEEE——— modulator filter >
H(f)
Carrier
1c05(27§fct)
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Magnitude response of VSB filter; only the
positive-frequency portion is shown

Consequently, we find that shifted versions of the frequency response H(f) satisfy the
condition

H(f-f)+H(f+f) =1 for—W<|fl<w

Outside the frequency band of interest defined by | | = f, + W, the frequency response
H(f) can assume arbitrary values. We may thus express the channel bandwidth required
for the transmission of VSB-modulated signals as

B = W+f,

With this background, we now address the issue of how to specify H(f). We first use the
canonical formula of (2.68) to express the VSB-modulated signal s;(¢), containing a
vestige of the lower sideband, as

s(1) = %m(t)cos(anct) - %mQ(I) sin (27f,1)

where m(7) is the message signal, as before, and mg(7) is the spectrally shaped version of
m(1); the reason for the factor 1/2 will become apparent later. Note that if mq(?) is set equal
to zero, (2.101) reduces to DSB-SC modulation. It is therefore in the quadrature signal
mq(t) that VSB modulation distinguishes itself from DSB-SC modulation. In particular,
the role of mg(?) is to interfere with the message signal m(7) in such a way that power in
one of the sidebands of the VSB-modulated signal s(7) (e.g., the lower sideband in Figure
2.27) is appropriately reduced.
To determine mQ(t), we examine two different procedures:

Phase-discrimination, which is rooted in the time-domain description of (2.101);
transforming this equation into the frequency domain, we obtain

S0 = JIMG ) + M+ )1~ F MU ~F) = MU +1,))
where
M(f) = F[m(t)] and MQ(f) = F[mQ(I)]

Frequency-discrimination, which is structured in the manner described in Figure
2.26; passing the DSB-SC-modulated signal (i.e., the intermediate signal sy(f) in
Figure 2.26) through the band-pass filter, we write

SI) = SIM(~£) + M(F+f)1H()
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In both (2.102) and (2.103), the spectrum S;(f) is defined in the frequency interval
fe-Ws|flsfe+W

Equating the right-hand sides of these two equations, we get (after canceling common
terms)

1 1
S =1+ MU+ )= oMo ~f) = Mo +7)]

= [M(f-f) + M(f+[f)IH(f)

Shifting both sides of (2.104) to the left by the amount f,, we get (after canceling common
terms)

uiy-LImgn = mppHG+L).  —welfl<w
2 2i Q c

where the terms M(f+2f_) and MQ(f +2f,) are ignored as they both lie outside the
interval — W < | f| < W. Next, shifting both sides of (2.104) by the amount f,, but this time
to the right, we get (after canceling common terms)

"M@+ Mo = MOH(E-£),  -WSIfl<W
2 2j ¢

where, this time, the terms M(f-2f,) and MQ(f —2f,) are ignored as they both lie
outside the interval - W < | f| < W.

Given (2.105) and (2.106), all that remains to be done now is to follow two simple
steps:

Adding these two equations and then factoring out the common term M(f), we get
the condition of (2.99) previously imposed on H(f); indeed, it is with this condition
in mind that we introduced the scaling factor 1/2 in (2.101).

Subtracting (2.105) from (2.106) and rearranging terms, we get the desired
relationship between Mq(f) and M(f):

Mo = jJIH(f~f)-HF+fIIM), -W<|fI<W

Let Hq(f) denote the frequency response of a quadrature filter that operates on the
message spectrum M(f) to produce Mq(f). In light of (2.107), we may readily define
Hq(f) in terms of H(f) as

MQ()‘)
M(f)
IH-f)-HF+f)l,  -W<Iflsw

Equation (2.108) provides the frequency-domain basis for the phase-discrimination
method for generating the VSB-modulated signal s,(f), where only a vestige of the lower
sideband is retained. With this equation at hand, it is instructive to plot the frequency
response H(f). For the frequency interval —-W < f< W, the term H(f - f,) is defined by the
response H(f) for negative frequencies shifted to the right by f, whereas the term H(f + f)
is defined by the response H(f) for positive frequencies shifted to the left by f..
Accordingly, building on the positive frequency response plotted in Figure 2.27, we find
that the corresponding plot of Hq(f) is shaped as shown in Figure 2.28.

Hy(f) =
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Frequency response of the quadrature filter for
producing the quadrature component of the VSB wave.

The discussion on VSB modulation has thus far focused on the case where a vestige of the
lower sideband is transmitted. For the alternative case when a vestige of the upper sideband
is transmitted, we find that the corresponding VSB-modulated wave is described by

s5(8) = %m(z)cos(2nfct)+%mQ(t)sin(2nfct)

where the quadrature signal mQ(t) is constructed from the message signal m() in exactly
the same way as before.

Equations (2.101) and (2.109) are of the same mathematical form, except for an
algebraic difference; they may, therefore, be combined into the single formula

s(t) = %m(l)cos(anct) F %mQ(t)sin(Z‘ltfct)

where the minus sign applies to a VSB-modulated signal containing a vestige of the lower
sideband and the plus sign applies to the alternative case when the modulated signal
contains a vestige of the upper sideband.

The formula of (2.110) for VSB modulation includes DSB-SC modulation as a special
case. Specifically, setting mQ(t) = 0, this formula reduces to that of (2.97) for DSB-SC
modulation, except for the trivial scaling factor of 1/2.

Next, considering SSB modulation, we may identify two choices:

The carrier and the lower sideband are both suppressed, leaving the upper sideband
for transmission in its full spectral content; this first SSB-modulated signal is
denoted by sygg(?).

The carrier and the upper sideband are both suppressed, leaving the lower sideband
for transmission in its full spectral content; this second SSB-modulated signal is
denoted by sy gg(9).

The Fourier transforms of these two modulated signals are the image of each other with
respect to the carrier frequency f,, which, as mentioned previously, emphasizes that the
transmission of either sideband is actually sufficient for transporting the message signal
m(t) over the communication channel. In practical terms, both sygg(f) and sy gg(f) require
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Frequency response of the quadrature J
filter in SSB modulation.
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0 f
-1.0

the smallest feasible channel bandwidth, B=W, without compromising the perfect
recovery of the message signal under noiseless conditions. It is for these reasons that we
say SSB modulation is the optimum form of linear modulation for analog
communications, preserving both the transmitted power and channel bandwidth in the best
manner possible.

SSB modulation may be viewed as a special case of VSB modulation. Specifically,
setting the vestigial bandwidth f, = 0, we find that the frequency response of the
quadrature filter plotted in Figure 2.28 takes the limiting form of the signum function
shown in Figure 2.29. In light of the material presented in (2.60) on Hilbert
transformation, we therefore find that for f,, = 0 the quadrature component mq(7) becomes
the Hilbert transform of the message signal m(f), denoted by m(¢). Accordingly, using
r;z(t) in place of mQ(t) in (2.110) yields the SSB formula

s(t) = %m(l)cos(Zthct) F %n}(t)sin(anct)

where the minus sign applies to the SSB-modulated signal sygg(f) and the plus sign
applies to the alternative SSB-modulated signal sy gg(?).

Unlike DSB-SC and VSB methods of modulation, SSB modulation is of limited
applicability. Specifically, we say:

This requirement, illustrated in Figure 2.30, is imposed on the message signal m(f) so that
the band-pass filter in the frequency-discrimination method of Figure 2.26 has a finite
transition band for the filter to be physically realizable. With the transition band
separating the pass-band from the stop-band, it is only when the transition band is finite
that the undesired sideband can be suppressed. An example of message signals for which
the energy-gap requirement is satisfied is voice signals; for such signals, the energy gap is
about 600 Hz, extending from —300 to +300 Hz.

In contrast, the spectral contents of television signals and wideband data extend
practically to a few hertz, thereby ruling out the applicability of SSB modulation to this
second class of message signals. It is for this reason that VSB modulation is preferred over
SSB modulation for the transmission of wideband signals.
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M7
Spectrum of a message signal m(f) with an

energy gap centered around the origin.
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Equation (2.97) for DSB-SC modulation, (2.110) for VSB modulation, and (2.111) for
SSB modulation are summarized in Table 2.5 as special cases of the canonical formula of
(2.68). Correspondingly, we may treat the time-domain generations of these three linearly
modulated signals as special cases of the “synthesizer” depicted in Figure 2.20b.

Summary of linear modulation methods viewed as special cases of the

canonical formula s(7) = s1(f)cos(2nf 1) — so()sin(2nf, 1)

DSB-SC m(t) Zero m(f) = message signal
| | Plus sign applies to using vestige of
VSB Em(t) iEmQ(t) lower sideband and minus sign applies
to using vestige of upper sideband
| | Plus sign applies to transmission of
SSB —m(t) i§ﬁ1(t) upper sideband and minus sign applies

2 .. .
to transmission of lower sideband

Phase and Group Delays

A discussion of signal transmission through linear time-invariant systems is incomplete
without considering the phase and group delays involved in the signal transmission
process.

Whenever a signal is transmitted through a dispersive system, exemplified by a
communication channel (or band-pass filter), some delay is introduced into the output
signal, the delay being measured with respect to the input signal. In an ideal channel, the
phase response varies linearly with frequency inside the passband of the channel, in which
case the filter introduces a constant delay equal to t;, where the parameter #; controls the
slope of the linear phase response of the channel. Now, what if the phase response of the
channel is a nonlinear function of frequency, which is frequently the case in practice? The
purpose of this section is to address this practical issue.
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To begin the discussion, suppose that a steady sinusoidal signal at frequency f, is
transmitted through a dispersive channel that has a phase-shift of S(f.) radians at that
frequency. By using two phasors to represent the input signal and the received signal, we
see that the received signal phasor lags the input signal phasor by S(f.) radians. The time
taken by the received signal phasor to sweep out this phase lag is simply equal to the ratio
B(f)/(27rf,) seconds. This time is called the phase delay of the channel.

It is important to realize, however, that the phase delay is not necessarily the true signal
delay. This follows from the fact that a steady sinusoidal signal does nof carry information,
so it would be incorrect to deduce from the above reasoning that the phase delay is the true
signal delay. To substantiate this statement, suppose that a slowly varying signal, over the
interval —(7/2) < ¢t < (1/2), is multiplied by the carrier, so that the resulting modulated
signal consists of a narrow group of frequencies centered around the carrier frequency; the
DSB-SC waveform of Figure 2.31 illustrates such a modulated signal. When this
modulated signal is transmitted through a communication channel, we find that there is
indeed a delay between the envelope of the input signal and that of the received signal.
This delay, called the envelope or group delay of the channel, represents the true signal
delay insofar as the information-bearing signal is concerned.

Assume that the dispersive channel is described by the transfer function

H(f) = Kexplj (/)]
where the amplitude K is a constant scaling factor and the phase SA(f) is a nonlinear
function of frequency f; it is the nonlinearity of S(f) that is responsible for the dispersive

m(t)

DSB-SC
—=> modulated wave
s(1) = A.m(t) cos (2nf,.1)

| ; [
Carrier
A, cos (2nf.1)

(a) (b)

Baseband Product
signal m(r) modulator

s(1)

Phase reversals

(©)

(a) Block diagram of product modulator; (b) Baseband signal;
(c) DSB-SC modulated wave.
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nature of the channel. The input signal s(¢) is assumed to be of the kind displayed in Figure
2.31; that is, the DSB-SC-modulated signal

s(r) = m(t)cos(2nf 1)
where m(?) is the message signal, assumed to be of a low-pass kind and limited to the
frequency interval | f| < W. Moreover, we assume that the carrier frequency f, > W. By

expanding the phase S(f) in a Taylor series about the point f = f, and retaining only the
first two terms, we may approximate J3(f) as

- 0
ﬂﬁ~ﬁ¢)+d<ﬁ%§?f:&
Define two new terms:
_ Bt
p 2nf,

and

1D
g 21 af f=fc

Then, we may rewrite (2.114) in the equivalent form
B(f) = -2xf, T, - 2n(f-£,) A
Correspondingly, the transfer function of the channel takes the approximate form
H(f) = Kexp[-j2mf, 7, —jZTt(f—fc)Tg]
Following the band-pass-to-low-pass transformation described in Section 2.12, in

particular using (2.80), we may replace the band-pass channel described by H(f) by an
equivalent low-pass filter whose transfer function is approximately given by

H(f) = 2Kexp(-j2nf, 7,-i2nf7,),  f>f,

Correspondingly, using (2.67) we may replace the modulated signal s(f) of (2.113) by its
low-pass complex envelope, which, for the DSB-SC example at hand, is simply defined by

s(t) = m(¢)
Transforming s(¢) into the frequency domain, we may write
S = M(f)

Therefore, in light of (2.96), the Fourier transform of the complex envelope of the signal
received at the channel output is given by

X = SHO3P)
~ Kexp(—j2mf, Tp)exp(—j 2nf, Tg)M(f)

We note that the multiplying factor Kexp(—j2nf,7,) is a constant for fixed values of f;
. s P .

and 7,. We also note from the time-shifting property of the Fourier transform that the term

exp (—j2nf, Tg)M(f) represents the Fourier transform of the delayed signal m(t - 7).

Accordingly, the complex envelope of the channel output is

X(1) = Kexp(-j2nf,z)m(t - 7,)
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Finally, using (2.66) we find that the actual channel output is itself given by
x(1) = Re[x(1)exp(21f,1)]
Km(t- Tg)COS [27f (¢~ Tp)]

Equation (2.124) reveals that, as a result of transmitting the modulated signal s(¢) through
the dispersive channel, two different delay effects occur at the channel output:

The sinusoidal carrier wave cos(2mf.t) is delayed by 7, seconds; hence, T

P
represents the phase delay; sometimes 7, is referred to as the carrier delay.

The envelope m(7) is delayed by 7, seconds; hence, 7, represents the envelope or
group delay.

Note that 7, is related to the slope of the phase B(f), measured at f = f,. Note also that
when the phase response J(f) varies linearly with frequency fand S(f,) is zero, the phase
delay and group delay assume a common value. It is only then that we can think of these
two delays being equal.

Numerical Computation of the Fourier Transform

The material presented in this chapter clearly testifies to the importance of the Fourier
transform as a theoretical tool for the representation of deterministic signals and linear
time-invariant systems, be they of the low-pass or band-pass kind. The importance of the
Fourier transform is further enhanced by the fact that there exists a class of algorithms
called FFT algorithms” for numerical computation of the Fourier transform in an efficient
manner.

The FFT algorithm is derived from the discrete Fourier transform (DFT) in which, as
the name implies, both time and frequency are represented in discrete form. The DFT
provides an approximation to the Fourier transform. In order to properly represent the
information content of the original signal, we have to take special care in performing the
sampling operations involved in defining the DFT. A detailed treatment of the sampling
process is presented in Chapter 6. For the present, it suffices to say that, given a band-
limited signal, the sampling rate should be greater than twice the highest frequency
component of the input signal. Moreover, if the samples are uniformly spaced by T
seconds, the spectrum of the signal becomes periodic, repeating every f, = (1/T;) hz in
accordance with (2.43). Let N denote the number of frequency samples contained in the
interval f;. Hence, the frequency resolution involved in numerical computation of the
Fourier transform is defined by

where T is the total duration of the signal.

Consider then a finite data sequence {gy, g1, -.., &y _ 1} For brevity, we refer to this
sequence as g,, in which the subscript is the time indexn =0, 1, ..., N — 1. Such a sequence
may represent the result of sampling an analog signal g(¢) at times t =0, T, ..., (N — DT,
where T is the sampling interval. The ordering of the data sequence defines the sample
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time in that g, g;, ..., gy _ 1 denote samples of g(¢) taken at times 0, T, ..., (N — DT,
respectively. Thus we have

8, = 8(nTy)
We formally define the DFT of g, as

N-1 .
Ge= > gHGXP(—%Ckn) k=0,1,..,N-1
n=0

The sequence {G, Gy, ..., Gy _ 1} is called the transform sequence. For brevity, we refer
to this second sequence simply as Gy, in which the subscript is the frequency index k = 0,
1...N-1.

Correspondingly, we define the inverse discrete Fourier transform (IDFT) of Gy, as

N-1 :
g, = ]—1\—72 erxp(%tkn) n=0,1,...,N-1
k=0

The DFT and the IDFT form a discrete transform pair. Specifically, given a data sequence
g, we may use the DFT to compute the transform sequence Gy; and given the transform
sequence Gy, we may use the IDFT to recover the original data sequence g,. A distinctive
feature of the DFT is that, for the finite summations defined in (2.127) and (2.128), there is
no question of convergence.

When discussing the DFT (and algorithms for its computation), the words “sample”
and “point” are used interchangeably to refer to a sequence value. Also, it is common
practice to refer to a sequence of length N as an N-point sequence and to refer to the DFT
of a data sequence of length N as an N-point DFT.

We may visualize the DFT process described in (2.127) as a collection of N complex
heterodyning and averaging operations, as shown in Figure 2.32a. We say that the
heterodyning is complex in that samples of the data sequence are multiplied by complex
exponential sequences. There is a total of N complex exponential sequences to be
considered, corresponding to the frequency index k = 0, 1, ..., N — 1. Their periods have
been selected in such a way that each complex exponential sequence has precisely an
integer number of cycles in the total interval 0 to N — 1. The zero-frequency response,
corresponding to k = 0, is the only exception.

For the interpretation of the IDFT process, described in (2.128), we may use the
scheme shown in Figure 2.32b. Here we have a collection of N complex signal generators,
each of which produces the complex exponential sequence

exp (&Ekn) cos (Zﬁnkn) + jsin (%tkn)

N
27 27 N-
{cos (7\/_](”)’ sm(Tv—kn) }

1

Thus, in reality, each complex signal generator consists of a pair of generators that output
a cosinusoidal and a sinusoidal sequence of k cycles per observation interval. The output
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of each complex signal generator is weighted by the complex Fourier coefficient G;. At
each time index n, an output is formed by summing the weighted complex generator
outputs.

It is noteworthy that although the DFT and the IDFT are similar in their mathematical
formulations, as described in (2.127) and (2.128), their interpretations as depicted in
Figure 2.32a and b are so completely different.

exp(-L2% on)

Sum over
é —> G
n

exp(-L% n)

Sum over
é — G
n

exp(-L2%2n)
é Sum over G
n > G,

expCLE - 1)

Sum over G
n > Gy-i

(a)

Gy
—
exp(j;]_“ 0n) O—>
G

i2

exp(JN—" n) Hé—> N
—> % —> g,

exp(£2% 2n) Hé—>

Gni
exp(ji,—ﬂ- (N-1yn) o—»é—»

(b)
Interpretations of (a) the DFT and (b) the IDFT.

8n —>—O>§)—>—0
N
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Also, the addition of harmonically related periodic signals, involved in these two parts
of the figure, suggests that their outputs G; and g,, must be both periodic. Moreover, the
processors shown in Figure 2.32 are linear, suggesting that the DFT and IDFT are both
linear operations. This important property is also obvious from the defining equations
(2.127) and (2.128).

In the DFT both the input and the output consist of sequences of numbers defined at
uniformly spaced points in time and frequency, respectively. This feature makes the DFT
ideally suited for direct numerical evaluation on a computer. Moreover, the computation
can be implemented most efficiently using a class of algorithms, collectively called FFT
algorithms. An algorithm refers to a “recipe” that can be written in the form of a computer
program.

FFT algorithms are efficient because they use a greatly reduced number of arithmetic
operations as compared with the brute force (i.e., direct) computation of the DFT.
Basically, an FFT algorithm attains its computational efficiency by following the
engineering strategy of “divide and conquer,” whereby the original DFT computation is
decomposed successively into smaller DFT computations. In this section, we describe one
version of a popular FFT algorithm, the development of which is based on such a strategy.

To proceed with the development, we first rewrite (2.127), defining the DFT of g,, in
the convenient mathematical form

N-1
Ge= > g,W"  k=01,.,N-1
n=0

where we have introduced the complex parameter

21
- ( ] )
W = exp N

From this definition, we readily see that

wh =1
wY? = 1

W(l+ IN)(n+ mN) _ Wkn

. (m)=0,+1,42, ...

That is, W is periodic with period N. The periodicity of W is a key feature in the
development of FFT algorithms.

Let N, the number of points in the data sequence, be an integer power of two, as shown
by

L
N=2
where L is an integer; the rationale for this choice is explained later. Since N is an even

integer, N/2 is an integer, and so we may divide the data sequence into the first half and
last half of the points.
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Thus, we may rewrite (2.130) as

(N/2)—1 N-1
Z gann+ Z gan”

n=0 n=N/2

Gy

N/2)-1 (N/2)-1
(n+N/2)
Z gan"+ Z gn+N/2Wkn
n=0

n=0

(N/2)-1 Vo
Z (gn+gn+N/2Wk YW k=0,1,..,N-1
n=0

Since WN/2= _1, we have

WkN/ 2 = (-1 )k
Accordingly, the factor in (2.132) takes on only one of two possible values, namely
+1 or -1, depending on whether the frequency index k is even or odd, respectively. These
two cases are considered in what follows.
First, let k be even, so that WAN2 1. Also let

WkN/2

k=2 1=01..Y4

2
and define
Xn = 8nt8niNs2
Then, we may put (2.132) into the new form
(N/2)-1 i
G, = Z x, W
n=0
(N/2)-1 2 In N
= Z x, (W) l:O,l,...,E—l
n=0

From the definition of W given in (2.131), we readily see that

W2 exp (— %)

_J2n )
eXp( N/2
Hence, we recognize the sum on the right-hand side of (2.134) as the (N/2)-point DFT of
the sequence x,,.
Next, let k be odd so that WANIZ — 1 Also, let

k=2l+1, l=0,1,...,]—2Y—1
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and define

In = 8n=8n+N/2
Then, we may put (2.132) into the corresponding form
2041 N 2)- 1y 2+ D

n
n=0

G

(N/2)-1 I
> omWIwhT =0 S

n=0

We recognize the sum on the right-hand side of (2.136) as the (N/2)-point DFT of the
sequence y,W". The parameter W" associated with y,, is called the twiddle factor.

Equations (2.134) and (2.136) show that the even- and odd-valued samples of the
transform sequence Gy, can be obtained from the (N/2)-point DFTs of the sequences x,, and
v, W", respectively. The sequences x, and y, are themselves related to the original data
sequence g, by (2.133) and (2.135), respectively. Thus, the problem of computing an
N-point DFT is reduced to that of computing two (N/2)-point DFTs. The procedure just
described is repeated a second time, whereby an (N/2)-point DFT is decomposed into two
(N/4)-point DFTs. The decomposition procedure is continued in this fashion until (after
L =log,N stages) we reach the trivial case of N single-point DFTs.

Figure 2.33 illustrates the computations involved in applying the formulas of (2.134)
and (2.136) to an eight-point data sequence; that is, N = 8. In constructing left-hand
portions of the figure, we have used signal-flow graph notation. A signal-flow graph
consists of an interconnection of nodes and branches. The direction of signal transmission
along a branch is indicated by an arrow. A branch multiplies the variable at a node (to
which it is connected) by the branch transmittance. A node sums the outputs of all
incoming branches. The convention used for branch transmittances in Figure 2.33 is as
follows. When no coefficient is indicated on a branch, the transmittance of that branch is
assumed to be unity. For other branches, the transmittance of a branch is indicated by —1 or
an integer power of W, placed alongside the arrow on the branch.

Thus, in Figure 2.33a the computation of an eight-point DFT is reduced to that of two
four-point DFTs. The procedure for the eight-point DFT may be mimicked to simplify the
computation of the four-point DFT. This is illustrated in Figure 2.33b, where the
computation of a four-point DFT is reduced to that of two two-point DFTs. Finally, the
computation of a two-point DFT is shown in Figure 2.33c.

Combining the ideas described in Figure 2.33, we obtain the complete signal-flow
graph of Figure 2.34 for the computation of the eight-point DFT. A repetitive structure,
called the butterfly with two inputs and two outputs, can be discerned in the FFT algorithm
of Figure 2.34. Examples of butterflies (for the three stages of the algorithm) are shown by
the bold-faced lines in Figure 2.34.

For the general case of N = 2L, the algorithm requires L = log,N stages of computation.
Each stage requires (N/2) butterflies. Each butterfly involves one complex multiplication
and two complex additions (to be precise, one addition and one subtraction). Accordingly,
the FFT structure described here requires (N/2)log,N complex multiplications and Nlog,N
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Decimation-in-frequency
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complex additions; actually, the number of multiplications quoted is pessimistic, because
we may omit all twiddle factors W0 =1 and WV? = 1, WV = Js w3NA = —j. This
computational complexity is significantly smaller than that of the N? complex
multiplications and N(N — 1) complex additions required for direct computation of the
DFT. The computational savings made possible by the FFT algorithm become more
substantial as we increase the data length N. For example, for N = 8192 = 21 the direct
approach requires approximately 630 times as many arithmetic operations as the FFT
algorithm, hence the popular use of the FFT algorithm in computing the DFT.

We may establish two other important features of the FFT algorithm by carefully
examining the signal-flow graph shown in Figure 2.34:

At each stage of the computation, the new set of N complex numbers resulting from
the computation can be stored in the same memory locations used to store the
previous set. This kind of computation is referred to as in-place computation.
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The samples of the transform sequence G are stored in a bit-reversed order. To
illustrate the meaning of this terminology, consider Table 2.6 constructed for the
case of N = 8. At the left of the table, we show the eight possible values of the
frequency index k (in their natural order) and their 3-bit binary representations. At
the right of the table, we show the corresponding bit-reversed binary representations
and indices. We observe that the bit-reversed indices in the rightmost column of
Table 2.6 appear in the same order as the indices at the output of the FFT algorithm
in Figure 2.34.

lllustrating bit reversal

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

The FFT algorithm depicted in Figure 2.34 is referred to as a decimation-in-frequency
algorithm, because the transform (frequency) sequence Gy is divided successively into
smaller subsequences. In another popular FFT algorithm, called a decimation-in-time
algorithm, the data (time) sequence g,, is divided successively into smaller subsequences.
Both algorithms have the same computational complexity. They differ from each other in
two respects. First, for decimation-in-frequency, the input is in natural order, whereas the
output is in bit-reversed order; the reverse is true for decimation-in-time. Second, the
butterfly for decimation-in-time is slightly different from that for decimation-in-
frequency. The reader is invited to derive the details of the decimation-in-time algorithm
using the divide-and-conquer strategy that led to the development of the algorithm
described in Figure 2.34.

In devising the FFT algorithm presented herein, we placed the factor 1/N in the formula
for the forward DFT, as shown in (2.128). In some other FFT algorithms, location of the
factor 1/N is reversed. In yet other formulations, the factor 1/ JTV is placed in the
formulas for both the forward and inverse DFTs for the sake of symmetry.

The IDFT of the transform G, is defined by (2.128). We may rewrite this equation in terms
of the complex parameter W as

1N—1
gy = Nkz

=0

GW ", n=0,1,..,N-1
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Complex Gi FFT Ng: Complex n Divide 8n

conjugate conjugate by N

Ng

Use of the FFT algorithm for computing the IDFT.

Taking the complex conjugate of (2.137) and multiplying by N, we get
N-1 _kn
Ng, = ZGZW , n=0,1,..,N-1
k=0

The right-hand side of (2.138) is recognized as the N-point DFT of the complex-
conjugated sequence Gz . Accordingly, (2.138) suggests that we may compute the desired
sequence g, using the scheme shown in Figure 2.35, based on an N-point FFT algorithm.
Thus, the same FFT algorithm can be used to handle the computation of both the IDFT
and the DFT.

Summary and Discussion

In this chapter we have described the Fourier transform as a fundamental tool for relating
the time-domain and frequency-domain descriptions of a deterministic signal. The signal
of interest may be an energy signal or a power signal. The Fourier transform includes the
exponential Fourier series as a special case, provided that we permit the use of the Dirac
delta function.

An inverse relationship exists between the time-domain and frequency-domain
descriptions of a signal. Whenever an operation is performed on the waveform of a signal
in the time domain, a corresponding modification is applied to the spectrum of the signal
in the frequency domain. An important consequence of this inverse relationship is the fact
that the time—bandwidth product of an energy signal is a constant; the definitions of signal
duration and bandwidth merely affect the value of the constant.

An important signal-processing operation frequently encountered in communication
systems is that of linear filtering. This operation involves the convolution of the input
signal with the impulse response of the filter or, equivalently, the multiplication of the
Fourier transform of the input signal by the transfer function (i.e., Fourier transform of the
impulse response) of the filter. Low-pass and band-pass filters represent two commonly
used types of filters. Band-pass filtering is usually more complicated than low-pass
filtering. However, through the combined use of a complex envelope for the representation
of an input band-pass signal and the complex impulse response for the representation of a
band-pass filter, we may formulate a complex low-pass equivalent for the band-pass
filtering problem and thereby replace a difficult problem with a much simpler one. It is
also important to note that there is no loss of information in establishing this equivalence.
A rigorous treatment of the concepts of complex envelope and complex impulse response
as presented in this chapter is rooted in Hilbert transformation.

The material on Fourier analysis, as presented in this chapter, deals with signals whose
waveforms can be nonperiodic or periodic, and whose spectra can be continuous or
discrete functions of frequency. In this sense, the material has general appeal.
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Building on the canonical representation of a band-pass signal involving the in-phase
and quadrature components of the signal, we showed that this representation provides an
elegant way of describing the three basic forms of linear modulation, namely DSB-SC,
VSB, and SSB.

With the Fourier transform playing such a pervasive role in the study of signals and
linear systems, we finally described the FFT algorithm as an efficient tool for numerical
computation of the DFT that represents the uniformly sampled versions of the forward and
inverse forms of the ordinary Fourier transform.

Problems

The Fourier Transform
Prove the dilation property of the Fourier transform, listed as Property 2 in Table 2.1.

Prove the duality property of the Fourier transform, listed as Property 3 in Table 2.1.

Prove the time-shifting property, listed as Property 4; and then use the duality property to prove
the frequency-shifting property, listed as Property 5 in the table.

Using the frequency-shifting property, determine the Fourier transform of the radio frequency RF
pulse

t
g(t) = Arect(}) cos(2mf 1)
assuming that f;, is larger than (1/7).

Prove the multiplication-in-the-time-domain property of the Fourier transform, listed as Property
11 in Table 2.1.

Prove the convolution in the time-domain property, listed as Property 12.

Using the result obtained in part b, prove the correlation theorem, listed as Property 13.

Prove Rayleigh’s energy theorem listed as Property 14 in Table 2.1.
The following expression may be viewed as an approximate representation of a pulse with finite rise

time: T 5
g(t) = lj exp[—ﬂjdu
o, 2

where it is assumed that 7 >> 7. Determine the Fourier transform of g(z). What happens to this
transform when we allow 7to become zero? Hint: Express g(¢) as the superposition of two signals,
one corresponding to integration from 7 — T to 0, and the other from O to ¢ + T.

The Fourier transform of a signal g(¢) is denoted by G(f). Prove the following properties of the
Fourier transform:

If a real signal g(¢) is an even function of time ¢, the Fourier transform G(f) is purely real. If a
real signal g(¢) is an odd function of time ¢, the Fourier transform G(f) is purely imaginary.

n (1 )” (n)
s = (L) 6"
where G"(f) is the nth derivative of G(f) with respect to f.

jiz"g(t) dr = (ZJ—R)HG(")(O)
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Assuming that both g(f) and g,(#) are complex signals, show that:

§ 0830 = | GGy (A-NdA

and
[ aigdt = [ GG, (Hdf
The root mean-square (rms) bandwidth of a low-pass signal g(¢) of finite energy is defined by

) 2 172
[ Fleoi’er
w - =

rms

| 160iyr

where |G(]‘)|2 is the energy spectral density of the signal. Correspondingly, the root mean-square
(rms) duration of the signal is defined by

172

= 2 2
[ Fleldr

[ lewlar

Using these definitions, show that

1
TiinsWims 2 4_1'C

Assume that |g(7)] — 0 faster than 1/./]f] as || — .
Consider a Gaussian pulse defined by

2
g(r) = exp(-mt’)
Show that for this signal the equality

is satisfied.

Hint: Use Schwarz’s inequality

o 2 oo o
([ 1810800+ g, (08,*01d1) <] [g,(0far] |gyn)ds

in which we set

g (1) = 18(1)
and
NORE

The Dirac comb, formulated in the time domain, is defined by

or, (1) = i ot —mT,)

m=—oo

where Ty, is the period.
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Show that the Dirac comb is its own Fourier transform. That is, the Fourier transform of 5T0(t) is
also an infinitely long periodic train of delta functions, weighted by the factor fy = (1/T)) and
regularly spaced by f; along the frequency axis.

Hence, prove the pair of dual relations:

i &t -mTy) = f, i exp (j27nf,1)

m = —oo n = —oo

T, i exp(j2nmfT,) = i o(f - nfy)

m=—oo n=—oo

Finally, prove the validity of (2.38).

Signal Transmission through Linear Time-invariant Systems
The periodic signal

x(1) = i x(nTy) &t —nTy)

m= —oo

is applied to a linear system of impulse response /(7). Show that the average power of the signal y(7)
produced at the system output is defined by

& 2 2
Py, = z ’x(nTO)’ |H(nf0)|
n=—oo
where H(f) is the frequency response of the system, and f = 1/7,.
According to the bounded input—bounded output stability criterion, the impulse response /(f) of a

linear-invariant system must be absolutely integrable; that is,

jm |h(1)|dt < oo

Prove that this condition is both necessary and sufficient for stability of the system.

Hilbert Transform and Pre-envelopes
Prove the three properties of the Hilbert transform itemized on pages 43 and 44.

Let g(r) denote the Hilbert transform of g(r). Derive the set of Hilbert-transform pairs listed as
items 5 to 8 in Table 2.3.

Evaluate the inverse Fourier transform g(¢) of the one-sided frequency function:

exp(—f), f>0
G =11 _
()] 5 =0
0, <0

Show that g(7) is complex, and that its real and imaginary parts constitute a Hilbert-transform pair.

Let g(¢) denote the Hilbert transform of a Fourier transformable signal g(r). Show that d%g}(t) is
equal to the Hilbert transform of (%g(t) .
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In this problem, we revisit Problem 2.14, except that this time we use integration rather than
differentiation. Doing so, we find that, in general, the integral j g(1)dr is not equal to the Hilbert
transform of the integral I g(r)dr.

Justify this statement.

Find the condition for which exact equality holds.

Determine the pre-envelope g, (#) corresponding to each of the following two signals:
g(#) = sinc(?)
g =[1 + k cos(2mf,t)]cos(2mf 1)

Complex Envelope

Show that the complex envelope of the sum of two narrowband signals (with the same carrier
frequency) is equal to the sum of their individual complex envelopes.

The definition of the complex envelope 5(¢) of a band-pass signal given in (2.65) is based on the
pre-envelope s,(7) for positive frequencies. How is the complex envelope defined in terms of the pre-
envelope s_(7) for negative frequencies? Justify your answer.

Consider the signal
s(t) = c(t)ym(t)
whose m(t) is a low-pass signal whose Fourier transform M(f) vanishes for | f| > W, and ¢(¢?) is a

high-pass signal whose Fourier transform C(f) vanishes for | f| < W. Show that the Hilbert transform
of s(7) is (1) = c(t)m(t), where ¢(t) is the Hilbert transform of c(t).

Consider two real-valued signals s,(f) and s,(f) whose pre-envelopes are denoted by s,(f) and
5,.(1), respectively. Show that
oo 1 oo .
[ Rels, (0IRels,, (0]dr = 5ReU 51.(D50,(1) dt}

Suppose that s,(f) is replaced by s,(—f). Show that this modification has the effect of removing
the complex conjugation in the right-hand side of the formula given in part a.

Assuming that s(7) is a narrowband signal with complex envelope s(¢) and carrier frequency f,
use the result of part a to show that

) 1 7~ 002
j_ws (ndi = 5 j_w|s(l)| dr
Let a narrow-band signal s(¢) be expressed in the form

s(1) = sy(t)cos(2mf 1) - sQ(t)sin(Zrcfct)

Using S,(f) to denote the Fourier transform of the pre-envelope of s,(¢), show that the Fourier
transforms of the in-phase component sy(r) and quadrature component sg(7) are given by

S1) = SIS, + 1) + SL-f+£)]

1 *
Solf) = FS,F+F)-S, -1 +1)]

respectively, where the asterisk denotes complex conjugation.

The block diagram of Figure 2.20a illustrates a method for extracting the in-phase component sy(?)
and quadrature component so(f) of a narrowband signal s(f). Given that the spectrum of s(z) is
limited to the interval f, - W <| f| f, + W, demonstrate the validity of this method. Hence, show that
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SU-f)+S(F+f),  -WSf<w

0, elsewhere

SI(]‘) =
and

SU—f)-SU+f)).  ~WSf<W
0, elsewhere

So(h =

where Sy(f), SQQ‘), and S(f) are the Fourier transforms of sy(7), sq(t), and s(f), respectively.

Low-Pass Equivalent Models of Band-Pass Systems

Equations (2.82) and (2.83) define the in-phase component ﬁll(j) and the quadrature component
HQ(f) of the frequency response H(f) of the complex low-pass equivalent model of a band-pass
system of impulse response /(7). Prove the validity of these two equations.

Explain what happens to the low-pass equivalent model of Figure 2.21b when the amplitude
response of the corresponding bandpass filter has even symmetry and the phase response has odd
symmetry with respect to the mid-band frequency f..

The rectangular RF pulse

<t<
(1) = Acos(21tfct), 0<t<T

0, elsewhere

is applied to a linear filter with impulse response

h(t) = x(T-1)
Assume that the frequency f, equals a large integer multiple of 1/7. Determine the response of the
filter and sketch it.

Figure P2.26 depicts the frequency response of an idealized band-pass filter in the receiver of a
communication system, namely H(f), which is characterized by a bandwidth of 2B centered on the
carrier frequency f.. The signal applied to the band-pass filter is described by the modulated sinc
function:

x(1) = 4A_B sinc(2Bt) cos[2n(f, £ Af)t]

where Af is frequency misalignment introduced due to the receiver’s imperfections, measured with
respect to the carrier A cos(27f,z) .

Find the complex low-pass equivalent models of the signal x(¢) and the frequency response H(f).

H(
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Then, go on to find the complex low-pass response of the filter output, denoted by y() , which
includes distortion due to tAf.

Building on the formula derived for y(¢) obtained in part b, explain how you would mitigate the
misalignment distortion in the receiver.

Nonlinear Modulations

In analog communications, amplitude modulation is defined by

sam() = A1 +k,m(1)] cos(2nf.1)

where A cos(27f,t) is the carrier, m(7) is the message signal, and k, is a constant called amplitude
sensitivity of the modulator. Assume that |k m(#)| <1 for all time 7.

Justify the statement that, in a strict sense, s );(#) violates the principle of superposition.
Formulate the complex envelope s am(?) and its spectrum.

Compare the result obtained in part b with the complex envelope of DSB-SC. Hence, comment
on the advantages and disadvantages of amplitude modulation.

Continuing on with analog communications, frequency modulation (FM) is defined by

spag(f) = AC[ cos(2mf, 1) + kfjt m(z) d‘r}

where A_cos(27f t) is the carrier, m(f) is the message signal, and k¢ is a constant called the
frequency sensitivity of the modulator.

Show that frequency modulation is nonlinear in that it violates the principle of superposition.
Formulate the complex envelope of the FM signal, namely sp;(?) .

Consider the message signal to be in the form of a square wave as shown in Figure P2.28. The
modulation frequencies used for the positive and negative amplitudes of the square wave, namely
fj and f>, are defined as follows:

f1+f2=i,‘2‘l;
f1‘f2=%;

where Ty, is the duration of each positive or negative amplitude in the square wave. Show that
under these conditions the complex envelope EFM(t) maintains continuity for all time ¢,
including the switching times between positive and negative amplitudes.

Plot the real and imaginary parts of §FM(t) for the following values:

T, = %s

fi —41HZ
2

fH = 11HZ
2

Phase and Group Delays

The phase response of a band-pass communication channel is defined by.

2 2
o(f) = —tan‘l(f _ij
1,
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m(t)

+1

T-1
}‘ Tb"}‘ Tp™
A sinusoidally modulated signal defined by
s(1) = A cos(2mf  1)cos(27f 1)

is transmitted through the channel; f; is the carrier frequency and f;, is the modulation frequency.
Determine the phase delay %,
Determine the group delay Ty,

Display the waveform produced at the channel output; hence, comment on the results obtained in
parts a and b.

Notes

1. For a proof of convergence of the Fourier series, see Kammler (2000)

2. If a time function g(¢) is such that the value of the energy J | g(t)I dt is defined and finite, then
the Fourier transform G(f) of the function g(¢) exists and -

2

J=0

Jm []

This result is known as Plancherel’s theorem. For a proof of this theorem, see Titchmarsh (1950).

g(n) -

3. The notation &(¢) for a delta function was first introduced into quantum mechanics by Dirac. This
notation is now in general use in the signal processing literature. For detailed discussions of the delta
function, see Bracewell (1986).

In a rigorous sense, the Dirac delta function is a distribution, not a function; for a rigorous treatment
of the subject, see the book by Lighthill (1958).

4. The Paley—Wiener criterion is named in honor of the authors of the paper by Paley and Wiener
(1934).

5. The integral in (2.54), defining the Hilbert transform of a signal, is an improper integral in that
the integrand has a singularity at 7= . To avoid this singularity, the integration must be carried out in
a symmetrical manner about the point 7= t. For this purpose, we use the definition

o =€

P[ £2ar= lim U (T)dr+f (T)dr}
o T g 0LY oo

where the symbol P denotes Cauchy’s principal value of the 1ntegral and € is incrementally

small. For notational simplicity, the symbol P has been omitted from (2.54) and (2.55).

6. The complex representation of an arbitrary signal defined in (2.58) was first described by Gabor
(1946). Gabor used the term “analytic signal.” The term “pre-envelope” was used in Arens (1957)
and Dungundji (1958). For a review of the different envelopes, see the paper by Rice (1982).

7. The FFT is ubiquitous in that it is applicable to a great variety of unrelated fields. For a detailed

mathematical treatment of this widely used tool and its applications, the reader is referred to
Brigham (1988).






Probability Theory and
Bayesian Inference

Introduction

The idea of a mathematical model used to describe a physical phenomenon is well
established in the physical sciences and engineering. In this context, we may distinguish
two classes of mathematical models: deterministic and probabilistic. A model is said to be
deterministic if there is no uncertainty about its time-dependent behavior at any instant of
time; linear time-invariant systems considered in Chapter 2 are examples of a
deterministic model. However, in many real-world problems, the use of a deterministic
model is inappropriate because the underlying physical phenomenon involves too many
unknown factors. In such situations, we resort to a probabilistic model that accounts for
uncertainty in mathematical terms.

Probabilistic models are needed for the design of systems that are reliable in
performance in the face of uncertainty, efficient in computational terms, and cost effective
in building them. Consider for example, a digital communication system that is required to
provide practically error-free communication across a wireless channel. Unfortunately, the
wireless channel is subject to uncertainties, the sources of which include:

* noise, internally generated due to thermal agitation of electrons in the conductors
and electronic devices at the front-end of the receiver;

* fading of the channel, due to the multipath phenomenon—an inherent characteristic
of wireless channels;

* interference, representing spurious electromagnetic waves emitted by other
communication systems or microwave devices operating in the vicinity of the receiver.

To account for these uncertainties in the design of a wireless communication system, we
need a probabilistic model of the wireless channel.
The objective of this chapter, devoted to probability theory, is twofold:

* the formulation of a logical basis for the mathematical description of probabilistic
models and
 the development of probabilistic reasoning procedures for handling uncertainty.

Since the probabilistic models are intended to assign probabilities to the collections (sets)
of possible outcomes of random experiments, we begin the study of probability theory
with a review of set theory, which we do next.

87
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Set Theory

The objects constituting a set are called the elements of the set. Let A be a set and x be an
element of the set A. To describe this statement, we write x € A ; otherwise, we write
x ¢ A.If the set A is empty (i.e., it has no elements), we denote it by & .

If xq, x5, ..., xy are all elements of the set A, we write

A = {x), Xy, ..., XN}

in which case we say that the set A is countably finite. Otherwise, the set is said to be
countably infinite. Consider, for example, an experiment involving the throws of a die. In
this experiment, there are six possible outcomes: the showing of one, two, three, four, five,
and six dots on the upper surface of the die; the set of possible outcomes of the experiment
is therefore countably finite. On the other hand, the set of all possible odd integers, written
as {1, £3, £5, ...}, is countably infinite.

If every element of the set A is also an element of another set B, we say that A is a
subset of B, which we describe by writing A ¢ B..

If two sets A and B satisfy the conditions A — B and B c A, then the two sets are said
to be identical or equal, in which case we write A = B.

In a discussion of set theory, we also find it expedient to think of a universal set,
denoted by S. Such a set contains every possible element that could occur in the context of
arandom experiment.

To illustrate the validity of Boolean operations on sets, the use of Venn diagrams can be
helpful, as shown in what follows.

Unions and Intersections

The union of two sets A and B is defined by the set of elements that belong to A or B, or to
both. This operation, written as A U B, is illustrated in the Venn diagram of Figure 3.1.
The intersection of two sets A and B is defined by the particular set of elements that belong
to both A and B, for which we write A N B. The shaded part of the Venn diagram in
Figure 3.1 represents this second operation.

Universal set S

AuB

AnB

Tllustrating the union and intersection
of two sets, A and B.
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Universal set S

Ilustrating the partition of set A into
three subsets: Aq, Ay, and As.

Let x be an element of interest. Mathematically, the operations of union and
intersection are respectively described by
AUB = {x|]xeA or x e B}
and
ANB = {x|xeA and x € B}

where the symbol | is shorthand for “such that.”

Disjoint and Partition Sets

Two sets A and B are said to be disjoint if their intersection is empty; that is, they have no
common elements.

The partition of a set A refers to a collection of disjoint subsets A;, A,, ..., Ay of the set
A, the union of which equals A; that is,

A=AVA, ...VUAy
The Venn diagram illustrating the partition operation is depicted in Figure 3.2 for the

example of N = 3.

Complements

The set A® is said to be the complement of the set A, with respect to the universal set S, if it
is made up of all the elements of S that do not belong to A, as depicted in Figure 3.3.

Universal set S

A

Illustrating the complement A° of set A.
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The Algebra of Sets
Boolean operations on sets have several properties, summarized here:

Idempotence property

(A=A

Commutative property

AUB =BUA

ANB =BNA

Associative property

Au(BuUC)=(AuB)uC

ANn(BNC)=(ANnB)NC

Distributive property

ANn(BUC)=(ANnB)UANC)

AUBNC)=(AUB)N(AUCO)

Note that the commutative and associative properties apply to both the union and
intersection, whereas the distributive property applies only to the intersection.
De Morgan’s laws

The complement of the union of two sets A and B is equal to the intersection of their
respective complements; that is

(AUB)" = AN B°
The complement of the intersection of two sets A and B is equal to the union of their
respective complements; that is,

(AnB)" = A°UB°
For illustrations of these five properties and their confirmation, the reader is referred to
Problem 3.1.

Probability Theory

The mathematical description of an experiment with uncertain outcomes is called a
probabilistic model, the formulation of which rests on three fundamental ingredients:

Sample space or universal set S, which is the set of all conceivable outcomes of a
random experiment under study.
A class E of events that are subsets of S.
Probability law, according to which a nonnegative measure or number P[A] is
assigned to an event A. The measure [P[A] is called the probability of event A. In a
sense, P[A] encodes our belief in the likelihood of event A occurring when the
experiment is conducted.
Throughout the book, we will use the symbol [P[.] to denote the probability of occurrence
of the event that appears inside the square brackets.
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Probability
Pl

Ilustration of the relationship between sample space, events, and probability

As illustrated in Figure 3.4, an event may involve a single outcome or a subset of
possible outcomes in the sample space S. These possibilities are exemplified by the way in
which three events, A, B, and C, are pictured in Figure 3.4. In light of such a reality, we
identify two extreme cases:

* Sure event, which embodies all the possible outcomes in the sample space S.
*  Null or impossible event, which corresponds to the empty set or empty space & .

Fundamentally, the probability measure [P[A], assigned to event A in the class E, is
governed by three axioms:

Axiom I Nonnegativity The first axiom states that the probability of event A is a
nonnegative number bounded by unity, as shown by

O <P[A]=L1 for any event A

Axiom II Additivity The second axiom states that if A and B are two disjoint events,
then the probability of their union satisfies the equality

P[Av B] = P[A] + P[B]
In general, if the sample space has N elements and A}, A,, ..., Ay is a sequence of disjoint
events, then the probability of the union of these N events satisfies the equality

P[A,UA,U ... Ay] = P[A]1+P[A,]+ ... + P[A4,]

Axiom IIl Normalization The third and final axiom states that the probability of the
entire sample space S is equal to unity, as shown by

P[S] =1
These three axioms provide an implicit definition of probability. Indeed, we may use them
to develop some other basic properties of probability, as described next.
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The probability of an impossible event is zero.

To prove this property, we first use the axiom of normalization, then express the sample
space S as the union of itself with the empty space &, and then use the axiom of
additivity. We thus write

—_
Il

PS]

P[Suw ]
P[S]+ P[]
1+ P[]

from which the property P[J] = 0 follows immediately.

Let A€ denote the complement of event A; we may then write

P[AC] = 1-P[A] for any event A

To prove this property, we first note that the sample space S is the union of the two
mutually exclusive events A and A®. Hence, the use of the additivity and normalization
axioms yields

—_
Il

P[S]

P[AUA"]
P[A] + P[A]

from which, after rearranging terms, (3.4) follows immediately.

If event A lies within the subspace of another event B, then
P[A] < P[B] for AcB

To prove this third property, consider the Venn diagram depicted in Figure 3.5. From this
diagram, we observe that event B may be expressed as the union of two disjoint events, one
defined by A and the other defined by the intersection of B with the complement of A; that is,

B=AU(BNA"

Universal set S

The Venn diagram for proving (3.5).
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Therefore, applying the additivity axiom to this relation, we get

P[B] = P[A]+P[BNA]
Next, invoking the nonnegativity axiom, we immediately find that the probability of event
B must be equal to or greater than the probability of event A, as indicated in (3.5).

Let N disjoint events A, A,, ..., Ay satisfy the condition

AlVA UL Ay =S
then

PIA ]+ P[A,]+ ...+ P[Ay] = 1

To prove this fourth property, we first apply the normalization axiom to (3.6) to write

P[A, VA, U ... UAN] =1
Next, recalling the generalized form of the additivity axiom

P[A, VA, U ... Ayl = P[A]+P[A,]+... + P[A]

From these two relations, (3.7) follows immediately.
For the special case of N equally probable events, (3.7) reduces to

PlA,] = ]%] fori=1,2,...,.N

If two events A and B are not disjoint, then the probability of their union event is defined by
P[AuUB] = P[A]+P[B]-P[AnB] forany twoevents A and B
where P[A N B] is called the joint probability of A and B.
To prove this last property, consider the Venn diagram of Figure 3.6. From this figure,
we first observe that the union of A and B may be expressed as the union of two disjoint

events: A itself and A° N B, where A® is the complement of A. We may therefore apply the
additivity axiom to write

P[AUB] = P[AU (A° " B)]

P[A] + P[A° N B]

Universal set S

The Venn diagram for proving (3.9).
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From the Venn diagram of Figure 3.6, we next observe that the event B may be expressed as
B=SnB

= (AUA“)NB

= (AnB)U(A°NB)
That is, B is the union of two disjoint events: A N B and A° A B ; therefore, applying the
additivity axiom to this second relation yields

P[B] = P[A N B]+P[A° N B]
Subtracting (3.11) from (3.10), canceling the common term |]3’[AC M B] and rearranging
terms, (3.9) follows and Property 4 is proved.

It is of interest to note that the joint probability P[A N B] accounts for that part of the
sample space S where the events A and B coincide. If these two events are disjoint, then the
joint probability P[A N B] is zero, in which case (3.9) reduces to the additivity axiom of
(3.2).

When an experiment is performed and we only obtain partial information on the outcome
of the experiment, we may reason about that particular outcome by invoking the notion of
conditional probability. Stated the other way round, we may make the statement:

To be specific, suppose we perform an experiment that involves a pair of events A and B.
Let P[A|B] denote the probability of event A given that event B has occurred. The
probability P[A|B] is called the conditional probability of A given B. Assuming that B has
nonzero probability, the conditional probability P[A|B] is formally defined by

where P[A M B] is the joint probability of events A and B, and P[B] is nonzero.
For a fixed event B, the conditional probability P[A|B] is a legitimate probability law
as it satisfies all three axioms of probability:
Since by definition, P[A|B] is a probability, the nonnegativity axiom is clearly
satisfied.
Viewing the entire sample space S as event A and noting that S U B = B, we may
use (3.12) to write
PLS|B] = PIS|B] _ P[B] _
P[B]  P[B]

Hence, the normalization axiom is also satisfied.

Finally, to verify the additivity axiom, assume that A; and A, are two mutually
exclusive events. We may then use (3.12) to write

P[(A, VA,) N B]

P[4, U A,|B] = 15
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Applying the distributive property to the numerator on the right-hand side, we have
P[(A, v B)U (A, N B)]
P[B]

Next, recognizing that the two events A; N B and A, N B are actually disjoint, we
may apply the additivity axiom to write

P[A, nB]+P[A, " B]
P[B]
_ P[A, N B] . P[A, N B]
P[B] P[B]

which proves that the conditional probability also satisfies the additivity axiom.

PIA, U A,[B] =

PlA, U A,|B]

We therefore conclude that all three axioms of probability (and therefore all known
properties of probability laws) are equally valid for the conditional probability P[A|B]. In
a sense, this conditional probability captures the partial information that the occurrence of
event B provides about event A; we may therefore view the conditional probability P[A|B]
as a probability law concentrated on event B.

Suppose we are confronted with a situation where the conditional probability P[A|B] and
the individual probabilities P[A] and [P[B] are all easily determined directly, but the
conditional probability P[B|A] is desired. To deal with this situation, we first rewrite
(3.12) in the form

P[A N B]
Clearly, we may equally write
P[ANB] = P[B|A]P[A]
The left-hand parts of these two relations are identical; we therefore have
P[A|B]P[B] = P[B|A]P[A]

Provided that PP[A] is nonzero, we may determine the desired conditional probability
P[B|A] by using the relation

P[A|B]P[B]

p(sj) = PIAIBIPIB]

PlA]
This relation is known as Bayes’ rule.

As simple as it looks, Bayes’ rule provides the correct language for describing
inference, the formulation of which cannot be done without making assumptions.” The

following example illustrates an application of Bayes’ rule.

Radar Detection

Radar, a remote sensing system, operates by transmitting a sequence of pulses and has its
receiver listen to echoes produced by a target (e.g., aircraft) that could be present in its
surveillance area.
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Let the events A and B be defined as follows:

A = {atarget is present in the area under surveillance }
A€ = {there is no target in the area}
B = {the radar receiver detects a target}

In the radar detection problem, there are three probabilities of particular interest:

P[A] probability that a target is present in the area; this probability is called the
prior probability.

P[B|A] probability that the radar receiver detects a target, given that a target is
actually present in the area; this second probability is called the probability
of detection.

P[B|A€] probability that the radar receiver detects a target in the area, given that there
is no target in the surveillance area; this third probability is called the
probability of false alarm.

Suppose these three probabilities have the following values:

P[A] = 0.02
P[B|A] = 0.99
P[B|A®]=0.01

The problem is to calculate the conditional probability P[A|B] which defines the
probability that a target is present in the surveillance area given that the radar receiver has
made a target detection.

Applying Bayes’ rule, we write

P[B|A]P[A]
P[B]
_ P[B|A]P[A]
P[B|A]P[A] + P[B|A°]P[A]
_ 0.99 x 0.02
0.99 x 0.02 + 0.01 x 0.98
_ 0.0198

0.0296
0.69

P[A|B] =

4

Suppose that the occurrence of event A provides no information whatsoever about event B;
that is,

P[B|A] = P[B]

Then, (3.14) also teaches us that

P[A|B] = P[A]
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In this special case, we see that knowledge of the occurrence of either event, A or B, tells

us no more about the probability of occurrence of the other event than we knew without

that knowledge. Events A and B that satisfy this condition are said to be independent.
From the definition of conditional probability given in (3.12), namely,

P[A N B]
P[B]
we see that the condition P[A|B]= P[A] is equivalent to
P[ANB] = P[A]P[B]
We therefore adopt this latter relation as the formal definition of independence. The
important point to note here is that the definition still holds even if the probability [P[B] is

zero, in which case the conditional probability P[A|B] is undefined. Moreover, the
definition has a symmetric property, in light of which we can say the following:

P[A|B] =

Random Variables

It is customary, particularly when using the language of sample space pertaining to an
experiment, to describe the outcome of the experiment by using one or more real-valued
quantities or measurements that help us think in probabilistic terms. These quantities are
called random variables, for which we offer the following definition:

The following two examples illustrate the notion of a random variable embodied in this
definition.

Consider, for example, the sample space that represents the integers 1, 2, ..., 6, each
one of which is the number of dots that shows uppermost when a die is thrown. Let the
sample point k denote the event that k dots show in one throw of the die. The random
variable used to describe the probabilistic event k in this experiment is said to be a discrete
random variable.

For an entirely different experiment, consider the noise being observed at the front end
of a communication receiver. In this new situation, the random variable, representing the
amplitude of the noise voltage at a particular instant of time, occupies a continuous range
of values, both positive and negative. Accordingly, the random variable representing the
noise amplitude is said to be a continuous random variable.

The concept of a continuous random variable is illustrated in Figure 3.7, which is a
modified version of Figure 3.4. Specifically, for the sake of clarity, we have suppressed the
events but show subsets of the sample space S being mapped directly to a subset of a real
line representing the random variable. The notion of the random variable depicted in
Figure 3.7 applies in exactly the same manner as it applies to the underlying events. The
benefit of random variables, pictured in Figure 3.7, is that probability analysis can now be
developed in terms of real-valued quantities, regardless of the form or shape of the
underlying events of the random experiment under study.
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Random
variable

Probability

Tllustration of the relationship between sample
space, random variables, and probability.

One last comment is in order before we proceed further. Throughout the whole book,
we will be using the following notation:

Distribution Functions

To proceed with the probability analysis in mathematical terms, we need a probabilistic
description of random variables that works equally well for discrete and continuous
random variables. Let us consider the random variable X and the probability of the event
X < x. We denote this probability by P[X < x]. It is apparent that this probability is a
function of the dummy variable x. To simplify the notation, we write

Fy(x) = P[X<x] forall x

The function Fy(x) is called the cumulative distribution function or simply the distribution
function of the random variable X. Note that Fy(x) is a function of x, not of the random
variable X. For any point x in the sample space, the distribution function Fy(x) expresses
the probability of an event.

The distribution function Fy(x), applicable to both continuous and discrete random
variables, has two fundamental properties:

Boundedness of the Distribution

The distribution function Fx(x) is a bounded function of the dummy variable x that lies
between zero and one.

Specifically, Fy(x) tends to zero as x tends to —oo, and it tends to one as x tends to oo.
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Monotonicity of the Distribution

The distribution function Fx(x) is a monotone nondecreasing function of x.
In mathematical terms, we write

Fy(x) < Fy(xy)  forx,<x,
Both of these properties follow directly from (3.15).

The random variable X is said to be continuous if the distribution function Fy(x) is
differentiable with respect to the dummy variable x everywhere, as shown by

d
fx(x) = aFX(x) for all x

The new function fx(x) is called the probability density function of the random variable X.
The name, density function, arises from the fact that the probability of the event x; < X < x, is

Plx; <X<x,] = P[X<x,]-P[X<x]

FX(xz) — FX(xl)

jiz Fy(x) dx

The probability of an interval is therefore the area under the probability density function in
that interval. Putting x; = —o0 in (3.17) and changing the notation somewhat, we readily
see that the distribution function is defined in terms of the probability density function as

Fu) = [ foag

where & is a dummy variable. Since Fy(o) = 1, corresponding to the probability of a
sure event, and Fy(-o0) =0, corresponding to the probability of an impossible event, we
readily find from (3.17) that

| =1

Earlier we mentioned that a distribution function must always be a monotone
nondecreasing function of its argument. It follows, therefore, that the probability density
function must always be nonnegative. Accordingly, we may now formally make the
statement:

Nonnegativity

The probability density function fx(x) is a nonnegative function of the sample value x of
the random variable X.

Normalization

The total area under the graph of the probability density function fx(x) is equal to unity.
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An important point that should be stressed here is that the probability density function
Jx(x) contains all the conceivable information needed for statistical characterization of the
random variable X.

Uniform Distribution

To illustrate the properties of the distribution function Fy(x) and the probability density
function fy(x) for a continuous random variable, consider a uniformly distributed random
variable, described by

0, x<a
fx(x)= , a<x<b
b-a

0, x>b

Integrating fx(x) with respect to x yields the associated distribution function

0, x<a
Fy(x) =4 222 ,ox<p

b—a

0, x>b

Plots of these two functions versus the dummy variable x are shown in Figure 3.8.

fx) Fy(x)

b-a

(a) (b)

Uniform distribution.

Consider next the case of a discrete random variable, X, which is a real-valued function of
the outcome of a probabilistic experiment that can take a finite or countably infinite
number of values. As mentioned previously, the distribution function Fyx(x) defined in
(3.15) also applies to discrete random variables. However, unlike a continuous random
variable, the distribution function of a discrete random variable is not differentiable with
respect to its dummy variable x.
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To get around this mathematical difficulty, we introduce the notion of the probability
mass function as another way of characterizing discrete random variables. Let X denote a
discrete random variable and let x be any possible value of X taken from a set of real
numbers. We may then make the statement:

Stated in mathematical terms, we write
px(x) = P[X = x]

which is illustrated in the next example.

The Bernoulli Random Variable
Consider a probabilistic experiment involving the discrete random variable X that takes
one of two possible values:

* the value 1 with probability p;
* the value 0 with probability 1 — p.

Such a random variable is called the Bernoulli random variable, the probability mass
function of which is defined by

1-p x=0
px(x) = p, x=1
0, otherwise

This probability mass function is illustrated in Figure 3.9. The two delta functions, each of
weight 1/2, depicted in Figure 3.9 represent the probability mass function at each of the
sample pointsx =0 and x= 1.

Probability—" | 2
mass

function
PIX =x]

X

 — )|

0

Ilustrating the probability mass
function for a fair coin-tossing experiment.

From here on, we will, largely but not exclusively, focus on the characterization of
continuous random variables. A parallel development and similar concepts are possible for
discrete random variables as well.
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Thus far we have focused attention on situations involving a single random variable.
However, we frequently find that the outcome of an experiment requires several random
variables for its description. In what follows, we consider situations involving two random
variables. The probabilistic description developed in this way may be readily extended to
any number of random variables.

Consider two random variables X and Y. In this new situation, we say:

The variables X and Y may be two separate one-dimensional random variables or the
components of a single two-dimensional random vector. In either case, the joint sample
space is the xy-plane. The joint distribution function Fx y(x,y) is the probability that the
outcome of an experiment will result in a sample point lying inside the quadrant
(-0 <X <x,—0 < Y<y) of the joint sample space. That is,

FX Y(X,y) = [FD[XS)C, YSy]

Suppose that the joint distribution function Fy y(x,y) is continuous everywhere and that the
second-order partial derivative

2
0 FX, Y(X, y)
O0x0y

exists and is continuous everywhere too. We call the new function fy y(x,y) the joint
probability density function of the random variables X and Y. The joint distribution
function Fy y(x,y) is a monotone nondecreasing function of both x and y. Therefore, from
(3.25) it follows that the joint probability density function fy y(x,y) is always nonnegative.
Also, the total volume under the graph of a joint probability density function must be
unity, as shown by the double integral

fX, y(xa y) =

.[io jio Jx y(x,y)dxdy =1

The so-called marginal probability density functions, fx(x) and fy(y), are obtained by
differentiating the corresponding marginal distribution functions

Fx(x) = fX, y(X, )
and
Fy()’) = fX, Y(oo, y)
with respect to the dummy variables x and y, respectively. We thus write

) = SR y()

B d—d)-c mD‘:fx, (&) dy} dg

[ fvxndy
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Similarly, we write
Fr0) = [ f plmy)dx
—o0

In words, the first marginal probability density function fy(x), defined in (3.27), is
obtained from the joint probability density function fy y(x,y) by simply integrating it over
all possible values of the undesired random variable Y. Similarly, the second marginal
probability density function fy(y), defined in (3.28), is obtained from fy y(x,y) by
integrating it over all possible values of the undesired random variable; this time, the
undesirable random variable is X. Henceforth, we refer to fx(x) and fy(y), obtained in the
manner described herein, as the marginal densities of the random variables X and ¥, whose
joint probability density function is fy y(x,y). Here again, we conclude the discussion on a
pair of random variables with the following statement:

This statement can be generalized to cover the joint probability density function of many
random variables.

Suppose that X and Y are two continuous random variables with their joint probability
density function fx y(x,y). The conditional probability density function of Y, such that
X = x, is defined by

fx,y(xs y)
fx(x)

provided that fy(x) > 0, where fy(x) is the marginal density of X; fy(y|x) is a shortened
version of fy|x( y|x), both of which are used interchangeably. The function fy(y|x) may be
thought of as a function of the variable Y, with the variable x arbitrary but fixed;
accordingly, it satisfies all the requirements of an ordinary probability density function for
any x, as shown by

fyOlx) =

fy(y|x) 20
and

[ HoW =1

Cross-multiplying terms in (3.29) yields
fX,Y (x,y) = fy()’|x)fx(x)

which is referred to as the multiplication rule.

Suppose that knowledge of the outcome of X can, in no way, affect the distribution of Y.
Then, the conditional probability density function fy(y|x) reduces to the marginal density
fy(y), as shown by

fy()’|x) = fy()’)
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In such a case, we may express the joint probability density function of the random
variables X and Y as the product of their respective marginal densities; that is,

fX,y (x,y) = fx(x)fy(y)

On the basis of this relation, we may now make the following statement on the
independence of random variables:

Let X and Y be two continuous random variables that are statistically independent; their
respective probability density functions are denoted by fx(x) and fy(y). Define the sum

Z=X+Y

The issue of interest is to find the probability density function of the new random variable
Z, which is denoted by f7(2).
To proceed with this evaluation, we first use probabilistic arguments to write

P[Z<z|X=x] = P[X+Y<z|X =x]
Plx+Y<z|X =x]

where, in the second line, the given value x is used for the random variable X. Since X and
Y are statistically independent, we may simplify matters by writing

P[Z<z]X=x] = Plx+Y<¢]

PlY<z—x]

Equivalently, in terms of the pertinent distribution functions, we may write
Fy(z|x) = Fy(z-x)

Hence, differentiating both sides of this equation, we get the corresponding probability
density functions

[ (z]x) = fy(z—x)
Using the multiplication rule described in (3.30), we have
fz, X(Z, x) = fy(z - x)fx(x)

Next, adapting the definition of the marginal density given in (3.27) to the problem at
hand, we write

A2 = [ x(zx)de

Finally, substituting (3.31) into (3.32), we find that the desired f(z) is equal to the
convolution of fx(x) and fy(y), as shown by

A2 = [ fnfylz-x)de
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In words, we may therefore state:

Note, however, that no assumptions were made in arriving at this statement except for the
random variables X and Y being continuous random variables.

The Concept of Expectation

As pointed out earlier, the probability density function fx(x) provides a complete statistical
description of a continuous random variable X. However, in many instances, we find that
this description includes more detail than is deemed to be essential for practical
applications. In situations of this kind, simple statistical averages are usually considered
to be adequate for the statistical characterization of the random variable X.

In this section, we focus attention on the first-order statistical average, called the
expected value or mean of a random variable; second-order statistical averages are studied
in the next section. The rationale for focusing attention on the mean of a random variable
is its practical importance in statistical terms, as explained next.

The expected value or mean of a continuous random variable X is formally defined by

py = EIX] = [ xfy(x)d

where [ denotes the expectation or averaging operator. According to this definition, the
expectation operator [E, applied to a continuous random variable x, produces a single
number that is derived uniquely from the probability density function fy(x).

To describe the meaning of the defining equation (3.34), we may say the following:

To elaborate on this statement, we write the integral in (3.34) as the limit of an
approximating sum formulated as follows. Let {x;|k = 0, £1, £2, ...} denote a set of
uniformly spaced points on the real line

X, = (k+%)A, k=0,41,%2, ...

where A is the spacing between adjacent points on the line. We may thus rewrite (3.34) in
the form of a limit as follows:

o0 (k+1)A
E[X] = lim X x)dx
[X] = lim 3" jkA Wfx ()
k= -0
=1 P[ —-=<X< +—}
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For a physical interpretation of the sum in the second line of the right-hand side of this
equation, suppose that we make n independent observations of the random variable X. Let
N, (k) denote the number of times that the random variable X falls inside the kth bin,
defined by

xk—%<Xﬁxk+A k=0,%£1,£2, ...

5 b
Arguing heuristically, we may say that, as the number of observations n is made large, the
ratio N, (k)/n approaches the probability P[x;, — A/2 < X < x; + A/2]. Accordingly, we may
approximate the expected value of the random variable X as

- § 549

k=—0

00
= ’% Z XN, (k), forlarge n

k=—o0

We now recognize the quantity on the right-hand side of (3.36) simply as the “sample
average.” The sum is taken over all the values x;, each of which is weighted by the number
of times it occurs; the sum is then divided by the total number of observations to give the
sample average. Indeed, (3.36) provides the basis for computing the expectation E[X].

In a loose sense, we may say that the discretization, introduced in (3.35), has changed
the expectation of a continuous random variable to the sample averaging over a discrete
random variable. Indeed, in light of (3.36), we may formally define the expectation of a
discrete random variable X as

E[X] = 3 apy(x)

where px(x) is the probability mass function of X, defined in (3.22), and where the
summation extends over all possible discrete values of the dummy variable x. Comparing
the summation in (3.37) with that of (3.36), we see that, roughly speaking, the ratio N, (x)/n
plays a role similar to that of the probability mass function px(x), which is intuitively
satisfying.

Just as in the case of a continuous random variable, here again we see from the defining
equation (3.37) that the expectation operator E, applied to a discrete random variable X,
produces a single number derived uniquely from the probability mass function px(x).

Simply put, the expectation operator E applies equally well to discrete and continuous
random variables.

The expectation operator E plays a dominant role in the statistical analysis of random
variables (as well as random processes studied in Chapter 4). It is therefore befitting that
we study two important properties of this operation in this section; other properties are
addressed in the end-of-chapter Problem 3.13.
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Linearity
Consider a random variable Z, defined by
Z=X+Y

where X and Y are two continuous random variables whose probability density functions
are respectively denoted by fy(x) and fy(y). Extending the definition of expectation
introduced in (3.34) to the random variable Z, we write

0

E[Z] =_[ 7f,(2) dz

—00

where f(z) is defined by the convolution integral of (3.33). Accordingly, we may go on to
express the expectation E[Z] as the double integral

ElZ1 = [ [ of(0fylz-x) dvdz

= IiowjiowaX’ y(x%, z—x)dxdz

where the joint probability density function
fx, y(xs 7-X) = fx(x)fy(z - x)
Making the one-to-one change of variables
y=2z-x
and
X=X

we may now express the expectation E[Z] in the expanded form

ElZl = [ [ (e+2)fy y(xy)dedy

—o0 % —0
00 00 00 o0
= [ | sorenaedy+ [y pxy)dedy
—0® -0 —o0 % —oo
Next, we recall from (3.27) that the first marginal density of the random variable X is
fx) = [ fx ) dy
—o0
and, similarly, for the second marginal density
o0
Fr0) = [ f p(ey) dx
—o0

The formula for the expectation E[Z] is therefore simplified as follows:

00

| s are [ whoa

E[X] + E[Y]

E[Z]
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We may extend this result to the sum of many random variables by the method of induction
and thus write that, in general,

n

E gxi = SEIX, )

i=1

In words, we may therefore state:

This statement proves the linearity property of the expectation operator, which makes this
operator all the more appealing.

Statistical Independence

Consider next the random variable Z, defined as the product of two independent random
variables X and Y, whose probability density functions are respectively denoted by fy(x)
and fy(y). As before, the expectation of Z is defined by

00

E[Z] = J- 7f,(2) dz

except that, this time, we have
fz(Z) = fx, Y(x, y)
= fx(x)fy()’)
where, in the second line, we used the statistical independence of X and Y. With Z = XY, we

may therefore recast the expectation E[Z] as

o0

ELXY] = [ xufy(x)fy(y) dedy

00

- j_ )ng(x)deio Y(y) dy

E[X]E[Y]

In words, we may therefore state:

Here again, by induction, we may extend this statement to the product of many
independent random variables.

Second-Order Statistical Averages

In the previous section we studied the mean of random variables in some detail. In this
section, we expand on the mean by studying different second-order statistical averages.
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These statistical averages, together with the mean, complete the partial characterization
of random variables.

To this end, let X denote a random variable and let g(X) denote a real-valued function of
X defined on the real line. The quantity obtained by letting the argument of the function
g(X) be a random variable is also a random variable, which we denote as

Y = g(X)

To find the expectation of the random variable ¥, we could, of course, find the probability
density function fj(y) and then apply the standard formula

00

ELY] = [ afy(n) dy

—00
A simpler procedure, however, is to write

o0

Elg(0)] = [ g(x)fy(x) dv

Equation (3.41) is called the expected value rule; validity of this rule for a continuous
random variable is addressed in Problem 3.14.

The Cosine Transformation of a Random Variable

Let
Y = g(X) = cos(X)

where X is a random variable uniformly distributed in the interval (—r,n); that is,

fx(x) =1 21
0, otherwise

According to (3.41), the expected value of Y is

T
1
E[Y] = I (cosx)(z—n) dx
-
1 . =
= —275s1nx|x=_7T

=0
This result is intuitively satisfying in light of what we know about the dependence of a
cosine function on its argument.

For the special case of g(X) = X", the application of (3.41) leads to the nth moment of the
probability distribution of a random variable X; that is,

ELX"] = [ fy(x) dr
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From an engineering perspective, however, the most important moments of X are the first
two moments. Putting n = 1 in (3.42) gives the mean of the random variable, which was
discussed in Section 3.6. Putting n = 2 gives the mean-square value of X, defined by

00

EXC] = [ xfy(0) d

We may also define central moments, which are simply the moments of the difference
between a random variable X and its mean zy. Thus, the nth central moment of X is

E[(X - )" = [ (=) "fy(x) dx

For n = 1, the central moment is, of course, zero. For n = 2, the second central moment is
referred to as the variance of the random variable X, defined by

var[X] = E(X - yx)2

o0

[ om0 fy0) ax

The variance of a random variable X is commonly denoted by Gi. The square root of the
variance, namely Oy is called the standard deviation of the random variable X.

In a sense, the variance Oy of the random variable X is a measure of the variable’s
“randomness” or “volatility.” By specifying the variance oy we essentially constrain the
effective width of the probability density function fx(x) of the random variable X about the
mean /iy, . A precise statement of this constraint is contained in the Chebyshev inequality,
which states that for any positive number & we have the probability

2
O
PI|X — sy 2 €] < é—‘

From this inequality we see that the mean and variance of a random variable provide a
weak description of its probability distribution; hence the practical importance of these
two statistical averages.

Using (3.43) and (3.45), we find that the variance O'X and the mean-square value E[X?]
are related by

2 2 2
oy = E[X™ =2u X + uy]
2 2
E[X™] -2y E[X] + wy
2 2
E[X"]- Hyx
where, in the second line, we used the linearity property of the statistical expectation
operator [E. Equation (3. 47) shows that if the mean s is zero, then the variance oy and
the mean-square value E [X?] of the random variable X are equal.
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Thus far, we have considered the characterization of a single random variable. Consider
next a pair of random variables X and Y. In this new setting, a set of statistical averages of
importance is the joint moments, namely the expectation of X'Y*, where i and k may
assume any positive integer values. Specifically, by definition, we have

. o0 00 .
EXY ] = [ [ 2y e dedy
—o0 " —00
A joint moment of particular importance is the correlation, defined by E[XY], which
corresponds to i = k = 1 in this equation.
More specifically, the correlation of the centered random variables (X — E[X]) and
(Y — E[Y]), that is, the joint moment

cov[X¥] = E[(X-E[X])(Y—E[Y])]
is called the covariance of X and Y. Let 1y = E[X] and uy = E[Y]; we may then expand
(3.49) to obtain the result

cov[XY] = E[XY] - uyuy

. . . 2
where we have made use of the linearity property of the expectation operator [. Let oy

and oy denote the variances of X and Y, respectively. Then, the covariance of X and Y,
normalized with respect to the product oyoy, is called the correlation coefficient of X and
Y, expressed as
cov[XY]

OxO%y

pXY) =

The two random variables X and Y are said to be uncorrelated if, and only if, their
covariance is zero; that is,

cov[XY] =0
They are said to be orthogonal if and only if their correlation is zero; that is,
E[XY] =0

In light of (3.50), we may therefore make the following statement:

Characteristic Function

In the preceding section we showed that, given a continuous random variable X, we can
formulate the probability law defining the expectation of X" (i.e., nth moment of X) in
terms of the probability density function fx(x), as shown in (3.42). We now introduce
another way of formulating this probability law; we do so through the characteristic
Sfunction.
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For a formal definition of this new concept, we say:

According to the second expression on the right-hand side of (3.52), we may also view the
characteristic function ®y(v) of the random variable X as the Fourier transform of the
associated probability density function fy(x), except for a sign change in the exponent. In
this interpretation of the characteristic function we have used exp(jvx) rather than
exp(—jvx) so as to conform with the convention adopted in probability theory.
Recognizing that v and x play roles analogous to the variables 2rtf and ¢ respectively in
the Fourier-transform theory, we may appeal to the Fourier transform theory of Chapter 2
to recover the probability density function fy(x) of the random variable X given the
characteristic function ®,(v) . Specifically, we may use the inversion formula to write

fy(x) = ﬁj_wqax(v) exp(~jvx) dx

Thus, with fx(f) and @x(f) forming a Fourier-transform pair, we may obtain the moments
of the random variable X from the function @x(f). To pursue this issue, we differentiate
both sides of (3.52) with respect to v a total of n times, and then set v= 0; we thus get the
result

d—nq)x(‘/)lv:o = "] feodx
dv —00

The integral on the right-hand side of this relation is recognized as the nth moment of the
random variable X. Accordingly, we may recast (3.54) in the equivalent form

ELX'] = ()" ox0],_,
dv

This equation is a mathematical statement of the so-called moment theorem. Indeed, it is
because of (3.55) that the characteristic function ®(v) is also referred to as a moment-
generating function.

Exponential Distribution

The exponential distribution is defined by

- >
felx) = { Aexp(-Ax), x20 .
s otherwise
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where A is the only parameter of the distribution. The characteristic function of the
distribution is therefore

@(v)

o0
j A exp(—Ax) exp(jvx) dx
0

A
A-jv

We wish to use this result to find the mean of the exponentially distributed random
variable X. To do this evaluation, we differentiate the characteristic function ®(v) with
respect to v once, obtaining

' Aj
dy(v) = —
(A=jv)
where the prime in @' (v) signifies first-order differentiation with respect to the
argument v. Hence, applying the moment theorem of (3.55), we get the desired result

ELX] = —i®%0)|,_,

1
2

The Gaussian Distribution

Among the many distributions studied in the literature on probability theory, the Gaussian
distribution stands out, by far, as the most commonly used distribution in the statistical
analysis of communications systems, for reasons that will become apparent in Section
3.10. Let X denote a continuous random variable; the variable X is said to be Gaussian
distributed if its probability density function has the general form

2
(0 = —= exp{ =0 }

mTo 20

where 1 and o are two scalar parameters that characterize the distribution. The parameter
M can assume both positive and negative values (including zero), whereas the parameter o
is always positive. Under these two conditions, the fy(x) of (3.58) satisfies all the
properties of a probability density function, including the normalization property; namely,

L S BC ) ol PR
Jz—mj,we"p‘ 2 |77

20

A Gaussian random variable has many important properties, four of which are
summarized on the next two pages.
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Mean and Variance

In_the defining (3.58), the parameter u is the mean of the Gaussian random variable X and
o is its variance. We may therefore state:

Linear Function of a Gaussian Random Variable

. . . . 2
Let X be a Gaussian random variable with mean g and variance o~ . Define a new random
variable

Y=aX+b
where a and b are scalars and a # 0. Then Y is also Gaussian with mean
E[Y] = au+b

and variance
2 2
var[Y] = a &

In words, we may state:

Sum of Independent Gaussian Random Variables
Let X and Y be independent Gaugsian random variables with means uy and uy,
respectively, and variances oy and oy, respectively. Define a new random variable
Z=X+Y

The random variable Z is also Gaussian with mean

E[Z] = ux+ uy
and variance

var[Z] = 0')2(+ 02Y

In general, we may therefore state:

Jointly Gaussian Random Variables

Let X and Y be a pair of jointly Gaussian random variables with zero means and variances
2 2 . . .- . . .
oy and oy, respectively. The joint probability density function of X and Y is completely
determined by oy, oy and p, where p is the correlation coefficient defined in (3.51).
Specifically, we have
fx y(x.¥) = cexp(=q(x, y))
where the normalization constant c is defined by

_ 1
c =

2l —pzo'XJY
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and the exponential term is defined by
1 x2 Xy 2
q(x,y) = ———| 5 -2p +25
2(1-p") OxO%y

2
$5'¢ Sy
In the special case where the correlation coefficient p is zero, the joint probability density
function of X and Y assumes the simple form

2 2
fx y(x,y) = exp(—i——y—J
> 2TEO'XGY 20_?( 20_?/

S X(x)f Y(y )

Accordingly, we may make the statement:

By virtue of Gaussianity, this statement is stronger than the last statement made at the end
of the subsection on covariance.

In light of Property 1, the notation N(g, 02) is commonly used as the shorthand
description of a Gaussian distribution parameterized in terms of its mean x and variance
o . The symbol N'is used in recognition of the fact that the Gaussian distribution is also
referred to as the normal distribution, particularly in the mathematics literature.

When g =0 and o= 1, the probability density function of (3.58) reduces to the special
form:

2
1 X
fy(o) = —=exp( )
X m 2
A Gaussian random variable X so described is said to be in its standard form.
Correspondingly, the distribution function of the standard Gaussian random variable is
defined by

Fy(x) = ﬁ Ji ) exp(—f;) dt

Owing to the frequent use of integrals of the type described in (3.67), several related
functions have been defined and tabulated in the literature. The related function commonly
used in the context of communication systems is the Q-function, which is formally defined as

0(x) = 1-Fy(x)
2

= ﬁ ro exp(—%) dr

X
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In words, we may describe the Q-function as follows:

Unfortunately, the integral of (3.67) defining the standard Gaussian distribution Fy(x) does
not have a closed-form solution. Rather, with accuracy being an issue of importance, Fy(x) is
usually presented in the form of a table for varying x. Table 3.1 is one such recording. To
utilize this table for calculating the Q-function, we build on two defining equations:

For nonnegative values of x, the first line of (3.68) is used.

For negative values of x, use is made of the symmetric property of the Q-function:

O(—x) = 1-0(x)

To visualize the graphical formats of the commonly used standard Gaussian functions,
Fx(x), fx(x), and Q(x), three plots are presented at the bottom of this page:

Figure 3.10a plots the distribution function, Fy(x), defined in (3.67).

Figure 3.10b plots the density function, fx(x), defined in (3.66).

Figure 3.11 plots the Q-function defined in (3.68).

Fx(x)
1.0
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(b)

The normalized Gaussian (a) distribution
function and (b) probability density function.

0 1

The Q-function.
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The standard Gaussian distribution (@-function) table

0.0 | .5000 .5040  .5080 5120 5160 5199 5239 5279 5319 .5359
0.1 | .5398 5438  .5478 5517 5557 5596 5636 5675 5714 5753
02 | 5793 5832 5871 5910 5948 5987 6026  .6064 .6103  .6141
03 | .6179  .6217 .6255 6293  .6331 .6368 .6406  .6443  .6460  .6517
04 | .6554 6591 .6628  .6664  .6700 .6736  .6772  .6808  .6844  .6879

05 | .6915 .6950 .6985 .7019  .7054  .7088 7123 7157 .7190  .7224
0.6 | .7257 7291 7324 7357 7389 7422 7454 7485 7517 7549
0.7 | 7580  .7611 642 7673 7704 7734 7764 7794 7823 7852
0.8 | .7881 .7910 .7939 7967  .7995 8023  .8051 .8078  .8106  .8133
09 | .8159 8186  .8212  .8238  .8264  .8289  .8315 8340 .8365  .8389

1.0 | .8413 8438  .8461  .8485 8508  .8531  .8554 8577 .8599  .8621
1.1 | 8643 8665 .8686  .8708  .8729  .8749 8770 8790  .8810  .8830
1.2 | 8849 8869  .8888  .8907  .8925  .8944 8962  .8980  .8997  .9015
1.3 | 9032 9049 9066 9082 9099 9115 9131 9149 9162 9177
1.4 | 9192 9207 9222 9236 9251  .9265 9279 9292 9306 .9319

1.5 | 9332 9345 9357 9370 9382 9394 9406 9418  .9429 9441
1.6 | 9452 9463 9474 9484 9495 9505 9515 9525 9535  .9545
1.7 | 9554 9564 9573 9582 9591 9599 9608 .9616  .9625  .9633
1.8 | .9641 9649 9656 9664 9671 9678 9686 9693 9699  .9706
19 | 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767

20 | 9772 9778 9783 9788 9793 9798 9803 9808 9812  .9817
2.1 | 9821 9826 9830  .9834 9838 9842 9846 9850  .9854  .9857
22 | 9861 9864 9868 9871 9875 9878 9881 9884 9887  .9890
23 | 9893 9896 9898  .9901  .9904 9906 9909 9911 9913  .9916
24 | 9918 9920 .9922 9925 9927 9929 9931 9932 9934  .9936

25 ] .9938 9940 .9941 9943 9945 9946 9948 9949 9951  .9952
26 | 9953 9955 9956 9957 9959 9960 9961 9962 9963  .9964
277 19965 9966 9967 9968  .9969 9970 9971 9972 9973  .9974
2.8 | 9974 9975 9976 9977 9977 9978 9979 9979 9980  .9981
29 | 9981 9982 9982 9983 9984 9984 9985 9985 9986  .9986

3.0 | 9987 9987 9987 9988  .9988 9989 9989 9989 9990  .9990
3.1 | 9990 9991 9991 9991  .9992 9992 9992  .9992 9993  .9993
32 | 9993 9993 9994 9994 9994 9994 9994 9995 9995  .9995
33 19995 9995 9995 9996 9996 9996 9996  .9996  .9996  .9997
34 | 9997 9997 9997 9997 9997 9997 9997 9997 9997  .9998

1. The entries in this table, x say, occupy the range [0.0, 3.49]; the x is sample value of the random variable X.
2. For each value of x, the table provides the corresponding value of the Q-function:

O(x) = 1-F (x) = ﬁjw exp(~>/2) dr
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The Central Limit Theorem

The central limit theorem occupies an important place in probability theory: it provides the
mathematical justification for using the Gaussian distribution as a model for an observed
random variable that is known to be the result of a large number of random events.

For a formal statement of the central limit theorem, let X;, X», ..., X,, denote a sequence of
independently and identically distributed (iid) random variables with common mean g and
variance 02 . Define the related random variable

ou/ﬁ ZX—n,u

i=1
n
The subtraction of the product term nu from the sum z X, ensures that the random
: . i=1 o
variable Y, has zero mean; the division by the factor UA/E ensures that Y, has unit variance.

Given the setting described in (3.70), the central limit theorem formally states:

To appreciate the practical importance of the central limit theorem, suppose that we have a
physical phenomenon whose occurrence is attributed to a large number of random events.
The theorem, embodying (3.67)—(3.71), permits us to calculate certain probabilities
simply by referring to a Q-function table (e.g., Table 3.1). Moreover, to perform the
calculation, all that we need to know are means and variances.

However, a word of caution is in order here. The central limit theorem gives only the
“limiting” form of the probability distribution of the standardized random variable Y,, as n
approaches infinity. When #n is finite, it is sometimes found that the Gaussian limit
provides a relatively poor approximation for the actual probability distribution of Y, even
though n may be large.

Sum of Uniformly Distributed Random Variables

Consider the random variable
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where the X; are independent and uniformly distributed random variables on the interval
from -1 to +1. Suppose that we generate 20000 samples of the random variable Y, for
n =10, and then compute the probability density function of Y,, by forming a histogram of
the results. Figure 3.11a compares the computed histogram (scaled for unit area) with the
probability density function of a Gaussian random variable with the same mean and
variance. The figure clearly illustrates that in this particular example the number of
independent distributions n does not have to be large for the sum Y, to closely
approximate a Gaussian distribution. Indeed, the results of this example confirm how
powerful the central limit theorem is. Moreover, the results explain why Gaussian models
are so ubiquitous in the analysis of random signals not only in the study of communication
systems, but also in so many other disciplines.

—O— Simulated density of 5 uniforms

—— Gaussian density with same mean
and variance

Probability density fy (x)
1

0.00

Simulation supporting validity of the central limit theorem.

Bayesian Inference

The material covered up to this point in the chapter has largely addressed issues involved
in the mathematical description of probabilistic models. In the remaining part of the
chapter we will study the role of probability theory in probabilistic reasoning based on the
Bayesian~ paradigm, which occupies a central place in statistical communication theory.
To proceed with the discussion, consider Figure 3.12, which depicts two finite-
dimensional spaces: a parameter space and an observation space, with the parameter
space being hidden from the observer. A parameter vector 0, drawn from the parameter
space, is mapped probabilistically onto the observation space, producing the observation
vector x. The vector x is the sample value of a random vector X, which provides the
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Observer

Parameter space

Observation space

Probabilistic model for Bayesian inference.

observer information about 0. Given the probabilistic scenario depicted in Figure 3.12, we
may identify two different operations that are the dual of each other.

Probabilistic modeling. The aim of this operation is to formulate the conditional
probability density function fx‘®(x|6), which provides an adequate description of
the underlying physical behavior of the observation space.
Statistical analysis. The aim of this second operation is the inverse of probabilistic
modeling, for which we need the conditional probability density function
f®|X(G|x).
In a fundamental sense, statistical analysis is more profound than probabilistic modeling.
We may justify this assertion by viewing the unknown parameter vector 0 as the cause for
the physical behavior of the observation space and viewing the observation vector x as the
effect. In essence, statistical analysis solves an inverse problem by retrieving the causes
(i.e., the parameter vector 0) from the effects (i.e., the observation vector x). Indeed, we
may go on to say that whereas probabilistic modeling helps us to characterize the future
behavior of x conditional on 0, statistical analysis permits us to make inference about 0
given X.
To formulate the conditional probability density function of fX|®(x|0), we recast
Bayes’ theorem of (3.14) in its continuous version, as shown by

fX|®(X|9)f®(9)
fx(x)

The denominator is itself defined in terms of the numerator as

I@fx|@(X|9)f@(9)d9

fox(8]x) =

fx(x)

[ fx o(x.0)d0
(S}
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which is the marginal density of X, obtained by integrating out the dependence of the joint
probability density function fX|®(x|0) . In words, fx(x) is a marginal density of the joint
probability density function 1x, o(X, 0). The inversion formula of (3.72) is sometimes
referred to as the principle of inverse probability.

In light of this principle, we may now introduce four notions:

Observation density. This stands for the conditional probability density function
fx‘®(x |9), referring to the “observation” vector x given the parameter vector 6.
Prior. This stands for the probability density function fg(0), referring to the
parameter vector 0 “prior” to receiving the observation vector X.

Posterior. This stands for the conditional probability density function f®|X(0|x) ,
referring to the parameter vector 0 “after” receiving the observation vector x.
Evidence. This stands for the probability density function fx(x), referring to the
“information” contained in the observation vector X for statistical analysis.

The posterior f®‘X(9|x) is central to Bayesian inference. In particular, we may view it as
the updating of information available on the parameter vector 0 in light of the information
contained in the observation vector x, while the prior fg(0) is the information available on
0 prior to receiving the observation vector X.

The inversion aspect of statistics manifests itself in the notion of the likelihood function.
In a formal sense, the likelihood, denoted by I(]x), is just the observation density
fx‘®(x|0) reformulated in a different order, as shown by

1(6]x) = f)q@(’qe)

The important point to note here is that the likelihood and the observation density are both
governed by exactly the same function that involves the parameter vector 0 and the obser-
vation vector x. There is, however, a difference in interpretation: the likelihood function
1(0]x) is treated as a function of the parameter vector 0 given x, whereas the observation
density fX|®(x|9) is treated as a function of the observation vector x given 0.

Note, however, unlike fX|®(x|9), the likelihood /(0|x) is not a distribution; rather, it is
a function of the parameter vector 0, given x.

In light of the terminologies introduced, namely the posterior, prior, likelihood, and
evidence, we may now express Bayes’ rule of (3.72) in words as follows:

posterior = likelihood x prior

evidence

For convenience of presentation, let
7(0) = fg(0)

Then, recognizing that the evidence defined in (3.73) plays merely the role of a
normalizing function that is independent of 6, we may now sum up (3.72) on the principle
of inverse probability succinctly as follows:



122

Probability Theory and Bayesian Inference

To elaborate on the significance of the defining equation (3.74), consider the likelihood
functions /(0|x;) and /(8|x,) on parameter vector 0. If, for a prescribed prior 7(0), these
two likelihood functions are scaled versions of each other, then the corresponding
posterior densities of 0 are essentially identical, the validity of which is a straightforward
consequence of Bayes’ theorem. In light of this result we may now formulate the so-called
likelihood principle” as follows:

If x; and x, are two observation vectors depending on an unknown parameter vector 0,
such that

I0|x;)=cl(®]|x,) forall®

where ¢ is a scaling factor, then these two observation vectors lead to an identical
inference on O for any prescribed prior fg(0).

Consider a model, parameterized by the vector 8 and given the observation vector x. In
statistical terms, the model is described by the posterior density f®|X(6 |x). In this context,
we may now introduce a function t(x), which is said to be a sufficient statistic if the
probability density function of the parameter vector 8 given t(x) satisfies the condition

f®|X(9|X) = f®|T(X)(e|t(X))

This condition imposed on t(x), for it to be a sufficient statistic, appears intuitively
appealing, as evidenced by the following statement:

We may thus view the notion of sufficient statistic as a tool for “data reduction,” the use of
which results in considerable simplification in analysis.” The data reduction power of the
sufficient statistic t(x) is well illustrated in Example 7.

Parameter Estimation

As pointed out previously, the posterior density fQ‘X(O |x) is central to the formulation of
a Bayesian probabilistic model, where 0 is an unknown parameter vector and X is the
observation vector. It is logical, therefore, that we use this conditional probability density
function for parameter estimation. = Accordingly, we define the maximum a posteriori
(MAP) estimate of 0 as

Omap = arg meaxf®|x(9|x)

arg mgx 1(0|x)7(0)

where 1(8x) is the likelihood function defined in (3.74), and 7(0) is the prior defined in
(3.75). To compute the estimate Opap , We require availability of the prior (0).
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In words, the right-hand side of (3.77) reads as follows:

Generalizing the statement made at the end of the discussion on multiple random variables
in Section 3.5, we may now go on to say that, for the problem at hand, the conditional
probability density function f®|X(0 |x) contains all the conceivable information about the
multidimensional parameter vector 0 given the observation vector x. The recognition of
this fact leads us to make the follow-up important statement, illustrated in Figure 3.13 for
the simple case of a one-dimensional parameter vector:

In referring to Opap as the MAP estimate, we have made a slight change in our
terminology: we have, in effect, referred to f®|X(9|x) as the a posteriori density rather
than the posterior density of 8. We have made this minor change so as to conform to the
MAP terminology that is well and truly embedded in the literature on statistical
communication theory.

In another approach to parameter estimation, known as maximum likelihood estimation,
the parameter vector 0 is estimated using the formula

OmL = arg sgp 1(8]x)

That is, the maximum likelihood estimate Oypy, is that value of the parameter vector 0 that
maximizes the conditional distribution fX\®(X|9) at the observation vector x. Note that
this second estimate ignores the prior 7z(0) and, therefore, lies at the fringe of the Bayesian
paradigm. Nevertheless, maximum likelihood estimation is widely used in the literature on
statistical communication theory, largely because in ignoring the prior 7(0), it is less
demanding than maximum posterior estimation in computational complexity.

To|x®[%)

Maximum

Maximum
value

rd

0

Oniap
Illustrating the a posteriori f®|X(0 |x) for the case of a one-dimensional
parameter space.
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The MAP and ML estimates do share a common possibility, in that the maximizations
in (3.77) and (3.78) may lead to more than one global maximum. However, they do differ
in one important result: the maximization indicated in (3.78) may not always be possible;
that is, the procedure used to perform the maximization may diverge. To overcome this
difficulty, the solution to (3.78) has to be stabilized by incorporating prior information on
the parameter space, exemplified by the distribution 7(0), into the solution, which brings
us back to the Bayesian approach and, therefore, (3.77). The most critical part in the
Bayesian approach to statistical modeling and parameter estimation is how to choose the
prior 7(0). There is also the possibility of the Bayesian approach requiring high-
dimensional computations. We should not, therefore, underestimate the challenges
involved in applying the Bayesian approach, on which note we may say the following:

Parameter Estimation in Additive Noise
Consider a set N of scalar observations, defined by
x; = 0+n, i=12..,N

. . T 2 .
where the unknown parameter 0 is drawn from the Gaussian distribution N(0, op) ; that is,

fo(0) = —1 exp[—e—zj
Jonon p

. . T 2 .
Each n; is drawn from another Gaussian distribution N(0, o) ; that is,

2
1 n;

fy(ny) = exp( IJ, i=1,2,...,N
it J2no, 20.2

n

It is assumed that the random variables N; are all independent of each other, and also
independent from ® . The issue of interest is to find the MAP of the parameter 6.

To find the distribution of the random variable X;, we invoke Property 2 of the Gaussian
distribution, described in Section 3.9, in light of which we may say that X; is also Gaussian
with mean 6 and variance o, . Furthermore, since the N; are independent, by assumption,
it follows that the X; are also independent. Hence, using the vector x to denote the N
observations, we express the observation density of x as

r 2
FNI 1 exp (xi_e)
i=1 mﬁn L 20',21

fX|®(X|9) =

N
= ;Nexp _Lz ()cl.—e)2
(J2mao,) | 20, T

The problem is to determine the MAP estimate of the unknown parameter 6.
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To solve this problem, we need to know the posterior density f®|X(0|X) Applying
(3.72), we write

N 2
> (x;-0)

f@\X(e|X) = c(x) exp —% =+ =l ;

Oy o

where
1 y 1
C(X) =
Ix(x)

The normalization factor ¢(x) is independent of the parameter 6 and, therefore, has no
relevance to the MAP of 6. We therefore need only pay attention to the exponent in (3.82).

Rearranging terms and completing the square in the exponent in (3.82), and introducing
a new normalization factor ¢’(x) that absorbs all the terms involving x; , we get

2
1
foix(0]x) = ¢'(x) expy—— X
| 20, 0'9+(0' /N) NZ
where
oo
Noy + o,

Equation (3.84) shows that the posterior density of the unknown parameter 0 is Gaussian
with mean 0 and variance g, We therefore readily find that the MAP estimate of 6 is

éMAF’ = X;
0'9+(O' /N) NZ

which is the desired result.
Examining (3.84), we also see that the N observations enter the posterior density of 6
only through the sum of the x;. It follows, therefore, that

N
t(x) = in
i=1

is a sufficient statistic for the example at hand. This statement merely confirms that (3.84)
and (3.87) satisfy the condition of (3.76) for a sufficient statistic.
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Hypothesis Testing

The Bayesian paradigm discussed in Section 3.11 focused on two basic issues: predictive
modeling of the observation space and statistical analysis aimed at parameter estimation.
As mentioned previously in that section, these two issues are the dual of each other. In this
section we discuss another facet of the Bayesian paradigm, aimed at hypothesis testing,
which is basic to signal detection in digital communications, and beyond.

To set the stage for the study of hypothesis testing, consider the model of Figure 3.14. A
source of binary data emits a sequence of Os and s, which are respectively denoted by
hypotheses Hj and H;. The source (e.g., digital communication transmitter) is followed by
a probabilistic transition mechanism (e.g., communication channel). According to some
probabilistic law, the transition mechanism generates an observation vector X that defines
a specific point in the observation space.

The mechanism responsible for probabilistic transition is hidden from the observer
(e.g., digital communication receiver). Given the observation vector x and knowledge of
the probabilistic law characterizing the transition mechanism, the observer chooses
whether hypothesis Hy or H; is true. Assuming that a decision must be made, the observer
has to have a decision rule that works on the observation vector x, thereby dividing the
observation space Z into two regions: Z, corresponding to H; being true and Z;
corresponding to H; being true. To simplify matters, the decision rule is not shown in
Figure 3.14.

In the context of a digital communication system, for example, the channel plays the
role of the probabilistic transition mechanism. The observation space of some finite

When the observation
vector is assigned to
decision region Zy:
say Hy

Hypotheses: Likelihood ratios:

Hy fX\HI(X|HI)
s ¢ Probabilistic
b'ourcedot transition
inary data Ho mechanism Ao When the observation
X|Ho\X "o vector x is assigned to

decision region Zy:
say Hg

Observation space partitioned into
decision regions, Zy and z;

Diagram illustrating the binary hypothesis-testing problem. Note: according to the
likelihood ration test, the bottom observation vector X is incorrectly assigned to Z;.
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dimension corresponds to the ensemble of channel outputs. Finally, the receiver performs
the decision rule.

To proceed with the solution to the binary hypothesis-testing problem, we introduce the
following notations:
fX‘ n.(X|H), which denotes the conditional density of the observation vector x
> 7o . .
given that hypothesis H, is true.
fX‘ HI(X|H 1) » denotes the conditional density of x given that the other hypothesis
H, is true.

7y and 7; denote the priors of hypotheses Hjand H|, respectively.

In the context of hypothesis testing, the two conditional probability density functions
fX\HO(X|H0) and fX|H1(X|H1) are referred to as likelihood functions, or just simply
likelihoods.

Suppose we perform a measurement on the transition mechanism’s output, obtaining
the observation vector Xx. In processing X, there are two kinds of errors that can be made by
the decision rule:

Error of the first kind. This arises when hypothesis H is true but the rule makes a
decision in favor of H, as illustrated in Figure 3.14.

Error of the second kind. This arises when hypothesis H; is true but the rule makes a
decision in favor of H,.

The conditional probability of an error of the first kind is
f (x|H,) dx
IZI x|H,(X|H

where Z; is part of the observation space that corresponds to hypothesis H;. Similarly, the
conditional probability of an error of the second kind is

H)d
J-ZOfX|H1(X| ) dx

By definition, an optimum decision rule is one for which a prescribed cost function is
minimized. A logical choice for the cost function in digital communications is the average
probability of symbol error, which, in a Bayesian context, is referred to as the Bayes risk.
Thus, with the probable occurrence of the two kinds of errors identified above, we define
the Bayes risk for the binary hypothesis-testing problem as

R = ﬂonIfX|H0(x|H0)dx+ ﬂ]fZOfX|H1(x|H1)dx

where we have accounted for the prior probabilities for which hypotheses H, and H, are
known to occur. Using the language of set theory, let the union of the disjoint subspaces Z,
and Z; be

Z=2,02Z,
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Then, recognizing that the subspace Z; is the complement of the subspace Z, with respect
to the total observation space Z, we may rewrite (3.88) in the equivalent form:

Ro=mf Sy, KIHO)Ax+ 7 [ fgy g (x[H)) dx
zZ-7, Z,

ﬁOJZfX|HO(x|HO)dx+J‘ZO[ﬂle‘Hl(x|H1)—nofX|HO(x|HO)] dx

The integral j le HO(X |H,) dx represents the total volume under the conditional density

V4
x|H,), which, by definition, equals unity. Accordingly, we may reduce (3.90) to
X|H, 0 y q y gly. y
R = 7y+ jz 721y, (XIH ) A% = oy gy (x| Hg)1dx
0

The term 7 on its own on the right-hand side of (3.91) represents a fixed cost. The integral
term represents the cost controlled by how we assign the observation vector X to Z.
Recognizing that the two terms inside the square brackets are both positive, we must
therefore insist on the following plan of action for the average risk 9 to be minimized:

In light of this statement, the optimum decision rule proceeds as follows:

If
”ofX|H0(X|H0) > ﬂle|H1(x|H1)

then the observation vector x should be assigned to Z;, because these two terms
contribute a negative amount to the integral in (3.91). In this case, we say H, is true.

If, on the other hand,
ﬂ-OfX|H0(X|HO)< ﬂle|H1(X|H1)
then the observation vector x should be excluded from Z; (i.e., assigned to Z),

because these two terms would contribute a positive amount to the integral in (3.91).
In this second case, H is true.

When the two terms are equal, the integral would clearly have no effect on the average risk
9 ; in such a situation, the observation vector X may be assigned arbitrarily.

Thus, combining points (1) and (2) on the action plan into a single decision rule, we
may write

H
fX‘Hl(X|H1) > 1 A
oy 2 2
fxu,(XI1Hy) Hy 7
The observation-dependent quantity on the left-hand side of (3.92) is called the likelihood

ratio; it is defined by Farm (X|H,)
x|, (X1

A =
® Ix m,(X|Hp)

From this definition, we see that A(x) is the ratio of two functions of a random variable;
therefore, it follows that A(x) is itself a random variable. Moreover, it is a one-
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dimensional variable, which holds regardless of the dimensionality of the observation
vector X. Most importantly, the likelihood ratio is a sufficient statistic.
The scalar quantity on the right-hand side of (3.92), namely,

is called the threshold of the test. Thus, minimization of the Bayes risk R leads to the
likelihood ratio test, described by the combined form of two decisions:

H 1

Ax) 27

H, 0
Correspondingly, the hypothesis testing structure built on (3.93)—(3.95) is called the
likelihood receiver; it is shown in the form of a block diagram in Figure 3.15a. An elegant
characteristic of this receiver is that all the necessary data processing is confined to
computing the likelihood ratio A(x). This characteristic is of considerable practical
importance: adjustments to our knowledge of the priors 7y and 7; are made simply
through the assignment of an appropriate value to the threshold 7.

The natural logarithm is known to be a monotone function of its argument. Moreover,

both sides of the likelihood ratio test in (3.95) are positive. Accordingly, we may express
the test in its logarithmic form, as shown by

Hl
InA(x) 2 Inpy

H,

where In is the symbol for the natural logarithm. Equation (3.96) leads to the equivalent
log-likelihood ratio receiver, depicted in Figure 3.15b.

Observation

vector If the threshold n
X Likelihood AX) T is exceeded, say Hi
# ratio Comparator
computer

——> Otherwise, say Hp

Threshold n
(@)
Observation
vector | If In n is exceeded,
X Log-likelihood | |n A(x) say Hy
# ratio Comparator
computer +——> Otherwise, say Hy
Two versions of the T

likelihood receiver: (a) based on the
likelihood ratio A(X) ; (b) based on the
log-likelihood ratio In A(X). (b)

Inn
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Binary Hypothesis Testing

Consider a binary hypothesis testing problem, described by the pair of equations:
Hypothesis H,: x;

; =m+n, i=12,...,N

Hypothesis Hy: x; = n,, i=12,..,.N

l
The term m is a constant that is nonzero only under hypothesis H;. As in Example 7, the n;
are independent and Gaussian N(O0, 0,21) . The requirement is to formulate a likelihood ratio
test for this example to come up with a decision rule.
Following the discussion presented in Example 7, under hypothesis H; we write

| (x;—m)
fom, (x| Hy) = €xXp :
i Hy l| J2no, 20%
As in Example 7, let the vector x denote the set of N observations x; for i =1, 2, ..., N.

Then, invoking the independence of the n;, we may express the joint density of the x; under
hypothesis H as

fen &l = TT——exp| (3= m)”
X = €X
X|H, | 1 Eman p_ i

- e S G-m)
B N 2 i
(W2mo,)" | 29, i

Setting m to zero in (3.99), we get the corresponding joint density of the x; under
hypothesis H as

g (x| Ho) = —— .
X|H, 0 (,\/EEO'”)N 20” P

Hence, substituting (3.99) and (3.100) into the likelihood ratio of (3.93), we get (after
canceling common terms)

N 2

m N
A(X) = exp = z )cl.—ﬂ2
O-I’l i=1 ZO'n

Equivalently, we may express the likelihood ratio in its logarithmic form

N 2
InA(x) = 2§, -V
2 i 2
O, i1 20,
Using (3.102) in the log-likelihood ratio test of (3.96), we get
H

N 2
m N 1
_2 zxi_ﬂ zlnn

2
o, -1 ZUn H,
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Dividing both sides of this test by (m/ 0121) and rearranging terms, we finally write

N  H (5 2
1| G,
E Xz (_"m 77_,.]\[_;1_]

i=1  H, n

where the threshold 7 is itself defined by the ratio of priors, namely 7/7;. Equation
(3.103) is the desired formula for the decision rule to solve the binary hypothesis-testing
problem of (3.97).

One last comment is in order. As with Example 7, the sum of the x; over the N
observations; that is,

N
t(x) = Z X;
i=1
is a sufficient statistic for the problem at hand. We say so because the only way in which
the observations can enter the likelihood ratio A(x) is in the sum; see (3.101).

Now that we understand binary hypothesis testing, we are ready to consider the more
general scenario where we have M possible source outputs to deal with. As before, we
assume that a decision must be made as to which one of the M possible source outputs was
actually emitted, given an observation vector X.

To develop insight into how to construct a decision rule for testing multiple hypotheses,
we consider first the case of M =3 and then generalize the result. Moreover, in formulating
the decision rule, we will use probabilistic reasoning that builds on the findings of the
binary hypothesis-testing procedure. In this context, however, we find it more convenient
to work with likelihood functions rather than likelihood ratios.

To proceed then, suppose we make a measurement on the probabilistic transition
mechanism’s output, obtaining the observation vector x. We use this observation vector
and knowledge of the probability law characterizing the transition mechanism to construct
three likelihood functions, one for each of the three possible hypotheses. For the sake of
illustrating what we have in mind, suppose further that in formulating the three possible
probabilistic inequalities, each with its own inference, we get the following three results:

mIx (X IH ) < 7o fx 1, (X[ H)

from which we infer that hypothesis H or H, is true.

T Ix 1, (X H3) < o fx 1, (X | Hy)

from which we infer that hypothesis H or Hj is true.

ﬂz.fx‘yz(X|H2) < 7[1fx|H1(X|H1)

from which we infer that hypothesis H or H, is true.
Examining these three possible results for M = 3, we immediately see that hypothesis H,
is the only one that shows up in all three inferences. Accordingly, for the particular

scenario we have picked, the decision rule should say that hypothesis Hy, is true. Moreover,
it is a straightforward matter for us to make similar statements pertaining to hypothesis H;
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or H,. The rationale just described for arriving at this test is an example of what we mean
by probabilistic reasoning: the use of multiple inferences to reach a specific decision.

For an equivalent test, let both sides of each inequality under points 1, 2, and 3 be
divided by the evidence fx(x). Let H;, i = 1, 2, 3, denote the three hypotheses. We may then
use the definition of joint probability density function to write

mifx(XIH) P [y (X1H))
fx(x) fx(X)
P(H,, x)
T TAR®
PLH,[x]fx (%)
Jx(x)
[F"[Hl.|x] fori = 0,1,....M-1

where P(H,) = p;

Hence, recognizing that the conditional probability P[H i|x] is actually the posterior
probability of hypothesis H; after receiving the observation vector X, we may now go on to
generalize the equivalent test for M possible source outputs as follows:

A processor based on this decision rule is frequently referred to as the MAP probability
computer. It is with this general hypothesis testing rule that earlier we made the
supposition embodied under points 1, 2, and 3.

Composite Hypothesis Testing

Throughout the discussion presented in Section 3.13, the hypotheses considered therein
were all simple, in that the probability density function for each hypothesis was
completely specified. However, in practice, it is common to find that one or more of the
probability density functions are not simple due to imperfections in the probabilistic
transition mechanism. In situations of this kind, the hypotheses are said to be composite.
As an illustrative example, let us revisit the binary hypothesis-testing problem
considered in Example 8. This time, however, we treat the mean m of the observable x;
under hypothesis H; not as a constant, but as a variable inside some interval [m,, m]. If,
then, we were to use the likelihood ratio test of (3.93) for simple binary hypothesis testing,
we would find that the likelihood ratio A(x;) involves the unknown mean m. We cannot
therefore compute A(x;), thereby negating applicability of the simple likelihood ratio test.
The message to take from this illustrative example is that we have to modify the
likelihood ratio test to make it applicable to composite hypotheses. To this end, consider the
model depicted in Figure 3.16, which is similar to that of Figure 3.14 for the simple case
except for one difference: the transition mechanism is now characterized by the conditional
probability density function fX|® H, (x|0,H;), where 0 is a realization of the unknown
parameter vector ®, and the index i = O 1. It is the conditional dependence on 0 that makes
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(x|6, Hy)

Ixie. u,

Hypothesis Hy

Probabilistic

Source ) transition
Hypothesis Hg mechanism

(xl6, Hy)

Ixje. n,

Model of composite hypothesis-testing for a binary scenario.

the hypotheses H, and H; to be of the composite kind. Unlike the simple model of Figure
3.14, we now have two spaces to deal with: an observation space and a parameter space. It
is assumed that the conditional probability density function of the unknown parameter
vector O, that is, f@)lH,-(e’ Hl.) ,is known fori =0, 1.

To formulate the likelihood ratio for the composite hypotheses described in the model
of Figure 3.16, we require the likelihood function fX‘ H[(XlH ;) fori=1,2. We may satisfy
this requirement by reducing the composite hypothesis-testing problem to a simple one by
integrating over 0, as shown by

fX\Hi(X|Hi) = .[af)q@, Hl,(x|e’H,')f®‘Hi(9|H,') de

the evaluation of which is contingent on knowing the conditional probability density
function of O given the H; for i = 1, 2. With this specification at hand, we may now
formulate the likelihood ratio for composite hypotheses as

[ fxj0,u,(x108.H gy, (B]H,) 46
A(x) = 2

j@fx‘@’ HO(X|9’ Ho)f@|HO(e|Ho) de

Accordingly, we may now extend applicability of the likelihood ratio test described in
(3.95) to composite hypotheses.

From this discussion, it is clearly apparent that hypothesis testing for composite
hypotheses is computationally more demanding than it is for simple hypotheses. Chapter 7
presents applications of composite hypothesis testing to noncoherent detection, in the
course of which the phase information in the received signal is accounted for.

Summary and Discussion

The material presented in this chapter on probability theory is another mathematical pillar
in the study of communication systems. Herein, the emphasis has been on how to deal
with uncertainty, which is a natural feature of every communication system in one form or
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another. Typically, uncertainties affect the behavior of channels connecting the transmitter
of a communication system to its receiver. Sources of uncertainty include noise, generated
internally and externally, and interference from other transmitters.

In this chapter, the emphasis has been on probabilistic modeling, in the context of
which we did the following:

Starting with set theory, we went on to state the three axioms of probability theory.
This introductory material set the stage for the calculation of probabilities and
conditional probabilities of events of interest. When partial information is available
on the outcome of an experiment, conditional probabilities permit us to reason in a
probabilistic sense and thereby enrich our understanding of a random experiment.

We discussed the notion of random variables, which provide the natural tools for
formulating probabilistic models of random experiments. In particular, we
characterized continuous random variables in terms of the cumulative distribution
function and probability density function; the latter contains all the conceivable
information about a random variable. Through focusing on the mean of a random
variable, we studied the expectation or averaging operator, which occupies a
dominant role in probability theory. The mean and the variance, considered in that
order, provide a weak characterization of a random variable. We also introduced the
characteristic function as another way of describing the statistics of a random
variable. Although much of the material in the early part of the chapter focused on
continuous random variables, we did emphasize important aspects of discrete
random variables by describing the concept of the probability mass function (unique
to discrete random variables) and the parallel development and similar concepts that
embody these two kinds of random variables.

Table 3.2 on page 135 summarizes the probabilistic descriptions of some important
random variances under two headings: discrete and random. Except for the Rayleigh
random variable, these random variables were discussed in the text or are given as
end-of-chapter problems; the Rayleigh random variable is discussed in Chapter 4.
Appendix A presents advanced probabilistic models that go beyond the contents of
Table 3.2.

We discussed the characterization of a pair of random variables and introduced the
basic concepts of covariance and correlation, and the independence of random
variables.

We provided a detailed description of the Gaussian distribution and discussed its
important properties. Gaussian random variables play a key role in the study of
communication systems.

The second part of the chapter focused on the Bayesian paradigm, wherein inference may
take one of two forms:
* Probabilistic modeling, the aim of which is to develop a model for describing the
physical behavior of an observation space.
» Statistical analysis, the aim of which is the inverse of probabilistic modeling.

In a fundamental sense, statistical analysis is more profound than probabilistic modeling,
hence the focused attention on it in the chapter.
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Some important random variables

Bernoulli .
1-p if x=0
px(x) =1 p if x=1
0 otherwise
E[X] =p
var[X] = p(1-p)
Poisson i
py(k) = Fexp(_ﬂ), k=0,1,2,...,and 1>0
E[X] = 4
var[X] = A
Uniform fy(x) = 1 , a<x<bh
b-a
E[X] = %(a+b)
1 2
var[X] = E(b_a)
Exponential fx(x) = Aexp(-Ax),  x20and 1>0
E[X] = 1/4
var[X°] = 1/4%
Gaussian 1 206
x) = exp[—(x—p) /207], —00 < x <00
Tyl o pl-(x-u)
E[X] = u
var[X] = o
Rayleigh Fx(x) = izexp(_x2/2o-2), x20and 0>0
o
E[X] = oJn/2
— T 2
var[X] = (2—5)6
Laplacian fy(x) = %’exp(—/1|x| ), —o<x<oandA>0

E[X] = 0
var[X] = 2/2°
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Under statistical analysis, viewed from a digital communications perspective, we
discussed the following:

Parameter estimation, where the requirement is to estimate an unknown parameter
given an observation vector; herein we covered:
* the maximum a posteriori (MAP) rule that requires prior information, and
¢ the maximum likelihood procedure that by-passes the need for the prior and
therefore sits on the fringe of the Bayesian paradigm.
Hypothesis testing, where in a simple but important scenario, we have two
hypotheses to deal with, namely H; and H,,. In this case, the requirement is to make
an optimal decision in favor of hypothesis H; or hypothesis H(, given an observation
vector. The likelihood ratio test plays the key role here.
To summarize, the material on probability theory sets the stage for the study of stochastic
processes in Chapter 4. On the other hand, the material on Bayesian inference plays a key
role in Chapters 7, 8, and 9 in one form or another.

Using Venn diagrams, justify the five properties of the algebra of sets, which were stated (without
proofs) in Section 3.1:

idempotence property
commutative property
associative property
distributive property
De Morgan’s laws.
Let A and B denote two different sets. Validate the following three equalities:
AS = (A°NB)U(A° N BY)
B = (AnB°)U(A° N BY)
(AnB) = (A°"B)UA° "B YU (ANB°)

Probability Theory

Using the Bernoulli distribution of Table 3.2, develop an experiment that involves three independent
tosses of a fair coin. Irrespective of whether the toss is a head or tail, the probability of every toss is
to be conditioned on the results of preceding tosses. Display graphically the sequential evolution of
the results.

Use Bayes’ rule to convert the conditioning of event B given event A; into the conditioning of event
A; givenevent Bforthei=1,2, ..., N.

A discrete memoryless channel is used to transmit binary data. The channel is discrete in that it is
designed to handle discrete messages and it is memoryless in that at any instant of time the channel
output depends on the channel input only at that time. Owing to the unavoidable presence of noise in
the channel, errors are made in the received binary data stream. The channel is symmetric in that the
probability of receiving symbol 1 when symbol 0 is sent is the same as the probability of receiving
symbol 0 when symbol 1 is sent.
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The transmitter sends Os across the channel with probability py and 1s with probability p;. The
receiver occasionally makes random decision errors with probability p; that is, when symbol 0 is
sent across the channel, the receiver makes a decision in favor of symbol 1, and vice versa.

Referring to Figure P3.5, determine the following a posteriori probabilities:
The conditional probability of sending symbol A given that symbol B was received.
The conditional probability of sending symbol A; given that symbol B; was received.
Hint: Formulate expressions for the probability of receiving event B, and likewise for event B.

1-p

40 Bo
p
p
Aq By
1-p
Let By, By, ..., B, denote a set of joint events whose union equals the sample space S, and assume
that P[B;] > 0 for all i. Let A be any event in the sample space S.

Show that
A=ANnB)U(AnNB)uv.. (ANnB)

The total probability theorem states:
P[A] = P[A|B,]P[B,]+ P[A|B,]P[B,] + ... + P[A|B,]P[B,]

This theorem is useful for finding the probability of event B when the conditional probabilities
P[A|B;] are known or easy to find for all i. Justify the theorem.

Figure P3.7 shows the connectivity diagram of a computer network that connects node A to node B
along different possible paths. The labeled branches of the diagram display the probabilities for
which the links in the network are up; for example, 0.8 is the probability that the link from node A to
intermediate node C is up, and so on for the other links. Link failures in the network are assumed to
be independent of each other.
When all the links in the network are up, find the probability that there is a path connecting node
A to node B.

What is the probability of complete failure in the network, with no connection from node A to
node B?
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Distribution Functions

The probability density function of a continuous random variable X is defined by

for 0<x<1

c
Ix(x) =9 Jx
0  otherwise
Despite the fact that this function becomes infinitely large as x approaches zero, it may qualify to be a
legitimate probability density function. Find the value of scalar ¢ for which this condition is satisfied.

The joint probability density function of two random variables X and Y is defined by the two-
dimensional uniform distribution

¢ fora<x<banda<y<b

0 otherwise

fx, y(xwy) = {

Find the scalar ¢ for which fy y(x,y) satisfies the normalization property of a two-dimensional
probability density function.

In Table 3.2, the probability density function of a Rayleigh random variable is defined by

2

fx(x) = -% exp[— x—j forx>0and o>0

2
c 20

[E[X]:crﬁ

Using the result of part a, show that the variance of X is

Show that the mean of X is

var[X] = (2_ g)az

Use the results of a and b to determine the Rayleigh cumulative distribution function.

The probability density function of an exponentially distributed random variable X is defined by

A exp(—Ax), for 0 <x <o
0, otherwise

fx(x) = {

where A is a positive parameter.
Show that fx(x) is a legitimate probability density function.
Determine the cumulative distribution function of X.

Consider the one-sided conditional exponential distribution

fx(x|2) = ﬁexp(—h), 1<x<20

0, otherwise

where 4 > 0 and Z(2) is the normalizing constant required to make the area under fy(x|A) equal
unity.
Determine the normalizing constant Z(A).

Given N independent values of x, namely xy, x5, ..., xy, use Bayes’ rule to formulate the
conditional probability density function of the parameter A, given this data set.
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Expectation Operator

In Section 3.6 we described two properties of the expectation operator [E, one on linearity and the
other on statistical independence. In this problem, we address two other important properties of the
expectation operator.

Scaling property: Show that
[E(ax) = aE[X]
where a is a constant scaling factor.
Linearity of conditional expectation: Show that
ELX; + Xo[Y] = ELXy[Y] + E[X,|Y]
Validate the expected value rule of (3.41) by building on two expressions:
g(x) = max[g(x), 0] - max[-g(x), 0]
For any a > 0, g(x) > a provided that max[g(x), 0] >a

Let X be a discrete random variable with probability mass function px(x) and let g(X) be a function
of the random variable X. Prove the following rule:

E[g(X)] = > g(x)px(x)

where the summation is over all possible discrete values of X.
Continuing with the Bernoulli random variable X in (3.23), find the mean and variance of X.

The mass probability function of the Poisson random variable X is defined by
py(k) = %lkexp(—/l), k=0,1,2,..,and 1> 0

Find the mean and variance of X.
Find the mean and variance of the exponentially distributed random variable X in Problem 3.11.

The probability density function of the Laplacian random variable X in Table 3.2 is defined by

%/1 exp(—Ax) for x>0
fx(x) = )
5/1 exp(Ax) for x<0

for the parameter A > 0. Find the mean and variance of X.

In Example 5 we used the characteristic function ®(jv) to calculate the mean of an exponentially
distributed random variable X. Continuing with that example, calculate the variance of X and check
your result against that found in Problem 3.18.

The characteristic function of a continuous random variable X, denoted by ®(v), has some
important properties of its own:
The transformed version of the random variable X, namely, aX + b, has the following
characteristic function
E[exp(jv(aX +b))] = exp(jbv) - Dy(av)

where a and b are constants.

The characteristic function ®(v) is real if, and only if, the distribution function Fy(x), pertaining
to the random variable X, is symmetric.
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Prove the validity of these two properties, and demonstrate that property b is satisfied by the two-
sided exponential distribution described in Problem 3.19.

Let X and Y be two continuous random variables. One version of the total expectation theorem states
00
ELX]= [ ELX|Y = ylfy(y)dy
—o0

Justify this theorem.

Inequalities and Theorems

Let X be a continuous random variable that can only assume nonnegative values. The Markov
inequality states 1
P[X>a]<-E[X], a>0

Justify this inequality. .

In (3.46) we stated the Chebyshev inequality without proof. Justify this inequality.

Hint: consider the probability P[(X - ,u)2 > 6‘2] and then apply the Markov inequality, considered
in Problem 3.23, with a = &2.

Consider a sequence X, X», ..., X, of independent and identically distributed random variables with
mean u and variance o . The sample mean of this sequence is defined by

The weak law of large numbers states

lim P[|M, - u|<e]l =0  fore>0

n—>0
Justify this law. Hint: use the Chebyshev inequality.

Let event A denote one of the possible outcomes of a random experiment. Suppose that in n
independent trials of the experiment the event A occurs n, times. The ratio
7

M, = o
is called the relative frequency or empirical frequency of the event A. Let p = [P[A] denote the
probability of the event A. The experiment is said to exhibit “statistical regularity” if the relative
frequency M,, is most likely to be within & of p for large n. Use the weak law of large numbers,
considered in Problem 3.25, to justify this statement.

The Gaussian Distribution
In the literature on signaling over additive white Gaussian noise (AWGN) channels, formulas are
derived for probabilistic error calculations using the complementary error function

erfc(x) = l—ﬁ .[;exp(—lz) dt

Show that the erfc(x) is related to the Q-function as follows

0(x) = %erfc(:;%)

erfe(x) = 20(2 x)
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Equation (3.58) defines the probability density function of a Gaussian random variable X. Show that

the area under this function is unity, in accordance with the normalization property described in
(3.59).

Continuing with Problem3.28, justify the four properties of the Gaussian distribution stated in
Section 3.8 without proofs.

Sliow that the characteristic function of a Gaussian random variable X of mean z and variance
oy is
. 122
Py(v) = exp WVHx =5V 0x

Using the result of part a, show that the nth central moment of this Gaussian random variable is
as follows:

1x3x5... (n-1)a, for n even
EL(X - p0)"] = { (n=Dox
for n odd

. L . . 2 .
A Gaussian-distributed random variable X of zero mean and variance oy is transformed by a
piecewise-linear rectifier characterized by the input—output relation (see Figure P3.31):

v - {X, X20
0, X<O

The probability density function of the new random variable Y is described by

0, y<0
ko(y) y=0

fy()’) = 2
1 exp[——)—]——] y>0

2

N2noy 20y

Explain the physical reasons for the functional form of this result.
Determine the value of the constant k by which the delta function 5(y) is weighted.

In Section 3.9 we stated the central limit theorem embodied in (3.71) without proof. Justify this
theorem.

Bayesian Inference
Justify the likelihood principle stated (without proof) in Section 3.11.

In this problem we address a procedure for estimating the mean of the random variable; the
procedure was discussed in Section 3.6.
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Consider a Gaussian-distributed variable X with unknown mean g and unit variance. The mean sy
is itself a random variable, uniformly distributed over the interval [a, b]. To do the estimation, we are
given N independent observations of the random variable X. Justify the estimator of (3.36).

In this problem, we address the issue of estimating the standard deviation o of a Gaussian-
distributed random variable X of zero mean. The standard deviation itself is uniformly distributed
inside the interval [0y, ;]. For the estimation, we have N independent observations of the random
variable X, namely, xy, xy, ..., Xy.

Derive a formula for the estimator & using the MAP rule.

Repeat the estimation using the maximum likelihood criterion.

Comment on the results of parts a and b.

A binary symbol X is transmitted over a noisy channel. Specifically, symbol X = 1 is transmitted with
probability p and symbol X = 0 is transmitted with probability (1 — p). The received signals at the
channel output are defined by

Y=X+N
The random variable N represents channel noise, modeled as a Gaussian-distributed random variable
with zero mean and unit variance. The random variables X and N are independent.

Describe how the conditional probability P[X = 0|Y = y] varies with increasing y, all the way
from —o0 to 4+00.

Repeat the problem for the conditional probability P[X = 1|Y = y].

Consider an experiment involving the Poisson distribution, whose parameter A is unknown. Given
that the distribution of A follows the exponential law

f(A) = { aexp(-ad), 420

s otherwise

where a > 0, show that the MAP estimate of the parameter A is given by

Amap(k) = lfa

where k is the number of events used in the observation.

In this problem we investigate the use of analytic arguments to justify the optimality of the MAP
estimate for the simple case of a one-dimensional parameter vector.

Define the estimation error
eg(x) = 0-0(x)

where 0 is the value of an unknown parameter, é(x) is the estimator to be optimized, and x is the
observation vector. Figure P3.38 shows a uniform cost function, C(e), for this problem, with zero
cost being incurred only when the absolute value of the estimation error eqy(x) is less than or equal
to A/2.
Formulate the Bayes’ risk %R for this parameter estimation problem, accounting for the joint
probability density function f x(6 ,x).
Hence, determine the MAP estimate éMAp by minimizing the risk & with respect to é(x) . For
this minimization, assume that A is an arbitrarily small number but nonzero.
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Cleg)

1.0

In this problem we generalize the likelihood ratio test for simple binary hypotheses by including
costs incurred in the decision-making process. Let C;; denote the cost incurred in deciding in favor of
hypothesis H; when hypothesis H; is true. Hence, show that the likelihood ratio test of (3.95) still
holds, except for the fact that the threshold of the test is now defined by

_ (€19~ Cop)
7 (Co1 = Cyy)

Consider a binary hypothesis-testing procedure where the two hypotheses H, and H; are described
by different Poisson distributions, characterized by the parameters A, and A;, respectively. The
observation is simply a number of events k, depending on whether Hy or H| is true. Specifically, for
these two hypotheses, the probability mass functions are defined by

k

k) = (4) 2 k=0,1,2
le( ) = %l exp(-4,), =0, 12 ..,

where i = 0 for hypothesis Hyand i = 1 for hypothesis H;. Determine the log-likelihood ratio test for
this problem.

Consider the binary hypothesis-testing problem
H:X=M+N
HO :X=N

The M and N are independent exponentially distributed random variables, as shown by

o) = {imexp(—ﬂm), m>0

M 0, otherwise
po(n) = {)inexp(—/ln), n>0

N 0, otherwise

Determine the likelihood ratio test for this problem.

In this problem we revisit Example 8. But this time we assume that the mean m under hypothesis H
is Gaussian distributed, as shown by

2

1 m
S (m|H) = —-—-—-—-—exp(——]
- V2Tto-m 203,1

Derive the likelihood ratio test for the composite hypothesis scenario just described.

Compare your result with that derived in Example 8.
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Notes

1. For a readable account of probability theory, see Bertsekas and Tsitsiklis (2008). For an advanced
treatment of probability theory aimed at electrical engineering, see the book by Fine (2006). For an
advanced treatment of probability theory, see the two-volume book by Feller (1968, 1971).

2. For an interesting account of inference, see the book by MacKay (2003).

3. For a detailed treatment of the characterization of discrete random variables, see Chapter 2 of the
book by Bertsekas and Tsitsiklis (2008).

4. Indeed, we may readily transform the probability density function of (3.58) into the standard
form by using the linear transformation

1
= SX-n)

In so doing, (3.58) is simplified as follows:

1
F) = Eexp(_f/z)

which has exactly the same mathematical form as (3.65), except for the use of y in place of x.

5. Calculations based on Bayes’ rule, presented previously as (3.14), are referred to as “Bayesian.”
In actual fact, Bayes provided a continuous version of the rule; see (3.72). In a historical context, it is
also of interest to note that the full generality of (3.72) was not actually perceived by Bayes; rather,
the task of generalization was left to Laplace.

6. Itis because of this duality that the Bayesian paradigm is referred to as a principle of duality; see
Robert (2001). Robert’s book presents a detailed and readable treatment of the Bayesian paradigm.
For a more advanced treatment of the subject, see Bernardo and Smith (1998).

7. In a paper published in 1912, R.A. Fisher moved away from the Bayesian approach. Then, in a
classic paper published in 1922, he introduced the likelihood.

8. In Appendix B of their book, Bernardo and Smith (1998) show that many non-Bayesian inference
procedures do not lead to identical inferences when applied to such proportional likelihoods.

9. For detailed discussion of the sufficient statistic, see Bernardo and Smith (1998).

10. A more detailed treatment of parameter-estimation theory is presented in the classic book by
Van Trees (1968); the notation used by Van Trees is somewhat different from that used in this
chapter. See also the book by McDonough and Whalen (1995).

11. For a more detailed treatment and readable account of hypothesis testing, see the classic book
by Van Trees (1968). See also the book by McDonough and Whalen (1995).



Stochastic Processes

Introduction

Stated in simple terms, we may say:

Elaborating on this succinct statement, we find that in many of the real-life phenomena
encountered in practice, time features prominently in their description. Moreover, their
actual behavior has a random appearance. Referring back to the example of wireless
communications briefly described in Section 3.1, we find that the received signal at the
wireless channel output varies randomly with time. Processes of this kind are said to be
random or stochastic; hereafter, we will use the term “stochastic.” Although probability
theory does not involve time, the study of stochastic processes naturally builds on
probability theory.

The way to think about the relationship between probability theory and stochastic
processes is as follows. When we consider the statistical characterization of a stochastic
process at a particular instant of time, we are basically dealing with the characterization of
a random variable sampled (i.e., observed) at that instant of time. When, however, we
consider a single realization of the process, we have a random waveform that evolves
across time. The study of stochastic processes, therefore, embodies two approaches: one
based on ensemble averaging and the other based on ftemporal averaging. Both
approaches and their characterizations are considered in this chapter.

Although it is not possible to predict the exact value of a signal drawn from a stochastic
process, it is possible to characterize the process in terms of statistical parameters such as
average power, correlation functions, and power spectra. This chapter is devoted to the
mathematical definitions, properties, and measurements of these functions, and related issues.

Mathematical Definition of a Stochastic Process

To summarize the introduction: stochastic processes have two properties. First, they are
functions of time. Second, they are random in the sense that, before conducting an experiment,
it is not possible to define the waveforms that will be observed in the future exactly.

In describing a stochastic process, it is convenient to think in terms of a sample space.
Specifically, each realization of the process is associated with a sample point. The totality
of sample points corresponding to the aggregate of all possible realizations of the
stochastic process is called the sample space. Unlike the sample space in probability
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theory, each sample point of the sample space pertaining to a stochastic process is a
function of time. We may therefore think of a stochastic process as the sample space or
ensemble composed of functions of time. As an integral part of this way of thinking, we
assume the existence of a probability distribution defined over an appropriate class of sets
in the sample space, so that we may speak with confidence of the probability of various
events observed at different points of time.
Consider, then, a stochastic process specified by
outcomes s observed from some sample space S;
events defined on the sample space S; and

probabilities of these events.
Suppose that we assign to each sample point s a function of time in accordance with the rule
X(t,s), -T<t<T

where 27 is the total observation interval. For a fixed sample point s;, the graph of the
function X(z, s;) versus time ¢ is called a realization or sample function of the stochastic
process. To simplify the notation, we denote this sample function as

xj(t) = X(t, sj), -T<t<T

Figure 4.1 illustrates a set of sample functions {xj(t)l j=1,2, ..., n}. From this figure, we
see that, for a fixed time #; inside the observation interval, the set of numbers

{8, xo0(t)s s X, (1)} = X84 50), X(84 85)5 -0, X(Hy,5,) }

xp(1)

Sample
space
S
xl(f) |
I
|
l’](fk) |
0 | Outcome of the
%&w*%w‘ﬁwa% first trial of
I the experiment
|
|
|
.Xz(t) |
|
N

Outcome of the
second trial of
the experiment

i
E

x,(1)
Outcome of the
Mﬁ nth trial of
T 0 I +T  the experiment

An ensemble of sample functions.
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constitutes a random variable. Thus, a stochastic process X(z, s) is represented by the time-
indexed ensemble (family) of random variables {X(z, s)}. To simplify the notation, the
customary practice is to suppress the s and simply use X(¢) to denote a stochastic process.
We may now formally introduce the definition:

Moreover, we may distinguish between a random variable and a random process as
follows. For a random variable, the outcome of a stochastic experiment is mapped into a
number. On the other hand, for a stochastic process, the outcome of a stochastic
experiment is mapped into a waveform that is a function of time.

Two Classes of Stochastic Processes: Strictly Stationary and
Weakly Stationary

In dealing with stochastic processes encountered in the real world, we often find that the
statistical characterization of a process is independent of the time at which observation of
the process is initiated. That is, if such a process is divided into a number of time intervals,
the various sections of the process exhibit essentially the same statistical properties. Such
a stochastic process is said to be stationary. Otherwise, it is said to be nonstationary.
Generally speaking, we may say:

To be more precise, consider a stochastic process X(¢) that is initiated at + = —oo. Let
X(ty), X(1,), ..., X(;) denote the random variables obtained by sampling the process X(¢) at
times t,, ,, ..., t;, respectively. The joint (cumulative) distribution function of this set of
random variables is FX(I.), ...,X(tk)(xl’ ..-» X;) . Suppose next we shift all the sampling
times by a fixed amount 7 denoting the time shift, thereby obtaining the new set of random
variables: X(¢,+ 1), X(t,+17), ..., X(t;+ 7). The joint distribution function of this latter set of
random variables is FX(tl £ (4 T)(xl, ..., X;). The stochastic process X(7) is said to
be stationary in the strict sense, or strictly stationary, if the invariance condition

Fxt 40, X+ 01 %) = Fxay L xe)F o %0)

holds for all values of time shift t, all positive integers k, and any possible choice of
sampling times t{, ..., t;. In other words, we may state:

Note that the finite-dimensional distributions in (4.2) depend on the relative time
separation between random variables, but not on their absolute time. That is, the stochastic
process has the same probabilistic behavior throughout the global time .
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Similarly, we may say that two stochastic processes X(f) and Y(¢) are jointly strictly
stationary if the joint finite-dimensional distributions of the two sets of stochastic
variables X(t,), ..., X(¢;) and Y(t}), ..., ¥( tj’.) are invariant with respect to the origin
t =0 for all positive integers k and j, and all choices of the sampling times ¢y, ..., #; and
st

Returning to (4.2), we may identify two important properties:

For k =1, we have
FX(t)(x) = FX(IJr T)(x) = Fy(x) for all r andr
In words, the first-order distribution function of a strictly stationary stochastic

process is independent of time t.
For k=2 and 7= —t,, we have

FX(I.), X(tz)(xl, x2) = FX(O), X(1, _tz)(xl, X5) for all ¢, and 1,

In words, the second-order distribution function of a strictly stationary stochastic
process depends only on the time difference between the sampling instants and not
on the particular times at which the stochastic process is sampled.

These two properties have profound practical implications for the statistical
parameterization of a strictly stationary stochastic process, as discussed in Section 4.4.

Multiple Spatial Windows for Illustrating Strict Stationarity

Consider Figure 4.2, depicting three spatial windows located at times #;, t,, 3. We wish to
evaluate the probability of obtaining a sample function x(¢) of a stochastic process X(¢) that
passes through this set of windows; that is, the probability of the joint event

PCA) = Fx)), x(y). x(13) (P15 2 03) = Fx1), x(1), x(1,)(@1> 92> 43)

Suppose now the stochastic process X(f) is known to be strictly stationary. An implication
of strict stationarity is that the probability of the set of sample functions of this process
passing through the windows of Figure 4.3a is equal to the probability of the set of sample
functions passing through the corresponding time-shifted windows of Figure 4.3b. Note,
however, that it is not necessary that these two sets consist of the same sample functions.

lbl
- T“T \\ ,,b3
\ //’—\\ A possible
\ / T4 N sample
\\ / function
\ | 1) / ,
t \ 7 t
! \ th / 3
N\ /
N __7
[

Illustrating the probability of a joint event.
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Another important class of stochastic processes is the so-called weakly stationary
processes. To be specific, a stochastic process X(7) is said to be weakly stationary if its
second-order moments satisfy the following two conditions:

The mean of the process X(t) is constant for all time t.

The autocorrelation function of the process X(t) depends solely on the difference
between any two times at which the process is sampled; the “auto” in autocorrelation
refers to the correlation of the process with itself.

In this book we focus on weakly stationary processes whose second-order statistics satisfy
conditions 1 and 2; both of them are easy to measure and considered to be adequate for
practical purposes. Such processes are also referred to as wide-sense stationary processes
in the literature. Henceforth, both terminologies are used interchangeably.

Mean, Correlation, and Covariance Functions of
Weakly Stationary Processes

Consider a real-valued stochastic process X(7). We define the mean of the process X(¢) as
the expectation of the random variable obtained by sampling the process at some time ¢, as
shown by

px(1) = E[X(1)]

00

jﬁ () dx
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where fX(t)(x) is the first-order probability density function of the process X(#), observed
at time #; note also that the use of single X as subscript in z(?) is intended to emphasize
the fact that zy(¢) is a first-order moment. For the mean p(¢) to be a constant for all time ¢
so that the process X(7) satisfies the first condition of weak stationarity, we require that
Jx() be independent of time 7. Consequently, (4.5) simplifies to

y(t) = py  forall ¢

We next define the autocorrelation function of the stochastic process X(r) as the
expectation of the product of two random variables, X(#;) and X(#,), obtained by sampling
the process X(¥) at times ¢; and t,, respectively. Specifically, we write

My (1), 1)) = E[X(1))X(1;)]

= I I x1x2fX(tl),X(t2)(x1’x2) dx; dx,
—o0 % —0

where fX(zl), X(tz)(xl,xz) is the joint probability density function of the process X(r)
sampled at times #; and f,; here, again, note that the use of the double X subscripts is
intended to emphasize the fact that Myx(#;,t,) is a second-order moment. For Myx(t{,t,) to
depend only on the time difference 7, — ¢, so that the process X(#) satisfies the second
condition of weak stationarity, it is necessary for fX(tl), X(tz)(xl, X,) to depend only on the
time difference ¢, — #,. Consequently, (4.7) reduces to

Myy(t), 1)) = E[X(1))X(1,)]
Ryy(t,—t;)  forall ¢, and ¢,

In (4.8) we have purposely used two different symbols for the autocorrelation function:
Mxx(t,, t,) for any stochastic process X(f) and Ryx(t, — t;) for a stochastic process that is
weakly stationary.

Similarly, the autocovariance function of a weakly stationary process X() is defined by

Cyx(1), 1) = E[(X(1}) — 1) (X(25) — px)]

2
= Ryx(t, —1)) — py

Equation (4.9) shows that, like the autocorrelation function, the autocovariance function of
a weakly stationary process X(#) depends only on the time difference (¢, — ¢;). This
equation also shows that if we know the mean and the autocorrelation function of the
process X(f), we can uniquely determine the autocovariance function. The mean and
autocorrelation function are therefore sufficient to describe the first two moments of the
process.

However, two important points should be carefully noted:

The mean and autocorrelation function only provide a weak description of the
distribution of the stochastic process X(¥).

The conditions involved in defining (4.6) and (4.8) are not sufficient to guarantee the
stochastic process X(¢) to be strictly stationary, which emphasizes a remark that was
made in the preceding section.
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Nevertheless, practical considerations often dictate that we simply limit ourselves to a
weak description of the process given by the mean and autocorrelation function because
the computation of higher order moments can be computationally intractable.

Henceforth, the treatment of stochastic processes is confined to weakly stationary pro-
cesses, for which the definitions of the second-order moments in (4.6), (4.8), and (4.9) hold.

For convenience of notation, we reformulate the definition of the autocorrelation function
of a weakly stationary process X(7), presented in (4.8), as

Ryx(7) = E[X(t+ 0)X(1)] for all ¢
where 7 denotes a time shift; thatis, t = tyand 7 = t;—t,. This autocorrelation function
has several important properties.
Mean-square Value

The mean-square value of a weakly stationary process X(t) is obtained from Rxx(t) simply
by putting 7= 0in (4.10), as shown by

Ryx(0) = E[X*(1)]

Symmetry

The autocorrelation function Rxx(t) of a weakly stationary process X(t) is an even
function of the time shift t; that is,

Ryx(7) = Ryx(-17)

This property follows directly from (4.10). Accordingly, we may also define the
autocorrelation function Ryx(7) as

Ryx(7) = E[X()X(1 - 7)]
In words, we may say that a graph of the autocorrelation function Ryx(7), plotted versus z,
is symmetric about the origin.
Bound on the Autocorrelation Function
The autocorrelation function Rxx( t) attains its maximum magnitude at © = 0; that is,
|RXX(T)| < Ry(0)
To prove this property, consider the nonnegative quantity
E[(X(1+ 7) £ X(£))*]2 0
Expanding terms and taking their individual expectations, we readily find that
[E[Xz(t + )] £ 2E[X(t+ 0)] + [E[Xz(t)] >0
which, in light of (4.11) and (4.12), reduces to
2Ry x(0) £2Ry5(7) 20



152

Stochastic Processes

Equivalently, we may write
“Ryx(0) < Ryx(7) < Ry(0)
from which (4.13) follows directly.

Normalization

Values of the normalized autocorrelation function
Ryx(7)
RXX(O)

pxx( T) =

are confined to the range [-1, 1].
This last property follows directly from (4.13).

The autocorrelation function Ryx(7) is significant because it provides a means of
describing the interdependence of two random variables obtained by sampling the
stochastic process X(t) at times t seconds apart. It is apparent, therefore, that the more
rapidly the stochastic process X(f) changes with time, the more rapidly will the
autocorrelation function Ryx(7) decrease from its maximum Ryx(0) as 7 increases, as
illustrated in Figure 4.4. This behavior of the autocorrelation function may be
characterized by a decorrelation time 4., such that, for 7> z4.., the magnitude of the
autocorrelation function Ryy(7) remains below some prescribed value. We may thus
introduce the following definition:

For the example used in this definition, the parameter 7y is referred to as the one-percent
decorrelation time.

Sinusoidal Wave with Random Phase

Consider a sinusoidal signal with random phase, defined by
X(1) = A cos(2rf 1+ @)

Ryx@ Slowly fluctuating
stochastic process

Rapidly fluctuating
Tlustrating the stochastic process
autocorrelation
functions of slowly and
rapidly fluctuating

stochastic processes. 0
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where A and f, are constants and ® is a random variable that is uniformly distributed over
the interval [—m, nt]; that is,

1
fol0) = 7 —n<f<n

0, elsewhere

According to (4.16), the random variable © is equally likely to have any value € in the
interval [-m, ©t]. Each value of @ corresponds to a point in the sample space S of the
stochastic process X(7).

The process X(¢) defined by (4.15) and (4.16) may represent a locally generated carrier
in the receiver of a communication system, which is used in the demodulation of a
received signal. In such an application, the random variable ® in (4.15) accounts for
uncertainties experienced in the course of signal transmission across the communication
channel.

The autocorrelation function of X(¢) is

Ryy(D) = E[X(1+ DX(1)]

= [E[Azcos(Zchct +2nf 7+ 0©) cos(2nf, t + O)]

A’ A’
= 7[E[cos(4nfct +2nf,7+20)] + ?[E[c:os(anC )]

A A’
= 7"._71 cos(4nft+2nf.t+260)d0+ 7005(27[}‘C 7)

The first term integrates to zero, so we simply have
A2
Ryy(7) = Ecos(2nfC 7)

which is plotted in Figure 4.5. From this figure we see that the autocorrelation function of
a sinusoidal wave with random phase is another sinusoid at the same frequency in the
“local time domain” denoted by the time shift 7 rather than the global time domain
denoted by .

Rxx(‘[)

A2

N T
N

1

fe

Autocorrelation function of a sine wave with random phase.
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Random Binary Wave

Figure 4.6 shows the sample function x(¢) of a weakly stationary process X(f) consisting of
a random sequence of binary symbols 1 and 0. Three assumptions are made:

The symbols 1 and O are represented by pulses of amplitude +A and —A volts
respectively and duration T seconds.

The pulses are not synchronized, so the starting time #;4 of the first complete pulse
for positive time is equally likely to lie anywhere between zero and 7T seconds. That
is, tq is the sample value of a uniformly distributed random variable Ty, whose
probability density function is defined by

1

= <t,<T
it =17 0%

0’

elsewhere

During any time interval (n — 1)T <t — t4 < nT, where n is a positive integer, the
presence of a 1 or a 0 is determined by tossing a fair coin. Specifically, if the
outcome is heads, we have a 1; if the outcome is tails, we have a 0. These two
symbols are thus equally likely, and the presence of a 1 or 0 in any one interval is
independent of all other intervals.

Since the amplitude levels —A and +A occur with equal probability, it follows immediately
that E[X()] = O for all ¢ and the mean of the process is therefore zero.

To find the autocorrelation function Ryy(#.t;), we have to evaluate the expectation
E[X(t)X ()], where X(#;) and X(¢;) are random variables obtained by sampling the
stochastic process X(f) at times #;, and ¢; respectively. To proceed further, we need to
consider two distinct conditions:

lty—t>T

Under this condition, the random variables X(#;) and X(¢;) occur in different pulse intervals
and are therefore independent. We thus have

E[X(1,)X(2)] = E[X(r)]E[X(z)] = O, |’k—’i|>T

x(t)

L]
JUl L

-A

ul— e

Sample function of random binary wave.
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|tr — 1| > T, with f, =0 and 7; <

Under this second condition, we observe from Figure 4.6 that the random variables X(#;)
and X(#;) occur in the same pulse interval if, and only if, the delay ¢, satisfies the condition
ty < T — |t — 1;. We thus have the conditional expectation

2
ELX(1)X(1)[1g] = 1 A7 fa<T= |1
0, elsewhere

Averaging this result over all possible values of 7;, we get

T—|t,— 1] )
E[X(1,)X(1,)] = jo Ay (1) dig
T—|t 7t,.\ 2
= j CA dr,
0 T

2y _ =1
_A(l——T- , |tk—ti’<T
By similar reasoning for any other value of f;, we conclude that the autocorrelation

function of a random binary wave, represented by the sample function shown in Figure
4.6, is only a function of the time difference 7 = f;, — ¢t;, as shown by

AZ( —|T|), 7| <T
T

0, 7| =T

Ryx(7) =

This triangular result, described in (4.18), is plotted in Figure 4.7.

R)(x(‘l')

T
-T 0 T

Autocorrelation function of random binary wave.

Consider next the more general case of two stochastic processes X(r) and Y(f) with
autocorrelation functions Myx(t, u) and Myy(t, u) respectively. There are two possible
cross-correlation functions of X(f) and Y(r) to be considered.
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Specifically, we have

Myy(t,u) = E[X()Y(u)]
and

Myy(t,u) = E[Y(1)X(u)]

where ¢ and u denote two values of the global time at which the processes are observed.
All four correlation parameters of the two stochastic processes X(7) and Y() may now be
displayed conveniently in the form of the two-by-two matrix

Myy(t,u) My (1, u)
Myx(ts u) Myy(ls u)
which is called the cross-correlation matrix of the stochastic processes X(¢) and Y(z). If the

stochastic processes X(¢) and Y(r) are each weakly stationary and, in addition, they are
jointly stationary, then the correlation matrix can be expressed by

M(t,u) =

Ryx(7)  Ryy(7)
Ryx(7)  Ryy(7)

R(7) =

where the time shift 7 =u — 1.

In general, the cross-correlation function is not an even function of the time-shift z as
was true for the autocorrelation function, nor does it have a maximum at the origin.
However, it does obey a certain symmetry relationship, described by

Ryy(7) = Ryx(-7)

Quadrature-Modulated Processes

Consider a pair of quadrature-modulated processes X;(¢) and X,(¢) that are respectively
related to a weakly stationary process X(7) as follows:

X, (1) = X(#) cos(2nf t+©O)
X,(1) = X(¢) sin(2nf t+©)

where f, is a carrier frequency and the random variable @ is uniformly distributed over the
interval [0, 2nt]. Moreover, © is independent of X(f). One cross-correlation function of
X(?) and X,(?) is given by

R (1) = E[X,()X,(t- 7)]
= E[X(1)X(t - 7) cos(2nf t+ @) sin(2nf,t - 2nf, 7+ O)]
= E[X(1)X(t - 0)]E[cos(2nf t + O) sin(2nf, t - 2nf, 7+ O)]

_ %RXX( D E[sin(4nf, 7— 27f,t + 20)  sin(2nf, 7)]

= —%RXX(T) sin(2nf, 7)
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where, in the last line, we have made use of the uniform distribution of the random
variable ©®, representing phase. Invoking (4.22), we find that the other cross-correlation
function of X(#) and X,(?) is given by

Ry (1) = %RXX(—T) sin(21f, 7)

- %RXX( 7) sin(2nf, )

At 7=0, the factor sin(2nf, 7) is zero, in which case we have
R,(0) = Ry,;(0) =0

This result shows that the random variables obtained by simultaneously sampling the
quadrature-modulated processes X;(f) and X,(f) at some fixed value of time ¢ are
orthogonal to each other.

Ergodic Processes

Ergodic processes are subsets of weakly stationary processes. Most importantly, from a
practical perspective, the property of ergodicity permits us to substitute time averages for
ensemble averages.

To elaborate on these two succinct statements, we know that the expectations or
ensemble averages of a stochastic process X(f) are averages “across the process.” For
example, the mean of a stochastic process X(¢) at some fixed time #; is the expectation of
the random variable X(#;) that describes all possible values of sample functions of the
process X(f) sampled at time ¢ = f;. Naturally, we may also define long-term sample
averages or time averages that are averages “along the process.” Whereas in ensemble
averaging we consider a set of independent realizations of the process X(f) sampled at
some fixed time f;, in time averaging we focus on a single waveform evolving across time
t and representing one waveform realization of the process X(¢).

With time averages providing the basis of a practical method for possible estimation of
ensemble averages of a stochastic process, we would like to explore the conditions under
which this estimation is justifiable. To address this important issue, consider the sample
function x(¢) of a weakly stationary process X(#) observed over the interval -7’ < ¢ < T. The
time-average value of the sample function x(¢) is defined by the definite integral

1T
T) = = t) dt
() = 53] _x(0
Clearly, the time average u(7) is a random variable, as its value depends on the
observation interval and which particular sample function of the process X(¥) is picked for
use in (4.24). Since the process X(7) is assumed to be weakly stationary, the mean of the
time average u,(7) is given by (after interchanging the operations of expectation and
integration, which is permissible because both operations are linear)
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1 T
ELn(D) = 77 ELx(0)] dr

A

1
= ==| nyds
2T

=IL[X

where sy is the mean of the process X(f). Accordingly, the time average £, (T) represents
an unbiased estimate of the ensemble-averaged mean . Most importantly, we say that
the process X(¢) is ergodic in the mean if two conditions are satisfied:

The time average 1 (T) approaches the ensemble average yy in the limit as the
observation interval approaches infinity; that is,
lim 0 (T) = py
T— o
The variance of z,(T), treated as a random variable, approaches zero in the limit as
the observation interval approaches infinity; that is,

lim var[u (T)] = 0
T— o

The other time average of particular interest is the autocorrelation function R (7, T),
defined in terms of the sample function x(f) observed over the interval -7 < r < T.
Following (4.24), we may formally define the time-averaged autocorrelation function of
x(t) as

1 T
R (5T) = Z—Tj x(t+ D)x(r) dr
-T

This second time average should also be viewed as a random variable with a mean and
variance of its own. In a manner similar to ergodicity of the mean, we say that the process
x(¢) is ergodic in the autocorrelation function if the following two limiting conditions are
satisfied:

lim R (7, T) = Ryx(7)
T—>
lim var[R, (7, T)] = 0
T—

With the property of ergodicity confined to the mean and autocorrelation functions, it
follows that ergodic processes are subsets of weakly stationary processes. In other words,
all ergodic processes are weakly stationary; however, the converse is not necessarily true.

Transmission of a Weakly Stationary Process through a
Linear Time-invariant Filter

Suppose that a stochastic process X(¢) is applied as input to a linear time-invariant filter of
impulse response h(f), producing a new stochastic process Y(¢) at the filter output, as
depicted in Figure 4.8. In general, it is difficult to describe the probability distribution of
the output stochastic process Y(f), even when the probability distribution of the input
stochastic process X(#) is completely specified for the entire time interval —oo <t < oo.
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Impulse
X(r) =—>| response > Y(1)
h(r)

Transmission of a
stochastic process through a
linear time-invariant filter.

For the sake of mathematical tractability, we limit the discussion in this section to the
time-domain form of the input—output relations of the filter for defining the mean and
autocorrelation functions of the output stochastic process Y(¢) in terms of those of the
input X(#), assuming that X(7) is a weakly stationary process.

The transmission of a process through a linear time-invariant filter is governed by the
convolution integral, which was discussed in Chapter 2. For the problem at hand, we may
thus express the output stochastic process Y() in terms of the input stochastic process X(#) as

00

Y(1) = j h()X(t - 7,) de,

—00
where 77 is a local time. Hence, the mean of Y(¢) is
uy(r) = E[Y(1)]

[Ewah(rl)X(t-rl)drl}

Provided that the expectation E[X(7)] is finite for all 7 and the filter is stable, we may
interchange the order of expectation and integration in (4.27), in which case we obtain

00

pay(1) = j h(z)E[X(1 - 7,)] dr,

00

= [ h(e)uy(i-1) dr,

—00

When the input stochastic process X(f) is weakly stationary, the mean gx(f) is a constant
Hy; therefore, we may simplify (4.28) as

o0
Hy /”X_[ h(z,) d;

1xH(0)

where H(0) is the zero-frequency response of the system. Equation (4.29) states:

This result is intuitively satisfying.
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Consider next the autocorrelation function of the output stochastic process Y(7). By
definition, we have

Myy(1,u) = E[Y(5)Y(u)]

where ¢ and u denote two values of the time at which the output process Y(#) is sampled.
We may therefore apply the convolution integral twice to write

Myy(t,u) = [EU

00

h(z)X(t— 7)) drlj h(2,)X(u - 7,) drz}

Here again, provided that the mean-square value E[X(1)] is finite for all 7 and the filter is
stable, we may interchange the order of the expectation and the integrations with respect
to 7; and 7, in (4.30), obtaining

00

Myt u) = j [h(rl)j dz, h(7y)E[X(t— 7)) X (u - rz)]] dr,

—00

= I: |:h(71 )jioclr2 h(7y)Myy(t— 7y, u~ ,2)} dr,

When the input X(¥) is a weakly stationary process, the autocorrelation function of X(¢) is
only a function of the difference between the sampling times ¢ — 7; and u — 7. Thus,
putting 7=u —tin (4.31), we may go on to write

Ry = [ [ h(e)h(e)Ryx(7+ 7, = 1) dr, dr,

—00  —00

which depends only on the time difference =
On combining the result of (4.32) with that involving the mean xy in (4.29), we may
now make the following statement:

By definition, we have Ryy(0) = [E[Yz(t)]. In light of Property 1 of the autocorrelation
function Ryy(7), it follows, therefore, that the mean-square value of the output process
Y(?) is obtained by putting 7= 0 in (4.32), as shown by

EY' 0] = [ [ h(rph()Ryx(7, - 5,) dy dr,

—00  —00

which, of course, is a constant.

Power Spectral Density of a Weakly Stationary Process

Thus far we have considered the time-domain characterization of a weakly stationary
process applied to a linear filter. We next study the characterization of linearly filtered
weakly stationary processes by using frequency-domain ideas. In particular, we wish to
derive the frequency-domain equivalent to the result of (4.33), defining the mean-square
value of the filter output Y(r). The term “filter” used here should be viewed in a generic
sense; for example, it may represent the channel of a communication system.



Power Spectral Density of a Weakly Stationary Process 161

From Chapter 2, we recall that the impulse response of a linear time-invariant filter is
equal to the inverse Fourier transform of the frequency response of the filter. Using H(f) to
denote the frequency response of the filter, we may thus write

0

h(z,) = j H(f) exp(j2nfz,) df

Substituting this expression for h(rzy) into (4.33) and then changing the order of
integrations, we get the triple integral

E[Y2(n)] = f jio U_ H(p) exp(j27tfrl)df}h(rz)RXX(rl—2'2) dz, dr,

o0
0
J‘ED
—00

[H(}‘)Iio dz,yh( rz)J‘iO Ryy(7 - 7,)exp(j2nfr)) drl} df

At first, the expression on the right-hand side of (4.35) looks rather overwhelming.
However, we may simplify it considerably by first introducing the variable

T = Tl—Tz

Then, we may rewrite (4.35) in the new form

E[Y(1)] = JﬁwH(f)inh(rz) exp(j27/7,) dz’2JLwRXX(T) exp(—j2nf7) dz’} df

The middle integral involving the variable 7, inside the square brackets on the right-hand
side in (4.36) is simply H*(f), the complex conjugate of the frequency response of the
filter. Hence, using |[H(H)|* = H(HH*(f), where |H(f)| is the magnitude response of the
filter, we may simplify (4.36) as

B0 = [ IHOP][ Rey(e) exp-i2nfo) dr | af

We may further simplify (4.37) by recognizing that the integral inside the square brackets
in this equation with respect to the variable 7 is simply the Fourier transform of the
autocorrelation function Ryy(7) of the input process X(#). In particular, we may now
define a new function

Syx(D = J-iooRXX(T) exp(—j2nfr) dr

The new function Syx(f) is called the power spectral density, or power spectrum, of the
weakly stationary process X(f). Thus, substituting (4.38) into (4.37), we obtain the simple
formula

EY' (0] = [ [HO Sy df

which is the desired frequency-domain equivalent to the time-domain relation of (4.33). In
words, (4.39) states:
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To investigate the physical significance of the power spectral density, suppose that the
weakly stationary process X(#) is passed through an ideal narrowband filter with a
magnitude response |H(f)| centered about the frequency f., depicted in Figure 4.9; we may
thus write

Lo |fef]<3af
IH(H| =

0, |f£f)> %Af

where Af is the bandwidth of the filter. From (4.39) we readily find that if the bandwidth Af
is made sufficiently small compared with the midband frequency f, of the filter and Syx(f)
is a continuous function of the frequency f, then the mean-square value of the filter output
is approximately given by

ELY ()]~ (2ANSyy(f)  forall f

where, for the sake of generality, we have used f in place of f.. According to (4.41),
however, the filter passes only those frequency components of the input random process
X(?) that lie inside the narrow frequency band of width Af. We may, therefore, say that
Sx(f) represents the density of the average power in the weakly stationary process X(z),
evaluated at the frequency f. The power spectral density is therefore measured in watts per
hertz (W/Hz).

According to (4.38), the power spectral density Syx(f) of a weakly stationary process X(f)
is the Fourier transform of its autocorrelation function Ryy(7). Building on what we know
about Fourier theory from Chapter 2, we may go on to say that the autocorrelation
function Ryyx(7) is the inverse Fourier transform of the power spectral density Sxx(f).

| | .
—fe 0 fe /

—Af— —Af—

Magnitude response of ideal narrowband filter.
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Simply put, Ryyx(7) and Syy(f) form a Fourier-transform pair, as shown by the following
pair of related equations:

Syx(D = JlooRXX( 7) exp(—j2nf7) dr

Ru(®) = [ Sxxl) exp(i2nf) Of

These two equations are known as the Wiener—Khintchine relations,” which play a
fundamental role in the spectral analysis of weakly stationary processes.

The Wiener—Khintchine relations show that if either the autocorrelation function or
power spectral density of a weakly stationary process is known, then the other can be
found exactly. Naturally, these functions display different aspects of correlation-related
information about the process. Nevertheless, it is commonly accepted that, for practical
purposes, the power spectral density is the more useful function of the two for reasons that
will become apparent as we progress forward in this chapter and the rest of the book.

Zero Correlation among Frequency Components

The individual frequency components of the power spectral density Sxx(f) of a weakly
stationary process X(t) are uncorrelated with each other.

To justify this property, consider Figure 4.10, which shows two adjacent narrow bands
of the power spectral density Syx(f), with the width of each band being denoted by Af.
From this figure, we see that there is no overlap, and therefore no correlation, between the
contents of these two bands. As Af approaches zero, the two narrow bands will
correspondingly evolve into two adjacent frequency components of Syy(f), remaining
uncorrelated with each other. This important property of the power spectral density Syx(f)
is attributed to the weak stationarity assumption of the stochastic process X(z).

Sxx(f)

-
Ilustration of zero correlation between two adjacent narrow
bands of an example power spectral density.
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Zero-frequency Value of Power Spectral Density

The zero-frequency value of the power spectral density of a weakly stationary process
equals the total area under the graph of the autocorrelation function, that is,

Syx(0) = J-iOORXX(r) dr

This second property follows directly from (4.42) by putting f'= 0.

Mean-square Value of Stationary Process

The mean-square value of a weakly stationary process X(t) equals the total area under the
graph of the power spectral density of the process, that is,

EXC(0] = [ Sxy(h df

This third property follows directly from (4.43) by putting 7 = 0 and using Property 1 of
the autocorrelation function described in (4.11) namely Rx(0) = [E[Xz(t)] for all .

Nonnegativeness of Power Spectral Density

The power spectral density of a stationary process X(t) is always nonnegative; that is,
Syx(N=0  forall f

This property is an immediate consequence of the fact that, since the mean-square
value [E[Yz(t)] is always nonnegative in accordance with (4.41), it follows that
Syx(f) = [E[Yz(t)]/(ZAf) must also be nonnegative.

Symmetry

The power spectral density of a real-valued weakly stationary process is an even function
of frequency; that is,

Sxx(-) = Sxx()
This property is readily obtained by first substituting —f for the variable fin (4.42):
00
Syx(=N = j Ryx(7) exp(j2nf7) dr

Next, substituting —7 for 7, and recognizing that Ryyx(—7) = Ryx(7) in accordance with
Property 2 of the autocorrelation function described in (4.12), we get

Sxx(=) = I_wax(T) exp(=j2nf7) dr = Syy(f)

which is the desired result. It follows, therefore, that the graph of the power spectral
density Syx(f), plotted versus frequency f, is symmetric about the origin.
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Normalization

The power spectral density, appropriately normalized, has the properties associated with
a probability density function in probability theory.

The normalization we have in mind here is with respect to the total area under the graph
of the power spectral density (i.e., the mean-square value of the process). Consider then
the function

SXX(f)
Pxx() = —————

_[_ Sxx(f) df

In light of Properties 3 and 4, we note that pyx(f) = O for all f. Moreover, the total area
under the function pyx(f) is unity. Hence, the normalized power spectral density, as
defined in (4.48), behaves in a manner similar to a probability density function.

Building on Property 6, we may go on to define the spectral distribution function of a
weakly stationary process X() as

f
Fyx(f) = J Pxx(v) dv

which has the following properties:
Fyy(=0) =0
Fyx(o) =1
Fyx(f) is a nondecreasing function of the frequency f.

Conversely, we may state that every nondecreasing and bounded function Fyx(f) is the
spectral distribution function of a weakly stationary process.

Just as important, we may also state that the spectral distribution function Fyx(f) has all
the properties of the cumulative distribution function in probability theory, discussed in
Chapter 3.

Sinusoidal Wave with Random Phase (continued)

Consider the stochastic process X(f) = Acos(2nf.t + ®), where © is a uniformly
distributed random variable over the interval [-m, ©t]. The autocorrelation function of this
stochastic process is given by (4.17), which is reproduced here for convenience:

A2
Ryy(7) = ?cos(2nfc 7)

Let &(f) denote the delta function at f = 0. Taking the Fourier transform of both sides of the
formula defining Ryx(7), we find that the power spectral density of the sinusoidal process
X(p) is

2

Sxxl) = GO ~1) + 8 +1)]

which consists of a pair of delta functions weighted by the factor A%/4 and located at e,
as illustrated in Figure 4.11. Since the total area under a delta function is one, it follows
that the total area under Syx(f) is equal to A%2, as expected.
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Sxx(f)

A2 AZ
zﬁ(f+fc) 2 6= 1)

-fe 0 fe /

Power spectral density of sine wave with
random phase; S(f) denotes the delta function at f'= 0.

Random Binary Wave (continued)

Consider again a random binary wave consisting of a sequence of 1s and Os represented by
the values +A and —A respectively. In Example 3 we showed that the autocorrelation
function of this random process has the triangular form

AZ(I—M), 7| <T
T

0, |z| =T

Ryx(7) =

The power spectral density of the process is therefore

Sy = j:Az(l—'—;-') exp(—j2nf7) dr

Using the Fourier transform of a triangular function (see Table 2.2 of Chapter 2), we
obtain

Syx(f) = A*T sincz(f]‘)

which is plotted in Figure 4.12. Here again we see that the power spectral density is non-
negative for all f and that it is an even function of f. Noting that Ryx(0) = A% and using

Sxx(f)

1 0 1 2

T T T

~In

Power spectral density of random binary wave.
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Property 2 of power spectral density, we find that the total area under Syy(f), or the aver-
age power of the random binary wave described here, is A2, which is intuitively satisfying.

It is informative to generalize (4.51) so that it assumes a more broadly applicable form.
With this objective in mind, we first note that the energy spectral density (i.e., the squared
magnitude of the Fourier transform) of a rectangular pulse g(r) of amplitude A and
duration 7 is given by

E(f) = AT sinc’(/T)
We may therefore express (4.51) in terms of E,(f) simply as

Eg(f)
T

Sxx() =

In words, (4.53) states:

Mixing of a Random Process with a Sinusoidal Process

A situation that often arises in practice is that of mixing (i.e., multiplication) of a weakly
stationary process X(f) with a sinusoidal wave cos(2rnf.t + ©), where the phase ©® is a
random variable that is uniformly distributed over the interval [0, 2r]. The addition of the
random phase ® in this manner merely recognizes the fact that the time origin is arbitrarily
chosen when both X(f) and cos(2nf,t + ®) come from physically independent sources, as is
usually the case in practice. We are interested in determining the power spectral density of
the stochastic process
Y(r) = X(¢) cos(2rf, t+©®)

Using the definition of autocorrelation function of a weakly stationary process and noting
that the random variable ©® is independent of X(f), we find that the autocorrelation function
of the process Y(¢) is given by

Ryy(7) = E[Y(r+ D)Y(1)]
= E[X(t+ 1) cos(2nf 1+ 2nf, 7+ ©)X(t) cos(2nf 1+ ©O)]
= E[X(t+ 7)x(t)]E[cos(2nf t + 2nf T+ ®) cos(2nf, t + ©O)]
= %RXX(r)[E[cos(anct) + cos(4nf t +2nf, 7+ 20)]

- %RXX(r) cos(2nif, 1)
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Since the power spectral density of a weakly stationary process is the Fourier transform of
its autocorrelation function, we may go on to express the relationship between the power
spectral densities of the processes X(f) and Y(¢) as follows:

Syrh) = JTSxx~1) + S +1)]

Equation (4.56) teaches us that the power spectral density of the stochastic process Y(¢)
defined in (4.54) can be obtained as follows:

Let Syy(f) denote the power spectral density of the output stochastic processes Y(f)
obtained by passing the weakly stationary process X(#) through a linear time-invariant
filter of frequency response H(f). Then, by definition, recognizing that the power spectral
density of a weakly stationary process is equal to the Fourier transform of its
autocorrelation function and using (4.32), we obtain

Syy(f) = I_wRYY(T) exp(—j2nf7) dr

:j j j h(z)h(T)Ryy(7+ 7| — 7)) exp(=i2nfr) dz, dr, dr

Let 7+ 7y — »p = 7y, or equivalently 7= 7y — 71 + 7,. By making this substitution into
(4.57), we find that Syy(f) may be expressed as the product of three terms:

* the frequency response H(f) of the filter;
* the complex conjugate of H(f); and
* the power spectral density Syx(f) of the input process X(¢).

We may thus simplify (4.57) as shown by
Syy(f) = HOH*()Syx(f)

Since |H(7‘)|2 = H(/)H*(f), we finally find that the relationship among the power spectral
densities of the input and output processes is expressed in the frequency domain by

2
Syy(f) = |H(f)| Sxx(f)
Equation (4.59) states:

By using (4.59), we can therefore determine the effect of passing a weakly stationary
process through a stable, linear time-invariant filter. In computational terms, (4.59) is



Power Spectral Density of a Weakly Stationary Process 169

obviously easier to handle than its time-domain counterpart of (4.32) that involves the
autocorrelation function.

At this point in the discussion, a basic question that comes to mind is the following:

The answer to this question is embodied in a theorem that was first proved by Wiener
(1930) and at a later date by Khintchine (1934). Formally, the Wiener—Khintchine
theorem states:

A necessary and sufficient condition for pyy(7) to be the normalized autocorrelation
function of a weakly stationary process X(f) is that there exists a distribution
function Fyx(f) such that for all possible values of the time shift 7, the function
Pxx(7) may be expressed in terms of the well-known Fourier—Stieltjes theorem,
defined by

00

pxx(®) = [ exp(i2nf7) dF ()

—00

The Wiener—Khintchine theorem described in (4.60) is of fundamental importance to a
theoretical treatment of weakly stationary processes.

Referring back to the definition of the spectral distribution function Fyx(f) given in
(4.49), we may express the integrated spectrum dFxx(f) as

dFyx(f) = pxx() df

which may be interpreted as the probability of X(f) contained in the frequency interval
[f; £+ dfl. Hence, we may rewrite (4.60) in the equivalent form

Pxx(®) = [ pxx(Nexp(i2nfo) df

which expresses pyy(7) as the inverse Fourier transform of pyx(f). At this point, we
proceed by taking three steps:

Substitute (4.14) for pyx(7) on the left-hand side of (4.62).
Substitute (4.48) for pyx(7) inside the integral on the right-hand side of (4.62).
Use Property 3 of power spectral density in Section 4.7.

The end result of these three steps is the reformulation of (4.62) as shown by
Ryx(7)
Ryx(0)

Hence, canceling out the common term Ryx(0), we obtain

™ Sxx(D .
= j,ooR_XX(O) exp(j2nfr) df

Ryx(7) = j_w Sxx(f) exp(i2nf7) df
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which is a rewrite of (4.43). We may argue, therefore, that basically the two Wiener—
Khintchine equations follow from either one of the following two approaches:

Another Definition of the Power Spectral Density

Equation (4.38) provides one definition of the power spectral density Sxx(f) of a weakly
stationary process X(); that is, Sxx(f) is the Fourier transform of the autocorrelation
function Ryy(7) of the process X(f). We arrived at this definition by working on the mean-
square value (i.e., average power) of the process Y(#) produced at the output of a linear
time-invariant filter, driven by a weakly stationary process X(#). In this section, we provide
another definition of the power spectral density by working on the process X(¢) directly.
The definition so developed is not only mathematically satisfying, but it also provides
another way of interpreting the power spectral density.

Consider, then, a stochastic process X(#), which is known to be weakly stationary. Let
x(¢) represent a sample function of the process X(7). For the sample function to be Fourier
transformable, it must be absolutely integrable; that is,

fo lx(1)| dt < oo

This condition can never be satisfied by any sample function x(¢) of infinite duration. To
get around this problem, we consider a truncated segment of x(f) defined over the
observation interval =7 < ¢ < 7, as illustrated in Figure 4.13, as shown by

2olt) = { X(1), -T<t<T
T 0, otherwise

Clearly, the truncated signal x7(¢) has finite energy; therefore, it is Fourier transformable.
Let X7(f) denote the Fourier transform of x(t), as shown by the transform pair:

(1) = XA

x(1)

Ilustration of the truncation of a sample x(¢) for
Fourier transformability; the actual function x(¢) extends beyond
the observation interval (-7, T) as shown by the dashed lines.
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in light of which we may invoke Rayleigh’s energy theorem (Property 14 in Table 2.1) to
write

0 ) 00 2
j ep(n)|” dr = j X(N)| df
—o —o0
Since (4.64) implies that
0 2 T 2
j (o) dr = j lx(1)|” dt
—00 -T
we may also apply Rayleigh’s energy theorem to the problem at hand as follows:
T o0
2 2
[ ol de= [ |xzn|" d&f
-T -0

With the two sides of (4.65) based on a single realization of the process X(¢), they are both
subject to numerical variability (i.e., instability) as we go from one sample function of the
process X(f) to another. To mitigate this difficulty, we take the ensemble average of (4.65),
and thus write

E[I_TT|x(;)|2:|dt = [EUiO |XT(f)|2:| dr

What we have in (4.66) are two energy-based quantities. However, in the weakly
stationary process X(f), we have a process with some finite power. To put matters right, we
multiply both sides of (4.66) by the scaling factor 1/(27) and take the limiting form of the
equation as the observation interval T approaches infinity. In so doing, we obtain

lim —l—[E[fT|x(t)|2dt] - Tli_r)noo[EUw E%)—P df}

T— x© 2T _o

The quantity on the left-hand side of (4.67) is now recognized as the average power of the
process X(f), denoted by P,,, which applies to all possible sample functions of the process
X(t). We may therefore recast (4.67) in the equivalent form

0 2
P = lim [ED Xrh)] df}

av Tow |9_op 2T

In (4.68), we next recognize that there are two mathematical operations of fundamental
interest:

These two operations, viewed in a composite manner, result in a statistically stable

quantity defined by P,,. Therefore, it is permissible for us to interchange the order of the

two operations on the right-hand side of (4.68), recasting this equation in the desired form:
|2

I 1 .000))
Py = | { Tli“w[E[T df

—00
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With (4.69) at hand, we are now ready to formulate another definition for the power
spectral density as

2
. Xr(f)
S¢x(f) = lim E{%}

T—

This new definition has the following interpretation:

This new interpretation of the power spectral density is all the more satisfying when (4.70)
is substituted into (4.68), yielding

Py = j Sxx(f) df

which is immediately recognized as another way of describing Property 3 of the power
spectral density (i.e., (4.45). End-of-chapter Problem 4.8 invites the reader to prove other
properties of the power spectral density, using the definition of (4.70).

One last comment must be carefully noted: in the definition of the power spectral
density given in (4.70), it is not permissible to let the observation interval T approach
infinity before taking the expectation; in other words, these two operations are not
commutative.

Cross-spectral Densities

Just as the power spectral density provides a measure of the frequency distribution of a
single weakly stationary process, cross-spectral densities provide measures of the
frequency interrelationships between two such processes. To be specific, let X(¢) and Y(7)
be two jointly weakly stationary processes with their cross-correlation functions denoted
by Rxy(7) and Ryx(7). We define the corresponding cross-spectral densities Sxy(f) and
Syx(f) of this pair of processes to be the Fourier transforms of their respective cross-
correlation functions, as shown by

Sy = j Ryy(7) exp(—j2nf7) de
and
Sy = j Ryy(7) exp(-j2nfr) dr

The cross-correlation functions and cross-spectral densities form Fourier-transform pairs.
Accordingly, using the formula for inverse Fourier transformation, we may also
respectively write

Rur(9) = [ Syl exv(j2afo) df
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and
Ryx(7) = [ Syy(f) exp(i2nfo) df

The cross-spectral densities Syy(f) and Syx(f) are not necessarily real functions of the
frequency f. However, substituting the following relationship (i.e., Property 2 of the
autocorrelation function)

Ryy(7) = Ryx(-7)
into (4.72) and then using (4.73), we find that Sy(f) and Syyx(f) are related as follows:

Sxy() = Syx(=) = S;X(f)

where the asterisk denotes complex conjugation.

Sum of Two Weakly Stationary Processes
Suppose that the stochastic processes X(f) and Y(r) have zero mean and let their sum be
denoted by
Z(t) = X(1)+Y(r)
The problem is to determine the power spectral density of the process Z(¢).
The autocorrelation function of Z(¢) is given by the second-order moment
My (t,u) = E[Z(1)Z(u)]
E[(X(2) + Y())(X(u) + Y(u))]
E[X()X(u)] + E[X()Y(u)] + E[Y()X(u)] + E[Y(£)Y(u)]
MXX(t, u)+ My (8, u) + MYX(t, u)+ My (t, u)

Defining 7=t —u and assuming the joint weakly stationarity of the two processes, we
may go on to write

R, ,(7) = Ryy(7) + Ryy(7) + Ryy(7) + Ryy(7)
Accordingly, taking the Fourier transform of both sides of (4.77), we get
Sz2(0) = Sxx() + Sxy(f) + Syx() + Syy(f)

This equation shows that the cross-spectral densities Syy(f) and Syx(f) represent the
spectral components that must be added to the individual power spectral densities of a pair
of correlated weakly stationary processes in order to obtain the power spectral density of
their sum.

When the stationary processes X(f) and Y(¢r) are uncorrelated, the cross-spectral
densities Syy(f) and Syx(f) are zero, in which case (4.78) reduces to

Sz7() = Sxx(f) + Syy(f)

We may generalize this latter result by stating:
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Filtering of Two Jointly Weakly Stationary Processes

Consider next the problem of passing two jointly weakly stationary processes through a
pair of separate, stable, linear time-invariant filters, as shown in Figure 4.14. The
stochastic process X(#) is the input to the filter of impulse response %(7), and the stochastic
process Y(¢) is the input to the filter of the impulse response ,(¢). Let V(#) and Z(f) denote
the processes at the respective filter outputs. The cross-correlation function of the output
processes V() and Z(¢) is therefore defined by the second-order moment

Myt u) = E[V(1)Z(u)]

[E[f hy(7)X(t— 7)) dr, jio hy () Y(u — 7,) drz}

j j hy () (2)E[X (2~ 7)Y (u — 7,)] dr, dr,

—00  —00

00
= j j hy (T hy () My (t - 71, 1~ 7,) de; dry
—0o0* —0
where Myy(t, u) is the cross-correlation function of X(r) and Y(f). Because the input
stochastic processes are jointly weakly stationary, by hypothesis, we may set 7=t — u, and
thereby rewrite (4.80) as

RyfD) = [ [ m(e)hy(s)Ryy(7= 7y + 1) dr, dr,
—o0 " —0
Taking the Fourier transform of both sides of (4.81) and using a procedure similar to that
which led to the development of (4.39), we finally get

Sy(f) = Hl(f)Hz(f)SXYm

where H;(f) and H,(f) are the frequency responses of the respective filters in Figure 4.14
and H;(f) is the complex conjugate of H,(f). This is the desired relationship between the
cross-spectral density of the output processes and that of the input processes. Note that
(4.82) includes (4.59) as a special case.

A pair of separate linear ~ X() —>= 10 V@)  Y@O—-| h) 70
time-invariant filters.

The Poisson Process

Having covered the basics of stochastic process theory, we now turn our attention to
different kinds of stochastic processes that are commonly encountered in the study of
communication systems. We begin the study with the Poisson process,” which is the
simplest process dealing with the issue of counting the number of occurrences of random
events.
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Sample function of a Poisson counting process.

Consider, for example, a situation in which events occur at random instants of time,
such that the average rate of events per second is equal to A. The sample path of such a
random process is illustrated in Figure 4.15, where 7; denotes the occurrence time of the
ith event with i =1, 2, .... Let N(¢) be the number of event occurrences in the time interval
[0, ]. As illustrated in Figure 4.15, we see that N(¢) is a nondecreasing, integer-valued,
continuous process. Let py , denote the probability that exactly k events occur during an
interval of duration z; that is,

Prr = PIN(t, t+ 1) = k]

With this background, we may now formally define the Poisson process:

Time Homogeneity

The probability py . of k event occurrences is the same for all intervals of the same
duration .

The essence of Property 1 is that the events are equally likely at all times.

Distribution Function

The number of event occurrences, Ny , in the interval [0, t] has a distribution function with
mean At, defined by
k
PIN() = k] = (—’%)— exp(-Af), k=0,1,2, ...
That is, the time between events is exponentially distributed.
From Chapter 3, this distribution function is recognized to be the Poisson distribution.
It is for this reason that N(¢) is called the Poisson process.
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Independence

The numbers of events in nonoverlapping time intervals are statistically independent,
regardless of how small or large the intervals happen to be and no matter how close or
distant they could be.

Property 3 is the most distinguishing property of the Poisson process. To illustrate the
significance of this property, let [z, u;] for i = 1, 2, ..., k denote k disjoint intervals on the
line [0, co]. We may then write

k
PIN(t), uy) = niN(ty, uy) = nys N(t, uy) = 1] = H PIN(t, u;) = n;]
i=1

The important point to take from this discussion is that these three properties provide a
complete characterization of the Poisson process.

This kind of stochastic process arises, for example, in the statistical characterization of
a special kind of noise called shot noise in electronic devices (e.g., diodes and transistors),
which arises due to the discrete nature of current flow.

The Gaussian Process

The second stochastic process of interest is the Gaussian process, which builds on the
Gaussian distribution discussed in Chapter 3. The Gaussian process is by far the most
frequently encountered random process in the study of communication systems. We say so
for two reasons: practical applicability and mathematical tractability.

Let us suppose that we observe a stochastic process X(#) for an interval that starts at
time ¢ = 0 and lasts until # = T. Suppose also that we weight the process X(¢) by some
function g(¢) and then integrate the product g(#)X(¢) over the observation interval [0, T],
thereby obtaining the random variable

T
Y = j g(H)X(1) dt
0

We refer to Y as a linear functional of X(f). The distinction between a function and a
functional should be carefully noted. For example, the sum Y = Zg\ilaiXi , where the q;
are constants and the X; are random variables, is a linear function of the X;; for each
observed set of values for the random variable X;, we have a corresponding value for the
random variable Y. On the other hand, the value of the random variable Y in (4.86) depends
on the course of the integrand function g(£)X(t) over the entire observation interval from 0
to 7. Thus, a functional is a quantity that depends on the entire course of one or more
functions rather than on a number of discrete variables. In other words, the domain of a
functional is a space of admissible functions rather than a region of coordinate space.

If, in (4.86), the weighting function g(#) is such that the mean-square value of the
random variable Y is finite and if the random variable Y is a Gaussian-distributed random
variable for every g(f) in this class of functions, then the process X(r) is said to be a
Gaussian process. In words, we may state:
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From Chapter 3 we recall that the random variable Y has a Gaussian distribution if its
probability density function has the form

1 (y—ﬂ)2
fy(y) = «/Zto' exp{— 202 ]

where y is the mean and ¢ is the variance of the random variable Y. The distribution of a
Gaussian process X(), sampled at some fixed time #;, say, satisfies (4.87).

From a theoretical as well as practical perspective, a Gaussian process has two main
virtues:

The Gaussian process has many properties that make analytic results possible; we
will discuss these properties later in the section.

The stochastic processes produced by physical phenomena are often such that a
Gaussian model is appropriate. Furthermore, the use of a Gaussian model to describe
physical phenomena is often confirmed by experiments. Last, but by no means least,
the central limit theorem (discussed in Chapter 3) provides mathematical justification
for the Gaussian distribution.

Thus, the frequent occurrence of physical phenomena for which a Gaussian model is
appropriate and the ease with which a Gaussian process is handled mathematically make
the Gaussian process very important in the study of communication systems.

Linear Filtering

If a Gaussian process X(t) is applied to a stable linear filter, then the stochastic process
Y(t) developed at the output of the filter is also Gaussian.

This property is readily derived by using the definition of a Gaussian process based on
(4.86). Consider the situation depicted in Figure 4.8, where we have a linear time-invariant
filter of impulse response k(f), with the stochastic process X(f) as input and the stochastic
process Y(f) as output. We assume that X(¢) is a Gaussian process. The process Y(¢) is
related to X(¢) by the convolution integral

T
Y(1) = joh(t—r)X(r) dr, 0<t<w

We assume that the impulse response A(f) is such that the mean-square value of the output
random process Y(¢) is finite for all time ¢ in the range 0 < <o, for which the process
Y(7) is defined. To demonstrate that the output process Y(¢) is Gaussian, we must show that
any linear functional of it is also a Gaussian random variable. That is, if we define the
random variable

Z = j:gy(t)mh(z— z’)X(r)dr} dr

then Z must be a Gaussian random variable for every function gy(f), such that the mean-
square value of Z is finite. The two operations performed in the right-hand side of (4.89)
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are both linear; therefore, it is permissible to interchange the order of integrations,
obtaining

T
Z = j ¢(D)X(7) dr
0

where the new function
T
8(0) = [ gy(Dh(r=0) dr

Since X(¢) is a Gaussian process by hypothesis, it follows from (4.91) that Z must also be a
Gaussian random variable. We have thus shown that if the input X(¥) to a linear filter is a
Gaussian process, then the output Y(f) is also a Gaussian process. Note, however, that
although our proof was carried out assuming a time-invariant linear filter, this property is
also true for any arbitrary stable linear filter.

Multivariate Distribution

Consider the set of random variables X(t;), X(t,), ..., X(t,), obtained by sampling a
stochastic process X(t) at times 1y, ty, ..., t,. If the process X(t) is Gaussian, then this set of
random variables is jointly Gaussian for any n, with their n-fold joint probability density
function being completely determined by specifying the set of means

‘LIX(tl-) = [E[X(tl)]s i = l, 2, o
and the set of covariance functions
CX(tk’ t,-) = [E[(X(tk) —ﬂx(;k))(x(ti)—#x(,i))]a ki=1,2,..,n

Let the n-by-1 vector X denote the set of random variables X(#1), X(t,), ..., X(t,) derived
from the Gaussian process X(¢) by sampling it at times 7, 7, ..., f,,. Let the vector x denote
a sample value of X. According to Property 2, the random vector X has a multivariate
Gaussian distribution, defined in matrix form as

f (s Xy e X,) = exp|5(x- )= (x-p)|

X(1,), X(1y), ..., X(1,)\ X1 X2 -5 = —Sx-= -
(1)), X(1,) (,) n (zn)n/ZAl/Z 2
where the superscript T denotes matrix transposition, the mean vector
T
W= [ fpseos ]

the covariance matrix

Z={Cyltp 1)}y i

> is the inverse of the covariance matrix 2, and A is the determinant of the covariance
matrix X.

Property 2 is frequently used as the definition of a Gaussian process. However, this
definition is more difficult to use than that based on (4.86) for evaluating the effects of
filtering on a Gaussian process.

Note also that the covariance matrix X is a symmetric nonnegative definite matrix. For a
nondegenerate Gaussian process, X is positive definite, in which case the covariance
matrix is invertible.
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Stationarity

If a Gaussian process is weakly stationary, then the process is also strictly stationary.
This follows directly from Property 2.

Independence

If the random variables X(t1), X(t), ..., X(t,), obtained by respectively sampling a
Gaussian process X(t) at times ty, t,, ..., t,, are uncorrelated, that is

[E[(X(tk)—ﬂx(tk))(x(ti)—/lx(tl_))] =0 i#k

then these random variables are statistically independent.

The uncorrelatedness of X(#;), ..., X(#,) means that the covariance matrix X is reduced
to a diagonal matrix, as shown by

o% 0
Yy =
0 0'2

where the 0s denote two sets of elements whose values are all zero, and the diagonal terms
o = E[X(t)-E[X(t)].  i=12 ...n

Under this special condition, the multivariate Gaussian distribution described in (4.94)
simplifies to

Sx00 = T

i=1

where X; = X(#;) and

2
fex) = — S T
v .(x;) = exp , i=1,2,...n
i 1 A/Z'CO'I 20[2
In words, if the Gaussian random variables X(z;), X(#,), ..., X(t,) are uncorrelated, then

they are statistically independent, which, in turn, means that the joint probability density
function of this set of random variables is expressed as the product of the probability
density functions of the individual random variables in the set.

Noise

The term noise is used customarily to designate unwanted signals that tend to disturb the
transmission and processing of signals in communication systems, and over which we
have incomplete control. In practice, we find that there are many potential sources of noise
in a communication system. The sources of noise may be external to the system (e.g.,
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atmospheric noise, galactic noise, man-made noise) or internal to the system. The second
category includes an important type of noise that arises from the phenomenon of
spontaneous fluctuations of current flow that is experienced in all electrical circuits. In a
physical context, the most common examples of the spontaneous fluctuation phenomenon
are shot noise, which, as stated in Section 4.10, arises because of the discrete nature of
current flow in electronic devices; and thermal noise, which is attributed to the random
motion of electrons in a conductor.” However, insofar as the noise analysis of
communication systems is concerned, be they analog or digital, the analysis is customarily
based on a source of noise called white-noise, which is discussed next.

This source of noise is idealized, in that its power spectral density is assumed to be
constant and, therefore, independent of the operating frequency. The adjective “white” is
used in the sense that white light contains equal amounts of all frequencies within the
visible band of electromagnetic radiation. We may thus make the statement:

Clearly, white-noise can only be meaningful as an abstract mathematical concept; we say
so because a constant power spectral density corresponds to an unbounded spectral
distribution function and, therefore, infinite average power, which is physically
nonrealizable. Nevertheless, the utility of white-noise is justified in the study of
communication theory by virtue of the fact that it is used to model channel noise at the
front end of a receiver. Typically, the receiver includes a filter whose frequency response is
essentially zero outside a frequency band of some finite value. Consequently, when white-
noise is applied to the model of such a receiver, there is no need to describe how the power
spectral density Syy/(f) falls off outside the usable frequency band of the receiver.
Let

NO
Syw() = 5 for all f

as illustrated in Figure 4.16a. Since the autocorrelation function is the inverse Fourier
transform of the power spectral density in accordance with the Wiener—Khintchine
relations, it follows that for white-noise the autocorrelation function is

N()
wa(f) = 75(7)

Hence, the autocorrelation function of white noise consists of a delta function weighted by
the factor Ny/2 and occurring at the time shift 7= 0, as shown in Figure 4.16b.

Since Ryw/(7) is zero for # 0, it follows that any two different samples of white noise
are uncorrelated no matter how closely together in time those two samples are taken. If the
white noise is also Gaussian, then the two samples are statistically independent in
accordance with Property 4 of the Gaussian process. In a sense, then, white Gaussian
noise represents the ultimate in “randomness.”

The utility of a white-noise process in the noise analysis of communication systems is
parallel to that of an impulse function or delta function in the analysis of linear systems.
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Characteristics of white-noise: (a) power spectral density; (b) autocorrelation function.

Just as we may observe the effect of an impulse only after it has been passed through a
linear system with a finite bandwidth, so it is with white noise whose effect is observed
only after passing through a similar system. We may therefore state:

Ideal Low-pass Filtered White Noise

Suppose that a white Gaussian noise of zero mean and power spectral density Ny/2 is
applied to an ideal low-pass filter of bandwidth B and passband magnitude response of
one. The power spectral density of the noise N(f) appearing at the filter output, as shown in
Figure 4.17a, is therefore

No
SNN(f) - 7, -B<f<B
0, I[fI>B

Since the autocorrelation function is the inverse Fourier transform of the power spectral
density, it follows that

B NO .
[ 5rexp(onfo) df
52

Ryn(2)

NyB sinc(2B7)

whose dependence on 7 is plotted in Figure 4.17b. From this figure, we see that Ryp(7)
has the maximum value NB at the origin and it passes through zero at 7=+k/(2B), where
k=1,2,3,....

Since the input noise W(f) is Gaussian (by hypothesis), it follows that the band-limited
noise N(¢) at the filter output is also Gaussian. Suppose, then, that N(¢) is sampled at the
rate of 2B times per second. From Figure 4.17b, we see that the resulting noise samples are
uncorrelated and, being Gaussian, they are statistically independent. Accordingly, the joint
probability density function of a set of noise samples obtained in this way is equal to the
product of the individual probability density functions. Note that each such noise sample
has a mean of zero and variance of NyB.
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Characteristics of low-pass filtered white noise; (a) power spectral density;
(b) autocorrelation function.

Correlation of White Noise with Sinusoidal Wave

Consider the sample function -
w'(t) = ﬁj w() cos(2nf,1) dt
Ty

which is the output of a correlator with white Gaussian noise sample function w(f) and
sinusoidal wave /2,/T cos(2mf,t) as its two inputs; the scaling factor ~/2/T is included
in (4.104) to make the sinusoidal wave input have unit energy over the interval 0 < ¢ < T.
With w(f) having zero mean, it immediately follows that the correlator output w’(#) has
zero mean too. The variance of the correlator output is therefore defined by

2
Ow

[E[%[:‘[ZW(Zl) cos(2mnf 1 )w(t,) cos(2nf,t,) dr, dtz]

2 T .T
= %jojo E[w(t)w(t,)] cos(2nf.t,) cos(2nf.t,) dr, dt,

2
=],

where, in the last line, we made use of (4.101). We now invoke the sifting property of the
delta function, namely

T TN,
75(t1 —1,) cos(2nf 1) cos(2nf t,) dt, di,

00

[ ss ar = g(0)

—00
where g() is a continuous function of time that has the value g(0) at time ¢ = 0. Hence, we
may further simplify the expression for the noise variance as
2 N,

T
oy = 70%, Tcosz(ZTrfct) dr

Ny T
E—Tjo[l + cos(4nf,1)] di

N
2
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where, in the last line, it is assumed that the frequency f; of the sinusoidal wave input is an
integer multiple of the reciprocal of T for mathematical convenience.

Narrowband Noise

The receiver of a communication system usually includes some provision for
preprocessing the received signal. Typically, the preprocessing takes the form of a
narrowband filter whose bandwidth is just large enough to pass the modulated component
of the received signal essentially undistorted, so as to limit the effect of channel noise
passing through the receiver. The noise process appearing at the output of such a filter is
called narrowband noise. With the spectral components of narrowband noise concentrated
about some midband frequency =f, as in Figure 4.18a, we find that a sample function n(¢)
of such a process appears somewhat similar to a sine wave of frequency f.. The sample
function n(f) may, therefore, undulate slowly in both amplitude and phase, as illustrated in
Figure 4.18b.

Consider, then, the n(f) produced at the output of a narrowband filter in response to the
sample function w(f) of a white Gaussian noise process of zero mean and unit power spec-
tral density applied to the filter input; w(f) and n(f) are sample functions of the respective
processes W(¢) and N(7). Let H(f) denote the transfer function of this filter. Accordingly,
we may express the power spectral density Sp(f) of the noise N(?) in terms of H(f) as

SNN(f) = |H(f)|2

On the basis of this equation, we may now make the following statement:

In this section we wish to represent the narrowband noise n(f) in terms of its in-phase and
quadrature components in a manner similar to that described for a narrowband signal in
Section 2.10. The derivation presented here is based on the idea of pre-envelope and related
concepts, which were discussed in Chapter 2 on Fourier analysis of signals and systems.

n(t)

Synv ()

-f.+B 0 f.—B f  f.+B

(@) (b)

(a) Power spectral density of narrowband noise. (b) Sample function of
narrowband noise.
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Let n,(#) and n(t), respectively, denote the pre-envelope and complex envelope of the
narrowband noise n(f). We assume that the power spectrum of n(f) is centered about the
frequency f,. Then we may write

n, (1) = n(t)+jn(r)
and

n(t) = n, (1) exp(=j2nf 1)

where n(t) is the Hilbert transform of n(f). The complex envelope n(t) may itself be
expressed as

n(t) = ny(1) +jng(t)

Hence, combining (4.109) through (4.111), we find that the in-phase component ni(t) and
the quadrature component ng(1) of the narrowband noise n(z) are

ny(t) = n(t) cos(2nf.t) + n(tr) sin(j2nf.t)
and

ng(t) = (1) cos(2nf,1)—n(r) sin(2xf,r)

respectively. Eliminating n(f) between (4.112) and (4.113), we get the desired canonical
form for representing the narrowband noise n(f), as shown by

n(t) = ny(1) cos(27tfct)—nQ(t) sin(27f 1)

Using (4.112) to (4.114), we may now derive some important properties of the in-phase
and quadrature components of a narrowband noise, as described next.

The in-phase component ny(t) and quadrature component ng(t) of narrowband noise n(t)
have zero mean.

To prove this property, we first observe that the noise 7(f) is obtained by passing n(r)
through a linear filter (i.e., Hilbert transformer). Accordingly, n(¢) will have zero mean
because n(f) has zero mean by virtue of its narrowband nature. Furthermore, from (4.112)
and (4.113), we see that nj(f) and nQ(t) are weighted sums of n(r) and ;z(t). It follows,
therefore, that the in-phase and quadrature components, ny(f) and nQ(t), both have zero
mean.

If the narrowband noise n(t) is Gaussian, then its in-phase component n(t) and quadra-
ture component nQ(t) are jointly Gaussian.

To prove this property, we observe that n(t) is derived from n(f) by a linear filtering
operation. Hence, if n(z) is Gaussian, the Hilbert transform n(¢) is also Gaussian, and
n(t) and n(t) are jointly Gaussian. It follows, therefore, that the in-phase and quadrature
components, ny(r) and nq(1), are jointly Gaussian, since they are weighted sums of jointly
Gaussian processes.

If the narrowband noise n(t) is weakly stationary, then its in-phase component ni(t) and
quadrature component nQ(t) are jointly weakly stationary.

If n(¢) is weakly stationary, so is its Hilbert transform n(t). However, since the in-phase
and quadrature components, 7n,(¢) and nQ(t), are both weighted sums of n() and n(r)
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and the weighting functions, cos(2nf.t) and sin(2nf.t), vary with time, we cannot directly
assert that n (r) and nQ(t) are weakly stationary. To prove Property 3, we have to
evaluate their correlation functions.

Using (4.112) and (4.113), we find that the in-phase and quadrature components, 7,(¢)
and nQ( t) , of a narrowband noise n(#) have the same autocorrelation function, as shown by

RNINI(T) = RNQNQ(T) = Ryn(7) cos(2rf,7) + Ryn(7) sin(2rf, 7)
and their cross-correlation functions are given by

RNINQ(r) = —RNQNI(r) = RNN(T) sin(2nf, 7) —Ryn(7) cos(27[fC 7)
where Ryn(7) is the autocorrelation function of n(¢), and R wn(7) is the Hilbert transform
of Ryp(7). From (4.115) and (4.116), we readily see that the correlation functions
R N, NI(T) , R Ny NQ(T), and R N, NQ(T) of the in-phase and quadrature components n;(¢) and
nQ(t) depend only on the time shift 7. This dependence, in conjunction with Property 1,

proves that n;(¢) and nQ(t) are weakly stationary if the original narrowband noise n(?) is
weakly stationary.

Both the in-phase noise ni(t) and quadrature noise nQ(t) have the same power spectral
density, which is related to the power spectral density Syn(f) of the original narrowband
noise n(t) as follows:

Syn(f=f) +Syn(f+£.), -B<f<B
0, otherwise

SNINI(f) = SNQNQ(f) = {

where it is assumed that Syn(f) occupies the frequency interval f,— B < Wi <f.+B and
f.>B.

To prove this fourth property, we take the Fourier transforms of both sides of (4.115),
and use the fact that

F[Ryn(7)]

—jsgn(NF[RypN(7)]
-j sgn(f)SNN(f)

We thus obtain the result

SNINI(f) = SNQNQ(f)

SIS un (1) + Sun(/+£)]
SISuNU= 1) S ~f,) = Syy(+£) sen(+ )]

= IS = sen(F—F)T+ 3 Sy + 1T+ sen(F+£)

Now, with the power spectral density Syp(f) of the original narrowband noise n(f)
occupying the frequency interval f - B < lf] < f.+ B, where f. > B, as illustrated in
Figure 4.19, we find that the corresponding shapes of Syy(f — f.) and Syy(f + f.) are as in
Figures 4.19b and 4.19c respectively. Figures 4.19d, 4.19e, and 4.19f show the shapes of
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sgn(f), sgn(f — f.), and sgn(f + f.) respectively. Accordingly, we may make the following
observation from Figure 4.19:

For frequencies defined by —B < f < B, we have

sgn(f—f.) =-1

and
sgn(f+f,) =+1
Hence, substituting these results into (4.119), we obtain

SNINIm = SNQNQU)
San=1) + Syn(f+ 1) -B<f<B

O
28— 28—
SN 1)
; /\
|
-B 0 B L2fc /
28—

Syn(f+1)
© /|
!
L—ch -B 0 B /
2B —
sgn(f)
() +1
0 /
-1
sgn(f —fc)
(©
4 f
(a) Power spectral density Syp(f) -1 fe
pertaining to narrowband noise n(z).
(b), (c) Frequency-shifted versions sen(f +£,)
of Syy(f) in opposite directions. o +1
(d) Signum function sgn(f). f
(e), (f) Frequency-shifted versions . 0
of sgn(f) in opposite directions.
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For 2f. — B <f<2f.+ B, we have
sen(f—f.) =1

sgn(f+f) =0
with the result that § N, NI( f) and S Ny NQ( f) are both zero.
For -2f. - B < f<-2f.+ B, we have

sgn(f—f.) =0

and

and
sgn(f+f.) =-1
with the result that, here also, S N, NI( f) and S Ng NQ( f) are both zero.

Outside the frequency intervals defined in points 1, 2, and 3, both Syn(f — f.) and
Syn(f + fo) are zero, and in a corresponding way, Syp(f —f.) and S Ng NQ(f) are also
Zer0.

Combining these results, we obtain the simple relationship defined in (4.117).

As a consequence of this property, we may extract the in-phase component n4(¢) and
quadrature component nQ(t) , except for scaling factors, from the narrowband noise n(f)
by using the scheme shown in Figure 4.20a, where both low-pass filters have a cutoff
frequency at B. The scheme shown in Figure 4.20a may be viewed as an analyzer. Given
the in-phase component n;(¢) and the quadrature component nQ(t) , we may generate the
narrowband noise n(f) using the scheme shown in Figure 4.20b, which may be viewed as a
synthesizer.

The in-phase and quadrature components ny(t) and ng(t) have the same variance as the
narrowband noise n(t).

This property follows directly from (4.117), according to which the total area under the
power spectral density curve n;(t) or ny(¢) is the same as the total area under the power
spectral density curve of n(f). Hence, n(¢) and ny(¢) have the same mean-square value
as n(#). Earlier we showed that since n() has zero mean, then n,(¢) and nQ(t) have zero
mean, too. It follows, therefore, that n(f) and nQ( t) have the same variance as the
narrowband noise n(7).

ny (1)

., Lowpass |1, 0 —>()——
f -
n(t) —>4 cos(2nf, 1) cos(2nf, 1) (2)—»:1(:)

A
e nZ(l) Low—pass — L1y (1) N (1) ——f
filter 2°Q Q

sin(2mnf, 1) sin(2nf, 1)

(a) (b)

(a) Extraction of in-phase and quadrature components of a narrowband process.
(b) Generation of a narrowband process from its in-phase and quadrature components.
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The cross-spectral densities of the in-phase and quadrature components of a narrowband
noise are purely imaginary, as shown by

SNINQ(f) = _SNQNI(f)

_ { IISNF+1) = Sy(F-f)1, -B<f<B
0, otherwise

To prove this property, we take the Fourier transforms of both sides of (4.116), and use the
relation of (4.118), obtaining

SNINQ(f) = _SNQNI(f)
= L[Sy~ £) - Sy (F+ 1]
LSy 1)5e (=) + Sy +£) sen(7+£)]

= Loy 1011+ sen(r 4 101~ LSy (-0l - sen =11

Following a procedure similar to that described for proving Property 4, we find that
(4.121) reduces to the form shown in (4.120).

If a narrowband noise n(t) is Gaussian with zero mean and a power spectral density
SNN(f) that is locally symmetric about the midband frequency tf,, then the in-phase noise
ny(t) and the quadrature noise nQ(t) are statistically independent.

To prove this property, we observe that if Syy(f) is locally symmetric about %f, then
SNN(f—fC) = SynU o) -B<f<B

Consequently, we find from (4.120) that the cross-spectral densities of the in-phase and
quadrature components, ny(¢) and nQ(t) , are zero for all frequencies. This, in turn, means
that the cross-correlation functions S N, NQ(]‘) and S Ny NI(]‘) are zero for all 7, as shown by

E[Ny(1,+ DNt + D] = 0

which implies that the random variables Ny(#; + 7) and Ng(#;) (obtained by observing the
in-phase component at time #, + 7 and observing the quadrature component at time #;
respectively) are orthogonal for all 7.

The narrowband noise n(?) is assumed to be Gaussian with zero mean; hence, from
Properties 1 and 2 it follows that both N(; + 7) and NQ(tk) are also Gaussian with zero
mean. We thus conclude that because Ny(#; + 7) and NQ(tk) are orthogonal and have zero
mean, they are uncorrelated, and being Gaussian, they are statistically independent for all
7. In other words, the in-phase component () and the quadrature component nQ(t) are
statistically independent.

In light of Property 7, we may express the joint probability density function of the
random variables Ny(f;, + 7) and NQ(tk) (for any time shift 7) as the product of their
individual probability density functions, as shown by



Narrowband Noise 189

fNI(tk + T),NQ(tk)(nI’nQ) = fNI(tk + r)(nl)fNQ(tk)(nQ)
2 2
! CXP( nI J ! GXP( an
N2no 26 N2no 26

2 2
_ L[ ny + ”Qj
2n 0'2 2 0-2
where 0'2 is the variance of the original narrowband noise n(z). Equation (4.124) holds if,
and only if, the spectral density Syy(f) or n(?) is locally symmetric about +f.. Otherwise,

this relation holds only for 7= 0 or those values of 7 for which n(#) and nQ(t) are
uncorrelated.

To sum up, if the narrowband noise n(#) is zero mean, weakly stationary, and Gaussian,
then its in-phase and quadrature components 7n;(¢) and nQ(t) are both zero mean, jointly
stationary, and jointly Gaussian. To evaluate the power spectral density of n;(¢) or nQ(t) ,
we may proceed as follows:

Shift the positive frequency portion of the power spectral density Syp(f) of the
original narrowband noise n(f) to the left by f..

Shift the negative frequency portion of Syp(f) to the right by f..
Add these two shifted spectra to obtain the desired § N, (f) or S Ng NQ(f) .

Ideal Band-pass Filtered White Noise

Consider a white Gaussian noise of zero mean and power spectral density Ny/2, which is
passed through an ideal band-pass filter of passband magnitude response equal to one,
midband frequency f, and bandwidth 2B. The power spectral density characteristic of the
filtered noise n(?) is, therefore, as shown in Figure 4.21a. The problem is to determine the
autocorrelation functions of n(¢) and those of its in-phase and quadrature components.

The autocorrelation function of n(f) is the inverse Fourier transform of the power
spectral density characteristic shown in Figure 4.21a, as shown by

BN . +B N, .
j = exp(j2nf7) df+JJ = exp(j2nf7) df
—f-B f.-B

C

Ryn(?)

NyB sinc(2B7)[exp(=j2nf,7) + exp(j2nf,7)]
= 2NyB sinc(2Bt) cos(2nf_1)

which is plotted in Figure 4.21b.

The spectral density characteristic of Figure 4.21a is symmetric about tf.. The
corresponding spectral density characteristics of the in-phase noise component n(¢) and
the quadrature noise component nQ(t) are equal, as shown in Figure 4.21c. Scaling the
result of Example 10 by a factor of two in accordance with the spectral characteristics of
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Figure 4.21a and 4.21c, we find that the autocorrelation function of n;(¢) or nQ(t) is
given by

RNINI(T) = RNQNQ(T) = 2N,B sinc(2B7)

SN[Nl(f) = SNQNQ(f)

(©)

Characteristics of ideal band-pass filtered white noise: (a) power
spectral density, (b) autocorrelation function, (c) power spectral density of in-phase
and quadrature components.
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In the preceding subsection we used the Cartesian representation of a narrowband noise
n(t) in terms of its in-phase and quadrature components. In this subsection we use the
polar representation of the noise n(f) in terms of its envelope and phase components, as

shown by
n(t) = r(t) cos[2nf t+ w(1)]
where
2 2 1/2
K1) = [nj(1) +ngy(n)]
and o
n
w(t) = tan_l[%}

The function r(f) is the envelope of n(f) and the function w(z) is the phase of n(?).

The probability density functions of r(f) and () may be obtained from those of
ny(t) and nQ(t) as follows. Let N and Nq denote the random variables obtained by
sampling (at some fixed time) the stochastic processes represented by the sample
functions n(¢) and nQ(t) respectively. We note that Ny and Ng, are independent Gaussian
random variables of zero mean and variance G so we may express their joint probability
density function as

2 2
ny + an
26"
Accordingly, the probability of the joint event that Ny lies between ny and ny + dny and Ng

lies between ng + dng (i.e., the pair of random variables Ny and N lies jointly inside the
shaded area of Figure 4.22a) is given by

1
fN N, (np” ) = exp(
P Q 2750'

1 2 +n
pr NQ(”I’ nQ) dny an = 2nazexp[ 20_ QJ dn an

. O
l‘lQ 77777777 an l‘lQ 77777 /\ —_

|

|

|

|

| ™,

| AN
Illustrating the coordinate system : dy
for representation of narrowband l‘//\ : u‘/\
noise: (a) in terms of in-phase and 0 n 0 n

quadrature components; (b) in
terms of envelope and phase. (a) (b)
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where dny and dng are incrementally small. Now, define the transformations (see Figure 4.22b)

np = rcosy

ng = rsiny
In a limiting sense, we may equate the two incremental areas shown shaded in parts a and
b of Figure 4.22 and thus write

anan = rdrdy

Now, let R and ¥ denote the random variables obtained by observing (at some fixed time
t) the stochastic processes represented by the envelope r(f) and phase w(t) respectively.
Then substituting (4.132)—(4.134) into (4.131), we find that the probability of the random

variables R and ¥ lying jointly inside the shaded area of Figure 4.22b is equal to the
expression

2

r r
2exp[——2] drdy
2no 20

That is, the joint probability density function of R and ¥ is given by

2
frow(rw) = a zexp(— A 2)

2no

This probability density function is independent of the angle y, which means that the
random variables R and ¥ are statistically independent. We may thus express fR’ ¢(r W)
as the product of the two probability density functions: f5(r) and fy(y). In particular,
the random variable ¥ representing the phase is uniformly distributed inside the interval
[0, 27], as shown by

1

—, 0<w<2
fe(w) =1 2x y==n
0, elsewhere

This result leaves the probability density function of the random variable R as

2
r r
_ —exp(——], r=0
) =1 2P\,
0, elsewhere

where 0'2 is the variance of the original narrowband noise n(#). A random variable having
the probability density function of (4.137) is said to be Rayleigh distributed.
For convenience of graphical presentation, let

vy =

Q=

fv(V) = ofgp(r)
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0.8—

0.6~

0.4 —

fy )

0.2

Normalized Rayleigh distribution.

Then, we may rewrite the Rayleigh distribution of (4.137) in the normalized form

2
v
fv(") — v exp(——z—) , V= 0
0, elsewhere

Equation (4.140) is plotted in Figure 4.23. The peak value of the distribution fi(v) occurs
atv =1 and is equal to 0.607. Note also that, unlike the Gaussian distribution, the Rayleigh
distribution is zero for negative values of v, which follows naturally from the fact that the
envelope r(¢) of the narrowband noise n(f) can only assume nonnegative values.

Sine Wave Plus Narrowband Noise

Suppose next that we add the sinusoidal wave Acos(2nf,t) to the narrowband noise n(t),
where A and f; are both constants. We assume that the frequency of the sinusoidal wave is
the same as the nominal carrier frequency of the noise. A sample function of the sinusoidal
wave plus noise is then expressed by

x(t) = Acos(2nf.t) +n(t)
Representing the narrowband noise n(f) in terms of its in-phase and quadrature
components, we may write
x(1) = n/I(t) cos(2nfct)—nQ(t) sin(2mf 1)
where
ni(t) = A+nyr)
We assume that n(7) is Gaussian with zero mean and variance o Accordingly, we may
state the following:

Both n{(7) and nq(7) are Gaussian and statistically independent.
The mean of n () is A and that of ng(?) is zero.
The variance of both n{(7) and ng(?) is 0'2.
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We may, therefore, express the joint probability density function of the random variables
N'I and N, corresponding to nj(#) and nQ(t) , as follows:

2 2
, ! (n] -A) +ng
fNI,NQ(nI’nQ) = 5 eXp|: )

20

2no
Let r(¢) denote the envelope of x(¢) and w(¢) denote its phase. From (4.142), we thus find
that

1/2
r@)={bﬁ(nf+néuﬁ>

and

w(t) = tan—l[z,&(t—)}

Following a procedure similar to that described in Section 4.12 for the derivation of the
Rayleigh distribution, we find that the joint probability density function of the random
variables R and , corresponding to r(f) and w/(¢) for some fixed time ¢, is given by

( r2 +A2—2Ar cos 1//]

,
TRy W) = ——exp >
20

2no
We see that in this case, however, we cannot express the joint probability density function
fR’ w(r, ) as a product fR(r)fl//( ), because we now have a term involving the values of
both random variables multiplied together as rcos . Hence, R and y are dependent
random variables for nonzero values of the amplitude A of the sinusoidal component.
We are interested, in particular, in the probability density function of R. To determine
this probability density function, we integrate (4.147) over all possible values of
obtaining the desired marginal density

27
jv@¢Ade

2 2\ 2n
r exp( rr+A ]J‘ eXp(Arcos l//) dy
2 2 2
2no 20 0 o

fR(V)

An integral similar to that in the right-hand side of (4.148) is referred to in the literature as
the modified Bessel function of the first kind of zero order (see Appendix C); that is,

1 27
Iy(x) = 2_TEJ-0 exp(x cosy) dy

Thus, letting x = Ar/ 02, we may rewrite (4.148) in the compact form
2 2
r rr+A Ar
fr(r) = —zexp(— > jIO(—E)’ r>0
o 20 o

This new distribution is called the Rician distribution.
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fy )

Normalized Rician distribution.

As with the Rayleigh distribution, the graphical presentation of the Rician distribution
is simplified by putting

a =

Ql> ql=

fy(v) = ofp(r)

Then we may express the Rician distribution of (4.150) in the normalized form

2 2
) =v exp(—v +a )Io(av)

which is plotted in Figure 4.24 for the values 0, 1, 2, 3, 5, of the parameter a. - Based on
these curves, we may make two observations:

When the parameter a = 0, and therefore /;(0) = 1, the Rician distribution reduces to
the Rayleigh distribution.

The envelope distribution is approximately Gaussian in the vicinity of v = a when a
is large; that is, when the sine-wave amplitude A is large compared with o, the
square root of the average power of the noise n(?).

Summary and Discussion

Much of the material presented in this chapter has dealt with the characterization of a
particular class of stochastic processes known to be weakly stationary. The implication of
“weak” stationarity is that we may develop a partial description of a stochastic process in
terms of two ensemble-averaged parameters: (1) a mean that is independent of time and
(2) an autocorrelation function that depends only on the difference between the times at
which two samples of the process are drawn. We also discussed ergodicity, which enables
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us to use time averages as “estimates” of these parameters. The time averages are
computed using a sample function (i.e., single waveform realization) of the stochastic
process, evolving as a function of time.

The autocorrelation function Ryy(7), expressed in terms of the time shift 7, is one way
of describing the second-order statistic of a weakly (wide-sense) stationary process X(7).
Another equally important parameter, if not more so, for describing the second-order
statistic of X(¢) is the power spectral density Syx(f), expressed in terms of the frequency f.
The Fourier transform and the inverse Fourier transform formulas that relate these two
parameters to each other constitute the celebrated Wiener—Khintchine equations. The first
of these two equations, namely (4.42), provides the basis for a definition of the power
spectral density Syx(f) as the Fourier transform of the autocorrelation function Ryx(7),
given that Ryy(7) is known. This definition was arrived at by working on the output of a
linear time-invariant filter, driven by a weakly stationary process X(f). We also described
another definition for the power spectral density Syy(f), described in (4.70); this second
definition was derived by working directly on the process X(f).

Another celebrated theorem discussed in the chapter is the Wiener—Khintchine
theorem, which provides the necessary and sufficient condition for confirming the
function pyy(7) as the normalized autocorrelation function of a weakly stationary process
X(1), provided that it satisfies the Fourier—Stieltjes transform, described in (4.60).

The stochastic-process theory described in this chapter also included the topic of cross-
power spectral densities Syy(f) and Syy(f), involving a pair of jointly weakly stationary
processes X(f) and Y(f), and how these two frequency-dependent parameters are related to
the respective cross-correlation functions Ryy(7) and Ryy (7).

The remaining part of the chapter was devoted to the statistical characterization of
different kinds of stochastic processes:

* The Poisson process, which is well-suited for the characterization of random-
counting processes.

e The ubiquitous Gaussian process, which is widely used in the statistical study of
communication systems.

* The two kinds of electrical noise, namely shot noise and thermal noise.

* White noise, which plays a fundamental role in the noise analysis of communication
systems similar to that of the impulse function in the study of linear systems.

* Narrowband noise, which is produced by passing white noise through a linear band-
pass filter. Two different methods for the description of narrowband noise were
presented: one in terms of the in-phase and quadrature components and the other in
terms of the envelope and phase.

* The Rayleigh distribution, which is described by the envelope of a narrowband noise
process.

e The Rician distribution, which is described by the envelope of narrowband noise
plus a sinusoidal component, with the midband frequency of the narrowband noise
and the frequency of the sinusoidal component being coincident.

We conclude this chapter on stochastic processes by including Table 4.1, where we present
a graphical summary of the autocorrelation functions and power spectral densities of
important stochastic processes. All the processes described in this table are assumed to
have zero mean and unit variance. This table should give the reader a feeling for (1) the
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interplay between the autocorrelation function and power spectral density of a stochastic
process and (2) the role of linear filtering in shaping the autocorrelation function or,
equivalently, the power spectral density of a white-noise process.

Graphical summary of autocorrelation functions and power
spectral densities of random processes of zero mean and unit variance
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Stationarity and Ergodicity

Consider a pair of stochastic processes X(#) and Y(¢). In the strictly stationary world of stochastic
processes, the statistical independence of X(7) and Y(¢) corresponds to their uncorrelatedness in the
world of weakly stationary processes. Justify this statement.

Let Xy, X», ..., X} denote a sequence obtained by uniformly sampling a stochastic process X(#). The
sequence consists of statistically independent and identically distributed (iid) random variables, with
a common cumulative distribution function Fx(x), mean , and variance o2, Show that this sequence
is strictly stationary.
A stochastic process X(7) is defined by

X(t) = Acos(2nf,1)
where A is a Gaussian-distributed random variable of zero mean and variance o,. The process X(7) is
applied to an ideal integrator, producing the output

t
Y(1) = jOX( 7) dr

Determine the probability density function of the output Y(#) at a particular time #;.

Determine whether or not Y(7) is strictly stationary.

Continuing with Problem 4.3, determine whether or not the integrator output Y(¢) produced in
response to the input process X(#) is ergodic.

Autocorrelation Function and Power Spectral Density

The square wave x(¢) of Figure P4.5, having constant amplitude A, period T, and time shift 7,
represents the sample function of a stochastic process X(7). The time shift 74 is a random variable,
described by the probability density function

1 1 1
_ —=T,<t, < =T,
frit =4 Ty T2707la=200

0, otherwise

Determine the probability density function of the random variable X(z;), obtained by sampling
the stochastic process X(t) at time #;.

Determine the mean and autocorrelation function of X(#) using ensemble averaging.
Determine the mean and autocorrelation function of X(#) using time averaging.
Establish whether or not X(#) is weakly stationary. In what sense is it ergodic?

x(1)

‘j’d Li To *J

A binary wave consists of a random sequence of symbols 1 and 0, similar to that described in
Example 6, with one basic difference: symbol 1 is now represented by a pulse of amplitude A volts,
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and symbol 0 is represented by zero volts. All other parameters are the same as before. Show that
this new random binary wave X(¢) is characterized as follows:

The autocorrelation function is

2,2

AZ+AZ(1 —%) 7| <T

Ryx(7) = 5
4 jdl>T
The power spectral density is

2 2

A AT. 2

SXX(f) = Z&(f) + TSIHC (_fT)

What is the percentage power contained in the dc component of the binary wave?
The output of an oscillator is described by
X(t) = A cos(nFt+0)

where the amplitude A is constant, and F and © are independent random variables. The probability
density function of ® is defined by

1

—, 0<0<2
fo(®) =1 21 T

0, otherwise

Find the power spectral density of X(¢) in terms of the probability density function of the frequency F.
What happens to this power spectral density when the randomized frequency F assumes a constant
value?

Equation (4.70) presents the second of two definitions introduced in the chapter for the power
spectral density function, Syy(f), pertaining to a weakly stationary process X(f). This definition
reconfirms Property 3 of Syy(f), as shown in (4.71).

Using (4.70), prove the other properties of Syx(f): zero correlation among frequency
components, zero-frequency value, nonnegativity, symmetry, and normalization, which were
discussed in Section 4.8.

Starting with (4.70), derive (4.43) that defines the autocorrelation function Ryy(7) of the
stationary process X(7) in terms of Syy(f).

In the definition of (4.70) for the power spectral density of a weakly stationary process X(?), it is not
permissible to interchange the order of expectation and limiting operations. Justify the validity of
this statement.

The Wiener-Khintchine Theorem

In the next four problems we explore the application of the Wiener—Khintchine theorem of (4.60) to
see whether a given function p(7), expressed in terms of the time shift z, is a legitimate normalized
autocorrelation function or not.

Consider the Fourier transformable function
A2
flr) = 7sin(2nfcr) forall 7

By inspection, we see that f(7) is an odd function of z. It cannot, therefore, be a legitimate
autocorrelation function as it violates a fundamental property of the autocorrelation function. Apply
the Wiener—Khintchine theorem to arrive at this same conclusion.
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Consider the infinite series
2
A 1 2 1 4
A7) = 7[1-2—!(275]‘01) + 270 —} forall 7

which is an even function of 7, thereby satisfying the symmetry property of the autocorrelation
function. Apply the Wiener—Khintchine theorem to confirm that f(7) is indeed a legitimate
autocorrelation function of a weakly stationary process.

Consider the Gaussian function

f(t) = exp(—n’) forall ¢
which is Fourier transformable. Moreover, it is an even function of z, thereby satisfying the
symmetry property of the autocorrelation function around the origin 7 = 0. Apply the Wiener—

Khintchine theorem to confirm that f{ 7) is indeed a legitimate normalized autocorrelation function
of a weakly stationary process.

Consider the Fourier transformable function

o) =
—5(z’+ 1 s T= -
2
0, otherwise

which is an odd function of 7. It cannot, therefore, be a legitimate autocorrelation function. Apply
the Wiener—Khintchine theorem to arrive at this same conclusion.

Cross-correlation Functions and Cross-spectral Densities

Consider a pair of weakly stationary processes X(#) and Y(#). Show that the cross-correlations
Ryy(7) and Ryx(7) of these two processes have the following properties:

Rxy(7) = Ryx(-7)

’ny(r)‘ < %[RXX(O) + Ry p(0)]
where Ryy(7) and Ryy(7) are the autocorrelation functions of X(#) and Y(#) respectively.
A weakly stationary process X(¢), with zero mean and autocorrelation function Ryy(7), is passed
through a differentiator, yielding the new process

Y(1) = d%xu)

Determine the autocorrelation function of Y(¢).
Determine the cross-correlation function between X(¢) and Y(¢).
Consider two linear filters connected in cascade as in Figure P4.16. Let X(7) be a weakly stationary

process with autocorrelation function Ryy(7). The weakly stationary process appearing at the first
filter output is denoted by V(#) and that at the second filter output is denoted by Y(z).

Find the autocorrelation function of Y(#).

Find the cross-correlation function Ryy(7) of V(¢) and ¥(¢).

V()
X(r)y=—>=| hy(0) hy(t) == Y(1)
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A weakly stationary process X(¢) is applied to a linear time-invariant filter of impulse response A(t),
producing the output Y(#).
Show that the cross-correlation function Ryy(7) of the output Y(#) and the input X(¢) is equal to

the impulse response A(7) convolved with the autocorrelation function Ryy(7) of the input, as
shown by

00

Ryx(7) =j h(u)Ry (7 u) du

Show that the second cross-correlation function Ryy(7) is

00

Ryy(7) = j h(~u) Ry (7— 1) du

Find the cross-spectral densities Syy(f) and Sxy(f).

Assuming that X(¢) is a white-noise process with zero mean and power spectral density Ny/2,
show that

Ny
Ryy(7) = Th(r)
Comment on the practical significance of this result.
Poisson Process

The sample function of a stochastic process X(f) is shown in Figure P4.18a, where we see that the
sample function x(¢) assumes the values £1 in a random manner. It is assumed that at time ¢ = 0, the
values X(0) = —1 and X(1) = +1 are equiprobable. From there on, the changes in X(#) occur in
accordance with a Poisson process of average rate A. The process X(¢), described herein, is
sometimes referred to as a telegraph signal.

Show that, for any time ¢ > 0, the values X(#) = —1 and X(¢) = +1 are equiprobable.

Building on the result of part a, show that the mean of X(#) is zero and its variance is unity.

Show that the autocorrelation function of X(z) is given by

Ryy(7) = exp(-247)

The process X(¢) is applied to the simple low-pass filter of Figure P4.18b. Determine the power
spectral density of the process Y(¢) produced at the filter output.

x(1)
+1 — —
(@ O Time ¢
1k
Poisson process Low-pass Output process
(b) X(t) ——> filter — Y(1)
H(f)
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Gaussian Process

White Noise

Consider the pair of integrals
Y, =j h,(DX(1) dr
and

Y, = jio h,()X(1) dt

where X(7) is a Gaussian process and h(¢) and h,(¢) are two different weighting functions. Show
that the two random variables Y; and Y, resulting from the integrations, are jointly Gaussian.

A Gaussian process X(f), with zero mean and variance 0';, is passed through a full-wave rectifier,
which is described by the input—output relationship of Figure P4.20. Show that the probability
density function of the random variable Y(#;), obtained by observing the stochastic process Y(f)
produced at the rectifier output at time #;, is one sided, as shown by

2 1 ( y2 ]
= —exp|—— |, y20
fY([k)(y) = /\/T: UX 20')2(

0, y<0

Confirm that the total area under the graph of fY(tk)( y) is unity.

A stationary Gaussian process X(¢), with mean g and variance 0')2(, is passed through two linear
filters with impulse responses h(t) and h,(¢), yielding the processes Y(#) and Z(¢), as shown in
Figure P4.21. Determine the necessary and sufficient conditions, for which Y(z{) and Z(z,) are
statistically independent Gaussian processes.

(1) — Y()

ho(t) = Z(1)

Consider the stochastic process
X(t) = W(t) +aW(t—t,)

where W(¢) is a white-noise process of power spectral density N,/2 and the parameters a and ¢ are
constants.
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Determine the autocorrelation function of the process X(7), and sketch it.

Determine the power spectral density of the process X(), and sketch it.

The process
X(1) = Acos(2rfyt+ @) + W(t)
describes a sinusoidal process that is corrupted by an additive white-noise process W(¢) of known

power spectral density Ny/2. The phase of the sinusoidal process, denoted by @, is a uniformly
distributed random variable, defined by

1
— 1 < <
f(e) ) for -n<O0<m

0 otherwise

The amplitude A and frequency f;, are both constant but unknown.
Determine the autocorrelation function of the process X() and its power spectral density.
How would you use the two results of part a to measure the unknown parameters A and f;,?
A white Gaussian noise process of zero mean and power spectral density N,/2 is applied to the
filtering scheme shown in Figure P4.24. The noise at the low-pass filter output is denoted by n(z).
Find the power spectral density and the autocorrelation function of n(z).
Find the mean and variance of n(z).

What is the maximum rate at which n(f) can be sampled so that the resulting samples are
essentially uncorrelated?

) Band-pass Low-pass
White filter  |—pm filter  —5 Output
noise Hy(f) Hy(f)
cos (2mf 1)
()
I, (/) )
\ Ly f

,fc 0

b
2B — 2B ~—

(b)

—

Let X(7) be a weakly stationary process with zero mean, autocorrelation function Ryy(7), and power
spectral density Syy(f). We are required to find a linear filter with impulse response A(t), such that
the filter output is X(f) when the input is white-noise of power spectral density N/2.
Determine the condition that the impulse response A(f) must satisfy in order to achieve this
requirement.
What is the corresponding condition on the transfer function H(f) of the filter?
Using the Paley—Wiener criterion discussed in Chapter 2, find the requirement on Syy(f) for the
filter to be causal.
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Narrowband Noise

Consider a narrowband noise n(t) with its Hilbert transform denoted by n(z) .
Show that the cross-correlation functions of n(r) and n(r) are given by

Ryil(7) = —Run(?)
and -
R () = Ryp(7)
where R nn(7) is the Hilbert transform of the autocorrelation function Ryy(7) of n(t).
Hint: use the formula
~ 1 n(A
n(t) = EI A 4,

-0
Show that, for 7= 0, we have RN&(O) = R];]N =0.

A narrowband noise n(f) has zero mean and autocorrelation function Ryy(7). Its power spectral
density Syy(f) is centered about £f.. The in-phase and quadrature components, n(¢) and nQ(t), of
n(t) are defined by the weighted sums

ny(t) = n(t)cos(2mf,t) + n(1) sin(2nf,t)
and R

nQ(z) = n(t)cos(2nf t) —n(t) sin(2nf 1)
where n(r) is the Hilbert transform of the noise n(r). Using the result obtained in part a of Problem
4.26, show that ny(¢) and n(#) have the following autocorrelation functions:

RNINI(T) = RNQNQ(T) = RNN(T)COS(ZTCfCT)+1A?NN(T)Sin(2TEfCT)

and A
RNINQ(r) = —RNQNI(I) = Ryp(7)sin(2nf, 1) — Ryn(7)cos(2nf, 1)

Rayleigh and Rician Distributions

Consider the problem of propagating signals through so-called random or fading communications
channels. Examples of such channels include the ionosphere from which short-wave (high-
frequency) signals are reflected back to the earth producing long-range radio transmission, and
underwater communications. A simple model of such a channel is shown in Figure P4.28, which
consists of a large collection of random scatterers, with the result that a single incident beam is
converted into a correspondingly large number of scattered beams at the receiver. The transmitted
signal is equal to Aexp(j2nf,t). Assume that all scattered beams travel at the same mean velocity.
However, each scattered beam differs in amplitude and phase from the incident beam, so that the kth
scattered beam is given by A, exp(j2nf t+jO,), where the amplitude A; and the phase ©, vary
slowly and randomly with time. In particular, assume that the ®; are all independent of one another
and uniformly distributed random variables.

With the received signal denoted by
x(1) = r(1) exp[j2nf 1+ w(1)]

show that the random variable R, obtained by observing the envelope of the received signal at
time ¢, is Rayleigh-distributed, and that the random variable ‘P, obtained by observing the phase
at some fixed time, is uniformly distributed.

Assuming that the channel includes a line-of-sight path, so that the received signal contains a
sinusoidal component of frequency f., show that in this case the envelope of the received signal is
Rician distributed.
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Incident Random Scattered
beam medium beams

Transmitting Receiving
antenna antenna

Referring back to the graphical plots of Figure 4.23, describing the Rician envelope distribution for
varying parameter a, we see that for the parameter a = 5, this distribution is approximately Gaussian.
Justify the validity of this statement.

Notes

1. Stochastic is of Greek origin.

2. For rigorous treatment of stochastic processes, see the classic books by Doob (1953), Loeve
(1963), and Cramér and Leadbetter (1967).

3. Traditionally, (4.42) and (4.43) have been referred to in the literature as the Wiener—Khintchine
relations in recognition of pioneering work done by Norbert Wiener and A.I. Khintchine; for their
original papers, see Wiener (1930) and Khintchine (1934). The discovery of a forgotten paper by
Albert Finstein on time-series analysis (delivered at the Swiss Physical Society’s February 1914
meeting in Basel) reveals that Einstein had discussed the autocorrelation function and its relationship
to the spectral content of a time series many years before Wiener and Khintchine. An English
translation of Einstein’s paper is reproduced in the IEEE ASSP Magazine, vol. 4, October 1987. This
particular issue also contains articles by W.A. Gardner and A.M. Yaglom, which elaborate on
Einstein’s original work.

4. For a mathematical proof of the Wiener—Khintchine theorem, see Priestley (1981).

5. Equation (4.70) provides the mathematical basis for estimating the power spectral density of a
weakly stationary process. There is a plethora of procedures that have been formulated for
performing this estimation. For a detailed treatment of reliable procedures to do the estimation, see
the book by Percival and Walden (1993).

6. The Poisson process is named in honor of S.D. Poisson. The distribution bearing his name first
appeared in an exposition by Poisson on the role of probability in the administration of justice. The
classic book on Poisson processes is Snyder (1975). For an introductory treatment of the subject, see
Bertsekas and Tsitsiklis (2008: Chapter 6).

7. The Gaussian distribution and the associated Gaussian process are named after the great
mathematician C.F. Gauss. At age 18, Gauss invented the method of least squares for finding the
best value of a sequence of measurements of some quantity. Gauss later used the method of least
squares in fitting orbits of planets to data measurements, a procedure that was published in 1809 in
his book entitled Theory of Motion of the Heavenly Bodies. In connection with the error of
observation, he developed the Gaussian distribution.
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8. Thermal noise was first studied experimentally by J.B. Johnson in 1928, and for this reason it is
sometimes referred to as the Johnson noise. Johnson’s experiments were confirmed theoretically by
Nyquist (1928a).

9. For further insight into white noise, see Appendix I on generalized random processes in the book
by Yaglom (1962).

10. The Rayleigh distribution is named in honor of the English physicist J.W. Strutt, Lord Rayleigh.
11. The Rician distribution is named in honor of S.O. Rice (1945).

12. In mobile wireless communications to be covered in Chapter 9, the sinusoidal term
Acos(2nf,t) in (4.141) is viewed as a line-of-sight (LOS) component of average power A?%/2 and the
additive noise term n(z) is viewed as a Gaussian diffuse component of average power ¢ , with both
being assumed to have zero mean. In such an environment, it is the Rice factor K that is used to
characterize the Rician distribution. Formally, we write

K = Average power of the LOS component
Average power of the diffuse component

AZ

5 20‘2
In effect, K = %. Thus for the graphical plots of Figure 4.23, the running parameter K would
assume the values 0, 0.5, 2, 4.5, 12.5.



Information Theory

Introduction

As mentioned in Chapter 1 and reiterated along the way, the purpose of a communication
system is to facilitate the transmission of signals generated by a source of information over a
communication channel. But, in basic terms, what do we mean by the term information? To
address this important issue, we need to understand the fundamentals of information theory.

The rationale for studying the fundamentals of information theory at this early stage in
the book is threefold:

Information theory makes extensive use of probability theory, which we studied in
Chapter 3; it is, therefore, a logical follow-up to that chapter.

It adds meaning to the term “information” used in previous chapters of the book.
Most importantly, information theory paves the way for many important concepts
and topics discussed in subsequent chapters.

In the context of communications, information theory deals with mathematical modeling
and analysis of a communication system rather than with physical sources and physical
channels. In particular, it provides answers to two fundamental questions (among others):

What is the irreducible complexity, below which a signal cannot be compressed?

What is the ultimate transmission rate for reliable communication over a noisy channel?
The answers to these two questions lie in the entropy of a source and the capacity of a
channel, respectively:

Entropy is defined in terms of the probabilistic behavior of a source of information;

it is so named in deference to the parallel use of this concept in thermodynamics.

Capacity is defined as the intrinsic ability of a channel to convey information; it is
naturally related to the noise characteristics of the channel.
A remarkable result that emerges from information theory is that if the entropy of the
source is less than the capacity of the channel, then, ideally, error-free communication over
the channel can be achieved. It is, therefore, fitting that we begin our study of information
theory by discussing the relationships among uncertainty, information, and entropy.

Entropy

Suppose that a probabilistic experiment involves observation of the output emitted by a
discrete source during every signaling interval. The source output is modeled as a

207
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stochastic process, a sample of which is denoted by the discrete random variable S. This
random variable takes on symbols from the fixed finite alphabet

L= {5081 -s Sg_1}
with probabilities
P(S=s)=p;. k=0,1,..,K-1

Of course, this set of probabilities must satisfy the normalization property
-1
Z P =1 D2 0
k=0

We assume that the symbols emitted by the source during successive signaling intervals
are statistically independent. Given such a scenario, can we find a measure of how much
information is produced by such a source? To answer this question, we recognize that the
idea of information is closely related to that of uncertainty or surprise, as described next.

Consider the event S = s;, describing the emission of symbol s; by the source with
probability py, as defined in (5.2). Clearly, if the probability p; = 1 and p; =0 forall i # k,
then there is no “surprise” and, therefore, no “information” when symbol s, is emitted,
because we know what the message from the source must be. If, on the other hand, the
source symbols occur with different probabilities and the probability p, is low, then there
is more surprise and, therefore, information when symbol s, is emitted by the source than
when another symbol s;, i # k, with higher probability is emitted. Thus, the words uncer-
tainty, surprise, and information are all related. Before the event S = 5; occurs, there is an
amount of uncertainty. When the event S = s;, occurs, there is an amount of surprise. After
the occurrence of the event S = s, there is gain in the amount of information, the essence
of which may be viewed as the resolution of uncertainty. Most importantly, the amount of
information is related to the inverse of the probability of occurrence of the event § = s;.

We define the amount of information gained after observing the event S = s;, which
occurs with probability py, as the logarithmic function

I(s;) = log(pi)

k

which is often termed “self-information” of the event S = s;. This definition exhibits the
following important properties that are intuitively satisfying:

I(s,) =0 forp, =1

Obviously, if we are absolutely certain of the outcome of an event, even before it occurs,
there is no information gained.

I(s,))20 forO<p, <1
That is to say, the occurrence of an event S = s, either provides some or no information,
but never brings about a loss of information.

I(s)>1(s;)  for p,<p;

That is, the less probable an event is, the more information we gain when it occurs.
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I(sy, sp) = I(sy) +1(s)) if 53 and s; are statistically independent

This additive property follows from the logarithmic definition described in (5.4).

The base of the logarithm in (5.4) specifies the units of information measure.
Nevertheless, it is standard practice in information theory to use a logarithm to base 2 with
binary signaling in mind. The resulting unit of information is called the bit, which is a
contraction of the words binary digit. We thus write

log (i)
2Ap,

~log,p; fork =0,1,...,K-1

I(Sk)

When p;, = 1/2, we have I(s;) = 1 bit. We may, therefore, state:

Note that the information I(s;) is positive, because the logarithm of a number less than
one, such as a probability, is negative. Note also that if p; is zero, then the self-information
1 5, assumes an unbounded value.

The amount of information I(s;) produced by the source during an arbitrary signaling
interval depends on the symbol s, emitted by the source at the time. The self-information
I(s;) is a discrete random variable that takes on the values I(sg), I(sq), ..., I(sg_1) with
probabilities pg, py, ..., px_1 respectively. The expectation of I(sy) over all the probable
values taken by the random variable S is given by

H(S) = E[I(s;)]

K-1
ZPkI(Sk)
k=0

3 pytog{ )
k=0 P

The quantity H(S) is called the entropy,” formally defined as follows:

Note that the entropy H(S) is independent of the alphabet &, it depends only on the
probabilities of the symbols in the alphabet ¥ of the source.

Building on the definition of entropy given in (5.9), we find that entropy of the discrete
random variable S is bounded as follows:

0<H(S)<log, K

where K is the number of symbols in the alphabet &.



210

Information Theory

Elaborating on the two bounds on entropy in (5.10), we now make two statements:

H(S) = 0, if, and only if, the probability p; = 1 for some k, and the remaining
probabilities in the set are all zero; this lower bound on entropy corresponds to no
uncertainty.

H(S) = log K, if, and only if, p; = 1/K for all k (i.e., all the symbols in the source
alphabet & are equiprobable); this upper bound on entropy corresponds to maximum
uncertainty.

To prove these properties of H(S), we proceed as follows. First, since each probability p; is
less than or equal to unity, it follows that each term p;log,(1/py) in (5.9) is always
nonnegative, so H(S) > 0. Next, we note that the product term p;, log,(1/p;) is zero if, and
only if, p; = 0 or 1. We therefore deduce that H(S) = 0 if, and only if, p; =0 or 1 for some
k and all the rest are zero. This completes the proofs of the lower bound in (5.10) and
statement 1.

To prove the upper bound in (5.10) and statement 2, we make use of a property of the
natural logarithm:

log.x<x-—1, x20

where log, is another way of describing the natural logarithm, commonly denoted by In;
both notations are used interchangeably. This inequality can be readily verified by plotting
the functions Inx and (x — 1) versus x, as shown in Figure 5.1. Here we see that the line
y =x — 1 always lies above the curve y = log.x. The equality holds only at the point x = 1,
where the line is tangential to the curve.

To proceed with the proof, consider first any two different probability distributions
denoted by pg, p1, ..., Px_1 and qq, g1 ..., Gg_1 on the alphabet ¥ = {sq, 51, ..., sg_1) of a
discrete source. We may then define the relative entropy of these two distributions:

K-1 Py
D(plla) = ) pi logz(q—)
k=0 k

1.0—

-1.0

Graphs of the functions x — 1 and log x versus x.
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Hence, changing to the natural logarithm and using the inequality of (5.11), we may
express the summation on the right-hand side of (5.12) as follows:

K-1 K-1

Py dy
2 pklogz(—) N 1°g2(—)
k=0 Uk k=0 Pr

\Y4
5|—
[\®)

.
|M\
]
=
N\
=
|
_
N—

I
=)
gQ
[\ e}
M
o
~
L)
3
b~
3
N

=0
where, in the third line of the equation, it is noted that the sums over p; and g, are both
equal to unity in accordance with (5.3). We thus have the fundamental property of
probability theory:

D(p||q)=0
In words, (5.13) states:

Suppose we next put
1
% = % k=0,1,..,K-1

which corresponds to a source alphabet & with equiprobable symbols. Using this
distribution in (5.12) yields

K-1 K-1
D(p||q) = zpk log, p; +1log, K Zpk
k=0 k=0

= —H(S) +log, K

where we have made use of (5.3) and (5.9). Hence, invoking the fundamental inequality of
(5.13), we may finally write

H(S) <log,K
Thus, H(S) is always less than or equal to log, K. The equality holds if, and only if, the

symbols in the alphabet & are equiprobable. This completes the proof of (5.10) and with it
the accompanying statements 1 and 2.

Entropy of Bernoulli Random Variable

To illustrate the properties of H(S) summed up in (5.10), consider the Bernoulli random
variable for which symbol 0 occurs with probability p; and symbol 1 with probability

p1=1-po.
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The entropy of this random variable is
H(S) = —Py 10g2 Po—Pq 10g2P1
= —pg log, py—(1-pg) logy(1-p) bits
from which we observe the following:
When p, = 0, the entropy H(S) = 0; this follows from the fact that xlog, x — 0 as
x—0.
When p( = 1, the entropy H(S) = 0.
The entropy H(S) attains its maximum value H ,, = 1 bit when p; = p; = 1/2; that is,
when symbols 1 and 0 are equally probable.
In other words, H(S) is symmetric about py = 1/2.
The function of p given on the right-hand side of (5.15) is frequently encountered in

information-theoretic problems. It is customary, therefore, to assign a special symbol to
this function. Specifically, we define

H(py) = —pg log, po—(1-pg) log,(1-pg)
We refer to H(py) as the entropy function. The distinction between (5.15) and (5.16)
should be carefully noted. The H(S) of (5.15) gives the entropy of the Bernoulli random
variable S. The H(pg) of (5.16), on the other hand, is a function of the prior probability p
defined on the interval [0, 1]. Accordingly, we may plot the entropy function H(p) versus

po. defined on the interval [0, 1], as shown in Figure 5.2. The curve in Figure 5.2
highlights the observations made under points 1, 2, and 3.

10f——————5

0 x x x x
0 0.2 04 05 06 0.8 1.0

Symbol probability, pg

Entropy function H(pg).

To add specificity to the discrete source of symbols that has been the focus of attention up
until now, we now assume it to be memoryless in the sense that the symbol emitted by the
source at any time is independent of previous and future emissions.

In this context, we often find it useful to consider blocks rather than individual symbols,
with each block consisting of 7 successive source symbols. We may view each such block
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as being produced by an extended source with a source alphabet described by the Cartesian
product of a set §” that has K" distinct blocks, where K is the number of distinct symbols in
the source alphabet S of the original source. With the source symbols being statistically
independent, it follows that the probability of a source symbol in S” is equal to the product
of the probabilities of the n source symbols in S that constitute a particular source symbol of
S™. We may thus intuitively expect that H(S™), the entropy of the extended source, is equal
to n times H(S), the entropy of the original source. That is, we may write

H(S"™) = nH(S)

We illustrate the validity of this relationship by way of an example.

Entropy of Extended Source

Consider a discrete memoryless source with source alphabet & = {s, 57, 55}, whose three
distinct symbols have the following probabilities:

_ 1
17()—“1
P=l
17y
_ 1
172—5

Hence, the use of (5.9) yields the entropy of the discrete random variable S representing
the source as

H(S)

p, log (L) pq log (l) p, log (—-1—)
0 2 Po 1 2 12 2 2 Py

1 1 1
1 log,(4) + 1 10g2(4) + 3 10g2(2)

3 bits

2

Consider next the second-order extension of the source. With the source alphabet &
consisting of three symbols, it follows that the source alphabet of the extended source S @
has nine symbols. The first row of Table 5.1 presents the nine symbols of S @) denoted by
0y» O}, ..., 0g. The second row of the table presents the composition of these nine symbols
in terms of the corresponding sequences of source symbols s, s;, and s,, taken two at a

Alphabets of second-order extension of a discrete memoryless source

Symbols of §(*) o o0 o0 03 04 05 0 O 0y

Corresponding sequences of

SoS SoS SoS NB NB) NB) 598 598 5978
symbols of S 0°0 021 0°2 1°0 1°1 1°2 2°0 271 292

1 1 1 1
8 8 8 4

=
—
(@)}
—_
(@)}

Probability P(c;), i=0,1,....8 16 16
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time. The probabilities of the nine source symbols of the extended source are presented in
the last row of the table. Accordingly, the use of (5.9) yields the entropy of the extended
source as

H(S(z))

8 1
IZ,OP(‘TI') logz(lrai))
= 10g2(16) + 10g2(16) + log2(8) + 10g2(16)

+ 11610g2(16)+ log2(8)+ log2(8)+ 10g2(8)+ 10g2(4)
= 3 bits

We thus see that H(S ¥) = 2H(S) in accordance with (5.17).

Source-coding Theorem

Now that we understand the meaning of entropy of a random variable, we are equipped to
address an important issue in communication theory: the representation of data generated
by a discrete source of information.

The process by which this representation is accomplished is called source encoding.
The device that performs the representation is called a source encoder. For reasons to be
described, it may be desirable to know the statistics of the source. In particular, if some
source symbols are known to be more probable than others, then we may exploit this
feature in the generation of a source code by assigning short codewords to frequent source
symbols, and long codewords to rare source symbols. We refer to such a source code as a
variable-length code. The Morse code, used in telegraphy in the past, is an example of a
variable-length code. Our primary interest is in the formulation of a source encoder that
satisfies two requirements:

The codewords produced by the encoder are in binary form.

The source code is uniquely decodable, so that the original source sequence can be
reconstructed perfectly from the encoded binary sequence.

The second requirement is particularly important: it constitutes the basis for a perfect
source code.

Consider then the scheme shown in Figure 5.3 that depicts a discrete memoryless
source whose output sy is converted by the source encoder into a sequence of Os and 1s,
denoted by b;. We assume that the source has an alphabet with K different symbols and
that the kth symbol s, occurs with probability p;, k = 0, 1, ..., K—1. Let the binary

Discrete Sp
memoryless
source

b .
Source k  Binary
encoder sequence

Source encoding.
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codeword assigned to symbol s;, by the encoder have length /;, measured in bits. We define
the average codeword length L of the source encoder as

K-l
L= Zpklk
k=0

In physical terms, the parameter L represents the average number of bits per source
symbol used in the source encoding process. Let L,;, denote the minimum possible value
of L. We then define the coding efficiency of the source encoder as

With L > L, in» We clearly have 77 < 1. The source encoder is said to be efficient when 7,
approaches unity.

But how is the minimum value L;, determined? The answer to this fundamental
question is embodied in Shannon’s first theorem: the source-coding theorem, which may
be stated as follows:

According to this theorem, the entropy H(S) represents a fundamental limit on the average
number of bits per source symbol necessary to represent a discrete memoryless source, in
that it can be made as small as but no smaller than the entropy H(S). Thus, setting
Linin = H(S), we may rewrite (5.19), defining the efficiency of a source encoder in terms of
the entropy H(S) as shown by

77:

=
=
N

where as before we have 7< 1.

Lossless Data Compression Algorithms

A common characteristic of signals generated by physical sources is that, in their natural
form, they contain a significant amount of redundant information, the transmission of
which is therefore wasteful of primary communication resources. For example, the output
of a computer used for business transactions constitutes a redundant sequence in the sense
that any two adjacent symbols are typically correlated with each other.

For efficient signal transmission, the redundant information should, therefore, be
removed from the signal prior to transmission. This operation, with no loss of information,
is ordinarily performed on a signal in digital form, in which case we refer to the operation
as lossless data compression. The code resulting from such an operation provides a
representation of the source output that is not only efficient in terms of the average number
of bits per symbol, but also exact in the sense that the original data can be reconstructed
with no loss of information. The entropy of the source establishes the fundamental limit on
the removal of redundancy from the data. Basically, lossless data compression is achieved
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by assigning short descriptions to the most frequent outcomes of the source output and
longer descriptions to the less frequent ones.

In this section we discuss some source-coding schemes for lossless data compression.
We begin the discussion by describing a type of source code known as a prefix code,
which not only is uniquely decodable, but also offers the possibility of realizing an
average codeword length that can be made arbitrarily close to the source entropy.

Consider a discrete memoryless source of alphabet {sg, sy, ..., Sx_1} and respective
probabilities {p, py, ..., px_1}- For a source code representing the output of this source to
be of practical use, the code has to be uniquely decodable. This restriction ensures that, for
each finite sequence of symbols emitted by the source, the corresponding sequence of
codewords is different from the sequence of codewords corresponding to any other source
sequence. We are specifically interested in a special class of codes satisfying a restriction
known as the prefix condition. To define the prefix condition, let the codeword assigned to
source symbol s; be denoted by (m; ,m, ,...,m kn)’ where the individual elements
My s <o My ATE Os and 1s and n is the codeword length. The initial part of the codeword
is represented by the elements m, , ..., m k. for some i < n. Any sequence made up of the
initial part of the codeword is called a prefix of the codeword. We thus say:

Prefix codes are distinguished from other uniquely decodable codes by the fact that the
end of a codeword is always recognizable. Hence, the decoding of a prefix can be
accomplished as soon as the binary sequence representing a source symbol is fully
received. For this reason, prefix codes are also referred to as instantaneous codes.

Illustrative Example of Prefix Coding

To illustrate the meaning of a prefix code, consider the three source codes described in
Table 5.2. Code I is not a prefix code because the bit 0, the codeword for s, is a prefix of
00, the codeword for s,. Likewise, the bit 1, the codeword for sy, is a prefix of 11, the
codeword for s3. Similarly, we may show that code III is not a prefix code but code II is.

lllustrating the definition of a prefix code

50 0.5 0 0 0
5 0.25 1 10 01
5 0.125 00 110 o011

53 0.125 11 111 0111
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To decode a sequence of codewords generated from a prefix source code, the source
decoder simply starts at the beginning of the sequence and decodes one codeword at a
time. Specifically, it sets up what is equivalent to a decision tree, which is a graphical
portrayal of the codewords in the particular source code. For example, Figure 5.4 depicts
the decision tree corresponding to code II in Table 5.2. The tree has an initial state and
four terminal states corresponding to source symbols s, 51, 52, and s3. The decoder always
starts at the initial state. The first received bit moves the decoder to the terminal state s if
itis O or else to a second decision point if it is 1. In the latter case, the second bit moves the
decoder one step further down the tree, either to terminal state s; if it is O or else to a third
decision point if it is 1, and so on. Once each terminal state emits its symbol, the decoder
is reset to its initial state. Note also that each bit in the received encoded sequence is
examined only once. Consider, for example, the following encoded sequence:

10 111 110 0 O

_— e Y -~ =~

51053 52 S0 So
This sequence is readily decoded as the source sequence ss535,5¢5(.... The reader is
invited to carry out this decoding.

As mentioned previously, a prefix code has the important property that it is
instantaneously decodable. But the converse is not necessarily true. For example, code III
in Table 5.2 does not satisfy the prefix condition, yet it is uniquely decodable because the
bit 0 indicates the beginning of each codeword in the code.

To probe more deeply into prefix codes, exemplified by that in Table 5.2, we resort to
an inequality, which is considered next.

Consider a discrete memoryless source with source alphabet {sg, sy, ..., Sx_1} and source
probabilities {pg, py, ..., Px_1}, with the codeword of symbol s; having length [;, k=0, 1,

Initial
state

53

Decision tree for code II of Table 5.2.
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..., K—1. Then, according to the Kraft inequality,” the codeword lengths always satisfy the
following inequality:

k=0
where the factor 2 refers to the number of symbols in the binary alphabet. The Kraft
inequality is a necessary but not sufficient condition for a source code to be a prefix code.
In other words, the inequality of (5.22) is merely a condition on the codeword lengths of a
prefix code and not on the codewords themselves. For example, referring to the three
codes listed in Table 5.2, we see:

* Code I violates the Kraft inequality; it cannot, therefore, be a prefix code.
* The Kraft inequality is satisfied by both codes II and III, but only code Il is a
prefix code.

Given a discrete memoryless source of entropy H(S), a prefix code can be constructed with
an average codeword length L, which is bounded as follows:

H(S)<L<H(S)+1
The left-hand bound of (5.23) is satisfied with equality under the condition that symbol s;,
is emitted by the source with probability

-1
Pk=2k

where [}, is the length of the codeword assigned to source symbol s;. A distribution governed
by (5.24) is said to be a dyadic distribution. For this distribution, we naturally have

K-1 _lk K-1
3= S
k=0 k=0

Under this condition, the Kraft inequality of (5.22) confirms that we can construct a prefix
code, such that the length of the codeword assigned to source symbol s is —log, p, . For
such a code, the average codeword length is

. K-1]
L= —’;
k=02"

and the corresponding entropy of the source is

K-1
H(S) Z {

k=0

>\
K=02"
Hence, in this special (rather meretricious) case, we find from (5.25) and (5.26) that the
prefix code is matched to the source in that L = H(S).

But how do we match the prefix code to an arbitrary discrete memoryless source? The

answer to this basic problem lies in the use of an extended code. Let L, denote the

1
ilj log,(2")
k
2
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average codeword length of the extended prefix code. For a uniquely decodable code, L,
is the smallest possible. From (5.23), we find that

nH(S)<L,<nH(S)+ 1
or, equivalently,

L, 1
H(S)< 2 <H(S)+ -~
n n

In the limit, as n approaches infinity, the lower and upper bounds in (5.28) converge as
shown by

lim 1L, = H(S)

n—>o N

We may, therefore, make the statement:

In other words, the average codeword length of an extended prefix code can be made as
small as the entropy of the source, provided that the extended code has a high enough
order in accordance with the source-coding theorem. However, the price we have to pay
for decreasing the average codeword length is increased decoding complexity, which is
brought about by the high order of the extended prefix code.

We next describe an important class of prefix codes known as Huffman codes. The basic
idea behind Huffman coding’ is the construction of a simple algorithm that computes an
optimal prefix code for a given distribution, optimal in the sense that the code has the
shortest expected length. The end result is a source code whose average codeword length
approaches the fundamental limit set by the entropy of a discrete memoryless source,
namely H(S). The essence of the algorithm used to synthesize the Huffman code is to
replace the prescribed set of source statistics of a discrete memoryless source with a
simpler one. This reduction process is continued in a step-by-step manner until we are left
with a final set of only two source statistics (symbols), for which (0, 1) is an optimal code.
Starting from this trivial code, we then work backward and thereby construct the Huffman
code for the given source.
To be specific, the Huffman encoding algorithm proceeds as follows:

The source symbols are listed in order of decreasing probability. The two source
symbols of lowest probability are assigned 0 and 1. This part of the step is referred
to as the splitting stage.

These two source symbols are then combined into a new source symbol with
probability equal to the sum of the two original probabilities. (The list of source
symbols, and, therefore, source statistics, is thereby reduced in size by one.) The
probability of the new symbol is placed in the list in accordance with its value.

The procedure is repeated until we are left with a final list of source statistics
(symbols) of only two for which the symbols 0 and 1 are assigned.
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The code for each (original) source is found by working backward and tracing the
sequence of Os and 1s assigned to that symbol as well as its successors.

Huffman Tree

To illustrate the construction of a Huffman code, consider the five symbols of the alphabet
of a discrete memoryless source and their probabilities, which are shown in the two
leftmost columns of Figure 5.5b. Following through the Huffman algorithm, we reach the
end of the computation in four steps, resulting in a Huffiman tree similar to that shown in
Figure 5.5; the Huffman tree is not to be confused with the decision tree discussed
previously in Figure 5.4. The codewords of the Huffman code for the source are tabulated
in Figure 5.5a. The average codeword length is, therefore,

L =04(2)+02(2)+02(2)+0.1(3) +0.1(3)
= 2.2 binary symbols

The entropy of the specified discrete memoryless source is calculated as follows (see (5.9)):

0.4 Togy( ) + 02 logy( 55 ) +021ogy( 5] +0.1 Togy( =) + 0.1 Togy( =)

0.529 + 0.464 + 0.464 + 0.332 + 0.332
2.121 bits

For this example, we may make two observations:

The average codeword length L exceeds the entropy H(S) by only 3.67%.
The average codeword length L does indeed satisfy (5.23).

Stage | Stage Il Stage Il Stage IV Symbol Probability Code word
0 50 0.4 00
0.4 0.4 0.4 0.6 5 0.2 10
0 1 59 0.2 11
0.2 0.2 0.4 0.4 53 0.1 010
0 1 sS4 0.1 011
0.2 0.2 0.2
0 1 (b)
0.1 0.2
1
0.1

(a)

(a) Example of the Huffman encoding algorithm. (b) Source code.

It is noteworthy that the Huffman encoding process (i.e., the Huffman tree) is not unique.
In particular, we may cite two variations in the process that are responsible for the
nonuniqueness of the Huffman code. First, at each splitting stage in the construction of a
Huffman code, there is arbitrariness in the way the symbols O and 1 are assigned to the last
two source symbols. Whichever way the assignments are made, however, the resulting
differences are trivial. Second, ambiguity arises when the probability of a combined
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symbol (obtained by adding the last two probabilities pertinent to a particular step) is
found to equal another probability in the list. We may proceed by placing the probability
of the new symbol as high as possible, as in Example 4. Alternatively, we may place it as
low as possible. (It is presumed that whichever way the placement is made, high or low, it
is consistently adhered to throughout the encoding process.) By this time, noticeable
differences arise in that the codewords in the resulting source code can have different
lengths. Nevertheless, the average codeword length remains the same.

As a measure of the variability in codeword lengths of a source code, we define the
variance of the average codeword length L over the ensemble of source symbols as

) K-l _2
o = Zpk(lk—L)
k=0

where pg, pi, ..., pg_1 are the source statistics and [, is the length of the codeword
assigned to source symbol s;. It is usually found that when a combined symbol is moveéi
as high as possible, the resulting Huffman code has a significantly smaller variance o
than when it is moved as low as possible. On this basis, it is reasonable to choose the
former Huffman code over the latter.

A drawback of the Huffman code is that it requires knowledge of a probabilistic model of
the source; unfortunately, in practice, source statistics are not always known a priori.
Moreover, in the modeling of text we find that storage requirements prevent the Huffman
code from capturing the higher-order relationships between words and phrases because the
codebook grows exponentially fast in the size of each super-symbol of letters (i.e.,
grouping of letters); the efficiency of the code is therefore compromised. To overcome
these practical limitations of Huffman codes, we may use the Lempel-Ziv algorithm,
which is intrinsically adaptive and simpler to implement than Huffman coding.

Basically, the idea behind encoding in the Lempel-Ziv algorithm is described as
follows:

To illustrate this simple yet elegant idea, consider the example of the binary sequence
000101110010100101 ...

It is assumed that the binary symbols 0 and 1 are already stored in that order in the code

book. We thus write

Subsequences stored: 0,1
Data to be parsed: 000101110010100101 ...

The encoding process begins at the left. With symbols 0 and 1 already stored, the shortest
subsequence of the data stream encountered for the first time and not seen before is 00; so
we write

Subsequences stored: 0,1,00
Data to be parsed: 0101110010100101 ...
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The second shortest subsequence not seen before is 01; accordingly, we go on to write

Subsequences stored: 0, 0, 00, 01
Data to be parsed: 01110010100101 ...

The next shortest subsequence not encountered previously is 011; hence, we write

Subsequences stored: 0,1, 00,01, 011
Data to be parsed: 10010100101 ...

We continue in the manner described here until the given data stream has been completely
parsed. Thus, for the example at hand, we get the code book of binary subsequences
shown in the second row of Figure 5.6.

The first row shown in this figure merely indicates the numerical positions of the
individual subsequences in the code book. We now recognize that the first subsequence of
the data stream, 00, is made up of the concatenation of the first code book entry, 0, with
itself; it is, therefore, represented by the number 11. The second subsequence of the data
stream, 01, consists of the first code book entry, 0, concatenated with the second code book
entry, 1; it is, therefore, represented by the number 12. The remaining subsequences are
treated in a similar fashion. The complete set of numerical representations for the various
subsequences in the code book is shown in the third row of Figure 5.6. As a further example
illustrating the composition of this row, we note that the subsequence 010 consists of the
concatenation of the subsequence 01 in position 4 and symbol O in position 1; hence, the
numerical representation is 41. The last row shown in Figure 5.6 is the binary encoded
representation of the different subsequences of the data stream.

The last symbol of each subsequence in the code book (i.e., the second row of Figure
5.6) is an innovation symbol, which is so called in recognition of the fact that its
appendage to a particular subsequence distinguishes it from all previous subsequences
stored in the code book. Correspondingly, the last bit of each uniform block of bits in the
binary encoded representation of the data stream (i.e., the fourth row in Figure 5.6)
represents the innovation symbol for the particular subsequence under consideration. The
remaining bits provide the equivalent binary representation of the “pointer” to the root
subsequence that matches the one in question, except for the innovation symbol.

The Lempel-Ziv decoder is just as simple as the encoder. Specifically, it uses the
pointer to identify the root subsequence and then appends the innovation symbol.
Consider, for example, the binary encoded block 1101 in position 9. The last bit, 1, is the
innovation symbol. The remaining bits, 110, point to the root subsequence 10 in position
6. Hence, the block 1101 is decoded into 101, which is correct.

From the example described here, we note that, in contrast to Huffman coding, the
Lempel—Ziv algorithm uses fixed-length codes to represent a variable number of source
symbols; this feature makes the Lempel-Ziv code suitable for synchronous transmission.

Numerical positions 1 2 3 4 5 6 7 8 9
Subsequences 0 1 00 01 011 10 010 100 101
Numerical representations 11 12 42 21 41 61 62
Binary encoded blocks 0010 0011 1001 0100 1000 1100 1101

Illustrating the encoding process performed by the Lempel-Ziv algorithm
on the binary sequence 000101110010100101 ...
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In practice, fixed blocks of 12 bits long are used, which implies a code book of 212 = 4096
entries.

For a long time, Huffman coding was unchallenged as the algorithm of choice for
lossless data compression; Huffman coding is still optimal, but in practice it is hard to
implement. It is on account of practical implementation that the Lempel-Ziv algorithm
has taken over almost completely from the Huffman algorithm. The Lempel-Ziv
algorithm is now the standard algorithm for file compression.

Discrete Memoryless Channels

Up to this point in the chapter we have been preoccupied with discrete memoryless
sources responsible for information generation. We next consider the related issue of
information transmission. To this end, we start the discussion by considering a discrete
memoryless channel, the counterpart of a discrete memoryless source.

A discrete memoryless channel is a statistical model with an input X and an output Y that
is a noisy version of X; both X and Y are random variables. Every unit of time, the channel
accepts an input symbol X selected from an alphabet & and, in response, it emits an output
symbol Y from an alphabet % The channel is said to be “discrete” when both of the alphabets
& and %Y have finite sizes. It is said to be “memoryless” when the current output symbol
depends only on the current input symbol and not any previous or future symbol.

Figure 5.7a shows a view of a discrete memoryless channel. The channel is described in
terms of an input alphabet

X= {xppXps s Xy}
and an output alphabet
Oy: {)’0»)’1, ~-->yK_1}

Xq Yo
X1 Y1

9 ' X—> pylx) —=v ' a

(a)

Input X Output Y
with sample with sample
value x p(y]x) value y
¢ > O

(b)

(a) Discrete memoryless channel; (b) Simplified
graphical representation of the channel.



224

Information Theory

The cardinality of the alphabets & and %, or any other alphabet for that matter, is defined
as the number of elements in the alphabet. Moreover, the channel is characterized by a set
of transition probabilities

p(yk|xj) = P(Y= yk|X = xj) for all j and k
for which, according to probability theory, we naturally have
OSp(yk|xj)£ 1 for all j and k

and
Zp(yk|xi) =1 forfixed
k

When the number of input symbols J and the number of output symbols K are not large, we
may depict the discrete memoryless channel graphically in another way, as shown in Figure
5.7b. In this latter depiction, each input—output symbol pair (x, y), characterized by the
transition probability p(y|x) > 0, is joined together by a line labeled with the number p(y|x).

Also, the input alphabet & and output alphabet Y need not have the same size; hence
the use of J for the size of & and K for the size of %Y. For example, in channel coding, the
size K of the output alphabet Ymay be larger than the size J of the input alphabet &; thus,
K > J. On the other hand, we may have a situation in which the channel emits the same
symbol when either one of two input symbols is sent, in which case we have K < J.

A convenient way of describing a discrete memoryless channel is to arrange the various
transition probabilities of the channel in the form of a matrix

polxg)  PO]xg) - POk _1]%)
P = P(y()|x1) P(y1|x1) P(yK_1|x1)

POl 1) POL[E,_ 1) e POk 5y )

The J-by-K matrix P is called the channel matrix, or stochastic matrix. Note that each row
of the channel matrix P corresponds to a fixed channel input, whereas each column of the
matrix corresponds to a fixed channel output. Note also that a fundamental property of the
channel matrix P, as defined here, is that the sum of the elements along any row of the
stochastic matrix is always equal to one, according to (5.35).

Suppose now that the inputs to a discrete memoryless channel are selected according to
the probability distribution {p(xj), j=0,1, ..., J-1}. In other words, the event that the
channel input X = x; occurs with probability

plx) =PX =x) forj=01..,J-1
Having specified the random variable X denoting the channel input, we may now specify

the second random variable Y denoting the channel output. The joint probability
distribution of the random variables X and Y is given by

p(xpy) = P(X=x, Y =y))
|]:D(Y = yk|X = x])P(X = XJ)

= pO|x)p(x))
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The marginal probability distribution of the output random variable Y is obtained by
averaging out the dependence of p(x;, yj) on x;, obtaining

p(y) = P(Y =y

J-1
P(Y =y | X =x)P(X = x))
=0

J

-1
> pg|xp(xy)  fork=0,1,...,K~1
j=0

The probabilities p(xj) forj=0,1, ..., J—1, are known as the prior probabilities of the
various input symbols. Equation (5.39) states:

Binary Symmetric Channel

The binary symmetric channel is of theoretical interest and practical importance. It is a
special case of the discrete memoryless channel with J = K = 2. The channel has two input
symbols (xg =0, x; = 1) and two output symbols (yy =0, y; = 1). The channel is symmetric
because the probability of receiving 1 if O is sent is the same as the probability of receiving
0if 1 is sent. This conditional probability of error is denoted by p (i.e., the probability of a
bit flipping). The transition probability diagram of a binary symmetric channel is as
shown in Figure 5.8. Correspondingly, we may express the stochastic matrix as

P l-p

P
Input Output
P
xp=1 =1
1 1,

Transition probability diagram of binary symmetric channel.
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Mutual Information

Given that we think of the channel output Y (selected from alphabet %) as a noisy version
of the channel input X (selected from alphabet ¥) and that the entropy H(X) is a measure of
the prior uncertainty about X, how can we measure the uncertainty about X after observing
Y? To answer this basic question, we extend the ideas developed in Section 5.2 by defining
the conditional entropy of X selected from alphabet &, given Y = y;. Specifically, we write

J-1
1
HX|Y = 3 = S plafyplog,( —— )
| k Z i|vi)log, P05
j=0
This quantity is itself a random variable that takes on the values H(X|Y = y),
H(X|Y = ygx_1) with probabilities p(yy), ..., p(yx_1), respectively. The expectation of
entropy H(X|Y = y;) over the output alphabet % is therefore given by

K-1
HX|Y) = %" HX|Y = y)p(y,)
k=0

K-1J-1 1
> pxjyp(y) lo gz( e |yk))

k=0j=0

K-1J-1 1
2 2 Pty 1°g2(p(xj|yk>)

k=0j=0

where, in the last line, we used the definition of the probability of the joint event (X = x;,
Y =y,;) as shown by

p(xp y) = p(x;|yp(v)

The quantity H(X|Y) in (5.41) is called the conditional entropy, formally defined as
follows:

The conditional entropy H(X|Y) relates the channel output Y to the channel input X. The
entropy H(X) defines the entropy of the channel input X by itself. Given these two
entropies, we now introduce the definition

I(X;Y) = H(X)-H(X|Y)
which is called the mutual information of the channel. To add meaning to this new
concept, we recognize that the entropy H(X) accounts for the uncertainty about the
channel input before observing the channel output and the conditional entropy H(X|Y)

accounts for the uncertainty about the channel input after observing the channel output.
We may, therefore, go on to make the statement:
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Equation (5.43) is not the only way of defining the mutual information of a channel.
Rather, we may define it in another way, as shown by

I(Y:X) = H(Y)- H(Y|X)

on the basis of which we may make the next statement:

On first sight, the two definitions of (5.43) and (5.44) look different. In reality, however,
they embody equivalent statements on the mutual information of the channel that are
worded differently. More specifically, they could be wused interchangeably, as
demonstrated next.

Symmetry
The mutual information of a channel is symmetric in the sense that
I(X;Y) = I(Y;X)

To prove this property, we first use the formula for entropy and then use (5.35) and (5.38),
in that order, obtaining

H(X)

z p(x) log, — o ))

J-1 1 K-1
j;)p(xj) logz(@)kgop(ykm)

J-1 K-1
S S pOyp() logy = e =)

j=0 k=0

-1 K-1 1
S p) logQ(@)

j=0 k=0

where, in going from the third to the final line, we made use of the definition of a joint
probability. Hence, substituting (5.41) and (5.46) into (5.43) and then combining terms,
we obtain

J-1 K-1 p(x.1y,)
XYy = % > p(x, ) 10g2( p(Jl_)kj
j=0 k=0 J

Note that the double summation on the right-hand side of (5.47) is invariant with respect
to swapping the x and y. In other words, the symmetry of the mutual information I(X;Y) is
already evident from (5.47).
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To further confirm this property, we may use Bayes’ rule for conditional probabilities,
previously discussed in Chapter 3, to write

p(xy)  pOg|x)
p(x) — p(v)

Hence, substituting (5.48) into (5.47) and interchanging the order of summation, we get

K-1 J-1 p(yk|xj)j
I(X;Y) = p(x;, ;) log [
kzo JZ k=20 p ()

I(Y;X)
which proves Property 1.

Nonnegativity
The mutual information is always nonnegative; that is;
I(X;Y)>0
To prove this property, we first note from (5.42) that
p(x) yp)
p(y)

Hence, substituting (5.51) into (5.47), we may express the mutual information of the
channel as

p(x;|y) =

o) Kol p(x; y;)
[(XY) = 1 ok
(X;Y) = ]ZO kzop( yk) ng(p(xj)p(yk))

Next, a direct application of the fundamental inequality of (5.12) on relative entropy
confirms (5.50), with equality if, and only if],

p(x;y) = p(x)p(y,)  foralljand k
In words, Property 2 states the following:

Moreover, the mutual information is zero if, and only if, the input and output symbols of
the channel are statistically independent; that is, when (5.53) is satisfied.

Expansion of the Mutual Information

The mutual information of a channel is related to the joint entropy of the channel input
and channel output by

I(X;Y) = HX)+H(Y)-H(X,Y)
where the joint entropy H(X, Y) is defined by

H(X,Y) = T 5 ( )1 (—1 )
B p\x;, yr) 108
]z z k 2 p(xj,yk)
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To prove (5.54), we first rewrite the joint entropy in the equivalent form

J-1 K-1 (p( D)
p(x; i)

H(X,Y) = Z Zp(xj’yk) 10g2
=0 k=0

J-1 K-1
)+ "3, Zptyw e,

(p(xj);(yk))

The first double summation term on the right-hand side of (5.56) is recognized as the
negative of the mutual information of the channel, I(X;Y), previously given in (5.52). As
for the second summation term, we manipulate it as follows:

J-1 K-1

1
Z ZP( yk)log2(p—(xi)p(yk))

+ Og px;y
oy b &

z O

mm+mn

J-1 1 K-1
j;ologz(p(_xj)) kgop(xja yk)

) Zp(yk) gg(p( ))

where, in the first line, we made use of the following relationship from probability theory:

K-1
> p(x; )
k=0

= p()

and a similar relationship holds for the second line of the equation.
Accordingly, using (5.52) and (5.57) in (5.56), we get the result
HX,Y) = -I(X;Y)+HX)+ H(Y)

which, on rearrangement, proves Property 3.

We conclude our discussion of the mutual information of a channel by providing a
diagramatic interpretation in Figure 5.9 of (5.43), (5.44), and (5.54).

H(X, Y) = H(Y, X)

H(X)

H(Y[X)

HX|Y)

IX;Y)

H(Y|X)

HX|Y)

H(Y)

[lustrating the relations among various channel entropies.
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Channel Capacity

The concept of entropy introduced in Section 5.2 prepared us for formulating Shannon’s
first theorem: the source-coding theorem. To set the stage for formulating Shannon’s
second theorem, namely the channel-coding theorem, this section introduces the concept of
capacity, which, as mentioned previously, defines the intrinsic ability of a communication
channel to convey information.

To proceed, consider a discrete memoryless channel with input alphabet ¥, output
alphabet %, and transition probabilities p(yklxj), where j=0,1,...,J-land k=0, 1, ...,
K — 1. The mutual information of the channel is defined by the first line of (5.49), which is
reproduced here for convenience:

k-1 J-1 p(yk|xj)]
I(X;Y) = p(x;, y;) log [
kzo ,Z PIRE2Cp(vy)

where, according to (5.38),
p(xj yi) = pOg|xp(x))
Also, from (5.39), we have
-1

J
PO = Y PO|x)p(x))
j=0

Putting these three equations into a single equation, we write

K-1 J-1 p(y,|x))
1061 = 'S poye it gy — LS
— J-1
et S POufs ()

i=
Careful examination of the double summation in this equation reveals two different
probabilities, on which the essence of mutual information /(X;Y) depends:

* the probability distribution { p(x )}J_ ! that characterizes the channel input and

-1,K-1 .
* the transition probability distribution {p(y k|x )}J that characterizes the

=0,k=0
channel itself.

These two probability distributions are obviously independent of each other. Thus, given a
channel characterized by the transition probability distribution {p(yklxj}, we may now
introduce the channel capacity, which is formally defined in terms of the mutual
information between the channel input and output as follows:

C= max I(X;Y)  bits per channel use

(p(x))}

The maximization in (5.59) is performed, subject to two input probabilistic constraints:
p(xj) >0 forallj
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and
J-1
S px) =1
j=0

Accordingly, we make the following statement:

The channel capacity is clearly an intrinsic property of the channel.

Binary Symmetric Channel (Revisited)

Consider again the binary symmetric channel, which is described by the transition
probability diagram of Figure 5.8. This diagram is uniquely defined by the conditional
probability of error p.

From Example 1 we recall that the entropy H(X) is maximized when the channel input
probability p(xy) = p(x;) = 1/2, where x; and x; are each 0 or 1. Hence, invoking the
defining equation (5.59), we find that the mutual information I(X;Y) is similarly
maximized and thus write

C = IXD),0) = pla) = 172

From Figure 5.8 we have
pOo|x1) = P(yi|xg) = P
and
p(o|%g) = POyy|x) = 1-p

Therefore, substituting these channel transition probabilities into (5.49) with J = K =2 and
then setting the input probability p(xg) = p(x;) = 1/2 in (5.59), we find that the capacity of
the binary symmetric channel is

C = 1+plog,p+(1-p)log,(1-p)
Moreover, using the definition of the entropy function introduced in (5.16), we may reduce
(5.60) to
C =1-H(p)
The channel capacity C varies with the probability of error (i.e., transition probability) p in

a convex manner as shown in Figure 5.10, which is symmetric about p = 1/2. Comparing
the curve in this figure with that in Figure 5.2, we make two observations:

When the channel is noise free, permitting us to set p = 0, the channel capacity C
attains its maximum value of one bit per channel use, which is exactly the
information in each channel input. At this value of p, the entropy function H(p)
attains its minimum value of zero.

When the conditional probability of error p = 1/2 due to channel noise, the channel
capacity C attains its minimum value of zero, whereas the entropy function H(p)
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Variation of channel capacity of a 1.0
binary symmetric channel with
transition probability p.

Channel capacity C
o
(&3}
\

|
0 0.5 1.0
Transition probability p

attains its maximum value of unity; in such a case, the channel is said to be useless in
the sense that the channel input and output assume statistically independent structures.

Channel-coding Theorem

Block diagram of digital
communication system. Noise

With the entropy of a discrete memoryless source and the corresponding capacity of a
discrete memoryless channel at hand, we are now equipped with the concepts needed for
formulating Shannon’s second theorem: the channel-coding theorem.

To this end, we first recognize that the inevitable presence of noise in a channel causes
discrepancies (errors) between the output and input data sequences of a digital
communication system. For a relatively noisy channel (e.g., wireless communication
channel), the probability of error may reach a value as high as 10~!, which means that (on the
average) only 9 out of 10 transmitted bits are received correctly. For many applications, this
level of reliability is utterly unacceptable. Indeed, a probability of error equal to 1075 or even
lower is often a necessary practical requirement. To achieve such a high level of
performance, we resort to the use of channel coding.

The design goal of channel coding is to increase the resistance of a digital communication
system to channel noise. Specifically, channel coding consists of mapping the incoming data
sequence into a channel input sequence and inverse mapping the channel output sequence
into an output data sequence in such a way that the overall effect of channel noise on the
system is minimized. The first mapping operation is performed in the transmitter by a
channel encoder, whereas the inverse mapping operation is performed in the receiver by a
channel decoder, as shown in the block diagram of Figure 5.11; to simplify the exposition,
we have not included source encoding (before channel encoding) and source decoding (after
channel decoding) in this figure.

Discrete Discrete
Channel Channel —
memoryless memoryless Destination
encoder decoder
source channel
Transmitter T Receiver
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The channel encoder and channel decoder in Figure 5.11 are both under the designer’s
control and should be designed to optimize the overall reliability of the communication
system. The approach taken is to introduce redundancy in the channel encoder in a
controlled manner, so as to reconstruct the original source sequence as accurately as
possible. In a rather loose sense, we may thus view channel coding as the dual of source
coding, in that the former introduces controlled redundancy to improve reliability whereas
the latter reduces redundancy to improve efficiency.

Treatment of the channel-coding techniques is deferred to Chapter 10. For the purpose
of our present discussion, it suffices to confine our attention to block codes. In this class of
codes, the message sequence is subdivided into sequential blocks each k bits long, and
each k-bit block is mapped into an n-bit block, where n > k. The number of redundant bits
added by the encoder to each transmitted block is n — k bits. The ratio k/n is called the code
rate. Using r to denote the code rate, we write

where, of course, r is less than unity. For a prescribed k, the code rate r (and, therefore, the
system’s coding efficiency) approaches zero as the block length n approaches infinity.

The accurate reconstruction of the original source sequence at the destination requires
that the average probability of symbol error be arbitrarily low. This raises the following
important question:

The answer to this fundamental question is an emphatic “yes.” Indeed, the answer to the
question is provided by Shannon’s second theorem in terms of the channel capacity C, as
described in what follows.

Up until this point, time has not played an important role in our discussion of channel
capacity. Suppose then the discrete memoryless source in Figure 5.11 has the source
alphabet & and entropy H(S) bits per source symbol. We assume that the source emits
symbols once every T seconds. Hence, the average information rate of the source is H(S)/T
bits per second. The decoder delivers decoded symbols to the destination from the source
alphabet S and at the same source rate of one symbol every T, seconds. The discrete
memoryless channel has a channel capacity equal to C bits per use of the channel. We
assume that the channel is capable of being used once every 7. seconds. Hence, the
channel capacity per unit time is C/T, bits per second, which represents the maximum rate
of information transfer over the channel. With this background, we are now ready to state
Shannon’s second theorem, the channel-coding theorem, "~ in two parts as follows:

Let a discrete memoryless source with an alphabet ¥ have entropy H(S) for random
variable S and produce symbols once every T seconds. Let a discrete memoryless
channel have capacity C and be used once every T, seconds, Then, if

HS) _ C
T, T

N C
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there exists a coding scheme for which the source output can be transmitted over the
channel and be reconstructed with an arbitrarily small probability of error. The
parameter C/T, is called the critical rate; when (5.62) is satisfied with the equality
sign, the system is said to be signaling at the critical rate.
Conversely, if

HS) C

>__
T, T,

S

it is not possible to transmit information over the channel and reconstruct it with an
arbitrarily small probability of error.

The channel-coding theorem is the single most important result of information theory. The
theorem specifies the channel capacity C as a fundamental limit on the rate at which the
transmission of reliable error-free messages can take place over a discrete memoryless
channel. However, it is important to note two limitations of the theorem:

The channel-coding theorem does not show us how to construct a good code. Rather,
the theorem should be viewed as an existence proof in the sense that it tells us that if
the condition of (5.62) is satisfied, then good codes do exist. Later, in Chapter 10, we
describe good codes for discrete memoryless channels.

The theorem does not have a precise result for the probability of symbol error after
decoding the channel output. Rather, it tells us that the probability of symbol error
tends to zero as the length of the code increases, again provided that the condition of
(5.62) is satisfied.

Consider a discrete memoryless source that emits equally likely binary symbols (Os and
Is) once every T seconds. With the source entropy equal to one bit per source symbol (see
Example 1), the information rate of the source is (1/7) bits per second. The source
sequence is applied to a channel encoder with code rate . The channel encoder produces a
symbol once every T, seconds. Hence, the encoded symbol transmission rate is (1/7,)
symbols per second. The channel encoder engages a binary symmetric channel once every
T, seconds. Hence, the channel capacity per unit time is (C/T,) bits per second, where C is
determined by the prescribed channel transition probability p in accordance with (5.60).
Accordingly, part (1) of the channel-coding theorem implies that if

1.C

TS_ TC

then the probability of error can be made arbitrarily low by the use of a suitable channel-
encoding scheme. But the ratio 7,./T; equals the code rate of the channel encoder:

Hence, we may restate the condition of (5.63) simply as

r<C
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That is, for r < C, there exists a code (with code rate less than or equal to channel capacity
C) capable of achieving an arbitrarily low probability of error.

Repetition Code

In this example we present a graphical interpretation of the channel-coding theorem. We also
bring out a surprising aspect of the theorem by taking a look at a simple coding scheme.

Consider first a binary symmetric channel with transition probability p = 1072, For this
value of p, we find from (5.60) that the channel capacity C = 0.9192. Hence, from the
channel-coding theorem, we may state that, for any ¢ > 0 and r < 0.9192, there exists a
code of large enough length n, code rate r, and an appropriate decoding algorithm such
that, when the coded bit stream is sent over the given channel, the average probability of
channel decoding error is less than & This result is depicted in Figure 5.12 for the limiting
value £= 1073,

To put the significance of this result in perspective, consider next a simple coding
scheme that involves the use of a repetition code, in which each bit of the message is
repeated several times. Let each bit (0 or 1) be repeated n times, where n = 2m + 1 is an
odd integer. For example, for n = 3, we transmit O and 1 as 000 and 111, respectively.

1.0~

Repetition
code

Average probability of error, P,

_, | Limiting value
10 £=10"% | Channel

/ : capacity C
|
1078 | 1]

0.01 0.1 1.0
Code rate, r

Ilustrating the significance of the channel-coding theorem.
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Intuitively, it would seem logical to use a majority rule for decoding, which operates as
follows:

Hence, an error occurs when m + 1 or more bits out of n = 2m + 1 bits are received
incorrectly. Because of the assumed symmetric nature of the channel, the average
probability of error, denoted by P, is independent of the prior probabilities of 0 and 1.
Accordingly, we find that P, is given by

n

P,= Y (r;)pi(l—p)"*i

i=m+1

where p is the transition probability of the channel.

Table 5.3 gives the average probability of error P, for a repetition code that is
calculated by using (5.65) for different values of the code rate ». The values given here
assume the use of a binary symmetric channel with transition probability p = 102, The
improvement in reliability displayed in Table 5.3 is achieved at the cost of decreasing code
rate. The results of this table are also shown plotted as the curve labeled “repetition code”
in Figure 5.12. This curve illustrates the exchange of code rate for message reliability,
which is a characteristic of repetition codes.

This example highlights the unexpected result presented to us by the channel-coding
theorem. The result is that it is not necessary to have the code rate r approach zero (as in
the case of repetition codes) to achieve more and more reliable operation of the
communication link. The theorem merely requires that the code rate be less than the
channel capacity C.

Average probability of error for repetition code

1 1072
! 3x107*
3 X

1

- —6
z 10

: 4x107
7 X

1 3
5 10
1 5% 10710

—_
J—
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Differential Entropy and Mutual Information for Continuous
Random Ensembles

The sources and channels considered in our discussion of information-theoretic concepts
thus far have involved ensembles of random variables that are discrete in amplitude. In this
section, we extend these concepts to continuous random variables. The motivation for
doing so is to pave the way for the description of another fundamental limit in information
theory, which we take up in Section 5.10.

Consider a continuous random variable X with the probability density function fx(x).
By analogy with the entropy of a discrete random variable, we introduce the following
definition:

0 1
h(X) j_w f() Togs 7 (x)} dx

We refer to the new term h(X) as the differential entropy of X to distinguish it from the
ordinary or absolute entropy. We do so in recognition of the fact that, although A(X) is a
useful mathematical quantity to know, it is not in any sense a measure of the randomness
of X. Nevertheless, we justify the use of (5.66) in what follows. We begin by viewing the
continuous random variable X as the limiting form of a discrete random variable that
assumes the value x; = kAx, where k = 0, =1, £2, ..., and Ax approaches zero. By
definition, the continuous random variable X assumes a value in the interval [x;, x; + Ax]
with probability fy(x;)Ax. Hence, permitting Ax to approach zero, the ordinary entropy of
the continuous random variable X takes the limiting form

. 2 1
H(X) A}(lr_n)0 ) ; fx(x)Ax Ing(f—X(xk)Ax)

—00

Ax —>

. & 1 &
lim o, =Z;O()fx(xk) logz(]%) Ax — longxk =Z;O()fx(xk)Ax

J-: Sx(x) log 2( Jﬁ) dx - A}Cilg 0(10g2AxJ‘i) Fx(xp) dx)

h(X) - lim log, Ax
Ax—0

In the last line of (5.67), use has been made of (5.66) and the fact that the total area under
the curve of the probability density function fx(x) is unity. In the limit as Ax approaches
zero, the term —log,Ax approaches infinity. This means that the entropy of a continuous
random variable is infinitely large. Intuitively, we would expect this to be true because a
continuous random variable may assume a value anywhere in the interval (—oo, ©); we
may, therefore, encounter uncountable infinite numbers of probable outcomes. To avoid the
problem associated with the term log,Ax, we adopt A(X) as a differential entropy, with the
term —log, Ax serving merely as a reference. Moreover, since the information transmitted
over a channel is actually the difference between two entropy terms that have a common
reference, the information will be the same as the difference between the corresponding
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differential entropy terms. We are, therefore, perfectly justified in using the term h(X),
defined in (5.66), as the differential entropy of the continuous random variable X.
When we have a continuous random vector X consisting of n random variables X, X,,
., X,,, we define the differential entropy of X as the n-fold integral

h(X) = j fx(X) IOgZ[f (x )]

where fx(x) is the joint probability density function of X.

Uniform Distribution

To illustrate the notion of differential entropy, consider a random variable X uniformly
distributed over the interval (0, a). The probability density function of X is

1 O<x<a
fx(x) =14 o
0 otherwise

Applying (5.66) to this distribution, we get

h(X) ja élog(a) dx

0
= loga
Note that loga < 0 for a < 1. Thus, this example shows that, unlike a discrete random vari-
able, the differential entropy of a continuous random variable can assume a negative value.

In (5.12) we defined the relative entropy of a pair of different discrete distributions. To
extend that definition to a pair of continuous distributions, consider the continuous random
variables X and Y whose respective probability density functions are denoted by fy(x) and
fy(x) for the same sample value (argument) x. The relative entropy ' of the random
variables X and Y is defined by

DUyl = | ) 1og2(f;Y§ ;) ix

where fy(x) is viewed as the “reference” distribution. In a corresponding way to the
fundamental property of (5.13), we have

D(fy||f) = 0

Combining (5.70) and (5.71) into a single inequality, we may thus write

J tozy(755) e J oz 75
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The expression on the left-hand side of this inequality is recognized as the differential
entropy of the random variable ¥, namely i(Y). Accordingly,

h(Y) < j: £ () logz(%) dx

The next example illustrates an insightful application of (5.72).

Gaussian Distribution

Suppose two random variables, X and Y, are described as follows:

. . 2
 the random variables X and Y have the common mean x and variance o’ ;
* the random variable X is Gaussian distributed (see Section 3.9) as shown by

2
fy(x) = Jzi exp{ (= s) }

To 202

Hence, substituting (5.73) into (5.72) and changing the base of the logarithm from 2 to
e=2.7183, we get

o0 2
h(Y) < —logzej fY(x)|:— % - IOg(A/2_7TO'):| dx

20

where e is the base of the natural algorithm. We now recognize the following
characterizations of the random variable Y (given that its mean is x and its variance is o ):

1

jio fy(x) dx

[
Q

* 2
[ = fyx) dx =
—o0
We may, therefore, simplify (5.74) as
1 2
h(Y) < 510g2(2nea )

The quantity on the right-hand side of (5.75) is, in fact, the differential entropy of the
Gaussian random variable X:

1 2
h(X) = 510g2(2ned )
Finally, combining (5.75) and (5.76), we may write

h(Y) < h(X), X: Gaussian random variable
Y: nonGaussian random variable

where equality holds if, and only if, ¥ = X.
We may now summarize the results of this important example by describing two
entropic properties of a random variable:
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For any finite variance, a Gaussian random variable has the largest differential entropy
attainable by any other random variable.

The entropy of a Gaussian random variable is uniquely determined by its variance (i.e.,
the entropy is independent of the mean).

Indeed, it is because of Property 1 that the Gaussian channel model is so widely used as a
conservative model in the study of digital communication systems.

Continuing with the information-theoretic characterization of continuous random
variables, we may use analogy with (5.47) to define the mutual information between the
pair of continuous random variables X and Y as follows:

o (0 Tx(x[y)
I(X;Y) = I_w'[_wfx’ y(X, y) logz[ ;X)(C)l:)]

where fy y(x,y) is the joint probability density function of X and Y and fy(x|y) is the
conditional probability density function of X given Y = y. Also, by analogy with (5.45),
(5.50), (5.43), and (5.44), we find that the mutual information between the pair of Gausian
random variables has the following properties:

1(X;Y) = I(Y;X)

:|dxdy

I(X;Y) =0
I(X:Y) = h(X) — h(X|Y)
= h(Y) - h(Y|X)

The parameter A(X) is the differential entropy of X; likewise for h(Y). The parameter
W(X|Y) is the conditional differential entropy of X given Y; it is defined by the double
integral (see (5.41))

h(X|Y) = j: J:fx’ /(5 9) 1og2[/x(+|y)} dx dy

The parameter h(Y|X) is the conditional differential entropy of Y given X; it is defined in a
manner similar to h(X|Y).

Information Capacity Law

In this section we use our knowledge of probability theory to expand Shannon’s channel-
coding theorem, so as to formulate the information capacity for a band-limited, power-
limited Gaussian channel, depicted in Figure 5.13. To be specific, consider a zero-mean
stationary process X(#) that is band-limited to B hertz. Let X;, k =1, 2, ..., K, denote the
continuous random variables obtained by uniform sampling of the process X(¢) at a rate of
2B samples per second. The rate 2B samples per second is the smallest permissible rate for
a bandwidth B that would not result in a loss of information in accordance with the
sampling theorem; this is discussed in Chapter 6. Suppose that these samples are
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Input Output
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T

Noise
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Model of discrete-time, memoryless Gaussian channel.

transmitted in 7 seconds over a noisy channel, also band-limited to B hertz. Hence, the
total number of samples K is given by

K=2BT
We refer to X, as a sample of the transmitted signal. The channel output is perturbed by
additive white Gaussian noise (AWGN) of zero mean and power spectral density Ny/2.
The noise is band-limited to B hertz. Let the continuous random variables Y, k=1, 2, ...,
K, denote the corresponding samples of the channel output, as shown by

Yk=Xk+Nk’ k=1,2,...,K

The noise sample N, in (5.84) is Gaussian with zero mean and variance

o = NyB
We assume that the samples Yj, k=1, 2, ..., K, are statistically independent.

A channel for which the noise and the received signal are as described in (5.84) and
(5.85) is called a discrete-time, memoryless Gaussian channel, modeled as shown in
Figure 5.13. To make meaningful statements about the channel, however, we have to
assign a cost to each channel input. Typically, the transmitter is power limited; therefore, it
is reasonable to define the cost as

EIX <P, k=1,2,...K

where P is the average transmitted power. The power-limited Gaussian channel described
herein is not only of theoretical importance but also of practical importance, in that it
models many communication channels, including line-of-sight radio and satellite links.

The information capacity of the channel is defined as the maximum of the mutual
information between the channel input X;, and the channel output Y} over all distributions
of the input X}, that satisfy the power constraint of (5.86). Let I(X;;Y};) denote the mutual
information between X; and Y;,. We may then define the information capacity of the
channel as

C= me(IX) I(X3Y) subject to the constraint [E[Xi] =P for all k
X X
k
In words, maximization of the mutual information I(X};Y}) is done with respect to all prob-
ability distributions of the channel input X, satisfying the power constraint [E[Xi] =P.
The mutual information /(X};Y}) can be expressed in one of the two equivalent forms
shown in (5.81). For the purpose at hand, we use the second line of this equation to write

(XY = h(Y) = h(Y,|Xp)
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Since X; and N are independent random variables and their sum equals Y}, in accordance
with (5.84), we find that the conditional differential entropy of Y} given X; is equal to the
differential entropy of N, as shown by

h(Yk|Xk) = h(N,)
Hence, we may rewrite (5.88) as
I(X;Y) = h(Y) —h(Ny)

With A(N,;) being independent of the distribution of X, it follows that maximizing /(X;;Y})
in accordance with (5.87) requires maximizing the differential entropy h(Y}). For h(Y)) to
be maximum, Y} has to be a Gaussian random variable. That is to say, samples of the
channel output represent a noiselike process. Next, we observe that since Ny, is Gaussian
by assumption, the sample X; of the channel input must be Gaussian too. We may
therefore state that the maximization specified in (5.87) is attained by choosing samples of
the channel input from a noiselike Gaussian-distributed process of average power P.
Correspondingly, we may reformulate (5.87) as

C = I(X,;Y,): for Gaussian X, and [E[Xi] =P for all k

where the mutual information /(X};Y;) is defined in accordance with (5.90).
For evaluation of the information capacity C, we now proceed in three stages:

The variance of sample Y, of the channel output equals P + 0'2, which is a
consequence of the fact that the random variables X and N are statistically
independent; hence, the use of (5.76) yields the differential entropy

h(Y,) = %logz[Zne(P+ o]

The variance of the noisy sample N; equals 0'2; hence, the use of (5.76) yields the
differential entropy

h(N,) = %logz[ZneO'Z]

Substituting (5.92) and (5.93) into (5.90), and recognizing the definition of
information capacity given in (5.91), we get the formula:

= Liogy(14£) b
C = 2log2 1+;2 bits per channel use

With the channel used K times for the transmission of K samples of the process X(f) in
T seconds, we find that the information capacity per unit time is (K/T) times the result
given in (5.94). The number K equals 2BT, as in (5.83). Accordingly, we may express the
information capacity of the channel in the following equivalent form:

P .
C=8B logz(l + —) bits per second
NyB

where Ny B is the total noise power at the channel output, defined in accordance with (5.85).
Based on the formula of (5.95), we may now make the following statement
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The information capacity law =~ of (5.95) is one of the most remarkable results of
Shannon’s information theory. In a single formula, it highlights most vividly the interplay
among three key system parameters: channel bandwidth, average transmitted power, and
power spectral density of channel noise. Note, however, that the dependence of
information capacity C on channel bandwidth B is linear, whereas its dependence on
signal-to-noise ratio P/(NyB) is logarithmic. Accordingly, we may make another insightful
statement:

The information capacity formula implies that, for given average transmitted power P and
channel bandwidth B, we can transmit information at the rate of C bits per second, as
defined in (5.95), with arbitrarily small probability of error by employing a sufficiently
complex encoding system. It is not possible to transmit at a rate higher than C bits per
second by any encoding system without a definite probability of error. Hence, the channel
capacity law defines the fundamental limit on the permissible rate of error-free
transmission for a power-limited, band-limited Gaussian channel. To approach this limit,
however, the transmitted signal must have statistical properties approximating those of
white Gaussian noise.

To provide a plausible argument supporting the information capacity law, suppose that we
use an encoding scheme that yields K codewords, one for each sample of the transmitted
signal. Let n denote the length (i.e., the number of bits) of each codeword. It is presumed
that the coding scheme is designed to produce an acceptably low probability of symbol
error. Furthermore, the codewords satisfy the power constraint; that is, the average power
contained in the transmission of each codeword with n bits is nP, where P is the average
power per bit.

Suppose that any codeword in the code is transmitted. The received vector of n bits is

Gaussian distributed with a mean equal to the transmitted codeword and a variance equal
to no-z, where o is the noise variance. With a high probability, we may say that the
received signal vector at the channel output lies inside a sphere of radius «/n_a% ; that is,
centered on the transmitted codeword. This sphere is itself contained in a larger sphere of
radius A/n(P + 0'2) , where n(P + ¢2) is the average power of the received signal vector.
We may thus visualize the sphere packing ' as portrayed in Figure 5.14. With

everything inside a small sphere of radius yno~ assigned to the codeword on which it is
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%025%*
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The sphere-packmg problem.

centered. It is therefore reasonable to say that, when this particular codeword is
transmitted, the probability that the received signal vector will lie inside the correct

“decoding” sphere is high. The key question is:

To answer this question, we want to eliminate the overlap between the decoding spheres as
depicted in Figure 5.14. Moreover, expressing the volume of an n-dimensional sphere of
radius r as A,,7", where A,, is a scaling factor, we may go on to make two statements:

The volume of the sphere of received signal vectors isA,[n(P + 0'2)]"/ 2,

The volume of the decoding sphere is A, (no )”/ 2

Accordingly, it follows that the maximum number of nonintersecting decoding spheres
that can be packed inside the sphere of possible received signal vectors is given by

2..n/2
A, [n(P+0)] (1 P)n/z
2.n/2 +_2
A, (no”) o

5(n/2)loga(1+P/ )

Taking the logarithm of this result to base 2, we readily see that the maximum number of
bits per transmission for a low probability of error is indeed as defined previously in (5.94).

A final comment is in order: (5.94) is an idealized manifestation of Shannon’s channel-
coding theorem, in that it provides an upper bound on the physically realizable
information capacity of a communication channel.

Implications of the Information Capacity Law

Now that we have a good understanding of the information capacity law, we may go on to
discuss its implications in the context of a Gaussian channel that is limited in both power
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and bandwidth. For the discussion to be useful, however, we need an ideal framework
against which the performance of a practical communication system can be assessed. To
this end, we introduce the notion of an ideal system, defined as a system that transmits
data at a bit rate Ry, equal to the information capacity C. We may then express the average
transmitted power as
P=EC

where Ey, is the transmitted energy per bit. Accordingly, the ideal system is defined by the
equation

Rearranging this formula, we may define the signal energy-per-bit to noise power spectral
density ratio, Ey,/ Ny, in terms of the ratio C/B for the ideal system as follows:

Eb _ 2C/B_1

N, C/B
A plot of the bandwidth efficiency Ry,/B versus E,/N is called the bandwidth-efficiency

diagram. A generic form of this diagram is displayed in Figure 5.15, where the curve
labeled “capacity boundary” corresponds to the ideal system for which R, = C.
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Based on Figure 5.15, we can make three observations:

For infinite channel bandwidth, the ratio E,/N approaches the limiting value

(%), = jm ()
No B—>x© NO

0

log, 2 = 0.693

where log, stands for the natural logarithm In. The value defined in (5.100) is called
the Shannon limit for an AWGN channel, assuming a code rate of zero. Expressed in
decibels, the Shannon limit equals —1.6 dB. The corresponding limiting value of the
channel capacity is obtained by letting the channel bandwidth B in (5.95) approach
infinity, in which case we obtain

C_= lim C

o0
B—>xw

(f—)log e
N,/ °?

The capacity boundary is defined by the curve for the critical bit rate R, = C. For
any point on this boundary, we may flip a fair coin (with probability of 1/2) whether
we have error-free transmission or not. As such, the boundary separates
combinations of system parameters that have the potential for supporting error-free
transmission (R, < C) from those for which error-free transmission is not possible
(R, > C). The latter region is shown shaded in Figure 5.15.

The diagram highlights potential trade-offs among three quantities: the Ey/Ny, the
ratio Ry/B, and the probability of symbol error P,. In particular, we may view
movement of the operating point along a horizontal line as trading P, versus E,/N
for a fixed R,/B. On the other hand, we may view movement of the operating point
along a vertical line as trading P, versus Ry /B for a fixed E}/N,.

Capacity of Binary-Input AWGN Channel

In this example, we investigate the capacity of an AWGN channel using encoded binary
antipodal signaling (i.e., levels —1 and +1 for binary symbols O and 1, respectively). In
particular, we address the issue of determining the minimum achievable bit error rate as a
function of E,/N, for varying code rate r. It is assumed that the binary symbols 0 and 1 are
equiprobable.

Let the random variables X and Y denote the channel input and channel output
respectively; X is a discrete variable, whereas Y is a continuous variable. In light of the
second line of (5.81), we may express the mutual information between the channel input
and channel output as

I(X:Y) = h(Y) - h(Y|X)

The second term, h(Y|X), is the conditional differential entropy of the channel output ¥,
given the channel input X. By virtue é)f (5.89) and (5.93), this term is just the entropy of a
Gaussian distribution. Hence, using o™ to denote the variance of the channel noise, we write

h(Y|X) = %10g2(2n60'2)
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Next, the first term, i(Y), is the differential entropy of the channel output Y. With the use of
binary antipodal signaling, the probability density functizon of ¥, given X = x, is a mixture
of two Gaussian distributions with common variance ¢ and mean values —1 and +1, as
shown by

ifexpl-(v;+ )26°] exp[-(y; - 1)/20°]
MO = ™ e T e

Hence, we may determine the differential entropy of Y using the formula

h(Y) = [yl ) log Lfy(yi 0] dy,

where fy(y; | x) is defined by (5.102). From the formulas of 4(Y|X) and A(Y), it is clear that
the mutual information is solely a function of the noise variance ¢ . Using M(c ) to
denote this functional dependence, we may thus write

I(X:;Y) = M(c")
Unfortunately, there is no closed formula that we can derive for M(O‘z) because of the
difficulty of determining h(Y). Nevertheless, the differential entropy A(Y) can be well
approximated using Monte Carlo integration; see Appendix E for details.
Because symbols 0 and 1 are equiprobable, it follows that the channel capacity C is
equal to the mutual information between X and Y. Hence, for error-free data transmission
over the AWGN channel, the code rate r must satisfy the condition

r<M(02)

A robust measure of the ratio Ey,/N, is

E, p P

NO NOr 20'2r

where P is the average transmitted power and Ny/2 is the two-sided power spectral density
of the channel noise. Without loss of generality, we may set P = 1. We may then express
the noise variance as

N,
0'2 = _20
2E.r

Substituting Equation (5.104) into (5.103) and rearranging terms, we get the desired
relation:

Ey 1

Ny 2rM_1(r)

where M_l(r) is the inverse of the mutual information between the channel input and
putput, expressed as a function of the code rate r.

Using the Monte Carlo method to estimate the differential entropy s(Y) and therefore
M), the plots of Figure 5.16 are computed. ~ Figure 5.16a plots the minimum E /N
versus the code rate r for error-free transmission. Figure 5.16b plots the minimum
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Binary antipodal signaling over an AWGN channel. (a) Minimum Ey/N,, versus the
code rate r. (b) Minimum bit error rate versus E,/N,, for varying code rate r.

achievable bit error rate versus E,/N, with the code rate r as a running parameter. From
Figure 5.16 we may draw the following conclusions:

* For uncoded binary signaling (i.e., r = 1), an infinite E},/N,) is required for error-free
communication, which agrees with what we know about uncoded data transmission
over an AWGN channel.

* The minimum E/N,, decreases with decreasing code rate r, which is intuitively
satisfying. For example, for r = 1/2, the minimum value of E},/ N, is slightly less than
0.2 dB.

* As rapproaches zero, the minimum E/N, approaches the limiting value of —1.6 dB,
which agrees with the Shannon limit derived earlier; see (5.100).

Information Capacity of Colored Noisy Channel

The information capacity theorem as formulated in (5.95) applies to a band-limited white
noise channel. In this section we extend Shannon’s information capacity law to the more
general case of a nonwhite, or colored, noisy channel.”” To be specific, consider the
channel model shown in Figure 5.17a where the transfer function of the channel is denoted
by H(f). The channel noise n(f), which appears additively at the channel output, is
modeled as the sample function of a stationary Gaussian process of zero mean and power
spectral density Sy(f). The requirement is twofold:

Find the input ensemble, described by the power spectral density S,,.(f), that
maximizes the mutual information between the channel output y(¢) and the channel
input x(f), subject to the constraint that the average power of x(¢) is fixed at a
constant value P.

Hence, determine the optimum information capacity of the channel.
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Input Output 0\ Output
x(1) H z V(o) x() \Er Hf) ¥(r)
Colored noise Modified
n(z) colored noise

n'(1)
(a) (b)

(a) Model of band-limited, power-limited noisy channel. (b) Equivalent
model of the channel.

This problem is a constrained optimization problem. To solve it, we proceed as follows:

* Because the channel is linear, we may replace the model of Figure 5.17a with the
equivalent model shown in Figure 5.17b. From the viewpoint of the spectral
characteristics of the signal plus noise measured at the channel output, the two
models of Figure 5.17 are equivalent, provided that the power spectral density of the
noise n'(f) in Figure 5.17b is defined in terms of the power spectral density of the
noise n(f) in Figure 5.17a as

Sun(f)
H(f)”

where |H(f)| is the magnitude response of the channel.

SNfN'(f) =

e To simplify the analysis, we use the “principle of divide and conquer” to

approximate the continuous |H(f)| described as a function of frequency fin the form

of a staircase, as illustrated in Figure 5.18. Specifically, the channel is divided into a

large number of adjoining frequency slots. The smaller we make the incremental
frequency interval Af of each subchannel, the better this approximation is.

The net result of these two points is that the original model of Figure 5.17a is replaced by

the parallel combination of a finite number of subchannels, N, each of which is corrupted
essentially by “band-limited white Gaussian noise.”

[H(p) Staircase
approximation

Actual
response

f

Staricase approximation of an arbitrary magnitude response
|H(f)|; only the positive frequency portion of the response is shown.
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The kth subchannel in the approximation to the model of Figure 5.17b is described by
V(1) = x, () + ni (1), k=1,2,..,N
The average power of the signal component x;(?) is
P, = Syx(f)Af, k=1,2,..,N

where Sx(f;) is the power spectral density of the input signal evaluated at the frequency
f=fi The variance of the noise component 7;(f) is

o = SNN(fk;
[H ()

where Sy (f;) and |H(f})| are the noise spectral density and the channel’s magnitude response
evaluated at the frequency f;, respectively. The information capacity of the kth subchannel is

Af, k=1,2,..,N

C. = YAf1og| 1 Py k=1,2,...N
k_2f0g2 +_2! = Ly &5 ey
Ok

where the factor 1/2 accounts for the fact that Af applies to both positive and negative
frequencies. All the N subchannels are independent of one another. Hence, the total
capacity of the overall channel is approximately given by the summation

N
Cx ZCk
k=1

1 Py
= E Z Af 10g2 1 + —2
k=1 Oy,
The problem we have to address is to maximize the overall information capacity C subject

to the constraint
N

z P, = P = constant

k=1
The usual procedure to solve a constrained optimization problem is to use the method of
Lagrange multipliers (see Appendix D for a discussion of this method). To proceed with
this optimization, we first define an objective function that incorporates both the
information capacity C and the constraint (i.e., (5.111) and (5.112)), as shown by

1N P N
J(P) =33 Aflog, 1+—’2c +AP-3 P,

k=1 Oy k=1

where A is the Lagrange multiplier. Next, differentiating the objective function J(P}) with
respect to P; and setting the result equal to zero, we obtain

Af log,e

2
P+ o
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To satisfy this optimizing solution, we impose the following requirement:
Pi+ o, =KAf fork=1,2..,N

where K is a constant that is the same for all k. The constant K is chosen to satisfy the
average power constraint.

Inserting the defining values of (5.108) and (5.109) in the optimizing condition of
(5.114), simplifying, and rearranging terms we get

Sxx(fi) = K—SNN(sz, k=1,2,..,N
[H ()
Let & 4 denote the frequency range for which the constant X satisfies the condition
2 St k)
|H ol

Then, as the incremental frequency interval Af is allowed to approach zero and the
number of subchannels N goes to infinity, we may use (5.115) to formally state that the
power spectral density of the input ensemble that achieves the optimum information
capacity is a nonnegative quantity defined by

~Synt)
Sxx(f) = H(P)

0, otherwise

o
eJPA

Because the average power of a random process is the total area under the curve of the
power spectral density of the process, we may express the average power of the channel

input x(7) as
P = j (K—SNNOCZ)] df
€ [H()|

For a prescribed P and specified Sy(f) and H(f), the constant K is the solution to (5.117).

The only thing that remains for us to do is to find the optimum information capacity.
Substituting the optimizing solution of (5.114) into (5.111) and then using the defining
values of (5.108) and (5.109), we obtain

1 | mfj
22Af log ( SvFD

When the incremental frequency interval Af is allowed to approach zero, this equation

takes the limiting form
H
-1 lgz( |H( ] if

where the constant K is chosen as the solution to (5.117) for a prescribed input signal
power P.
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Equations (5.116) and (5.117) suggest the picture portrayed in Figure 5.19. Specifically,
we make the following observations:

* The appropriate input power spectral density Sy(f) is described as the bottom
regions of the function Sy(f)/ |H(f)|2 that lie below the constant level K, which are
shown shaded.

e The input power P is defined by the total area of these shaded regions.

The spectral-domain picture portrayed here is called the water-filling (pouring)
interpretation, in the sense that the process by which the input power is distributed across
the function Sy(f)/ |H(f) |2 is identical to the way in which water distributes itself in a vessel.
Consider now the idealized case of a band-limited signal in AWGN channel of power spectral
density N(f) = Ny/2. The transfer function H(f) is that of an ideal band-pass filter defined by

B B
<f —-=X< < —
by < |b 0l 3 SRS

0, otherwise

where £, is the midband frequency and B is the channel bandwidth. For this special case,
(5.117) and (5.118) reduce respectively to

NO
P = ZB(K— ——)
2
and
2K
C = BlOgZ(N_O)

Hence, eliminating K between these two equations, we get the standard form of Shannon’s
capacity theorem, defined by (5.95).

Capacity of NEXT-Dominated Channel

Digital subscriber lines (DSLs) refer to a family of different technologies that operate
over a closed transmission loop; they will be discussed in Chapter 8, Section 8.11. For the

Syl
[H(f)|?

0

Water-filling interpretation of information-capacity
theorem for a colored noisy channel.
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present, it suffices to say that a DSL is designed to provide for data transmission between
a user terminal (e.g., computer) and the central office of a telephone company. A major
channel impairment that arises in the deployment of a DSL is the near-end cross-talk
(NEXT). The power spectral density of this crosstalk may be taken as

Sy(f) = |HNEXT(f)|25X(f)

where Sx(f) is the power spectral density of the transmitted signal and Hygxt(f) is the
transfer function that couples adjacent twisted pairs. The only constraint we have to satisfy
in this example is that the power spectral density function Sy(f) be nonnegative for all f.
Substituting (5.119) into (5.116), we readily find that this condition is satisfied by solving
for K as

2
Hypxt()
K = [1 o nexr O . | ]SX(f)
[H()
Finally, using this result in (5.118), we find that the capacity of the NEXT-dominated
digital subscriber channel is given by

jlog (1+ (I ]df
|HNEXT(f)|

where ¥, is the set of positive and negative frequencies for which Sy(f) > 0.

Rate Distortion Theory

In Section 5.3 we introduced the source-coding theorem for a discrete memoryless source,
according to which the average codeword length must be at least as large as the source
entropy for perfect coding (i.e., perfect representation of the source). However, in many
practical situations there are constraints that force the coding to be imperfect, thereby
resulting in unavoidable distortion. For example, constraints imposed by a communication
channel may place an upper limit on the permissible code rate and, therefore, on average
codeword length assigned to the information source. As another example, the information
source may have a continuous amplitude as in the case of speech, and the requirement is to
quantize the amplitude of each sample generated by the source to permit its representation
by a codeword of finite length as in pulse-code modulation to be discussed in Chapter 6. In
such cases, the problem is referred to as source coding with a fidelity criterion, and the
branch of information theory that deals with it is called rate distortion theory. ~ Rate
distortion theory finds applications in two types of situations:

e Source coding where the permitted coding alphabet cannot exactly represent the
information source, in which case we are forced to do lossy data compression.
* Information transmission at a rate greater than channel capacity.

Accordingly, rate distortion theory may be viewed as a natural extension of Shannon’s
coding theorem.
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Consider a discrete memoryless source defined by an M-ary alphabet X: {x;|i=1,2, ..., M},
which consists of a set of statistically independent symbols together with the associated sym-
bol probabilities {p;|i = 1, 2, ..., M}. Let R be the average code rate in bits per codeword.
The representation codewords are taken from another alphabet Y:{ yj| j=1,2, ..., N}. The
source-coding theorem states that this second alphabet provides a perfect representation of
the source provided that R > H, where H is the source entropy. But if we are forced to have
R < H, then there is unavoidable distortion and, therefore, loss of information.

Let p(x;, y;) denote the joint probability of occurrence of source symbol x; and
representation symbol y;. From probability theory, we have

p(xp yj) = p()’j|xl’)P(x,')

where p(yj|xl») is a transition probability. Let d(x;, y;) denote a measure of the cost incurred
in representing the source symbol x; by the symbol y;; the quantity d(x;, y;) is referred to as
a single-letter distortion measure. The statistical average of d(x; y;) over all possible
source symbols and representation symbols is given by

M N
d = Z Zp(x,')P(yj|x,')d(xi|y]')

i=1j=1

Note that the average distortion d is a nonnegative continuous function of the transition
probabilities p(yjlxi) that are determined by the source encoder—decoder pair.

A conditional probability assignment p(yjlxi) is said to be D-admissible if, and only if,
the average distortion d is less than or equal to some acceptable value D. The set of all
D-admissible conditional probability assignments is denoted by

P = {p(yj|xi): d<D}
For each set of transition probabilities, we have a mutual information
M N p(yj|x)
1(XY) = PO log(’—
l.;j; PO ()

A rate distortion function R(D) is defined as the smallest coding rate possible for which
the average distortion is guaranteed not to exceed D. Let &, denote the set to which the
conditional probability p(y; | x;) belongs for a prescribed D. Then, for a fixed D we write
R(D) = min 1(X;Y)
P()’j|xi) €

subject to the constraint

N
z p(yj|xi) =1 fori=12,....M
j=1
The rate distortion function R(D) is measured in units of bits if the base-2 logarithm is
used in (5.123). Intuitively, we expect the distortion D to decrease as the rate distortion
function R(D) is increased. We may say conversely that tolerating a large distortion D
permits the use of a smaller rate for coding and/or transmission of information.



Rate Distortion Theory 255

Probability of
Summary of rate ~ occurrence = p;

distortion theory. N Transition
X; O———=> probability F——=0 y;

PO [x)

Distortion
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d(x;, _v/-)

Figure 5.20 summarizes the main parameters of rate distortion theory. In particular,
given the source symbols {x;} and their probabilities {p;}, and given a definition of the
single-letter distortion measure d(x;, yj), the calculation of the rate distortion function R(D)
involves finding the conditional probability assignment p(yjIxi) subject to certain
constraints imposed on p(yj|xl-). This is a variational problem, the solution of which is
unfortunately not straightforward in general.

Gaussian Source

. . . . . . 2
Consider a discrete-time, memoryless Gaussian source with zero mean and variance o .
Let x denote the value of a sample generated by such a source. Let y denote a quantized
version of x that permits a finite representation of it. The square-error distortion

d(x,y) = (x-)°
provides a distortion measure that is widely used for continuous alphabets. The rate
distortion function for the Gaussian source with square-error distortion, as described
herein, is given by

i) veves
R(D) = 210gD’ 0<D<o

0, D> 0'2

In this case, we see that R(D) — w0 as D — 0, and R(D) =0 for D = 0'2.

Set of Parallel Gaussian Sources

. . . . N
Consider next a set of N independent Gaussian random variables {X;},_, where X; has
zero mean and variance G,-Z.Using the distortion measure

N
A2 A .
d = Z (x;—x;)", x; = estimate of x;
i=1
and building on the result of Example 12, we may express the rate distortion function for
the set of parallel Gaussian sources described here as

N 2
1 9
R(D) = E zlog(E]

i=1
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where D; is itself defined by

2

A, A< o;

i 2 2
o;, A2 o,

and the constant A is chosen so as to satisfy the condition

N
ZDi=D

i=1

Compared to Figure 5.19, (5.128) and (5.129) may be interpreted as a kind of “water-
filling in reverse,” as illustrated in Figure 5.21. First, we choose a constant A and only the
subset of random variables whose variances exceed the constant A. No bits are used to
describe the remaining subset of random variables whose variances are less than the
constant A.

2
64

2
0y

~

Variance o

1 2 3 4 5 6
Source index i

Reverse water-filling picture for a set of
parallel Gaussian processes.

Summary and Discussion

In this chapter we established two fundamental limits on different aspects of a communi-
cation system, which are embodied in the source-coding theorem and the channel-coding
theorem.

The source-coding theorem, Shannon’s first theorem, provides the mathematical tool
for assessing data compaction; that is, lossless compression of data generated by a
discrete memoryless source. The theorem teaches us that we can make the average number
of binary code elements (bits) per source symbol as small as, but no smaller than, the
entropy of the source measured in bits. The entropy of a source is a function of the
probabilities of the source symbols that constitute the alphabet of the source. Since
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entropy is a measure of uncertainty, the entropy is maximum when the associated
probability distribution generates maximum uncertainty.

The channel-coding theorem, Shannon’s second theorem, is both the most surprising
and the single most important result of information theory. For a binary symmetric
channel, the channel-coding theorem teaches us that, for any code rate r less than or equal
to the channel capacity C, codes do exist such that the average probability of error is as
small as we want it. A binary symmetric channel is the simplest form of a discrete
memoryless channel. It is symmetric, because the probability of receiving symbol 1 if
symbol 0 is sent is the same as the probability of receiving symbol O if symbol 1 is sent.
This probability, the probability that an error will occur, is termed a transition probability.
The transition probability p is determined not only by the additive noise at the channel
output, but also by the kind of receiver used. The value of p uniquely defines the channel
capacity C.

The information capacity law, an application of the channel-coding theorem, teaches us
that there is an upper limit to the rate at which any communication system can operate
reliably (i.e., free of errors) when the system is constrained in power. This maximum rate,
called the information capacity, is measured in bits per second. When the system operates
at a rate greater than the information capacity, it is condemned to a high probability of
error, regardless of the choice of signal set used for transmission or the receiver used for
processing the channel output.

When the output of a source of information is compressed in a lossless manner, the
resulting data stream usually contains redundant bits. These redundant bits can be
removed by using a lossless algorithm such as Huffman coding or the Lempel-Ziv
algorithm for data compaction. We may thus speak of data compression followed by data
compaction as two constituents of the dissection of source coding, which is so called
because it refers exclusively to the sources of information.

We conclude this chapter on Shannon’s information theory by pointing out that, in
many practical situations, there are constraints that force source coding to be imperfect,
thereby resulting in unavoidable distortion. For example, constraints imposed by a
communication channel may place an upper limit on the permissible code rate and,
therefore, average codeword length assigned to the information source. As another
example, the information source may have a continuous amplitude, as in the case of
speech, and the requirement is to quantize the amplitude of each sample generated by the
source to permit its representation by a codeword of finite length, as in pulse-code
modulation discussed in Chapter 6. In such cases, the information-theoretic problem is
referred to as source coding with a fidelity criterion, and the branch of information theory
that deals with it is called rate distortion theory, which may be viewed as a natural
extension of Shannon’s coding theorem.

Let p denote the probability of some event. Plot the amount of information gained by the occurrence
of this event for 0 <p < 1.



258

Information Theory

A source emits one of four possible symbols during each signaling interval. The symbols occur with
the probabilities

po=0.4
p1=03
pry=02
p3=0.1

which sum to unity as they should. Find the amount of information gained by observing the source
emitting each of these symbols.

A source emits one of four symbols s, sq, 5p, and s3 with probabilities 1/3, 1/6, 1/4 and 1/4,
respectively. The successive symbols emitted by the source are statistically independent. Calculate
the entropy of the source.

Let X represent the outcome of a single roll of a fair die. What is the entropy of X?

The sample function of a Gaussian process of zero mean and unit variance is uniformly sampled and
then applied to a uniform quantizer having the input—output amplitude characteristic shown in
Figure P5.5. Calculate the entropy of the quantizer output.

Output
1.5F———1
0.5
-1 ' Input
npu
[ 0 1 p
-0.5
————— -1.5

Consider a discrete memoryless source with source alphabet S = {sg, s, ..., sg_ 1} and source statistics
{po> P15 ---» Pk — 1}- The nth extension of this source is another discrete memoryless source with source
alphabet 8™ = {0y, 01, ..., o3y 1}, where M = K. Let P(o;) denote the probability of o;.

Show that, as expected,
M-1
S P(o) =1
i=0
Show that

M-1 1
3 P(a) 1og2(—) = H(S), k=1,2,...n
i=0 pik

where i, is the probability of symbol S, and H(S) is the entropy of the original source.
Hence, show that

M-1
HS™) = 'S P(o) 10gz(1%]
i=0 !

nH(S)
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Consider a discrete memoryless source with source alphabet S = {s, 51, 55} and source statistics
{0.7,0.15, 0.15}.

Calculate the entropy of the source.
Calculate the entropy of the second-order extension of the source.

It may come as a surprise, but the number of bits needed to store text is much less than that required
to store its spoken equivalent. Can you explain the reason for this statement?

Let a discrete random variable X assume values in the set {x{, xp, ..., x,}. Show that the entropy of X
satisfies the inequality

H(X)<logn
and with equality if, and only if, the probability p; = 1/n for all i.

Lossless Data Compression

Consider a discrete memoryless source whose alphabet consists of K equiprobable symbols.

Explain why the use of a fixed-length code for the representation of such a source is about as
efficient as any code can be.

What conditions have to be satisfied by K and the codeword length for the coding efficiency to
be 100%?

Consider the four codes listed below:

50 0 0 0 00
5 10 01 01 01
5y 110 001 011 10
53 1110 0010 110 110
54 1111 0011 111 111

Two of these four codes are prefix codes. Identify them and construct their individual decision
trees.

Apply the Kraft inequality to codes I, II, III, and IV. Discuss your results in light of those
obtained in part a.

Consider a sequence of letters of the English alphabet with their probabilities of occurrence

Letter a i 1 m n o p y
Probability 01 01 02 01 01 02 01 0.1

Compute two different Huffman codes for this alphabet. In one case, move a combined symbol in
the coding procedure as high as possible; in the second case, move it as low as possible. Hence, for
each of the two codes, find the average codeword length and the variance of the average codeword
length over the ensemble of letters. Comment on your results.

A discrete memoryless source has an alphabet of seven symbols whose probabilities of occurrence
are as described here:

Symbol ) S1 Sy 53 Sy S5 Se
Probability 0.25 0.25 0.125  0.125  0.125  0.0625 0.0625
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Compute the Huffman code for this source, moving a “combined” symbol as high as possible.
Explain why the computed source code has an efficiency of 100%.

Consider a discrete memoryless source with alphabet {s, 51, 55} and statistics {0.7, 0.15, 0.15} for
its output.

Apply the Huffman algorithm to this source. Hence, show that the average codeword length of
the Huffman code equals 1.3 bits/symbol.

Let the source be extended to order two. Apply the Huffman algorithm to the resulting extended
source and show that the average codeword length of the new code equals 1.1975 bits/symbol.
Extend the order of the extended source to three and reapply the Huffman algorithm; hence,
calculate the average codeword length.

Compare the average codeword length calculated in parts b and ¢ with the entropy of the original
source.

Figure P5.15 shows a Huffman tree. What is the codeword for each of the symbols A, B, C, D, E, F,
and G represented by this Huffman tree? What are their individual codeword lengths?

3/8 1
A
3/16
p 2 1
1 .
c 316 0
o U8 1 0
0
1/16 1
E _—
1/32 1
. 0
0
1/32 0
G e

A computer executes four instructions that are designated by the codewords (00, 01, 10, 11).
Assuming that the instructions are used independently with probabilities (1/2, 1/8, 1/8, 1/4),
calculate the percentage by which the number of bits used for the instructions may be reduced by the
use of an optimum source code. Construct a Huffman code to realize the reduction.

Consider the following binary sequence

11101001100010110100 ...

Use the Lempel—Ziv algorithm to encode this sequence, assuming that the binary symbols 0 and 1
are already in the cookbook.

Binary Symmetric Channel

Consider the transition probability diagram of a binary symmetric channel shown in Figure 5.8. The
input binary symbols 0 and 1 occur with equal probability. Find the probabilities of the binary
symbols 0 and 1 appearing at the channel output.

Repeat the calculation in Problem 5.18, assuming that the input binary symbols 0 and 1 occur with
probabilities 1/4 and 3/4, respectively.
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Mutual Information and Channel Capacity

Consider a binary symmetric channel characterized by the transition probability p. Plot the mutual
information of the channel as a function of p;, the a priori probability of symbol 1 at the channel
input. Do your calculations for the transition probability p =0, 0.1, 0.2, 0.3, 0.5.

Revisiting (5.12), express the mutual information /(X;Y) in terms of the relative entropy
D(p(x,)llp(x)p(»))

Figure 5.10 depicts the variation of the channel capacity of a binary symmetric channel with the

transition probability p. Use the results of Problem 5.19 to explain this variation.

Consider the binary symmetric channel described in Figure 5.8. Let p, denote the probability of
sending binary symbol x; = 0 and let p; = 1 — p, denote the probability of sending binary symbol
x1 = 1. Let p denote the transition probability of the channel.

Show that the mutual information between the channel input and channel output is given by

I(X;Y) = H(z)-H(p)
where the two entropy functions

H(z) = z Inge) +(1-2) 1032(1%1)

pop + (1 =py)(1-p)

N
1l

and

H(p) = plog (1) +(1-p) log =)

Show that the value of p that maximizes /(X;Y) is equal to 1/2.
Hence, show that the channel capacity equals
C=1-H(p)

Two binary symmetric channels are connected in cascade as shown in Figure P5.24. Find the overall
channel capacity of the cascaded connection, assuming that both channels have the same transition
probability diagram of Figure 5.8.

Binary Binary
Input —>= symmetric symmetric = Output
channel 1 channel 2

The binary erasure channel has two inputs and three outputs as described in Figure P5.25. The
inputs are labeled 0 and 1 and the outputs are labeled O, 1, and e. A fraction ¢ of the incoming bits is
erased by the channel. Find the capacity of the channel.

l-o

0 o 0
o
Input e Output
o
1 o 1
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Consider a digital communication system that uses a repetition code for the channel encoding/decoding.
In particular, each transmission is repeated n times, where n = 2m + 1 is an odd integer. The decoder
operates as follows. If in a block of n received bits the number of Os exceeds the number of 1s, then
the decoder decides in favor of a 0; otherwise, it decides in favor of a 1. An error occurs when m + 1
or more transmissions out of n = 2m + 1 are incorrect. Assume a binary symmetric channel.

For n = 3, show that the average probability of error is given by

2 3
=3p (1-p)+p
where p is the transition probability of the channel.
For n =5, show that the average probability of error is given by

3 2 4 5
= 10p"(1-p)"+5p (1-p)+p

Hence, for the general case, deduce that the average probability of error is given by

Po= 3y (a-p

i=m+l

Let X, Y, and Z be three discrete random variables. For each value of the random variable Z,
represented by sample z, define

A(2) = 3 p(nIp(zlx. y)

Xy
Show that the conditional entropy H(X | Y) satisfies the inequality
H(X|Y)<H(z)+ E[log A]
where [ is the expectation operator.
Consider two correlated discrete random variables X and ¥, each of which takes a value in the set

«{xi}i:1 . Suppose that the value taken by Y is known. The requ1rement is to guess the value of X. Let
P, denote the probability of error, defined by

P, = P[X=Y]
Show that P, is related to the conditional entropy of X given Y by the inequality

H(X|Y)<H(P,)+P_log(n—-1)
This inequality is known as Fano’s inequality. Hint: Use the result derived in Problem 5.27.
In this problem we explore the convexity of the mutual information /(X;Y), involving the pair of
discrete random variables X and Y.

Consider a discrete memoryless channel, for which the transition probability p(y|x) is fixed for all x
and y. Let X; and X, be two input random variables, whose input probability distributions are
respectively denoted by p(x;) and p(x,). The corresponding probability distribution of X is defined
by the convex combination

p(x) = ayp(xy) + az p(x2)
where a; and a, are arbitrary constants. Prove the inequality
I(X;Y) 2 a1(X;Y]) + axl(X5:Y5)
where X, X,, and X are the channel inputs, and Y, Y,, and Y are the corresponding channel outputs.
For the proof, you may use the following form of Jensen’s inequality:

S5 b 22 e 22
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Differential Entropy

The differential entropy of a continuous random variable X is defined by the integral of (5.66).
Similarly, the differential entropy of a continuous random vector X is defined by the integral of
(5.68). These two integrals may not exist. Justify this statement.

Show that the differential entropy of a continuous random variable X is invariant to translation; that is,

X +¢) =h(X)
for some constant c.
Let X}, X5, ..., X,, denote the elements of a Gaussian vector X. The X; are independent with mean m;
and variance o;,i=1,2, ..., n. Show that the differential entropy of the vector X is given by

n 22 2 1/n
h(X) = Elogz[ZTte(O'1 05...0,) 1]

where e is the base of the natural logarithm.What does 4(X) reduce to if the variances are all equal?
A continuous random variable X is constrained to a peak magnitude M; that is,

-M<X<M

Show that the differential entropy of X is maximum when it is uniformly distributed, as shown by

1/(2M), -M<x<M
f; X(x) = .
0, otherwise
Determine the maximum differential entropy of X.
Referring to (5.75), do the following:

Verify that the differential entropy of a Gaussian random variable of mean x and variance o is
given by 1/2 loga(2m eo”), where e is the base of the natural algorithm.

Hence, confirm the inequality of (5.75).
Demonstrate the properties of symmetry, nonnegativity, and expansion of the mutual information
1(X;Y) described in Section 5.6.
Consider the continuous random variable Y, defined by

Y=X+N
where the random variables X and N are statistically independent. Show that the conditional
differential entropy of ¥, given X, equals
h(Y | X) = h(N)

where h(N) is the differential entropy of N.

Information Capacity Law

A voice-grade channel of the telephone network has a bandwidth of 3.4 kHz.
Calculate the information capacity of the telephone channel for a signal-to-noise ratio of 30 dB.
Calculate the minimum signal-to-noise ratio required to support information transmission
through the telephone channel at the rate of 9600 bits/s.

Alphanumeric data are entered into a computer from a remote terminal through a voice-grade
telephone channel. The channel has a bandwidth of 3.4 kHz and output signal-to-noise ratio of
20 dB. The terminal has a total of 128 symbols. Assume that the symbols are equiprobable and the
successive transmissions are statistically independent.

Calculate the information capacity of the channel.

Calculate the maximum symbol rate for which error-free transmission over the channel is
possible.
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A black-and-white television picture may be viewed as consisting of approximately 3 x 10°
elements, each of which may occupy one of 10 distinct brightness levels with equal probability.
Assume that (1) the rate of transmission is 30 picture frames per second and (2) the signal-to-noise
ratio is 30 dB.

Using the information capacity law, calculate the minimum bandwidth required to support the
transmission of the resulting video signal.

In Section 5.10 we made the statement that it is easier to increase the information capacity of a
communication channel by expanding its bandwidth B than increasing the transmitted power for a
prescribed noise variance NyB. This statement assumes that the noise spectral density N, varies
inversely with B. Why is this inverse relationship the case?

In this problem, we revisit Example 5.10, which deals with coded binary antipodal signaling over an
additive white Gaussian noise (AWGN) channel. Starting with (5.105) and the underlying theory,
develop a software package for computing the minimum E/N, required for a given bit error rate,
where Ej, is the signal energy per bit, and N/2 is the noise spectral density. Hence, compute the
results plotted in parts a and b of Figure 5.16.

As mentioned in Example 5.10, the computation of the mutual information between the channel input
and channel output is well approximated using Monte Carlo integration. To explain how this method
works, consider a function g(y) that is difficult to sample randomly, which is indeed the case for the
problem at hand. (For this problem, the function g(y) represents the complicated integrand in the for-
mula for the differential entropy of the channel output.) For the computation, proceed as follows:

Find an area A that includes the region of interest and that is easily sampled.
Choose N points, uniformly randomly inside the area A.

Then the Monte Carlo integration theorem states that the integral of the function g(y) with respect to
y is approximately equal to the area A multiplied by the fraction of points that reside below the curve
of g, as illustrated in Figure P5.41. The accuracy of the approximation improves with increasing N.

L[] . L] [ L[] . °
[ e o ° [ °
. e ., ° . <—— Area A
8ly) — A D « o
° ° ° L] L]
. M ° ° ° ° ° * .
L]
. ° ® .
o ® . ° °
L]
. . °f° ¢ ° . ° e o
. e Shaded area
. ° o . ° ° =] g dy
LI o ° o® - = pA
. . . . where p is the fraction of
. o ° . N\ . randomly chosen points that

lie under the curve of g(y).

Notes

1. According to Lucky (1989), the first mention of the term information theory by Shannon
occurred in a 1945 memorandum entitled “A mathematical theory of cryptography.” It is rather
curious that the term was never used in Shannon’s (1948) classic paper, which laid down the
foundations of information theory. For an introductory treatment of information theory, see Part 1 of
the book by McEliece (2004), Chapters 1-6. For an advanced treatment of this subject, viewed in a
rather broad context and treated with rigor, and clarity of presentation, see Cover and Thomas
(2006).
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For a collection of papers on the development of information theory (including the 1948 classic
paper by Shannon), see Slepian (1974). For a collection of the original papers published by Shannon,
see Sloane and Wyner (1993).

2. The use of a logarithmic measure of information was first suggested by Hartley (1928); however,
Hartley used logarithms to base 10.

3. In statistical physics, the entropy of a physical system is defined by (Rief, 1965: 147)
L = kgln Q

where kg is Boltzmann’s constant, Q is the number of states accessible to the system, and In denotes
the natural logarithm. This entropy has the dimensions of energy, because its definition involves the
constant kg. In particular, it provides a quantitative measure of the degree of randomness of the
system. Comparing the entropy of statistical physics with that of information theory, we see that they
have a similar form.

4. For the original proof of the source coding theorem, see Shannon (1948). A general proof of the
source coding theorem is also given in Cover and Thomas (2006). The source coding theorem is also
referred to in the literature as the noiseless coding theorem, noiseless in the sense that it establishes
the condition for error-free encoding to be possible.

5. For proof of the Kraft inequality, see Cover and Thomas (2006). The Kraft inequality is also
referred to as the Kraft-McMillan inequality in the literature.

6. The Huffman code is named after its inventor D.A. Huffman (1952). For a detailed account of
Huffman coding and its use in data compaction, see Cover and Thomas (2006).

7. The original papers on the Lempel-Ziv algorithm are Ziv and Lempel (1977, 1978). For detailed
treatment of the algorithm, see Cover and Thomas (2006).

8. It is also of interest to note that once a “parent” subsequence is joined by its two children, that
parent subsequence can be replaced in constructing the Lempel-Ziv algorithm. To illustrate this nice
feature of the algorithm, suppose we have the following example sequence:
01,010,011, ...

where 01 plays the role of a parent and 010 and 011 play the roles of the parent’s children. In this
example, the algorithm removes the 01, thereby reducing the length of the table through the use of a
pointer.
9. In Cover and Thomas (20006), it is proved that the two-stage method, where the source coding and
channel coding are considered separately as depicted in Figure 5.11, is as good as any other method
of transmitting information across a noisy channel. This result has practical implications, in that the
design of a communication system may be approached in two separate parts: source coding followed
by channel coding. Specifically, we may proceed as follows:

Design a source code for the most efficient representation of data generated by a discrete

memoryless source of information.

Separately and independently, design a channel code that is appropriate for a discrete

memoryless channel.
The combination of source coding and channel coding designed in this manner will be as efficient as
anything that could be designed by considering the two coding problems jointly.
10. To prove the channel-coding theorem, Shannon used several ideas that were new at the time;
however, it was some time later when the proof was made rigorous (Cover and Thomas, 2006: 199).
Perhaps the most thoroughly rigorous proof of this basic theorem of information theory is presented
in Chapter 7 of the book by Cover and Thomas (2006). Our statement of the theorem, though
slightly different from that presented by Cover and Thomas, in essence is the same.

11. In the literature, the relative entropy is also referred to as the Kullback—Leibler divergence (KLD).
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12. Equation (5.95) is also referred to in the literature as the Shannon—Hartley law in recognition of
the early work by Hartley on information transmission (Hartley, 1928). In particular, Hartley showed
that the amount of information that can be transmitted over a given channel is proportional to the
product of the channel bandwidth and the time of operation.

13. A lucid exposition of sphere packing is presented in Cover and Thomas (2006); see also
Wozencraft and Jacobs (1965).

14. Parts a and b of Figure 5.16 follow the corresponding parts of Figure 6.2 in the book by Frey
(1998).

15. For a rigorous treatment of information capacity of a colored noisy channel, see Gallager
(1968). The idea of replacing the channel model of Figure 5.17a with that of Figure 5.17b is
discussed in Gitlin, Hayes, and Weinstein (1992)

16. For a complete treatment of rate distortion theory, see the classic book by Berger (1971); this
subject is also treated in somewhat less detail in Cover and Thomas (1991), McEliece (1977), and
Gallager (1968).

17. For the derivation of (5.124), see Cover and Thomas (2006). An algorithm for computation of
the rate distortion function R(D) defined in (5.124) is described in Blahut (1987) and Cover and
Thomas (2006).



Conversion of Analog
Waveforms into Coded Pulses

Introduction

In continuous-wave (CW) modulation, which was studied briefly in Chapter 2, some
parameter of a sinusoidal carrier wave is varied continuously in accordance with the
message signal. This is in direct contrast to pulse modulation, which we study in this
chapter. In pulse modulation, some parameter of a pulse train is varied in accordance with
the message signal. On this basis, we may distinguish two families of pulse modulation:

Analog pulse modulation, in which a periodic pulse train is used as the carrier wave
and some characteristic feature of each pulse (e.g., amplitude, duration, or position)
is varied in a continuous manner in accordance with the corresponding sample value
of the message signal. Thus, in analog pulse modulation, information is transmitted
basically in analog form but the transmission takes place at discrete times.

Digital pulse modulation, in which the message signal is represented in a form that
is discrete in both time and amplitude, thereby permitting transmission of the
message in digital form as a sequence of coded pulses; this form of signal
transmission has no CW counterpart.

The use of coded pulses for the transmission of analog information-bearing signals
represents a basic ingredient in digital communications. In this chapter, we focus attention
on digital pulse modulation, which, in basic terms, is described as the conversion of
analog waveforms into coded pulses. As such, the conversion may be viewed as the
transition from analog to digital communications.

Three different kinds of digital pulse modulation are studied in the chapter:

Pulse-code modulation (PCM), which has emerged as the most favored scheme for
the digital transmission of analog information-bearing signals (e.g., voice and video
signals). The important advantages of PCM are summarized thus:

e robustness to channel noise and interference;

« efficient regeneration of the coded signal along the transmission path;

» efficient exchange of increased channel bandwidth for improved signal-to-
quantization noise ratio, obeying an exponential law;

* a uniform format for the transmission of different kinds of baseband signals,
hence their integration with other forms of digital data in a common network;

267
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e comparative ease with which message sources may be dropped or reinserted in a
multiplex system;

e secure communication through the use of special modulation schemes or
encryption.

These advantages, however, are attained at the cost of increased system complexity
and increased transmission bandwidth. Simply stated:

For every gain we make, there is a price to pay.

Differential pulse-code modulation (DPCM), which exploits the use of lossy data
compression to remove the redundancy inherent in a message signal, such as voice or
video, so as to reduce the bit rate of the transmitted data without serious degradation
in overall system response. In effect, increased system complexity is traded off for
reduced bit rate, therefore reducing the bandwidth requirement of PCM.

Delta modulation (DM), which addresses another practical limitation of PCM: the
need for simplicity of implementation when it is a necessary requirement. DM
satisfies this requirement by intentionally “oversampling” the message signal. In
effect, increased transmission bandwidth is traded off for reduced system
complexity. DM may therefore be viewed as the dual of DPCM.

Although, indeed, these three methods of analog-to-digital conversion are quite different,
they do share two basic signal-processing operations, namely sampling and quantization:

 the process of sampling, followed by
* pulse-amplitude modulation (PAM) and finally
e amplitude quantization

are studied in what follows in this order.

Sampling Theory

The sampling process is usually described in the time domain. As such, it is an operation
that is basic to digital signal processing and digital communications. Through use of the
sampling process, an analog signal is converted into a corresponding sequence of samples
that are usually spaced uniformly in time. Clearly, for such a procedure to have practical
utility, it is necessary that we choose the sampling rate properly in relation to the bandwidth
of the message signal, so that the sequence of samples uniquely defines the original analog
signal. This is the essence of the sampling theorem, which is derived in what follows.

Consider an arbitrary signal g(f) of finite energy, which is specified for all time ¢. A
segment of the signal g(¢) is shown in Figure 6.1a. Suppose that we sample the signal g(¢)
instantaneously and at a uniform rate, once every T seconds. Consequently, we obtain an
infinite sequence of samples spaced T seconds apart and denoted by {g(nT,)}, where n
takes on all possible integer values, positive as well as negative. We refer to 7 as the
sampling period, and to its reciprocal f, = 1/T as the sampling rate. For obvious reasons,
this ideal form of sampling is called instantaneous sampling.
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(a) (b)

The sampling process. (a) Analog signal. (b) Instantaneously sampled version of the
analog signal.

Let gs5(f) denote the signal obtained by individually weighting the elements of a
periodic sequence of delta functions spaced T seconds apart by the sequence of numbers
{g(nT)}, as shown by (see Figure 6.1b):

g5 = 3 g(nT)S(t-nT,)

n = —oo

We refer to g s5(¢) as the ideal sampled signal. The term &(t — nT) represents a delta func-
tion positioned at time ¢ = nT,. From the definition of the delta function, we recall from
Chapter 2 that such an idealized function has unit area. We may therefore view the multi-
plying factor g(nT;) in (6.1) as a “mass” assigned to the delta function &(t — nT;). A delta
function weighted in this manner is closely approximated by a rectangular pulse of dura-
tion At and amplitude g(nT,)/At; the smaller we make At the better the approximation will
be.
Referring to the table of Fourier-transform pairs in Table 2.2, we have

() £, S G(-mf,)

= —00

where G(f) is the Fourier transform of the original signal g(f) and f; is the sampling rate.
Equation (6.2) states:

Another useful expression for the Fourier transform of the ideal sampled signal g () may
be obtained by taking the Fourier transform of both sides of (6.1) and noting that the
Fourier transform of the delta function &(¢ — nTy) is equal to exp(—j2nnfTy). Letting G 5(f)
denote the Fourier transform of g (), we may write

Go(N = 3 g(nT)exp(-j2nnfT,)

Equation (6.3) describes the discrete-time Fourier transform. It may be viewed as a
complex Fourier series representation of the periodic frequency function G 5(f), with the
sequence of samples {g(nT)} defining the coefficients of the expansion.
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The discussion presented thus far applies to any continuous-time signal g(¢) of finite
energy and infinite duration. Suppose, however, that the signal g(¢) is strictly band limited,
with no frequency components higher than W hertz. That is, the Fourier transform G(f) of
the signal g(¢) has the property that G(f) is zero for | f| > W, as illustrated in Figure 6.2a;
the shape of the spectrum shown in this figure is merely intended for the purpose of
illustration. Suppose also that we choose the sampling period T, = 1/2W. Then the
corresponding spectrum Gs(f) of the sampled signal g () is as shown in Figure 6.2b.
Putting T = 1/2W in (6.3) yields

6 = 3 ool -

Isolating the term on the right-hand side of (6.2), corresponding to m = 0, we readily see
that the Fourier transform of g 5(#) may also be expressed as

Gs() = LGN +f, S GUf~mf)
mm=¢500

Suppose, now, we impose the following two conditions:
G(f)=0for|f|>W.

fi=2W.
We may then reduce (6.5) to
G(f) = ﬁvcg(f), _W<f<W
Substituting (6.4) into (6.6), we may also write
G(f) = L5 g(i)exp(—M), -W<f<W
2Wn “~ 2W w

Equation (6.7) is the desired formula for the frequency-domain description of sampling.
This formula reveals that if the sample values g(n/2W) of the signal g(f) are specified for
all n, then the Fourier transform G(f) of that signal is uniquely determined. Because g(?) is
related to G(f) by the inverse Fourier transform, it follows, therefore, that g(¢) is itself
uniquely determined by the sample values g(n/2W) for —o <n < oo. In other words, the
sequence {g(n/2W)} has all the information contained in the original signal g(7).

G(f) Gs(/)
G(0)
2WG(0)
!
!
|
1
w oo w_ -2f, “ -w 0 W [ 21, /

(@) (b)

(a) Spectrum of a strictly band-limited signal g(¢). (b) Spectrum of the sampled version
of g(¢) for a sampling period T = 1/2W.
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Consider next the problem of reconstructing the signal g(f) from the sequence of
sample values {g(n/2W)}. Substituting (6.7) in the formula for the inverse Fourier
transform

00
g = [ G(pexp(2nfr) df
—o0
and interchanging the order of summation and integration, which is permissible because
both operations are linear, we may go on to write

0

s =Y g(ﬁv)ﬁvjfvwexp[jznf(r—%v)} af

n = —oo

The definite integral in (6.8), including the multiplying factor 1/2W, is readily evaluated in
terms of the sinc function, as shown by

1 W . ( n) sin(2nWt — nm)
— 2nflt— —| | df = —F——-
ZWJ._WCXP[J o 2W} f 2nWt—nn

= sinc(2Wt—n)

Accordingly, (6.8) reduces to the infinite-series expansion

o8]
g(r) = Z g(ﬁv)sinc(ZWt—n), —00 <t <o
n = -0

Equation (6.9) is the desired reconstruction formula. This formula provides the basis for
reconstructing the original signal g(f) from the sequence of sample values {g(n/2W)}, with
the sinc function sinc(2Wr¢) playing the role of a basis function of the expansion. Each
sample, g(n/2W), is multiplied by a delayed version of the basis function, sinc2QWt — n),
and all the resulting individual waveforms in the expansion are added to reconstruct the
original signal g(z).

Equipped with the frequency-domain description of sampling given in (6.7) and the
reconstruction formula of (6.9), we may now state the sampling theorem for strictly band-
limited signals of finite energy in two equivalent parts:

A band-limited signal of finite energy that has no frequency components higher than
W hertz is completely described by specifying the values of the signal instants of
time separated by 1/2W seconds.

A band-limited signal of finite energy that has no frequency components higher than
W hertz is completely recovered from a knowledge of its samples taken at the rate of
2W samples per second.

Part 1 of the theorem, following from (6.7), is performed in the transmitter. Part 2 of the
theorem, following from (6.9), is performed in the receiver. For a signal bandwidth of
W hertz, the sampling rate of 2W samples per second, for a signal bandwidth of W hertz, is
called the Nyquist rate; its reciprocal 1/2W (measured in seconds) is called the Nyquist
interval; see the classic paper (Nyquist, 1928b).



272

Conversion of Analog Waveforms into Coded Pulses

Derivation of the sampling theorem just described is based on the assumption that the
signal g(7) is strictly band limited. In practice, however, a message signal is not strictly band
limited, with the result that some degree of undersampling is encountered, as a consequence
of which aliasing is produced by the sampling process. Aliasing refers to the phenomenon
of a high-frequency component in the spectrum of the signal seemingly taking on the
identity of a lower frequency in the spectrum of its sampled version, as illustrated in Figure
6.3. The aliased spectrum, shown by the solid curve in Figure 6.3b, pertains to the
undersampled version of the message signal represented by the spectrum of Figure 6.3a.
To combat the effects of aliasing in practice, we may use two corrective measures:

Prior to sampling, a low-pass anti-aliasing filter is used to attenuate those high-
frequency components of the signal that are not essential to the information being
conveyed by the message signal g(7).

The filtered signal is sampled at a rate slightly higher than the Nyquist rate.

The use of a sampling rate higher than the Nyquist rate also has the beneficial effect of
easing the design of the reconstruction filter used to recover the original signal from its
sampled version. Consider the example of a message signal that has been anti-alias (low-
pass) filtered, resulting in the spectrum shown in Figure 6.4a. The corresponding spectrum
of the instantaneously sampled version of the signal is shown in Figure 6.4b, assuming a
sampling rate higher than the Nyquist rate. According to Figure 6.4b, we readily see that
design of the reconstruction filter may be specified as follows:

* The reconstruction filter is low-pass with a passband extending from —W to W,
which is itself determined by the anti-aliasing filter.

* The reconstruction filter has a transition band extending (for positive frequencies)
from W to (f, — W), where f; is the sampling rate.
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(a) Spectrum of a signal. (b) Spectrum of an under-sampled version
of the signal exhibiting the aliasing phenomenon.
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(a) Anti-alias filtered spectrum of an information-bearing signal. (b) Spectrum of

instantaneously sampled version of the signal, assuming the use of a sampling rate greater than the

Nyquist rate. (c) Magnitude response of reconstruction filter.

Sampling of Voice Signals

As an illustrative example, consider the sampling of voice signals for waveform coding.
Typically, the frequency band, extending from 100 Hz to 3.1 kHz, is considered to be
adequate for telephonic communication. This limited frequency band is accomplished by
passing the voice signal through a low-pass filter with its cutoff frequency set at 3.1 kHz;
such a filter may be viewed as an anti-aliasing filter. With such a cutoff frequency, the
Nyquist rate is f; = 2 x 3.1 = 6.2 kHz. The standard sampling rate for the waveform coding
of voice signals is 8 kHz. Putting these numbers together, design specifications for the

reconstruction (low-pass) filter in the receiver are as follows:
Cutoff frequency 3.1 kHz
Transition band 6.2 to 8 kHz
Transition-band width 1.8 kHz.
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Pulse-Amplitude Modulation

Now that we understand the essence of the sampling process, we are ready to formally
define PAM, which is the simplest and most basic form of analog pulse modulation. It is
formally defined as follows:

The pulses themselves can be of a rectangular form or some other appropriate shape.

The waveform of a PAM signal is illustrated in Figure 6.5. The dashed curve in this
figure depicts the waveform of a message signal m(f), and the sequence of amplitude-
modulated rectangular pulses shown as solid lines represents the corresponding PAM
signal s(#). There are two operations involved in the generation of the PAM signal:

Instantaneous sampling of the message signal m(t) every T seconds, where the
sampling rate fy = 1/7 is chosen in accordance with the sampling theorem.

Lengthening the duration of each sample so obtained to some constant value T.

In digital circuit technology, these two operations are jointly referred to as “sample and
hold.” One important reason for intentionally lengthening the duration of each sample is to
avoid the use of an excessive channel bandwidth, because bandwidth is inversely
proportional to pulse duration. However, care has to be exercised in how long we make the
sample duration 7, as the following analysis reveals.

Let s(f) denote the sequence of flat-top pulses generated in the manner described in
Figure 6.5. We may express the PAM signal as a discrete convolution sum:

o0
s(t) = Z m(nT )h(t—nT)
n = —0
where T is the sampling period and m(nTy) is the sample value of m(f) obtained at time
t =nT,. The h(?) is a Fourier-transformal pulse. With spectral analysis of s(f) in mind, we
would like to recast (6.10) in the form of a convolution integral. To this end, we begin by
invoking the sifting property of a delta function (discussed in Chapter 2) to express the
delayed version of the pulse shape A(f) in (6.10) as

h(t-nT,) = fo h(t-7)8(1-nT,) dz

—00

s(1)

Flat-top samples, representing an analog signal.
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Hence, substituting (6.11) into (6.10), and interchanging the order of summation and
integration, we get

00 0

s(1) = j S m(nT)S(t-nTy) |h(t-7) de

Ol p=—w

Referring to (6.1), we recognize that the expression inside the brackets in (6.12) is simply
the instantaneously sampled version of the message signal m(t), as shown by
o8]
mg(t) = Z m(nT,)o(t—nTy)
n=-—0
Accordingly, substituting (6.13) into (6.12), we may reformulate the PAM signal s(¢) in the
desired form

s(1)

fo mg(t)h(t-7) dz

m (1) kh(7)

which is the convolution of the two time functions; m 4(¢) and h(z).

The stage is now set for taking the Fourier transform of both sides of (6.14) and
recognizing that the convolution of two time functions is transformed into the
multiplication of their respective Fourier transforms; we get the simple result

S = Ms(HH()

where S(f) = F[s(t)], M 5(f) = Flms(1)], and H(f) = F[h(?)]. Adapting (6.2) to the problem
at hand, we note that the Fourier transform M s(f) is related to the Fourier transform M(f)
of the original message signal m(z) as follows:

MAD = f, S M-k,
k =-0

where f; is the sampling rate. Therefore, the substitution of (6.16) into (6.15) yields the
desired formula for the Fourier transform of the PAM signal s(¢), as shown by

SO =F, S ME-Kf)H()
k=-0

Given this formula, how do we recover the original message signal m(#)? As a first step in
this reconstruction, we may pass s(¢) through a low-pass filter whose frequency response is
defined in Figure 6.4c; here, it is assumed that the message signal is limited to bandwidth
W and the sampling rate f; is larger than the Nyquist rate 2W. Then, from (6.17) we find
that the spectrum of the resulting filter output is equal to M(f)H(f). This output is
equivalent to passing the original message signal m(¢) through another low-pass filter of
frequency response H(f).
Equation (6.17) applies to any Fourier-transformable pulse shape h(?).
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Consider now the special case of a rectangular pulse of unit amplitude and duration 7,
as shown in Figure 6.6a; specifically:

h(t) =

Correspondingly, the Fourier transform of A(#) is given by

H(f) = Tsinc(fT)exp(—jnfT)

which is plotted in Figure 6.6b. We therefore find from (6.17) that by using flat-top
samples to generate a PAM signal we have introduced amplitude distortion as well as a
delay of T/2. This effect is rather similar to the variation in transmission with frequency
that is caused by the finite size of the scanning aperture in television. Accordingly, the
distortion caused by the use of PAM to transmit an analog information-bearing signal is
referred to as the aperture effect.

To correct for this distortion, we connect an equalizer in cascade with the low-pass
reconstruction filter, as shown in Figure 6.7. The equalizer has the effect of decreasing the
in-band loss of the reconstruction filter as the frequency increases in such a manner as to
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(a) Rectangular pulse /(7). (b) Transfer function H(f), made up of the magnitude |[H(f)|
and phase arg[H(f)].
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Message signal
m(t)

PAM signal Reconstruction

st —> filter Equalizer

System for recovering message signal m(z) from PAM signal s(7).

compensate for the aperture effect. In light of (6.19), the magnitude response of the
equalizer should ideally be

1 _ 1 _ nf
|H(f)|  Tsinc(fT)  sin(nfT)
The amount of equalization needed in practice is usually small. Indeed, for a duty cycle

defined by the ratio 7/T; < 0.1, the amplitude distortion is less than 0.5%. In such a
situation, the need for equalization may be omitted altogether.

The transmission of a PAM signal imposes rather stringent requirements on the frequency
response of the channel, because of the relatively short duration of the transmitted pulses.
One other point that should be noted: relying on amplitude as the parameter subject to
modulation, the noise performance of a PAM system can never be better than baseband-
signal transmission. Accordingly, in practice, we find that for transmission over a
communication channel PAM is used only as the preliminary means of message
processing, whereafter the PAM signal is changed to some other more appropriate form of
pulse modulation.

With analog-to-digital conversion as the aim, what would be the appropriate form of
modulation to build on PAM? Basically, there are three potential candidates, each with its
own advantages and disadvantages, as summarized here:

PCM, which, as remarked previously in Section 6.1, is robust but demanding in both
transmission bandwidth and computational requirements. Indeed, PCM has
established itself as the standard method for the conversion of speech and video
signals into digital form.

DPCM, which provides a method for the reduction in transmission bandwidth but at
the expense of increased computational complexity.

DM, which is relatively simple to implement but requires a significant increase in
transmission bandwidth.

Before we go on, a comment on terminology is in order. The term “modulation” used
herein is a misnomer. In reality, PCM, DM, and DPCM are different forms of source
coding, with source coding being understood in the sense described in Chapter 5 on
information theory. Nevertheless, the terminologies used to describe them have become
embedded in the digital communications literature, so much so that we just have to live
with them.

Despite their basic differences, PCM, DPCM and DM do share an important feature:
the message signal is represented in discrete form in both time and amplitude. PAM takes
care of the discrete-time representation. As for the discrete-amplitude representation, we
resort to a process known as quantization, which is discussed next.
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Quantization and its Statistical Characterization

Description of a

Typically, an analog message signal (e.g., voice) has a continuous range of amplitudes
and, therefore, its samples have a continuous amplitude range. In other words, within the
finite amplitude range of the signal, we find an infinite number of amplitude levels. In
actual fact, however, it is not necessary to transmit the exact amplitudes of the samples for
the following reason: any human sense (the ear or the eye) as ultimate receiver can detect
only finite intensity differences. This means that the message signal may be approximated
by a signal constructed of discrete amplitudes selected on a minimum error basis from an
available set. The existence of a finite number of discrete amplitude levels is a basic
condition of waveform coding exemplified by PCM. Clearly, if we assign the discrete
amplitude levels with sufficiently close spacing, then we may make the approximated
signal practically indistinguishable from the original message signal. For a formal
definition of amplitude quantization, or just quantization for short, we say:

This definition assumes that the quantizer (i.e., the device performing the quantization
process) is memoryless and instantaneous, which means that the transformation at time
t =nTy is not affected by earlier or later samples of the message signal m(#). This simple
form of scalar quantization, though not optimum, is commonly used in practice.

When dealing with a memoryless quantizer, we may simplify the notation by dropping
the time index. Henceforth, the symbol m, is used in place of m(kTy), as indicated in the
block diagram of a quantizer shown in Figure 6.8a. Then, as shown in Figure 6.8b, the
signal amplitude m is specified by the index k if it lies inside the partition cell

Jpdmp<m<my 3, k=1,2,...,L

where
my = m(kTS)

and L is the total number of amplitude levels used in the quantizer. The discrete amplitudes
my, k=1,2, ..., L, at the quantizer input are called decision levels or decision thresholds. At
the quantizer output, the index k is transformed into an amplitude v, that represents all ampli-
tudes of the cell Jy; the discrete amplitudes vy, k=1, 2, ..., L, are called representation levels
or reconstruction levels. The spacing between two adjacent representation levels is called a
quantum or step-size. Thus, given a quantizer denoted by g(-), the quantized output v equals
vy, if the input sample m belongs to the interval J;. In effect, the mapping (see Figure 6.8a)

v = g(m)
defines the quantizer characteristic, described by a staircase function.

J
Continuous Quantizer Discrete e N
sample . sample v
ple m gt) plev my 1 MmooV mg g1 mgg 2

memoryless quantizer. (@ (b)
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Output Output
level level
41— 41—
2 2

Input | | | | Input
2 4 level 4 2 0 2 4 level

(a) (b)

Two types of quantization: (a) midtread and (b) midrise.

Quantizers can be of a uniform or nonuniform type. In a uniform quantizer, the
representation levels are uniformly spaced; otherwise, the quantizer is nonuniform. In this
section, we consider only uniform quantizers; nonuniform quantizers are considered in
Section 6.5. The quantizer characteristic can also be of midtread or midrise type. Figure
6.9a shows the input—output characteristic of a uniform quantizer of the midtread type,
which is so called because the origin lies in the middle of a tread of the staircaselike graph.
Figure 6.9b shows the corresponding input—output characteristic of a uniform quantizer of
the midrise type, in which the origin lies in the middle of a rising part of the staircaselike
graph. Despite their different appearances, both the midtread and midrise types of uniform
quantizers illustrated in Figure 6.9 are symmetric about the origin.

Inevitably, the use of quantization introduces an error defined as the difference between
the continuous input sample m and the quantized output sample v. The error is called
quantization noise.’ Figure 6.10 illustrates a typical variation of quantization noise as a
function of time, assuming the use of a uniform quantizer of the midtread type.

Let the quantizer input m be the sample value of a zero-mean random variable M. (If
the input has a nonzero mean, we can always remove it by subtracting the mean from the
input and then adding it back after quantization.) A quantizer, denoted by g(-), maps the
input random variable M of continuous amplitude into a discrete random variable V; their
respective sample values m and v are related by the nonlinear function g(-) in (6.22). Let
the quantization error be denoted by the random variable Q of sample value gq. We may
thus write

Q
I
3
[
<

or, correspondingly,

Q
I
h
<
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With the input M having zero mean and the quantizer assumed to be symmetric as in
Figure 6.9, it follows that the quantizer output V and, therefore, the quantization error Q
will also have zero mean. Thus, for a partial statistical characterization of the quantizer in
terms of output signal-to-(quantization) noise ratio, we need only find the mean-square
value of the quantization error Q.

Consider, then, an input m of continuous amplitude, which, symmetrically, occupies the
range [y .y, Mpaxl- Assuming a uniform quantizer of the midrise type illustrated in
Figure 6.9b, we find that the step size of the quantizer is given by

where L is the total number of representation levels. For a uniform quantizer, the
quantization error Q will have its sample values bounded by —A/2 < g < A/2. If the step size
A is sufficiently small (i.e., the number of representation levels L is sufficiently large), it is
reasonable to assume that the quantization error Q is a uniformly distributed random
variable and the interfering effect of the quantization error on the quantizer input is similar
to that of thermal noise, hence the reference to quantization error as quantization noise.
We may thus express the probability density function of the quantization noise as

I A__ A
fola) =9 A 27772
0 otherwise

For this to be true, however, we must ensure that the incoming continuous sample does not
overload the quantizer. Then, with the mean of the quantization noise being zero, its
variance ) is the same as the mean-square value; that is,
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2 2
%o = E[Q7]
A/2 2
= a7t dg
~A/2
Substituting (6.26) into (6.27), we get
) 1 A/2 )
oH = — q dg
e A'[—A/Z
_ A
12

Typically, the L-ary number k, denoting the kth representation level of the quantizer, is
transmitted to the receiver in binary form. Let R denote the number of bits per sample used
in the construction of the binary code. We may then write

L=2"
or, equivalently,
R =log, L
Hence, substituting (6.29) into (6.25), we get the step size
- 2mmax
R

Thus, the use of (6.31) in (6.28) yields

2 1 2 2—2R
O-Q - gmmax

Let P denote the average power of the original message signal m(f). We may then express
the output signal-to-noise ratio of a uniform quantizer as

(SNR), = —

3P 2R
m

Equation (6.33) shows that the output signal-to-noise ratio of a uniform quantizer (SNR)q
increases exponentially with increasing number of bits per sample R, which is intuitively
satisfying.

Sinusoidal Modulating Signal

Consider the special case of a full-load sinusoidal modulating signal of amplitude A,
which utilizes all the representation levels provided. The average signal power is
(assuming a load of 1 Q)

2
Am

p=_D
2
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The total range of the quantizer input is 2A,,, because the modulating signal swings
between —A,, and A,,,. We may, therefore, set m,,, = A, in which case the use of (6.32)
yields the average power (variance) of the quantization noise as
2 1.2.-2R
O, 0~ §A m2
Thus, the output signal-to-noise of a uniform quantizer, for a full-load test tone, is
2
A /2
(SNR), = —2 = = 3%k
2,72R 5 2
m
Expressing the signal-to-noise (SNR) in decibels, we get
10 loglO(SNR)O = 1.8+ 6R
The corresponding values of signal-to-noise ratio for various values of L and R, are given in
Table 6.1. For sinusoidal modulation, this table provides a basis for making a quick estimate
of the number of bits per sample required for a desired output signal-to-noise ratio.
Signal-to-(quantization) noise ratio for varying number of
representation levels for sinusoidal modulation
32 5 31.8
64 6 37.8
128 7 43.8
256 8 49.8
In designing a scalar quantizer, the challenge is how to select the representation levels and
surrounding partition cells so as to minimize the average quantization power for a fixed
number of representation levels.
To state the problem in mathematical terms: consider a message signal m(f) drawn from
a stationary process and whose dynamic range, denoted by —A < m < A, is partitioned into
a set of L cells, as depicted in Figure 6.11. The boundaries of the partition cells are defined
by a set of real numbers m, m,, ..., my _ | that satisfy the following three conditions:
m; = -A
m; = A
m<m,_,fork=12,..L
L | | - | | |
[lustrating the partitioning of the dynamic range my=-A m m3 my -1 my o mp g =tA

—A <m < A of a message signal m(t) into a set of L cells. 1 2A |
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The kth partition cell is defined by (6.20), reproduced here for convenience:

Jeimp<m<my_qfork=1,2,... L
Let the representation levels (i.e., quantization values) be denoted by v, k=1, 2, ..., L.
Then, assuming that d(m,v;) denotes a distortion measure for using v; to represent all
those values of the input m that lie inside the partition cell J;, the goal is to find the two
sets {vk}i _q and {J k}i _q that minimize the average distortion

L
D=3 j d(m,v)fy,(m) dm
me Vk
k=1

where fy,(m) is the probability density function of the random variable M with sample

value m.
A commonly used distortion measure is defined by

d(m,v,) = (m—v,)’

in which case we speak of the mean-square distortion. In any event, the optimization problem
stated herein is nonlinear, defying an explicit, closed-form solution. To get around this diffi-
culty, we resort to an algorithmic approach for solving the problem in an iterative manner.

Structurally speaking, the quantizer consists of two components with interrelated
design parameters:

* An encoder characterized by the set of partition cells {J, }i - this is located in the
transmitter.

¢ A decoder characterized by the set of representation levels {v k}i - this is located
in the receiver.

Accordingly, we may identify two critically important conditions that provide the
mathematical basis for all algorithmic solutions to the optimum quantization problem.
One condition assumes that we are given a decoder and the problem is to find the optimum
encoder in the transmitter. The other condition assumes that we are given an encoder and
the problem is to find the optimum decoder in the receiver. Henceforth, these two
conditions are referred to as condition I and II, respectively.

Optimality of the Encoder for a Given Decoder

The availability of a decoder means that we have a certain codebook in mind. Let the
codebook be defined by

L
C:{ved
Given the codebook 6, the problem is to find the set of partition cells {J k}é _ that

minimizes the mean-square distortion D. That is, we wish to find the encoder defined by
the nonlinear mapping

g(m) = v, k=1,2,...,L

such that we have

A L
D = jA d(m, g(m))fy,(m) dM = Y Jmejk[mind(m, vy, (m) dm
- k=1
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For the lower bound specified in (6.41) to be attained, we require that the nonlinear
mapping of (6.40) be satisfied only if the condition

d(m,v,)<d(m, vj) holds for all j # k
The necessary condition described in (6.42) for optimality of the encoder for a specified
codebook € is recognized as the nearest-neighbor condition. In words, the nearest
neighbor condition requires that the partition cell J; should embody all those values of the

input m that are closer to v, than any other element of the codebook 6. This optimality
condition is indeed intuitively satisfying.

Optimality of the Decoder for a Given Encoder

Consider next the reverse situation to that described under condition I, which may be
stated as follows: optlmlze the codebook €= {v,}L, _ for the decoder, given that the
set of partition cells{J k} (= 1characterlzmg the encoder is fixed. The criterion for
optimization is the average (mean-square) distortion:

L 2
Z J‘m e, (m—v,) fy,(m) dm

k=1

The probability density function fj,(m) is clearly independent of the codebook 6. Hence,
differentiating D with respect to the representation level vy, we readily obtain

Pb ij 5, (m = v,y (m) dm

v, k

Setting 0D/0v,, equal to zero and then solving for v, we obtain the optimum value

jm 5, y(m) dm

jm 5 Jaum) dm

The denominator in (6.45) is just the probability p; that the random variable M with
sample value m lies in the partition cell J;, as shown by

vk, opt =

P = Pm<M<m +1)

jme 5 Jaum) dm

Accordingly, we may interpret the optimality condition of (6.45) as choosing the
representation level vy to equal the conditional mean of the random variable M, given that
M lies in the partition cell J;. We can thus formally state that the condition for optimality
of the decoder for a given encoder as follows:

= E[M|m <M<m; ]

vk, opt

where E is the expectation operator. Equation (6.47) is also intuitively satisfying.
Note that the nearest neighbor condition (I) for optimality of the encoder for a given
decoder was proved for a generic average distortion. However, the conditional mean
requirement (condition II) for optimality of the decoder for a given encoder was proved for
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the special case of a mean-square distortion. In any event, these two conditions are
necessary for optimality of a scalar quantizer. Basically, the algorithm for designing the
quantizer consists of alternately optimizing the encoder in accordance with condition I,
then optimizing the decoder in accordance with condition II, and continuing in this
manner until the average distortion D reaches a minimum. The optimum quantizer
designed in this manner is called the Lloyd—Max quantizer.

Pulse-Code Modulation

With the material on sampling, PAM, and quantization presented in the preceding
sections, the stage is set for describing PCM, for which we offer the following definition:

Specifically, the transmitter consists of two components: a pulse-amplitude modulator followed
by an analog-to-digital (A/D) converter. The latter component itself embodies a quantizer
followed by an encoder. The receiver performs the inverse of these two operations: digital-to-
analog (D/A) conversion followed by pulse-amplitude demodulation. The communication
channel is responsible for transporting the encoded pulses from the transmitter to the receiver.

Figure 6.12, a block diagram of the PCM, shows the transmitter, the transmission path
from the transmitter output to the receiver input, and the receiver.

It is important to realize, however, that once distortion in the form of quantization noise
is introduced into the encoded pulses, there is absolutely nothing that can be done at the
receiver to compensate for that distortion. The only design precaution that can be taken is
to choose a number of representation levels in the receiver that is large enough to ensure
that the quantization noise is imperceptible for human use at the receiver output.

Analog
source of Destination
message signal

Pulse-amplitude
modulator

Pulse-amplitude
demodulator

A

Transmitter Receiver

\

Analog-to-
digital converter

Digital-to-
analog converter

Digitally encoded message signal
across the transmission path

Block diagram of PCM system.
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The incoming message signal is sampled with a train of rectangular pulses short enough to
closely approximate the instantaneous sampling process. To ensure perfect reconstruction of
the message signal at the receiver, the sampling rate must be greater than twice the highest
frequency component W of the message signal in accordance with the sampling theorem. In
practice, a low-pass anti-aliasing filter is used at the front end of the pulse-amplitude
modulator to exclude frequencies greater than W before sampling and which are of
negligible practical importance. Thus, the application of sampling permits the reduction of
the continuously varying message signal to a limited number of discrete values per second.

The PAM representation of the message signal is then quantized in the analog-to-digital
converter, thereby providing a new representation of the signal that is discrete in both time
and amplitude. The quantization process may follow a uniform law as described in Section
6.4. In telephonic communication, however, it is preferable to use a variable separation
between the representation levels for efficient utilization of the communication channel.
Consider, for example, the quantization of voice signals. Typically, we find that the range
of voltages covered by voice signals, from the peaks of loud talk to the weak passages of
weak talk, is on the order of 1000 to 1. By using a nonuniform quantizer with the feature
that the step size increases as the separation from the origin of the input—output amplitude
characteristic of the quantizer is increased, the large end-steps of the quantizer can take
care of possible excursions of the voice signal into the large amplitude ranges that occur
relatively infrequently. In other words, the weak passages needing more protection are
favored at the expense of the loud passages. In this way, a nearly uniform percentage
precision is achieved throughout the greater part of the amplitude range of the input signal.
The end result is that fewer steps are needed than would be the case if a uniform quantizer
were used; hence the improvement in channel utilization.

Assuming memoryless quantization, the use of a nonuniform quantizer is equivalent to
passing the message signal through a compressor and then applying the compressed signal
to a uniform quantizer, as illustrated in Figure 6.13a. A particular form of compression law
that is used in practice is the so-called p-law,” which is defined by

| = In(1 + u|m|)
(1 + p2)

where In, i.e., log., denotes the natural logarithm, m and v are the input and output
voltages of the compressor, and y is a positive constant. It is assumed that m and,

(a) Nonuniform quantization
of the message signal in the
transmitter. (b) Uniform
quantization of the original
message signal in the receiver.

(b)

Input message : Compressed output
signal Compressor Uniform signal
m(t) quantizer
(a)
Compressed Uniformly quantized
signal  ——>  Expander [—> version of the original
message signal m(r)



Compression laws:
(a) u-law;
(b) A-law.
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therefore, v are scaled so that they both lie inside the interval [-1, 1]. The w-law is plotted
for three different values of x4 in Figure 6.14a. The case of uniform quantization
corresponds to x = 0. For a given value of g, the reciprocal slope of the compression curve
that defines the quantum steps is given by the derivative of the absolute value |m| with
respect to the corresponding absolute value |v|; that is,

dm| _

djv]
From (6.49) it is apparent that the g-law is neither strictly linear nor strictly logarithmic.
Rather, it is approximately linear at low input levels corresponding to u|m| < 1 and

approximately logarithmic at high input levels corresponding to u|m| >>1.
Another compression law that is used in practice is the so-called A-law, defined by

1““#* A1+ alml)

Alm| 1
1 < < =
1+ A’ 0<ml <~
[v| =
L+In(Ajml) 1 _,
T+inA  a~lm=t

where A is another positive constant. Equation (6.50) is plotted in Figure 6.14b for varying
A. The case of uniform quantization corresponds to A = 1. The reciprocal slope of this
second compression curve is given by the derivative of |m| with respect to |v|, as shown by

1+ InA 1

—_—, 0<|ml <=
d|m| B A A
dfv|

(1 +1InA)|m|. iﬁ|m|£l
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To restore the signal samples to their correct relative level, we must, of course, use a device
in the receiver with a characteristic complementary to the compressor. Such a device is
called an expander. Ideally, the compression and expansion laws are exactly the inverse of
each other. With this provision in place, we find that, except for the effect of quantization, the
expander output is equal to the compressor input. The cascade combination of a compressor
and an expander, depicted in Figure 6.13, is called a compander.

For both the z-law and A-law, the dynamic range capability of the compander improves
with increasing  and A, respectively. The SNR for low-level signals increases at the expense
of the SNR for high-level signals. To accommodate these two conflicting requirements (i.e.,
a reasonable SNR for both low- and high-level signals), a compromise is usually made in
choosing the value of parameter u for the g-law and parameter A for the A-law. The typical
values used in practice are x =255 for the p—law and A = 87.6 for the A-law.

Through the combined use of sampling and quantization, the specification of an analog
message signal becomes limited to a discrete set of values, but not in the form best suited
to transmission over a telephone line or radio link. To exploit the advantages of sampling
and quantizing for the purpose of making the transmitted signal more robust to noise,
interference, and other channel impairments, we require the use of an encoding process to
translate the discrete set of sample values to a more appropriate form of signal. Any plan
for representing each of this discrete set of values as a particular arrangement of discrete
events constitutes a code. Table 6.2 describes the one-to-one correspondence between
representation levels and codewords for a binary number system for R = 4 bits per sample.
Following the terminology of Chapter 5, the two symbols of a binary code are customarily
denoted as 0 and 1. In practice, the binary code is the preferred choice for encoding for the
following reason:

The last signal-processing operation in the transmitter is that of line coding, the purpose of
which is to represent each binary codeword by a sequence of pulses; for example,
symbol 1 is represented by the presence of a pulse and symbol O is represented by absence
of the pulse. Line codes are discussed in Section 6.10. Suppose that, in a binary code, each
codeword consists of R bits. Then, using such a code, we may represent a total of 2R
distinct numbers. For example, a sample quantized into one of 256 levels may be
represented by an 8-bit codeword.

The first operation in the receiver of a PCM system is to regenerate (i.e., reshape and clean
up) the received pulses. These clean pulses are then regrouped into codewords and decoded
(i.e., mapped back) into a quantized pulse-amplitude modulated signal. The decoding
process involves generating a pulse the amplitude of which is the linear sum of all the pulses
in the codeword. Each pulse is weighted by its place value (20, 21, 22, e 2R~ 1) in the code,
where R is the number of bits per sample. Note, however, that whereas the analog-to-digital
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Binary number system for 7= 4 bits/sample

0 0000
1 20 0001
2 21 0010
3 ol 4020 0011
4 22 0100
5 22 +20 0101
6 22 42l 0110
7 22 42! 420 0111
8 23 1000
9 23 +20 1001
10 23 +2! 1010
11 23 +21 420 1011
12 23 4192 1100
13 23 4192 +20 1101
14 23 422 42l 1110
15 23 422 42! 420 1111

converter in the transmitter involves both quantization and encoding, the digital-to-analog
converter in the receiver involves decoding only, as illustrated in Figure 6.12.

The final operation in the receiver is that of signal reconstruction. Specifically, an
estimate of the original message signal is produced by passing the decoder output through
a low-pass reconstruction filter whose cutoff frequency is equal to the message
bandwidth W. Assuming that the transmission link (connecting the receiver to the
transmitter) is error free, the reconstructed message signal includes no noise with the
exception of the initial distortion introduced by the quantization process.

The most important feature of a PCM systems is its ability to control the effects of
distortion and noise produced by transmitting a PCM signal through the channel,
connecting the receiver to the transmitter. This capability is accomplished by
reconstructing the PCM signal through a chain of regenerative repeaters, located at
sufficiently close spacing along the transmission path.
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Block diagram of Distorted Amplifier- D,i(;lfils i Regenerated
. PCM wave equalizer Mg > bCM wave
regenerative repeater. device

A

Timing
circuit

As illustrated in Figure 6.15, three basic functions are performed in a regenerative
repeater: equalization, timing, and decision making. The equalizer shapes the received
pulses so as to compensate for the effects of amplitude and phase distortions produced by
the non-ideal transmission characteristics of the channel. The timing circuitry provides a
periodic pulse train, derived from the received pulses, for sampling the equalized pulses at
the instants of time where the SNR ratio is a maximum. Each sample so extracted is com-
pared with a predetermined threshold in the decision-making device. In each bit interval, a
decision is then made on whether the received symbol is 1 or O by observing whether the
threshold is exceeded or not. If the threshold is exceeded, a clean new pulse representing
symbol 1 is transmitted to the next repeater; otherwise, another clean new pulse represent-
ing symbol 0 is transmitted. In this way, it is possible for the accumulation of distortion and
noise in a repeater span to be almost completely removed, provided that the disturbance is
not too large to cause an error in the decision-making process. Ideally, except for delay, the
regenerated signal is exactly the same as the signal originally transmitted. In practice, how-
ever, the regenerated signal departs from the original signal for two main reasons:

The unavoidable presence of channel noise and interference causes the repeater to
make wrong decisions occasionally, thereby introducing bit errors into the
regenerated signal.

If the spacing between received pulses deviates from its assigned value, a jitter is
introduced into the regenerated pulse position, thereby causing distortion.

The important point to take from this subsection on PCM is the fact that regeneration
along the transmission path is provided across the spacing between individual regenerative
repeaters (including the last stage of regeneration at the receiver input) provided that the
spacing is short enough. If the transmitted SNR ratio is high enough, then the regenerated
PCM data stream is the same as the transmitted PCM data stream, except for a practically
negligibly small bit error rate (BER). In other words, under these operating conditions,
performance degradation in the PCM system is essentially confined to quantization noise
in the transmitter.

Noise Considerations in PCM Systems

The performance of a PCM system is influenced by two major sources of noise:

Channel noise, which is introduced anywhere between the transmitter output and the
receiver input; channel noise is always present, once the equipment is switched on.
Quantization noise, which is introduced in the transmitter and is carried all the way
along to the receiver output; unlike channel noise, quantization noise is signal
dependent, in the sense that it disappears when the message signal is switched off.
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Naturally, these two sources of noise appear simultaneously once the PCM system is in
operation. However, the traditional practice is to consider them separately, so that we may
develop insight into their individual effects on the system performance.

The main effect of channel noise is to introduce bit errors into the received signal. In
the case of a binary PCM system, the presence of a bit error causes symbol 1 to be
mistaken for symbol 0, or vice versa. Clearly, the more frequently bit errors occur, the
more dissimilar the receiver output becomes compared with the original message signal.
The fidelity of information transmission by PCM in the presence of channel noise may be
measured in terms of the average probability of symbol error, which is defined as the
probability that the reconstructed symbol at the receiver output differs from the
transmitted binary symbol on the average. The average probability of symbol error, also
referred to as the BER, assumes that all the bits in the original binary wave are of equal
importance. When, however, there is more interest in restructuring the analog waveform of
the original message signal, different symbol errors may be weighted differently; for
example, an error in the most significant bit in a codeword (representing a quantized
sample of the message signal) is more harmful than an error in the least significant bit.

To optimize system performance in the presence of channel noise, we need to minimize
the average probability of symbol error. For this evaluation, it is customary to model the
channel noise as an ideal additive white Gaussian noise (AWGN) channel. The effect of
channel noise can be made practically negligible by using an adequate signal energy-to-
noise density ratio through the provision of short-enough spacing between the regenerative
repeaters in the PCM system. In such a situation, the performance of the PCM system is
essentially limited by quantization noise acting alone.

From the discussion of quantization noise presented in Section 6.4, we recognize that
quantization noise is essentially under the designer’s control. It can be made negligibly
small through the use of an adequate number of representation levels in the quantizer and
the selection of a companding strategy matched to the characteristics of the type of
message signal being transmitted. We thus find that the use of PCM offers the possibility
of building a communication system that is rugged with respect to channel noise on a scale
that is beyond the capability of any analog communication system; hence its use as a
standard against which other waveform coders (e.g., DPCM and DM) are compared.

The underlying theory of BER calculation in a PCM system is deferred to Chapter 8. For
the present, it suffices to say that the average probability of symbol error in a binary
encoded PCM receiver due to AWGN depends solely on E/N,, which is defined as the
ratio of the transmitted signal energy per bit Ey, to the noise spectral density Ny. Note that
the ratio E/N; is dimensionless even though the quantities E,, and N, have different
physical meaning. In Table 6.3, we present a summary of this dependence for the case of a
binary PCM system, in which symbols 1 and O are represented by rectangular pulses of
equal but opposite amplitudes. The results presented in the last column of the table assume
a bit rate of 10° bits/s.

From Table 6.3 it is clear that there is an error threshold (at about 11 dB). For E,/N,
below the error threshold the receiver performance involves significant numbers of errors,
and above it the effect of channel noise is practically negligible. In other words, provided
that the ratio Ey,/N exceeds the error threshold, channel noise has virtually no effect on
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Influence of £,/ N, on the probability of error

43 102 1073 s
8.4 1074 107 s
10.6 1076 10s
12.0 1078 20 min
13.0 10710 1 day
14.0 10712 3 months

the receiver performance, which is precisely the goal of PCM. When, however, E/N,
drops below the error threshold, there is a sharp increase in the rate at which errors occur
in the receiver. Because decision errors result in the construction of incorrect codewords,
we find that when the errors are frequent, the reconstructed message at the receiver output
bears little resemblance to the original message signal.

An important characteristic of a PCM system is its ruggedness to interference, caused
by impulsive noise or cross-channel interference. The combined presence of channel noise
and interference causes the error threshold necessary for satisfactory operation of the PCM
system to increase. If, however, an adequate margin over the error threshold is provided in
the first place, the system can withstand the presence of relatively large amounts of
interference. In other words, a PCM system is robust with respect to channel noise and
interference, providing further confirmation to the point made in the previous section that
performance degradation in PCM is essentially confined to quantization noise in the
transmitter.

Consider now a PCM system that is known to operate above the error threshold, in which
case we would be justified to ignore the effect of channel noise. In other words, the noise
performance of the PCM system is essentially determined by quantization noise acting
alone. Given such a scenario, how does the PCM system fare compared with the
information capacity law, derived in Chapter 5?

To address this question of practical importance, suppose that the system uses a
codeword consisting of n symbols with each symbol representing one of M possible
discrete amplitude levels; hence the reference to the system as an “M-ary” PCM system.
For this system to operate above the error threshold, there must be provision for a large
enough noise margin.

For the PCM system to operate above the error threshold as proposed, the requirement
for a noise margin that is sufficiently large to maintain a negligible error rate due to
channel noise. This, in turn, means there must be a certain separation between the M
discrete amplitude levels. Call this separation co, where c is a constant and o = NyB is the
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noise variance measured in a channel bandwidth B. The number of amplitude levels M is
usually an integer power of 2. The average transmitted power will be least if the amplitude
range is symmetrical about zero. Then, the discrete amplitude levels, normalized with
respect to the separation co, will have the values £1/2, £3/2, ..., £(M — 1)/2. We assume
that these M different amplitude levels are equally likely. Accordingly, we find that the
average transmitted power is given by

P= 2 (3 ks () (eor?

_ Czo_z(M — 1)
- 12

Suppose that the M-ary PCM system described herein is used to transmit a message signal
with its highest frequency component equal to W hertz. The signal is sampled at the
Nyquist rate of 2W samples per second. We assume that the system uses a quantizer of the
midrise type, with L equally likely representation levels. Hence, the probability of
occurrence of any one of the L representation levels is 1/L. Correspondingly, the amount
of information carried by a single sample of the signal is log, L bits. With a maximum
sampling rate of 2W samples per second, the maximum rate of information transmission of
the PCM system measured in bits per second is given by

R, = 2W log, L bits/s

Since the PCM system uses a codeword consisting of n code elements with each one
having M possible discrete amplitude values, we have M" different possible codewords.
For a unique encoding process, therefore, we require

n

L=M
Clearly, the rate of information transmission in the system is unaffected by the use of an
encoding process. We may, therefore, eliminate L between (6.53) and (6.54) to obtain

Ry = 2Wn log, M bits/s

Equation (6.52) defines the average transmitted power required to maintain an M-ary PCM
system operating above the error threshold. Hence, solving this equation for the number of
discrete amplitude levels, we may express the number M in terms of the average
transmitted power P and channel noise variance o = NyB as follows:

1/2
M = (1 + 212P ]
¢ 'NyB

Therefore, substituting (6.56) into (6.55), we obtain
Ry = Wn 10g2£1 + 212—Pj
¢ "NyB

The channel bandwidth B required to transmit a rectangular pulse of duration 1/(2nW),
representing a symbol in the codeword, is given by

B = knW
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where « is a constant with a value lying between 1 and 2. Using the minimum possible
value x = 1, we find that the channel bandwidth B = nW. We may thus rewrite (6.57) as

Ry = Blogz(l + 212P
¢ NyB

] bits/s

which defines the upper bound on the information capacity realizable by an M-ary PCM
system.

From Chapter 5 we recall that, in accordance with Shannon’s information capacity law,
the ideal transmission system is described by the formula

C = Blog (1 +i) bits/s
2 N,B
The most interesting point derived from the comparison of (6.59) with (6.60) is the fact
that (6.59) is of the right mathematical form in an information-theoretic context. To be
more specific, we make the following statement:

As a corollary, we may go on to state:

From the study of noise in analog modulation systems,” it is known that the use of
frequency modulation provides the best improvement in SNR ratio. To be specific, when
the carrier-to-noise ratio is high enough, the bandwidth-noise trade-off follows a square
law in frequency modulation (FM). Accordingly, in comparing the noise performance of
FM with that of PCM we make the concluding statement:

Indeed, this statement is further testimony for the PCM being viewed as a standard for
waveform coding.

Prediction-Error Filtering for Redundancy Reduction

When a voice or video signal is sampled at a rate slightly higher than the Nyquist rate, as
usually done in PCM, the resulting sampled signal is found to exhibit a high degree of
correlation between adjacent samples. The meaning of this high correlation is that, in an
average sense, the signal does not change rapidly from one sample to the next. As a result,
the difference between adjacent samples has a variance that is smaller than the variance of
the original signal. When these highly correlated samples are encoded, as in the standard
PCM system, the resulting encoded signal contains redundant information. This kind of
signal structure means that symbols that are not absolutely essential to the transmission of
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information are generated as a result of the conventional encoding process described in
Section 6.5. By reducing this redundancy before encoding, we obtain a more efficient coded
signal, which is the basic idea behind DPCM. Discussion of this latter form of waveform
coding is deferred to the next section. In this section we discuss prediction-error filtering,
which provides a method for reduction and, therefore, improved waveform coding.

To elaborate, consider the block diagram of Figure 6.16a, which includes:

* adirect forward path from the input to the output;

* apredictor in the forward direction as well; and

* a comparator for computing the difference between the input signal and the
predictor output.

The difference signal, so computed, is called the prediction error. Correspondingly, a filter
that operates on the message signal to produce the prediction error, illustrated in Figure
6.16a, is called a prediction-error filter.

To simplify the presentation, let

m, = m(nT,)

denote a sample of the message signal m(¢) taken at time ¢ = nT,. Then, with ﬁin denoting
the corresponding predictor output, the prediction error is defined by

€, = m,—m,

where ¢,, is the amount by which the predictor fails to predict the input sample m,, exactly.
In any case, the objective is to design the predictor so as to minimize the variance of the
prediction error e,,. In so doing, we effectively end up using a smaller number of bits to
represent e, than the original message sample m,; hence, the need for a smaller
transmission bandwidth.

Message signal 4»_0/ m(nTg) =m, Prediction error

m(t) Oo—>—71 e,
Sample
every
T, Seconds

> Predictor
(a)
Prediction error + Sampled
e, p——> message signal
— mn
Y
Predictor

(b)

Block diagram of (a) prediction-error filter and (b) its inverse.
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The prediction-error filter operates on the message signal on a sample-by-sample basis
to produce the prediction error. With such an operation performed in the transmitter, how
do we recover the original message signal from the prediction error at the receiver? To
address this fundamental question in a simple-minded and yet practical way, we invoke the
use of linerarity. Let the operator L denote the action of the predictor, as shown by

m, = L[m,]
Accordingly, we may rewrite (6.62) in operator form as follows:
e, =m,—L[m,]
= (I-L)[m,]

Under the assumption of linearity, we may invert (6.64) to recover the message sample
from the prediction error, as shown by

1
m, = (e
Equation (6.65) is immediately recognized as the equation of a feedback system, as

illustrated in Figure 6.16b. Most importantly, in functional terms, this feedback system
may be viewed as the inverse of prediction-error filtering.

To simplity the design of the linear predictor in Figure 6.16, we propose to use a discrete-time

structure in the form of a finite-duration impulse response (FIR) filter, which is well known in

the digital signal-processing literature. The FIR filter was briefly discussed in Chapter 2.
Figure 6.17 depicts an FIR filter, consisting of two functional components:

* aset of p unit-delay elements, each of which is represented by zﬁl; and
* acorresponding set of adders used to sum the scaled versions of the delayed inputs,

mn_ 1> mn_z, ceey mn_p.
The overall linearly predicted output is thus defined by the convolution sum
. p
m, = Z Wiy — k
k=1

where p is called the prediction order. Minimization of the prediction-error variance is
achieved by a proper choice of the FIR filter-coefficients as described next.

Message my 1 m, _, My _p 41 -
sample — Z—l - Z71 . 171
mll l l
& N Prediction of
message
sample: m,,

Block diagram of an FIR filter of order p.
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First, however, we make the following assumption:

This assumption may be satisfied by processing the message signal on a block-by-block
basis, with each block being just long enough to satisfy the assumption in a pseudo-
stationary manner. For example, a block duration of 40 ms is considered to be adequate
for voice signals.

With the random variable M,, assumed to have zero mean, it follows that the variance of
the prediction error e, is the same as its mean-square value. We may thus define

J = E[¢’(n)]

as the index of performance. Substituting (6.65) and (6.66) into (6.67) and then expanding
terms, the index of performance is expressed as follows:

p p P
2
J(w) = E[m,]-2 Z wilE[m,m, ]+ z z ijk[E[mn—jmn—k]
k=1 j=1 k=1

Moreover, under the above assumption of pseudo-stationarity, we may go on to introduce
the following second-order statistical parameters for m, treated as a sample of the
stochastic process M(t) at t = nT:

Variance

oy = E[(m, —E[m,])°]

= E[m] for E[m,] =0
Autocorrelation function
Ryp j—j = Elm,_m, 4]
Note that to simplify the notation in (6.67) to (6.70), we have applied the expectation
operator [ to samples rather than the corresponding random variables.

In any event, using (6.69) and (6.70), we may reformulate the index of performance of
(6.68) in the new form involving statistical parameters:

p p p
2
J(w) = oy -2 Z WiRN ( + Z Z wiw Ry oy
k=1 j=1 k=1

Differentiating this index of performance with respect to the filter coefficients, setting the
resulting expression equal to zero, and then rearranging terms, we obtain the following
system of simultaneous equations:

p
ZWO,jRM,k—j = Ry o k=1,2,...,p
j=1
where w,, ; is the optimal value of the jth filter coefficient w;. This optimal set of equations
is the discrete-time version of the celebrated Wiener—Hopf equations for linear prediction.
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With compactness of mathematical exposition in mind, we find it convenient to
formulate the Wiener—Hopf equations in matrix form, as shown by
RyW, = Iy
where

T
Wo = [Wo, 1’ Wo, 22 Wo,p]

is the p-by-1 optimum coefficient vector of the FIR predictor,

T
ry = [Ry, 1 Ry, 2> - Ryp )

is the p-by-1 autocorrelation vector of the original message signal, excluding the mean-
square value represented by Ry (, and

Ryo Ryt - Ry
R - | B Ruo - Rypo
M

Ryt pot Ryipoa -+ Ruo

is the p-by-y correlation matrix of the original message signal, including Ry, (.
Careful examination of (6.76) reveals the Toeplitz property of the autocorrelation
matrix Ry, which embodies two distinctive characteristics:
All the elements on the main diagonal of the matrix Ry are equal to the mean-
square value or, equivalently under the zero-mean assumption, the variance of the
message sample m,,, as shown by
2
Ry (0) = oy
The matrix is symmetric about the main diagonal.

This Toeplitz property is a direct consequence of the assumption that message signal m(¢)
is the sample function of a stationary stochastic process. From a practical perspective, the
Toeplitz property of the autocorrelation matrix Ry, is important in that all of its elements
. . . p-1
are uniquely defined by the autocorrelation sequence {Ry; ;} & = o - Moreover, from the
defining equation (6.75), it is clear that the autocorrelation vector r); is uniquely defined
by the autocorrelation sequence {RM, k}[]: _ - We may therefore make the following
statement:

Typically, we have
[Ryp 4| <Rw(0)  fork=1,2,...,p
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Under this condition, we find that the autocorrelation matrix Ry is also invertible; that is,
the inverse matrix R;/[ exists. We may therefore solve (6.73) for the unknown value of the
optimal coefficient vector w, using the formula

-1
w, = Ryry

Thus, given the variance 012\,1 and autocorrelation sequence {RM, k}’]: _ » We may uniquely
determine the optimized coefficient vector of the linear predictor, w,, defining an FIR
filter of order p; and with it our design objective is satisfied.

To complete the linear prediction theory presented herein, we need to find the
minimum mean-square value of prediction error, resulting from the use of the optimized
predictor. We do this by first reformulating (6.71) in the matrix form:

2 T T
J(wo) = o—M—Zw0 ry +w, RMWO

where the superscript T denotes matrix transposition, wg ry; is the inner product of the
p-by-1 vectors w, and ryy, and the matrix product w, Ry,w is a quadratic form. Then,
substituting the optimum formula of (6.77) into (6.78), we find that the minimum mean-
square value of prediction error is given by

J

2 -1 T -1 T -1
min = Om — 2(Ryry) Ty + (Ry ) Ry (Ry )

2 T -1 T
oM — 2rMRM ry+ rMRM ™

2 Tl
oM ~ I'MBRMI'm

where we have used the property that the autocorrelation matrix of a weakly stationary
process is symmetric; that is,

T
Ry = Ry,

By definition, the quadratic form rE,IR;/Il ry; is always positive. Accordingly, from (6.79)
it follows that the minimum yalue of the mean-square prediction error Jy,;, is always
smaller than the variance oy, of the zero-mean message sample m, that is being
predicted. Through the use of linear prediction as described herein, we have thus satisfied
the objective:

This statement provides the rationale for going on to describe how the bandwidth
requirement of the standard PCM can be reduced through redundancy reduction. However,
before proceeding to do so, it is instructive that we consider an adaptive implementation of
the linear predictor.
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The use of (6.77) for calculating the optimum weight vector of a linear predictor requires
knowledge of the autocorrelation function R,,, ; of the message signal sequence {m k}i =0
where p is the prediction order. What if knowledge of this sequence is not available? In
situations of this kind, which occur frequently in practice, we may resort to the use of an
adaptive predictor.

The predictor is said to be adaptive in the following sense:

* Computation of the tap weights wy, k=1, 2, ..., p, proceeds in an iterative manner,
starting from some arbitrary initial values of the tap weights.

e The algorithm used to adjust the tap weights (from one iteration to the next) is “self-
designed,” operating solely on the basis of available data.

The aim of the algorithm is to find the minimum point of the bowl-shaped error surface
that describes the dependence of the cost function J on the tap weights. It is, therefore,
intuitively reasonable that successive adjustments to the tap weights of the predictor be
made in the direction of the steepest descent of the error surface; that is, in a direction
opposite to the gradient vector whose elements are defined by

oJ

= k=1,2,...
awka s & ’p

8k
This is indeed the idea behind the method of deepest descent. Let wy,_,, denote the value of
the kth tap weight at iteration n. Then, the updated value of this weight at iteration n + 1 is
defined by

1
Wen+l = Wk,n_iﬂgk» k=1,2,..,p

where 1 is a step-size parameter that controls the speed of adaptation and the factor 1/2 is
included for convenience of presentation. Differentiating the cost function J of (6.68) with
respect to wy, we readily find that

p
g, = —2E[m,m, 1+ Z Wj[E[mn—jmn—k]
i=1

From a practical perspective, the formula for the gradient g in (6.83) could do with further
simplification that ignores the expectation operator. In effect, instantaneous values are
used as estimates of autocorrelation functions. The motivation for this simplification is to
permit the adaptive process to proceed forward on a step-by-step basis in a self-organized
manner. Clearly, by ignoring the expectation operator in (6.83), the gradient g; takes on a
time-dependent value, denoted by g; ,,. We may thus write

LA
8kn = —2mnmn_k+2mn_kz Wi My k=1,2,...,p
j=1
where vAvj’ o 18 an estimate of the filter coefficient w; , at time n. X
The stage is now set for substituting (6.84) into (6.82), where in the latter equation w kon
is substituted for wy_,; this change is made to account for dispensing with the expectation
operator:
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- ~ 1
Win+el = Wk,n_ifugk,n

P
_Wk,n+/u mnmn—k_z Gon™Mn — M —k
i=
p ~
Wion  HIMy, g mn_z i, -
j=1

= Wk,n T Ham, e,

where e, is the new prediction error defined by
P
e, = m,— Z Wi M,
j=1

Note that the current value of the message signal, m,,, plays a role as the desired response
for predicting the value of m, given the past values of the message signal: m,, _ |, m, _ 1,

ey My e
In words, we may express the adaptive filtering algorithm of (6.85) as follows:

( Updated value of the kth )

_( Old value of the same Step-size Message signal m,, Prediction error
filter coefficient at time n + 1

7(ﬁlter coefficient at time n) (parameter delayed by k time steps /\ computed at time n

The algorithm just described is the popular least-mean-square (LMS) algorithm,
formulated for the purpose of linear prediction. The reason for popularity of this adaptive
filtering algorithm is the simplicity of its implementation. In particular, the computational
complexity of the algorithm, measured in terms of the number of additions and
multiplications, is linear in the prediction order p. Moreover, the algorithm is not only
computationally efficient but it is also effective in performance.

The LMS algorithm is a stochastic adaptive filtering algorithm, stochastic in the sense
that, starting from the initial condition defined by {Wk,O}i= P it seeks to find the
minimum point of the error surface by following a zig-zag path. However, it never finds
this minimum point exactly. Rather, it continues to execute a random motion around the

minimum point of the error surface (Haykin, 2013).

Differential Pulse-Code Modulation

DPCM, the scheme to be considered for channel-bandwidth conservation, exploits the
idea of linear prediction theory with a practical difference:
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Block diagram of a differential quantizer.

The resulting process is referred to as differential quantization. The motivation behind the
use of differential quantization follows from two practical considerations:

Waveform encoding in the transmitter requires the use of quantization.
Waveform decoding in the receiver, therefore, has to process a quantized signal.

In order to cater to both requirements in such a way that the same structure is used for
predictors in both the transmitter and the receiver, the transmitter has to perform prediction-
error filtering on the quantized version of the message signal rather than the signal itself, as
shown in Figure 6.19a. Then, assuming a noise-free channel, the predictors in the transmitter
and receiver operate on exactly the same sequence of quantized message samples.

To demonstrate this highly desirable and distinctive characteristic of differential PCM,
we see from Figure 6.19a that

e g n =e, + q,
Comparator
Sampled e e DPCM
version of +@ - Quantizer - Encoder —>- encoded
message 7 signal, my ,
signal, m,,
Y+
+
m, > /ZD Adder
D Linear B
predictor my
(a)
Noisy version + DPCM
of DPCM  ——=| Decoder —>{ T » decoded
encoded f output
signal
Linear
predictor

(b)

DPCM system: (a) transmitter; (b) receiver.
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where g, is the quantization noise produced by the quantizer operating on the prediction
error e,. Moreover, from Figure 6.19a, we readily see that

My, =m,+e,,
where 131” is the predicted value of the original message sample m,,; thus, (6.88) is in
perfect agreement with Figure 6.18. Hence, the use of (6.87) in (6.88) yields

My, =m,+e,+q,

We may now invoke (6.88) of linear prediction theory to rewrite (6.89) in the equivalent
form:

My = My +q,

which describes a quantized version of the original message sample m,,.

With the differential quantization scheme of Figure 6.19a at hand, we may now expand
on the structures of the transmitter and receiver of DPCM.

Operation of the DPCM transmitter proceeds as follows:

Given the predicted message sample ﬁ1n , the comparator at the transmitter input
computes the prediction error e,, which is quantized to produce the quantized
version of e, in accordance with (6.87).

With I’;’ln and e, , at hand, the adder in the transmitter produces the quantized
version of the original message sample m,,, namely My, u, in accordance with (6.88).
The required one-step prediction 131” is produced by applying the sequence of

quantized samples {m ok }i _, toa linear FIR predictor of order p.

This multistage operation is clearly cyclic, encompassing three steps that are repeated at
each time step n. Moreover, at each time step, the encoder operates on the quantized
prediction error e, , to produce the DPCM-encoded version of the original message
sample m,,. The DPCM code so produced is a lossy-compressed version of the PCM code;
it is “lossy” because of the prediction error.

The structure of the receiver is much simpler than that of the transmitter, as depicted in
Figure 6.19b. Specifically, first, the decoder reconstructs the quantized version of the
prediction error, namely e, ,. An estimate of the original message sample m,, is then
computed by applying the decoder output to the same predictor used in the transmitter of
Figure 6.19a. In the absence of channel noise, the encoded signal at the receiver input is
identical to the encoded signal at the transmitter output. Under this ideal condition, we
find that the corresponding receiver output is equal to m,, ,, which differs from the original
signal sample m,, only by the quantization error ¢g,, incurred as a result of quantizing the
prediction error e,,.

From the foregoing analysis, we thus observe that, in a noise-free environment, the
linear predictors in the transmitter and receiver of DPCM operate on the same sequence of
samples, m, ,. It is with this point in mind that a feedback path is appended to the
quantizer in the transmitter of Figure 6.19a.
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The output SNR of the DPCM system, shown in Figure 6.19, is, by definition,
o
M
Q
where ai,[ is the variance of the original signal sample m,,, assumed to be of zero mean,
and o5, is the variance of the quantization error g,,, also of zero mean. We may rewrite
(6.91) as the product of two factors, as shown by

2 2
Im|| %E
2 2
GEO'

G,(SNR),,

(SNR),,

. . 2. . ..
where, in the first line, og is the variance of the prediction error ¢, The factor (SNR)Q
introduced in the second line is the signal-to-quantization noise ratio, which is itself
defined by

2

%E
%Q
The other factor G, is the processing gain produced by the differential quantization
scheme; it is formally defined by

o
_ %M
Gp_ 2

Og

The quantity G,,, when it is greater than unity, represents a gain in signal-to-noise ratio,
which is due to the differential quantization scheme of Figure 6.19. Now, for a given
message signal, the variance 0'12\,[ is fixed, so that Gp is maximized by minimizing the
variance 0'1%/1 of the prediction error e,. Accordingly, the objective in implementing the
DPCM should be to design the prediction filter so as to minimize the prediction-error
variance, o-é.

In the case of voice signals, it is found that the optimum signal-to-quantization noise
advantage of the DPCM over the standard PCM is in the neighborhood of 4-11dB. Based
on experimental studies, it appears that the greatest improvement occurs in going from no
prediction to first-order prediction, with some additional gain resulting from increasing
the order p of the prediction filter up to 4 or 5, after which little additional gain is obtained.
Since 6 dB of quantization noise is equivalent to 1 bit per sample by virtue of the results
presented in Table 6.1 for sinusoidal modulation, the advantage of DPCM may also be
expressed in terms of bit rate. For a constant signal-to-quantization noise ratio, and

assuming a sampling rate of 8 kHz, the use of DPCM may provide a saving of about 8—
16 kHz (i.e., 1 to 2 bits per sample) compared with the standard PCM.
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Delta Modulation

In choosing DPCM for waveform coding, we are, in effect, economizing on transmission
bandwidth by increasing system complexity, compared with standard PCM. In other
words, DPCM exploits the complexity—bandwidth tradeoff. However, in practice, the need
may arise for reduced system complexity compared with the standard PCM. To achieve
this other objective, transmission bandwidth is traded off for reduced system complexity,
which is precisely the motivation behind DM. Thus, whereas DPCM exploits the
complexity—bandwidth tradeoff, DM exploits the bandwidth—complexity tradeoff. We may,
therefore, differentiate between the standard PCM, the DPCM, and the DM along the lines
described in Figure 6.20. With the bandwidth—complexity tradeoff being at the heart of
DM, the incoming message signal m(f) is oversampled, which requires the use of a
sampling rate higher than the Nyquist rate. Accordingly, the correlation between adjacent
samples of the message signal is purposely increased so as to permit the use of a simple
quantizing strategy for constructing the encoded signal.

In the DM transmitter, system complexity is reduced to the minimum possible by using the
combination of two strategies:

Single-bit quantizer, which is the simplest quantizing strategy; as depicted in Figure
6.21, the quantizer acts as a hard limiter with only two decision levels, namely, TA.
Single unit-delay element, which is the most primitive form of a predictor; in other
words, the only component retained in the FIR predictor of Figure 6.17 is the front-end
block labeled z‘l, which acts as an accumulator.

Thus, replacing the multilevel quantizer and the FIR predictor in the DPCM transmitter of
Figure 6.19a in the manner described under points 1 and 2, respectively, we obtain the
block diagram of Figure 6.21a for the DM transmitter.

From this figure, we may express the equations underlying the operation of the DM
transmitter by the following set of equations (6.95)—(6.97):

€, = m,—m,
=m, - mq, n-1
System Transmission

complexity bandwidth

DPCM
Increasing
Standard
PCM
Increasing
DM

[lustrating the tradeoffs
between standard PCM, DPCM, and DM.
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According to (6.95) and (6.96), two possibilities may naturally occur:

The error signal e, (i.e., the difference between the message sample m, and its
approximation r;zn ) is positive, in which case the approximation ﬁ1n =My is
increased by the amount A; in this first case, the encoder sends out symbol 1.

The error signal e, is negative, in which case the approximation m, = m gan-118

reduced by the amount A; in this second case, the encoder sends out symbol 0.

From this description it is apparent that the delta modulator produces a staircase
approximation to the message signal, as illustrated in Figure 6.22a. Moreover, the rate of
data transmission in DM is equal to the sampling rate f; = 1/7, as illustrated in the binary
sequence of Figure 6.22b.
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Illustration of DM.

Following a procedure similar to the way in which we constructed the DM transmitter of
Figure 6.21a, we may construct the DM receiver of Figure 6.21b as a special case of the
DPCM receiver of Figure 6.19b. Working through the operation of the DM receiver, we
find that reconstruction of the staircase approximation to the original message signal is
achieved by passing the sequence of positive and negative pulses (representing symbols 1
and 0, respectively) through the block labeled “accumulator.”

Under the assumption that the channel is distortionless, the accumulated output is the
desired m, ,, given that the decoded channel output is e, ,,. The out-of-band quantization
noise in the high-frequency staircase waveform in the accumulator output is suppressed by
passing it through a low-pass filter with a cutoff frequency equal to the message
bandwidth.

DM is subject to two types of quantization error: slope overload distortion and granular
noise. We will discuss the case of slope overload distortion first.

Starting with (6.97), we observe that this equation is the digital equivalent of
integration, in the sense that it represents the accumulation of positive and negative
increments of magnitude A. Moreover, denoting the quantization error applied to the
message sample m,, by g,, we may express the quantized message sample as

My = My +q,
With this expression for m, ,, at hand, we find from (6.98) that the quantizer input is
€y = mn_(mn—l +qn—l)

Thus, except for the delayed quantization error g, _; , the quantizer input is a first
backward difference of the original message sample. This difference may be viewed as a
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digital approximation to the quantizer input or, equivalently, as the inverse of the digital
integration process carried out in the DM transmitter. If, then, we consider the maximum
slope of the original message signal m(f), it is clear that in order for the sequence of
samples {m, ,} to increase as fast as the sequence of message samples {m, } in a region of
maximum slope of m(f), we require that the condition

dm(1)

é > max
T dr

N

be satisfied. Otherwise, we find that the step-size A is too small for the staircase
approximation m(7) to follow a steep segment of the message signal m(z), with the result
that mq(t) falls behind m(z), as illustrated in Figure 6.23. This condition is called slope
overload, and the resulting quantization error is called slope-overload distortion (noise).
Note that since the maximum slope of the staircase approximation m,(f) is fixed by the
step size A, increases and decreases in m,(f) tend to occur along straight lines. For this
reason, a delta modulator using a fixed step size is often referred to as a linear delta
modulator.

In contrast to slope-overload distortion, granular noise occurs when the step size A is
too large relative to the local slope characteristics of the message signal m(f), thereby
causing the staircase approximation m(f) to hunt around a relatively flat segment of m(7);
this phenomenon is also illustrated in the tail end of Figure 6.23. Granular noise is
analogous to quantization noise in a PCM system.

From the discussion just presented, it is appropriate that we need to have a large step size
to accommodate a wide dynamic range, whereas a small step size is required for the
accurate representation of relatively low-level signals. It is clear, therefore, that the choice
of the optimum step size that minimizes the mean-square value of the quantization error in
a linear delta modulator will be the result of a compromise between slope-overload
distortion and granular noise. To satisfy such a requirement, we need to make the delta
modulator “adaptive,” in the sense that the step size is made to vary in accordance with the
input signal. The step size is thereby made variable, such that it is enlarged during
intervals when the slope-overload distortion is dominant and reduced in value when the
granular (quantization) noise is dominant.

Granular noise

Slope-overload
distortion

m(t) ——,

Staircase
approximation
my (1)

[lustration of the two different forms of quantization error in DM.
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Line Codes

In this chapter, we have described three basic waveform-coding schemes: PCM, DPCM,
and DM. Naturally, they differ from each other in several ways: transmission—bandwidth
requirement, transmitter—receiver structural composition and complexity, and quantization
noise. Nevertheless, all three of them have a common need: line codes for electrical
representation of the encoded binary streams produced by their individual transmitters, so
as to facilitate transmission of the binary streams across the communication channel.

Figure 6.24 displays the waveforms of five important line codes for the example data
stream 01101001. Figure 6.25 displays their individual power spectra (for positive
frequencies) for randomly generated binary data, assuming that first, symbols O and 1 are
equiprobable, second, the average power is normalized to unity, and third, the frequency f
is normalized with respect to the bit rate 1/7},. In what follows, we describe the five line
codes involved in generating the coded waveforms of Figure 6.24.

Binary data O 1 1 0 1 0 0 1

A

(a)

(b)

(©

(d)

Al —

: |
L U L

Time—-

(©
Line codes for the electrical representations of binary data: (a) unipolar
nonreturn-to-zero (NRZ) signaling; (b) polar NRZ signaling; (c) unipolar return-to-zero
(RZ) signaling; (d) bipolar RZ signaling; (e) split-phase or Manchester code.
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In this line code, symbol 1 is represented by transmitting a pulse of amplitude A for the
duration of the symbol, and symbol O is represented by switching off the pulse, as in
Figure 6.24a. The unipolar NRZ line code is also referred to as on—off signaling.
Disadvantages of on—off signaling are the waste of power due to the transmitted DC level
and the fact that the power spectrum of the transmitted signal does not approach zero at
zero frequency.

In this second line code, symbols 1 and O are represented by transmitting pulses of
amplitudes +A and —A, respectively, as illustrated in Figure 6.24b. The polar NRZ line
code is relatively easy to generate, but its disadvantage is that the power spectrum of the
signal is large near zero frequency.

In this third line code, symbol 1 is represented by a rectangular pulse of amplitude A and
half-symbol width and symbol 0 is represented by transmitting no pulse, as illustrated in
Figure 6.24c. An attractive feature of the unipolar RZ line code is the presence of delta
functions at f = 0, £1/7}, in the power spectrum of the transmitted signal; the delta
functions can be used for bit-timing recovery at the receiver. However, its disadvantage is
that it requires 3 dB more power than polar RZ signaling for the same probability of
symbol error.

This line code uses three amplitude levels, as indicated in Figure 6.24(d). Specifically,
positive and negative pulses of equal amplitude (i.e., +A and —A) are used alternately for
symbol 1, with each pulse having a half-symbol width; no pulse is always used for symbol
0. A useful property of the bipolar RZ signaling is that the power spectrum of the
transmitted signal has no DC component and relatively insignificant low-frequency
components for the case when symbols 1 and 0 occur with equal probability. The bipolar
RZ line code is also called alternate mark inversion (AMI) signaling.

In this final method of signaling, illustrated in Figure 6.24e, symbol 1 is represented by a
positive pulse of amplitude A followed by a negative pulse of amplitude —A, with both
pulses being half-symbol wide. For symbol O, the polarities of these two pulses are
reversed. A unique property of the Manchester code is that it suppresses the DC
component and has relatively insignificant low-frequency components, regardless of the
signal statistics. This property is essential in some applications.
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Summary and Discussion

In this chapter we introduced two fundamental and complementary processes:

e Sampling, which operates in the time domain; the sampling process is the link
between an analog waveform and its discrete-time representation.

* Quantization, which operates in the amplitude domain; the quantization process is
the link between an analog waveform and its discrete-amplitude representation.

The sampling process builds on the sampling theorem, which states that a strictly band-
limited signal with no frequency components higher than W Hz is represented uniquely by
a sequence of samples taken at a uniform rate equal to or greater than the Nyquist rate of
2W samples per second. The quantization process exploits the fact that any human sense,
as ultimate receiver, can only detect finite intensity differences.

The sampling process is basic to the operation of all pulse modulation systems, which
may be classified into analog pulse modulation and digital pulse modulation. The
distinguishing feature between them is that analog pulse modulation systems maintain a
continuous amplitude representation of the message signal, whereas digital pulse
modulation systems also employ quantization to provide a representation of the message
signal that is discrete in both time and amplitude.

Analog pulse modulation results from varying some parameter of the transmitted
pulses, such as amplitude, duration, or position, in which case we speak of PAM, pulse-
duration modulation, or pulse-position modulation, respectively. In this chapter we
focused on PAM, as it is used in all forms of digital pulse modulation.

Digital pulse modulation systems transmit analog message signals as a sequence of
coded pulses, which is made possible through the combined use of sampling and
quantization. PCM is an important form of digital pulse modulation that is endowed with
some unique system advantages, which, in turn, have made it the standard method of
modulation for the transmission of such analog signals as voice and video signals. The
advantages of PCM include robustness to noise and interference, efficient regeneration of
the coded pulses along the transmission path, and a uniform format for different kinds of
baseband signals.

Indeed, it is because of this list of advantages unique to PCM that it has become the
method of choice for the construction of public switched telephone networks (PSTNs). In
this context, the reader should carefully note that the telephone channel viewed from the
PSTN by an Internet service provider, for example, is nonlinear due to the use of
companding and, most importantly, it is entirely digital. This observation has a significant
impact on the design of high-speed modems for communications between a computer user
and server, which will be discussed in Chapter 8.

DM and DPCM are two other useful forms of digital pulse modulation. The principal
advantage of DM is the simplicity of its circuitry, which is achieved at the expense of
increased transmission bandwidth. In contrast, DPCM employs increased circuit
complexity to reduce channel bandwidth. The improvement is achieved by using the idea
of prediction to reduce redundant symbols from an incoming data stream. A further
improvement in the operation of DPCM can be made through the use of adaptivity to
account for statistical variations in the input data. By so doing, bandwidth requirement
may be reduced significantly without serious degradation in system performance.
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Problems

Sampling Process

In natural sampling, an analog signal g(¢) is multiplied by a periodic train of rectangular pulses c(7),
each of unit area. Given that the pulse repetition frequency of this periodic train is f; and the duration
of each rectangular pulse is T’ (with f,T << 1), do the following:

Find the spectrum of the signal s(#) that results from the use of natural sampling; you may assume
that time ¢ = 0 corresponds to the midpoint of a rectangular pulse in c(7).

Show that the original signal g(f) may be recovered exactly from its naturally sampled version,
provided that the conditions embodied in the sampling theorem are satisfied.
Specity the Nyquist rate and the Nyquist interval for each of the following signals:
g(#) = sinc(200¢).
g(f) = sinc2(2000).
g(®) = sinc(200¢1) + sinc2(200t).
Discussion of the sampling theorem presented in Section 6.2 was confined to the time domain.
Describe how the sampling theorem can be applied in the frequency domain.

Pulse-Amplitude Modulation

Figure P6.4 shows the idealized spectrum of a message signal m(¢). The signal is sampled at a rate
equal to 1 kHz using flat-top pulses, with each pulse being of unit amplitude and duration 0.1 ms.
Determine and sketch the spectrum of the resulting PAM signal.

[M(f)]

f(Hz)
~400 0 400

In this problem, we evaluate the equalization needed for the aperture effect in a PAM system. The
operating frequency f = f/2, which corresponds to the highest frequency component of the message
signal for a sampling rate equal to the Nyquist rate. Plot 1/sinc(0.5T/T) versus T/T, and hence find
the equalization needed when 7/T¢ = 0.1.

Consider a PAM wave transmitted through a channel with white Gaussian noise and minimum
bandwidth By = 1/2T, where T is the sampling period. The noise is of zero mean and power
spectral density Ny/2. The PAM signal uses a standard pulse g(¢) with its Fourier transform defined

by
1
— <B
G < | 7B M1<Br
0, |f|>BT

By considering a full-load sinusoidal modulating wave, show that PAM and baseband-signal
transmission have equal SNRs for the same average transmitted power.

Twenty-four voice signals are sampled uniformly and then time-division multiplexed (TDM). The
sampling operation uses flat-top samples with 1 ps duration. The multiplexing operation includes
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provision for synchronization by adding an extra pulse of sufficient amplitude and also 1 ps duration.
The highest frequency component of each voice signal is 3.4 kHz.
Assuming a sampling rate of 8 kHz, calculate the spacing between successive pulses of the
multiplexed signal.
Repeat your calculation assuming the use of Nyquist rate sampling.
Twelve different message signals, each with a bandwidth of 10 kHz, are to be multiplexed and

transmitted. Determine the minimum bandwidth required if the multiplexing/modulation method
used is time-division multiplexing (TDM), which was discussed in Chapter 1.

Pulse-Code Modulation

A speech signal has a total duration of 10 s. It is sampled at the rate of 8 kHz and then encoded. The
signal-to-(quantization) noise ratio is required to be 40 dB. Calculate the minimum storage capacity
needed to accommodate this digitized speech signal.

Consider a uniform quantizer characterized by the input-output relation illustrated in Figure 6.9a.
Assume that a Gaussian-distributed random variable with zero mean and unit variance is applied to
this quantizer input.

What is the probability that the amplitude of the input lies outside the range —4 to +4?

Using the result of part a, show that the output SNR of the quantizer is given by

(SNR),, = 6R—7.2 dB

where R is the number of bits per sample. Specifically, you may assume that the quantizer input
extends from —4 to +4. Compare the result of part b with that obtained in Example 2.

A PCM system uses a uniform quantizer followed by a 7-bit binary encoder. The bit rate of the
system is equal to 50 x 10° bits/s.
What is the maximum message bandwidth for which the system operates satisfactorily?
Determine the output signal-to-(quantization) noise when a full-load sinusoidal modulating wave
of frequency 1 MHz is applied to the input.
Show that with a nonuniform quantizer the mean-square value of the quantization error is
approximately equal to (1/ 12)EiAl.2pl. , where A; is the ith step size and p; is the probability that the
input signal amplitude lies within the ith interval. Assume that the step size A; is small compared

with the excursion of the input signal.

A sinusoidal signal with an amplitude of 3.25 V is applied to a uniform quantizer of the midtread
type whose output takes on the values 0, £1, £2, £3 V. Sketch the waveform of the resulting
quantizer output for one complete cycle of the input.

Repeat this evaluation for the case when the quantizer is of the midrise type whose output takes
on the values 0.5, £1.5, £2.5, £3.5 V.

The signal
m(t) (volts) = 6sin(2mnr)

is transmitted using a 40-bit binary PCM system. The quantizer is of the midrise type, with a step
size of 1V. Sketch the resulting PCM wave for one complete cycle of the input. Assume a sampling
rate of four samples per second, with samples taken at 7(s) = +1/8, £3/8, £5/8, ...

Figure P6.15 shows a PCM signal in which the amplitude levels of +1V and —1V are used to
represent binary symbols 1 and 0, respectively. The codeword used consists of three bits. Find the
sampled version of an analog signal from which this PCM signal is derived.
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Consider a chain of (n — 1) regenerative repeaters, with a total of n sequential decisions made on a
binary PCM wave, including the final decision made at the receiver. Assume that any binary symbol
transmitted through the system has an independent probability p, of being inverted by any repeater.
Let p, represent the probability that a binary symbol is in error after transmission through the
complete system.

Show that
1
Py = 301=(1-2p))"]

If py is very small and 7 is not too large, what is the corresponding value of p,?

Discuss the basic issues involved in the design of a regenerative repeater for PCM.

Linear Prediction

A one-step linear predictor operates on the sampled version of a sinusoidal signal. The sampling rate
is equal to 10fy, where f; is the frequency of the sinusoid. The predictor has a single coefficient
denoted by w;.

Determine the optimum value of wy required to minimize the prediction-error variance.

Determine the minimum value of the prediction error variance.

A stationary process X(#) has the following values for its autocorrelation function:

Ry(0) =1
Ry(0)=0.8
Ry(0) = 0.6
Ry(0) = 0.4

Calculate the coefficients of an optimum linear predictor involving the use of three unit-time
delays.

Calculate the variance of the resulting prediction error.

Repeat the calculations of Problem 6.19, but this time use a linear predictor with two unit-time
delays. Compare the performance of this second optimum linear predictor with that considered in
Problem 6.19.

Differential Pulse-Code Modulation

A DPCM system uses a linear predictor with a single tap. The normalized autocorrelation function
of the input signal for a lag of one sampling interval is 0.75. The predictor is designed to minimize
the prediction-error variance. Determine the processing gain attained by the use of this predictor.

Calculate the improvement in processing gain of a DPCM system using the optimized three-tap
linear predictor. For this calculation, use the autocorrelation function values of the input signal
specified in Problem 6.19.

In this problem, we compare the performance of a DPCM system with that of an ordinary PCM
system using companding.
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For a sufficiently large number of representation levels, the signal-to-(quantization) noise ratio of
PCM systems, in general, is defined by

101og,((SNR), (dB) = a+6n
where 2" is the number of representation levels. For a companded PCM system using the z-law, the
constant « is itself defined by
a(dB) = 4.77 - 20 log ; log(1 + u)

For a DPCM system, on the other hand, the constant « lies in the range -3 < a < 15 dBs. The
formulas quoted herein apply to telephone-quality speech signals.
Compare the performance of the DPCM system against that of the g-companded PCM system with
1 =255 for each of the following scenarios:

The improvement in (SNR)q realized by DPCM over companded PCM for the same number of

bits per sample.

The reduction in the number of bits per sample required by DPCM, compared with the

companded PCM for the same (SNR)q.
In the DPCM system depicted in Figure P6.24, show that in the absence of channel noise, the
transmitting and receiving prediction filters operate on slightly different input signals.

+ Quanti + Output
—»"4>@—> uantizer > Channel »| Decoder —>{ X >
~ and coder

_ | Prediction Prediction|

filter filter

Transmitter Receiver

Figure P6.25 depicts the block diagram of adaptive quantization for DPCM. The quantization is of a
backward estimation kind because samples of the quantization output and prediction errors are used
to continuously derive backwardsstimates of the variance of the message signal. This estimate
computed at time 7 is denoted by om, ». Given this estimate, the step size is varied so as to match the
actual variance of the message sample m,,, as shown by

An = ¢O-m, n

A2 . . L. . .
where O, n is the estimate of the standard deviation and ¢ is a constant. An attractive feature of the
adaptive scheme in Figure P6.25 is that samples of the quantization output and the prediction error
are used to compute the predictor’s coefficients.

Modity the block diagram of the DPCM transmitter in Figure 6.19a so as to accommodate adaptive
prediction with backward estimation.

I;]nput —> Encoder fp— Decoder |—=- OQutput
n
Level Level
estimator estimator

Transmitter Receiver
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Delta Modulation

Consider a test signal m(f) defined by a hyperbolic tangent function:
m(t) = Atanh(ft)

where A and g are constants. Determine the minimum step size A for DM of this signal, which is
required to avoid slope-overload distortion.

Consider a sine wave of frequency f,,, and amplitude A,, which is applied to a delta modulator of
step size A. Show that slope-overload distortion will occur if
A

A —_—
m” 2nf T,

where T is the sampling period. What is the maximum power that may be transmitted without
slope-overload distortion?

A linear delta modulator is designed to operate on speech signals limited to 3.4 kHz. The
specifications of the modulator are as follows:

Sampling rate = 10fnyquist: Where fyquist 1s the Nyquist rate of the speech signal.
Step size A = 100 mV.

The modulator is tested with a 1kHz sinusoidal signal. Determine the maximum amplitude of this
test signal required to avoid slope-overload distortion.

In this problem, we derive an empirical formula for the average signal-to-(quantization) noise ratio of
a DM system with a sinusoidal signal of amplitude A and frequency f;,, as the test signal. Assume that
the power spectral density of the granular noise generated by the system is governed by the formula

A2

6f;
where f; is the sampling rate and A is the step size. (Note that this formula is basically the same as that

for the power spectral density of quantization noise in a PCM system with A/2 for PCM being replaced
by A for DM.) The DM system is designed to handle analog message signals limited to bandwidth W.

SN =

Show that the average quantization noise power produced by the system is

2.2,2
N=4rtAme

"

where it is assumed that the step size A has been chosen in accordance with the formula used in
Problem 6.28 so as to avoid slope-overload distortion.

Hence, determine the signal-to-(quantization) noise ratio of the DM system for a sinusoidal input.
Consider a DM system designed to accommodate analog message signals limited to bandwidth

W =5 kHz. A sinusoidal test signal of amplitude A = 1V and frequency f;;, = 1 kHz is applied to the
system. The sampling rate of the system is 50 kHz.

Calculate the step size A required to minimize slope overload distortion.

Calculate the signal-to-(quantization) noise ratio of the system for the specified sinusoidal test
signal.

For these calculations, use the formula derived in Problem 6.29.
Consider a low-pass signal with a bandwidth of 3 kHz. A linear DM system with step size A = 0.1V
is used to process this signal at a sampling rate 10 times the Nyquist rate.

Evaluate the maximum amplitude of a test sinusoidal signal of frequency 1kHz, which can be
processed by the system without slope-overload distortion.
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For the specifications given in part a, evaluate the output SNR under (i) prefiltered and (ii)
postfiltered conditions.

In the conventional form of DM, the quantizer input may be viewed as an approximate to the
derivative of the incoming message signal m(f). This behavior leads to a drawback of DM:
transmission disturbances (e.g., noise) result in an accumulation error in the demodulated signal.
This drawback can be overcome by integrating the message signal m(z) prior to DM, resulting in
three beneficial effects:
Low frequency content of m(?) is pre-emphasized.
Correlation between adjacent samples of m(f) is increased, tending to improve overall system
performance by reducing the variance of the error signal at the quantizer input.
Design of the receiver is simplified.
Such a DM scheme is called delta—sigma modulation.
Construct a block diagram of the delta—sigma modulation system in such a way that it provides an
interpretation of the system as a “smoothed” version of 1-bit PCM in the following composite sense:
smoothness implies that the comparator output is integrated prior to quantization, and
1-bit modulation merely restates that the quantizer consists of a hard limiter with only two
representation levels.

Explain how the receiver of the delta—sigma modulation system is simplified, compared with
conventional DM.

In this problem, we derive the formulas used to compute the power spectra of Figure 6.25 for the five
line codes described in Section 6.10. In the case of each line code, the bit duration is 7}, and the pulse
amplitude A is conditioned to normalize the average power of the line code to unity as indicated in Fig-
ure 6.25. Assume that the data stream is randomly generated and symbols O and 1 are equally likely.

Derive the power spectral densities of these line codes as summarized here:

Unipolar NRZ signals:
2
ATy 2 1
S(f) = —— sinc” (fT)| 1 + = &(f)
4 T,
Polar NRZ signals:
S(f) = AT, sinc’(fT})
Unipolar RZ signals:
2
A°T, ST, °°
(31 5 2]
S(f) T 1+Tb z S5 T,
n=-mw
Bipolar RZ signals:
s AT, . ( b) .
o = 7 sinc{ - )sin (nfTy)

Manchester-encoded signals:

S = A24Tb sincz(f%) sin’ (n—frb)

Hence, confirm the spectral plots displayed in Figure 6.25.
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A randomly generated data stream consists of equiprobable binary symbols O and 1. It is encoded
into a polar NRZ waveform with each binary symbol being defined as follows:

s(t) =
0, otherwise

Sketch the waveform so generated, assuming that the data stream is 00101110.

Derive an expression for the power spectral density of this signal and sketch it.

Compare the power spectral density of this random waveform with that defined in part b of

Problem 6.33.
Given the data stream 1110010100, sketch the transmitted sequence of pulses for each of the
following line codes:

unipolar NRZ

polar NRZ

unipolar RZ

bipolar RZ

Manchester code.

Computer Experiments
A sinusoidal signal of frequency f;, = 10*/27Hz is sampled at the rate of 8 kHz and then applied to
a sample-and-hold circuit to produce a flat-topped PAM signal s(¢) with pulse duration 7= 500 us.
Compute the waveform of the PAM signal s(?).
Compute |S(f)| , denoting the magnitude spectrum of the PAM signal (7).
Compute the envelope of |S(f)| . Hence confirm that the frequency at which this envelope goes
through zero for the first time is equal to (1/7) = 20 kHz.

In this problem, we use computer simulation to compare the performance of a companded PCM
system using the g -law against that of the corresponding system using a uniform quantizer. The
simulation is to be performed for a sinusoidal input signal of varying amplitude.

With a companded PCM system in mind, Table 6.4 describes the 15-segment pseudo-linear
characteristic that consists of 15 linear segments configured to approximate the logarithmic g -law

The 15-segment companding characteristic (z = 255)

0 +31
la, 1b 4 +95
2a, 2b 8 +223
3a, 3b 16 +479
4a, 4b 32 +991
5a, 5b 64 +2015
6a, 6b 128 +4063

Ta,Tb 256 +8159
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of (6.48), with g =255. This approximation is constructed in such a way that the segment endpoints
in Table 6.4 lie on the compression curve computed from (6.48).

Using the x-law described in Table 6.4, plot the output signal-to-noise ratio as a function of the
input signal-to-noise ratio, both ratios being expressed in decibels.

Compare the results of your computation in part (a) with a uniform quantizer having 256
representation levels.
In this experiment we study the linear adaptive prediction of a signal x,, governed by the following
recursion:
x, = 08x,_;-0.1x,_,+0.1v,
where v,, is drawn from a discrete—time white noise process of zero mean and unit variance. (A

process generated in this manner is referred to as an autoregressive process of order two.)
Specifically, the adaptive prediction is performed using the normalized LMS algorithm defined by

14
Xn = Z Wk, nXn—k
k=1

)
1l

Xn =Xy

P 2
Winel = Wint H/ Z n—k|x,_re, k=12,...,p
k=1

where p is the prediction order and g is the normalized step-size parameter. The important point to
note here is that x is dimensionless and stability of the algorithm is assured by choosing it in
accordance with the formula

O<pu<2
The algorithm is initiated by setting
wio =0 forallk

The learning curve of the algorithm is defined as a plot of the mean-square error versus the number
of iterations n for specified parameter values, which is obtained by averaging the plot of eﬁ Versus n
over a large number of different realizations of the algorithm.

Plot the learning curves for the adaptive prediction of x,, for a fixed prediction order p = 5 and
three different values of step-size parameter: ¢ =0.0075, 0.05, and 0.5.

What observations can you make from the learning curves of part a?

In this problem, we study adaptive delta modulation, the underlying principle of which is two-fold:
If successive errors are of opposite polarity, then the delta modulator is operating in the granular
mode, in which case the step size A is reduced.
If, on the other hand, the successive errors are of the same polarity, then the delta modulator is
operating in the slope-overload mode, in which case the step size A is increased.
Parts a and b of Figure P6.39 depict the block diagrams of the transmitter and receiver of the
adaptive delta modulator, respectively, in which the step size, A, is increased or decreased by a factor
of 50% at each iteration of the adaptive process, as shown by:

n—1

o 0Smy ) A, 2 A,
- q,n

Apmi ifA, <A

min min
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where A, is the step size at iteration (time step) n of the adaptation algorithm, and m, , is the 1-bit
quantizer output that equals £1.

Specifications: The input signal applied to the transmitter is sinusoidal as shown by
m,=A sin(2nfmt)
where A = 10 and f;,, = f; /100 where f; is the sampling frequency; the step size A, = 1 forall n;
Apin = 178
Using the above-described adaptation algorithm, use a computer to plot the resulting waveform

for one complete cycle of the sinusoidal modulating signal, and also display the coded modulator
output in the transmitter.

For the same specifications, repeat the computation using linear modulation.

Comment on the results obtained in parts a and b of the problem.

Sample_d | + - One-bit . m
message signa quantizer !

O-n —
mq,n -1 = 1 <t

+
+ Adaptive
2 algorithm

An
-1 X
\/

Reconstructed
Sampled message
channel output signal

r Z
Adaptive
algorithm

(b)
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Notes

1. For an exhaustive study of quantization noise in signal processing and communications, see
Widrow and Kollar (2008).

2. The two necessary conditions of (3.42) and (3.47) for optimality of a scalar quantizer were
reported independently by Lloyd (1957) and Max (1960), hence the name “Lloyd—Max quantizer.”
The derivation of these two optimality conditions presented in this chapter follows the book by
Gersho and Gray (1992).

3. The p-law is used in the USA, Canada, and Japan. On the other hand, in Europe, the A-law is
used for signal compression.

4. In actual PCM systems, the companding circuitry does not produce an exact replica of the
nonlinear compression curves shown in Figure 6.14. Rather, it provides a piecewise linear
approximation to the desired curve. By using a large enough number of linear segments, the
approximation can approach the true compression curve very closely; for detailed discussion of this
issue, see Bellamy (1991).

5. For a discussion of noise in analog modulation systems with particular reference to FM, see
Chapter 4 of Communication Systems (Haykin, 2001).

6. To simplify notational matters, Ry is used to denote the autocorrelation matrix in (6.70) rather
than Ry as in Chapter 4 on Stochastic Processes. To see the rationale for this simplification, the
reader is referred to (6.79) for simplicity. For the same reason, henceforth the practice adopted in this
chapter will be continued for the rest of the book, dealing with autocorrelation matrices and power
spectral density.

7. An optimum predictor that follows (6.77) is said to be a special case of the Wiener filter.

8. For a detailed discussion of adaptive DPCM involving the use of adaptive quantization with
forward estimation as well as backward estimation, the reader is referred to the classic book (Jayant
and Noll, 1984).
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Introduction

Chapter 6 on the conversion of analog waveforms into coded pulses represents the
transition from analog communications to digital communications. This transition has
been empowered by several factors:

Ever-increasing advancement of digital silicon chips, digital signal processing, and
computers, which, in turn, has prompted further enhancement in digital silicon
chips, thereby repeating the cycle of improvement.

Improved reliability, which is afforded by digital communications to a much greater
extent than is possible with analog communications.

Broadened range of multiplexing of users, which is enabled by the use of digital
modulation techniques.

Communication networks, for which, in one form or another, the use of digital
communications is the preferred choice.

In light of these compelling factors, we may justifiably say that we live in a “digital
communications world.” For an illustrative example, consider the remote connection of
two digital computers, with one computer acting as the information source by calculating
digital outputs based on observations and inputs fed into it; the other computer acts as the
recipient of the information. The source output consists of a sequence of 1s and Os, with
each binary symbol being emitted every Tj, seconds. The transmitting part of the digital
communication system takes the 1s and Os emitted by the source computer and encodes
them into distinct signals denoted by s1(#) and s,(¢), respectively, which are suitable for
transmission over the analog channel. Both s;(f) and s,(¢) are real-valued energy signals,
as shown by
E. = ijsz(t) dr, i=1,2
l 0 l ? ’

With the analog channel represented by an AWGN model, depicted in Figure 7.1, the
received signal is defined by

0<1<Ty
i=1,2

where w(t) is the channel noise. The receiver has the task of observing the received signal
x(#) for a duration of T, seconds and then making an estimate of the transmitted signal

x(1) = 5;(2) + w(1), {

323
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Transmitted Received
signal signal
5 (0 + /z\ x(1)

+

White Gaussian noise
w(r)

AWGN model of a channel.

s5;(1), or equivalently the ith symbol, i = 1, 2. However, owing to the presence of channel
noise, the receiver will inevitably make occasional errors. The requirement, therefore, is to
design the receiver so as to minimize the average probability of symbol error, defined as

P,=mP(m=0|1 sent) + m,P(m=1|0 sent)

where 7 and 7, are the prior probabilities of transmitting symbols 1 and 0, respectively,
and m is the estimate of the symbol 1 or 0 sent by the source, which is computed by the
receiver. The P(m = 0|1 sent) and P(m = 1|0 sent) are conditional probabilities.

In minimizing the average probability of symbol error between the receiver output and
the symbol emitted by the source, the motivation is to make the digital communication
system as reliable as possible. To achieve this important design objective in a generic
setting that involves an M-ary alphabet whose symbols are denoted by m, m,, ..., ny,, we
have to understand two basic issues:

How to optimize the design of the receiver so as to minimize the average probability
of symbol error.

How to choose the set of signals s1(¢), 55(?), ..., sp,(f) for representing the symbols
my, my, ..., myy, respectively, since this choice affects the average probability of
symbol error.

The key question is how to develop this understanding in a principled as well as insightful
manner. The answer to this fundamental question is found in the geometric representation
of signals.

Geometric Representation of Signals

The essence of geometric representation of signals' is to represent any set of M energy
signals {s;(©)} as linear combinations of N orthonormal basis functions, where N < M.
That is to say, given a set of real-valued energy signals, s;(¢), 55(9), ..., sp/(?), each of
duration T seconds, we write

N
0<t<T
s(t) =" s.6(1), {

! 2 i i=1,2,...M

j=1
where the coefficients of the expansion are defined by

T .
sy = | s d, { i=1,2, ..M
° j=12,..,N
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The real-valued basis functions ¢ (¢), ¢,(), ..., gy(t) form an orthonormal set, by which
we mean

T 1if i=j
[ g0g0dr = 5, = { ti=
0 0 if i#j
where é}j is the Kronecker delta. The first condition of (7.6) states that each basis function
is normalized to have unit energy. The second condition states that the basis functions
&1(1), $(1), ..., Pn(t) are orthogonal with respect to each other over the interval 0 <t < T.

. ) . N . . .
For prescribed i, the set of coefficients {Sij} .| may be viewed as an N-dimensional
signal vector, denoted by s;. The important point to note here is that the vector s; bears a
one-to-one relationship with the transmitted signal s;(7):

* Given the N elements of the vector s; operating as input, we may use the scheme
shown in Figure 7.2a to generate the signal s;(¢), which follows directly from (7.4).
This figure consists of a bank of N multipliers with each multiplier having its own
basis function followed by a summer. The scheme of Figure 7.2a may be viewed as
a synthesizer.

» Conversely, given the signals s;(#), i = 1, 2, ..., M, operating as input, we may use
the scheme shown in Figure 7.2b to calculate the coefficients s;, s;, ..., s;y Which
follows directly from (7.5). This second scheme consists of a bank of N product-
integrators or correlators with a common input, and with each one of them supplied
with its own basis function. The scheme of Figure 7.2b may be viewed as an

analyzer.

Si1 —> j;JT dt  —Si1

0,00 6,00
() > _/EJT dt —>5i2

s5;(1) -1

0,(1)
L5 fo T4 f—siy

[NO] On(0)

(a) (b)

(a) Synthesizer for generating the signal s;(¢). (b) Analyzer for reconstructing the signal
vector {s;}.
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0,

¢

S3

——— e — N

-3

Illustrating the geometric representation of signals for
the case when N=2 and M = 3.

Accordingly, we may state that each signal in the set {s;(r)} is completely determined by
the signal vector

SiN

Furthermore, if we conceptually extend our conventional notion of two- and three-
dimensional Euclidean spaces to an N-dimensional Euclidean space, we may visualize the
set of signal vectors {s;|i = 1,2, ..., M} as defining a corresponding set of M points in an
N-dimensional Euclidean space, with N mutually perpendicular axes labeled ¢;, ¢, ...,
@y- This N-dimensional Euclidean space is called the signal space.

The idea of visualizing a set of energy signals geometrically, as just described, is of
profound theoretical and practical importance. It provides the mathematical basis for the
geometric representation of energy signals in a conceptually satisfying manner. This form
of representation is illustrated in Figure 7.3 for the case of a two-dimensional signal space
with three signals; that is, N =2 and M = 3.

In an N-dimensional Euclidean space, we may define lengths of vectors and angles
between vectors. It is customary to denote the length (also called the absolute value or
norm) of a signal vector s; by the symbol |s; |. The squared length of any signal vector s; is
defined to be the inner product or dot product of s; with itself, as shown by
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2
s =

|
»
7]

N oo
ZSU’ i=1,2,...M
Jj=1

where s;; is the jth element of s; and the superscript T denotes matrix transposition.
There is an interesting relationship between the energy content of a signal and its
representation as a vector. By definition, the energy of a signal s,(¢) of duration T seconds is

T
E, = Iosiz(t) dr, i=12 ..M

Therefore, substituting (7.4) into (7.9), we get

T| N N
E, = jo S syt || sy ()| di

j=1 k=1

Interchanging the order of summation and integration, which we can do because they are
both linear operations, and then rearranging terms we get

N N T
E=Y Y sijsikjo B0 (1) dt

j=lk=1

Since, by definition, the ¢j(t) form an orthonormal set in accordance with the two
conditions of (7.6), we find that (7.10) reduces simply to

E, Z S

2
]

Thus, (7.8) and (7.11) show that the energy of an energy signal s;(¢) is equal to the squared
length of the corresponding signal vector s;(#).

In the case of a pair of signals s;(f) and s;(¢) represented by the signal vectors s; and sy,
respectively, we may also show that

T T
[ sinsy(nydr = s;s,
0

Equation (7.12) states:

. T .. . . . . N
Note that the inner product s; s, is invariant to the choice of basis functions { ¢j(t)} 1
in that it only depends on the components of the signals s;(f) and s;(¢) projected onto each
of the basis functions.
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Yet another useful relation involving the vector representations of the energy signals
5;(t) and s,(¢) is described by
N
2
2 (5= 5y)

j=1

2
[s: =l

T 2
jo(s,-m — (1) dt

where ||s; —s,| is the Euclidean distance d;; between the points represented by the signal
vectors s; and s;.

To complete the geometric representation of energy signals, we need to have a
representation for the angle & subtended between two signal vectors s; and s;. By
definition, the cosine of the angle 6 is equal to the inner product of these two vectors
divided by the product of their individual norms, as shown by

s's
cos(0,) = Lk
[slls]
The two vectors s; and s; are thus orthogonal or perpendicular to each other if their inner
product sl.Ts « 18 zero, in which case &y = 90°; this condition is intuitively satisfying.

The Schwarz Inequality

Consider any pair of energy signals s,(f) and s,(f). The Schwarz inequality states

g:sl(t)sz(r) dt)z < (j:sf(r) ai) U:sg(t) di)

The equality holds if, and only if, 5,(¢) = cs1(¢), where c is any constant.
To prove this important inequality, let s1(¢) and s,(f) be expressed in terms of the pair of
orthonormal basis functions ¢;(¢) and ¢,(7) as follows:

Sl(t) = s11¢1(t)+S12¢2(1‘)
$3(1) = 531 1(1) + 522 65(1)
where ¢;(¢) and ¢,(?) satisfy the orthonormality conditions over the time interval (—o0,0):
. 1 for j=i
J. ¢l(t)¢1(t) dr = 51] = { or j . i
s 0 otherwise

On this basis, we may represent the signals s(¢) and s,(¢) by the following respective pair
of vectors, as illustrated in Figure 7.4:

s
— 11
S| =
512
s
_ 721
S, =
52
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0,

522 77777777

. |

312 777777 — T 7777777
| |

S 0 S |
| |
| |
| | 0
: : 1
0 521 S11

Vector representations of signals s(f) and s,(¢), providing
the background picture for proving the Schwarz inequality.

From Figure 7.4 we readily see that the cosine of angle 6 subtended between the vectors s;
and s, is

T
5152

cosl = ——
[s:][}s2]

o0

j 5, (0)s,(1) dt

_ —00

(j:sf(t) dr) ]/z(j:si(r) dt) v

where we have made use of (7.14) and (7.12). Recognizing that |cos 8| < 1, the Schwarz
inequality of (7.15) immediately follows from (7.16). Moreover, from the first line of
(7.16) we note that |cos 8| = 1 if, and only if, s, = ¢sy; that is, s,(f) = cs;(f), where ¢ is an
arbitrary constant.

Proof of the Schwarz inequality, as presented here, applies to real-valued signals. It may
be readily extended to complex-valued signals, in which case (7.15) is reformulated as

< (Iio|sl(t)|2 dt) 1/2Uiooo|s2(r)|2 dr) 2

where the asterisk denotes complex conjugation and the equality holds if, and only if,
55(t) = cs1(), where c is a constant.

j_ s, (0)s3(1) dt

Having demonstrated the elegance of the geometric representation of energy signals with
an example, how do we justify it in mathematical terms? The answer to this question lies
in the Gram—Schmidt orthogonalization procedure, for which we need a complete
orthonormal set of basis functions. To proceed with the formulation of this procedure,
suppose we have a set of M energy signals denoted by s1(), 55(9), ..., s3,(?). Starting with
s51(¢) chosen from this set arbitrarily, the first basis function is defined by
s
o) = 22

JEN

where E; is the energy of the signal s;(#).
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Then, clearly, we have

s1(1) = JE 4,(1)
S11(¢)¢1(t)

where the coefficient s;; = ,/E, and ¢,(?) has unit energy as required.
Next, using the signal s,(¢), we define the coefficient s, as

T
5y, = jo 5,(1) (1) dt

We may thus introduce a new intermediate function
gz(f) = Sz(t) — 871 ¢1(t)

which is orthogonal to ¢ (¢) over the interval 0 < ¢ < T by virtue of the definition of s, and
the fact that the basis function ¢(f) has unit energy. Now, we are ready to define the
second basis function as

gz(t)

/ T
j g%(t) dt
0

Substituting (7.19) into (7.20) and simplifying, we get the desired result
Sz(t) — 591 ¢1(t)

/ 2
Ey—sy;

where E, is the energy of the signal s,(7). From (7.20) we readily see that

Py (1) =

¢2(t) =

T 5
j gy(1) dt = 1
0
in which case (7.21) yields
T
J @rnaydr =0

That is to say, ¢,(7) and ¢, (7) form an orthonormal pair as required.
Continuing the procedure in this fashion, we may, in general, define
i-1
gi(t) = si(t) - Z S,’j¢j(t)
j=1
where the coefficients s;; are themselves defined by

T
sy = Iosi(t)¢j(t) dr, j=1,2,...,i-1

For i = 1, the function g;(f) reduces to s;(?).
Given the g;(f), we may now define the set of basis functions

(t
b1y = S0

/jTgf(t) dt
0

j=1,2,...N
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which form an orthonormal set. The dimension N is less than or equal to the number of
given signals, M, depending on one of two possibilities:

* The signals s1(f), s5(?), ..., sy(¢) form a linearly independent set, in which case
N=M.
* The signals s1(f), s5(?), ..., s),(f) are not linearly independent, in which case N < M

and the intermediate function g;(#) is zero for i > N.

Note that the conventional Fourier series expansion of a periodic signal, discussed in
Chapter 2, may be viewed as a special case of the Gram—Schmidt orthogonalization
procedure. Moreover, the representation of a band-limited signal in terms of its samples
taken at the Nyquist rate, discussed in Chapter 6, may be viewed as another special case.
However, in saying what we have here, two important distinctions should be made:

The form of the basis functions ¢(¢), ¢,(?), ..., #y(?) has not been specified. That is
to say, unlike the Fourier series expansion of a periodic signal or the sampled
representation of a band-limited signal, we have not restricted the Gram—Schmidt
orthogonalization procedure to be in terms of sinusoidal functions (as in the Fourier
series) or sinc functions of time (as in the sampling process).

The expansion of the signal s;(¢) in terms of a finite number of terms is not an
approximation wherein only the first N terms are significant; rather, it is an exact
expression, where N and only N terms are significant.

2B1Q Code

The 2B1Q code is the North American line code for a special class of modems called
digital subscriber lines. This code represents a quaternary PAM signal as shown in the
Gray-encoded alphabet of Table 7.1. The four possible signals s1(f), s5(¢), s3(f), and s4(¢)
are amplitude-scaled versions of a Nyquist pulse. Each signal represents a dibit (i.e., pair
of bits). The issue of interest is to find the vector representation of the 2B1Q code.

This example is simple enough for us to solve it by inspection. Let ¢;(¢) denote a pulse
normalized to have unit energy. The ¢,(f) so defined is the only basis function for the
vector representation of the 2B1Q code. Accordingly, the signal-space representation of
this code is as shown in Figure 7.5. It consists of four signal vectors sy, s,, 3, and sy,
which are located on the ¢;-axis in a symmetric manner about the origin. In this example,
we have M =4 and N= 1.

Amplitude levels of the 2B1Q code

51(2) -3 00
s5(0) -1 01
s3(0) +1 11

s4(0) +3 10
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Signal-space representation of the 2B1Q code.

We may generalize the result depicted in Figure 7.5 for the 2B1Q code as follows: the
signal-space diagram of an M-ary PAM signal, in general, is one-dimensional with M
signal points uniformly positioned on the only axis of the diagram.

Conversion of the Continuous AWGN Channel into a
Vector Channel

Suppose that the input to the bank of N product integrators or correlators in Figure 7.2b is
not the transmitted signal s;(#) but rather the received signal x(¢) defined in accordance
with the AWGN channel of Figure 7.1. That is to say,

0<t<T
i=1,2,...M
where w(?) is a sample function of the white Gaussian noise process W(¢) of zero mean and

power spectral density Ny/2. Correspondingly, we find that the output of correlator j, say,
is the sample value of a random variable X;, whose sample value is defined by

x(r) = s;(t) +w(t), {

T
X, j x(1)$,(1) dt
J J
0
=sij+wj’ J=1,2,...,N
The first component, s;;, is the deterministic component of x; due to the transmitted signal

s;(1), as shown by

jjs

T
5ij = josi(t)géj(t) dr

The second component, w, is the sample value of a random variable W; due to the channel
noise w(f), as shown by

T
W = Iow(t)¢j(t) dr

Consider next a new stochastic process X'(#) whose sample function x'(¢) is related to
the received signal x(¢) as follows:
N
¥ (1) = x() - Y x;4,(1)

J=1
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Substituting (7.24) and (7.25) into (7.28), and then using the expansion of (7.4), we get

N
Si(t) +w(t) - Z (Sij + Wj)¢j(t)

j=1

x'(1)

N
w(t) - z Wj¢j(t)
Jj=1
w'(1)
The sample function x'(¢), therefore, depends solely on the channel noise w(f). On the
basis of (7.28) and (7.29), we may thus express the received signal as

N
Z x;4,(1) + X' (1)

j=1

x(1)

N
Z x;4,(1) +w' (1)

Jj=1

Accordingly, we may view w'(t) as a remainder term that must be included on the right-
hand side of (7.30) to preserve equality. It is informative to contrast the expansion of the
received signal x(f) given in (7.30) with the corresponding expansion of the transmitted
signal s;(¢) given in (7.4): the expansion of (7.4), pertaining to the transmitter, is entirely
deterministic; on the other hand, the expansion of (7.30) is random (stochastic) due to the
channel noise at the receiver input.

We now wish to develop a statistical characterization of the set of N correlator outputs. Let
X(f) denote the stochastic process, a sample function of which is represented by the
received signal x(7). Correspondingly, let X; denote the random variable whose sample
value is represented by the correlator output Xjs j=1,2, ..., N. According to the AWGN
model of Figure 7.1, the stochastic process X(f) is a Gaussian process. It follows,
therefore, that X; is a Gaussian random variable for all j in accordance with Property 1 of a
Gaussian process (Chapter 4). Hence, X; is characterized completely by its mean and
variance, which are determined next.

Let W; denote the random variable represented by the sample value w; produced by the
jth correlator in response to the white Gaussian noise component w(f). The random
variable w; has zero mean because the channel noise process W(#) represented by w(f) in
the AWGN model of Figure 7.1 has zero mean by definition. Consequently, the mean of X;

depends only on s;;, as shown by
= E[X.
/qu [ j]
= [E[Sij+ Wj]
= 5+ [E[Wj]
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To find the variance of Xj, we start with the definition
02
X;

var[Xj]

[E[(Xj_sij)z]

= E[W;]

where the last line follows from (7.25) with x; and w; replaced by X; and W, respectively.
According to (7.27), the random variable W; is defined by

T
Wy = | W d
We may therefore expand (7.32) as

2
O, Xi

T T
[Ejo W(1) (1) dzjo W(u) g, (u) du

[E[j:quﬁj(t)qﬁj(u)W(t)W(u) dtdu}

Interchanging the order of integration and expectation, which we can do because they are
both linear operations, we obtain

5 T .T
o, = | [ HO4EW (W) dr du

T .T
= fo fo #,(1)§, ()R (1, u) dr du

where Ryy(t,u) is the autocorrelation function of the noise process W(¢). Since this noise is
stationary, Ry/(t,u) depends only on the time difference ¢ — u. Furthermore, since W(¢) is
white with a constant power spectral density Ny/2, we may express Ry(t,u) as

Ny
RW(I, u) = (7) o(t—u)
Therefore, substituting (7.35) into (7.34) and then using the sifting property of the delta
function 6(¢), we get
N..T.T
2 _ 0 _
o = 5 jojo $.(0) §(u) (1 — ) dr du

N. T
- 7()[0 4 (1) di

Since the ¢(r) have unit energy, by definition, the expression for noise variance o
reduces to

)

O'Xj = 70, for all j

This important result shows that all the correlator outputs, denoted by X]- withj=1,2, ...,
N, have a variance equal to the power spectral density Ny/2 of the noise process W(z).



Conversion of the Continuous AWGN Channel into a Vector Channel 335

Moreover, since the basic functions ¢j(t) form an orthonormal set, X] and X, are
mutually uncorrelated, as shown by

COV[Xij] = [E[(Xj - /qu)(Xk - ka)]

= [E[(Xj - S,'j)(Xk - Sik)]
= E[W;W,]

T T
_ [EUO W(r) (1) dr jo W(u) gy (u) du}
T .T
= jo jo B0 G (R (1, u) dr du
N..T.T
- -ZQJOJO B0 ()5t — ) dt du

N..T
= 3] #H0dw d

=0, j#k

Since the X; are Gaussian random variables, (7.37) implies that they are also statistically
independent in accordance with Property 4 of a Gaussian process (Chapter 4).
Define the vector of N random variables

whose elements are independent Gaussian random variables with mean values equal to s;;
and variances equal to Ny/2. Since the elements of the vector X are statistically
independent, we may express the conditional probability density function of the vector X,
given that the signal s;(#) or the corresponding symbol m; was sent, as the product of the
conditional probability density functions of its individual elements; that is,

N
Ix(x|m;) = HfXj(xj|mi), i=12,....M
j=1
where the vector x and scalar x; are sample values of the random vector X and random
variable X;, respectively. The vector x is called the observation vector; correspondingly, x;
is called an element of the observation vector. A channel that satisfies (7.39) is said to be a
memoryless channel.
Since each X; is a Gaussian random variable with mean s;; and variance Ny/2, we have

fepm) = —=exp[ - -s’] 47T P
X; J| i /nNO Ny j g P i=12...M
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Therefore, substituting (7.40) into (7.39) yields

-N/2 1 X 2 .
fx(x|m;) = (nNy) exp _I—VT) Z (=507, i=1,2 ..M
J=1

which completely characterizes the first term of (7.30).

However, there remains the noise term w’(z) in (7.30) to be accounted for. Since the
noise process W(f) represented by w(f) is Gaussian with zero mean, it follows that the noise
process W'(t¢) represented by the sample function w’(#) is also a zero-mean Gaussian
process. Finally, we note that any random variable W'(z,), say, derived from the noise
process W'(t) by sampling it at time #;, is in fact statistically independent of the random
variable XJ that is to say:

ELX.W/(1.)] = 0 { j=12,..,N

Jr ST 0<#,<T
Since any random variable based on the remainder noise process W'(¢) is independent of
the set of random variables {X;} as well as the set of transmitted signals {s;(£)}, (7.42)
states that the random variable W'(¢,) is irrelevant to the decision as to which particular
signal was actually transmitted. In other words, the correlator outputs determined by the
received signal x(f) are the only data that are useful for the decision-making process;
therefore, they represent sufficient statistics for the problem at hand. By definition,
sufficient statistics summarize the whole of the relevant information supplied by an
observation vector.

We may now summarize the results presented in this section by formulating the
theorem of irrelevance:

Putting this theorem into a mathematical context, we may say that the AWGN channel
model of Figure 7.1a is equivalent to an N-dimensional vector channel described by the
equation

X=S§;+W, i=1,2,...M

where the dimension N is the number of basis functions involved in formulating the signal
vector s; for all i. The individual components of the signal vector s; and the additive Gaussian
noise vector w are defined by (7.5) and (7.27), respectively. The theorem of irrelevance and
its mathematical description given in (7.43) are indeed basic to the understanding of the
signal-detection problem as described next. Just as importantly, (7.43) may be viewed as the
baseband version of the time-dependent received signal of (7.24).

The conditional probability density functions fy(x|m;), i=1,2, ..., M, provide the very
characterization of an AWGN channel. Their derivation leads to a functional dependence
on the observation vector x given the transmitted message symbol m;. However, at the
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receiver we have the exact opposite situation: we are given the observation vector x and
the requirement is to estimate the message symbol m; that is responsible for generating x.
To emphasize this latter viewpoint, we follow Chapter 3 by introducing the idea of a
likelihood function, denoted by [(m;) and defined by

l(ml') = fx(x|mi), i=12,...M

However, tt is important to recall from Chapter 3 that although I(m;) and fx(x|m;) have
exactly the same mathematical form, their individual meanings are quite different.

In practice, we find it more convenient to work with the log-likelihood function,
denoted by L(im;) and defined by

L(m;) = Inl(m,), i=12,...M
where In denotes the natural logarithm. The log-likelihood function bears a one-to-one
relationship to the likelihood function for two reasons:

By definition, a probability density function is always nonnegative. It follows,
therefore, that the likelihood function is likewise a nonnegative quantity.

The logarithmic function is a monotonically increasing function of its argument.
The use of (7.41) in (7.45) yields the log-likelihood function for an AWGN channel as

Limy = L% 2 i=12..M
ml’)__N Z('xj_sij)9 t=12 ...,

0, =

j=1
where we have ignored the constant term —(N/2)In(nN;) since it bears no relation
whatsoever to the message symbol m;. Recall that the Sij j=1,2,..., N, are the elements
of the signal vector s; representing the message symbol m;. With (7.46) at our disposal, we
are now ready to address the basic receiver design problem.

Optimum Receivers Using Coherent Detection

Suppose that, in each time slot of duration 7 seconds, one of the M possible signals s(?),
§5(2), ..., sp(?) is transmitted with equal probability, 1/M. For geometric signal representa-
tion, the signal s;(¢), i =1, 2, ..., M, is applied to a bank of correlators with a common input
and supplied with an appropriate set of N orthonormal basis functions, as depicted in Figure
7.2b. The resulting correlator outputs define the signal vector s;. Since knowledge of the
signal vector s; is as good as knowing the transmitted signal s;(#) itself, and vice versa, we
may represent s;(f) by a point in a Euclidean space of dimension N < M. We refer to this
point as the transmitted signal point, or message point for short. The set of message points
corresponding to the set of transmitted signals { s;(7) }?/I: 1 is called a message constellation.

However, representation of the received signal x(f) is complicated by the presence of
additive noise w(r). We note that when the received signal x(¢) is applied to the bank of N
correlators, the correlator outputs define the observation vector x. According to (7.43), the
vector x differs from the signal vector s; by the noise vector w, whose orientation is
completely random, as it should be.
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The noise vector w is completely characterized by the channel noise w(f); the converse
of this statement, however, is not true, as explained previously. The noise vector w
represents that portion of the noise w(¢) that will interfere with the detection process; the
remaining portion of this noise, denoted by w’(t), is tuned out by the bank of correlators
and, therefore, irrelevant.

Based on the observation vector X, we may represent the received signal x(¢) by a point
in the same Euclidean space used to represent the transmitted signal. We refer to this
second point as the received signal point. Owing to the presence of noise, the received
signal point wanders about the message point in a completely random fashion, in the sense
that it may lie anywhere inside a Gaussian-distributed “cloud” centered on the message
point. This is illustrated in Figure 7.6a for the case of a three-dimensional signal space.
For a particular realization of the noise vector w (i.e., a particular point inside the random
cloud of Figure 7.6a) the relationship between the observation vector x and the signal
vector s; is as illustrated in Figure 7.6b.

We are now ready to state the signal-detection problem:

Given the observation vector X, suppose that we make the decision m = m;. The
probability of error in this decision, which we denote by P(m;|x), is simply

Pe(ml.|x) = 1 -P(m; sent|x)

The requirement is to minimize the average probability of error in mapping each given
observation vector x into a decision. On the basis of (7.47), we may, therefore, state the
optimum decision rule:

¢2 ¢2 .
Noise cloud . Noise

Received vector

signal point w
Observation /

vector Message
X point

Signal vector

S;

0l

03 3
(a) (b)
Illustrating the effect of (a) noise perturbation on (b) the location of the received
signal point.
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The decision rule described in (7.48) is referred to as the maximum a posteriori probability
(MAP) rule. Correspondingly, the system used to implement this rule is called a maximum
a posteriori decoder.

The requirement of (7.48) may be expressed more explicitly in terms of the prior
probabilities of the transmitted signals and the likelihood functions, using Bayes’ rule
discussed in Chapter 3. For the moment, ignoring possible ties in the decision-making
process, we may restate the MAP rule as follows:

In (7.49), we now note the following points:
* the denominator term fx(x) is independent of the transmitted symbol;

* the prior probability 7; = z; when all the source symbols are transmitted with equal
probability; and

* the conditional probability density function fx(x|m;) bears a one-to-one relationship
to the log-likelihood function L(my).

Accordingly, we may simply restate the decision rule of (7.49) in terms of L(m;) as
follows:

The decision rule of (7.50) is known as the maximum likelihood rule, discussed previously
in Chapter 3; the system used for its implementation is correspondingly referred to as the
maximum likelihood decoder. According to this decision rule, a maximum likelihood
decoder computes the log-likelihood functions as metrics for all the M possible message
symbols, compares them, and then decides in favor of the maximum. Thus, the maximum
likelihood decoder is a simplified version of the maximum a posteriori decoder, in that the
M message symbols are assumed to be equally likely.

It is useful to have a graphical interpretation of the maximum likelihood decision rule.
Let Z denote the N-dimensional space of all possible observation vectors x. We refer to
this space as the observation space. Because we have assumed that the decision rule must
say m = m;, where i = 1, 2, ..., M, the total observation space Z is correspondingly
partitioned into M-decision regions, denoted by Z, Z,, ..., Zy;. Accordingly, we may
restate the decision rule of (7.50) as

Aside from the boundaries between the decision regions Zy, Z,, ..., Z, it is clear that this
set of regions covers the entire observation space. We now adopt the convention that all
ties are resolved at random; that is, the receiver simply makes a random guess.
Specifically, if the observation vector x falls on the boundary between any two decision
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rf,gions, Z; and Z;, say, the choice between the two possible decisions m = m; and
m = m, is resolved a priori by the flip of a fair coin. Clearly, the outcome of such an
event does not affect the ultimate value of the probability of error since, on this boundary,
the condition of (7.48) is satisfied with the equality sign.

The maximum likelihood decision rule of (7.50) or its geometric counterpart described
in (7.51) assumes that the channel noise w() is additive. We next specialize this rule for
the case when w(¢) is both white and Gaussian.

From the log-likelihood function defined in (7.46) for an AWGN channel, we note that

N
L(my) attains its maximum value when the summation term 2 (xj — Sy j) is minimized by

j=1
the choice k = i. Accordingly, we may formulate the maximum likelihood decision rule for

an AWGN channel as

Note we have used “minimum” as the optimizing condition in (7.52) because the minus
sign in (7.46) has been ignored. Next, we note from the discussion presented in Section
7.2 that

N 2 2
D =8 = [x=s
j=1

where ||x -s k” is the Buclidean distance between the observation vector x at the receiver
input and the transmitted signal vector s. Accordingly, we may restate the decision rule of
(7.53) as

In words, (7.54) states that the maximum likelihood decision rule is simply to choose the
message point closest to the received signal point, which is intuitively satisfying.

In practice, the decision rule of (7.54) is simplified by expanding the summation on the
left-hand side of (7.53) as

N 5 N, N N,
2 (Gmsg) = DX =2 R s Y sk
j=1 j=1 j=1 j=1
The first summation term of this expansion is independent of the index k pertaining to the
transmitted signal vector s;, and, therefore, may be ignored. The second summation term is

the inner product of the observation vector x and the transmitted signal vector s;. The third
summation term is the transmitted signal energy

N 2
By = sk
j=1
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Illustrating the partitioning of the
observation space into decision regions
for the case when N =2 and M = 4; it is
assumed that the M transmitted symbols
are equally likely.
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Accordingly, we may reformulate the maximum-likelihood decision rule one last time:

From (7.57) we infer that, for an AWGN channel, the M decision regions are bounded by
linear hyperplane boundaries. The example in Figure 7.7 illustrates this statement for
M = 4 signals and N =2 dimensions, assuming that the signals are transmitted with equal
energy E and equal probability.

In light of the material just presented, the optimum receiver for an AWGN channel and for
the case when the transmitted signals s;(f), s5(?), ..., sp(f) are equally likely is called a
correlation receiver; it consists of two subsystems, which are detailed in Figure 7.8:

Detector (Figure 7.8a), which consists of M correlators supplied with a set of
orthonormal basis functions ¢,(1), ¢,(?), ..., @gy(?) that are generated locally; this
bank of correlators operates on the received signal x(¢), 0 < ¢t < T, to produce the
observation vector X.

Maximum-likelihood decoder (Figure 7.8b), which operates on the observation
vector X to produce an estimate m of the transmitted symbol m;, i = 1, 2, ..., M, in
such a way that the average probability of symbol error is minimized.

In accordance with the maximum likelihood decision rule of (7.57), the decoder multiplies
the N elements of the observation vector x by the corresponding N elements of each of the
M signal vectors Sy, S, ..., Sy;. Then, the resulting products are successively summed in
accumulators to form the corresponding set of inner products {XTSk|k =1,2, .., M}
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(a) Detector or demodulator. (b) Signal
transmission decoder.
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Next, the inner products are corrected for the fact that the transmitted signal energies may
be unequal. Finally, the largest one in the resulting set of numbers is selected, and an

appropriate decision on the transmitted message is thereby made.

The detector shown in Figure 7.8a involves a set of correlators. Alternatively, we may use
a different but equivalent structure in place of the correlators. To explore this alternative
method of implementing the optimum receiver, consider a linear time-invariant filter with
impulse response h;(r). With the received signal x(7) operating as input, the resulting filter
output is defined by the convolution integral
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o0

Y1) = f_wX(T)hi(t— Ddr

To proceed further, we evaluate this integral over the duration of a transmitted symbol,
namely 0 < ¢ < T. With time 7 restricted in this manner, we may replace the variable 7 with
t and go on to write

T
y(T) = on(t)hj(T—t) dr

Consider next a detector based on a bank of correlators. The output of the jth correlator is
defined by the first line of (7.25), reproduced here for convenience of representation:

T
x; = jox(t)qﬁj(t) dr

For y;(T) to equal x;, we find from (7.58) and (7.59) that this condition is satisfied provided
that we choose

hi(T—t):(bj(t) for 0<¢<T and j=1,2,....M
Equivalently, we may express the condition imposed on the desired impulse response of
the filter as
hj(t)=¢j(T—t), for 0<¢t<T and j=1,2,...M

We may now generalize the condition described in (7.60) by stating:

A time-invariant filter defined in this way is called a matched filter. Correspondingly, an
optimum receiver using matched filters in place of correlators is called a matched-filter
receiver. Such a receiver is depicted in Figure 7.9, shown below.

0(T=1) —»—0 |No—>— 1

Received 0,(T 1) —>—o\:\o—>—x2 Observation

signal vector
x(1) X

|
> O(T-1) —>—o\'\o—>— XN
Detector part of matched +

filter receiver; the signal transmission Matched sample
decoder is as shown in Figure 7.8(b). filters atr=T
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Probability of Error

To complete the statistical characterization of the correlation receiver of Figure 7.8a or its
equivalent, the matched filter receiver of Figure 7.9, we need to evaluate its performance
in the presence of AWGN. To do so, suppose that the observation space Z is partitioned
into a set of regions, { Zl-} - in accordance with the maximum likelihood decision rule.
Suppose also that symbol m; (or, equivalently, signal vector s;) is transmitted and an
observation vector X is received. Then, an error occurs whenever the received signal point
represented by x does not fall inside region Z; associated with the message point s;.
Averaging over all possible transmitted symbols assumed to be equiprobable, we see that
the average probability of symbol error is

M
Z z,P(x does not lie in Zl-|mi sent)
i=1

P

c

Mz

]\ll P(x does not lie in Zi|ml. sent), 7; = 1/M
i=1

M
1- A—l/; z P(x lies in Zl.|ml. sent)
i=1
where we have used the standard notation to denote the conditional probability of an
event. Since X is the sample value of random vector X, we may rewrite (7.62) in terms of
the likelihood function as follows, given that the message symbol m; is sent:

1 M
Po=1-o .ZIJ‘Z.fX(x|mi) dx
1= t

For an N-dimensional observation vector, the integral in (7.63) is likewise N-dimensional.

There is a uniqueness to the way in which the observation space Z is partitioned into the
set of regions Zy, Z, ..., Zy; in accordance with the maximum likelihood detection of a
signal in AWGN; that uniqueness is defined by the message constellation under study. In
particular, we may make the statement:

This statement embodies the invariance property of the average probability of symbol
error P, with respect to notation and translation, which is the result of two facts:

In maximum likelihood detection, the probability of symbol error P, depends solely
on the relative Euclidean distance between a received signal point and message point
in the constellation.

The AWGN is spherically symmetric in all directions in the signal space.
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To elaborate, consider first the invariance of P, with respect to rotation. The effect of a
rotation applied to all the message points in a constellation is equivalent to multiplying the
N-dimensional signal vector s; by an N-by-N orthonormal matrix denoted by Q for all i.
By definition, the matrix Q satisfies the condition

QQ' =1
where the superscript T denotes matrix transposition and I is the identity matrix whose
diagonal elements are all unity and its off-diagonal elements are all zero. According to
(7.64), the inverse of the real-valued orthonormal matrix Q is equal to its own transpose.
Thus, in dealing with rotation, the message vector s; is replaced by its rotated version

=Qs, i=12..M

Si, rotate

Correspondingly, the N-by-1 noise vector w is replaced by its rotated version

Wiotae = QW

However, the statistical characteristics of the noise vector are unaffected by this rotation
for three reasons:

From Chapter 4 we recall that a linear combination of Gaussian random variables is
also Gaussian. Since the noise vector w is Gaussian, by assumption, then it follows

that the rotated noise vector Wy, is also Gaussian.
Since the noise vector w has zero mean, the rotated noise vector w, also has zero

mean, as shown by

rotate

E[W o] = E[QW]
QE[w]
=0
The covariance matrix of the noise vector w is equal to (Ny/2)I, where Ny/2 is the
power spectral density of the AWGN w(¢) and I is the identity matrix; that is

N,
T 0
E = —1I
[ww'] ==
Hence, the covariance matrix of the rotated noise vector is
T T
EIW,otate Wrotate] = E[QW(QW) ']
TT
= EF[Qww Q ]
T, T
= QE[ww ]Q
N,
__0 T
= 5QQ
N,
- 0
=5 1

where, in the last two lines, we have made use of (7.68) and (7.64).
In light of these three reasons, we may, therefore, express the observation vector in the
rotated message constellation as

X = Qs; +w, i=1,2,...M

rotate
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Using (7.65) and (7.70), we may now express the Euclidean distance between the rotated
VECHOrS Xpoate AN S;oate S

"Xrotate - Si, rotate” = "Qsi Tw- Qsi"

Iwi

. i=12..M

||x—s

i
where, in the last line, we made use of (7.43).
We may, therefore, formally state the principle of rotational invariance:

Tllustration of Rotational Invariance

To illustrate the principle of rotational invariance, consider the signal constellation shown
in Figure 7.10a. The constellation is the same as that of Figure 7.10b, except for the fact
that it has been rotated through 45°. Although these two constellations do indeed look
different in a geometric sense, the principle of rotational invariance teaches us
immediately that the P, is the same for both of them.

b, 0,
Vza,
e RN
\ ‘ 4 N
| 4 N
4 N
| ‘ [0) - o
—o | 0 Ta ! N 0 . !
| } -V2a \\ , 20
O Y AN -
- N //
4
N2«

(a) (b)

A pair of signal constellations for illustrating the principle
of rotational invariance.

Consider next the invariance of P, to translation. Suppose all the message points in a
signal constellation are translated by a constant vector amount a, as shown by

S.—a, i=1,2,...M

Si, translate — i
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The observation vector is correspondingly translated by the same vector amount, as shown
by

Xiranslate = X~ 4

From (7.72) and (7.73) we see that the translation a is common to both the translated signal
vector s; and translated observation vector x. We, therefore, immediately deduce that

||x—si||, fori=1,2,...M

“Xtranslate - Si, translate" =

and thus formulate the principle of translational invariance:

Translation of Signal Constellation

As an example, consider the two signal constellations shown in Figure 7.11, which pertain
to a pair of different four-level PAM signals. The constellation of Figure 7.11b is the same
as that of Figure 7.11a, except for a translation 3¢/2 to the right along the ¢;-axis. The
principle of translational invariance teaches us that the P, is the same for both of these
signal constellations.

oy 2

—3al2 —al2 al2 3al2 0 a 20 30

(a) (b)

A pair of signal constellations for illustrating the principle of translational invariance.

For AWGN channels, the formulation of the average probability of symbol error~ P, is
conceptually straightforward, in that we simply substitute (7.41) into (7.63).
Unfortunately, however, numerical computation of the integral so obtained is impractical,
except in a few simple (nevertheless, important) cases. To overcome this computational
difficulty, we may resort to the use of bounds, which are usually adequate to predict the
SNR (within a decibel or so) required to maintain a prescribed error rate. The
approximation to the integral defining P, is made by simplifying the integral or
simplifying the region of integration. In the following, we use the latter procedure to
develop a simple yet useful upper bound, called the union bound, as an approximation to
the average probability of symbol error for a set of M equally likely signals (symbols) in
an AWGN channel.

Let A;, with (i,k) =1, 2, ..., M, denote the event that the observation vector X is closer

to the signal vector s; than to s;, when the symbol m; (message vector s;) is sent. The

conditional probability of symbol error when symbol m; is sent, P,(m;), is equal to the
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probability of the union of events, defined by the set {A; k}24= X Probability theory
#1i

teaches us that the probability of a finite union of events is overbounded by the sum of the

probabilities of the constituent events. We may, therefore, write

M

P (m,) < Z P@A,), i=12..M
k=1
k#i

Constellation of Four Message Points

To illustrate applicability of the union bound, consider Figure 7.12 for the case of M = 4.
Figure 7.12a shows the four message points and associated decision regions, with the
point s; assumed to represent a transmitted symbol. Figure 7.12b shows the three
constituent signal-space descriptions where, in each case, the transmitted message point s,
and one other message point are retained. According to Figure 7.12a the conditional
probability of symbol error, P.(m;), is equal to the probability that the observation vector x

[
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\ /
AN /7
\ /7
\\ //
s VAN N %
2 , N z1
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X AN
7 N\ 7 N\
/7 \ 7 N
& 0 0 0
s, N\ / Sy
AN /7
3 N X 7 X
X /7
AN /7
N 554 ’
AN

(b)

lustrating the union bound. (a) Constellation of four message points. (b) Three
constellations with a common message point and one other message point X retained from the
original constellation.
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lies in the shaded region of the two-dimensional signal-space diagram. Clearly, this
probability is less than the sum of the probabilities of the three individual events that x lies
in the shaded regions of the three constituent signal spaces depicted in Figure 7.12b.

It is important to note that, in general, the probability P(A;,) is different from the
probability P(m = m «|m;) , which is the probability that the observation vector x is closer
to the signal vector s;, (i.e., symbol my) than every other when the vector s; (i.e., symbol
m;) is sent. On the other hand, the probability P(A4;;) depends on only two signal vectors,
s; and s;. To emphasize this difference, we rewrite (7.75) by adopting p;; in place of
P(A;)- We thus write

M
P (m)< Z Pip i=1,2,...,.M
k=1
k#i
The probability p; is called the pairwise error probability, in that if a digital
communication system uses only a pair of signals, s; and s, then p;; is the probability of
the receiver mistaking s, for s;.

Consider then a simplified digital communication system that involves the use of two
equally likely messages represented by the vectors s; and s;. Since white Gaussian noise is
identically distributed along any set of orthogonal axes, we may temporarily choose the
first axis in such a set as one that passes through the points s; and s;; for three illustrative
examples, see Figure 7.12b. The corresponding decision boundary is represented by the
bisector that is perpendicular to the line joining the points s; and s;. Accordingly, when the
vector s; (i.e., symbol m;) is sent, and if the observation vector x lies on the side of the
bisector where s lies, an error is made. The probability of this event is given by

Pix = P(x is closer to sithan s;, when s; is sent)

o0 2
1 v
= I exp[———j dv
dy/2 TN, Ny

where d;; in the lower limit of the integral is the Euclidean distance between signal vectors
s; and s;; that is,

dy = ”si_skH

To change the integral of (7.77) into a standard form, define a new integration variable

z=FV
NO

Equation (7.77) is then rewritten in the desired form
0 2

e (%)
P, = exp|—= | dz
4 ZRIdik/ N, 2
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The integral in (7.80) is the Q-function of (3.68) that was introduced in Chapter 3. In terms
of the QO-function, we may now express the probability p;; in the compact form

- o )
pik_Qm

Correspondingly, substituting (7.81) into (7.76), we write

P (m)< Z Q[ ZNJ i=1,2,...M
0

1
k¢l

The probability of symbol error, averaged over all the M symbols, is, therefore, over-
bounded as follows:

M
= Z 7P (m;)

i=1

i=1

MU diy

"2 2 ey,
k=1 0
k#i

where 7; is the probability of sending symbol m;.
There are two special forms of (7.83) that are noteworthy:

Suppose that the signal constellation is circularly symmetric about the origin. Then,
the conditional probability of error P,(m;) is the same for all 7, in which case (7.83)
reduces to

Z Q(m) for all i

k=1
k#i

Figure 7.10 illustrates two examples of circularly symmetric signal constellations.

Define the minimum distance of a signal constellation d,;, as the smallest Euclidean
distance between any two transmitted signal points in the constellation, as shown by

dpin = min 9~ foralliand k
k#i
Then, recognizing that the Q-function is a monotonically decreasing function of its
argument, we have

d. d_.
Q[—’k-] < Q[ﬂ‘-] for all i and k
2N, 2N,

Therefore, in general, we may simplify the bound on the average probability of
symbol error in (7.83) as

P <(M_1)Q(jﬂj
O
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The Q-function in (7.87) is itself upper bounded as
2
Q{@j . Lexp[_dmmj
2N,) W2 4N,
Accordingly, we may further simplify the bound on P, in (7.87) as
2
P < (M— 1) exp(_dminJ
VAT AN,

In words, (7.89) states the following:

Thus far, the only figure of merit we have used to assess the noise performance of a digital
communication system in AWGN has been the average probability of symbol (word)
error. This figure of merit is the natural choice when messages of length m = logy, M are
transmitted, such as alphanumeric symbols. However, when the requirement is to transmit
binary data such as digital computer data, it is often more meaningful to use another figure
of merit called the BER. Although, in general, there are no unique relationships between
these two figures of merit, it is fortunate that such relationships can be derived for two
cases of practical interest, as discussed next.

M-tuples Differing in Only a Single Bit

Suppose that it is possible to perform the mapping from binary to M-ary symbols in such a
way that the two binary M-tuples corresponding to any pair of adjacent symbols in the M-ary
modulation scheme differ in only one bit position. This mapping constraint is satisfied by
using a Gray code. When the probability of symbol error P, is acceptably small, we find that
the probability of mistaking one symbol for either one of the two “nearest” symbols is
greater than any other kind of symbol error. Moreover, given a symbol error, the most
probable number of bit errors is one, subject to the aforementioned mapping constraint.
Since there are log, M bits per symbol, it follows that the average probability of symbol error
is related to the BER as follows:
log,M
P, = P( ) {ithbitisinerror})

i=1
log,M
< Z [P (ith bit is in error)
i=1
= log,M - (BER)
where, in the first line, U is the symbol for “union” as used in set theory. We also note that

P_ > P(ith bitis in error) = BER
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It follows, therefore, that the BER is bounded as follows:
P

[

log, M

<BER<P,

Number of Symbols Equal to Integer Power of 2

Suppose next M = 2K where K is an integer. We assume that all symbol errors are equally
likely and occur with probability

P P

€ €

where P, is the average probability of symbol error. To find the probability that the ith bit
in a symbol is in error, we note that there are 2K =1 cases of symbol error in which this
particular bit is changed and there are 2K =1 cases in which it is not. Hence, the BER is

[ZKI)P
K1) ¢

_ M/2)
BER = (M_l P,

BER

or, equivalently,

Note that, for large M, the BER approaches the limiting value of P./2. Note also that the
bit errors are not independent in general.

Phase-Shift Keying Techniques Using Coherent Detection

With the background material on the coherent detection of signals in AWGN presented in
Sections 7.2-7.4 at our disposal, we are now ready to study specific passband data-
transmission systems. In this section, we focus on the family of phase-shift keying (PSK)
techniques, starting with the simplest member of the family discussed next.

In a binary PSK system, the pair of signals s;(¢) and s,(¢) used to represent binary symbols
1 and 0, respectively, is defined by

2E,
51(t) = |=—cos(2nf,t), 0<t<T,
Tb
2E, 2E,
55(8) = [=—cos(2nf t+ 1) = — |[——cos(2nf 1), 0<t<Ty
Tb Tb

where Ty, is the bit duration and Ey is the transmitted signal energy per bit. We find it con-
venient, although not necessary, to assume that each transmitted bit contains an integral
number of cycles of the carrier wave; that is, the carrier frequency f, is chosen equal to
n /Ty, for some fixed integer n.. A pair of sinusoidal waves that differ only in a relative
phase-shift of 180°, defined in (7.95) and (7.96), is referred to as an antipodal signal.
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Signal-Space Diagram of Binary PSK Signals
From this pair of equations it is clear that, in the case of binary PSK, there is only one
basis function of unit energy:

$ (1) = J:cos(an 1), 0<t<Ty
b
Then, we may respectively express the transmitted signals s;(¢) and s,(¢) in terms of ¢;(¢) as
si(t) = JEg¢ (1),  O0<t<T,
5,(1) = = [Ey 4 (1),  0<i<T,

A binary PSK system is, therefore, characterized by having a signal space that is
one-dimensional (i.e., N = 1), with a signal constellation consisting of two message points
(i.e., M = 2). The respective coordinates of the two message points are

Tb
sy = jo 51(0 ¢, (1) di
= +/\/Fb
Tb
5y = jo 5,(0) ¢, (1) di

In words, the message point corresponding to s;(f) is located at s;; = + «/E_b and the
message point corresponding to s,(f) is located at s,; = — ﬂ Figure 7.13a displays the
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signal-space diagram for binary PSK and Figure 7.13b shows example waveforms of
antipodal signals representing s;(¢) and s,(#). Note that the binary constellation of Figure
7.13 has minimum average energy.

Generation of a binary PSK signal follows readily from (7.97) to (7.99). Specifically, as
shown in the block diagram of Figure 7.14a, the generator (transmitter) consists of two
components:

Polar NRZ-level encoder, which represents symbols 1 and 0 of the incoming binary
sequence by amplitude levels + Jfl) and — A/E7b , respectively.

Product modulator, which multiplies the output of the polar NRZ encoder by the
basis function ¢;(#); in effect, the sinusoidal ¢;(¢) acts as the “carrier” of the binary
PSK signal.

Accordingly, binary PSK may be viewed as a special form of DSB-SC modulation that
was studied in Section 2.14.

Error Probability of Binary PSK Using Coherent Detection

To make an optimum decision on the received signal x(f) in favor of symbol 1 or symbol 0
(i.e., estimate the original binary sequence at the transmitter input), we assume that the
receiver has access to a locally generated replica of the basis function ¢;(t). In other
words, the receiver is synchronized with the transmitter, as shown in the block diagram of
Figure 7.14b. We may identify two basic components in the binary PSK receiver:

Correlator, which correlates the received signal x(f) with the basis function ¢;(¢) on
a bit-by-bit basis.

Decision device, which compares the correlator output against a zero-threshold,
assuming that binary symbols 1 and 0 are equiprobable. If the threshold is exceeded,
a decision is made in favor of symbol 1; if not, the decision is made in favor of
symbol 0. Equality of the correlator with the zero-threshold is decided by the toss of
a fair coin (i.e., in a random manner).

With coherent detection in place, we may apply the decision rule of (7.54). Specifically,
we partition the signal space of Figure 7.13 into two regions:

* the set of points closest to message point 1 at +,/E, ; and
* the set of points closest to message point 2 at — /E} .

This is accomplished by constructing the midpoint of the line joining these two message
points and then marking off the appropriate decision regions. In Figure 7.13, these two
decision regions are marked Z; and Z,, according to the message point around which they
are constructed.

The decision rule is now simply to decide that signal s(¢) (i.e., binary symbol 1) was
transmitted if the received signal point falls in region Z; and to decide that signal s,(t)
(i.e., binary symbol 0) was transmitted if the received signal point falls in region Z,. Two
kinds of erroneous decisions may, however, be made:

Error of the first kind. Signal s,(f) is transmitted but the noise is such that the received
signal point falls inside region Z;; so the receiver decides in favor of signal s;(¢).

Error of the second kind. Signal s((¢) is transmitted but the noise is such that the
received signal point falls inside region Z,; so the receiver decides in favor of signal s,(¢).
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Binary Polartg_c;r;:zturn— Product B;gaKry
data > modulator >
sequence level encoder signal

T s(1)
2

0.(1) = /T— cos (2mf 1)
b

()

Correlator

device Choose 0 if x; <0

f

Threshold =0

Decision { Choose 1 if x, >0
——

(b)

Block diagrams for (a) binary PSK transmitter and (b) coherent
binary PSK receiver.

To calculate the probability of making an error of the first kind, we note from Figure 7.13a
that the decision region associated with symbol 1 or signal s(¢) is described by

Zl:()<x1<oo

where the observable element x is related to the received signal x(#) by

Tb
x| = jo x(1) 4, (1) d

The conditional probability density function of random variable X;, given that symbol 0
(i.e., signal s,(f)) was transmitted, is defined by

I 1
fy, (x1]0) = exp[—ﬁ(—)(xl ~s5y)’]

.

Using (7.101) in this equation yields

1 1 2
fy, (x,|0) = Eexp[—ﬁom + JEy) |

The conditional probability of the receiver deciding in favor of symbol 1, given that
symbol 0 was transmitted, is therefore

Pio = —1—J.OOexp[——1—(x1 + A/ET))ZJ dx,
/TNG*0 No

Putting

z= /\/%(xl"’«/ib)
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and changing the variable of integration from x; to z, we may compactly rewrite (7.105) in
terms of the Q-function:
) ZZ
exp|-= | d
(5 ) e

1
Py = —
0 2w j RE,/N,

Using the formula of (3.68) in Chapter 3 for the Q-function in (7.107) we get

~ Q[ /2Ebj
P = N,

Consider next an error of the second kind. We note that the signal space of Figure 7.13a is
symmetric with respect to the origin. It follows, therefore, that pg;, the conditional
probability of the receiver deciding in favor of symbol 0, given that symbol 1 was
transmitted, also has the same value as in (7.108).

Thus, averaging the conditional error probabilities p;q and pg;, we find that the average
probability of symbol error or, equivalently, the BER for binary PSK using coherent
detection and assuming equiprobable symbols is given by

ool )
0

As we increase the transmitted signal energy per bit E, for a specified noise spectral
density Ny/2, the message points corresponding to symbols 1 and O move further apart and
the average probability of error P, is correspondingly reduced in accordance with (7.109),
which is intuitively satisfying.

Power Spectra of Binary PSK Signals

Examining (7.97) and (7.98), we see that a binary PSK wave is an example of DSB-SC
modulation that was discussed in Section 2.14. More specifically, it consists of an in-phase
component only. Let g(¢) denote the underlying pulse-shaping function defined by

2E,

JR—— <t<
g(n) = T,’ 0=r=Ty

0, otherwise

Depending on whether the transmitter input is binary symbol 1 or 0, the corresponding
transmitter output is +g(f) or —g(#), respectively. It is assumed that the incoming binary
sequence is random, with symbols 1 and O being equally likely and the symbols
transmitted during the different time slots being statistically independent.

In Example 6 of Chapter 4, it was shown that the power spectral density of a random
binary wave so described is equal to the energy spectral density of the symbol shaping
function divided by the symbol duration. The energy spectral density of a Fourier-
transformable signal g(¢) is defined as the squared magnitude of the signal’s Fourier
transform. For the binary PSK signal at hand, the baseband power spectral density is,
therefore, defined by
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2E, sin“(nT, f)
(nTof)°

2E, sinc (T} f)

Sg(f)

Examining (7.111), we may make the following observations on binary PSK:

The power spectral density Sg(f) is symmetric about the vertical axis, as expected.
Sg(f) goes through zero at multiples of the bit rate; that is, f= +1/Ty, £2/Ty,, ...

With sinz(nbe) limited to a maximum value of unity, Sg(f) falls off as the inverse
square of the frequency, f.

These three observations are all embodied in the plot of Sg(f) versus f, presented in Figure 7.15.

Figure 7.15 also includes a plot of the baseband power spectral density of a binary
frequency-shift keying (FSK) signal, details of which are presented in Section 7.8.
Comparison of these two spectra is deferred to that section.

The provision of reliable performance, exemplified by a very low probability of error, is
one important goal in the design of a digital communication system. Another important
goal is the efficient utilization of channel bandwidth. In this subsection we study a
bandwidth-conserving modulation scheme known as quadriphase-shift keying (QPSK),
using coherent detection.

As with binary PSK, information about the message symbols in QPSK is contained in
the carrier phase. In particular, the phase of the carrier takes on one of four equally spaced

1.0

Binary PSK

Delta function
(part of FSK spectrum)

Normalized power spectral density, Sp(f)/2E},
o
o
I

| |
0 0.5 1.0 1.5 2.0
Normalized frequency, /Ty,

Power spectra of binary PSK and FSK signals.
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values, such as m/4, 3n/4, 5n/4, and 7n/4. For this set of values, we may define the trans-
mitted signal as

2F . T 0<t<T
= 2nft+ (2i—-1)=|,
si() =1 7 cos| 2nfs+ 2i- D] | { = 1,2,3,4
0, elsewhere

where E is the transmitted signal energy per symbol and T is the symbol duration. The
carrier frequency f, equals n. /I for some fixed integer n.. Each possible value of the phase
corresponds to a unique dibit (i.e., pair of bits). Thus, for example, we may choose the
foregoing set of phase values to represent the Gray-encoded set of dibits, 10, 00, 01, and
11, where only a single bit is changed from one dibit to the next.

Signal-Space Diagram of QPSK Signals

Using a well-known trigonometric identity, we may expand (7.112) to redefine the
transmitted signal in the canonical form:

5(1) = [cos[(Zl—l) Jcos(ant) [sm (2i— 1)E Jsm(ant)

where i = 1, 2, 3, 4. Based on this representation, we make two observations:

There are two orthonormal basis functions, defined by a pair of quadrature carriers:

9, (1) = ﬁCOS(Zﬂfct), 0<t<T
$(1) = ﬁsin(anct), 0<t<T

¢
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Signal-space characterization of QPSK

11 /4 +JE/2 +JE/2
01 3n/4 _JE/2 +JE/2
00 Sn/4 _JE/2 -JE/2
10 T/ +JE/2 _JE/2

There are four message points, defined by the two-dimensional signal vector

ﬁcos((Zi - l)g)

s; = . i=1,2,3,4

—ﬁsin((zi— 1)9

Elements of the signal vectors, namely s;; and s, have their values summarized in
Table 7.2; the first two columns give the associated dibit and phase of the QPSK signal.

Accordingly, a QPSK signal has a two-dimensional signal constellation (i.e., N = 2) and
four message points (i.e., M = 4) whose phase angles increase in a counterclockwise
direction, as illustrated in Figure 7.16. As with binary PSK, the QPSK signal has minimum
average energy.

QPSK Waveforms

Figure 7.17 illustrates the sequences and waveforms involved in the generation of a QPSK
signal. The input binary sequence 01101000 is shown in Figure 7.17a. This sequence is
divided into two other sequences, consisting of odd- and even-numbered bits of the input
sequence. These two sequences are shown in the top lines of Figure 7.17b and c. The
waveforms representing the two components of the QPSK signal, namely s;;#;(¢) and
Sip¢(t) are also shown in Figure 7.17b and c, respectively. These two waveforms may
individually be viewed as examples of a binary PSK signal. Adding them, we get the
QPSK waveform shown in Figure 7.17d.

To define the decision rule for the coherent detection of the transmitted data sequence,
we partition the signal space into four regions, in accordance with Table 7.2. The
individual regions are defined by the set of symbols closest to the message point
represented by message vectors s;, S,, S3, and s,. This is readily accomplished by
constructing the perpendicular bisectors of the square formed by joining the four message
points and then marking off the appropriate regions. We thus find that the decision regions
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Input
binary 0 1 1 0 1 0 0 0
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Dibit 01 Dibit 10 Dibit 10 Dibit 00
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(a) Input binary sequence. (b) Odd-numbered dibits of input sequence and associated
binary PSK signal. (c) Even-numbered dibits of input sequence and associated binary PSK signal.
(d) QPSK waveform defined as s(#) = s;; ¢ (t) + s ¢ (0).

are quadrants whose vertices coincide with the origin. These regions are marked Z;, Z,,
Z3, and Z, in Figure 7.17, according to the message point around which they are
constructed.

Generation and Coherent Detection of QPSK Signals

Expanding on the binary PSK transmitter of Figure 7.14a, we may build on (7.113) to
(7.115) to construct the QPSK transmitter shown in Figure 7.18a. A distinguishing feature
of the QPSK transmitter is the block labeled demultiplexer. The function of the
demultiplexer is to divide the binary wave produced by the polar NRZ-level encoder into
two separate binary waves, one of which represents the odd-numbered dibits in the
incoming binary sequence and the other represents the even-numbered dibits.
Accordingly, we may make the following statement:
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(ll(f)
&)
§,(0) = \J2/T cos(2nf.r)
Binary Polar nonreturn- QPSK
data to-zero level Demultiplexer <2>_>signal
sequence encoder + ()
ay(1)
@ 9,(1) = +/ 2/T sin(2xf,1)
a
Threshold = 0
f T dar *1 Decision
o "1 device
0,(0) In-phase channel A
Received Estimate of
signal Multiplexer —> transmitted binary
x(1) sequence
T X2 | Decision
X j(; dr device
,(1) T
Threshold = 0

Quadrature channel
(b)
Block diagram of (a) QPSK transmitter and (b) coherent QPSK receiver.

Expanding on the binary PSK receiver of Figure 7.14b, we find that the QPSK receiver is
structured in the form of an in-phase path and a quadrature path, working in parallel as
depicted in Figure 7.18b. The functional composition of the QPSK receiver is as follows:

Fair of correlators, which have a common input x(f). The two correlators are
supplied with a pair of locally generated orthonormal basis functions ¢,(t) and ¢,(%),
which means that the receiver is synchronized with the transmitter. The correlator
outputs, produced in response to the received signal x(¢), are denoted by x; and x,,
respectively.

Pair of decision devices, which act on the correlator outputs x; and x, by comparing
each one with a zero-threshold; here, it is assumed that the symbols 1 and O in the
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original binary stream at the transmitter input are equally likely. If x; > 0, a decision
is made in favor of symbol 1 for the in-phase channel output; on the other hand, if
x1 <0, then a decision is made in favor of symbol 0. Similar binary decisions are
made for the quadrature channel.

Multiplexer, the function of which is to combine the two binary sequences produced
by the pair of decision devices. The resulting binary sequence so produced provides
an estimate of the original binary stream at the transmitter input.

Error Probability of QPSK
In a QPSK system operating on an AWGN channel, the received signal x(#) is defined by

0<t<T

x(r) = s;(1) +w(1), { i- 1234

where w(f) is the sample function of a white Gaussian noise process of zero mean and
power spectral density Ny/2.

Referring to Figure 7.18a, we see that the two correlator outputs, x; and x,, are
respectively defined as follows:

T
x| = jox(z)¢1(z) dr
= ﬁcos[(Zi— l)ﬂ +wy
= i£+w1
and
T
X, = jox(t)¢2(t) dr

ﬁsin[(Zi— 1)fﬂ +w,

Thus, the observable elements x; and x, are sample values of independent Gaussian
random variables with mean values equal to J_m/m and $Jl?—/2 , respectively, and with
a common variance equal to Ny/2.

The decision rule is now simply to say that s1(f) was transmitted if the received signal
point associated with the observation vector x falls inside region Z;; say that s,(f) was
transmitted if the received signal point falls inside region Z,, and so on for the other two
regions Z3 and Z;. An erroneous decision will be made if, for example, signal s4(¢) is
transmitted but the noise w(?) is such that the received signal point falls outside region Z,.

To calculate the average probability of symbol error, recall that a QPSK receiver is in
fact equivalent to two binary PSK receivers working in parallel and using two carriers that
are in phase quadrature. The in-phase channel x; and the quadrature channel output x,
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(i.e., the two elements of the observation vector x) may be viewed as the individual
outputs of two binary PSK receivers. Thus, according to (7.118) and (7.119), these two
binary PSK receivers are characterized as follows:

» signal energy per bit equal to E/2, and
* noise spectral density equal to Ny/2.

Hence, using (7.109) for the average probability of bit error of a coherent binary PSK
receiver, we may express the average probability of bit error in the in-phase and
quadrature paths of the coherent QPSK receiver as

P =of )

Q N,

where E is written in place of 2E;,. Another important point to note is that the bit errors in
the in-phase and quadrature paths of the QPSK receiver are statistically independent. The
decision device in the in-phase path accounts for one of the two bits constituting a symbol
(dibit) of the QPSK signal, and the decision device in the quadrature path takes care of the
other dibit. Accordingly, the average probability of a correct detection resulting from the
combined action of the two channels (paths) working together is

P. = (1-P

: O]

-20( [E) 0¥ [E)

The average probability of symbol error for QPSK is therefore
P, =1-P,

sl [B)-o1 )

In the region where (E/N;) >>1, we may ignore the quadratic term on the right-hand side of
(7.122), so the average probability of symbol error for the QPSK receiver is approximated as
E

ro~20f [E)
Equation (7.123) may also be derived in another insightful way, using the signal-space
diagram of Figure 7.16. Since the four message points of this diagram are circularly
symmetric with respect to the origin, we may apply the approximate formula of (7.85)
based on the union bound. Consider, for example, message point m; (corresponding to
dibit 10) chosen as the transmitted message point. The message points m, and my
(corresponding to dibits 00 and 11) are the closest to m . From Figure 7.16 we readily find
that m, is equidistant from m, and m, in a Euclidean sense, as shown by

dip =dy = J2E

Assuming that E/Nj, is large enough to ignore the contribution of the most distant message
point m3 (corresponding to dibit 01) relative to m, we find that the use of (7.85) with the
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equality sign yields an approximate expression for P, that is the same as that of (7.123).
Note that in mistaking either m, or m, for my, a single bit error is made; on the other hand,
in mistaking ms for m, two bit errors are made. For a high enough E/N, the likelihood of
both bits of a symbol being in error is much less than a single bit, which is a further
justification for ignoring m5 in calculating P, when m is sent.

In a QPSK system, we note that since there are two bits per symbol, the transmitted
signal energy per symbol is twice the signal energy per bit, as shown by

E = 2E,

Thus, expressing the average probability of symbol error in terms of the ratio E,/N;, we
may write

2E

P =2 b
¢ Q( Ny

With Gray encoding used for the incoming symbols, we find from (7.120) and (7.124) that

the BER of QPSK is exactly
2E,
BER = Q| |—
NO

We may, therefore, state that a QPSK system achieves the same average probability of bit
error as a binary PSK system for the same bit rate and the same Ey/N), but uses only half
the channel bandwidth. Stated in another way:

For a prescribed performance, QPSK uses channel bandwidth better than binary PSK,
which explains the preferred use of QPSK over binary PSK in practice.

Earlier we stated that the binary PSK may be viewed as a special case of DSB-SC
modulation. In a corresponding way, we may view the QPSK as a special case of the
quadrature amplitude modulation (QAM) in analog modulation theory.

Power Spectra of QPSK Signals

Assume that the binary wave at the modulator input is random with symbols 1 and O being
equally likely, and with the symbols transmitted during adjacent time slots being
statistically independent. We then make the following observations pertaining to the in-
phase and quadrature components of a QPSK signal:

Depending on the dibit sent during the signaling interval —T}, < f < Ty, the in-phase
component equals +g(#) or —g(#), and similarly for the quadrature component. The
g(?) denotes the symbol-shaping function defined by

E
= <t<
g(1) = J;’ O=i<T

0, otherwise



Phase-Shift Keying Techniques Using Coherent Detection 365

1.0
£
$§]
N
=
m
A
2z
‘0
c
[}
kel
s
S 0.5
a
12}
5]
=
=
kel
S
©
IS
S
Z 0.1
| e — |
0 0.25 0.5 0.75 1.0

Normalized frequency, fTy,

Power spectra of QPSK and MSK signals.

Hence, the in-phase and quadrature components have a common power spectral
density, namely, £ sincz(Tf).

The in-phase and quadrature components are statistically independent. Accordingly,
the baseband power spectral density of the QPSK signal equals the sum of the
individual power spectral densities of the in-phase and quadrature components, so
we may write

Sg(f) = 2E sinc’(Tf)

4E, sinc’ (2T, f)

Figure 7.19 plots Sg(f), normalized with respect to 4E;, versus the normalized frequency
Ty f. This figure also includes a plot of the baseband power spectral density of a certain
form of binary FSK called minimum shift keying, the evaluation of which is presented in
Section 7.8. Comparison of these two spectra is deferred to that section.

For a variation of the QPSK, consider the signal-space diagram of Figure 7.20a that
embodies all the possible phase transitions that can arise in the generation of a QPSK
signal. More specifically, examining the QPSK waveform illustrated in Figure 7.17 for
Example 6, we may make three observations:

The carrier phase changes by £180° whenever both the in-phase and quadrature
components of the QPSK signal change sign. An example of this situation is
illustrated in Figure 7.17 when the input binary sequence switches from dibit 01 to
dibit 10.
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The carrier phase changes by £90° whenever the in-phase or quadrature component
changes sign. An example of this second situation is illustrated in Figure 7.17 when
the input binary sequence switches from dibit 10 to dibit 00, during which the in-
phase component changes sign, whereas the quadrature component is unchanged.

The carrier phase is unchanged when neither the in-phase component nor the
quadrature component changes sign. This last situation is illustrated in Figure 7.17
when dibit 10 is transmitted in two successive symbol intervals.

Situation 1 and, to a much lesser extent, situation 2 can be of a particular concern when the
QPSK signal is filtered during the course of transmission, prior to detection. Specifically,
the 180° and 90° shifts in carrier phase can result in changes in the carrier amplitude (i.e.,
envelope of the QPSK signal) during the course of transmission over the channel, thereby
causing additional symbol errors on detection at the receiver.

To mitigate this shortcoming of QPSK, we need to reduce the extent of its amplitude
fluctuations. To this end, we may use offset OQPSK.  In this variant of QPSK, the bit stream
responsible for generating the quadrature component is delayed (i.e., offset) by half a
symbol interval with respect to the bit stream responsible for generating the in-phase
component. Specifically, the two basis functions of offset QPSK are defined by

#1(1) = ﬁCOS(Zﬂfct), 0<1<T

and
by(1) = ﬁsin(anct), gs r< %T

The ¢;(¢) of (7.129) is exactly the same as that of (7.114) for QPSK, but the ¢ (f) of
(7.130) is different from that of (7.115) for QPSK. Accordingly, unlike QPSK, the phase
transitions likely to occur in offset QPSK are confined to £90°, as indicated in the signal-
space diagram of Figure 7.20b. However, £90° phase transitions in offset QPSK occur
twice as frequently but with half the intensity encountered in QPSK. Since, in addition to
190° phase transitions, £180° phase transitions also occur in QPSK, we find that
amplitude fluctuations in offset QPSK due to filtering have a smaller amplitude than in the
case of QPSK.

[ 0,
o———+ —— 5o o—— -+ —— >0
™ i ) t
[N aa | |
! \\// ! ¢ ! ! ¢
Y AN ! .o | !
| // \\ | | |
b LN [ . |
o~ —~e o —e
(@) (b)

Possible paths for switching between the message points
in (a) QPSK and (b) offset QPSK.
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Despite the delay 7/2 applied to the basis function ¢,(f) in (7.130) compared with that
in (7.115) for QPSK, the offset QPSK has exactly the same probability of symbol error in
an AWGN channel as QPSK. The equivalence in noise performance between these PSK
schemes assumes the use of coherent detection at the receiver. The reason for the
equivalence is that the statistical independence of the in-phase and quadrature components
applies to both QPSK and offset QPSK. We may, therefore, say that Equation (7.123) for
the average probability of symbol error applies equally well to the offset QPSK.

QPSK is a special case of the generic form of PSK commonly referred to as M-ary PSK,
where the phase of the carrier takes on one of M possible values: 6; = 2(i — 1)n/M, where
i=1,2, ..., M. Accordingly, during each signaling interval of duration 7, one of the M
possible signals

2F 27, .
s(1) = J;cos[znfcmﬁ(z—l)} i=1,2,...M

is sent, where F is the signal energy per symbol. The carrier frequency f. = n /T for some
fixed integer n...

Each s;(f) may be expanded in terms of the same two basis functions ¢;(¢) and ¢,(t); the
signal constellation of M-ary PSK is, therefore, two-dimensional. The M message points
are equally spaced on a circle of radius JE and center at the origin, as illustrated in Figure
7.21a for the case of octaphase-shift-keying (i.e., M = 8).

From Figure 7.21a we see that the signal-space diagram is circularly symmetric. We
may, therefore, apply (7.85), based on the union bound, to develop an approximate formula
for the average probability of symbol error for M-ary PSK. Suppose that the transmitted
signal corresponds to the message point m1;, whose coordinates along the ¢;- and ¢,-axes are
+./E and 0, respectively. Suppose that the ratio E/N, is large enough to consider the nearest
two message points, one on either side of m, as potential candidates for being mistaken for
my due to channel noise. This is illustrated in Figure 7.21b for the case of M = 8. The
Euclidean distance for each of these two points from m is (for M = 8)

d,=d;g= Zﬁsin(ﬂ%)

Hence, the use of (7.85) yields the average probability of symbol error for coherent M-ary

PSK as
RE . (=&
Pez2Q|: ﬁ(;Sln(l—V})}

where it is assumed that M > 4. The approximation becomes extremely tight for fixed M, as
E/N, is increased. For M =4, (7.132) reduces to the same form given in (7.123) for QPSK.

Power Spectra of M-ary PSK Signals
The symbol duration of M-ary PSK is defined by

T = Tylog,M
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where Ty, is the bit duration. Proceeding in a manner similar to that described for a QPSK
signal, we may show that the baseband power spectral density of an M-ary PSK signal is
given by

S(f) = 2E sinc’(Tf)

2E, (log ,M)[sinc”(T,f log,M)]

Figure 7.22 is a plot of the normalized power spectral density Sg(f)/2E; versus the
normalized frequency Tyf for three different values of M, namely M = 2, 4, 8. Equation
(7.134) includes (7.111) for M =2 and (7.128) for M = 4 as two special cases.

The baseband power spectra of M-ary PSK signals plotted in Figure 7.22 possess a
main lobe bounded by well-defined spectral nulls (i.e., frequencies at which the power
spectral density is zero). In light of the discussion on the bandwidth of signals presented in
Chapter 2, we may use the main lobe as a basis for bandwidth assessment. Accordingly,
invoking the notion of null-to-null bandwidth, we may say that the spectral width of the
main lobe provides a simple, yet informative, measure for the bandwidth of M-ary PSK
signals. Most importantly, a large fraction of the average signal power is contained inside
the main lobe. On this basis, we may define the channel bandwidth required to pass M-ary
PSK signals through an analog channel as

B ==
T

where T is the symbol duration. But the symbol duration 7 is related to the bit duration 7y,
by (7.133). Moreover, the bit rate R, = 1/T},. Hence, we may redefine the channel
bandwidth of (7.135) in terms of the bit rate as

2R,

- log, M

w
o

n
o

—
o

Normalized power spectral density, Sg(f)/2E,

o

0.5 1.0
Normalized frequency, Ty f

Power spectra of M-ary PSK signals for M = 2, 4, 8.
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Bandwidth efficiency of M-ary PSK signals

p (bit/(s/Hz)) 0.5 1 1.5 2 25 3

Based on this formula, the bandwidth efficiency of M-ary PSK signals is given by
R
"
P=B
log, M
2

Table 7.3 gives the values of p calculated from (7.137) for varying M. In light of (7.132)
and Table 7.3, we now make the statement:

However, note that if we are to ensure that there is no degradation in error performance,
we have to increase E},/N to compensate for the increase in M.

M-ary Quadrature Amplitude Modulation

In an M-ary PSK system, the in-phase and quadrature components of the modulated signal
are interrelated in such a way that the envelope is constrained to remain constant. This
constraint manifests itself in a circular constellation for the message points, as illustrated
in Figure 7.21a. However, if this constraint is removed so as to permit the in-phase and
quadrature components to be independent, we get a new modulation scheme called M-ary
QAM. The QAM is a hybrid form of modulation, in that the carrier experiences amplitude
as well as phase-modulation.

In M-ary PAM, the signal-space diagram is one-dimensional. M-ary QAM is a two-
dimensional generalization of M-ary PAM, in that its formulation involves two orthogonal
passband basis functions:

¢, (1) = J%COS(ZﬂfCt), 0<t<T
P (1) = ﬁsin(znfct), 0<t<T

Let d,;, denote the minimum distance between any two message points in the QAM
constellation. Then, the projections of the ith message point on the ¢;- and ¢ -axes are
respectively defined by a; d,;,/2 and b; d,,;,/2, where i = 1, 2, ..., M. With the separation
between two message points in the signal-space diagram being proportional to the square
root of energy, we may therefore set

d .
I;llnzA/E)
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where E) is the energy of the message signal with the lowest amplitude. The transmitted
M-ary QAM signal for symbol k can now be defined in terms of E:

2E, 2E, | 0<t<T
s (1) = T“kcos(zﬁfcf)— Tbksm(anct), k=0,+1,+2, ...

The signal s,(¢) involves two phase-quadrature carriers, each one of which is modulated by
a set of discrete amplitudes; hence the terminology “quadrature amplitude modulation.”

In M-ary QAM, the constellation of message points depends on the number of possible
symbols, M. In what follows, we consider the case of square constellations, for which the
number of bits per symbol is even.

QAM Square Constellations
With an even number of bits per symbol, we write

L = J]T/I, L: positive integer

Under this condition, an M-ary QAM square constellation can always be viewed as the
Cartesian product of a one-dimensional L-ary PAM constellation with itself. By definition,
the Cartesian product of two sets of coordinates (representing a pair of one-dimensional
constellations) is made up of the set of all possible ordered pairs of coordinates with the
first coordinate in each such pair being taken from the first set involved in the product and
the second coordinate taken from the second set in the product.

Thus, the ordered pairs of coordinates naturally form a square matrix, as shown by

(-L+1,L-1) (-L+3,L-1) — (L-1,L-1)
{a b} = (—L+1|,L—3) (_L+3.’L_3) (L_l’.L_3)
(-L+ l,I—L+ 1) (—L+3,I—L+ 1) — (L- l,I—L+ 1)
To calculate the probability of symbol error for this M-ary QAM, we exploit the following
property:

To exploit this statement, we may proceed in one of two ways:

We start with a signal constellation of the M-ary PAM for a prescribed M,
and then build on it to construct the corresponding signal constellation of the M-ary QAM.

We start with a signal constellation of the M-ary QAM, and then use it to
construct the corresponding orthogonal M-ary PAMS.

In the example to follow, we present a systematic procedure based on Approach 1.

M-ary QAM for M =4

In Figure 7.23, we have constructed two signal constellations for the 4-ary PAM, one
vertically oriented along the ¢;-axis in part a of the figure, and the other horizontally
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oriented along the ¢,-axis in part b of the figure. These two parts are spatially orthogonal
to each other, accounting for the two-dimensional structure of the M-ary QAM. In
developing this structure, the following points should be born in mind:

* The same binary sequence is used for both 4-ary PAM constellations.

e The Gray encoding rule is applied, which means that as we move from one
codeword to an adjacent one, only a single bit is changed.
* In constructing the 4-ary QAM constellation, we move from one quadrant to the

next in a counterclockwise direction.

With four quadrants constituting the 4-ary QAM, we proceed in four stages as follows:

First-quadrant constellation. Referring to Figure 7.23, we use the codewords

along the positive parts of the ¢, and ¢,-axes, respectively, to write

} [10 11]—{

11
10

Top to Leftto
bottom right

Second-quadrant constellation. Following the same procedure as in Stage 1, we

|

write

Top to Left to
bottom right

11

10

00

01

9,
3d/2 ¢
dl2 ¢
0——
—d/2 ¢
The two orthogonal constellations of the
4-ary PAM. (a) Vertically oriented -3d/2
constellation. (b) Horizontally oriented
constellation. As mentioned in the text,

we move top-down along the ¢,-axis and
from left to right along the ¢,-axis. (a)

01

40—0—|—0—07¢1

-3d/2

1110 111
1010 1011

First quadrant

1101 1100

}

1001 1000

00

—d/2

Second quadrant

0

(b)

10

dli2

11

3d/2
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Third-quadrant constellation. Again, following the same procedure as before,

we next write
00 0001 0000
%
{OJ [01 00] |i0101 0100}

Topto Leftto  Third quadrant
bottom right

Fourth-quadrant constellation. Finally, we write

00 0010 0011
_)
[01:| [10 11] |:0110 0111:|
Top to Left to Fourth quadrant
bottom right

The final step is to piece together these four constituent 4-ary PAM constellations to
construct the 4-ary QAM constellations as described in Figure 7.24. The important point
to note here is that all the codewords in Figure 7.24 obey the Gray encoding rule, not only
within each quadrant but also as we move from one quadrant to the next.

02
° e 3d/2 — ° °
1101 1100 1110 1111
° o di2- o °
1001 1000 1010 1011
| | | | o,
-3d/2 —d/2 di2 3d/2
° ® /2 — ° °
0001 0000 0010 0011
i ] . J3d2l .
(a) Signal-space dlagrarp of M—ary QAM for 0101 0100 0110 0111
M = 16; the message points in each quadrant
are identified with Gray-encoded quadbits.

Average Probability of Error

In light of the equivalence established between the M-ary QAM and M-ary PAM, we may
formulate the average probability of error of the M-ary QAM by proceeding as follows:

The probability of correct detection for M-ary QAM is written as
’\2
P,.=(1-P)

where P is the probability of symbol error for the L-ary PAM.
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With L = /M, the probability of symbol error P is itself defined by

ol

The probability of symbol error for M-ary QAM is given by

P, =1-P,
=1-(1-P,)
~ 2P,

where it is assumed that P is small enough compared with unity to justify ignoring
the quadratic term.

Hence, using (7.143) and (7.144) in (7.145), we find that the probability of symbol error
for M-ary QAM is approximately given by

e [

The transmitted energy in M-ary QAM is variable, in that its instantaneous value naturally
depends on the particular symbol transmitted. Therefore, it is more logical to express P, in
terms of the average value of the transmitted energy rather than Ej. Assuming that the L
amplitude levels of the in-phase or quadrature component of the M-ary QAM signal are
equally likely, we have

2E0 L/2

Ey =27 Z(2i-1)2

i=1

where the overall scaling factor 2 accounts for the equal contributions made by the in-phase
and quadrature components. The limits of the summation and the scaling factor 2 inside the
large parentheses account for the symmetric nature of the pertinent amplitude levels around
zero. Summing the series in (7.147), we get

2L° - 1)E,

av = f
2AM-1)E,

- el

Accordingly, we may rewrite (7.146) in terms of E,, as

3E,,
o= )el v,

which is the desired result.

The case of M = 4 is of special interest. The signal constellation for this particular value
of M is the same as that for QPSK. Indeed, putting M = 4 in (7.150) and noting that, for
this special case, E,, equals E, where E is the energy per symbol, we find that the resulting
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formula for the probability of symbol error becomes identical to that in (7.123) for QPSK;
and so it should.

Frequency-Shift Keying Techniques Using Coherent Detection

M-ary PSK and M-ary QAM share a common property: both of them are examples of
linear modulation. In this section, we study a nonlinear method of modulation known as
FSK using coherent detection. We begin the study by considering the simple case of
binary FSK, for which M = 2.

In binary FSK, symbols 1 and O are distinguished from each other by transmitting one of
two sinusoidal waves that differ in frequency by a fixed amount. A typical pair of
sinusoidal waves is described by

2E,
s;(1) = T—bCOS(2nfit), 0<t<T,

0, elsewhere

where i = 1, 2 and Ej, is the transmitted signal energy per bit; the transmitted frequency is
set at

n,+1 ) ) )

;= T for some fixed integer n, and i = 1,2
Symbol 1 is represented by s;(¢) and symbol O by s,(¢). The FSK signal described here is
known as Sunde’s FSK. It is a continuous-phase signal, in the sense that phase continuity
is always maintained, including the inter-bit switching times.

From (7.151) and (7.152), we observe directly that the signals s{(¢) and s,(f) are
orthogonal, but not normalized to have unit energy. The most useful form for the set of
orthonormal basis functions is described by

gi(t) = JTZCOS(znﬁf)» 0<t<T,
A b

0, elsewhere

where i = 1, 2. Correspondingly, the coefficient s;; for where i = 1, 2 and j = 1, 2 is defined
by
T,

5 = Jobsi(t)¢j(t) dr

Ty 2E, 2
= J ——cos(2nf;t) |=cos(2nf;t) dt
o N Ty Ty, /
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Carrying out the integration in (7.154), the formula for s;; simplifies to

i=j

B
0

i#j

Thus, unlike binary PSK, binary FSK is characterized by having a signal-space diagram
that is two-dimensional (i.e., N = 2) with two message points (i.e., M = 2), as shown in
Figure 7.25. The two message points are defined by the vectors

s5,(1)

NN NN

0

~\2E/T, [~
¢
Decision
boundary
Re§|on Message .
2 VE, A point my
Message
. point m;
710
/\ s VE,
s
v
//\/ZEb
, >/
/s Region

Zy

-

SEAWANAN/
\VARVARVE

Signal-space diagram for binary FSK system. The diagram also includes example
waveforms of the two modulated signals s,(#) and s,(?).
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and

Sz:@

The Euclidean distance |s; —s,|| is equal to ,/2E,. Figure 7.25 also includes a couple of
waveforms representative of signals s1(f) and s,(?).

Generation and Coherent Detection of Binary FSK Signals

The block diagram of Figure 7.26a describes a scheme for generating the binary FSK
signal; it consists of two components:

On—off level encoder, the output of which is a constant amplitude of /\/Fb in
response to input symbol 1 and zero in response to input symbol 0.

Pair of oscillators, whose frequencies f and f, differ by an integer multiple of the
bit rate 1/7}, in accordance with (7.152). The lower oscillator with frequency f, is
preceded by an inverter. When in a signaling interval, the input symbol is 1, the
upper oscillator with frequency f; is switched on and signal s{(#) is transmitted,
while the lower oscillator is switched off. On the other hand, when the input symbol
is 0, the upper oscillator is switched off, while the lower oscillator is switched on

m(1) (N
&

f

6,() = \J2/T, cos(2nfyn) |

+ .
Binary On—off Binary
data —> level — CZD—» FSK

sequence encoder L 5|g(n)al

s(t

m(t) N

Inverter \?

0,(1) = +/ 2/Ty, cos(2mf,1)

(a)

_{?_» [t
0
- —> Choose 1 if y >0
x(0) 6,0 Ddec'_S'O”
VI | > Choose 0if y <0
fT" dr T
0
Threshold = 0
0,(1)

(b)
Block diagram for (a) binary FSK transmitter and (b) coherent binary FSK receiver.
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and signal s,(¢) with frequency f, is transmitted. With phase continuity as a
requirement, the two oscillators are synchronized with each other. Alternatively, we
may use a voltage-controlled oscillator, in which case phase continuity is
automatically satisfied.

To coherently detect the original binary sequence given the noisy received signal x(f), we
may use the receiver shown in Figure 7.26b. It consists of two correlators with a common
input, which are supplied with locally generated coherent reference signals ¢ (¢) and ¢,(¢).
The correlator outputs are then subtracted, one from the other; the resulting difference y is
then compared with a threshold of zero. If y > 0, the receiver decides in favor of 1. On the
other hand, if y < 0, it decides in favor of 0. If y is exactly zero, the receiver makes a
random guess (i.e., flip of a fair coin) in favor of 1 or 0.

Error Probability of Binary FSK
The observation vector x has two elements x; and x, that are defined by, respectively,
T,

b
x| = jo x(1) ¢, (1) di
and

Th
X, = jo x(1) ¢, (1) di

where x(7) is the received signal, whose form depends on which symbol was transmitted.
Given that symbol 1 was transmitted, x(¢) equals s1(#) + w(¢), where w(¢) is the sample
function of a white Gaussian noise process of zero mean and power spectral density N/2.
If, on the other hand, symbol 0 was transmitted, x(¢) equals s,(#) + w(?).

Now, applying the decision rule of (7.57) assuming the use of coherent detection at the
receiver, we find that the observation space is partitioned into two decision regions,
labeled Z; and Z, in Figure 7.25. The decision boundary, separating region Z; from region
Z,, is the perpendicular bisector of the line joining the two message points. The receiver
decides in favor of symbol 1 if the received signal point represented by the observation
vector x falls inside region Z;. This occurs when x; > x,. If, on the other hand, we have
X1 < X, the received signal point falls inside region Z, and the receiver decides in favor of
symbol 0. On the decision boundary, we have x; = x,, in which case the receiver makes a
random guess in favor of symbol 1 or 0.

To proceed further, we define a new Gaussian random variable ¥ whose sample value y
is equal to the difference between x| and x,; that is,

y=X"-%
The mean value of the random variable Y depends on which binary symbol was
transmitted. Given that symbol 1 was sent, the Gaussian random variables X; and X,,
whose sample values are denoted by x; and x,, have mean values equal to A/E7b and zero,

respectively. Correspondingly, the conditional mean of the random variable Y given that
symbol 1 was sent is

E[Y|1]

ELX, 11— E[X,|1]

+.JEy
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On the other hand, given that symbol 0 was sent, the random variables X; and X, have
mean values equal to zero and JE_t) respectively. Correspondingly, the conditional mean
of the random variable Y given that symbol 0 was sent is

E[¥|0] = E[X,|0]- E[X,|0]

The variance of the random variable Y is independent of which binary symbol was sent.
Since the random variables X and X, are statistically independent, each with a variance
equal to Ny/2, it follows that

var[ Y]

var[X,] + var[X,]
= N,

Suppose we know that symbol 0 was sent. The conditional probability density function of
the random variable Y is then given by

2
1 O+ JE)
fy(|0) = exp
27N, 2N,
Since the condition x; > x, or, equivalently, y > 0 corresponds to the receiver making a

decision in favor of symbol 1, we deduce that the conditional probability of error given
that symbol O was sent is

Pio

P(y > 0|symbol O was sent)

[ Fy(r10) ay
0

2
0 + ,/E
1 [ e 0+ JE) &
[2nNg%0 2N,
To put the integral in (7.165) in a standard form involving the Q-function, we set
y+ By _ z
JNo

Then, changing the variable of integration from y to z, we may rewrite (7.165) as

1 2
Pig = — exp(——) dz
R f JE,/N, 2

E
Q( _b
NO

Similarly, we may show the p;, the conditional probability of error given that symbol 1
was sent, has the same value as in (7.167). Accordingly, averaging p;y and p(; and
assuming equiprobable symbols, we find that the average probability of bit error or,
equivalently, the BER for binary FSK using coherent detection is

PQEb
= g
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Comparing (7.108) and (7.168), we see that for a binary FSK receiver to maintain the
same BER as in a binary PSK receiver, the bit energy-to-noise density ratio, Ey,/Nj, has to
be doubled. This result is in perfect accord with the signal-space diagrams of Figures 7.13
and 7.25, where we see that in a binary PSK system the Euclidean distance between the
two message points is equal to 2 A/I:Tb , whereas in a binary FSK system the corresponding
distance is ,/2E, . For a prescribed Ey, the minimum distance dy,;, in binary PSK is,
therefore, /2 times that in binary FSK. Recall from (7.89) that the probability of error
decreases exponentially as dlznin ; hence the difference between (7.108) and (7.168).
Power Spectra of Binary FSK Signals

Consider the case of Sunde’s FSK, for which the two transmitted frequencies f; and f,
differ by an amount equal to the bit rate 1/7},, and their arithmetic mean equals the nominal
carrier frequency f.; as mentioned previously, phase continuity is always maintained,
including inter-bit switching times. We may express this special binary FSK signal as a
frequency-modulated signal, defined by

- Ph nfi+ M <r<
s(t) = T—cos nfct_F , 0<t<T,
b b

Using a well-known trigonometric identity, we may reformulate s(¢) in the expanded form

DE 2FE
b Tt b . T .
s(t) = /T—bcos(iT—b)cos(anct)— /T—bsm(ifb) sin(27tf 1)
/2E }ZE
= Tbbcos(;—:) cos(2nf 1) F T—:sin(;—p sin(2nf 1)

In the last line of (7.170), the plus sign corresponds to transmitting symbol O and the
minus sign corresponds to transmitting symbol 1. As before, we assume that the symbols 1
and O in the binary sequence applied to the modulator input are equally likely, and that the
symbols transmitted in adjacent time slots are statistically independent. Then, based on the
representation of (7.170), we may make two observations pertaining to the in-phase and
quadrature components of a binary FSK signal with continuous phase:

The in-phase component is completely independent of the input binary wave. It
equals /2E, /T cos(nt/T,) for all time 7. The power spectral density of this
component, therefore, consists of two delta functions at ¢ = J_r1/2Tb and weighted
by the factor Ey/2T;,, and occurring at f = +1/2T;,.

The quadrature component is directly related to the input binary sequence. During
the signaling interval 0 < ¢ < Ty, it equals —g(¢) when we have symbol 1 and +g(¢)
when we have symbol 0, with g(¢) denoting a symbol-shaping function defined by

2F
/_b' "—t) <t<
o(r) = Tb sm(T , 0<t<T

0, elsewhere
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The energy spectral density of g(¢) is defined by
8EbTbcosz(nbe)

2@rit-1)’

The power spectral density of the quadrature component equals ¥ g( N/Ty. It is also
apparent that the in-phase and quadrature components of the binary FSK signal are
independent of each other. Accordingly, the baseband power spectral density of Sunde’s
FSK signal equals the sum of the power spectral densities of these two components, as
shown by

Y () =

2
J . 8E Ty, cos™(nTyf)
2
n(ATof - 1)

From Chapter 4, we recall the following relationship between baseband modulated power
spectra:

Sp(f) = [ (_ZT)+5(f+2Tb)

b

Ss(f) = [SB(f T +Sg(F+1£)]

where f, is the carrier frequency. Therefore, substituting (7.173) into (7.174), we find that
the power spectrum of the binary FSK signal contains two discrete frequency components,
one located at (f, + 1/2T}) = f; and the other located at (f, — 1/2T})) = f,, with their average
powers adding up to one-half the total power of the binary FSK signal. The presence of
these two discrete frequency components serves a useful purpose: it provides a practical
basis for synchronizing the receiver with the transmitter.

Examining (7.173), we may make the following statement:

In Figure 7.15, we plotted the baseband power spectra of (7.111) and (7.173). (To simplify
matters, we have only plotted the results for positive frequencies.) In both cases, Sg(f) is
shown normalized with respect to 2E;, and the frequency is normalized with respect to the
bit rate R, = 1/T3,. The difference in the falloff rates of these spectra can be explained on
the basis of the pulse shape g(f). The smoother the pulse, the faster the drop of spectral
tails to zero. Thus, since binary FSK with continuous phase has a smoother pulse shape, it
has lower sidelobes than binary PSK does.

Suppose, next, the FSK signal exhibits phase discontinuity at the inter-bit switching
instants, which arises when the two oscillators supplying the basis functions with
frequencies f; and f, operate independently of each other. In this discontinuous scenario,
we find that power spectral density ultimately falls off as the inverse square of frequency.
Accordingly, we may state:
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The important point to take from this statement is summed up as follows: when
interference is an issue of practical concern, continuous FSK is preferred over its
discontinuous counterpart. However, this advantage of continuous FSK is gained at the
expense of increased system complexity.

In the coherent detection of binary FSK signal, the phase information contained in the
received signal is not fully exploited, other than to provide for synchronization of the
receiver to the transmitter. We now show that by proper use of the continuous-phase
property when performing detection it is possible to improve the noise performance of the
receiver significantly. Here again, this improvement is achieved at the expense of
increased system complexity.

Consider a continuous-phase frequency-shift keying (CPFSK) signal, which is defined
for the signaling interval 0 < ¢ < T, as follows:

2E,
T—cos(21tf1t+ 6(0)) for symbol 1
b

2E,
Tcos(2nf2t + 6(0)) for symbol 0
b

s(t) =

where Ey is the transmitted signal energy per bit and 7}, is the bit duration. The defining
equation (7.175) distinguishes itself from that of (7.151) in using the phase &(0). This new
term, denoting the value of the phase at time ¢ = 0, sums up the past history of the FM
process up to time ¢ = 0. The frequencies f; and f, are sent in response to binary symbols 1
and 0, respectively, applied to the modulator input.

Another useful way of representing the CPFSK signal s(f) is to express it as a
conventional angle-modulated signal:

2E,
s(t) = T—cos[27tfct+ a(1)]
b

where 6(¢) is the phase of s(f) at time 7. When the phase 6(¢) is a continuous function of
time, we find that the modulated signal s(7) is itself also continuous at all times, including
the inter-bit switching times. The phase €(¢) of a CPFSK signal increases or decreases
linearly with time during each bit duration of T}, seconds, as shown by

A1) = H(O)i(%)t, 0<t<Ty
where the plus sign corresponds to sending symbol 1 and the minus sign corresponds to
sending symbol O; the dimensionless parameter / is to be defined. Substituting (7.177)
into (7.176), and then comparing the angle of the cosine function with that of (7.175), we
deduce the following pair of relations:

h
fo+

— =fl
2T,
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h

fc_ﬁ) =f2

Solving this pair of equations for f, and &, we get

fo = 30 +£)
and
h = Tb(f] _fz)

The nominal carrier frequency f, is, therefore, the arithmetic mean of the transmitted
frequencies f; and f,. The difference between the frequencies f| and f5, normalized with
respect to the bit rate 1/7, defines the dimensionless parameter 4, which is referred to as
the deviation ratio.

Phase Trellis
From (7.177) we find that, at time ¢ = Ty,

Q(Tb) -0(0) = { nh for symbol 1
—-nth  for symbol 0

That is to say, sending symbol 1 increases the phase of a CPFSK signal s(¢) by nh radians,
whereas sending symbol O reduces it by an equal amount.

The variation of phase 8(f) with time ¢ follows a path consisting of a sequence of
straight lines, the slopes of which represent frequency changes. Figure 7.27 depicts
possible paths starting from 7 = 0. A plot like that shown in this figure is called a phase
tree. The tree makes clear the transitions of phase across successive signaling intervals.
Moreover, it is evident from the figure that the phase of a CPFSK signal is an odd or even
multiple of nh radians at odd or even multiples of the bit duration 7, respectively.

dnhf———————— ——— e ——.
3nhf—————— -

2nhi-———> ——— K-S

nhi— A= K== ———

—-nthF—— —_———— —_———— —_——— ) — — — —

6(r) — 6(0), radians

omhf———MN =X

Bnhf—————— ——— N\

A —— = B N e ——

Phase tree.
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The phase tree described in Figure 7.27 is a manifestation of phase continuity, which is
an inherent characteristic of a CPFSK signal. To appreciate the notion of phase continuity,
let us go back for a moment to Sunde’s FSK, which is also a CPFSK signal as previously
described. In this case, the deviation ratio / is exactly unity. Hence, according to Figure
7.27, the phase change over one bit interval is =7 radians. But, a change of +r radians is
exactly the same as a change of —n radians, modulo 2r. It follows, therefore, that in the
case of Sunde’s FSK there is no memory; that is, knowing which particular change
occurred in the previous signaling interval provides no help in the current signaling
interval.

In contrast, we have a completely different situation when the deviation ratio 4 is
assigned the special value of 1/2. We now find that the phase can take on only the two
values £m/2 at odd multiples of T}, and only the two values 0 and & at even multiples of Ty,
as in Figure 7.28. This second graph is called a phase trellis, since a “trellis” is a treelike
structure with re-emerging branches. Each path from left to right through the trellis of
Figure 7.28 corresponds to a specific binary sequence at the transmitter input. For
example, the path shown in boldface in Figure 7.28 corresponds to the binary sequence
1101000 with 8(0) = 0. Henceforth, we focus on i = 1/2.

With h = 1/2, we find from (7.181) that the frequency deviation (i.e., the difference
between the two signaling frequencies f; and f,) equals half the bit rate; hence the
following statement:

In other words, symbols 1 and O do not interfere with one another in the process of
detection. It is for this reason that a CPFSK signal with a deviation ratio of one-half is
commonly referred to as minimum shift-keying (MSK).

Signal-Space Diagram of MSK
Using a well-known trigonometric identity in (7.176), we may expand the CPFSK signal
s(¢) in terms of its in-phase and quadrature components as

2E, fZEb . .
s(t) = T—cos O(t) cos(2mf,t) - T—sm O(t) sin(2nf 1)
b b

/2 —

0 21, 4T, 67, 8T,

6(r) — 6(0), radians

-n/2 |~

-7 =

Phase trellis; boldfaced path represents the sequence 1101000.
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Consider, first, the in-phase component [2E, /T, cos A(t) . With the deviation ratio 7 = 1/2,
we have from (7.177) that

T
= + — <t<
or) = 6(0)+ 7T 0<1<T,

where the plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0.
A similar result holds for (¢) in the interval —T}, < ¢ < 0, except that the algebraic sign is
not necessarily the same in both intervals. Since the phase 6(0) is O or t depending on the
past history of the modulation process, we find that in the interval -7}, < ¢ < Ty,, the polarity
of cosd(t) depends only on 6(0), regardless of the sequence of 1s and Os transmitted
before or after ¢ = 0. Thus, for this time interval, the in-phase component consists of the
half-cycle cosine pulse:

2E,
si(t) = —T—b—cos a(t)
J%cos Q(O)COS(Z—T[—Tbt)

2E, P
t T_bCOS(Z_T;,t)’ Ty <t<T,

where the plus sign corresponds to £(0) = 0 and the minus sign corresponds to 8(0) = «. In
a similar way, we may show that, in the interval 0 < ¢ < 27}, the quadrature component of
s(t) consists of the half-cycle sine pulse:

_ PE, .
sQ(t) = ?b—smﬁ(t)

I,
Ty,

+ —sm(—t), 0<t<2T,
T, 2T,

where the plus sign corresponds to 6(7},) = m/2 and the minus sign corresponds to
6(T},) = —m/2. From the discussion just presented, we see that the in-phase and quadrature
components of the MSK signal differ from each other in two important respects:

. . (m
sin (Ty,) sm(szt)

 they are in phase quadrature with respect to each other and
* the polarity of the in-phase component s1(f) depends on €(0), whereas the polarity of
the quadrature component sQ(t) depends on 6(Ty,).

Moreover, since the phase states 6(0) and 6(T},) can each assume only one of two possible
values, any one of the following four possibilities can arise:

6(0) = 0 and §(T},) = n/2, which occur when sending symbol 1.
6(0) = mw and &(T})) = m/2, which occur when sending symbol 0.
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6(0) = m and O(T})) = —n/2 (or, equivalently, 3n/2 modulo 2w), which occur when
sending symbol 1.

6(0) = 0 and 6(T},) = —n/2, which occur when sending symbol 0.

This fourfold scenario, in turn, means that the MSK signal itself can assume one of four
possible forms, depending on the values of the phase-state pair: 8(0) and &(Ty).

Signal-Space Diagram

Examining the expansion of (7.183), we see that there are two orthonormal basis functions
#1(H) and ¢(¢) characterizing the generation of MSK; they are defined by the following
pair of sinusoidally modulated quadrature carriers:

¢(f)‘[— —t|cos(2nf,1), O0<t<T,
| bCOS(ZT )cos T )

6,(1) = |=sin(s=t)sin2nf,r),  0<r<T,
) //:)SIH(ZT )sm T b

With the formulation of a signal-space diagram in mind, we rewrite (7.183) in the compact
form

s(t) = 5,0,() +5,0,(1), 0<t<Ty

where the coefficients s; and s, are related to the phase states 4(0) and &(T,), respectively.
To evaluate s, we integrate the product s(#)¢; (f) with respect to time # between the limits -7},
and Ty, obtaining
Ty
s = s(t) (1) dt
1 _[ . 1

= A/Eibcos[&(o)], ~T, <t<T,

Similarly, to evaluate s, we integrate the product s(r)¢@,(¢) with respect to time ¢ between
the limits O and 27, obtaining

27T,

[ sy ar
0

)

JEsin[A(Ty)],  0<t<Ty

Examining (7.190) and (7.191), we now make three observations:

Both integrals are evaluated for a time interval equal to twice the bit duration.

The lower and upper limits of the integral in (7.190) used to evaluate s; are shifted
by the bit duration 7}, with respect to those used to evaluate s,.

The time interval O < ¢ < Ty, for which the phase states 6(0) and &(T},) are defined, is
common to both integrals.

It follows, therefore, that the signal constellation for an MSK signal is two-dimensional
(i.e., N = 2), with four possible message points (i.e., M = 4), as illustrated in the signal-
space diagram of Figure 7.29. Moving in a counterclockwise direction, the coordinates of
the message points are as follows:
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(+JEp+ . JEy) . (= JEp.+ JEy), (- JEy.— JEp). and (+ [E, .- [E,).
The possible values of 8(0) and &(T},), corresponding to these four message points, are
also included in Figure 7.29. The signal-space diagram of MSK is thus similar to that of
QPSK in that both of them have four message points in a two-dimensional space.
However, they differ in a subtle way that should be carefully noted:

¢ QPSK, moving from one message point to an adjacent one, is produced by sending a
two-bit symbol (i.e., dibit).

¢ MSK, on the other hand, moving from one message point to an adjacent one, is
produced by sending a binary symbol, 0 or 1. However, each symbol shows up in
two opposite quadrants, depending on the value of the phase-pair: 4(0) and &(T}).

Table 7.4 presents a summary of the values of 8(0) and 6(Ty), as well as the corresponding
values of s and s, that are calculated for the time intervals -7, < ¢t < Ty, and 0 < ¢ < 2Ty,
respectively. The first column of this table indicates whether symbol 1 or symbol 0 was
sent in the interval 0 < ¢ < T},. Note that the coordinates of the message points, s; and s,
have opposite signs when symbol 1 is sent in this interval, but the same sign when symbol
0 is sent. Accordingly, for a given input data sequence, we may use the entries of Table 7.4
to derive on a bit-by-bit basis the two sequences of coefficients required to scale ¢;(¢) and
@ (1), and thereby determine the MSK signal s().

o
Region Decision Region
% boundary Z
Message point m,: Symbol 1 Message point m: Symbol O
[6(0) =x, 6(T}) =-n/2] [6(0) =0, 0(Ty) =-n/2]
——————1 N T
: e
| I
‘ ‘ Decision
‘ ‘ boundary
| | o,
AT N
I | \JE
“VEp | | VP
I I
I I
\ ~VEy \
o ————— A ¢
Message point m3: Symbol O Message point m,: Symbol 1
[6(0) =m, 6(T},) =n/2] [6(0) =0, 6(T,) = =/2]
Region Region
Zq Zy,

Signal-space diagram for MSK system.
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Signal-space characterization of MSK

00)  OTy) 5] )
0 0 —n/2 +JE, +JE,
1 n —n/2 - JE, +JE,
0 n +71/2 - JEs - JE
1 0 +n/2 +JE, - JEy

MSK Waveforms

Figure 7.30 shows the sequences and waveforms involved in the generation of an MSK
signal for the binary sequence 1101000. The input binary sequence is shown in Figure 7.30a.
The two modulation frequencies are f| = 5/4T}, and f, = 3/4T;,. Assuming that at time t = 0

Input binary sequence 1 1 0 1 0 0 0

\
Time scale 0 2Ty 4Ty, 6T},

0(kTy,)
Polarity of s,
s104(1) t
(b)
0(kTy,) n/2 n/2 n/2 -m/2
Polarity of s, - - - +
/ / /
1 0,0) AN AY JAYA ,
\YARVAYARVYAYAYA \j \/
\ v \ 7 \ / N\ /
N L N L N\ A\ VP

(a) Input binary sequence. \ /\ /\ /\ /\ /\ /\
(b) Waveform of scaled time function s() R
5191(®). (c) Waveform of scaled time
function s,¢,(1). (d) Waveform of the \/ \/ \/ \/ v \/ \/
MSK signal s(f) obtained by adding
51¢(1) and s,¢,(¢) on a bit-by-bit basis. @




Frequency-Shift Keying Techniques Using Coherent Detection 389

the phase 6(0) is zero, the sequence of phase states is as shown in Figure 7.30, modulo 2.
The polarities of the two sequences of factors used to scale the time functions ¢;(#) and ¢,(¢)
are shown in the top lines of Figure 7.30b and c. These two sequences are offset relative to
each other by an interval equal to the bit duration 7}, The waveforms of the resulting two
components of s(¢), namely, s;¢(¢) and s,¢,(¢), are shown in Figure 7.30b and c. Adding
these two modulated waveforms, we get the desired MSK signal s(f) shown in Figure 7.30d.

With 2 = 1/2, we may use the block diagram of Figure 7.31a to generate the MSK signal.
The advantage of this method of generating MSK signals is that the signal coherence and
deviation ratio are largely unaffected by variations in the input data rate. Two input sinu-
soidal waves, one of frequency f. = n./4Ty, for some fixed integer n. and the other of
frequency 1/4T,, are first applied to a product modulator. This modulator produces two
phase-coherent sinusoidal waves at frequencies f; and f,, which are related to the carrier

BPF e WA
) -

+

sscos (2mf.1) a; (1) + MSK signal
b > ()

t

cos (;Tb) BEF e ‘ /X\

(") AP
Narrowband
filters a(n)
(@)
In-phase channel Phase
estimate
fTh d *1 | Decision 6(0)
b ! device
9, Logic
Threshold = 0 ircui
Input c';f,?“t Output
x(1) [ interleaving ’ seblzgrzyce
phase q
decisions
Quadrature channel Phase
estimate
fzrbd *2 | Decision 6 (Ty,)
0 ! device
0,(1)
Threshold =0

(b)
Block diagrams for (a) MSK transmitter and (b) coherent MSK receiver.
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frequency f, and the bit rate 1/7}, in accordance with (7.178) and (7.179) for deviation ratio
h = 1/2. These two sinusoidal waves are separated from each other by two narrowband fil-
ters, one centered at f; and the other at f,. The resulting filter outputs are next linearly
combined to produce the pair of quadrature carriers or orthonormal basis functions ¢ (¢)
and ¢,(). Finally, ¢,(¢) and ¢,(¢) are multiplied with two binary waves a;(#) and a,(?), both
of which have a bit rate equal to 1/(2T}). These two binary waves are extracted from the
incoming binary sequence in the manner described in Example 7.

Figure 7.31b shows the block diagram of the coherent MSK receiver. The received
signal x(7) is correlated with ¢,(7) and ¢,(¢). In both cases, the integration interval is 27},
seconds, and the integration in the quadrature channel is delayed by 7}, seconds with respect
to that in the in-phase channel. The resulting in-phase and quadrature channel correlator
outputs, x; and x,, are each compared with a threshold of zero; estimates of the phase 6(0)
and 6(T,) are then derived in the manner described previously. Finally, these phase
decisions are interleaved so as to estimate the original binary sequence at the transmitter
input with the minimum average probability of symbol error in an AWGN channel.

In the case of an AWGN channel, the received signal is given by
x(t) = s(t) +w(r)

where s(f) is the transmitted MSK signal and w(#) is the sample function of a white
Gaussian noise process of zero mean and power spectral density Ny/2. To decide whether
symbol 1 or symbol 0 was sent in the interval 0 < ¢ < Ty, say, we have to establish a
procedure for the use of x(f) to detect the phase states 8(0) and &(Ty).

For the optimum detection of £(0), we project the received signal x(f) onto the
reference signal ¢, () over the interval ~Ty, < < Ty, obtaining

J‘T

’ x(t) g (1) dt
-Ty

X1

sy +wy

where sy is as defined by (7.190) and w; is the sample value of a Gaussian random
variable of zero mean and variance Ny/2. From the signal-space diagram of Figure 7.29,
we see that if x; > 0, the receiver chooses the estimate 5’(0) = 0. On the other hand, if
x1 <0, it chooses the estimate 0(0) = m.

Similarly, for the optimum detection of &(7},), we project the received signal x(¢) onto
the second reference signal ¢,(f) over the interval 0 < ¢ < 27T, obtaining

2T,

[ ey ar
0

X

Sy + Wy, 0<r<2Ty

where s, is as defined by (7.191) and w, is the sample value of another independent
Gaussian random variable of zero mean and variance Ny/2. Referring again to the signal-
space diagram of Figure 7.29, we see that if x, > 0, the receiver chooses the estimate
0(T,) = —n/2.1If, however, x, <0, the receiver chooses the estimate é(Tb) =n/2.
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To reconstruct the original binary sequence, we interleave the above two sets of phase
estimates in accordance with Table 7.4, by proceeding as follows:

* If estimates 6(0) = 0 and 9(0) = (T,) = —n/2, or alternatively if 9(0) =
and 6(T,) = —n/2, then the receiver decides in favor of symbol 0.

» If, on the other hand, the estimates 9(0) =1 and é(Tb) = —n/2, or alternatively
if (0) = 0 and §(T,) = n/2, then the receiver decides in favor of symbol 1.

Most importantly, examining the signal-space diagram of Figure 7.29, we see that the
coordinates of the four message points characterizing the MSK signal are identical to those
of the QPSK signal in Figure 7.16. Moreover, the zero-mean noise variables in (7.192) and
(7.193) have exactly the same variance as those for the QPSK signal in (7.118) and (7.119).
It follows, therefore, that the BER for the coherent detection of MSK signals is given by

» Q{ 2E,
€ NO

which is the same as that of QPSK in (7.126). In both MSK and QPSK, this good
performance is the result of coherent detection being performed in the receiver on the
basis of observations over 27}, seconds.

As with the binary FSK signal, we assume that the input binary wave is random, with
symbols 1 and 0 being equally likely and the symbols sent during adjacent time slots being
statistically independent. Under these assumptions, we make three observations:

Depending on the value of phase state 8(0), the in-phase component equals +g(#) or
—g(1), where the pulse-shaping function

2E
il Tr_t) To<i<
8 =1 T, Cos(sz ’ Ty=r=T

0, otherwise

The energy spectral density of g(7) is

* 32EbTb{cos(2nbe)T
\'] =
¢ > L6 F-1

T
The power spectral density of the in-phase component equals g(f )/2T, .

Depending on the value of the phase state &(T},), the quadrature component equals
+g(7) or —g(#), where we now have

2E
“bg _"_t_) ~0<t<2T
8 =1 [T, Sm(sz ’ O=r=2ly

0, otherwise

Despite the difference in which the time interval over two adjacent time slots is
defined in (7.195) and (7.197), we get the same energy spectral density as in (7.196).
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Hence, the in-phase and quadrature components have the same power spectral
density.

The in-phase and quadrature components of the MSK signal are statistically
independent; it follows that the baseband power spectral density of s(7) is given by

(%)

~ 32Eb{cos(2nbe)T
> Liery -1

T
A plot of the baseband power spectrum of (7.198) is included in Figure 7.19, where the
power spectrum is normalized with respect to 4E;, and the frequency fis normalized with
respect to the bit rate 1/T},. Figure 7.19 also includes the corresponding plot of (7.128) for
the QPSK signal. As stated previously, for f>>1/T}, the baseband power spectral density of
the MSK signal falls off as the inverse fourth power of frequency, whereas in the case of
the QPSK signal it falls off as the inverse square of frequency. Accordingly, MSK does not
produce as much interference outside the signal band of interest as QPSK does. This is a
desirable characteristic of MSK, especially when the digital communication system
operates with a bandwidth limitation in an interfering environment.

Sg(f)

From the detailed study of MSK just presented, we may summarize its desirable
properties:

* modulated signal with constant envelope;
* relatively narrow-bandwidth occupancy;
* coherent detection performance equivalent to that of QPSK.

However, the out-of-band spectral characteristics of MSK signals, as good as they are, still
do not satisfy the stringent requirements of certain applications such as wireless communi-
cations. To illustrate this limitation, we find from (7.198) that, at T}, f = 0.5, the baseband
power spectral density of the MSK signal drops by only 10 log;(9 = 9.54 dB below its mid-
band value. Hence, when the MSK signal is assigned a transmission bandwidth of 1/Ty,, the
adjacent channel interference of a wireless-communication system using MSK is not low
enough to satisfy the practical requirements of a multiuser-communications environment.

Recognizing that the MSK signal can be generated by direct FM of a voltage-controlled
oscillator, we may overcome this practical limitation of MSK by modifying its power
spectrum into a more compact form while maintaining the constant-envelope property of
the MSK signal. This modification can be achieved through the use of a premodulation
low-pass filter, hereafter referred to as a baseband pulse-shaping filter. Desirably, the
pulse-shaping filter should satisfy the following three conditions:

» frequency response with narrow bandwidth and sharp cutoff characteristics;

¢ impulse response with relatively low overshoot; and

¢ evolution of a phase trellis with the carrier phase of the modulated signal assuming
the two values +n/2 at odd multiples of the bit duration 7}, and the two values 0 and
7 at even multiples of Ty, as in MSK.
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The frequency-response condition is needed to suppress the high-frequency components
of the modified frequency-modulated signal. The impulse-response condition avoids
excessive deviations in the instantaneous frequency of the modified frequency-modulated
signal. Finally, the condition imposed on phase-trellis evolution ensures that the modified
frequency-modulated signal can be coherently detected in the same way as the MSK
signal, or it can be noncoherently detected as a simple binary FSK signal if so desired.

These three conditions can be satisfied by passing an NRZ-level-encoded binary data
stream through a baseband pulse-shaping filter whose impulse response (and, likewise, its
frequency response) is defined by a Gaussian function. The resulting method of binary
FM is naturally referred to as Gaussian-filtered minimum-shift keying (GMSK).

Let W denote the 3 dB baseband bandwidth of the pulse-shaping filter. We may then
define the transfer function H(f) and impulse response /() of the pulse-shaping filter as:

w0 = e 2
and
2T;We p( ?RZW t)

where In denotes the natural algorithm. The response of this Gaussian filter to a
rectangular pulse of unit amplitude and duration T}, centered on the origin, is given by

T,/2

h(t) =

g(n)

j h(t—-17)dz
-T,/2

T,/2
B A/; J—T/z “W (I_T)J

The pulse response g(#) in (7.201) provides the basis for building the GMSK modulator, with
the dimensionless time—bandwidth product WT,, playing the role of a design parameter.

0.9

WI, = 0.2
———— WI,=0.25
0.7 A WrT, = 0.3
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0.4

Amplitude

0.3
0.2
0.1
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at +2.5T;, for varying time—bandwidth o o5 1 15 2 25 3 35 4 45 5
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Normalized time, /Ty,



394

Signaling over AWGN Channels

Unfortunately, the pulse response g(f) is noncausal and, therefore, not physically
realizable for real-time operation. Specifically, g(#) is nonzero for ¢ < —T}/2, where ¢ = —T},/2
is the time at which the input rectangular pulse (symmetrically positioned around the origin)
is applied to the Gaussian filter. For a causal response, g(f) must be truncated and shifted in
time. Figure 7.32 presents plots of g(f), which has been truncated at t = £2.5T}, and then
shifted in time by 2.57},. The plots shown here are for three different settings: W1, = 0.2,
0.25, and 0.3. Note that as WTy, is reduced, the time spread of the frequency-shaping pulse is
correspondingly increased.

Figure 7.33 shows the machine-computed power spectra of MSK signals (expressed in
decibels) versus the normalized frequency difference (f — f.)T},, where f is the mid-band
frequency and T, is the bit duration.” The results plotted in Figure 7.33 are for varying
values of the time—bandwidth product W71}, From this figure we may make the following
observations:

* The curve for the limiting condition WT,= oo corresponds to the case of ordinary
MSK.

e When WT, is less than unity, increasingly more of the transmit power is
concentrated inside the passband of the GMSK signal.

An undesirable feature of GMSK is that the processing of NRZ binary data by a Gaussian
filter generates a modulating signal that is no longer confined to a single bit interval as in
ordinary MSK, which is readily apparent from Figure 7.33. Stated in another way, the tails
of the Gaussian impulse response of the pulse-shaping filter cause the modulating signal to
spread out to adjust symbol intervals. The net result is the generation of intersymbol
interference, the extent of which increases with decreasing WTy,. In light of this discussion
and the various plots presented in Figure 7.33, we find that the value assigned to the time—
bandwidth product WTy, offers a tradeoff between spectral compactness and system-
performance loss.

Power spectral density (dB)

Normalized frequency, |f - f¢|Ty

Power spectra of MSK and GMSK signals for varying
time—bandwidth product.
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Degradation (dB)

0 x x
0 0.2 0.4 0.6 0.8

Time-bandwidth product, Wy,

Theoretical E/N,y degradation of GMSK for varying
time—bandwidth product.

To explore the issue of performance degradation resulting from the use of GMSK
compared with MSK, consider the coherent detection in the presence of AWGN.
Recognizing that GMSK is a special kind of binary FM, we may express its average
probability of symbol error P, by the empirical formula

aE
P, = Q[ |—2
NO

where, as before, £y, is the signal energy per bit and Ny/2 is the noise spectral density. The
factor «is a constant whose value depends on the time—bandwidth product WT},. Comparing
(7.202) for GMSK with (7.194) for ordinary MSK, we may view 10 log;y(c/2), expressed in
decibels, as a measure of performance degradation of GMSK compared with ordinary MSK.
Figure 7.34 shows the machine-computed value of 10 log;y(c/2) versus W1, For ordinary
MSK we have WT,, = o, in which case (7.202) with & = 2 assumes exactly the same form
as (7.194) and there is no degradation in performance, which is confirmed by Figure 7.34.
For GMSK with WT, = 0.3 we find from Figure 7.34 that there is a degradation in
performance of about 0.46dB, which corresponds to /2 = 0.9. This degradation in
performance is a small price to pay for the highly desirable spectral compactness of the
GMSK signal.

Consider next the M-ary version of FSK, for which the transmitted signals are defined by

2E T .
s;(1) = //;cos[%(nc+l)t} 0<t<T

where i =1, 2, ..., M, and the carrier frequency f, = n/(2T) for some fixed integer n.. The
transmitted symbols are of equal duration 7 and have equal energy E. Since the individual
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signal frequencies are separated by 1/(27) Hz, the M-ary FSK signals in (7.203) constitute
an orthogonal set; that is,

T
[ sinsndr=0, izj
0

Hence, we may use the transmitted signals s,(#) themselves, except for energy
normalization, as a complete orthonormal set of basis functions, as shown by

1
¢,’(f ) = TES i
Accordingly, the M-ary FSK is described by an M-dimensional signal-space diagram.

For the coherent detection of M-ary FSK signals, the optimum receiver consists of a
bank of M correlators or matched filters, with ¢(f) of (7.205) providing the basis
functions. At the sampling times ¢ = k7T, the receiver makes decisions based on the largest
matched filter output in accordance with the maximum likelihood decoding rule. An exact
formula for the probability of symbol error is, however, difficult to derive for a coherent
M-ary FSK system. Nevertheless, we may use the union bound of (7.88) to place an upper
bound on the average probability of symbol error for M-ary FSK. Specifically, since the
minimum distance d,;, in M-ary FSK is J2E, using (7.87) we get (assuming

equiprobable symbols)
|E
P < (M- l)Q( 17)

0

(1), for 0<t<T and i=1,2,....M

For fixed M, this bound becomes increasingly tight as the ratio E/N,, is increased. Indeed,
it becomes a good approximation to P, for values of P, < 1073. Moreover, for M =2 (i.e.,
binary FSK), the bound of (7.202) becomes an equality; see (7.168).

Power Spectra of M-ary FSK Signals

The spectral analysis of M-ary FSK signals” is much more complicated than that of M-ary
PSK signals. A case of particular interest occurs when the frequencies assigned to the
multilevels make the frequency spacing uniform and the frequency deviation # = 1/2. That
is, the M signal frequencies are separated by 1/2T, where T is the symbol duration. For
h =1/2, the baseband power spectral density of M-ary FSK signals is plotted in Figure
7.35forM=2,4,8.

Bandwidth Efficiency of M-ary FSK Signals

When the orthogonal signals of an M-ary FSK signal are detected coherently, the adjacent
signals need only be separated from each other by a frequency difference 1/27T so as to
maintain orthogonality. Hence, we may define the channel bandwidth required to transmit
M-ary FSK signals as

- M

2T
For multilevels with frequency assignments that make the frequency spacing uniform and
equal to 1/27, the bandwidth B of (7.207) contains a large fraction of the signal power.
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Power spectra of M-ary PSK signals for M =2, 4, 8.

This is readily confirmed by looking at the baseband power spectral plots shown in Figure
7.36. From (7.133) we recall that the symbol period T is equal to Ty log, M . Hence, using
Ry = 1/T,, we may redefine the channel bandwidth B for M-ary FSK signals as

R.M
) log, M
The bandwidth efficiency of M-ary signals is therefore
R
= b
P> B
2log, M
M

Table 7.5 gives the values of p calculated from (7.207) for varying M.

Comparing Tables 7.3 and 7.5, we see that increasing the number of levels M tends to
increase the bandwidth efficiency of M-ary PSK signals, but it also tends to decrease the
bandwidth efficiency of M-ary FSK signals. In other words, M-ary PSK signals are
spectrally efficient, whereas M-ary FSK signals are spectrally inefficient.

Bandwidth efficiency of M-ary FSK signals

M 2 4 8 16 32 64
p(bits/(sHz)) 1 1 075 05 03125 0.1875
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Comparison of M-ary PSK and M-ary FSK from an
Information-Theoretic Viewpoint

Bandwidth efficiency, as just discussed, provides one way of contrasting the capabilities of
M-ary PSK and M-ary FSK. Another way of contrasting the capabilities of these two
generalized digital modulation schemes is to look at the bandwidth—power tradeoff viewed
in light of Shannon’s information capacity law, which was discussed previously in Chapter 5.

Consider, first, an M-ary PSK system that employs a nonorthogonal set of M phase-
shifted signals for the transmission of binary data over an AWGN channel. Referring back
to Section 7.6, recall that (7.137) defines the bandwidth efficiency of the M-ary PSK
system, using the null-to-null bandwidth. Based on this equation, Figure 7.36 plots the
operating points for different phase-level numbers M = 2, 4, 8, 16, 32, 64. Each point on
the operating curve corresponds to an average probability of symbol error P, = 1073, this
value of P, is small enough to assume “error-free” transmission. Given this fixed value of
P., (7.132) for the coherent detection of M-ary PSK is used to calculate the symbol
energy-to-noise density ratio E/N, and, therefore, Ey/N,y for a prescribed M; Figure 7.36
also includes the capacity boundary for the ideal transmission system, computed in
accordance with (5.99). Figure 7.36 teaches us the following:

Consider next an M-ary FSK system that uses an orthogonal set of M frequency-shifted
signals for the transmission of binary data over an AWGN channel. As discussed in
Section 7.8, the separation between adjacent signal frequencies in the set is 1/27, where T
is the symbol period. The bandwidth efficiency of M-ary FSK is defined in (7.209), the
formulation of which also invokes the null-to-null bandwidth. Using this equation, Figure
7.37 plots the operating points for different frequency-level numbers M = 2, 4, 8, 16, 32,
64 for the same average probability of symbol error, namely P, = 1073, Given this fixed
value of P,, (7.206) is used to calculate the E/N and, therefore, E,/N, required for a
prescribed value of M. As in Figure 7.36 for M-ary PSK, Figure 7.37 for M-ary FSK also
includes the capacity boundary for the ideal condition of error-free transmission. Figure
7.37 shows that increasing M in M-ary FSK has the opposite effect to that in M-ary PSK.
In more specific terms, we may state the following:

In other words, in an information-theoretic context, M-ary FSK behaves better than M-ary
PSK.

In the final analysis, the choice of M-ary PSK or M-ary FSK for binary data
transmission over an AWGN channel is determined by the design criterion of interest:
bandwidth efficiency or the E/N, needed for reliable data transmission.



Comparison of M-ary PSK and M-ary FSK from an Information-Theoretic Viewpoint

30—
20
Capacity boundan
<€l= 10 pacty /
z
c
@
Q
5 50
pe
£ 4
=z =64
S 3 M=32 _ -
©
@ M=16 =
2= A
mM=8 7
16
\ Vs
| L [M=4/ | | | | J
-6 Mo 6 I 12 18 24 30 36
‘ |
‘ I 5 4B
\ No'
=1l os5 v=24 0
£
=04
S |
Sl o3
2
w
0.2

— 0.1

Comparison of M-ary PSK with the ideal system for P, = 1075

30—
20—
é’\m ok Capacity boundary
z
c
@
Q
5 50
g 4
=
2 3
(©
o
S
-16 M=4 M=2
| \1 | . | | | J
} 0 6 I’12 18 24 30 36
‘ d - LT
| Ju=8 o'
E| %5 dy-16
o d m=32
Il —o3 M =64
2
[72}
0.2
0.1

Comparison of M-ary FSK with the ideal system for P, = 107>

399



400

Signaling over AWGN Channels

Detection of Signals with Unknown Phase

Up to this point in the chapter we have assumed that the receiver is perfectly synchronized
to the transmitter and the only channel impairment is AWGN. In practice, however, it is
often found that, in addition to the uncertainty due to channel noise, there is also
uncertainty due to the randomness of certain signal parameters. The usual cause of this
uncertainty is distortion in the transmission medium. Perhaps the most common random
signal parameter is the carrier phase, which is especially true for narrowband signals. For
example, the transmission may take place over a multiplicity of paths of different and
variable length, or there may be rapidly varying delays in the propagating medium from
transmitter to receiver. These sources of uncertainty may cause the phase of the received
signal to change in a way that the receiver cannot follow. Synchronization with the phase
of the transmitted carrier is then too costly and the designer may simply choose to
disregard the phase information in the received signal at the expense of some degradation
in noise performance. A digital communication receiver with no provision made for
carrier phase recovery is said to be noncoherent.

Consider a binary communication system, in which the transmitted signal is defined by
hE 0<t<T
(1) = [=cos(2nf.1),
0 = [ eos R {i: 1,2

where E is the signal energy, T is the duration of the signaling interval, and the carrier
frequency f; for symbol i is an integer multiple of 1/(27). For reasons just mentioned, the
receiver operates noncoherently with respect to the transmitter, in which case the received
signal for an AWGN channel is written as

x(t) = A/ggcos(27tfit+ ) + w(t), for0<¢t<T and i=1,2

where @1is the unknown carrier phase and, as before, w(¢) is the sample function of a white
Gaussian noise process of zero mean and power spectral density Ny/2. Assuming complete
lack of prior information about &, we may treat it as the sample value of a random variable
with uniform distribution:

1
f®(9) =15 —Tt<@<m
0, otherwise

Such a distribution represents the worst-case scenario that could be encountered in
practice. The binary detection problem to be solved may now be stated as follows:

Proceeding in a manner similar to that described in Section 7.4, we may formulate the
likelihood function of symbol s; given the carrier phase & as
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E T
I(5,(6)) = exp{ /N—T on(t) cos (2f;t + 0) dt}
0

To proceed further, we have to remove dependence of I(s;(#)) on phase 6, which is
achieved by integrating it over all possible values of &, as shown by

I(s;)

[ 165.0o(0) a0

T T
%Jln eXpL/I%T J'Ox(t) cos(2mf;t + 49)} de

Using a well-known trigonometric formula, we may expand the cosine term in (7.214) as
cos(2nfit + ) = cos(2nf;t) cos @~ sin(2nf;t) sin &

Correspondingly, we may rewrite the integral in the exponent of (7.214) as
T T T
J. x(t) cos(2nf;t+ ) dt = cos HI x(t) cos(2nf;t) dt — sin HJ‘ x(t)sin(2nf;t) dt
0 0 0
Define two new terms:

T T

) 172
a = {on(z) cos (27f;1) dt} +on(r) sin(27f;1) dt} }

T
j x(1)sin(2nfr) dt
B = tan”" ;),
j x(1)cos(2nf ) dr

0

Then, we may go one step further and simplify the inner integral in (7.214) to

T
j x(1) cos(2nf;t + 6) dt
0

a;(cos B cos B, — sin Jsin ;)

a; cos(0+ )
Accordingly, using (7.218) in (7.214), we obtain

1 (" | E
7 I_n exp[ mai cos(6+ ﬂi)} deo
n+p;
=L I exp( —E—ai cosH) do
27[ ,TH.ﬂl_ NOT
1 (" [E
= 5= I_nexp( mai cos@ de

where, in the last line, we have used the fact that the definite integral is unaffected by the
phase £..

I(s;)



402

Signaling over AWGN Channels

From Appendix C on Bessel functions, we recognize the integral of (7.219) as the
modified Bessel function of zero order, written in the compact form

| E_ )_ 1 ( £ )
IO( NOTai =5 J-inexp NOTai cosf) db

Using this formula, we may correspondingly express the likelihood function for the
signal-detection problem described herein in the compact form

I(s;) = IO(/\/%OKJ

With binary transmission as the issue of interest, there are two hypotheses to be
considered: hypothesis Hy, that signal s;(¢) was sent, and hypothesis H,, that signal s, was
sent. In light of (7.221), the binary-hypothesis test may now be formulated as follows:

H
[0( Lal> 2 ([0 £a2>
AN 5 O NT

The modified Bessel function /() is a monotonically increasing function of its argument.
Hence, we may simplify the hypothesis test by focusing on ¢; for given E/NyT. For
convenience of implementation, however, the simplified hypothesis test is carried out in
terms of a; rather than ¢;; that is to say:

For obvious reasons, a receiver based on (7.222) is known as the guadratic receiver. In
light of the definition of ¢; given in (7.216), the receiver structure for computing ¢; is as
shown in Figure 7.38a. Since the test described in (7.222) is independent of the symbol
energy E, this hypothesis test is said to be uniformly most powerful with respect to E.

We next derive two equivalent forms of the quadrature receiver shown in Figure 7.38a.
The first form is obtained by replacing each correlator in this receiver with a
corresponding equivalent matched filter. We thus obtain the alternative form of quadrature
receiver shown in Figure 7.38b. In one branch of this receiver, we have a filter matched to
the signal cos(2nf;t) and in the other branch we have a filter matched to sin(2rf;t), both of
which are defined for the signaling interval 0 <7< T. At time ¢ = T, the filter outputs are
sampled, squared, and then added together.

To obtain the second equivalent form of the quadrature receiver, suppose we have a fil-
ter that is matched to s(r) = cos(2nf;t + ) for 0 <t < T. The envelope of the matched filter
output is obviously unaffected by the value of phase 6. Therefore, we may simply choose a
matched filter with impulse response cos[27f;(T — t)], corresponding to &= 0. The output
of such a filter in response to the received signal x(¢) is given by

(1) j:x(r) cos[2nf(T—1+7)] dz

T T
cos[2nf(T - t)]jox(r) cos(2nf;7) dr— sin[27f(T - z)]jox(r)sin(znfir) dr
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Noncoherent receivers: (a) quadrature receiver using correlators;
(b) quadrature receiver using matched fiters; (c) noncoherent matched filter.

The envelope of the matched filter output is proportional to the square root of the sum of
the squares of the two definite integrals in (7.223). This envelope, evaluated at time 7 = T,
is, therefore, given by the following square root:

172

T 2 T 2
{on(r) cos(2nf;7) dr:| + on(r)sm(anl.r) dr} }

But this is just a repeat of the output of the quadrature receiver defined earlier. Therefore,
the output (at time 7) of a filter matched to the signal cos(2nf;t + 6) of arbitrary phase 6,
followed by an envelope detector, is the same as the quadrature receiver’s output /;. This
form of receiver is shown in Figure 7.38c. The combination of matched filter and envelope
detector shown in Figure 7.38c is called a noncoherent matched filter.
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(b)
Output of matched filter for a rectangular RF wave: (a) @ = 0; (b) & = 180°.

The need for an envelope detector following the matched filter in Figure 7.38c may also
be justified intuitively as follows. The output of a filter matched to a rectangular RF wave
reaches a positive peak at the sampling instant ¢t = 7. If, however, the phase of the filter is
not matched to that of the signal, the peak may occur at a time different from the sampling
instant. In actual fact, if the phases differ by 180°, we get a negative peak at the sampling
instant. Figure 7.39 illustrates the matched filter output for the two limiting conditions:
0=0 and 6= 180° for which the respective waveforms of the matched filter output are
displayed in parts a and b of the figure. To avoid poor sampling that arises in the absence
of prior information about the phase, it is reasonable to retain only the envelope of the
matched filter output, since it is completely independent of the phase mismatch 6.

Noncoherent Orthogonal Modulation Techniques

With the noncoherent receiver structures of Figure 7.38 at our disposal, we may now
proceed to study the noise performance of noncoherent orthogonal modulation that
includes two noncoherent receivers as special cases: noncoherent binary FSK; and
differential PSK (called DPSK), which may be viewed as the noncoherent version of
binary PSK.

Consider a binary signaling scheme that involves the use of two orthogonal signals s;(¢)
and s,(f), which have equal energy. During the signaling interval 0 < ¢ < 7, where T may be
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different from the bit duration 7}, one of these two signals is sent over an imperfect
channel that shifts the carrier phase by an unknown amount. Let g;(¢) and g,(#) denote the
phase-shifted versions of s;(¢) and s,(7) that result from this transmission, respectively. It is
assumed that the signals g,(#) and g,(#) remain orthogonal and have the same energy E,
regardless of the unknown carrier phase. We refer to such a signaling scheme as
noncoherent orthogonal modulation, hence the title of the section.

In addition to carrier-phase uncertainty, the channel also introduces AWGN w(¢) of zero
mean and power spectral density Ny/2, resulting in the received signal

0 g1(t) +w(1), s1(t) sent for 0<¢t<T
X =
8 (1) + w(1), s,(1) sent for 0<¢<T

To tackle the signal detection problem given x(f), we employ the generalized receiver
shown in Figure 7.39a, which consists of a pair of filters matched to the transmitted
signals s;(f) and s,(f). Because the carrier phase is unknown, the receiver relies on
amplitude as the only possible discriminant. Accordingly, the matched-filter outputs are
envelope-detected, sampled, and then compared with each other. If the upper path in
Figure 7.38a has an output amplitude /; greater than the output amplitude /, of the lower
path, the receiver decides in favor of s;(¢); the /; and /, used here should not be confused
with the symbol / denoting the likelihood function in the preceding section. If the converse
is true, the receiver decides in favor of s,(f). When they are equal, the decision may be
made by flipping a fair coin (i.e., randomly). In any event, a decision error occurs when
the matched filter that rejects the signal component of the received signal x(¢) has a larger
output amplitude (due to noise alone) than the matched filter that passes it.

From the discussion presented in Section 7.10 we note that a noncoherent matched
filter (constituting the upper or lower path in the receiver of Figure 7.40a), may be viewed
as being equivalent to a quadrature receiver. The quadrature receiver itself has two
channels. One version of the quadrature receiver is shown in Figure 7.40b. In the upper
path, called the in-phase path, the received signal x(¢) is correlated with the function
w,(t) , which represents a scaled version of the transmitted signal s(#) or s5(#) with zero
carrier phase. In the lower path, called the quadrature path, on the other hand, x(7) is
correlated with another function t,/A/l-(t), which represents the version of (1) that results
from shifting the carrier phase by —90°. The signals ;(¢) and w;(r) are orthogonal to
each other.

In actual fact, the signal 1/A/l-(t) is the Hilbert transform of (1), the Hilbert transform
was discussed in Chapter 2. To illustrate the nature of this relationship, let

wi(1) = m(t) cos(2mf;t)

where m(f) is a band-limited message signal. Typically, the carrier frequency f; is greater than
the highest frequency component of m(%). Then the Hilbert transform w;(¢) is defined by

wi(1) = m(t) sin(2nf;t)
for which reference should be made in Table 2.3 of Chapter 2. Since

cos(anit—g) = sin(2nf;t)
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we see that 1/;(1) is indeed obtained from w,(t) by shifting the carrier cos(27f;t) by —90°.
An important property of Hilbert transformation is that a signal and its Hilbert transform are
orthogonal to each other. Thus, () and w,(1) are indeed orthogonal to each other, as
already stated.

The average probability of error for the noncoherent receiver of Figure 7.40a is given
by the simple formula

where E is the signal energy per symbol and Ny/2 is the noise spectral density.

To derive Equation (7.227)" we make use of the equivalence depicted in Figure 7.40. In
particular, we observe that, since the carrier phase is unknown, noise at the output of each
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(a) Generalized binary receiver for noncoherent orthogonal modulation. (b) Quadrature
receiver equivalent to either one of the two matched filters in (a); the index i = 1, 2.
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matched filter in Figure 7.40a has two degrees of freedom: in-phase and quadrature.
Accordingly, the noncoherent receiver of Figure 7.40a has a total of four noisy parameters
that are conditionally independent given the phase 6, and also identically distributed. These
four noisy parameters have sample values denoted by xy, xq(, and xp, and xgqy; the first
two account for degrees of freedom associated with the upper path of Figure 7.40a, and the
latter two account for degrees of freedom associated with the lower path of the figure.

The receiver of Figure 7.40a has a symmetric structure, meaning that the probability of
choosing s,(7) given that s;(f) was transmitted is the same as the probability of choosing
s51(¢) given that s,(#) was transmitted. In other words, the average probability of error may
be obtained by transmitting s,(¢) and calculating the probability of choosing s,(t), or vice
versa; it is assumed that the original binary symbols and therefore s;(f) and s,(¢) are
equiprobable.

Suppose that signal s¢(¢) is transmitted for the interval O < ¢ < T. An error occurs if the
channel noise w(?) is such that the output /, of the lower path in Figure 7.40a is greater than
the output /; of the upper path. Then, the receiver decides in favor of s,(¢) rather than s{(7).
To calculate the probability of error so made, we must have the probability density function
of the random variable L, (represented by sample value /5). Since the filter in the lower
path is matched to s,(f) and s,(¢) is orthogonal to the transmitted signal s;(%), it follows that
the output of this matched filter is due to noise alone. Let xy, and xq, denote the in-phase
and quadrature components of the matched filter output in the lower path of Figure 7.40a.
Then, from the equivalent structure depicted in this figure, we see that (for i = 2)

Lo 22
2 = N¥2 X2

Figure 7.41a shows a geometric interpretation of this relation. The channel noise w(t) is
both white (with power spectral density Ny/2) and Gaussian (with zero mean). Corre-
spondingly, we find that the random variables X}, and Xy, (represented by sample values
xpp and xqp) are both Gaussian distributed with zero mean and variance Ny/2, given the
phase €. Hence, we may write

2

1 12
fy,(12) = ——exp[——j
Xpp 12 /TENO N,

xQ,
(noise)
Iy XQ,
(noise)

xp,

(signal plus noise)
,\"Iz

(noise)
(a) (b)

Geometric interpretations of the two path outputs /; and /,
in the generalized non-coherent receiver.
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and

Next, we use the well-known property presented in Chapter 4 on stochastic processes: the
envelope of a Gaussian process represented in polar form is Rayleigh distributed and
independent of the phase 6. For the situation at hand, therefore, we may state that the
random variable L, whose sample value /, is related to xj, and xg, by (7.228) has the
following probability density function:

2
21 !
2 2
—= _ = >
f,(b) = NOCXP( NOJ’ [0

0, elsewhere

Figure 7.42 shows a plot of this probability density function, where the shaded area
defines the conditional probability that /, > /;. Hence, we have

P> 1|1) = jl fu (1) di,
1

Substituting (7.231) into (7.232) and integrating, we get

12
1
P(l,>1, |ll) = exp[—N-—-—Oj

Consider next the output amplitude /;, pertaining to the upper path in Figure 7.40a. Since
the filter in this path is matched to s(¢) and it is assumed that s(¢) is transmitted, it follows
that /; is due to signal plus noise. Let xj; and xq denote the components at the output of
the matched filter in the upper path of Figure 7.39a that are in phase and in quadrature
with respect to the received signal, respectively. Then, from the equivalent structure
depicted in Figure 7.40b, we see that, fori =1,

R
1 = A¥11HX01

)

Conditional
probability
of error
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A geometric interpretation of /; is presented in Figure 7.41b. Since a Fourier-transformable
signal and its Hilbert transform form an orthogonal pair, it follows that xy; is due to signal
plus noise, whereas xq is due to noise alone. This statement has two implications:

* The random variable Xj; represented by the sample value x; is Gaussian distributed
with mean ./E and variance Ny/2, where E is the signal energy per symbol.

* The random variable X represented by the sample value xq is Gaussian distrib-
uted with zero mean and variance Ny/2.

Hence, we may express the probability density functions of these two independent random
variables as

L[ /B
Ny

fX“(xn) =

and

respectively. Since the two random variables Xy and Xg are statistically independent,
their joint probability density function is simply the product of the probability density
functions given in (7.235) and (7.236).

To find the average probability of error, we have to average the conditional probability
of error given in (7.233) over all possible values of /;. Naturally, this calculation requires
knowledge of the probability density function of random variables L; represented by
sample value /;. The standard method is now to combine (7.235) and (7.236) to find the
probability density function of L; due to signal plus noise. However, this leads to rather
complicated calculations involving the use of Bessel functions. This analytic difficulty
may be circumvented by the following approach. Given xy; and xgy, an error occurs when,
in Figure 7.40a, the lower path’s output amplitude /, due to noise alone exceeds /; due to
signal plus noise; squaring both sides of (7.234), we write

2ol
1 = *11 ¥ XQ1
The probability of the occurrence just described is obtained by substituting (7.237) into

(7.233): 2
X[1+Xg 1]

I]j’(error|x“,le) = exp[— N
0

which is a probability of error conditioned on the output of the matched filter in the upper path
of Figure 7.40a taking on the sample values x1; and xq. This conditional probability multi-
plied by the joint probability density function of the random variables Xy; and Xg; is the
error-density given xy; and xgq. Since X1; and Xq; are statistically independent, their joint
probability density function equals the product of their individual probability density func-
tions. The resulting error-density is a complicated expression in xp; and xq;. However, the
average probability of error, which is the issue of interest, may be obtained in a relatively sim-
ple manner. We first use (7.234), (7.235), and (7.236) to evaluate the desired error-density as

1 1.2 2 2 2
[P’(error|xn,le)fXH(xH)fXQl(le) = E]—v?)exp{—ﬁ(—)[xn +xg1 + (xqg —ﬁ) +xQ1]}
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Completing the square in the exponent of (7.239) without the scaling factor —1/N;, we
may rewrite it as follows:

E
2
Next, we substitute (7.240) into (7.239) and integrate the error-density over all possible
values of xj; and xq, thereby obtaining the average probability of error:

2 2 2 2 JEV .2
xH+xQ1+(xH—A/E) +xg; = 2()“11_7) +2xq +

Pe = I_wj_wﬂ:b(enor|x11, le)fxll(xH)fXQl(le) del d_le
2
© 2 o0 2x
= _1_exp(_£)j exp[_i( 1 _E) :|de1‘.‘ exp(— QI\J de]

We now use the following two identities:

0 2 JEN? Ny
exp[——(x ——) }dx = |—
I_OO AN 11 >
JPO [Zxélj d Nym
exp—| —=|dxy, = [—
. N, ) QLT N2

The identity of (7.242) is obtained by considering a Gaussian-distributed variable with
mean ~/E/2 and variance Ny/4 and recognizing the fact that the total area under the curve
of a random variable’s probability density function is unity. The identity of (7.243) follows
as a special case of (7.242). Thus, in light of these two identities, (7.241) reduces to

5ol 5)
P. = zexp|——
e zexp 2N0

which is the desired result presented previously as (7.227). With this formula at our
disposal, we are ready to consider noncoherent binary FSK and DPSK as special cases,
which we do next in that order.

and

Binary Frequency-Shift Keying Using Noncoherent Detection

In binary FSK, the transmitted signal is defined in (7.151) and repeated here for
convenience of presentation:

2E,
s;(1) = T—bCOS(2TEf,»t), 0<t<T,

0, elsewhere

where Ty, is the bit duration and the carrier frequency f; equals one of two possible values
f1 and f5; to ensure that the signals representing these two frequencies are orthogonal, we
choose f; = n;/Ty, where n; is an integer. The transmission of frequency f; represents
symbol 1 and the transmission of frequency f, represents symbol 0. For the noncoherent
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Noncoherent receiver for the detection of binary FSK signals.

detection of this frequency-modulated signal, the receiver consists of a pair of matched
filters followed by envelope detectors, as in Figure 7.43. The filter in the upper path of the
receiver is matched to cos(2nf;¢) and the filter in the lower path is matched to cos(2nf,t)
for the signaling interval O < ¢ < T}, The resulting envelope detector outputs are sampled at
t = Ty, and their values are compared. The envelope samples of the upper and lower paths
in Figure 7.43 are shown as /| and /,. The receiver decides in favor of symbol 1 if /| > [,
and in favor of symbol 0 if /| < I,. If I = I,, the receiver simply guesses randomly in favor
of symbol 1 or 0.

The noncoherent binary FSK described herein is a special case of noncoherent
orthogonal modulation with 7' = T}, and E = E;,, where Ej, is the signal energy per bit.
Hence, the BER for noncoherent binary FSK is

o5
P, = —exp|-
e 2exp 2N0

which follows directly from (7.227) as a special case of noncoherent orthogonal
modulation.

Differential Phase-Shift Keying

As remarked at the beginning of Section 7.9, we may view DPSK as the “noncoherent”
version of binary PSK. The distinguishing feature of DPSK is that it eliminates the need
for synchronizing the receiver to the transmitter by combining two basic operations at the
transmitter:

* differential encoding of the input binary sequence and
* PSK of the encoded sequence,

from which the name of this new binary signaling scheme follows.
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Differential encoding starts with an arbitrary first bit, serving as the reference bit; to
this end, symbol 1 is used as the reference bit. Generation of the differentially encoded
sequence then proceeds in accordance with a two-part encoding rule as follows:

If the new bit at the transmitter input is 1, leave the differentially encoded symbol
unchanged with respect to the current bit.

If, on the other hand, the input bit is 0, change the differentially encoded symbol
with respect to the current bit.

The differentially encoded sequence, denoted by {d;}, is used to shift the sinusoidal
carrier phase by zero and 180°, representing symbols 1 and 0, respectively. Thus, in terms
of phase-shifts, the resulting DPSK signal follows the two-part rule:

To send symbol 1, the phase of the DPSK signal remains unchanged.
To send symbol 0, the phase of the DPSK signal is shifted by 180°.

Tlustration of DPSK

Consider the input binary sequence, denoted {b,}, to be 10010011, which is used to
derive the generation of a DPSK signal. The differentially encoded process starts with the
reference bit 1. Let {d;} denote the differentially encoded sequence starting in this
manner and {d;, _,} denote its delayed version by one bit. The complement of the
modulo-2 sum of {b,; } and {d, _} defines the desired {d, }, as illustrated in the top three
lines of Table 7.6. In the last line of this table, binary symbols 1 and 0 are represented by
phase-shifts of 1 and & radians.

lllustrating the generation of DPSK signal

{by) 1 0 01 0 0 1 1
{dp_1) 1 1. 01 1 0 1 1

reference

Differentially encoded sequence {d;,} 1 1 0 1 1 0 1 1 1
Transmitted phase (radians) 0O 0 - 0 0 = O O O

Basically, the DPSK is also an example of noncoherent orthogonal modulation when its
behavior is considered over successive two-bit intervals; that is, 0 < ¢ < 2T}, To
elaborate, let the transmitted DPSK signal be ,/2E, /T, cos(2nf.t) for the first-bit
interval 0 < ¢ < T}, which corresponds to symbol 1. Suppose, then, the input symbol for
the second-bit interval Ty, <t < 2Ty, is also symbol 1. According to part 1 of the DPSK
encoding rule, the carrier phase remains unchanged, thereby yielding the DPSK signal
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2E,
T—cos(2nfct), symbol 1 for 0<¢<T,
b

2E
/?]—Jcos(anct), symbol 0 for T, <7< 2T,
b

Suppose, next, the signaling over the two-bit interval changes such that the symbol at the
transmitter input for the second-bit interval T}, < ¢ < 27Ty, is 0. Then, according to part 2 of
the DPSK encoding rule, the carrier phase is shifted by n radians (i.e., 180°), thereby
yielding the new DPSK signal

2E,
T—bcos(anCt), symbol 1 for 0<t<T,

RE
T—bcos(anCt + 1), symbol 1 for T, <t<2T,
b

We now readily see from (7.246) and (7.247) that s,(¢) and s,(f) are indeed orthogonal
over the two-bit interval 0 < ¢ < 2T}, which confirms that DPSK is indeed a special form of
noncoherent orthogonal modulation with one difference compared with the case of binary
FSK: for DPSK, we have T = 2T, and E = 2E,,. Hence, using (7.227), we find that the BER
for DPSK is given by

- ool )
P, = 2exp N,

According to this formula, DPSK provides a gain of 3dB over binary FSK using
noncoherent detection for the same Ep/N,.

Figure 7.44 shows the block diagram of the DPSK transmitter. To be specific, the
transmitter consists of two functional blocks:

* Logic network and one-bit delay (storage) element, which are interconnected so as
to convert the raw input binary sequence {b;} into the differentially encoded
sequence {d;}.

* Binary PSK modulator, the output of which is the desired DPSK signal.

In the use of DPSK, the carrier phase &is unknown, which complicates the received signal
x(#). To deal with the unknown phase € in the differentially coherent detection of the
DPSK signal in x(f), we equip the receiver with an in-phase and a quadrature path. We thus
have a signal-space diagram where the received signal points over the two-bit interval
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Block diagram of a DPSK transmitter.

0 <t < 2Ty are defined by (Acosé, Asiné) and (-Acosf, —Asinf), where A denotes the
carrier amplitude.

This geometry of possible signals is illustrated in Figure 7.45. For the two-bit interval
0 <t < 2Ty, the receiver measures the coordinates X1 XQ, > first, at time ¢ = T}, and then
measures Xy , Xo at time ¢ = 2T, The issue to be resolved 1s whether these two points map
to the same signal point or different ones. Recognizing that the vectors x( and x;, with end
points X1 %Q, and X1 XQp respectively, are points roughly in the same direction if their
inner product 1s positive, we may formulate the binary-hypothesis test with a question:

Expressing this statement in analytic terms, we may write
say 1
XpX; +xq %5 2 0
1,1 <
(U QO Ql say 0

where the threshold is zero for equiprobable symbols.
We now note the following identity:

1 2 2 2 2
X0, T, = Z((x10+xll) —(xIO—xIl) +(xQO+xQ1) —(xQO—le) )

*Q
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! /
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| 7
¢ ————— —A sin6

Signal-space diagram of received DPSK signal.
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Block diagram of a DPSK receiver.

Hence, substituting this identity into (7.249), we get the equivalent test:

2 2 2 252y 1
(xIO + xI]) + (xQ0 + le) - (xIO _x11) - (xQO —le) z 0
say 0
where the scaling factor 1/4 is ignored. In light of this equation, the question on the binary
hypothesis test for the detection of DPSK may now be restated as follows:

Thus, the optimum receiver = for the detection of binary DPSK is as shown in Figure 7.46,
the formulation of which follows directly from the binary hypothesis test of (7.250). This
implementation is simple, in that it merely requires that sample values be stored.

The receiver of Figure 7.46 is said to be optimum for two reasons:

In structural terms, the receiver avoids the use of fancy delay lines that could be
needed otherwise.

In operational terms, the receiver makes the decoding analysis straightforward to
handle, in that the two signals to be considered are orthogonal over the interval
[0,27,] in accordance with the formula of (7.227).

BER Comparison of Signaling Schemes over AWGN Channels

Much of the material covered in this chapter has been devoted to digital modulation
schemes operating over AWGN channels. In this section, we present a summary of the
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BERs of some popular digital modulation schemes, classified into two categories,
depending on the method of detection used in the receiver:

Class I: Coherent detection

binary PSK: two symbols, single carrier
binary FSK: two symbols, two carriers one for each symbol

QPSK: four symbols, single carrier—the QPSK also includes the QAM, employing
four symbols as a special case
MSK: four symbols, two carriers.

Class II: Noncoherent detection

DPSK: two symbols, single carrier
binary FSK: two symbols, two carriers.

Table 7.7 presents a summary of the formulas of the BERs of these schemes separated
under Classes I and II. All the formulas are defined in terms of the ratio of energy per bit
to the noise spectral density, E,/N, as summarized herein:

Under Class I, the formulas are expressed in terms of the Q-function. This function
is defined as the area under the tail end of the standard Gaussian distribution with
zero mean and unit variance; the lower limit in the integral defining the Q-function
is dependent solely on E}/N,, scaled by the factor 2 for binary PSK, QPSK, and
MSK. Naturally, as this SNR ratio is increased, the area under the Q-function is
reduced and with it the BER is correspondingly reduced.

Under Class II, the formulas are expressed in terms of an exponential function,
where the negative exponent depends on the E/N, ratio for DPSK and its scaled
version by the factor 1/2 for binary FSK. Here again, as the E/Nj) is increased, the
BER is correspondingly reduced.

The performance curves of the digital modulation schemes listed in Table 7.7 are shown in
Figure 7.47 where the BER is plotted versus E/N. As expected, the BERs for all the

Formulas for the BER of digital modulation schemes
employing two or four symbols

Binary PSK
QPSK 0,2E,/N,
I. Coherent detection MSK
Binary FSK 0 /Eb/NO
1
DPSK EeXp(_Eb/No)

II. Noncoherent detection

Binary FSK %exp(—Eb/ZNO)
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schemes decrease monotonically with increasing Ep/N, with all the graphs having a
similar shape in the form of a waterfall. Moreover, we can make the following
observations from Figure 7.47:

For any value of Ey/Ny, the schemes using coherent detection produce a smaller
BER than those using noncoherent detection, which is intuitively satisfying.

PSK schemes employing two symbols, namely binary PSK with coherent detection
and DPSK with noncoherent detection, require an Ey/N that is 3 dB less than their
FSK counterpart to realize the same BER.

At high values of Ey/Ny, DPSK and binary FSK using noncoherent detection

perform almost as well, to within about 1 dB of their respective counterparts using
coherent detection for the same BER.
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Although under Class I the BER for binary PSK, QPSK, and MSK is governed by
the same formula, there are important differences between them:

e For the same channel bandwidth and BER, the QPSK accommodates the
transmission of binary data at twice the rate attainable with binary PSK; in other
words, QPSK is bandwidth conserving.

* When sensitivity to interfering signals is an issue of practical concern, as in
wireless communications, MSK is preferred over QPSK.

Synchronization

The coherent reception of a digitally modulated signal, discussed in previous sections of
this chapter, requires that the receiver be synchronous with the transmitter. In this context,
we define the process of synchronization as follows:

There are two basic modes of synchronization:

Carrier synchronization. When coherent detection is used in signaling over AWGN
channels via the modulation of a sinusoidal carrier, knowledge of both the frequency
and phase of the carrier is necessary. The process of estimating the carrier phase and
frequency is called carrier recovery or carrier synchronization; in what follows,
both terminologies are used interchangeably.

To perform demodulation, the receiver has to know the instants of time at which the
modulation in the transmitter changes its state. That is, the receiver has to know the
starting and finishing times of the individual symbols, so that it may determine when
to sample and when to quench the product-integrators. The estimation of these times is
called clock recovery or symbol synchronization; here again, both terminologies are
used interchangeably.

We may classify synchronization schemes as follows, depending on whether some form of
aiding is used or not:

Data-aided synchronization. In data-aided synchronization schemes, a preamble is
transmitted along with the data-bearing signal in a time-multiplexed manner on a
periodic basis. The preamble contains information about the symbol timing, which
is extracted by appropriate processing of the channel output at the receiver. Such an
approach is commonly used in digital satellite and wireless communications, where
the motivation is to minimize the time required to synchronize the receiver to the
transmitter. Limitations of data-aided synchronization are twofold:

* reduced data-throughput efficiency, which is incurred by assigning a certain
portion of each transmitted frame to the preamble, and

* reduced power efficiency, which results from the allocation of a certain fraction
of the transmitted power to the transmission of the preamble.
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Nondata-aided synchronization. In this second approach, the use of a preamble is
avoided and the receiver has the task of establishing synchronization by extracting
the necessary information from the noisy distorted modulated signal at the channel
output. Both throughput and power efficiency are thereby improved, but at the
expense of an increase in the time taken to establish synchronization.

In this section, the discussion is focused on nondata-aided forms of carrier and clock
recovery schemes. To be more specific, we adopt an algorithmic approach, ~ which is so-
called on account of the fact that implementation of the sychronizer enables the receiver to
estimate the carrier phase and symbol timing in a recursive manner from one time instant
to another. The processing is performed on the baseband version of the received signal,
using discrete-time (digital) signal-processing algorithms.

Maximum likelihood decoding played a key role in much of the material on signaling
techniques in AWGN channels presented in Sections 7.4 through 7.13. Maximum
likelihood parameter estimation plays a key role of its own in the algorithmic approach to
synchronization. Both of these methods were discussed previously in Chapter 3 on
probability theory and Bayesian inference. In this context, it may therefore be said that a
sense of continuity is being maintained throughout this chapter.

Given the received signal, the maximum likelihood method is used to estimate two
parameters: carrier phase and symbol timing, both of which are, of course, unknown.
Here, we are assuming that knowledge of the carrier frequency is available at the receiver.

Moreover, in the algorithmic approach, the symbol-timing recovery is performed
before phase recovery. The rationale for proceeding in this way is that once we know the
envelope delay incurred by signal transmission through a dispersive channel, then one
sample per symbol at the matched filter output may be sufficient for estimating the
unknown carrier phase. Moreover, computational complexity of the receiver is minimized
by using synchronization algorithms that operate at the symbol rate 1/T.

In light of the remarks just made, we will develop the algorithmic approach to
synchronization by proceeding as follows:

Through processing the received signal corrupted by channel noise and channel
dispersion, the likelihood function is formulated.

The likelihood function is maximized to recover the clock.

With clock recovery achieved, the next step is to maximize the likelihood function to
recover the carrier.

The derivations presented in this chapter focus on the QPSK signal. The resulting
formulas may be readily extended to binary PSK symbols as a special case and
generalized for M-ary PSK signals.

Recursive Maximum Likelihood Estimation for Synchronization

In the previous section, we remarked that, in algorithmic synchronization, estimation of
the two unknown parameters, namely carrier phase and symbol timing, is performed in a
recursive manner from one time instant to another.
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In other words:

Moreover, the estimation is performed at time t = n7, where n is an integer and 7 is the
symbol duration. Equivalently, we may say that n = #T denotes the normalized
(dimensionless) discrete time.

One other important point to note: recursive estimation of the unknown parameter, be
that the carrier phase or symbol time, plays a key role in the synchronization process.
Specifically, it proceeds across discrete time in accordance with the following rule:

(Updated estimate) _ ( Old estimate ) + ( Step—size) y ( Error)
of the parameter of the parameter parameter signal

In other words, the recursive parameter estimation takes on the structure of an adaptive
filtering algorithm, in which the product of the step-size parameter and error signal
assumes the role of an algorithmic adjustment.

In what follows, we derive adaptive filtering algorithms for estimating the unknown
synchronization parameters with the error signal being derived from the likelihood function.

The idea of maximum likelihood parameter estimation based on continuous-time
waveforms was discussed in Chapter 3. To briefly review the material described therein,
consider a baseband signal defined by

x(t) = s(t, A) +w(1)

where A is an unknown parameter and w(t) denotes an AWGN. Given a sample of the
signal x(7), the requirement is to estimate the parameter 1; so, we say:

Note that we say “a maximum’” rather than “the maximum” because it is possible for the
graph of /(1) plotted versus A to have multiple maxima. In any event, the likelihood
function given x, namely I(4), is defined as the probability density function f(x|1) with
the roles of x and A interchanged, as shown by

I(A) = flx]A)
where, for convenience of presentation, we have omitted the conditional dependence of A
onx in [(1).

In the algorithmic synchronization procedures derived in this section, we will be
concerned only with cases in which the parameter A is a scalar. Such cases are referred to
as independent estimation. However, when we are confronted with the synchronization of a
digital communication receiver to its transmitter operating over a dispersive channel, we
have two unknown channel-related parameters to deal with: the phase (carrier) delay 7, and
the group (envelope) delay Ty both of which were discussed in Chapter 2. In the context of
these two parameters, when we speak of independent estimation for synchronization, we
mean that the two parameters 7, and 7, are considered individually rather than jointly.
Intuitively speaking, independent estimation is much easier to tackle and visualize than
joint estimation, and it may yield more robust estimates in general.
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Let the transmitted signal for symbol i in the QPSK signal be defined by

s;(1) = IZ?ECOS(ZTE]CC[+ a,), 0<t<T

where E is the signal energy per symbol, T is the symbol period, and «; is the carrier
phase used for transmitting symbol i. For example, for the QPSK we have

T, .. ;
a; = Z(Zz—l), i=1,2,34
Equivalently, we may write
RE
s;(1) = —T-cos(anCt+ a;)g(t)

where g(?) is the shaping pulse, namely a rectangular pulse of unit amplitude and duration
T. By definition, 7, affects the carrier and 7, affects the envelope. Accordingly, the
received signal at the channel output is given by

x(1)

Ecos(anc(t— T)+o,)g(t- Tg) +w(t)

Ecos(anct +0+a)g(t- z'g) +w(t)

where w(f) is the channel noise. The new term € introduced in (7.254) is an additive
carrier phase attributed to the phase delay 7z, produced by the dispersive channel; it is
defined by

0 = -2nf,z,

The minus sign is included in the right-hand side of (7.255) to be consistent with previous
notation used in dealing with signal detection.

Both the carrier phase ¢ and group delay 7, are unknown. However, it is assumed that
they remain essentially constant over the observation interval 0 < ¢ < T}, or through the
transmission of a sequence made up of Ly = Ty/T symbols.

With & used to account for the carrier delay 7, we may simplify matters by using 7
in place of 7y for the group delay; that is, (7.254) is rewritten as

(1) = /27Ecos(2nfct+ 0+ a)g(t- D +w(n), t<t<T+z
i=1,2,3,4

At the receiver, the orthogonal pair of basis functions for QPSK signals is defined by

9 (1) = ﬁcos(anCt), r<t<T+7

(1) = ﬁsin(%fcf), 1<t<T+t

Here, it is assumed that the receiver has perfect knowledge of the carrier frequency f,
which is a reasonable assumption; otherwise, a carrier-frequency offset has to be included
that will complicate the analysis.
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Accordingly, we may represent the received signal x(f) by the baseband vector

xl(r)

x,(7)

x(7) =

where

T+ 1
x (1) = j (D dt,  k=1,2

T

In a corresponding fashion, we may express the signal component of x( ) by the vector

s(a;, 6, 7) = s1(a 6.9)
s5(ey, 6, 7)
where
T+ 1 E
si(ay, 6,7) = j J;cos(2nfct+ 0+ a)g (1) dr, k=1,2
i i=1,2,3,4

Assuming that f, is an integer multiple of the symbol rate 1/7, evaluation of the integral in
(7.262) shows that dependence of s; and s, on the group delay 7 is eliminated, as shown
by

si(a;, 0) = ﬁcos(0+ a;)
s5(a, 0) = —JEsin(0+ a;)
We may thus expand on (7.259) to write
x(7) = s(a;, 0) + w(1), i=1,2,3,4
where
wy(7)

WQ(T)

w(r) =

The two elements of the noise vector w are themselves defined by

w, = IT+Tw(t)¢k(t) dr, k=12

The wy, in (7.267) is the sample value of a Gaussian random variable W of zero mean and
variance Ny/2, where Ny/2 is the power spectral density of the channel noise w(?).
Dependence of the baseband signal vector x on delay 7 is inherited from (7.265).

The conditional probability density function of the random vector X, represented by the
sample x at the receiver input given transmission of the ith symbol, and occurrence of the
carrier phase @and group delay 7 resulting from the dispersive channel, is defined by

fx(x|ey, 0, 7) = %%exp(—]%o”x(r)—s(ai’ 5)”2)
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Setting s(a;, o) equal to zero, (7.268) reduces to

1 1 2
= 0 = — e —
fx(x|s = 0) exp( w0 )

TN,
Equation (7.268) defines the probability density function of the random vector X in the
combined presence of signal and channel noise, whereas (7.269) defines the probability
density function of x in the presence of channel noise acting alone. Accordingly, we may
define the likelihood function for QPSK as the ratio of these two probability density
functions, as shown by

i, 6 7) = X31% 60
PET i (x]s = 0)

_ exp(]—\%xT(r)s(ai, 0) - =-[s(a 9)||2)

1
Ny

In QPSK, we have
|s(e;, 0)| = constant

because all four message points lie on a circle of radius /E. Hence, ignoring the second
term in the exponent in (7.270), we may reduce the likelihood function to

i(a, 0.7) = exp(I%XT(T)s(ai, 0)
0

Before proceeding with the derivations of adaptive filtering algorithms for recovery of the
clock and carrier, we find it instructive to reformulate the likelihood function of (7.271)
using complex terminology. Such a step is apropos given the fact that the received signal
vector as well as its contituent signal and noise vectors in (7.265) are all in their respective
baseband forms.

Specifically, the two-dimensional vector x(7) is represented by the complex envelope
of the received signal

x(7) = x; +]x,

where j = J-1.

Correspondingly, the signal vector s(a;, ), comprising the pair of signal components
si(a;, 0) and s,(a;, 0), is represented by the complex envelope of the transmitter signal
corrupted by carrier phase 0:

‘;(a{i’ 0) = Sl(ai’ 0)+j52(ai7 6)
ﬁ[cos(ai, 0) +jsin(a;, 0)]
= ,\/E&ieja, i= 1a23354

The new complex parameter ¢; in (7.273) is a symbol indicator in the message
constellation of the QPSK; it is defined by

~ ia:
a; = eJ !

Cos ; +]s81n Q;
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Correspondingly, the complex experimental factor embodying the carrier phase & is
defined by
el = cos @+ jsin @
Both (7.274) and (7.275) follow from Euler’s formula.
With the complex representations of (7.272) to (7.275) at hand, we may now reformulate
the exponent of the likelihood function in (7.271) in the equivalent complex form:

T 2[

1—5—x s(a,, 0) = Re[X,(7)5"(;, 0)]

0
2J1‘5

Re[x( )a e j9]

where Re[.] denotes the real part of the complex expression inside the square brackets.
Hence, we may make the following statement:

Two points are noteworthy here:

The complex envelope of the received signal is dependent on the group delay z,

jo

hence X(7). The product &e’ is made up of the complex symbol indicator ¢;

attributed to the QPSK signal generated in the transmitter and the exponential term
¢’ 0 attributed to phase distortion in the channel.

In complex variable theory, given a pair of complex terms x(7) and @; ¢”, their
inner product could be defined as X(7)(¢; e ) =Xx(r )a e 10 , as shown in (7.276).

The complex representation on the right-hand side of (7.276), expressed in Cartesian
form, is well suited for estimating the unknown phase €. On the other hand, for estimating
the unknown group delay 7, we find it more convenient to use a polar representation for
the inner product of the two vectors x(7) and s(a;, 0) , as shown by

A/E| o x(r)‘ cos(arg[x(7)]—arg[a;] - 6)

2.7

Nox (7)s(a;, 0) =
Indeed, it is a straightforward matter to show that the two complex representations on the
right-hand side of (7.276) and (7.277) are indeed equivalent. The reasons for why these
two representations befit the estimation of carrier phase 6 and group delay 7, respec-
tively, will become apparent in the next two subsections.

Moreover, in light of what was said previously, estimation of the group delay should

precede that of the carrier phase. Accordingly, the next subsection is devoted to group-
delay estimation, followed by the sub-section devoted to carrier-phase estimation.

To begin the task of estimating the unknown group delay, first of all we have to remove
dependence of the likelihood function [(a;, 0, 7) on the unknown carrier phase 6 in
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(7.271). To do this, we will average the likelihood function over all possible values of 6
inside the range [0, 2rt] . To this end, & is assumed to be uniformly distributed inside this
range, as shown by

1
f®(6’) =2
0, otherwise

<@<2n

which is the worst possible situation that can arise in practice. Under this assumption, we
may thus express the average likelihood function as

27
j I(a;, 6, Df () dO

1 (ai, 7)

0
27
- ﬁ jo e, 6,7)d0

= %c J'z”exp(I%OxT(r)s(ai, 6’)) de

where, in the last line, we used (7.271).

Examining the two alternative complex representations of the likelihood function’s
exponent given in (7.276) and (7.277), it is the latter that best suits solving the integration
in (7.279). Specifically, we may write

- 1 27
@i e) = 5]

exp| B (o ostargli o)) - arel - ) 0

27— arg[x(7)] + arg[a;]
= ZLJ. ) exp(zN—ﬁ?‘ ai;c(r)| cos( ¢7)ng)
T _arg[3(0)] + arg[1] 0
where, in the last line, we have made the substitution
¢ = arg[¥(r)] - arg[ ;] - 6

We now invoke the definition of the modified Bessel function of zero order, as shown by
(see Appendix C)

I(x) = Lfﬁe“"“"d
0 T 2n 0 ?

Using this formula, we may, therefore, express the average likelihood function I, (¢, 7)
in (7.280) as follows:

(@, 7) =1, (2[ aix; (T)D

where fci( 7) is the complex envelope of the matched filter output in the receiver. By
definition, for QPSK we have

o =1, for all i
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It follows, therefore, that (7.282) reduces to

Iy () = 10(27{%;(7)0

Here, it is important to note that, as a result of averaging the likelihood function over the
carrier phase 6, we have also removed dependence on the transmitted symbol «; for
QPSK; this result is intuitively satisfying.

In any event, taking the natural logarithm of /,,(7) in (7.283) to obtain the log-
likelihood function of , we write

Lyy(7)

Inl (7)

= In IO(ZNiOEUC(f)D

where In denotes the natural logarithm. To proceed further, we need to find a good
approximation for L,(7). To this end, we first note that the modified Bessel function /;(x)
may itself be expanded in a power series (see Appendix C):

l 2m
1oe) = i (2’9

o (m)’

where x stands for the product term 2 JE/ (NO)|)~c( 7)|. For small values of x, we may thus
approximate /y(x) as shown by
2
L(x)~1+%
()(x) 2

We may further simplify matters by using the approximation

2
In I(x) = ln(l + xZ)

2
X

~
~

for small x

For the problem at hand, small x corresponds to small SNR. Under this condition, we may
now approximate the log-likelihood function of (7.284) as follows:

Ly (@)~ Er
N 0
With maximization of L,,(7) as the objective, we differentiate it with respect to the
envelope delay 7, obtaining

L, (1) E 8, 2
or ]7(2)8_r|xi(r)|
= z—gRe[i*(r)i'(r)]

No

~% . . ~ ~, .. . . .
where x; (7) is the complex conjugate of x(7) and x'(7) is its derivative with respect to .
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The formula in (7.287) is the result of operating on the received signal at the channel
output, x(#), defined in (7.254) for a particular symbol of the QPSK signal defined in the
interval [z, T + 7]. In the course of finding the baseband vector representation of the
received signal, namely x(7), dependence on time ¢ disappeared in (7.287).
Notwithstanding this point, the fact of the matter is the log-likelihood ratio L, (7) in
(7.287) pertains to some point in discrete time n = #/7, and it changes with n. To go forward
with recursive estimation of the group delay 7, we must therefore bring discrete time n into
the procedure. To this end, 7 is assigned as a subscript to both X*(7) and X'(7) in (7.287).
Thus, with the recursive estimation of 7 following the format described in words in (7.251),
we may define the error signal needed for the recursive estimation of 7 (i.e., symbol-timing
recovery) as follows:

e, = Re[X, (D)X ()]
Let %n denote the estimate of the unknown group delay 7 at discrete time n.
Correspondingly, we may introduce two definitions
x,(t) = x(nT+7,)
and
X' () = x'(nT+71,)
Accordingly, we may reformulate the error signal e, in (7.288) as follows:
o A~ -
e, = Re[x (nT+7,)x"(nT+7,)]
Computation of the error signal e,,, therefore, requires the use of two filters:
Complex matched filter, which is used for generating )Ncn(z') .
Complex derivative matched filter, which is used for generating fc;(z') .
By design, the receiver is already equipped with the first filter. The second one is new. In
practice, the additional computational complexity due to the derivative matched filter is
found to be an undesireable requirement. To dispense with the need for it, we propose to
approximate the derivative using a finite difference, as shown by

.;C’(I’lT—i— %n) =~ %[}Nc(nT+ g-i— %n+1/2) —)NC(}’lT— g-l— %n—l/Z\J:|

Note, however, that in using the finite-difference approximation of (7.292) we have
simplified computation of the derivative matched filter by doubling the symbol rate. It is
desirable to make one further modification to account for the fact that timing estimates are
updated at multiples of the symbol period T and the only available quantities are T -

Consequently, we replace %n+ 1,2 by the current (updated estimate) %n and replace 7,_ 1
by the old estimate %n_ 1- We may thus rewrite (7.292) as follows:

~, A 17~ T ~ ~ T -
x'(nT+7,)= }[x(nT+ 3 + rn) —x(nT— 3 + Tn—l)]
So, we finally redefine the error signal as follows:

e, = Re{}c*(nT+ %n)[;c(nT+ g+ %n) —)Nc(nT— g+ %"‘J]}

where the scaling factor 1/7 is accounted for in what follows.
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Finally, building on the format of the recursive estimation procedure described in
(7.251), we may formulate the adaptive filtering algorithm for symbol timing recovery:

Chil = Cpt 7€, n=20,1273,..

where we have the following:

* The yin (7.295) is the step-size parameter, in which the two scaling factors 2E/ NS
and 1/T are absorbed; the factor 2E/N;; was ignored in moving from (7.287) to
(7.288) and the factor 1/T was ignored from (7.293) to (7.294).

* The error signal ¢, is defined by (7.294).

* The ¢, is a real number employed as control for the frequency of an oscillator,
referred to as a number-controlled oscillator (NCO).

The closed-loop feedback system for implementing the timing-recovery algorithm of
(7.295) is shown in Figure 7.48. From a historical perspective, the scheme shown in this
figure is analogous to the continuous-time version of the traditional early-late gate
synchronizer widely used for timing recovery. In light of this analogy, the scheme of
Figure 7.48 is referred to as a recursive early-late delay (NDA-ELD) synchronizer. At
every recursion (i.e., time step), the synchronizer works on three successive samples of the
matched filter output, namely:

i(nT+ g+ }n), (nT+ 7,), and )?(nT+ g— Ty 1)
The first sample is early and the last one is late, both defined with respect to the middle one.

With estimation of the symbol time 7 taken care of, the next step is to estimate the carrier
phase 6. This estimation is also based on the likelihood function defined in (7.270), but

Sample at

t=nT+ ?n - N
Complex envelope of X(nT +1,)
matched filter output __5. o\c >
at time : \

x()

Error
detector

NCO

Loop filter

Nondata-aided early—late delay
synchronizer for estimating the group delay.
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with a difference: this time we use the complex representation on the right-hand side of
(7.276) for the likelihood function’s exponent. Thus, the likelihood function of 6 is now
expressed as follows:

1) = exp(zN—{fRe[}(r)&i* e—je])

Taking the natural logorithm of both sides of (7.296), the log-likelihood function of 6 is,
therefore, given by

L) = ZNﬁRe[i(r)ai* e-if]
0

Here again, maximizing the estimate of the carrier phase @ as the issue of interest, we
differentiate L(#) with respect to &, obtaining

oL0) _ 2JED o e-i0]
00 N, 80
The real-part operator Re[:] is linear; therefore, we may interchange this operation with
the differentiation. Moreover, we have

9 0 =
56°"

As a result of the differentiation, the argument x(7) a* e39 in (7.297) is multiplied by —j,

which, in turn, has the effect of replacing the real-part operator Re[.] by the corresponding

imaginary-part operator Im[.] Accordingly, we may express derivative of the log-likelihood

function in (7.297) with respect to & as follows:

oL(6) _ 2JE
00 Ny

_j e_j 0

o Imx(r)&;* e Y]

With this equation at hand, we are now ready to formulate the adaptive filtering algorithm
for estimating the unknown carrier phase 6. To this end, we incorporate discrete-time n
into the recursive estimation procedure for clock recovery in a manner similar to what we
did for the group delay; specifically:

With the argument of the imaginary-part operator in (7.298) playing the role of error
signal, we write:
= Im[%, ()&, e ]
where n denotes the normahzed discrete-time.
The scaling factor 2JE/ N, is absorbed in the new step-size parameter s .

With é,, denoting the old estimate of the carrier phase & and é,,+1 denoting its
updated value, the update rule for the estimation is defined as follows:

Op+1 = Op+pe, n=01,273..

Equations (7.299) and (7.300) not only define the adaptive filtering algorithm for carrier-
phase estimation, but also they provide the basis for implementing the algorithm, as shown
in Figure 7.49. This figure may be viewed as a generalization of the well-known Costas loop
for the analog synchronization of linear quadrature-amplitude modulation schemes that
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Complex envelope of a
matched filter output > Q Detector .
at time ¢ = nT: 2/
i exp(—6),)
Error
Look-up i ~| generator
table exp(*)

Unit-delay

First-order recursion filter

The recursive Costas loop for estimating the carrier phase.

involve the combined use of in-phase and quadrature components, of which the QPSK is a
special example. As such, we may refer to the closed-loop synchronization scheme of Figure
7.49 as the recursive Costas loop for phase synchronization.

The following points should be noted in Figure 7.49:

* The detector supplies an estimate of the symbol indicator &n and, therefore, the
transmitted symbol, given the matched filter output.
 For the input ,,, the look-up table in the figure supplies the value of the exponential

exp(—jé,,) = cosf9,,—j sinén

* The output of the error generator is the error signal e, defined in (7.299).
* The block labeled 7! represents a unit-time delay.

The recursive Costas loop of Figure 7.49 uses a first-order digital filter. To improve the
tracking performance of this synchronization system, we may use a second-order digital
filter. Figure 7.50 shows an example of a second-order recursive filter made up of a
cascade of two first-order sections, with p as an adjustable loop parameter. An important
property of a second-order recursive filter used in the Costas loop for phase recovery is
that it will eventually lock onto the incoming carrier with no static error, provided that the
frequency error between the receiver and transmitter is initially small.

The adaptive behavior of the filtering schemes in Figures 7.48 and 7.49 for group-delay
and carrier-phase estimation, respectively, is governed by how the step-size parameters

Input + R + 1 Output
sequence N N ” sequence

+ +

Second-order recursive filter.
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yand u are selected. The smaller we make y and, likewise, u, the more refined will be
the trajectories resulting from application of the algorithms. However, this benefit is
attained at the cost of the number of recursions required for convergence of the algorithms.
On the other hand, if the step-size parameter y and u is assigned a large value, then the
trajectories may follow a zig-zag sort of path. Indeed, if » and x exceeds a certain critical
value of its own, it is quite possible for the algorithm to diverge, which means that the
synchronization schemes of Figures 7.48 and 7.49 may become unstable. So, from a
design perspective, the compromise choice between accuracy of estimation and speed of
convergence may require a detailed attention, both theoretical and experimental.

Summary and Discussion

The primary goal of the material presented in this chapter is the formulation of a
systematic procedure for the analysis and design of a digital communication receiver in
the presence of AWGN. The procedure, known as maximum likelihood detection, decides
which particular transmitted symbol is the most likely cause of the noisy signal observed
at the channel output. The approach that led to the formulation of the maximum likelihood
detector (receiver) is called signal-space analysis. The basic idea of the approach is to
represent each member of a set of transmitted signals by an N-dimensional vector, where
N is the number of orthonormal basis functions needed for a unique geometric
representation of the transmitted signals. The set of signal vectors so formed defines a
signal constellation in an N-dimensional signal space.

For a given signal constellation, the (average) probability of symbol error, P, incurred
in maximum likelihood signal detection over an AWGN channel is invariant to rotation of
the signal constellation as well as its translation. However, except for a few simple (but
important) cases, the numerical calculation of P, is an impractical proposition. To
overcome this difficulty, the customary practice is to resort to the use of bounds that lend
themselves to computation in a straightforward manner. In this context, we described the
union bound that follows directly from the signal-space diagram. The union bound is
based on an intuitively satisfying idea:

The results obtained using the union bound are usually fairly accurate, particularly when
the SNR is high.

With the basic background theory on optimum receivers covered in the early part of
Chapter 7 at our disposal, formulas were derived for, or bounds on, the BER for some
important digital modulation techniques in an AWGN channel:

PSK, using coherent detection; it is represented by
* binary PSK;
* QPSK and its variants, namely, such as the offset QPSK;

» coherent M-ary PSK, which includes binary PSK and QPSK as special cases with
M =2 and M =4, respectively.

The DPSK may be viewed as the pseudo-noncoherent form of PSK.
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M-ary QAM, using coherent detection; this modulation scheme is a hybrid form of
modulation that combines amplitude and phase-shift keying. For M = 4, it includes
QPSK as a special case.

FSK, using coherent detection; it is represented by

* binary FSK;

¢ MSK and its Gaussian variant known as GMSK;

e M-ary FSK.

Noncoherent detection schemes, involving the use of binary FSK and DPSK.

Irrespective of the digital modulation system of interest, synchronization of the receiver to
the transmitter is essential to the operation of the system. Symbol timing recovery is
required whether the receiver is coherent or not. If the receiver is coherent, we also require
provision for carrier recovery. In the latter part of the chapter we discussed nondata-aided
synchronizers to cater to these two requirements with emphasis on M-ary PSK,
exemplified by QPSK signals, in which the carrier is suppressed. The presentation focused
on recursive synchronization techniques that are naturally suited for the use of discrete-
time signal processing algorithms.

We conclude the discussion with some additional notes on the two adaptive filtering
algorithms described in Section 7.16 on estimating the unknown parameters: carrier phase
and group delay. In a computational context, these two algorithms are in the same class as
the celebrated least-mean-square (LMS) algorithm described by Widrow and Hoff over
50 years ago. The LMS algorithm is known for its computational efficiency, effectiveness
in performance, and robustness with respect to the nonstationary character of the
environment in which it is embedded. The two algorithmic phase and delay synchronizers
share the first two properties of the LMS algorithm; for a conjecture, it may well be they
are also robust when operating in a nonstationary communication environment.

Representation of Signals

In Chapter 6 we described line codes for pulse-code modulation. Referring to the material presented
therein, formulate the signal constellations for the following line codes:

unipolar nonreturn-to-zero code
polar nonreturn-to-zero code
unipolar return-to-zero code
manchester code.

An 8-level PAM signal is defined by
t 1
s;(t) = A, rect(i— E)
where A; = +1, £3, £5, £7. Formulate the signal constellation of {s i(t)}fz ®

Figure P7.3 displays the waveforms of four signals s;(), s5(2), s3(f), and s4(f).

Using the Gram—Schmidt orthogonalization procedure, find an orthonormal basis for this set of
signals.

Construct the corresponding signal-space diagram.
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Using the Gram—Schmidt orthogonalization procedure, find a set of orthonormal basis functions

to represent the three signals s;(¢), s5(f), and s3(f) shown in Figure P7.4.

Express each of these signals in terms of the set of basis functions found in part a.

s1(1) s5(1)
41— 41—
3 3
2 2=

1 1 2
o2 s 0 5

-1 -1
-2 -2
-3 -3

-4 -4
5

s3(1)

An orthogonal set of signals is characterized by the property that the inner product of any pair of
signals in the set is zero. Figure P7.5 shows a pair of signals s1(#) and s,(¢) that satisfy this definition.
Construct the signal constellation for this pair of signals.

s1(0)

1

5,(1)

1

0 T2 T

A source of information emits a set of symbols denoted by {mi}?i " Two candidate modulation
schemes, namely pulse-duration modulation (PDM) and pulse-position modulation (PPM), are
considered for the electrical representation of this set of symbols. In PDM, the ith symbol is
represented by a pulse of unit amplitude and duration (i/M)T. On the other hand, in PPM, the ith
symbol is represented by a short pulse of unit amplitude and fixed duration, which is transmitted at
time ¢ = (i/M)T. Show that PPM is the only one of the two that can produce an orthogonal set of

signals over the interval 0 <t < T.

A set of 2M biorthogonal signals is obtained from a set of M ordinary orthogonal signals by
augmenting it with the negative of each signal in the set.

The extension of orthogonal to biorthogonal signals leaves the dimensionality of the signal space

unchanged. Explain how.

Construct the signal constellation for the biorthogonal signals corresponding to the pair of

orthogonal signals shown in Figure P7.5.
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A pair of signals s;(f) and s;(f) have a common duration 7. Show that the inner product of this
pair of signals is given by

4 T
Josi(t)sk(t) dr = s;’s,

where s; and s;, are the vector representations of s;(¢) and s;(), respectively.
As a follow-up to part a of the problem, show that

4 2 2
jo (5:() = 5(0)" dt = |Js;— s
Consider a pair of complex-valued signals s;(¢) and s (¢) that are respectively represented by

si(0) = ay ¢,(t) +a;,d,(1), —00 <t <o

55(1) = ay8,(1) + ay dy(1), —00 <t <00

where the basis functions ¢,(7) and ¢,(¢) are both real valued, but the coefficients a;y, a5, a5, and
ay, are complex valued. Prove the complex form of the Schwarz inequality:

2
J/isl(t)sg(t)dt SJ’i|s1(t)|2dtr Is,(0)[* di

—X

where the asterisk denotes complex conjugation. When is this relation satisfied with the equality sign?

Stochastic Processes

Consider a stochastic process X(f) expanded in the form

N
X(t) = ZXi¢i(t)+W’(t), 0<t<T
i=1
where W'() is a remainder noise term. The {#,(t) }f.V: | form an orthonormal set over the interval
0 <t<T, and the random variable X; is defined by

T
X, = j X(1)¢.(t) dt
1 0 l

Let W'(t;) denote a random variable obtained by observing W'(¢) at time ¢ = #;. Show that

j=1,2,..,N

ELX,W'(1,)] = 0, { 0y <t

Consider the optimum detection of the sinusoidal signal in AWGN:
s(t) = sin(s—”’), 0<1<T
T
Determine the correlator output assuming a noiseless input.

Determine the corresponding matched filter output, assuming that the filter includes a delay 7 to
make it causal.

Hence, show that these two outputs are exactly the same only at the time instant = 7.

Probability of Error

Figure P7.12 shows a pair of signals s;(#) and s,(¢) that are orthogonal to each other over the
observation interval 0 < 7 < 3T. The received signal is defined by
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x(t) = s () +w(t) | 0=1=3T
k=12
where w(?) is white Gaussian noise of zero mean and power spectral density Ny/2.
Design a receiver that decides in favor of signals s;(f) or s,(f), assuming that these two signals are
equiprobable.

Calculate the average probability of symbol error incurred by this receiver for E/N,y = 4, where E
is the signal energy.

5(1) s,(1)
1 1 —|
0 ! 0 t
T 2T 3r T 31 57| 3r
2 2 2
-1 -1

In the Manchester code discussed in Chapter 6, binary symbol 1 is represented by the doublet pulse
s(¢) shown in Figure P7.13, and binary symbol 0 is represented by the negative of this pulse. Derive
the formula for the probability of error incurred by the maximum likelihood detection procedure
applied to this form of signaling over an AWGN channel.

s(1)
1

0 T2 T

In the Bayes’ test, applied to a binary hypothesis-testing problem where we have to choose one of
two possible hypotheses H and H;, we minimize the risk & defined by

R = Cyppy(say HO|H0 is true) + Cypo(say H, |H0 is true) + C p,(say H, |H1 is true) + Cy, p(say H0|H1 is true)
The parameters Cy, Cyg, Cy;, and Cyy; denote the costs assigned to the four possible outcomes of the
experiment: the first subscript indicates the hypothesis chosen and the second the hypothesis that is

true. Assume that Cy > Cyg and Cy; > Cy;. The py and p; denote the a priori probabilities of
hypotheses Hy and Hy, respectively.

Given the observation vector X, show that the partitioning of the observation space so as to
minimize the risk % leads to the likelihood ratio test:

say Hy if A(x) <4
say Hyif A(x)> 4
where A(x) is the likelihood ratio defined by

A(X) = fx(X|H1)
fx(X|H0)
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and A is the threshold of the test defined by
_ Po(C1p—Cop)
Pi(Co1=Cyy)
What are the cost values for which the Bayes’ criterion reduces to the minimum probability of
error criterion?

Principles of Rotational and Translational Invariance

Continuing with the four line codes considered in Problem 7.1, identify the line codes that have
minimum average energy and those that do not. Compare your answers with the observations made
on these line codes in Chapter 6.

Consider the two constellations shown in Figure 7.10. Determine the orthonormal matrix Q that
transforms the constellation shown in Figure 7.10a into the one shown in Figure 7.10b.

The two signal constellations shown in Figure P7.17 exhibit the same average probability of
symbol error. Justify the validity of this statement.
Which of these two constellations has minimum average energy? Justify your answer.

You may assume that the symbols pertaining to the message points displayed in Figure P7.17 are

equally likely.
9, &
o \an B //.\
T VRN
| | // \\
| : e N
| AN
[0} »
—oc: 0 :a 1 IEN //2\6(1 9,

| | \\ //
b———+———¢ N s

i N

“N2a— A%

(@) (b)

Simplex (transorthogonal) signals are equally likely highly-correlated signals with the most negative
correlation that can be achieved with a set of M orthogonal signals. That is, the correlation
coefficient between any pair of signals in the set is defined by

={ 1 for i=j

p.,
Y —1/(M=1) for i#j

One method of constructing simplex signals is to start with a set of M orthogonal signals each with
energy E and then apply the minimum energy translate.

Consider a set of three equally likely symbols whose signal constellation consists of the vertices of
an equilateral triangle. Show that these three symbols constitute a simplex code.

Amplitude-Shift Keying

In the on—off keying version of an ASK system, symbol 1 is represented by transmitting a sinusoidal
carrier of amplitude ,/2E, /T, where E, is the signal energy per bit and T, is the bit duration.
Symbol 0 is represented by switching off the carrier. Assume that symbols 1 and 0 occur with equal
probability.
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For an AWGN channel, determine the average probability of error for this ASK system under the
following scenarios:
Coherent detection.
Noncoherent detection, operating with a large value of bit energy-to-noise spectral density ratio
Ey/Ny.
Note: when x is large, the modified Bessel function of the first kind of zero order may be
approximated as follows (see AppendixC):

Iy(x) ~ exp(x)

N2Tx

Phase-Shift Keying

The PSK signal is applied to a correlator supplied with a phase reference that lies within ¢ radians
of the exact carrier phase. Determine the effect of the phase error ¢ on the average probability of
error of the system.

The signal component of a PSK system scheme using coherent detection is defined by

s(t) = Ak sin(2nf.0) + A1 -k cos(2nf,1)

where 0 <t < Ty, the plus sign corresponds to symbol 1, and the minus sign corresponds to symbol
0; the parameter k lies in the range 0 < k < 1. The first term of s(f) represents a carrier component
included for the purpose of synchronizing the receiver to the transmitter.
Draw a signal-space diagram for the scheme described here. What observations can you make
about this diagram?

Show that, in the presence of AWGN of zero mean and power spectral density Ny/2, the average

probability of error is
2E,
- PR
P, = Q{ No(l k)}

1.2
E, = EAC T,
Suppose that 10% of the transmitted signal power is allocated to the carrier component.
Determine the Ey /N, required to realize P, = 107,

where

Compare this value of Ep/N, with that required for a binary PSK scheme using coherent
detection, with the same probability of error.

Given the input binary sequence 1100100010, sketch the waveforms of the in-phase and
quadrature components of a modulated wave obtained using the QPSK based on the signal set of
Figure 7.16.

Sketch the QPSK waveform itself for the input binary sequence specified in part a.

Let P.y and P denote the probabilities of symbol error for the in-phase and quadrature channels,
respectively, of a narrowband digital communication system. Show that the average probability of
symbol error for the overall system is given by

Pe=PeI+PeQ_PeIPeQ

Equation (7.132) is an approximate formula for the average probability of symbol error for M-ary
PSK using coherent detection. This formula was derived using the union bound in light of the signal-
space diagram of Figure 7.22b. Given that message point m; was transmitted, show that the
approximation of (7.132) may be derived directly from Figure 7.22b.
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Find the power spectral density of an offset QPSK signal produced by a random binary sequence in
which symbols 1 and O (represented by +1) are equally likely and the symbols in different time slots
are statistically independent and identically distributed.

Vestigial sideband modulation (VSB), discussed in Chapter 2, offers another possible modulation
method for signaling over an AWGN channel.

In particular, a digital VSB transmission system may be viewed as a time-varying one-
dimensional system operating at a rate of 2/7T dimensions per second, where T is the symbol
period. Justify the validity of this statement.

Show that digital VSB is indeed equivalent in performance to the offset QPSK.

Quadrature Amplitude Modulation

Referring back to Example 7, develop a systematic procedure for constructing M-ary QAM
constellations given the M-ary QAM constellation of Figure 7.24 for M = 16. In effect, this problem
addresses the opposite approach to that described in Example 7.

Figure P7.28 describes the block diagram of a generalized M-ary QAM modulator. Basically, the
modulator includes a mapper that produces a complex amplitude a,, input form =0, 1, ..., M- 1,
The real and imaginary parts of a,, input the basis functions ¢,(¢) and ¢,(¢), respectively. The
modulator is generalized in that it embodies M-ary PSK and M-ary PAM as special cases.

Formulate the underlying mathematics of the modulator described in Figure P7.28.
Hence, show that M-ary PSK and M-ary PAM are indeed special cases of the M-ary QPSK
generated by the block diagram of Figure P7.28.

0,(0)

Rela,,] *
X

\ZJ

Input —>~| Mapper ] @—> Output
m=0,1,...M-1 S0

Imfa,] /7N

0,(1)

Frequency-Shift Keying

The signal vectors s and s, are used to represent binary symbols 1 and 0, respectively, in a binary
FSK system using coherent detection. The receiver decides in favor of symbol1 when

T T
X8 >X S,
where xTs; is the inner product of the observation vector x and the signal vector s;, i = 1, 2. Show that

this decision rule is equivalent to the condition x; > x,, where x| and x, are the two elements of the
observation vector X. Assume that the signal vectors s; and s, have equal energy.

o 6 . .
An FSK system transmits binary data at the rate of 2.5 x 10" bits/s. During the course of
transmission, white Gaussian noise of zero mean and power spectral density 10720 W/Hz is added to
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the signal. In the absence of noise, the amplitude of the received sinusoidal wave for digit 1 or O is
1mV. Determine the average probability of symbol error for the following system configurations:

binary FSK using coherent detection;
MSK using coherent detection;
binary FSK using noncoherent detection.

In an FSK system using coherent detection, the signals s;() and s,(¢) representing binary symbols 1
and 0, respectively, are defined by

5,(1), 5,(1) = A_cos [m(fc : %f) t}, 0<r<T,

Assuming that f, > Af, show that the correlation coefficient of the signals s;(f) and s,(¢) is
approximately given by
Tb
j 51(0)s,(t) dt
p = e = sinc(2AT,)
b
| s1(1) dt
0
What is the minimum value of frequency shift Af for which the signals s;(#) and s,(¢) are
orthogonal?

What is the value of Af that minimizes the average probability of symbol error?

For the value of Af obtained in part ¢, determine the increase in E,/N required so that this FSK
scheme has the same noise performance as a binary PSK scheme system, also using coherent
detection.

A binary FSK signal with discontinuous phase is defined by

2E,
= cos |:2Tt(fc + A—f) t+ 6’1} for symbol 1
T, 2

2E
—® cos |:21E(fc - éf)t + 02} for symbol 0
T, 2

where E}, is the signal energy per bit, T}, is the bit duration, and 6, and &, are sample values of
uniformly distributed random variables over the interval O to 2m. In effect, the two oscillators
supplying the transmitted frequencies f, + Af /2 operate independently of each other. Assume that
fo>AY.

Evaluate the power spectral density of the FSK signal.

s(t) =

Show that, for frequencies far removed from the carrier frequency f, the power spectral density
falls off as the inverse square of frequency. How does this result compare with a binary FSK
signal with continuous phase?

Set up a block diagram for the generation of Sunde’s FSK signal s(#) with continuous phase by using
the representation given in (7.170), which is reproduced here

s(1) = \/%cos(;—g cos(2nfct)¢/\/%sin(;—9 sin(2mf, 1)

Discuss the similarities between MSK and offset QPSK, and the features that distinguish them.

There are two ways of detecting an MSK signal. One way is to use a coherent receiver to take full
advantage of the phase information content of the MSK signal. Another way is to use a noncoherent
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receiver and disregard the phase information. The second method offers the advantage of simplicity
of implementation at the expense of a degraded noise performance. By how many decibels do we
have to increase the bit energy-to-noise density ratio E,/N in the second method so as to realize the
same average probability of symbol error equal to 1072

Sketch the waveforms of the in-phase and quadrature components of the MSK signal in response
to the input binary sequence 1100100010.

Sketch the MSK waveform itself for the binary sequence specified in part a.

An NRZ data stream of amplitude levels £1 is passed through a low-pass filter whose impulse
response is defined by the Gaussian function

22
h(t) = %exp{—%}
(04

where o is a design parameter defined in terms of the filter’s 3dB bandwidth by

_ /In21
o = [zl

2
Show that the transfer function of the filter is defined by

H(f) = exp(-a’f)
Hence, demonstrate that the 3dB bandwidth of the filter is indeed equal to W. You may use the
list of Fourier-transform pairs in Table 2.1.
Determine the response of the filter to a rectangular pulse of unit amplitude and duration 7'
centered on the origin.

Summarize the similarities and differences between the standard MSK and Gaussian filtered MSK
signals.

Summarize the basic similarities and differences between the standard MSK and QPSK.

Noncoherent Receivers

In Section 7.12 we derived the formula for the BER of binary FSK using noncoherent detection as a
special case of noncoherent orthogonal modulation. In this problem we revisit this issue. As before,
we assume that symbol 1 is represented by signal s;(¢) and symbol O is represented by signal s,(7).
According to the material presented in Section 7.12, we note the following:

The random variable L, represented by the sample value /, is Rayleigh distributed.
The random variable L, represented by the sample value /; is Rician distributed.
The Rayleigh and Rician distributions were discussed in Chapter 4. Using the probability

distributions defined in that chapter, derive (7.245) for the BER of binary FSK, using noncoherent
detection.

Figure P7.41a shows a noncoherent receiver using a matched filter for the detection of a sinusoidal
signal of known frequency but random phase and under the assumption of AWGN. An alternative
implementation of this receiver is its mechanization in the frequency domain as a spectrum analyzer
receiver, as in Figure P7.41b, where the correlator computes the finite-time autocorrelation function
defined by

R(7) = I:_Tx(t)x(t+ D, 0<z<T

Show that the square-law envelope detector output sampled at time ¢ = T in Figure P7.41a is twice
the spectral output of the Fourier transform sampled at frequency f = f, in Figure P7.41b.
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x(1) Filter matched to Square-law x(1) ’ Output
—> cos (2nf.0); > envelope —o\)—» Output ——= Correlator tra";]oslfjgr?;er —= sampled at
0<t<T detector Sample at f=r
t=T

(a) (b)

The binary sequence 1100100010 is applied to the DPSK transmitter of Figure 7.44.
Sketch the resulting waveform at the transmitter output.

Applying this waveform to the DPSK receiver of Figure 7.46, show that in the absence of noise
the original binary sequence is reconstructed at the receiver output.

Comparison of Digital Modulation Schemes Using a Single Carrier

Synchronization

Binary data are transmitted over a microwave link at the rate of 10° bits/s and the power spectral
density of the noise at the receiver input is 107'° W/Hz. Find the average carrier power required to
maintain an average probability of error P, < 10~ for the following schemes:

Binary PSK using coherent detection;

DPSK.
The values of E}/N required to realize an average probability of symbol error P, = 10 for binary
PSK and binary FSK schemes are equal to 7.2 and 13.5, respectively. Using the approximation

1

O(u) = D

determine the separation in the values of Ey/N, for P, = 107, using:

exp(=2u)

binary PSK using coherent detection and DPSK;

binary PSK and QPSK, both using coherent detection;

binary FSK using (i) coherent detection and (ii) noncoherent detection;
binary FSK and MSK, both using coherent detection.

In Section 7.14 we compared the noise performances of various digital modulation schemes under
the two classes of coherent and noncoherent detection; therein, we used the BER as the basis of
comparison. In this problem we take a different viewpoint and use the average probability of symbol
error P, to do the comparison. Plot P, versus Ep/N for each of these schemes and comment on
your results.

Demonstrate the equivalence of the two complex representations given in (7.276) and (7.277), which
pertain to the likelihood function.

In the recursive algorithm of (7.295) for symbol timing recovery, the control signals c,, and c,, , |
are both dimensionless. Discuss the units in which the error signal e,, and step-size parameter u
are measured.

In the recursive algorithm of (7.300) for phase recovery, the old estimate é,, and the updated
estimate én +1 of the carrier phase @are both measured in radians. Discuss the units in which the
error signal e, and step-size parameter y are measured.

The binary PSK is a special case of QPSK. Using the adaptive filtering algorithms derived in Section
7.16 for estimating the group delay 7 and carrier phase €, find the corresponding adaptive filtering
algorithms for binary PSK.

Repeat Problem 7.48, but this time find the adaptive filtering algorithms for M-ary PSK.
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Suppose we transmit a sequence of Ly, statistically independent symbols of a QPSK signal, as shown
by

Ly-1
s={s},0,
where L is not to be confused with the symbol for average log-likelihood L,,. The channel output is

corrupted by AWGN of zero mean and power spectral density Ny/2, carrier phase €, and unknown
group delay 7.

Determine the likelihood function with respect to the group delay 7z, assuming that & is uni-
formly distributed.

Hence, formulate the maximum likelihood estimate of the group delay .
Compare this feedforward scheme of group-delay estimation with that provided by the NDA-
ELD synchronizer of Figure 7.48.
Repeat Problem 7.50, but this time do the following:
Determine the likelihood function with respect to the carrier phase €, assuming that the group
delay 7 is known.
Hence, formulate the maximum likelihood estimate of the carrier phase 4.
Compare this feedforward scheme of a carrier-phase estimation with the recursive Costas loop of
Figure 7.49.
In Section 7.16 we studied a nondata-aided scheme for carrier phase recovery, based on the log-
likelihood function of (7.296). In this problem we explore the use of this equation for data-aided
carrier phase recovery.
Consider a receiver designed for a linear modulation system. Given that the receiver has
knowledge of a preamble of length L, show that the maximum likelihood estimate of the carrier
phase is defined by

Ly—1 L Ly-1 .
where the preamble {Zzn}noz 0 is a known sequence of complex symbols and {x n}nO: o I8 the
complex envelope of the corresponding received signal.

Using the result derived in part a, construct a block diagram for the maximum likelihood phase
estimator.

Figure P7.53 shows the block diagram of a phase-synchronization system. Determine the phase
estimate ¢ of the unknown carrier phase in the received signal x(7) .

] fron

f g
Received Phase
signal cos(2mf1) v estimate
x(1) | arctan (f) —> 5
sin(2nf,.1) Y,
5 SO

Multipliers  Integrators
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Computer Experiments
In this computer-oriented problem, we study the operation of the NDA-ELD synchronizer for
symbol timing recovery by considering a coherent QPSK system with the following specifications:
The channel response is described by a raised cosine pulse with rolloff factor & =0.5.
The recursive filter is a first-order digital filter with transfer function
-1
H(z) = Z—,l
1-(1-yA)z
where z~! denotes unit delay, y is the step-size parameter, and A is a parameter, to be defined.
The loop bandwidth By is 2% of the symbol rate 1/7, that is, B T = 0.02.

With symbol timing recovery as the objective, a logical way to proceed is to plot the S-curve for the
NDA-ELD under the following conditions:

Ey/Ny=10dB
Ey/Ng = o (i.e., noiseless channel).

For NDA-ELD, the scheme shown in Figure P7.54 is responsible for generating the S-curve that
plots the timing offset versus the discrete time n = #/T.

Using this scheme, plot the S-curves, and comment on the results obtained for parts a and b.

Complex envelope 1=nT+1,

of matched filter

output at time :
x()

(T +%,)
0

Error
detector

|

Average

|

S(8)

In this follow-up to the computer-oriented Problem 7.54, we study the recursive Costas loop for
phase recovery using the same system specifications described in Problem 7.54. This time, however,
we use the scheme of Figure P7.54 for measuring the S-curve to plot the phase error versus discrete-

time n = t/T.
exp(—76)
Matched filter a,
output © Detector
%,
Error
generator
J/ e}l
Average

S(@)
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The plot is to be carried out under the following conditions:
Ey/Ny=5dB
Ey/Ny=10dB
E/Ny=30dB (i.e., practically noiseless channel)
Comment on the results obtained for these three conditions.

Notes

1. The geometric representation of signals was first developed by Kotel’nikov (1947) which is a
translation of the original doctoral dissertation presented in January 1947 before the Academic
Council of the Molotov Energy Institute in Moscow. In particular, see Part II of the book. This method
was subsequently brought to fuller fruition in the classic book by Wozencraft and Jacobs (1965).

2. The classic reference for the union bound is Wozencraft and Jacobs (1965).

3. Appendix C addresses the derivation of simple bounds on the Q-function. In (7.88), we have used
the following bound:
00 < ~exp(- )
or 2

which becomes increasingly tight for large positive values of x.
4. For an early paper on the offset QPSK, see Gitlin and Ho (1975).

5. The MSK signal was first described in Doelz and Heald (1961). For a tutorial review of MSK and
comparison with QPSK, see Pasupathy (1979). Since the frequency spacing is only half as much as
the conventional spacing of 1/Ty, that is used in the coherent detection of binary FSK signals, this
signaling scheme is also referred to as fast FSK; see deBuda (1972), who was not aware of the
Doelz-Heald patent.

6. For early discussions of GMSK, see Murota and Hirade (1981) and Ishizuke and Hirade (1980).

7. The analytical specification of the power spectral density of digital FM is difficult to handle,
except for the case of a rectangular shaped modulating pulse. The paper by Garrison (1975) presents
a procedure based on the selection of an appropriate duration-limited/level-quantized approximation
for the modulating pulse. The equations developed therein are particularly suitable for machine
computation of the power spectra of digital FM signals; see the book by Stiiber (1996).

8. A detailed analysis of the spectra of M-ary FSK for an arbitrary value of frequency deviation is
presented in the paper by Anderson and Salz (1965).

9. Readers who are not interested in the formal derivation of (7.227) may at this point wish to move
on to the treatment of noncoherent binary FSK (in Section 7.12) and DPSK (in Section 7.13), two
special cases of noncoherent orthogonal modulation, without loss of continuity.

10. The standard method of deriving the BER for noncoherent binary FSK, presented in
McDonough and Whalen (1995) and that for DPSK presented in Arthurs and Dym (1962), involves
the use of the Rician distribution. This distribution arises when the envelope of a sine wave plus
additive Gaussian noise is of interest; see Chapter 4 for a discussion of the Rician distribution. The
derivations presented herein avoid the complications encountered in the standard method.

11. The optimum receiver for differential phase-shift keying is discussed in Simon and Divsalar
(1992).

12. For detailed treatment of the algorithmic approach for solving the synchronization problem in
signaling over AWGN channels, the reader is referred to the books by Mengali and D’ Andrea (1997)
and Meyer et al. (1998). For books on the traditional approach to synchronization, the reader is
referred to Lindsey and Simon (1973).



Signaling over Band-Limited
Channels

Introduction

In Chapter 7 we focused attention on signaling over a channel that is assumed to be
distortionless except for the AWGN at the channel output. In other words, there was no
limitation imposed on the channel bandwidth, with the energy per bit to noise spectral
density ratio E/N, being the only factor to affect the performance of the receiver. In
reality, however, every physical channel is not only noisy, but also limited to some finite
bandwidth. Hence the title of this chapter: signaling over band-limited channels.

The important point to note here is that if, for example, a rectangular pulse, represent-
ing one bit of information, is applied to the channel input, the shape of the pulse will be
distorted at the channel output. Typically, the distorted pulse may consist of a main lobe
representing the original bit of information surrounded by a long sequence of sidelobes on
each side of the main lobe. The sidelobes represent a new source of channel distortion,
referred to as intersymbol interference, so called because of its degrading influence on the
adjacent bits of information.

There is a fundamental difference between intersymbol interference and channel noise
that could be summarized as follows:

e Channel noise is independent of the transmitted signal; its effect on data
transmission over the band-limited channel shows up at the receiver input, once the
data transmission system is switched on.

¢ Intersymbol interference, on the other hand, is signal dependent; it disappears only
when the transmitted signal is switched off.

In Chapter 7, channel noise was considered all by itself so as to develop a basic
understanding of how its presence affects receiver performance. It is logical, therefore,
that in the sequel to that chapter, we initially focus on intersymbol interference acting
alone. In practical terms, we may justify a noise-free condition by assuming that the SNR
is high enough to ignore the effect of channel noise. The study of signaling over a band-
limited channel, under the condition that the channel is effectively “noiseless,” occupies
the first part of the chapter. The objective here is that of signal design, whereby the effect
of symbol interference is reduced to zero.

The second part of the chapter focuses on a noisy wideband channel. In this case, data
transmission over the channel is tackled by dividing it into a number of subchannels, with

445
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each subchannel being narrowband enough to permit the application of Shannon’s
information capacity law that was considered in Chapter 5. The objective here is that of
system design, whereby the rate of data transmission through the system is maximized to
the highest level physically possible.

Error Rate Due to Channel Noise in a Matched-Filter Receiver

We begin the study of signaling over band-limited channels by determining the operating
conditions that would permit us to view the channel to be effectively “noiseless.” To this
end, consider the block diagram of Figure 8.1, which depicts the following data-
transmission scenario: a binary data stream is applied to a noisy channel where the
additive channel noise w(?) is modeled as white and Gaussian with zero mean and power
spectral density Ny/2. The data stream is based on polar NRZ signaling, in which symbols
1 and O are represented by positive and negative rectangular pulses of amplitude A and
duration T3, In the signaling interval O < ¢ < Ty, the received signal is defined by

(1) = { +A + w(t), symbol 1 was sent
-A + w(t), symbol 0 was sent

The receiver operates synchronously with the transmitter, which means that the matched
filter at the front end of the receiver has knowledge of the starting and ending times of
each transmitted pulse. The matched filter is followed by a sampler, and then finally a
decision device. To simplify matters, it is assumed that the symbols 1 and O are equally
likely; the threshold in the decision device, namely A, may then be set equal to zero. If
this threshold is exceeded, the receiver decides in favor of symbol 1; if not, it decides in
favor of symbol 0. A random choice is made in the case of a tie.

Following the geometric signal-space theory presented in Section 7.6 on binary PSK,
the transmitted signal constellation consists of a pair of message points located at + A/E7b
and — A/E7b . The energy per bit is defined by

2
E, = AT,

The only basis function of the signal-space diagram is a rectangular pulse defined as follows:

(1) = m, for 0<1<T,

0, otherwise
) ) —=> Say lify>2
Polar NRZ signal Matched \C ¥ Decision o
of amplitude filter O device
+A ify
+ Sample at > Say0ity <
timer =T, T
White Gaussian Threshold
noise w(t) 4

Receiver for baseband transmission of binary-encoded data stream using polar
NRZ signaling.
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signaling scheme of Figure 8.1.
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In mathematical terms, the form of signaling embodied in Figure 8.1 is equivalent to that
of binary PSK. Following (7.109), the average probability of symbol error incurred by the
matched-filter receiver in Figure 8.1 is therefore defined by the QO-function

Although this result for NRZ-signaling over an AWGN channel may seem to be special,
(8.3) holds for a binary data transmission system where symbol 1 is represented by a
generic pulse g(#) and symbol O is represented by —g(#) under the assumption that the
energy contained in g(¢) is equal to Ey. This statement follows from matched-filter theory
presented in Chapter 7.

Figure 8.2 plots P, versus the dimensionless SNR, Ey/N,. The important message to
take from this figure is summed up as follows:

For example, expressing Ey/N; in decibels we see from Figure 8.2 that P, is on the order
of 107 when E/N, = 10 dB. Such a value of P, is small enough to say that the effect of
the channel noise is ignorable.

Henceforth, in the first part of the chapter dealing with signaling over band-limited
channels, we assume that the SNR, Ep/N,, is large enough to leave intersymbol
interference as the only source of interference.

Intersymbol Interference

To proceed with a mathematical study of intersymbol interference, consider a baseband
binary PAM system, a generic form of which is depicted in Figure 8.3. The term
“baseband” refers to an information-bearing signal whose spectrum extends from (or near)
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Baseband binary data transmission system.

zero up to some finite value for positive frequencies. Thus, with the input data stream
being a baseband signal, the data-transmission system of Figure 8.3 is said to be a
baseband system. Consequently, unlike the subject matter studied in Chapter 7, there is no
carrier modulation in the transmitter and, therefore, no carrier demodulation in the
receiver to be considered.

Next, addressing the choice of discrete PAM, we say that this form of pulse modulation
is one of the most efficient schemes for data transmission over a baseband channel when
the utilization of both transmit power and channel bandwidth is of particular concern. In
this section, we consider the simple case of binary PAM.

Referring back to Figure 8.3, the pulse-amplitude modulator changes the input binary
data stream {b;} into a new sequence of short pulses, short enough to approximate
impulses. More specifically, the pulse amplitude g, is represented in the polar form:

_ ] +1if by is symbol 1

ak =
-1 if b; is symbol 0

The sequence of short pulses so produced is applied to a fransmit filter whose impulse
response is denoted by g(#). The transmitted signal is thus defined by the sequence

s(r) = Zakg(t —kTy)
k

Equation (8.5) is a form of linear modulation, which may be stated in words as follows:

The signal s(¢) is naturally modified as a result of transmission through the channel whose
impulse response is denoted by A(¢). The noisy received signal x(¢) is passed through a
receive filter of impulse response c(z). The resulting filter output y(¢) is sampled
synchronously with the transmitter, with the sampling instants being determined by a clock
or timing signal that is usually extracted from the receive-filter output. Finally, the
sequence of samples thus obtained is used to reconstruct the original data sequence by
means of a decision device. Specifically, the amplitude of each sample is compared with a
zero threshold, assuming that the symbols 1 and O are equiprobable. If the zero threshold is
exceeded, a decision is made in favor of symbol 1; otherwise a decision is made in favor of
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symbol 0. If the sample amplitude equals the zero threshold exactly, the receiver simply
makes a random guess.
Except for a trivial scaling factor, we may now express the receive filter output as

y(1) = Zakp(t - ka)
k

where the pulse p(t) is to be defined. To be precise, an arbitrary time delay £, should be
included in the argument of the pulse p(t — kT},) in (8.6) to represent the effect of
transmission delay through the system. To simplify the exposition, we have put this delay
equal to zero in (8.6) without loss of generality; moreover, the channel noise is ignored.

The scaled pulse p(f) is obtained by a double convolution involving the impulse
response g(z) of the transmit filter, the impulse response A(t) of the channel, and the
impulse response c(t) of the receive filter, as shown by

p(1) = g()ykh(r)kc(r)
where, as usual, the star denotes convolution. We assume that the pulse p(t) is normalized
by setting
p(0) =1
which justifies the use of a scaling factor to account for amplitude changes incurred in the
course of signal transmission through the system.

Since convolution in the time domain is transformed into multiplication in the
frequency domain, we may use the Fourier transform to change (8.7) into the equivalent
form

P(f) = GHHNC()
where P(f), G(f), H(f), and C(f) are the Fourier transforms of p(t), g(¢), h(t), and c(t),
respectively.

The receive filter output y(¢) is sampled at time ¢; = iT},, where i takes on integer values;
hence, we may use (8.6) to write

¥ = Y aplli-0T)

k= -0

o0

a;+ Z apl[(i—k)T,]
j—
k#i

In (8.10), the first term a; represents the contribution of the ith transmitted bit. The second
term represents the residual effect of all other transmitted bits on the decoding of the ith
bit. This residual effect due to the occurrence of pulses before and after the sampling
instant ¢; is called intersymbol interference (ISI).

In the absence of ISI—and, of course, channel noise—we observe from (8.10) that the
summation term is zero, thereby reducing the equation to

)’(t,') = 4a;

which shows that, under these ideal conditions, the ith transmitted bit is decoded correctly.
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Signal Design for Zero ISl

The primary objective of this chapter is to formulate an overall pulse shape p(¢) so as to
mitigate the ISI problem, given the impulse response of the channel A(f). With this
objective in mind, we may now state the problem at hand:

In effect, signaling over the band-limited channel becomes distortionless; hence, we may
refer to the pulse-shaping requirement as a signal-design problem.

In the next section we describe a signal-design procedure, whereby overlapping pulses
in the binary data-transmission system of Figure 8.3 are configured in such a way that at
the receiver output they do not interfere with each other at the sampling times t; = iTy,. So
long as the reconstruction of the original binary data stream is accomplished, the behavior
of the overlapping pulses outside these sampling times is clearly of no practical
consequence. Such a design procedure is rooted in the criterion for distortionless
transmission, which was formulated by Nyquist (1928b) on telegraph transmission theory,
a theory that is as valid then as it is today.

Referring to (8.10), we see that the weighted pulse contribution, a; p(iTy, — kT},), must
be zero for all k except for k = 1 for binary data transmission across the band-limited
channel to be ISI free. In other words, the overall pulse-shape p(#) must be designed to
satisfy the requirement

1 fori=k

p(iT. —kT,) = {
b b 0 for ik

where p(0) is set equal to unity in accordance with the normalization condition of (8.8). A
pulse p(¢) that satisfies the two-part condition of (8.11) is called a Nyquist pulse, and the
condition itself is referred to as Nyquist’s criterion for distortionless binary baseband data
transmission. However, there is no unique Nyquist pulse; rather, there are many pulse
shapes that satisfy the Nyquist criterion of (8.11). In the next section we describe two
kinds of Nyquist pulses, each with its own attributes.

Ideal Nyquist Pulse for Distortionless Baseband
Data Transmission

From a design point of view, it is informative to transform the two-part condition of (8.11)
into the frequency domain. Consider then the sequence of samples {p(nT},)}, where n =0,
+1,£2, .... From the discussion presented in Chapter 6 on the sampling process, we recall
that sampling in the time domain produces periodicity in the frequency domain. In
particular, we may write

Ps(f) = R, i P(f-nRy)

—00
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where Ry, = 1/Ty, is the bit rate in bits per second; P 5(f) on the left-hand side of (8.12) is the
Fourier transform of an infinite periodic sequence of delta functions of period 7}, whose
individual areas are weighted by the respective sample values of p(f). That is, Ps(f) is
given by

B = | i [p(mTy) &1 — mT,)]exp(—j2nfr) di

m = —o0

Let the integer m = i — k. Then, i = k corresponds to m = 0 and, likewise, i#k
corresponds to m # 0. Accordingly, imposing the conditions of (8.11) on the sample
values of p(¢) in the integral in (8.13), we get

Ps(f) = p(O)] d(r)exp(=j2nfr) dr

= p(0)
where we have made use of the sifting property of the delta function. Since from (8.8) we
have p(0) = 1, it follows from (8.12) and (8.14) that the frequency-domain condition for
zero ISI is satisfied, provided that

0
3 P(f-nRy) = T,
n=-w

where T}, = 1/R;,. We may now make the following statement on the Nyquist criterion' for
distortionless baseband transmission in the frequency domain:

Note that P(f) refers to the overall system, incorporating the transmit filter, the channel,
and the receive filter in accordance with (8.9).

The simplest way of satisfying (8.15) is to specify the frequency function P(f) to be in the
form of a rectangular function, as shown by

1
P = | 2w -W<f<W
0, [f1>w

_ L (L)

= W™t ow

where rect(f) stands for a rectangular function of unit amplitude and unit support centered
on f= 0 and the overall baseband system bandwidth W is defined by
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According to the solution in (8.16), no frequencies of absolute value exceeding half the bit
rate are needed. Hence, from Fourier-transform pair 1 of Table 2.2 in Chapter 2, we find
that a signal waveform that produces zero ISI is defined by the sinc function:

_ sin(2nWr)
P = 2nWt
= sinc(2Wt)
The special value of the bit rate R, = 2W is called the Nyquist rate and W is itself called the
Nyquist bandwidth. Correspondingly, the baseband pulse p(f) for distortionless
transmission described in (8.18) is called the ideal Nyquist pulse, ideal in the sense that the
bandwidth requirement is one half the bit rate.

Figure 8.4 shows plots of P(f) and p(#). In part a of the figure, the normalized form of
the frequency function P(f) is plotted for positive and negative frequencies. In part b of
the figure, we have also included the signaling intervals and the corresponding centered
sampling instants. The function p() can be regarded as the impulse response of an ideal
low-pass filter with passband magnitude response 1/2W and bandwidth W. The function
p(t) has its peak value at the origin and goes through zero at integer multiples of the bit
duration Ty, It is apparent, therefore, that if the received waveform y(¢) is sampled at the
instants of time # = 0, £T},, £2Ty,, ..., then the pulses defined by a; p(t — iT},) with amplitude
a;and index i =0, =1, 2, ... will not interfere with each other. This condition is illustrated
in Figure 8.5 for the binary sequence 1011010.

p(n)
1.0

0.5

/\ [\

" ERVE VA
bbbt

Sampling instants

A=

Signaling intervals

(a) (b)
(a) Ideal magnitude response. (b) Ideal basic pulse shape.
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Binarysequence 1 0 1 1 0 1 O

Amplitude

Time

A series of sinc pulses corresponding to the sequence 1011010.

Although the use of the ideal Nyquist pulse does indeed achieve economy in
bandwidth, in that it solves the problem of zero ISI with the minimum bandwidth possible,
there are two practical difficulties that make it an undesirable objective for signal design:

It requires that the magnitude characteristic of P(f) be flat from —W to +W, and zero
elsewhere. This is physically unrealizable because of the abrupt transitions at the
band edges £W, in that the Paley—Wiener criterion discussed in Chapter 2 is violated.
The pulse function p(t) decreases as 1/|¢| for large ||, resulting in a slow rate of
decay. This is also caused by the discontinuity of P(f) at £W. Accordingly, there is
practically no margin of error in sampling times in the receiver.

To evaluate the effect of the timing error alluded to under point 2, consider the sample of
y(t) at t = At, where At is the timing error. To simplify the exposition, we may put the
correct sampling time ¢; equal to zero. In the absence of noise, we thus have from the first
line of (8.10):

y(Ar)

Z ap(At—kTy)

k = —o0

es) sin[ZnW(At—ka)]
k{ 2nW(AI—kTy) }

k = —0

Since 2WTy, = 1, by definition, we may reduce (8.19) to

k
i »  (-1)a
y(At) = ag sinc(2WAr) + sin(2n WA?) 3 L
T =

2WAt -k
o0
k#0
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The first term on the right-hand side of (8.20) defines the desired symbol, whereas the
remaining series represents the ISI caused by the timing error Af in sampling the receiver
output y(¢). Unfortunately, it is possible for this series to diverge, thereby causing the
receiver to make erroneous decisions that are undesirable.

Raised-Cosine Spectrum

We may overcome the practical difficulties encountered with the ideal Nyquist pulse by
extending the bandwidth from the minimum value W = R,/2 to an adjustable value
between W and 2W. In effect, we are trading off increased channel bandwidth for a more
robust signal design that is tolerant of timing errors. Specifically, the overall frequency
response P(f) is designed to satisfy a condition more stringent than that for the ideal
Nyquist pulse, in that we retain three terms of the summation on the left-hand side of
(8.15) and restrict the frequency band of interest to [-W, W], as shown by

P+ P(f-2W)+ P(f+2W) = ZLW’ -W<f<WwW
where, on the right-hand side, we have set Ry, = 1/2W in accordance with (8.17). We may
now devise several band-limited functions that satisfy (8.21). A particular form of P(f)
that embodies many desirable features is provided by a raised-cosine (RC) spectrum. This
frequency response consists of a flat portion and a roll-off portion that has a sinusoidal
form, as shown by:

1
ﬁ/’ Os|f|<fl
P(f) =1 1
DA {1 + cos| 3=/l —fl)]}, filfi<2w-r,
0, 112 2W-f,

In (8.22), we have introduced a new frequency f; and a dimensionless parameter ¢, which
are related by

N

a = 1 — —
w
The parameter « is commonly called the roll-off factor; it indicates the excess bandwidth
over the ideal solution, W. Specifically, the new transmission bandwidth is defined by

Br = 2W-f
=Wl+a)
The frequency response P(f), normalized by multiplying it by the factor 2W, is plotted in
Figure 8.6a for =0, 0.5, and 1. We see that for = 0.5 or 1, the frequency response P(f)
rolls off gradually compared with the ideal Nyquist pulse (i.e., @ = 0) and it is therefore
easier to implement in practice. This roll-off is cosine-like in shape, hence the terminology
“RC spectrum.” Just as importantly, the P(f) exhibits odd symmetry with respect to the

Nyquist bandwidth W, which makes it possible to satisfy the frequency-domain condition
of (8.15).
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Responses for different roll-off factors: (a) frequency response; (b) time response.

The time response p(t) is naturally the inverse Fourier transform of the frequency
response P(f). Hence, transforming the P(f) defined in (8.22) into the time domain, we
obtain

cos(2naWt)

1-16° W1

p(t) = sinc(2Wrt)

which is plotted in Figure 8.6b for =0, 0.5, and 1.
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The time response p(f) consists of the product of two factors: the factor sinc(2Wr)
characterizing the ideal Nyquist pulse and a second factor that decreases as 1/| t|2 for large
| £]. The first factor ensures zero crossings of p(¢) at the desired sampling instants of time
t = iTy, with i equal to an integer (positive and negative). The second factor reduces the
tails of the pulse considerably below those obtained from the ideal Nyquist pulse, so that
the transmission of binary data using such pulses is relatively insensitive to sampling time
errors. In fact, for & = 1 we have the most gradual roll-off, in that the amplitudes of the
oscillatory tails of p(#) are smallest. Thus, the amount of ISI resulting from timing error
decreases as the roll-off factor « is increased from zero to unity.

The special case with ¢ = 1 (i.e, f; = 0) is known as the full-cosine roll-off
characteristic, for which the frequency response of (8.22) simplifies to

P(f) = ﬁ;p+cm(%9} 0<l|fl<2w

0, Ifl 22w
Correspondingly, the time response p(t) simplifies to
p(1) = sinc(AH/I;t)2
1-16W'¢

The time response of (8.27) exhibits two interesting properties:
Att=+Ty/2 = £1/4W, we have p(t) = 0.5; that is, the pulse width measured at half
amplitude is exactly equal to the bit duration T},
There are zero crossings at t = £37},/2, £5T}/2, ... in addition to the usual zero
crossings at the sampling times ¢ = T}, +2Ty, ....

These two properties are extremely useful in extracting timing information from the
received signal for the purpose of synchronization. However, the price paid for this
desirable property is the use of a channel bandwidth double that required for the ideal
Nyquist channel for which « = 0: simply put, there is “no free lunch.”

In this example, we use the finite-duration impulse response (FIR) filter, also referred to as
the tapped-delay-line (TDL) filter, to model the raised-cosine (RC) filter; both terms are
used interchangeably. With the FIR filter operating in the discrete-time domain, there are
two time-scales to be considered:

Discretization of the input signal a(¢) applied to the FIR model, for which we write

where T is the sampling period in the FIR model shown in Figure 8.7. The tap inputs
in this model are denoted by a,,a, _{,....a,_; ..., a4, _5;, 1,4, _o;,» Which, for
some integer [, occupies the duration 2/7. Note that the FIR model in Figure 8.7 is
symmetric about the midpoint, a nel> which satisfies the symmetric structure of the
RC pulse.
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Input
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Yn

TDL model of linear time-invariant system.

Discretization of the RC pulse p(#) for which we have

T,
m= 2
T

where Tj, is the bit duration.

To model the RC pulse properly, the sampling rate of the model, 1/7, must be higher than
the bit rate, 1/7,. It follows therefore that the integer m defined in (8.29) must be larger than
one. In assigning a suitable value to m, we must keep in mind the tradeoff between
modeling accuracy (requiring large m) and computational complexity (preferring small m).

In any event, using (8.17), (8.28), and (8.29), obtaining the product

Wi = -

2m
and then substituting this result into (8.25), we get the discretized version of RC pulse as
shown by

cos(man/m)

1—40*(n/m)*

There are two computational difficulties encountered in the way in which the discretized
RC pulse, p,,, is defined in (8.31):

The pulse p,, goes on indefinitely with increasing n.

P, = sinc(n/m)[ } n=0,%1,£2, ...

The pulse is also noncausal in that the output signal y, in Figure 8.7 is produced
before the input a,, is applied to the FIR model.

To overcome difficulty 1, we truncate the sequence p,, such that it occupies a finite dura-
tion 2IT for some prescribed integer /, which is indeed what has been done in Figure 8.8.
To mitigate the non-causality problem 2, with T > T, the ratio n/m must be replaced by
(n/m) — L. In so doing, the truncated causal RC pulse assumes the following modified form:

0, otherwise
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where the value assigned to the integer / is determined by how long the truncated sequence
{pn}i - is desired to be.

With the desired formula of (8.32) for the FIR model of the RC pulse p(¢) at hand,
Figure 8.8 plots this formula for the following specifications:

Sampling of the RC pulse, T = 10

Bit duration of the RC pulse, T, =1

Number of the FIR samples per bit, m = 10

Roll-off factor of the RC pulse, ¢ = 0.32

Two noteworthy points that follow from Figure 8.8:

The truncated causal RC pulse p,, of length 2/ — 10 is symmetric about the
midpoint, n = 5.
The p,, is exactly zero at integer multiples of the bit duration Ty,

Both points reaffirm exactly what we know and therefore expect about the RC pulse p(t)
plotted in Figure 8.6b.
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Discretized RC pulse, computed using the TDL.

Square-Root Raised-Cosine Spectrum

A more sophisticated form of pulse shaping uses the square-root raised-cosine (SRRC)
spectrum’ rather than the conventional RC spectrum of (8.22). Specifically, the spectrum
of the basic pulse is now defined by the square root of the right-hand side of this equation.
Thus, using the trigonometric identity

00320 = %(1 + cos26)

where, for the problem at hand, the angle
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T

0 = o—(f1-f)
T
= surallfl =W - a)]

To avoid confusion, we use G(f) as the symbol for the SRRC spectrum, and so we may write

1
—_ 0<|fl <
Vo A<,
G() =

1
WCOS{ﬁ[IJ‘I - W(l - a)]}, Al <2w-f,

0, lfl=2W-Ff,

where, as before, the roll-off factor « is defined in terms of the frequency parameter f; and
the bandwidth W as in (8.23).

If, now, the transmitter includes a pre-modulation filter with the transfer function
defined in (8.33) and the receiver includes an identical post-modulation filter, then under
ideal conditions the overall pulse waveform will experience the squared spectrum G*(f),
which is the regular RC spectrum. In effect, by adopting the SRRC spectrum G(f) of
(8.33) for pulse shaping, we would be working with Gz( f) = P(f) in an overall
transmitter—receiver sense. On this basis, we find that in wireless communications, for
example, if the channel is affected by both fading and AWGN and the pulse-shape filtering
is partitioned equally between the transmitter and the receiver in the manner described
herein, then effectively the receiver would maximize the output SNR at the sampling
instants.

The inverse Fourier transform of (8.33) defines the SRRC shaping pulse:

2(1) = J2W {sin[ZTrW(l—a)t] +4a

5 —cos[2nW(1 + a)t]}
1 - (8aWr)

2nWt i

The important point to note here is the fact that the SRRC shaping pulse g(#) of (8.34) is
radically different from the conventional RC shaping pulse of (8.25). In particular, the
new shaping pulse has the distinct property of satisfying the orthogonality constraint
under T-shifts, described by

00

J g(Hg(t—nT)dt =0 forn==+1,£2,...

—00
where T is the symbol duration. Yet, the new pulse g(¢) has exactly the same excess
bandwidth as the conventional RC pulse.

It is also important to note, however, that despite the added property of orthogonality,
the SRRC shaping pulse of (8.34) lacks the zero-crossing property of the conventional RC
shaping pulse defined in (8.25).

Figure 8.9a plots the SRRC spectrum G(f) for the roll-off factor a = 0, 0.5, 1; the
corresponding time-domain plots are shown in Figure 8.9b. These plots are naturally
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different from those of Figure 8.6 for nonzero . The following example contrasts the
waveform of a specific binary sequence using the SRRC shaping pulse with the
corresponding waveform using the regular RC shaping pulse.
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Normalized pulse, g (1)/\ 2W

Normalized time, #/T
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(a) G(f) for SRRC spectrum. (b) g(¢) for SRRC pulse.
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Pulse Shaping Comparison Between SRRC and RC

Using the SRRC shaping pulse g(#) of (8.34) with roll-off factor & = 0.5, the requirement
is to plot the waveform for the binary sequence 01100 and compare it with the
corresponding waveform obtained by using the conventional RC shaping pulse p(7) of
(8.25) with the same roll-off factor.

Using the SRRC pulse g(¢) of (8.34) with a multiplying plus sign for binary symbol 1 and
multiplying minus sign for binary symbol 0, we get the dashed pulse train shown in Figure
8.10 for the sequence 01100. The solid pulse train shown in the figure corresponds to the use
of the conventional RC pulse p(¢) of (8.25). The figure clearly shows that the SRRC
waveform occupies a larger dynamic range than the conventional RC waveform: a feature
that distinguishes one from the other.

1.5 T T T T T T T T

PR (SR Sqrt-raised cosine
Raised consine

Amplitude

15 \ \ \ \ \ \ \ \

Normalized time, ¢/ Ty,

Two pulse trains for the sequence 01100, one using regular RC pulse (solid
line), and the other using an SRRC pulse (dashed line).

FIR Modeling of the Square-Root-Raised-Cosine Pulse

In this example, we study FIR modeling of the SRRC pulse described in (8.34). To be
specific, we follow a procedure similar to that used for the RC pulse g(¢) in Example 1,
taking care of the issues of truncation and noncausality. This is done by discretizing the
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SRRC pulse, g(¢), and substituting the dimensionless parameter, (n/m) — [, for Wt in
(8.34). In so doing we obtain the following sequence

sin[n(l —a)(ﬁ —zﬂ
m +cos[n(l + a)(ﬁ—l)}
4a(ﬂ —z) n
8y = 40 n 5 N -I1<n<n
T, 1- 16a2(ﬁ—l)
0, " otherwise

Since, by definition, the Fourier transform of the SRRC pulse, g(t), is equal to the square
root of the Fourier transform of the RC pulse p(¢), we may make the following statement:

We say “essentially” here on account of the truncation applied to both (8.32) and (8.36). In
practice, when using the SRRC pulse for “ISI-free” baseband data transmission across a
band-limited channel, one FIR filter would be placed in the transmitter and the other
would be in the receiver.

To conclude this example, Figure 8.11a plots the SRRC sequence g,, of (8.36) for the
same set of values used for the RC sequence p,, in Figure 8.8. Figure 8.11b displays the
result of convolving the sequence in part a with g,, which is, itself.

(@) LBpeeeeeeeee e o ponennnens
o P SRR £ § SR SRR SRR,
= N N N N
T 05— R e e
E : : ] [ : :
< 0 NYTTEN : Il ]I : Litrre.
RSN } T
-0.5 : .
3 4 5 6 7 8
Time
(b) ]-0 ''''''''''' :’ ''''''''''' :"7'7'7'7'7 '7'7'7'7'77777'7'7'7'7'? ''''''''''''

Amplitude
o o

6 7 8 9 10 1‘1 12
Normalized time
(a) Discretized SRRC pulse, computed using FIR modeling.
(b) Discretized pulse resulting from the convolution of the pulse in part a with itself.



Post-Processing Techniques: The Eye Pattern 463

Two points are noteworthy from Figure 8.11:
The zero-crossings of the SRRC sequence g,, do not occur at integer multiples of the
bit duration 73, which is to be expected.

The sequence plotted in Figure 8.11b is essentially equivalent to the RC sequence
Dy, the zero-crossings of which do occur at integer multiples of the bit duration, and
so they should.

Post-Processing Techniques: The Eye Pattern

The study of signaling over band-limited channels would be incomplete without discussing
the idea of post-processing, the essence of which is to manipulate a given set of data so as
to provide a visual interpretation of the data rather than just numerical listing of the data.
For an illustrative example, consider the formulas for the BER of digital modulation
schemes operating over an AWGN channel, which were summarized in Table 7.7 of
Chapter 7. The graphical plots of the schemes, shown in Figure 7.47, provide an immediate
comparison on how these different modulation schemes compete with each other in terms
of performance measured on the basis of their respective BERs for varying Ep/N. In other
words, there is much to be gained from graphical plots that are most conveniently made
possible by computation.

What we have in mind in this section, however, is the description of a commonly used
post-processor, namely eye patterns, which are particularly suited for the experimental
study of digital communication systems.

The eye pattern, also referred to as the eye diagram, is produced by the synchronized
superposition of (as many as possible) successive symbol intervals of the distorted
waveform appearing at the output of the receive filter prior to thresholding. As an
illustrative example, consider the distorted, but noise-free, waveform shown in part a of
Figure 8.12. Part b of the figure displays the corresponding synchronized superposition of
the waveform’s eight binary symbol intervals. The resulting display is called an “eye
pattern” because of its resemblance to a human eye. By the same token, the interior of the
eye pattern is called the eye opening.

Binary O 1 1 0 1 1 0 0 1 0

Data

/N
S

— 1, [

(a) (b)

(a) Binary data sequence and its waveform. (b) Corresponding eye pattern.
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As long as the additive channel noise is not large, then the eye pattern is well defined
and may, therefore, be studied experimentally on an oscilloscope. The waveform under
study is applied to the deflection plates of the oscilloscope with its time-base circuit
operating in a synchronized condition. From an experimental perspective, the eye pattern
offers two compelling virtues:

* The simplicity of eye-pattern generation.

* The provision of a great deal of insightful information about the characteristics of
the data transmission system. Hence, the wide use of eye patterns as a visual
indicator of how well or poorly a data transmission system performs the task of
transporting a data sequence across a physical channel.

Figure 8.13 shows a generic eye pattern for distorted but noise-free binary data. The
horizontal axis, representing time, spans the symbol interval from ~7, /2 to T\ /2, where
Ty, is the bit duration. From this diagram, we may infer three timing features pertaining to
a binary data transmission system, exemplified by a PAM system:

Optimum sampling time. The width of the eye opening defines the time interval over
which the distorted binary waveform appearing at the output of the receive filter in
the PAM system can be uniformly sampled without decision errors. Clearly, the
optimum sampling time is the time at which the eye opening is at its widest.

Zero-crossing jitter. In practice, the timing signal (for synchronizing the receiver to
the transmitter) is extracted from the zero-crossings of the waveform that appears at
the receive-filter output. In such a form of synchronization, there will always be
irregularities in the zero-crossings, which, in turn, give rise to jitter and, therefore,
nonoptimum sampling times.

Timing sensitivity. Another timing-related feature is the sensitivity of the PAM
system to timing errors. This sensitivity is determined by the rate at which the eye
pattern is closed as the sampling time is varied.

Figure 8.13 indicates how these three timing features of the system (and other insightful
attributes) can be measured from the eye pattern.

Best sampling
time

Distortion at sampling time

<

Slope = sensitivity to
timing error

Margin over
noise

\L/ Zero-crossing
jitter
Time interval over

which the wave is
best sampled

Interpretation of the eye pattern for a baseband binary data transmission system.
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Hereafter, we assume that the ideal signal amplitude is scaled to occupy the range from —1
to +1. We then find that, in the absence of channel noise, the eye opening assumes two
extreme values:

An eye opening of unity,  which corresponds to zero ISI.

An eye opening of zero, which corresponds to a completely closed eye pattern; this
second extreme case occurs when the effect of intersymbol interference is severe
enough for some upper traces in the eye pattern to cross with its lower traces.
It is indeed possible for the receiver to make decision errors even when the channel is
noise free. Typically, an eye opening of 0.5 or better is considered to yield reliable data
transmission.

In a noisy environment, the extent of eye opening at the optimum sampling time
provides a measure of the operating margin over additive channel noise. This measure, as
illustrated in Figure 8.13, is referred to as the noise margin.

From this discussion, it is apparent that the eye opening plays an important role in
assessing system performance; hence the need for a formal definition of the eye opening.
To this end, we offer the following definition:

Eye opening = 1 — mek

where D, denotes a new criterion called the peak distortion. The point to note here is
that peak distortion is a worst-case criterion for assessing the effect of ISI on the
performance (i.e., error rate) of a data transmission system. The relationship between the
eye opening and peak distortion is illustrated in Figure 8.14. With the eye opening being
dimensionless, the peak distortion is dimensionless too. To emphasize this statement, the
two extreme values of the eye opening translate as follows:

Zero peak distortion, which occurs when the eye opening is unity.
Unity peak distortion, which occurs when the eye pattern is completely closed.

Amplitude

2 X Peak i

distortion
Eye
opening

T

Time

| Symbol |
‘ period ‘
T

Ilustrating the relationship between peak distortion and eye opening.
Note: the ideal signal level is scaled to lie inside the range —1 to +1.
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With this background, we offer the following definition:

Referring to (8.10), the two components embodied in this definition are themselves
defined as follows:

The idealized signal component of the receive filter output is defined by the first
term in (8.10), namely a;, where q; is the ith encoded symbol and unit transmitted
signal energy per bit.

The intersymbol interference is defined by the second term, namely

0
Z APk
k = —0

k#i

where p; _; stands for the term p[(i-k)T,]. The maximum value of this summation
occurs when each encoded symbol g has the same algebraic sign as p; — k. Therefore,

Maximum ISI = i |pi—k|
k = —0

k#i

Hence, invoking the definition of peak distortion, we get the desired formula:

e}

Dpeak= Z |pi—k|

k = -0
k=i
where py = 1 for all i = k. Note that, by involving the assumption of a signal amplitude
from —1 to +1, we have scaled the transmitted signal energy for a binary symbol to be
unity.
By its very nature, the peak distortion is a worst-case criterion for data transmission
over a noisy channel. The eye opening specifies the smallest possible noise margin.

By definition, an M-ary data transmission system uses M encoded symbols in the
transmitter and M — 1 thresholds in the receiver. Correspondingly, the eye pattern for an
M-ary data transmission system contains M — 1 eye openings stacked vertically one on
top of the other. The thresholds are defined by the amplitude-transition levels as we move
up from one eye opening to the adjacent eye opening. When the encoded symbols are all
equiprobable, the thresholds will be equidistant from each other.

In a strictly linear data transmission system with truly transmitted random data
sequences, all the M — 1 eye openings would be identical. In practice, however, it is often
possible to find asymmetries in the eye pattern of an M-ary data transmission system,
which are caused by nonlinearities in the communication channel or other distortion-
sensitive parts of the system.
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Eye Patterns for Binary and Quaternary Systems

Figure 8.15a and b depict the eye patterns for a baseband PAM transmission system using
M =2 and M = 4, respectively. The channel has no bandwidth limitation and the
source symbols used are obtained from a random number generator. An RC pulse is used
in both cases. The system parameters used for the generation of these eye patterns are a bit
rate of 1Hz and roll-off factor & = 0.5 . For the binary case of M = 2 in Figure 8.15a,

Response

Time s

Sampling instant

(2)

3.0

2.0

Response

Time s

Sampling instant

(b)

Eye diagrams of received signal with no bandwidth limitation: (a) M =2; (b) M = 4.
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the symbol duration T and the bit duration 7}, are the same, with T}, = 1s. For the case of
M =4 in Figure 8.15b we have T = Ti,log, M = 2T}, In both cases we see that the eyes are
open, indicating perfectly reliable operation of the system, perfect in the sense that the ISI
is zero.

Figure 8.16a and b show the eye patterns for these two baseband-pulse transmission
systems using the same system parameters as before, but this time under a bandwidth-

Response

Time s

Response

Time s

Sampling instant

(b)

Eye diagrams of received signal, using a bandwidth-limited channel: (a) M = 2; (b) M = 4.



Adaptive Equalization 469

limited condition. Specifically, the channel is now modeled by a low-pass Butterworth
filter, whose frequency response is defined by

1
() = ——
1+ (f/fy)
where N is the order of the filter, and f; is the 3-dB cutoff frequency of the filter. For the
results displayed in Figure 8.16, the following filter parameter values were used:
N =3, and f, = 0.6 Hz for binary PAM
N =3, and f, = 0.3 Hz for 4-PAM

With the roll-off factor ¢ = 0.5 and Nyquist bandwidth W = 0.5 Hz, for binary PAM,
the use of (8.24) defines the transmission bandwidth of the PAM transmission system to be

By = 0.5(1+0.5) = 0.75 Hz

Although the channel bandwidth cutoff frequency is greater than absolutely necessary, its
effect on the passband is observed in a decrease in the size of the eye opening. Instead of
the distinct values at time ¢ = 1s, shown in Figure 8.15a and b, now there is a blurred
region. If the channel bandwidth were to be reduced further, the eye would close even
more until finally no distinct eye opening would be recognizable.

Adaptive Equalization

In this section we develop a simple and yet effective algorithm for the adaptive equaliza-
tion of a linear channel of unknown characteristics. Figure 8.17 shows the structure of an
adaptive synchronous equalizer, which incorporates the matched filtering action. The
algorithm used to adjust the equalizer coefficients assumes the availability of a desired
response. One’s first reaction to the availability of a replica of the transmitted signal is: If
such a signal is available at the receiver, why do we need adaptive equalization? To answer
this question, we first note that a typical telephone channel changes little during an aver-
age data call. Accordingly, prior to data transmission, the equalizer is adjusted under the
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Block diagram of adaptive equalizer using an adjustable TDL filter.
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guidance of a training sequence transmitted through the channel. A synchronized version
of this training sequence is generated at the receiver, where (after a time shift equal to the
transmission delay through the channel) it is applied to the equalizer as the desired
response. A training sequence commonly used in practice is the pseudonoise (PN)
sequence, which consists of a deterministic periodic sequence with noise-like characteris-
tics. Two identical PN sequence generators are used, one at the transmitter and the other at
the receiver. When the training process is completed, the PN sequence generator is
switched off and the adaptive equalizer is ready for normal data transmission. A detailed
description of PN sequence generators is presented in Appendix J.

To simplify notational matters, we let

Xn

x(nT)

y, = y(nT)

Then, the output y, of the tapped-delay-line (TDL) equalizer in response to the input
sequence {x,} is defined by the discrete convolution sum (see Figure 8.17)

N
Yn = Z Witn -k
k=0

where wy, is the weight at the kth tap and N + 1 is the total number of taps. The tap weights
constitute the adaptive equalizer coefficients. We assume that the input sequence x,, has
finite energy. We have used a notation for the equalizer weights in Figure 8.17 that is
different from the corresponding notation in Figure 6.17 to emphasize the fact that the
equalizer in Figure 8.17 also incorporates matched filtering.

The adaptation may be achieved by observing the error between the desired pulse shape
and the actual pulse shape at the equalizer output, measured at the sampling instants, and
then using this error to estimate the direction in which the tap weights of the equalizer
should be changed so as to approach an optimum set of values. For the adaptation, we may
use a criterion based on minimizing the peak distortion, defined as the worst-case
intersymbol interference at the output of the equalizer. However, the equalizer so designed
is optimum only when the peak distortion at its input is less than 100% (i.e., the
intersymbol interference is not too severe). A better approach is to use a mean-square error
criterion, which is more general in application; also, an adaptive equalizer based on the
mean-square error (MSE) criterion appears to be less sensitive to timing perturbations
than one based on the peak-distortion criterion. Accordingly, in what follows we use the
MSE criterion to derive the adaptive equalization algorithm.

Let a, denote the desired response defined as the polar representation of the nth
transmitted binary symbol. Let e, denote the error signal defined as the difference
between the desi