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Preface

The study of digital communications is an essential element of the undergraduate and
postgraduate levels of present-day electrical and computer engineering programs. This
book is appropriate for both levels.

A Tour of the Book

The introductory chapter is motivational, beginning with a brief history of digital
communications, and continuing with sections on the communication process, digital
communications, multiple-access and multiplexing techniques, and the Internet. Four
themes organize the remaining nine chapters of the book.

Theme 1 Mathematics of Digital Communications

The first theme of the book provides a detailed exposé of the mathematical underpinnings
of digital communications, with continuous mathematics aimed at the communication
channel and interfering signals, and discrete mathematics aimed at the transmitter and
receiver:

• Chapter 2, Fourier Analysis of Signals and Systems, lays down the fundamentals for
the representation of signals and linear time-invariant systems, as well as analog
modulation theory.

• Chapter 3, Probability Theory and Bayesian Inference, presents the underlying
mathematics for dealing with uncertainty and the Bayesian paradigm for
probabilistic reasoning.

• Chapter 4, Stochastic Processes, focuses on weakly or wide-sense stationary
processes, their statistical properties, and their roles in formulating models for
Poisson, Gaussian, Rayleigh, and Rician distributions.

• Chapter 5, Information Theory, presents the notions of entropy and mutual
information for discrete as well continuous random variables, leading to Shannon’s
celebrated theorems on source coding, channel coding, and information capacity, as
well as rate-distortion theory.

Theme 2 From Analog to Digital Communications

The second theme of the book, covered in Chapter 6, describes how analog waveforms are
transformed into coded pulses. It addresses the challenge of performing the transformation
with robustness, bandwidth preservation, or minimal computational complexity.

Theme 3 Signaling Techniques

Three chapters address the third theme, each focusing on a specific form of channel
impairment:

• In Chapter 7, Signaling over Additive White Gaussian Noise (AWGN) Channels, the
impairment is the unavoidable presence of channel noise, which is modeled as

Haykin_preface.fm  Page v  Friday, January 11, 2013  6:01 PM



vi Preface

additive white Gaussian noise (AWGN). This model is well-suited for the signal-
space diagram, which brings insight into the study of phase-shift keying (PSK),
quadrature-amplitude modulation (QAM), and frequency-shift keying (FSK) as
different ways of accommodating the transmission and reception of binary data.

• In Chapter 8, Signaling over Band-Limited Channels, bandwidth limitation assumes
center stage, with intersymbol interference (ISI) as the source of channel impairment.

• Chapter 9, Signaling over Fading Channels, focuses on fading channels in wireless
communications and the practical challenges they present. The channel impairment
here is attributed to the multipath phenomenon, so called because the transmitted
signal reaches the receiver via a multiplicity of paths.

Theme 4 Error-control Coding

Chapter 10 addresses the practical issue of reliable communications. To this end, various
techniques of the feedforward variety are derived therein, so as to satisfy Shannon’s
celebrated coding theorem.

Two families of error-correcting codes are studied in the chapter:

• Legacy (classic) codes, which embody linear block codes, cyclic codes, and
convolutional codes. Although different in their structural compositions, they look
to algebraic mathematics as the procedure for approaching the Shannon limit.

• Probabilistic compound codes, which embody turbo codes and low-density parity-
check (LDPC) codes. What is remarkable about these two codes is that they both
approach the Shannon limit with doable computational complexity in a way that was
not feasible until 1993. The trick behind this powerful information-processing
capability is the adoption of random codes, the origin of which could be traced to
Shannon’s 1948 classic paper.

Features of the Book

Feature 1 Analog in Digital Communication

When we think of digital communications, we must not overlook the fact that such a
system is of a hybrid nature. The channel across which data are transmitted is analog,
exemplified by traditional telephone and wireless channels, and many of the sources
responsible for the generation of data (e.g., speech and video) are of an analog kind.
Moreover, certain principles of analog modulation theory, namely double sideband-
suppressed carrier (DSB-SC) and vestigial sideband (VSB) modulation schemes, include
binary phase-shift keying (PSK) and offset QPSK as special cases, respectively.

It is with these points in mind that Chapter 2 includes

• detailed discussion of communication channels as examples of linear systems,
• analog modulation theory, and 
• phase and group delays.

Feature 2 Hilbert Transform

The Hilbert transform, discussed in Chapter 2, plays a key role in the complex
representation of signals and systems, whereby

• a band-pass signal, formulated around a sinusoidal carrier, is transformed into an
equivalent complex low-pass signal;
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• a band-pass system, be it a linear channel or filter with a midband frequency, is
transformed into an equivalent complex low-pass system.

Both transformations are performed without loss of information, and their use changes a
difficult task into a much simpler one in mathematical terms, suitable for simulation on a
computer. However, one must accommodate the use of complex variables.

The Hilbert transform also plays a key role in Chapter 7. In formulating the method of
orthogonal modulation, we show that one can derive the well-known formulas for the
noncoherent detection of binary frequency-shift keying (FSK) and differential phase-shift
keying (DPSK) signals, given unknown phase, in a much simpler manner than following
traditional approaches that involve the use of Rician distribution.

Feature 3 Discrete-time Signal Processing

In Chapter 2, we briefly review finite-direction impulse response (FIR) or tapped-delay
line (TDL) filters, followed by the discrete Fourier transform (DFT) and a well-known fast
Fourier transform (FFT) algorithm for its computational implementations. FIR filters and
FFT algorithms feature prominently in:

• Modeling of the raised-cosine spectrum (RCS) and its square-root version
(SQRCS), which are used in Chapter 8 to mitigate the ISI in band-limited channels;

• Implementing the Jakes model for fast fading channels, demonstrated in Chapter 9; 
• Using FIR filtering to simplify the mathematical exposition of the most difficult

form of channel fading, namely, the doubly spread channel (in Chapter 9).

Another topic of importance in discrete-time signal processing is linear adaptive filtering,
which appears:

• In Chapter 6, dealing with differential pulse-code modulation (DPCM), where an
adaptive predictor constitutes a key functional block in both the transmitter and
receiver. The motivation here is to preserve channel bandwidth at the expense of
increased computational complexity. The algorithm described therein is the widely
used least mean-square (LMS) algorithm.

• In Chapter 7, dealing with the need for synchronizing the receiver to the transmitter,
where two algorithms are described, one for recursive estimation of the group delay
(essential for timing recovery) and the other for recursive estimation of the unknown
carrier phase (essential for carrier recovery). Both algorithms build on the LMS
principle so as to maintain linear computational complexity.

Feature 4 Digital Subscriber Lines

Digital subscriber lines (DSLs), covered in Chapter 8, have established themselves as an
essential tool for transforming a linear wideband channel, exemplified by the twisted-wire
pair, into a discrete multitone (DMT) channel that is capable of accommodating data
transmission at multiple megabits per second. Moreover, the transformation is afforded
practical reality by exploiting the FFT algorithm, with the inverse FFT used in the
transmitter and the FFT used in the receiver. 

Feature 5 Diversity Techniques

As already mentioned, the wireless channel is one of the most challenging media for
digital communications. The difficulty of reliable data transmission over a wireless
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channel is attributed to the multipath phenomenon. Three diversity techniques developed
to get around this practical difficulty are covered in Chapter 9:

• Diversity on receive, the traditional approach, whereby an array of multiple antennas
operating independently is deployed at the receiving end of a wireless channel. 

• Diversity on transmit, which operates by deploying two or more independent
antennas at the transmit end of the wireless channel.

• Multiple-input multiple-output (MIMO) channels, where multiple antennas (again
operating independently) are deployed at both ends of the wireless channel.

Among these three forms of diversity, the MIMO channel is naturally the most powerful in
information-theoretic terms: an advantage gained at the expense of increased
computational complexity. 

Feature 6 Turbo Codes

Error-control coding has established itself as the most commonly used technique for
reliable data transmission over a noisy channel. Among the challenging legacies bestowed
by Claude Shannon was how to design a code that would closely approach the so-called
Shannon limit. For over four decades, increasingly more powerful coding algorithms were
described in the literature; however it was the turbo code that had the honor of closely
approaching the Shannon limit, and doing so in a computationally feasible manner. 

Turbo codes, together with the associated maximum a posteriori (MAP) decoding
algorithm, occupy a large portion of Chapter 10, which also includes: 

• Detailed derivation of the MAP algorithm and an illustrative example of how it
operates;

• The extrinsic information transfer (EXIT) chart, which provides an experimental
tool for the design of turbo codes; 

• Turbo equalization, for demonstrating applicability of the turbo principle beyond
error-control coding.

Feature 7 Placement of Information Theory

Typically, information theory is placed just before the chapter on error-control coding. In
this book, it is introduced early because:

Information theory is not only of basic importance to error-control coding but 
also other topics in digital communications.

To elaborate:

• Chapter 6 presents the relevance of source coding to pulse-code modulation (PCM),
differential pulse-code modulation (DPCM), and delta modulation.

• Comparative evaluation of M-ary PSK versus M-ary FSK, done in Chapter 7,
requires knowledge of Shannon’s information capacity law.

• Analysis and design of DSL, presented in Chapter 8, also builds on Shannon’s
information capacity law.

• Channel capacity in Shannon’s coding theorem is important to diversity techniques,
particularly of the MIMO kind, discussed in Chapter 9.

Haykin_preface.fm  Page viii  Friday, January 11, 2013  6:01 PM



Preface ix

Examples, Computer Experiments, and Problems

Except for Chapter 1, each of the remaining nine chapters offers the following:

• Illustrative examples are included to strengthen the understanding of a theorem or
topic in as much detail as possible. Some of the examples are in the form of
computer experiments.

• An extensive list of end-of-chapter problems are grouped by section to fit the
material covered in each chapter. The problems range from relatively easy ones all
the way to more challenging ones.

• In addition to the computer-oriented examples, nine computer-oriented experiments
are included in the end-of-chapter problems.

The Matlab codes for all of the computer-oriented examples in the text, as well as other
calculations performed on the computer, are available at www.wiley.com/college/haykin.

Appendices

Eleven appendices broaden the scope of the theoretical as well as practical material
covered in the book:

• Appendix A, Advanced Probabilistic Models, covers the chi-square distribution,
log-normal distribution, and Nakagami distribution that includes the Rayleigh
distribution as a special case and is somewhat similar to the Rician distribution.
Moreover, an experiment is included therein that demonstrates, in a step-by-step
manner, how the Nakagami distribution evolves into the log-normal distribution in
an approximate manner, demonstrating its adaptive capability.

• Appendix B develops tight bounds on the Q-function.

• Appendix C discussed the ordinary Bessel function and its modified form.

• Appendix D describes the method of Lagrange multipliers for solving constrained
optimization problems.

• Appendix E derives the formula for the channel capacity of the MIMO channel
under two scenarios: one that assumes no knowledge of the channel by the
transmitter, and the other that assumes this knowledge is available to the transmitter
via a narrowband feedback link.

• Appendix F discusses the idea of interleaving, which is needed for dealing with
bursts of interfering signals experienced in wireless communications.

• Appendix G addresses the peak-to-average power reduction (PAPR) problem,
which arises in the use of orthogonal frequency-division multiplexing (OFDM) for
both wireless and DSL applications.

• Appendix H discusses solid-state nonlinear power amplifiers, which play a critical
role in the limited life of batteries in wireless communications.

• Appendix I presents a short exposé of Monte Carlo integration: a theorem that deals
with mathematically intractable problems.

• Appendix J studies maximal-length sequences, also called m-sequences, which are
used for implementing linear feedback shift registers (LFSRs). An important
application of maximal-length sequences (viewed as pseudo-random noise) is in
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designing direct-sequence spread-spectrum communications for code-division
multiple access (CDMA). 

• Finally, Appendix K provides a useful list of mathematical formulas and functions.

Two Noteworthy Symbols

Typically, the square-root of minus one is denoted by the italic symbol j, and the
differential operator (used in differentiation as well as integration) is denoted by the italic
symbol d. In reality, however, both of these terms are operators, each one in its own way:
it is therefore incorrect to use italic symbols for their notations. Furthermore, italic j and
italic d are also frequently used as indices or to represent other matters, thereby raising the
potential for confusion. According, throughout the book, roman j and roman d are used to
denote the square root of minus one and the differential operator, respectively. 

Concluding Remarks

In writing this book every effort has been made to present the material in the manner
easiest to read so as to enhance understanding of the topics covered. Moreover, cross-
references within a chapter as well as from chapter to chapter have been included
wherever the need calls for it. 

Finally, every effort has been made by the author as well as compositor of the book to
make it as error-free as humanly possible. In this context, the author would welcome
receiving notice of any errors discovered after publication of the book.
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1

CHAPTER

1
Introduction

1.1 Historical Background

In order to provide a sense of motivation, this introductory treatment of digital
communications begins with a historical background of the subject, brief but succinct as it
may be. In this first section of the introductory chapter we present some historical notes
that identify the pioneering contributors to digital communications specifically, focusing
on three important topics: information theory and coding, the Internet, and wireless
communications. In their individual ways, these three topics have impacted digital
communications in revolutionary ways.

Information Theory and Coding

In 1948, the theoretical foundations of digital communications were laid down by Claude
Shannon in a paper entitled “A mathematical theory of communication.” Shannon’s paper
was received with immediate and enthusiastic acclaim. It was perhaps this response that
emboldened Shannon to amend the title of his classic paper to “The mathematical theory
of communication” when it was reprinted later in a book co-authored with Warren Weaver.
It is noteworthy that, prior to the publication of Shannon’s 1948 classic paper, it was
believed that increasing the rate of transmission over a channel would increase the
probability of error; the communication theory community was taken by surprise when
Shannon proved that this was not true, provided the transmission rate was below the
channel capacity.

Shannon’s 1948 paper was followed by three ground-breaking advances in coding
theory, which include the following:

1. Development of the first nontrivial error-correcting code by Golay in 1949 and
Hamming in 1950.

2. Development of turbo codes by Berrou, Glavieux and Thitimjshima in 1993; turbo
codes provide near-optimum error-correcting coding and decoding performance in
additive white Gaussian noise.

3. Rediscovery of low-density parity-check (LDPC) codes, which were first described
by Gallager in 1962; the rediscovery occurred in 1981 when Tanner provided a new
interpretation of LDPC codes from a graphical perspective. Most importantly, it was
the discovery of turbo codes in 1993 that reignited interest in LDPC codes.
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2 Chapter 1 Introduction

The Internet

From 1950 to 1970, various studies were made on computer networks. However, the most
significant of them all in terms of impact on computer communications was the Advanced
Research Project Agency Network (ARPANET), which was put into service in 1971. The
development of ARPANET was sponsored by the Advanced Research Projects Agency
(ARPA) of the United States Department of Defense. The pioneering work in packet
switching was done on the ARPANET. In 1985, ARPANET was renamed the Internet.
However, the turning point in the evolution of the Internet occurred in 1990 when Berners-
Lee proposed a hypermedia software interface to the Internet, which he named the World
Wide Web. Thereupon, in the space of only about 2 years, the Web went from nonexistence
to worldwide popularity, culminating in its commercialization in 1994. The Internet has
dramatically changed the way in which we communicate on a daily basis, using a
wirelined network.

Wireless Communications

In 1864, James Clerk Maxwell formulated the electromagnetic theory of light and
predicted the existence of radio waves; the set of four equations that connect electric and
magnetic quantities bears his name. Later on in 1984, Henrich Herz demonstrated the
existence of radio waves experimentally.

However, it was on December 12, 1901, that Guglielmo Marconi received a radio
signal at Signal Hill in Newfoundland; the radio signal had originated in Cornwall,
England, 2100 miles away across the Atlantic. Last but by no means least, in the early
days of wireless communications, it was Fessenden, a self-educated academic, who in
1906 made history by conducting the first radio broadcast, transmitting music and voice
using a technique that came to be known as amplitude modulation (AM) radio.

In 1988, the first digital cellular system was introduced in Europe; it was known as the
Global System for Mobile (GSM) Communications. Originally, GSM was intended to
provide a pan-European standard to replace the myriad of incompatible analog wireless
communication systems. The introduction of GSM was soon followed by the North
American IS-54 digital standard. As with the Internet, wireless communication has also
dramatically changed the way we communicate on a daily basis. 

What we have just described under the three headings, namely, information theory and
coding, the Internet, and wireless communications, have collectively not only made
communications essentially digital, but have also changed the world of communications
and made it global.

1.2  The Communication Process

Today, communication enters our daily lives in so many different ways that it is very easy
to overlook the multitude of its facets. The telephones as well as mobile smart phones and
devices at our hands, the radios and televisions in our living rooms, the computer terminals
with access to the Internet in our offices and homes, and our newspapers are all capable of
providing rapid communications from every corner of the globe. Communication provides
the senses for ships on the high seas, aircraft in flight, and rockets and satellites in space.
Communication through a wireless telephone keeps a car driver in touch with the office or
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1.2 The Communication Process 3

home miles away, no matter where. Communication provides the means for social
networks to engage in different ways (texting, speaking, visualizing), whereby people are
brought together around the world. Communication keeps a weather forecaster informed
of conditions measured by a multitude of sensors and satellites. Indeed, the list of
applications involving the use of communication in one way or another is almost endless.

In the most fundamental sense, communication involves implicitly the transmission of
information from one point to another through a succession of processes:

1. The generation of a message signal – voice, music, picture, or computer data.

2. The description of that message signal with a certain measure of precision, using a
set of symbols – electrical, aural, or visual.

3. The encoding of those symbols in a suitable form for transmission over a physical
medium of interest.

4. The transmission of the encoded symbols to the desired destination.

5. The decoding and reproduction of the original symbols.

6. The re-creation of the original message signal with some definable degradation in
quality, the degradation being caused by unavoidable imperfections in the system.

There are, of course, many other forms of communication that do not directly involve the
human mind in real time. For example, in computer communications involving
communication between two or more computers, human decisions may enter only in
setting up the programs or commands for the computer, or in monitoring the results.

Irrespective of the form of communication process being considered, there are three
basic elements to every communication system, namely, transmitter, channel, and
receiver, as depicted in Figure 1.1. The transmitter is located at one point in space, the
receiver is located at some other point separate from the transmitter, and the channel is the
physical medium that connects them together as an integrated communication system. The
purpose of the transmitter is to convert the message signal produced by the source of
information into a form suitable for transmission over the channel. However, as the
transmitted signal propagates along the channel, it is distorted due to channel
imperfections. Moreover, noise and interfering signals (originating from other sources) are
added to the channel output, with the result that the received signal is a corrupted version
of the transmitted signal. The receiver has the task of operating on the received signal so
as to reconstruct a recognizable form of the original message signal for an end user or
information sink.

Figure 1.1 Elements of a communication system.
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4 Chapter 1 Introduction

There are two basic modes of communication:

1. Broadcasting, which involves the use of a single powerful transmitter and numerous
receivers that are relatively inexpensive to build. Here, information-bearing signals
flow only in one direction.

2. Point-to-point communication, in which the communication process takes place over
a link between a single transmitter and a receiver. In this case, there is usually a
bidirectional flow of information-bearing signals, which requires the combined use
of a transmitter and receiver (i.e., a transceiver) at each end of the link.

The underlying communication process in every communication system, irrespective of its
kind, is statistical in nature. Indeed, it is for this important reason that much of this book is
devoted to the statistical underpinnings of digital communication systems. In so doing, we
develop a wealth of knowledge on the fundamental issues involved in the study of digital
communications. 

1.3 Multiple-Access Techniques

Continuing with the communication process, multiple-access is a technique whereby
many subscribers or local stations can share the use of a communication channel at the
same time or nearly so, despite the fact that their individual transmissions may originate
from widely different locations. Stated in another way, a multiple-access technique
permits the communication resources of the channel to be shared by a large number of
users seeking to communicate with each other. 

There are subtle differences between multiple access and multiplexing that should be
noted:

• Multiple access refers to the remote sharing of a communication channel such as a
satellite or radio channel by users in highly dispersed locations. On the other hand,
multiplexing refers to the sharing of a channel such as a telephone channel by users
confined to a local site.

• In a multiplexed system, user requirements are ordinarily fixed. In contrast, in a
multiple-access system user requirements can change dynamically with time, in
which case provisions are necessary for dynamic channel allocation.

For obvious reasons it is desirable that in a multiple-access system the sharing of resources
of the channel be accomplished without causing serious interference between users of the
system. In this context, we may identify four basic types of multiple access:

1. Frequency-division multiple access (FDMA).

In this technique, disjoint subbands of frequencies are allocated to the different users
on a continuous-time basis. In order to reduce interference between users allocated
adjacent channel bands, guard bands are used to act as buffer zones, as illustrated in
Figure 1.2a. These guard bands are necessary because of the impossibility of
achieving ideal filtering or separating the different users.

2. Time-division multiple access (TDMA).
In this second technique, each user is allocated the full spectral occupancy of the
channel, but only for a short duration of time called a time slot. As shown in Figure
1.2b, buffer zones in the form of guard times are inserted between the assigned time
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1.3 Multiple-Access Techniques 5

slots. This is done to reduce interference between users by allowing for time
uncertainty that arises due to system imperfections, especially in synchronization
schemes.

3. Code-division multiple access (CDMA).

In FDMA, the resources of the channel are shared by dividing them along the
frequency coordinate into disjoint frequency bands, as illustrated in Figure 1.2a. In
TDMA, the resources are shared by dividing them along the time coordinate into
disjoint time slots, as illustrated in Figure 1.2b. In Figure 1.2c, we illustrate another
technique for sharing the channel resources by using a hybrid combination of
FDMA and TDMA, which represents a specific form of code-division multiple
access (CDMA). For example, frequency hopping may be employed to ensure that
during each successive time slot, the frequency bands assigned to the users are
reordered in an essentially random manner. To be specific, during time slot 1, user 1
occupies frequency band 1, user 2 occupies frequency band 2, user 3 occupies
frequency band 3, and so on. During time slot 2, user 1 hops to frequency band 3,
user 2 hops to frequency band 1, user 3 hops to frequency band 2, and so on. Such an
arrangement has the appearance of the users playing a game of musical chairs. An
important advantage of CDMA over both FDMA and TDMA is that it can provide
for secure communications. In the type of CDMA illustrated in Figure 1.2c, the
frequency hopping mechanism can be implemented through the use of a pseudo-
noise (PN) sequence.

4. Space-division multiple access (SDMA).
In this multiple-access technique, resource allocation is achieved by exploiting the
spatial separation of the individual users. In particular, multibeam antennas are used
to separate radio signals by pointing them along different directions. Thus, different
users are enabled to access the channel simultaneously on the same frequency or in
the same time slot. 

These multiple-access techniques share a common feature: allocating the communication
resources of the channel through the use of disjointedness (or orthogonality in a loose
sense) in time, frequency, or space. 

Figure 1.2 Illustrating the ideas behind multiple-access techniques. (a) Frequency-division 
multiple access. (b) Time-division multiple access. (c) Frequency-hop multiple access.
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6 Chapter 1 Introduction

1.4 Networks

A communication network or simply network1, illustrated in Figure 1.3, consists of an
interconnection of a number of nodes made up of intelligent processors (e.g.,
microcomputers). The primary purpose of these nodes is to route data through the
network. Each node has one or more stations attached to it; stations refer to devices
wishing to communicate. The network is designed to serve as a shared resource for
moving data exchanged between stations in an efficient manner and also to provide a
framework to support new applications and services. The traditional telephone network is
an example of a communication network in which circuit switching is used to provide a
dedicated communication path or circuit between two stations. The circuit consists of a
connected sequence of links from source to destination. The links may consist of time
slots in a time-division multiplexed (TDM) system or frequency slots in a frequency-
division multiplexed (FDM) system. The circuit, once in place, remains uninterrupted for
the entire duration of transmission. Circuit switching is usually controlled by a centralized
hierarchical control mechanism with knowledge of the network’s organization. To
establish a circuit-switched connection, an available path through the network is seized
and then dedicated to the exclusive use of the two stations wishing to communicate. In
particular, a call-request signal must propagate all the way to the destination, and be
acknowledged, before transmission can begin. Then, the network is effectively transparent
to the users. This means that, during the connection time, the bandwidth and resources
allocated to the circuit are essentially “owned” by the two stations, until the circuit is
disconnected. The circuit thus represents an efficient use of resources only to the extent
that the allocated bandwidth is properly utilized. Although the telephone network is used
to transmit data, voice constitutes the bulk of the network’s traffic. Indeed, circuit
switching is well suited to the transmission of voice signals, since voice conversations
tend to be of long duration (about 2 min on average) compared with the time required for
setting up the circuit (about 0.1–0.5 s). Moreover, in most voice conversations, there is
information flow for a relatively large percentage of the connection time, which makes
circuit switching all the more suitable for voice conversations.

Figure 1.3 Communication network.
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1.4 Networks 7

In circuit switching, a communication link is shared between the different sessions
using that link on a fixed allocation basis. In packet switching, on the other hand, the
sharing is done on a demand basis and, therefore, it has an advantage over circuit
switching in that when a link has traffic to send, the link may be more fully utilized. 

The basic network principle of packet switching is “store and forward.” Specifically, in
a packet-switched network, any message larger than a specified size is subdivided prior to
transmission into segments not exceeding the specified size. The segments are commonly
referred to as packets. The original message is reassembled at the destination on a packet-
by-packet basis. The network may be viewed as a distributed pool of network resources
(i.e., channel bandwidth, buffers, and switching processors) whose capacity is shared
dynamically by a community of competing users (stations) wishing to communicate. In
contrast, in a circuit-switched network, resources are dedicated to a pair of stations for the
entire period they are in session. Accordingly, packet switching is far better suited to a
computer-communication environment in which “bursts” of data are exchanged between
stations on an occasional basis. The use of packet switching, however, requires that careful
control be exercised on user demands; otherwise, the network may be seriously abused.

The design of a data network (i.e., a network in which the stations are all made up of
computers and terminals) may proceed in an orderly way by looking at the network in
terms of a layered architecture, regarded as a hierarchy of nested layers. A layer refers to a
process or device inside a computer system, designed to perform a specific function.
Naturally, the designers of a layer will be intimately familiar with its internal details and
operation. At the system level, however, a user views the layer merely as a “black box”
that is described in terms of the inputs, the outputs, and the functional relationship
between outputs and inputs. In a layered architecture, each layer regards the next lower
layer as one or more black boxes with some given functional specification to be used by
the given higher layer. Thus, the highly complex communication problem in data networks
is resolved as a manageable set of well-defined interlocking functions. It is this line of
reasoning that has led to the development of the open systems interconnection (OSI)2

reference model by a subcommittee of the International Organization for Standardization.
The term “open” refers to the ability of any two systems conforming to the reference
model and its associated standards to interconnect.

In the OSI reference model, the communications and related-connection functions are
organized as a series of layers or levels with well-defined interfaces, and with each layer
built on its predecessor. In particular, each layer performs a related subset of primitive
functions, and it relies on the next lower layer to perform additional primitive functions.
Moreover, each layer offers certain services to the next higher layer and shields the latter
from the implementation details of those services. Between each pair of layers, there is an
interface. It is the interface that defines the services offered by the lower layer to the upper
layer.

The OSI model is composed of seven layers, as illustrated in Figure 1.4; this figure also
includes a description of the functions of the individual layers of the model. Layer k on
system A, say, communicates with layer k on some other system B in accordance with a set
of rules and conventions, collectively constituting the layer k protocol, where k = 1, 2, ...,
7. (The term “protocol” has been borrowed from common usage, describing conventional
social behavior between human beings.) The entities that comprise the corresponding
layers on different systems are referred to as peer processes. In other words,
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1.5 Digital Communications 9

communication is achieved by having the peer processes in two different systems
communicate via a protocol, with the protocol itself being defined by a set of rules of
procedure. Physical communication between peer processes exits only at layer 1. On the
other hand, layers 2 through 7 are in virtual communication with their distant peers.
However, each of these six layers can exchange data and control information with its
neighboring layers (below and above) through layer-to-layer interfaces. In Figure 1.4,
physical communication is shown by solid lines and virtual communication by dashed
lines. The major principles involved in arriving at seven layers of the OSI reference model
are as follows:

1. Each layer performs well-defined functions.

2. A boundary is created at a point where the description of services offered is small
and the number of interactions across the boundary is the minimum possible.

3. A layer is created from easily localized functions, so that the architecture of the
model may permit modifications to the layer protocol to reflect changes in
technology without affecting the other layers.

4. A boundary is created at some point with an eye toward standardization of the
associated interface.

5. A layer is created only when a different level of abstraction is needed to handle the data.

6. The number of layers employed should be large enough to assign distinct functions to
different layers, yet small enough to maintain a manageable architecture for the model.

Note that the OSI reference model is not a network architecture; rather, it is an
international standard for computer communications, which just tells what each layer
should do.

1.5 Digital Communications

Today’s public communication networks are highly complicated systems. Specifically,
public switched telephone networks (collectively referred to as PSTNs), the Internet, and
wireless communications (including satellite communications) provide seamless
connections between cities, across oceans, and between different countries, languages, and
cultures; hence the reference to the world as a “global village.”

There are three layers of the OSI model where it can affect the design of digital
communication systems, which is the subject of interest of this book:

1. Physical layer. This lowest layer of the OSI model embodies the physical
mechanism involved in transmitting bits (i.e., binary digits) between any pair of
nodes in the communication network. Communication between the two nodes is
accomplished by means of modulation in the transmitter, transmission across the
channel, and demodulation in the receiver. The module for performing modulation
and demodulation is often called a modem.

2. Data-link layer. Communication links are nearly always corrupted by the
unavoidable presence of noise and interference. One purpose of the data-link layer,
therefore, is to perform error correction or detection, although this function is also
shared with the physical layer. Often, the data-link layer will retransmit packets that
are received in error but, for some applications, it discards them. This layer is also

Haykin_ch01_pp3.fm  Page 9  Saturday, November 17, 2012  5:36 PM



10 Chapter 1 Introduction

responsible for the way in which different users share the transmission medium. A
portion of the data-link layer, called the medium access control (MAC) sublayer, is
responsible for allowing frames to be sent over the shared transmission media
without undue interference with other nodes. This aspect is referred to as multiple-
access communications.

3. Network layer. This layer has several functions, one of which is to determine the
routing of information, to get it from the source to its ultimate destination. A second
function is to determine the quality of service. A third function is flow control, to
ensure that the network does not become congested. 

These are three layers of a seven-layer model for the functions that occur in the
communications process. Although the three layers occupy a subspace within the OSI
model, the functions that they perform are of critical importance to the model.

Block Diagram of Digital Communication System

Typically, in the design of a digital communication system the information source,
communication channel, and information sink (end user) are all specified. The challenge is
to design the transmitter and the receiver with the following guidelines in mind:

• Encode/modulate the message signal generated by the source of information,
transmit it over the channel, and produce an “estimate” of it at the receiver output
that satisfies the requirements of the end user.

• Do all of this at an affordable cost. 

In a digital communication system represented by the block diagram of Figure 1.6, the
rationale for which is rooted in information theory, the functional blocks of the transmitter
and the receiver starting from the far end of the channel are paired as follows:

• source encoder–decoder;
• channel encoder–decoder;
• modulator–demodulator.

The source encoder removes redundant information from the message signal and is
responsible for efficient use of the channel. The resulting sequence of symbols is called
the source codeword. The data stream is processed next by the channel encoder, which
produces a new sequence of symbols called the channel codeword. The channel codeword
is longer than the source code word by virtue of the controlled redundancy built into its
construction. Finally, the modulator represents each symbol of the channel codeword by a
corresponding analog symbol, appropriately selected from a finite set of possible analog
symbols. The sequence of analog symbols produced by the modulator is called a
waveform, which is suitable for transmission over the channel. At the receiver, the channel
output (received signal) is processed in reverse order to that in the transmitter, thereby
reconstructing a recognizable version of the original message signal. The reconstructed
message signal is finally delivered to the user of information at the destination. From this
description it is apparent that the design of a digital communication system is rather
complex in conceptual terms but easy to build. Moreover, the system is robust, offering
greater tolerance of physical effects (e.g., temperature variations, aging, mechanical
vibrations) than its analog counterpart; hence the ever-increasing use of digital
communications.
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1.6 Organization of the Book 11

1.6 Organization of the Book

The main part of the book is organized in ten chapters, which, after this introductory
chapter, are organized into five parts of varying sizes as summarized herein. 

1. Mathematical Background

Chapter 2 presents a detailed treatment of the Fourier transform, its properties and
algorithmic implementations. This chapter also includes two important related topics:

• The Hilbert transform, which provides the mathematical basis for transforming
real-valued band-pass signals and systems into their low-pass equivalent
representations without loss of information.

• Overview of analog modulation theory, thereby facilitating an insightful link
between analog and digital communications.

Chapter 3 presents a mathematical review of probability theory and Bayesian
inference, the understanding of which is essential to the study of digital
communications.

Chapter 4 is devoted to the study of stochastic processes, the theory of which is
basic to the characterization of sources of information and communication channels.

Chapter 5 discusses the fundamental limits of information theory, postulated in
terms of source coding, channel capacity, and rate-distortion theory.

Figure 1.6 Block diagram of a digital communication system.
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12 Chapter 1 Introduction

2. Transition from Analog to Digital Communications

This material is covered in Chapter 6. Simply put, the study therein discusses the
different ways in which analog waveforms are converted into digitally encoded
sequences.

3. Signaling Techniques

This third part of the book includes three chapters:

• Chapter 7 discusses the different techniques for signaling over additive white
Gaussian noise (AWGN) channels.

• Chapter 8 discusses signaling over band-limited channels, as in data transmission
over telephonic channels and the Internet.

• Chapter 9 is devoted to signaling over fading channels, as in wireless
communications.

4. Error-Control Coding

The reliability of data transmission over a communication channel is of profound
practical importance. Chapter 10 studies the different methods for the encoding of
message sequences in the transmitter and decoding them in the receiver. Here, we
cover two classes of error-control coding techniques:

• classic codes rooted in algebraic mathematics, and
• new generation of probabilistic compound codes, exemplified by turbo codes and

LDPC codes.

5. Appendices

Last but by no means least, the book includes appendices to provide back-up
material for different chapters in the book, as they are needed. 

Notes

1. For a detailed discussion on communication networks, see the classic book by Tanenbaum,
entitled Computer Networks (2003).

2. The OSI reference model was developed by a subcommittee of the International Organization for
Standardization (ISO) in 1977. For a discussion of the principles involved in arriving at the seven
layers of the OSI model and a description of the layers themselves, see Tanenbaum (2003).
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CHAPTER

2
Fourier Analysis of 
Signals and Systems

2.1 Introduction

The study of communication systems involves:

• the processing of a modulated message signal generated at the transmitter output so
as to facilitate its transportation across a physical channel and 

• subsequent processing of the received signal in the receiver so as to deliver an
estimate of the original message signal to a user at the receiver output. 

In this study, the representation of signals and systems features prominently. More
specifically, the Fourier transform plays a key role in this representation.

The Fourier transform provides the mathematical link between the time-domain
representation (i.e., waveform) of a signal and its frequency-domain description (i.e.,
spectrum). Most importantly, we can go back and forth between these two descriptions of
the signal with no loss of information. Indeed, we may invoke a similar transformation in
the representation of linear systems. In this latter case, the time-domain and frequency-
domain descriptions of a linear time-invariant system are defined in terms of its impulse
response and frequency response, respectively. 

In light of this background, it is in order that we begin a mathematical study of
communication systems by presenting a review of Fourier analysis. This review, in turn,
paves the way for the formulation of simplified representations of band-pass signals and
systems to which we resort in subsequent chapters. We begin the study by developing the
transition from the Fourier series representation of a periodic signal to the Fourier
transform representation of a nonperiodic signal; this we do in the next two sections.

2.2 The Fourier Series

Let  denote a periodic signal, where the subscript T0 denotes the duration of
periodicity. By using a Fourier series expansion of this signal, we are able to resolve it into
an infinite sum of sine and cosine terms, as shown by

(2.1)

gT0
t( )

gT0
t( ) a0 2 an 2πnf0t( ) bn 2πnf0t( )sin+cos[ ]

n 1=

∞

+=
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14 Chapter 2 Fourier Analysis of Signals and Systems

where 

(2.2)

is the fundamental frequency. The coefficients an and bn represent the amplitudes of the
cosine and sine terms, respectively. The quantity nf0 represents the nth harmonic of the
fundamental frequency f0. Each of the terms cos(2πnf0t) and sin(2πnf0t) is called a basis
function. These basis functions form an orthogonal set over the interval T0, in that they
satisfy three conditions:

(2.3)

(2.4)

(2.5)

To determine the coefficient a0, we integrate both sides of (2.1) over a complete period.
We thus find that a0 is the mean value of the periodic signal  over one period, as
shown by the time average

(2.6)

To determine the coefficient an, we multiply both sides of (2.1) by cos(2πnf0t) and
integrate over the interval –T0/2 to T0/2. Then, using (2.3) and (2.4), we find that

(2.7)

Similarly, we find that

 (2.8)

A basic question that arises at this point is the following: 

Given a periodic signal  of period T0, how do we know that the Fourier 
series expansion of (2.1) is convergent in that the infinite sum of terms in this 
expansion is exactly equal to ? 

To resolve this fundamental issue, we have to show that, for the coefficients a0, an, and bn

calculated in accordance with (2.6) to (2.8), this series will indeed converge to . In

general, for a periodic signal  of arbitrary waveform, there is no guarantee that the

series of (2.1) will converge to  or that the coefficients a0, an, and bn will even exist.

In a rigorous sense, we may say that a periodic signal  can be expanded in a Fourier

f0
1
T0
-----=

2πmf0t( ) 2πnf0t( )coscos dt
T0 2⁄–

T0 2⁄


T0 2,⁄ m n=

0, m n≠



=

2πmf0t( ) 2πnf0t( )sincos dt
T0 2⁄–

T0 2⁄

 0 for all m and n,=

2πmf0t( )sin 2πnf0t( )sin dt
T0 2⁄–

T0 2⁄


T0 2,⁄ m n=

0, m n≠



=

gT0
t( )

a0
1
T0
----- gT0

t( ) dt
T0 2⁄–

T0 2⁄

=

an
1
T0
----- gT0

t( ) 2πnf0t( )cos dt, n
T0 2⁄–

T0 2⁄

 1 2 …, ,= =

bn
1
T0
----- gT0

t( ) 2πnf0t( )sin dt, n
T0 2⁄–

T0 2⁄

 1 2 …, ,= =

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )
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2.2 The Fourier Series 15

series if the signal  satisfies the Dirichlet conditions:1

1. The function  is single valued within the interval T0.

2. The function  has at most a finite number of discontinuities in the interval T0.

3. The function  has a finite number of maxima and minima in the interval T0.

4. The function  is absolutely integrable; that is,

From an engineering perspective, however, it suffices to say that the Dirichlet conditions
are satisfied by the periodic signals encountered in communication systems. 

Complex Exponential Fourier Series

The Fourier series of (2.1) can be put into a much simpler and more elegant form with the
use of complex exponentials. We do this by substituting into (2.1) the exponential forms
for the cosine and sine, namely:

 where . We thus obtain

(2.9)

Let cn denote a complex coefficient related to an and bn by

(2.10)

Then, we may simplify (2.9) into 

(2.11)

where

              (2.12)

The series expansion of (2.11) is referred to as the complex exponential Fourier series.
The cn themselves are called the complex Fourier coefficients. 

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( )

gT0
t( ) dt ∞<

T0 2⁄–

T0 2⁄



2πnf0t( )cos
1
2
--- j2πnf0t( ) j2πnf0t–( )exp+exp[ ]=

2πnf0t( )sin
1
2j
----- j2πnf0t( ) j2πnf0t–( )exp–exp[ ]=

j 1–=

gT0
t( ) a0 an j– bn( ) j2πnf0t( ) an jbn+( ) j2πnf0t–( )exp+exp[ ]

n=1

∞

+=

cn

an jbn,– n 0>

a0, n 0=

an jbn,+ n 0<








=

gT0
t( ) cn j2πnf0t( )exp

n ∞–=

∞

=

cn
1
T0
----- gT0

t( ) j2πnf0t–( )exp dt, n 0 1 2 …,±,±,=
T0 2⁄–

T0 2⁄

=
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16 Chapter 2 Fourier Analysis of Signals and Systems

Given a periodic signal , (2.12) states that we may determine the 
complete set of complex Fourier coefficients. On the other hand, (2.11) states 
that, given this set of coefficients, we may reconstruct the original periodic 
signal  exactly. 

The integral on the right-hand side of (2.12) is said to be an inner product of the signal
 with the basis functions exp(–j2πnf0t), by whose linear combination all square

integrable functions can be expressed as in (2.11).
According to this representation, a periodic signal contains all frequencies (both

positive and negative) that are harmonically related to the fundamental frequency f0. The
presence of negative frequencies is simply a result of the fact that the mathematical model
of the signal as described by (2.11) requires the use of negative frequencies. Indeed, this
representation also requires the use of complex-valued basis functions, namely
exp(j2πnf0t), which have no physical meaning either. The reason for using complex-
valued basis functions and negative frequency components is merely to provide a compact
mathematical description of a periodic signal, which is well-suited for both theoretical and
practical work.

2.3 The Fourier Transform

In the previous section, we used the Fourier series to represent a periodic signal. We now
wish to develop a similar representation for a signal g(t) that is nonperiodic. In order to do
this, we first construct a periodic function  of period T0 in such a way that g(t)
defines exactly one cycle of this periodic function, as illustrated in Figure 2.1. In the limit,
we let the period T0 become infinitely large, so that we may express g(t) as

(2.13)

gT0
t( )

gT0
t( )

gT0
t( )

Figure 2.1 Illustrating the use of an arbitrarily defined function of time to 
construct a periodic waveform. (a) Arbitrarily defined function of time g(t). 
(b) Periodic waveform gT0

(t) based on g(t).

gT0
t( )

g t( ) gT0
t( )

T0 ∞→
lim=

–T0

g(t) 

gT0 
(t)

T00

0

(a)

(b)
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2.3 The Fourier Transform 17

Representing the periodic function  in terms of the complex exponential form of the
Fourier series, we write

 

where

Here, we have purposely replaced f0 with 1/T0 in the exponents. Define

and

We may then go on to modify the original Fourier series representation of  given in
(2.11) into a new form described by

(2.14)

where

(2.15)

Equations (2.14) and (2.15) apply to a periodic signal . What we would like to do
next is to go one step further and develop a corresponding pair of formulas that apply to a
nonperiodic signal g(t). To do this transition, we use the defining equation (2.13).
Specifically, two things happen:

1. The discrete frequency fn in (2.14) and (2.15) approaches the continuous frequency
variable f.

2. The discrete sum of (2.14) becomes an integral defining the area under the function
G(f)exp(j2πft), integrated with respect to time t.

Accordingly, piecing these points together, we may respectively rewrite the limiting forms
of (2.15) and (2.14) as 

(2.16)

and

(2.17)

gT0
t( )

gT0
t( ) cn

j2πnt
T0

-------------- 
 exp

n ∞–=

∞

=

cn
1
T0
----- gT0

t( ) j2πnt
T0

--------------– 
 exp dt

T0 2⁄–

T0 2⁄

=

Δf 1
T0
-----=

fn
n
T0
-----=

G fn( ) cnT0=

gT0
t( )

gT0
t( ) G fn( ) j2πfnt( )Δfexp

n ∞–=

∞

=

G fn( ) gT0
t( ) j2πfnt–( )exp  dt

T0 2⁄–

T0 2⁄

=

gT0
t( )

G f( ) g t( ) j2πft–( )exp dt
∞–

∞

=

g t( ) G f( ) j2πft( )exp df
∞–

∞

=
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18 Chapter 2 Fourier Analysis of Signals and Systems

In words, we may say:

• the Fourier transform of the nonperiodic signal g(t) is defined by (2.16); 
• given the Fourier transform G(f), the original signal g(t) is recovered exactly from

the inverse Fourier transform of (2.17). 

Figure 2.2 illustrates the interplay between these two formulas, where we see that the
frequency-domain description based on (2.16) plays the role of analysis and the time-
domain description based on (2.17) plays the role of synthesis. 

From a notational point of view, note that in (2.16) and (2.17) we have used a lowercase
letter to denote the time function and an uppercase letter to denote the corresponding
frequency function. Note also that these two equations are of identical mathematical form,
except for changes in the algebraic signs of the exponents. 

For the Fourier transform of a signal g(t) to exist, it is sufficient but not necessary that
the nonperiodic signal g(t) satisfies three Dirichlet’s conditions of its own:

1. The function g(t) is single valued, with a finite number of maxima and minima in
any finite time interval.

2. The function g(t) has a finite number of discontinuities in any finite time interval.

3. The function g(t) is absolutely integrable; that is,

In practice, we may safely ignore the question of the existence of the Fourier transform of
a time function g(t) when it is an accurately specified description of a physically realizable
signal. In other words, physical realizability is a sufficient condition for the existence of a
Fourier transform. Indeed, we may go one step further and state:

All energy signals are Fourier transformable. 

A signal g(t) is said to be an energy signal if the condition 

(2.18)

holds.2

Figure 2.2 Sketch of the interplay between the synthesis 
and analysis equations embodied in Fourier transformation. 

g t( ) dt ∞<
∞–

∞



g t( ) 2
dt ∞<

∞–

∞



Analysis equation:

Synthesis equation:

g (t) =  

Time-domain
description:

g(t )

Frequency-domain
description:

G(f )

G (f ) exp( j 2 ft )df
∞

–∞

G (f ) = g (t ) exp(– j 2 ft )dt
∞

–∞
π

π
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2.3 The Fourier Transform 19

The Fourier transform provides the mathematical tool for measuring the frequency
content, or spectrum, of a signal. For this reason, the terms Fourier transform and
spectrum are used interchangeably. Thus, given a signal g(t) with Fourier transform G(f),
we may refer to G(f) as the spectrum of the signal g(t). By the same token, we refer to
|G(f)| as the magnitude spectrum of the signal g(t), and refer to arg[G(f)] as its phase
spectrum. 

If the signal g(t) is real valued, then the magnitude spectrum of the signal is an even
function of frequency f, while the phase spectrum is an odd function of f. In such a case,
knowledge of the spectrum of the signal for positive frequencies uniquely defines the
spectrum for negative frequencies.

Notations

For convenience of presentation, it is customary to express (2.17) in the short-hand form

where F plays the role of an operator. In a corresponding way, (2.18) is expressed in the
short-hand form

where F–1 plays the role of an inverse operator.
The time function g(t) and the corresponding frequency function G(f) are said to

constitute a Fourier-transform pair. To emphasize this point, we write

where the top arrow indicates the forward transformation from g(t) to G(f) and the bottom
arrow indicates the inverse transformation. One other notation: the asterisk is used to
denote complex conjugation. 

Tables of Fourier Tranformations

To assist the user of this book, two tables of Fourier transformations are included:

1. Table 2.1 on page 23 summarizes the properties of Fourier transforms; proofs of
them are presented as end-of-chapter problems.

2. Table 2.2 on page 24 presents a list of Fourier-transform pairs, where the items
listed on the left-hand side of the table are time functions and those in the center
column are their Fourier transforms.

EXAMPLE 1 Binary Sequence for Energy Calculations

Consider the five-digit binary sequence 10010. This sequence is represented by two
different waveforms, one based on the rectangular function rect(t), and the other based on
the sinc function sinc(t). Despite this difference, both waveforms are denoted by g(t),
which implies they both have exactly the same total energy, to be demonstrated next. 

Case 1: rect(t) as the basis function.

Let binary symbol 1 be represented by +rect(t) and binary symbol 0 be represented by
−rect(t). Accordingly, the binary sequence 10010 is represented by the waveform

G f( ) F g t( )[ ]=

g t( ) F
1–

G f( )[ ]=

g t( ) ⇌ G f( )
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20 Chapter 2 Fourier Analysis of Signals and Systems

shown in Figure 2.3. From this figure, we readily see that, regardless of the
representation ±rect(t), each symbol contributes a single unit of energy; hence the total
energy for Case 1 is five units. 
Case 2: sinc(t) as the basis function.

Consider next the representation of symbol 1 by +sinc(t) and the representation of symbol
0 by −sinc(t), which do not interfere with each other in constructing the waveform for the
binary sequence 10010. Unfortunately, this time around, it is difficult to calculate the total
waveform energy in the time domain. To overcome this difficulty, we do the calculation in
the frequency domain.

To this end, in parts a and b of Figure 2.4, we display the waveform of the sinc function
in the time domain and its Fourier transform, respectively. On this basis, Figure 2.5
displays the frequency-domain representation of the binary sequence 10010, with part a of
the figure displaying the magnitude response , and part b displaying the
corresponding phrase response  expressed in radians. Then, applying
Rayleigh’s energy theorem, described in Property 14 in Table 2.2, to part a of Figure 2.5,
we readily find that the energy of the pulse, ±sinc(t), is equal to one unit, regardless of its
amplitude. The total energy of the sinc-based waveform representing the given binary
sequence is also exactly five units, confirming what was said at the beginning of this
example.

Figure 2.3 Waveform of binary sequence 10010, using rect(t) for symbol 1 
and –rect(t) for symbol 0. See Table 2.2 for the definition of rect(t).

Figure 2.4 (a) Sinc pulse g(t). (b) Fourier transform G(f).
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2.3 The Fourier Transform 21

Observations

1. The dual basis functions, rect(t) and sinc(t), are dilated to their simplest forms, each
of which has an energy of one unit, hence the equality of the results presented under
Cases 1 and 2.

2. Examining the waveform g(t) in Figure 2.3, we clearly see the discrimination
between binary symbols 1 and 0. On the other hand, it is the phase response

 in part b of Figure 2.5 that shows the discrimination between binary
symbols 1 and 0.  

EXAMPLE 2 Unit Gaussian Pulse

Typically, a pulse signal g(t) and its Fourier transform G(f) have different mathematical
forms. This observation is illustrated by the Fourier-transform pair studied in Example 1.
In this second example, we consider an exception to this observation. In particular, we use
the differentiation property of the Fourier transform to derive the particular form of a pulse
signal that has the same mathematical form as its own Fourier transform.

Let g(t) denote the pulse signal expressed as a function of time t and G(f) denote its
Fourier transform. Differentiating the Fourier transform formula of (2.6) with respect to
frequency f yields 

or, equivalently,

(2.19)

Figure 2.5 (a) Magnitude spectrum of the sequence 10010. (b) Phase spectrum 
of the sequence.
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22 Chapter 2 Fourier Analysis of Signals and Systems

Use of the Fourier-transform property on differentiation in the time domain listed in Table
2.1 yields

(2.20)

Suppose we now impose the equality condition on the left-hand sides of (2.19) and (2.20): 

(2.21)

Then, in a corresponding way, it follows that the right-hand sides of these two equations
must (after canceling the common multiplying factor j) satisfy the condition

(2.22)

Equations (2.21) and (2.22) show that the pulse signal g(t) and its Fourier transform G(f)
have exactly the same mathematical form. In other words, provided that the pulse signal
g(t) satisfies the differential equation (2.21), then G(f) = g(f), where g(f) is obtained from
g(t) simply by substituting f for t. Solving (2.21) for g(t), we obtain

(2.23)

which has a bell-shaped waveform, as illustrated in Figure 2.6. Such a pulse is called a
Gaussian pulse, the name of which follows from the similarity of the function g(t) to the
Gaussian probability density function of probability theory, to be discussed in Chapter 3.
By applying the Fourier-transform property on the area under g(t) listed in Table 2.1, we
have

(2.24)

When the central ordinate and the area under the curve of a pulse are both unity, as in
(2.23) and (2.24), we say that the Gaussian pulse is a unit pulse. Therefore, we may state
that the unit Gaussian pulse is its own Fourier transform, as shown by

(2.25)

Figure 2.6 Gaussian pulse.

d
dt
-----g t( ) ⇌ j2πfG f( )

d
dt
-----g t( ) 2πtg t( )=

d
df
-----G f( ) 2πfG f( )=

g t( ) πt
2

–( )exp=

πt
2

–( )exp dt
∞–

∞

 1=

πt
2

–( )exp ⇌ πf
2

–( )exp

1.0

0–0.47 0.47

0.5

t

g( t )
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2.3 The Fourier Transform 23

Table 2.1 Fourier-transform theorems

Property Mathematical description

1. Linearity
where a and b are constants

2. Dilation  where a is a constant

3. Duality
If ,

then 

4. Time shifting

5. Frequency shifting

6. Area under g(t)

7. Area under G(f)

8. Differentiation in the time domain

9. Integration in the time domain

10. Conjugate functions
If ,

then 

11. Multiplication in the time domain

12. Convolution in the time domain

13. Correlation theorem

14. Rayleigh’s energy theorem

15. Parseval’s power theorem for 
periodic signal of period T0

ag1 t( ) bg2 t( )+ ⇌ aG1 f( ) bG2 f( )+

g at( ) ⇌ 1
a
-----G

f
a
--- 

 

g t( ) ⇌ G f( )
G t( ) ⇌ g f–( )

g t t0–( ) ⇌ G f( ) j2πft0–( )exp

g t( ) j2πf0t–( )exp ⇌ G f f0–( )

g t( )dt
∞–

∞

 G 0( )=

g 0( ) G f( )df
∞–

∞

=

d
dt
-----g t( ) ⇌ j2πfG f( )

g τ( )dτ
∞–

t

 ⇌ 1
j2πf
----------G f( ) G 0( )

2
------------δ f( )+

g t( ) ⇌ G f( )

g* t( ) ⇌ G
*

f–( )

g1 t( )g2 t( ) ⇌ G1 λ( )G2 f λ–( )dλ
∞–

∞



g1 τ( )g2 t τ–( )dτ
∞–

t

 ⇌ G1 f( )G2 f( )

g1 t( )g2
* t τ–( )dτ

∞–

∞

 ⇌ G1 f( )G2
*

f( )

g t( ) 2
dt

∞–

∞

 = G f( ) 2
df

∞–

∞



1
T0
----- g t( ) 2

dt
T0 2⁄–

T0 2⁄

 G fn( ) 2

n ∞–=

∞

 fn n T0⁄=,=

Haykin_ch02_pp3.fm  Page 23  Friday, November 16, 2012  9:24 AM



24 Chapter 2 Fourier Analysis of Signals and Systems

Table 2.2 Fourier-transform pairs and commonly used time functions

Time function Fourier transform Definitions

1.  Unit step function:

2.

3.

4.
Dirac delta function:

 for  and

5.

6.
Rectangular function:

7.

8. Signum function:

9.

10.

11. Sinc function:

12.

13. Gaussian function:

14.

15.

16.

rect
t
T
--- 

 
T sinc fT 

u t 

1, t 0
1
2
--- , t 0=

0, t 0







=
 sinc 2Wt 

1
2W
--------rect

f
2Wf
---------- 
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2.4 The Inverse Relationship between Time-Domain and 
Frequency-Domain Representations

The time-domain and frequency-domain descriptions of a signal are inversely related. In
this context, we may make four important statements:

1. If the time-domain description of a signal is changed, the frequency-domain
description of the signal is changed in an inverse manner, and vice versa. This
inverse relationship prevents arbitrary specifications of a signal in both domains. In
other words: 

We may specify an arbitrary function of time or an arbitrary spectrum, but we 
cannot specify them both together.

2. If a signal is strictly limited in frequency, then the time-domain description of the
signal will trail on indefinitely, even though its amplitude may assume a
progressively smaller value. To be specific, we say:

A signal is strictly limited in frequency (i.e., strictly band limited) if its Fourier 
transform is exactly zero outside a finite band of frequencies. 

Consider, for example, the band-limited sinc pulse defined by

whose waveform and spectrum are respectively shown in Figure 2.4: part a shows
that the sinc pulse is asymptotically limited in time and part b of the figure shows
that the sinc pulse is indeed strictly band limited, thereby confirming statement 2.

3. In a dual manner to statement 2, we say:

If a signal is strictly limited in time (i.e., the signal is exactly zero outside a 
finite time interval), then the spectrum of the signal is infinite in extent, even 
though the magnitude spectrum may assume a progressively smaller value. 

This third statement is exemplified by a rectangular pulse, the waveform and
spectrum of which are defined in accordance with item 1 in Table 2.2. 

4. In light of the duality described under statements 2 and 3, we now make the final
statement:

A signal cannot be strictly limited in both time and frequency.

The Bandwidth Dilemma

The statements we have just made have an important bearing on the bandwidth of a signal,
which provides a measure of the extent of significant spectral content of the signal for
positive frequencies. When the signal is strictly band limited, the bandwidth is well
defined. For example, the sinc pulse sinc(2Wt) has a bandwidth equal to W. However,
when the signal is not strictly band limited, as is often the case, we encounter difficulty in
defining the bandwidth of the signal. The difficulty arises because the meaning of
“significant” attached to the spectral content of the signal is mathematically imprecise.
Consequently, there is no universally accepted definition of bandwidth. It is in this sense
that we speak of the “bandwidth dilemma.”

sinc t( ) πt( )sin
πt

------------------=
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26 Chapter 2 Fourier Analysis of Signals and Systems

Nevertheless, there are some commonly used definitions for bandwidth, as discussed
next. When the spectrum of a signal is symmetric with a main lobe bounded by well-
defined nulls (i.e., frequencies at which the spectrum is zero), we may use the main lobe as
the basis for defining the bandwidth of the signal. Specifically: 

If a signal is low-pass (i.e., its spectral content is centered around the origin 
f = 0), the bandwidth is defined as one-half the total width of the main spectral 
lobe, since only one-half of this lobe lies inside the positive frequency region. 

For example, a rectangular pulse of duration T seconds has a main spectral lobe of total
width (2/T) hertz centered at the origin. Accordingly, we may define the bandwidth of this
rectangular pulse as (1/T) hertz. 

If, on the other hand, the signal is band-pass with main spectral lobes centered around
±fc, where fc is large enough, the bandwidth is defined as the width of the main lobe for
positive frequencies. This definition of bandwidth is called the null-to-null bandwidth.
Consider, for example, a radio-frequency (RF) pulse of duration T seconds and frequency
fc, shown in Figure 2.7. The spectrum of this pulse has main spectral lobes of width (2/T)
hertz centered around ±fc, where it is assumed that fc is large compared with (1/T). Hence,
we define the null-to-null bandwidth of the RF pulse of Figure 2.7 as (2/T) hertz.

On the basis of the definitions presented here, we may state that shifting the spectral
content of a low-pass signal by a sufficiently large frequency has the effect of doubling the
bandwidth of the signal; this frequency translation is attained by using the process of
modulation. Basically, the modulation moves the spectral content of the signal for negative
frequencies into the positive frequency region, whereupon the negative frequencies
become physically measurable.

Another popular definition of bandwidth is the 3 dB bandwidth. Specifically, if the
signal is low-pass, we say:

The 3 dB bandwidth of a low-pass signal is defined as the separation between 
zero frequency, where the magnitude spectrum attains its peak value, and the 
positive frequency at which the amplitude spectrum drops to  of its 
peak value.

Figure 2.7 Magnitude spectrum of the RF pulse, showing the null-to-null bandwidth to be 2/T, 
centered on the mid-band frequency fc.
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2.4 The Inverse Relationship between Time-Domain and Frequency-Domain Representations 27

For example, the decaying exponential function exp(–at) has a 3 dB bandwidth of (a/2π)
hertz.

If, on the other hand, the signal is of a band-pass kind, centered at ±fc, the 3 dB
bandwidth is defined as the separation (along the positive frequency axis) between the two
frequencies at which the magnitude spectrum of the signal drops to of its peak value
at fc.

Regardless of whether we have a low-pass or band-pass signal, the 3 dB bandwidth has
the advantage that it can be read directly from a plot of the magnitude spectrum. However,
it has the disadvantage that it may be misleading if the magnitude spectrum has slowly
decreasing tails.

Time–Bandwidth Product

For any family of pulse signals that differ by a time-scaling factor, the product of the
signal’s duration and its bandwidth is always a constant, as shown by

duration × bandwidth = constant

This product is called the time–bandwidth product. The constancy of the time–bandwidth
product is another manifestation of the inverse relationship that exists between the time-
domain and frequency-domain descriptions of a signal. In particular, if the duration of a
pulse signal is decreased by reducing the time scale by a factor a, the frequency scale of
the signal’s spectrum, and therefore the bandwidth of the signal is increased by the same
factor a. This statement follows from the dilation property of the Fourier transform
(defined in Property 2 of Table 2.1). The time–bandwidth product of the signal is therefore
maintained constant. For example, a rectangular pulse of duration T seconds has a
bandwidth (defined on the basis of the positive-frequency part of the main lobe) equal to
(1/T) hertz; in this example, the time–bandwidth product of the pulse equals unity. 

The important point to take from this discussion is that whatever definitions we use for
the bandwidth and duration of a signal, the time–bandwidth product remains constant over
certain classes of pulse signals; the choice of particular definitions for bandwidth and
duration merely change the value of the constant.

Root-Mean-Square Definitions of Bandwidth and Duration

To put matters pertaining to the bandwidth and duration of a signal on a firm mathematical
basis, we first introduce the following definition for bandwidth:

The root-mean-square (rms) bandwidth is defined as the square root of the 
second moment of a normalized form of the squared magnitude spectrum of the 
signal about a suitably chosen frequency.

To be specific, we assume that the signal g(t) is of a low-pass kind, in which case the
second moment is taken about the origin f = 0. The squared magnitude spectrum of the
signal is denoted by |G(f)|2. To formulate a nonnegative function, the total area under
whose curve is unity, we use the normalizing function

1 2⁄

G f( ) 2
df

∞–

∞


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28 Chapter 2 Fourier Analysis of Signals and Systems

We thus mathematically define the rms bandwidth of a low-pass signal g(t) with Fourier
transform G(f) as

(2.26)

which describes the dispersion of the spectrum G(f) around f = 0. An attractive feature of
the rms bandwidth Wrms is that it lends itself readily to mathematical evaluation. But, it is
not as easily measurable in the laboratory.

In a manner corresponding to the rms bandwidth, the rms duration of the signal g(t) is
mathematically defined by

(2.27)

where it is assumed that the signal g(t) is centered around the origin t = 0. In Problem 2.7,
it is shown that, using the rms definitions of (2.26) and (2.27), the time–bandwidth product
takes the form

(2.28)

In Problem 2.7, it is also shown that the Gaussian pulse exp(–πt2) satisfies this condition
exactly with the equality sign. 

2.5 The Dirac Delta Function

Strictly speaking, the theory of the Fourier transform, presented in Section 2.3, is
applicable only to time functions that satisfy the Dirichlet conditions. As mentioned
previously, such functions naturally include energy signals. However, it would be highly
desirable to extend this theory in two ways:

1. To combine the Fourier series and Fourier transform into a unified theory, so that the
Fourier series may be treated as a special case of the Fourier transform.

2. To include power signals in the list of signals to which we may apply the Fourier
transform. A signal g(t) is said to be a power signal if the condition

  

holds, where T is the observation interval.

It turns out that both of these objectives can be met through the “proper use” of the Dirac
delta function, or unit impulse.
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2.5 The Dirac Delta Function 29

The Dirac delta function3 or just delta function, denoted by δ(t), is defined as having
zero amplitude everywhere except at t = 0, where it is infinitely large in such a way that it
contains unit area under its curve; that is,

(2.29)

and

(2.30)

An implication of this pair of relations is that the delta function δ(t) is an even function of
time t, centered at the origin t = 0. Perhaps, the simplest way of describing the Dirac delta
function is to view it as the rectangular pulse

whose duration is T and amplitude is 1/T, as illustrated in Figure 2.8. As T approaches
zero, the rectangular pulse g(t) approaches the Dirac delta function δ(t) in the limit.

For the delta function to have meaning, however, it has to appear as a factor in the
integrand of an integral with respect to time, and then, strictly speaking, only when the
other factor in the integrand is a continuous function of time. Let g(t) be such a function,
and consider the product of g(t) and the time-shifted delta function δ(t – t0). In light of the
two defining equations (2.29) and (2.30), we may express the integral of this product as 

(2.31)

The operation indicated on the left-hand side of this equation sifts out the value g(t0) of the
function g(t) at time t = t0, where . Accordingly, (2.31) is referred to as the
sifting property of the delta function. This property is sometimes used as the defining
equation of a delta function; in effect, it incorporates (2.29) and (2.30) into a single
relation.

Noting that the delta function δ(t) is an even function of t, we may rewrite (2.31) so as
to emphasize its resemblance to the convolution integral, as shown by

(2.32)

Figure 2.8 Illustrative example of the Dirac delta function as the 

limiting form of rectangular pulse  rect  as T approaches zero.
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30 Chapter 2 Fourier Analysis of Signals and Systems

In words, the convolution of any function with the delta function leaves that function
unchanged. We refer to this statement as the replication property of the delta function.

It is important to realize that no function in the ordinary sense has the two properties of
(2.29) and (2.30) or the equivalent sifting property of (2.31). However, we can imagine a
sequence of functions that have progressively taller and thinner peaks at t = 0, with the
area under the curve consistently remaining equal to unity; as this progression is being
performed, the value of the function tends to zero at every point except t = 0, where it
tends to infinity, as illustrated in Figure 2.8, for example. We may therefore say: 

The delta function may be viewed as the limiting form of a pulse of unit area as 
the duration of the pulse approaches zero. 

It is immaterial what sort of pulse shape is used, so long as it is symmetric with respect to
the origin; this symmetry is needed to maintain the “even” function property of the delta
function.

Two other points are noteworthy:

1. Applicability of the delta function is not confined to the time domain. Rather, it can
equally well be applied in the frequency domain; all that we have to do is to replace
time t by frequency f in the defining equations (2.29) and (2.30).

2. The area covered by the delta function defines its “strength.” As such, the units, in
terms of which the strength is measured, are determined by the specifications of the
two coordinates that define the delta function.

EXAMPLE 3 The Sinc Function as a Limiting Form of the Delta Function 
in the Time Domain

As another illustrative example, consider the scaled sinc function 2Wsinc(2Wt), whose
waveform covers an area equal to unity for all W.

Figure 2.9 displays the evolution of this time function toward the delta function as the
parameter W is varied in three stages: W = 1, W = 2, and W = 5. Referring back to Figure
2.4, we may infer that as the parameter W characterizing the sinc pulse is increased, the
amplitude of the pulse at time t = 0 increases linearly, while at the same time the duration
of the main lobe of the pulse decreases inversely. With this objective in mind, as the
parameter W is progressively increased, Figure 2.9 teaches us two important things:

1. The scaled sinc function becomes more like a delta function.

2. The constancy of the function’s spectrum is maintained at unity across an
increasingly wider frequency band, in accordance with the constraint that the area
under the function is to remain constant at unity; see Property 6 of Table 2.1 for a
validation of this point.

Based on the trend exhibited in Figure 2.9, we may write

(2.33)

which, in addition to the rectangular pulse considered in Figure 2.8, is another way of
realizing a delta function in the time domain.

δ t( ) 2W sinc
W ∞→

lim 2Wt( )=
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Figure 2.9 Evolution of the sinc function 2W sinc(2Wt) toward the delta function as the 
parameter W progressively increases.
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32 Chapter 2 Fourier Analysis of Signals and Systems

EXAMPLE 4 Evolution of the Sum of Complex Exponentials toward the Delta Function in
the Frequency Domain

For yet another entirely different example, consider the infinite summation term

 over the interval . Using Euler’s formula

we may express the given summation as 

The imaginary part of the summation is zero for two reasons. First, sin(2πmf) is zero for
m = 0. Second, since sin(–2πmf) = –sin(2πmf), the remaining imaginary terms cancel
each other. Therefore,

 

Figure 2.10 plots this real-valued summation versus frequency f over the interval
for three ranges of m:

1. –5 ≤ m ≤ 5

2. –10 ≤ m ≤ 10

3. –20 ≤ m ≤ 20

Building on the results exhibited in Figure 2.10, we may go on to say 

(2.34)

which is one way of realizing a delta function in the frequency domain. Note that the area
under the summation term on the right-hand side of (2.34) is equal to unity; we say so
because

This result, formulated in the frequency domain, confirms (2.34) as one way of defining
the delta function δ( f ). 
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2.5 The Dirac Delta Function 33

Figure 2.10 Evolution of the sum of m complex exponentials toward a delta function in the 
frequency domain as m becomes increasingly larger.
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2.6 Fourier Transforms of Periodic Signals

We began the study of Fourier analysis by reviewing the Fourier series expansion of
periodic signals, which, in turn, paved the way for the formulation of the Fourier
transform. Now that we have equipped ourselves with the Dirac delta function, we would
like to revisit the Fourier series and show that it can indeed be treated as a special case of
the Fourier transform.

To this end, let g(t) be a pulse-like function, which equals a periodic signal  over
one period T0 of the signal and is zero elsewhere, as shown by

 (2.35)

The periodic signal  itself may be expressed in terms of the function g(t) as an
infinite summation, as shown by

(2.36)

In light of the definition of the pulselike function g(t) in (2.35), we may view this function
as a generating function, so called as it generates the periodic signal  in accordance
with (2.36).

 Clearly, the generating function g(t) is Fourier transformable; let G(f) denote its
Fourier transform. Correspondingly, let denote the Fourier transform of the
periodic signal . Hence, taking the Fourier transforms of both sides of (2.36) and
applying the time-shifting property of the Fourier transform (Property 4 of Table 2.1), we
may write

(2.37)

where we have taken G(f) outside the summation because it is independent of m.
In Example 4, we showed that

Let this result be expanded to cover the entire frequency range, as shown by 

(2.38)

Equation (2.38) (see Problem 2.8c) represents a Dirac comb, consisting of an infinite
sequence of uniformly spaced delta functions, as depicted in Figure 2.11.
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2.6 Fourier Transforms of Periodic Signals 35

Next, introducing the frequency-scaling factor f0 = 1/T0 into (2.38), we
correspondingly write

(2.39)

Hence, substituting (2.39) into the right-hand side of (2.37), we get

(2.40)

.
What we have to show next is that the inverse Fourier transform of  defined in (2.40)

is exactly the same as in the Fourier series formula of (2.14). Specifically, substituting (2.40)
into the inverse Fourier transform formula of (2.17), we get

        

Figure 2.11 (a) Dirac comb. (b) Spectrum of the Dirac comb.
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Interchanging the order of summation and integration, and then invoking the sifting
property of the Dirac delta function (this time in the frequency domain), we may go on to
write

which is an exact rewrite of (2.14) with . Equivalently, in light of (2.36), we may
formulate the Fourier transform pair

                                                                    (2.41)

 The result derived in (2.41) is one form of Poisson’s sum formula.
We have thus demonstrated that the Fourier series representation of a periodic signal is

embodied in the Fourier transformation of (2.16) and (2.17), provided, of course, we
permit the use of the Dirac delta function. In so doing, we have closed the “circle” by
going from the Fourier series to the Fourier transform, and then back to the Fourier series.

Consequences of Ideal Sampling

Consider a Fourier transformable pulselike signal g(t) with its Fourier transform denoted
by G(f). Setting fn = nf0 in (2.41) and using (2.38), we may express Poisson’s sum formula

(2.42)

where f0 = 1/T0. The summation on the left-hand side of this Fourier-transform pair is a
periodic signal with period T0. The summation on the right-hand side of the pair is a
uniformly sampled version of the spectrum G(f). We may therefore make the following
statement:

Uniform sampling of the spectrum G(f) in the frequency domain introduces 
periodicity of the function g(t) in the time domain.

Applying the duality property of the Fourier transform (Property 3 of Table 2.1) to (2.42),
we may also write

(2.43)

in light of which we may make the following dual statement:

Uniform sampling of the Fourier transformable function g(t) in the time domain 
introduces periodicity of the spectrum G(f) in the frequency domain.
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2.7 Transmission of Signals through Linear Time-Invariant Systems 37

2.7 Transmission of Signals through Linear Time-Invariant Systems 

A system refers to any physical entity that produces an output signal in response to an
input signal. It is customary to refer to the input signal as the excitation and to the output
signal as the response. In a linear system, the principle of superposition holds; that is, the
response of a linear system to a number of excitations applied simultaneously is equal to
the sum of the responses of the system when each excitation is applied individually.

In the time domain, a linear system is usually described in terms of its impulse
response, which is formally defined as follows:

The impulse response of a linear system is the response of the system (with zero 
initial conditions) to a unit impulse or delta function δ(t) applied to the input of 
the system at time t = 0. 

If the system is also time invariant, then the shape of the impulse response is the same no
matter when the unit impulse is applied to the system. Thus, with the unit impulse or delta
function applied to the system at time t = 0, the impulse response of a linear time-invariant
system is denoted by h(t). 

Suppose that a system described by the impulse response h(t) is subjected to an
arbitrary excitation x(t), as depicted in Figure 2.12. The resulting response of the system
y(t), is defined in terms of the impulse response h(t) by

(2.44)

which is called the convolution integral. Equivalently, we may write

(2.45)

Equations (2.44) and (2.45) state that convolution is commutative.
Examining the convolution integral of (2.44), we see that three different time scales are

involved: excitation time τ, response time t, and system-memory time t – τ. This relation is
the basis of time-domain analysis of linear time-invariant systems. According to (2.44),
the present value of the response of a linear time-invariant system is an integral over the
past history of the input signal, weighted according to the impulse response of the system.
Thus, the impulse response acts as a memory function of the system.

Causality and Stability

A linear system with impulse response h(t) is said to be causal if its impulse response h(t)
satisfies the condition

   for   t < 0

Figure 2.12 Illustrating the roles of excitation x(t), impulse response h(t), 
and response y(t) in the context of a linear time-invariant system.
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38 Chapter 2 Fourier Analysis of Signals and Systems

The essence of causality is that no response can appear at the output of the system before
an excitation is applied to its input. Causality is a necessary requirement for on-line
operation of the system. In other words, for a system operating in real time to be
physically realizable, it has to be causal.

Another important property of a linear system is stability. A necessary and sufficient
condition for the system to be stable is that its impulse response h(t) must satisfy the
inequality

This requirement follows from the commonly used criterion of bounded input–bounded
output. Basically, for the system to be stable, its impulse response must be absolutely
integrable.

Frequency Response

Let X(f), H(f), and Y(f) denote the Fourier transforms of the excitation x(t), impulse
response h(t), and response y(t), respectively. Then, applying Property 12 of the Fourier
transform in Table 2.1 to the convolution integral, be it written in the form of (2.44) or
(2.45), we get

(2.46)

Equivalently, we may write

(2.47)

The new frequency function H(f) is called the transfer function or frequency response of
the system; these two terms are used interchangeably. Based on (2.47), we may now
formally say:

The frequency response of a linear time-invariant system is defined as the ratio 
of the Fourier transform of the response of the system to the Fourier transform 
of the excitation applied to the system.

In general, the frequency response H(f) is a complex quantity, so we may express it in the form

(2.48)

where |H(f)| is called the magnitude response, and β(f) is the phase response, or simply
phase. When the impulse response of the system is real valued, the frequency response
exhibits conjugate symmetry, which means that

and

That is, the magnitude response |H(f)| of a linear system with real-valued impulse
response is an even function of frequency, whereas the phase β (f) is an odd function of
frequency.

In some applications it is preferable to work with the logarithm of H(f) expressed in
polar form, rather than with H(f) itself. Using ln to denote the natural logarithm, let

(2.49)
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
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2.7 Transmission of Signals through Linear Time-Invariant Systems 39

where
(2.50)

The function α(f) is called the gain of the system; it is measured in nepers. The phase β(f)
is measured in radians. Equation (2.49) indicates that the gain α(f) and phase β(f) are,
respectively, the real and imaginary parts of the (natural) logarithm of the transfer function
H(f). The gain may also be expressed in decibels (dB) by using the definition

The two gain functions α(f) and  are related by

That is, 1 neper is equal to 8.69 dB.
As a means of specifying the constancy of the magnitude response |H(f)| or gain α(f)

of a system, we use the notion of bandwidth. In the case of a low-pass system, the
bandwidth is customarily defined as the frequency at which the magnitude response |H(f)|
is  times its value at zero frequency or, equivalently, the frequency at which the gain

 drops by 3 dB below its value at zero frequency, as illustrated in Figure 2.13a. In the
case of a band-pass system, the bandwidth is defined as the range of frequencies over
which the magnitude response |H(f)| remains within  times its value at the mid-band
frequency, as illustrated in Figure 2.13b.

Figure 2.13 Illustrating the definition of system bandwidth. (a) Low-pass system. 
(b) Band-pass system.
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40 Chapter 2 Fourier Analysis of Signals and Systems

Paley–Wiener Criterion: Another Way of Assessing Causality

A necessary and sufficient condition for a function α(f) to be the gain of a causal filter is
the convergence of the integral

(2.51)

This condition is known as the Paley–Wiener criterion.4 The criterion states that provided
the gain α(f) satisfies the condition of (2.51), then we may associate with this gain a
suitable phase β(f), such that the resulting filter has a causal impulse response that is zero
for negative time. In other words, the Paley–Wiener criterion is the frequency-domain
equivalent of the causality requirement. A system with a realizable gain characteristic may
have infinite attenuation for a discrete set of frequencies, but it cannot have infinite
attenuation over a band of frequencies; otherwise, the Paley–Wiener criterion is violated.

Finite-Duration Impulse Response (FIR) Filters

Consider next a linear time-invariant filter with impulse response h(t). We make two
assumptions:

1. Causality, which means that the impulse response h(t) is zero for t < 0.

2. Finite support, which means that the impulse response of the filter is of some finite
duration Tf, so that we may write h(t) = 0 for t ≥ Tf.

Under these two assumptions, we may express the filter output y(t) produced in response
to the input x(t) as

(2.52)

Let the input x(t), impulse response h(t), and output y(t) be uniformly sampled at the rate
(1/Δτ) samples per second, so that we may put

and

where k and n are integers and Δτ is the sampling period. Assuming that Δτ is small
enough for the product h(τ)x(t – τ) to remain essentially constant for kΔτ ≤τ ≤ (k + 1)Δτ
for all values of k and τ, we may approximate (2.52) by the convolution sum 

where N Δτ = Tf. To simplify the notations used in this summation formula, we introduce
three definitions:
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2.7 Transmission of Signals through Linear Time-Invariant Systems 41

We may then rewrite the formula for y(nΔτ) in the compact form

(2.53)

Equation (2.53) may be realized using the structure shown in Figure 2.14, which consists
of a set of delay elements (each producing a delay of Δτ seconds), a set of multipliers
connected to the delay-line taps, a corresponding set of weights supplied to the
multipliers, and a summer for adding the multiplier outputs. The sequences xn and yn, for
integer values of n as described in (2.53), are referred to as the input and output sequences,
respectively.

In the digital signal-processing literature, the structure of Figure 2.14 is known as a
finite-duration impulse response (FIR) filter. This filter offers some highly desirable
practical features:

1. The filter is inherently stable, in the sense that a bounded input sequence produces a
bounded output sequence.

2. Depending on how the weights  are designated, the filter can perform the
function of a low-pass filter or band-pass filter. Moreover, the phase response of the
filter can be configured to be a linear function of frequency, which means that there
will be no delay distortion.

3. In a digital realization of the filter, the filter assumes a programmable form whereby
the application of the filter can be changed merely by making appropriate changes to
the weights, leaving the structure of the filter completely unchanged; this kind of
flexibility is not available with analog filters.

We will have more to say on the FIR filter in subsequent chapters of the book.

Figure 2.14 Tapped-delay-line (TDL) filter; also referred to as FIR filter.
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42 Chapter 2 Fourier Analysis of Signals and Systems

2.8 Hilbert Transform

The Fourier transform is particularly useful for evaluating the frequency content of an
energy signal or, in a limiting sense, that of a power signal. As such, it provides the
mathematical basis for analyzing and designing frequency-selective filters for the
separation of signals on the basis of their frequency content. Another method of separating
signals is based on phase selectivity, which uses phase shifts between the pertinent signals
to achieve the desired separation. A phase shift of special interest in this context is that of
±90°. In particular, when the phase angles of all components of a given signal are shifted
by ±90°, the resulting function of time is known as the Hilbert transform of the signal. The
Hilbert transform is called a quadrature filter; it is so called to emphasize its distinct
property of providing a ±90° phase shift.

To be specific, consider a Fourier transformable signal g(t) with its Fourier transform
denoted by G(f). The Hilbert transform of g(t), which we denote by , is defined by5

(2.54)

Table 2.3 Hilbert-transform pairs*

Time function Hilbert transform

1. m(t)cos(2πfct) m(t)sin(2πfct)

2. m(t)sin(2πfct) –m(t)cos(2πfct)

3. cos(2πfct) sin(2πfct)

4. sin(2πfct) –cos(2πfct)

5.

6. rect(t)

7. δ(t)

8.

9. –πδ(t)

Notes: δ(t) denotes Dirac delta function; rect(t) denotes rectangular function; ln denotes natural logarithm.
* In the first two pairs, it is assumed that m(t) is band limited to the interval –W ≤ f ≤ W, where W  < fc.

ĝ t( )
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2.8 Hilbert Transform 43

Clearly, Hilbert transformation is a linear operation. The inverse Hilbert transform, by
means of which the original signal g(t) is linearly recovered from , is defined by

(2.55)

The functions g(t) and  are said to constitute a Hilbert-transform pair. A short table of
Hilbert-transform pairs is given in Table 2.3 on page 42.

The definition of the Hilbert transform  given in (2.54) may be interpreted as the
convolution of g(t) with the time function 1/(πt). We know from the convolution theorem
listed in Table 2.1 that the convolution of two functions in the time domain is transformed
into the multiplication of their Fourier transforms in the frequency domain. 

For the time function 1/(πt), we have the Fourier-transform pair (see Property 14 in
Table 2.2)

where sgn(f) is the signum function, defined in the frequency domain as

(2.56)

It follows, therefore, that the Fourier transform  of  is given by

(2.57)

Equation (2.57) states that given a Fourier transformable signal g(t), we may obtain the
Fourier transform of its Hilbert transform  by passing g(t) through a linear time-
invariant system whose frequency response is equal to –jsgn(f). This system may be
considered as one that produces a phase shift of –90° for all positive frequencies of the input
signal and +90° degrees for all negative frequencies, as in Figure 2.15. The amplitudes of all
frequency components in the signal, however, are unaffected by transmission through the
device. Such an ideal system is referred to as a Hilbert transformer, or quadrature filter. 

Properties of the Hilbert Transform

The Hilbert transform differs from the Fourier transform in that it operates exclusively in
the time domain. It has a number of useful properties of its own, some of which are listed
next. The signal g(t) is assumed to be real valued, which is the usual domain of application
of the Hilbert transform. For this class of signals, the Hilbert transform has the following
properties.

PROPERTY 1 A signal g(t) and its Hilbert transform  have the same magnitude spectrum.

That is to say,
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44 Chapter 2 Fourier Analysis of Signals and Systems

PROPERTY 2 If  is the Hilbert transform of g(t), then the Hilbert transform of  is –g(t).

Another way of stating this property is to write

PROPERTY 3 A signal g(t) and its Hilbert transform  are orthogonal over the entire time interval 

.

In mathematical terms, the orthogonality of g(t) and  is described by

Proofs of these properties follow from (2.54), (2.55), and (2.57).

EXAMPLE 5 Hilbert Transform of Low-Pass Signal

Consider Figure 2.16a that depicts the Fourier transform of a low-pass signal g(t), whose
frequency content extends from –W to W. Applying the Hilbert transform to this signal
yields a new signal  whose Fourier transform, , is depicted in Figure 2.16b. This
figure illustrates that the frequency content of a Fourier transformable signal can be
radically changed as a result of Hilbert transformation.

Figure 2.15
(a) Magnitude response and 
(b) phase response of Hilbert 
transform.
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ĝ t( )
∞ ∞,–( )
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2.9 Pre-envelopes 45

2.9 Pre-envelopes

The Hilbert transform of a signal is defined for both positive and negative frequencies. In
light of the spectrum shaping illustrated in Example 5, a question that begs itself is: 

How can we modify the frequency content of a real-valued signal g(t) such that 
all negative frequency components are completely eliminated? 

The answer to this fundamental question lies in the idea of a complex-valued signal called
the pre-envelope6 of g(t), formally defined as

(2.58)

where  is the Hilbert transform of g(t). According to this definition, the given signal
g(t) is the real part of the pre-envelope g+(t), and the Hilbert transform  is the
imaginary part of the pre-envelope. An important feature of the pre-envelope g+(t) is the
behavior of its Fourier transform. Let G+(f) denote the Fourier transform of g+(t). Then,
using (2.57) and (2.58) we may write

(2.59)

Next, invoking the definition of the signum function given in (2.56), we may rewrite (2.59)
in the equivalent form 

(2.60)

Figure 2.16 Illustrating application of the Hilbert transform to a low-pass signal: 
(a) Spectrum of the signal g(t); (b) Spectrum of the Hilbert transform .

(a)

(b)

 G( f )
 G(0)

 G(0)

 –G(0)

 G( f )

f
0

 –W  W

 –W  W

f
0
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46 Chapter 2 Fourier Analysis of Signals and Systems

where G(0) is the value of G(f) at the origin f = 0. Equation (2.60) clearly shows that the
pre-envelope of the signal g(t) has no frequency content (i.e., its Fourier transform
vanishes) for all negative frequencies, and the question that was posed earlier has indeed
been answered. Note, however, in order to do this, we had to introduce the complex-valued
version of a real-valued signal as described in (2.58).

From the foregoing analysis it is apparent that for a given signal g(t) we may determine
its pre-envelope g+(t) in one of two equivalent procedures. 

1. Time-domain procedure. Given the signal g(t), we use (2.58) to compute the pre-
envelope g+(t).

2. Frequency-domain procedure. We first determine the Fourier transform G(f) of the
signal g(t), then use (2.60) to determine G+(f), and finally evaluate the inverse
Fourier transform of G+(f) to obtain

(2.61)

Depending on the description of the signal, procedure 1 may be easier than procedure 2, or
vice versa.

Equation (2.58) defines the pre-envelope g+(t) for positive frequencies. Symmetrically,
we may define the pre-envelope for negative frequencies as

(2.62)

The two pre-envelopes g+(t) and g–(t) are simply the complex conjugate of each other, as
shown by

(2.63)

where the asterisk denotes complex conjugation. The spectrum of the pre-envelope g+(t) is
nonzero only for positive frequencies; hence the use of a plus sign as the subscript. On the
other hand, the use of a minus sign as the subscript is intended to indicate that the
spectrum of the other pre-envelope g–(t) is nonzero only for negative frequencies, as
shown by the Fourier transform

(2.64)

Thus, the pre-envelope g+(t) and g–(t) constitute a complementary pair of complex-valued
signals. Note also that the sum of g+(t) and g–(t) is exactly twice the original signal g(t).

Given a real-valued signal, (2.60) teaches us that the pre-envelope g+(t) is uniquely
defined by the spectral content of the signal for positive frequencies. By the same token,
(2.64) teaches us that the other pre-envelope g–(t) is uniquely defined by the spectral
content of the signal for negative frequencies. Since g–(t) is simply the complex conjugate
of g+(t) as indicated in (2.63), we may now make the following statement:

The spectral content of a Fourier transformable real-valued signal for positive 
frequencies uniquely defines that signal.
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g– t( ) g+
* t( )=

G– f( )
0, f 0>
G 0( ), f 0=

2G f( ), f 0<





=

Haykin_ch02_pp3.fm  Page 46  Friday, November 16, 2012  9:24 AM



2.10 Complex Envelopes of Band-Pass Signals 47

In other words, given the spectral content of such a signal for positive frequencies, we may
uniquely define the spectral content of the signal for negative frequencies. Here then is the
mathematical justification for basing the bandwidth of a Fourier transformable signal on
its spectral content exclusively for positive frequencies, which is exactly what we did in
Section 2.4, dealing with bandwidth.

EXAMPLE 6 Pre-envelopes of Low-Pass Signal

Continuing with the low-pass signal g(t) considered in Example 5, Figure 2.17a and b depict
the corresponding spectra of the pre-envelope g+(t) and the second pre-envelope g–(t), both
of which belong to g(t). Whereas the spectrum of g(t) is defined for –W ≤ f ≤ W as in Figure
2.16a, we clearly see from Figure 2.17 that the spectral content of g+(t) is confined entirely
to 0 ≤ f ≤ W, and the spectral content of g–(t) is confined entirely to –W ≤ f ≤ 0.

Practical Importance of the Hilbert Transformation

An astute reader may see an analogy between the use of phasors and that of pre-envelopes.
In particular, just as the use of phasors simplifies the manipulations of alternating currents
and voltages in the study of circuit theory, so we find the pre-envelope simplifies the
analysis of band-pass signals and band-pass systems in signal theory. 

More specifically, by applying the concept of pre-envelope to a band-pass signal, the
signal is transformed into an equivalent low-pass representation. In a corresponding way, a
band-pass filter is transformed into its own equivalent low-pass representation. Both
transformations, rooted in the Hilbert transform, play a key role in the formulation of
modulated signals and their demodulation, as demonstrated in what follows in this and
subsequent chapters. 

2.10 Complex Envelopes of Band-Pass Signals

The idea of pre-envelopes introduced in Section 2.9 applies to any real-valued signal, be it
of a low-pass or band-pass kind; the only requirement is that the signal be Fourier
transformable. From this point on and for the rest of the chapter, we will restrict attention
to band-pass signals. Such signals are exemplified by signals modulated onto a sinusoidal

Figure 2.17  Another illustrative application of the Hilbert transform to a low-pass signal: 
(a) Spectrum of the pre-envelope g+(t); (b) Spectrum of the other pre-envelope g–(t).
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48 Chapter 2 Fourier Analysis of Signals and Systems

carrier. In a corresponding way, when it comes to systems we restrict attention to band-
pass systems. The primary reason for these restrictions is that the material so presented is
directly applicable to analog modulation theory, to be covered in Section 2.14, as well as
other digital modulation schemes covered in subsequent chapters of the book. With this
objective in mind and the desire to make a consistent use of notation with respect to
material to be presented in subsequent chapters, henceforth we will use s(t) to denote a
modulated signal. When such a signal is applied to the input of a band-pass system, such
as a communication channel, we will use x(t) to denote the resulting system (e.g., channel)
output. However, as before, we will use h(t) as the impulse response of the system.

To proceed then, let the band-pass signal of interest be denoted by s(t) and its Fourier
transform be denoted by S(f). We assume that the Fourier transform S(f) is essentially
confined to a band of frequencies of total extent 2W, centered about some frequency ±fc, as
illustrated in Figure 2.18a. We refer to fc as the carrier frequency; this terminology is

Figure 2.18 (a) Magnitude spectrum of band-pass signal s(t); (b) Magnitude spectrum of 
pre-envelope s+(t); (c) Magnitude spectrum of complex envelope .
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2.11 Canonical Representation of Band-Pass Signals 49

borrowed from modulation theory. In the majority of communication signals encountered
in practice, we find that the bandwidth 2W is small compared with fc, so we may refer to
the signal s(t) as a narrowband signal. However, a precise statement about how small the
bandwidth must be for the signal to be considered narrowband is not necessary for our
present discussion. Hereafter, the terms band-pass and narrowband are used
interchangeably.    

Let the pre-envelope of the narrowband signal s(t) be expressed in the form

(2.65)

We refer to  as the complex envelope of the band-pass signal s(t). Equation (2.65)
may be viewed as the basis of a definition for the complex envelope  in terms of the
pre-envelope s+(t). In light of the narrowband assumption imposed on the spectrum of
the band-pass signal s(t), we find that the spectrum of the pre-envelope s+(t) is limited
to the positive frequency band fc – W ≤ f ≤ fc + W, as illustrated in Figure 2.18b.
Therefore, applying the frequency-shifting property of the Fourier transform to (2.65),
we find that the spectrum of the complex envelope  is correspondingly limited to
the band –W ≤ f ≤ W and centered at the origin f = 0, as illustrated in Figure 2.18c. In
other words, the complex envelope  of the band-pass signal s(t) is a complex low-
pass signal. The essence of the mapping from the band-pass signal s(t) to the complex
low-pass signal  is summarized in the following threefold statement:

• The information content of a modulated signal s(t) is fully preserved in the complex
envelope .

• Analysis of the band-pass signal s(t) is complicated by the presence of the carrier
frequency fc; in contrast, the complex envelope  dispenses with fc, making its
analysis simpler to deal with.

• The use of  requires having to handle complex notations.

2.11 Canonical Representation of Band-Pass Signals 

By definition, the real part of the pre-envelope s+(t) is equal to the original band-pass
signal s(t). We may therefore express the band-pass signal s(t) in terms of its
corresponding complex envelope  as 

(2.66)

where the operator Re[.] denotes the real part of the quantity enclosed inside the square
brackets. Since, in general,  is a complex-valued quantity, we emphasize this property
by expressing it in the Cartesian form

(2.67)

where sI(t) and sQ(t) are both real-valued low-pass functions; their low-pass property is
inherited from the complex envelope . We may therefore use (2.67) in (2.66) to
express the original band-pass signal s(t) in the canonical or standard form

(2.68)

We refer to sI(t) as the in-phase component of the band-pass signal s(t) and refer to sQ(t) as
the quadrature-phase component or simply the quadrature component of the signal s(t).

s+ t( ) s̃ t( ) j2πfct( )exp=

s̃ t( )
s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )

s̃ t( )
s t( ) Re s̃ t( ) j2πfct( )exp[ ]=

s̃ t( )

s̃ t( ) sI t( ) jsQ t( )+=

s̃ t( )

s t( ) sI t( ) 2πfct( ) sQ t( ) 2πfct( )sin–cos=
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50 Chapter 2 Fourier Analysis of Signals and Systems

This nomenclature follows from the following observation: if cos(2πfct), the multiplying
factor of sI(t), is viewed as the reference sinusoidal carrier, then sin(2πfct), the multiplying
factor of sQ(t), is in phase quadrature with respect to cos(2πfct). 

According to (2.66), the complex envelope  may be pictured as a time-varying
phasor positioned at the origin of the (sI, sQ)-plane, as indicated in Figure 2.19a. With
time t varying continuously, the end of the phasor moves about in the plane. Figure 2.19b
depicts the phasor representation of the complex exponential exp(2πfct). In the definition
given in (2.66), the complex envelope  is multiplied by the complex exponential
exp(j2πfct). The angles of these two phasors, therefore, add and their lengths multiply, as
shown in Figure 2.19c. Moreover, in this latter figure, we show the (sI, sQ)-phase rotating
with an angular velocity equal to 2πfc radians per second. Thus, in the picture portrayed in
the figure, the phasor representing the complex envelope  moves in the (sI, sQ)-plane,
while at the very same time the plane itself rotates about the origin. The original band-pass
signal s(t) is the projection of this time-varying phasor on a fixed line representing the real
axis, as indicated in Figure 2.19c. 

Since both sI(t) and sQ(t) are low-pass signals limited to the band –W ≤ f ≤ W, they may
be extracted from the band-pass signal s(t) using the scheme shown in Figure 2.20a. Both
low-pass filters in this figure are designed identically, each with a bandwidth equal to W.

Figure 2.19 Illustrating an interpretation of the complex envelope  and its multiplication by 
exp(j2πfct).
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2.11 Canonical Representation of Band-Pass Signals 51

To reconstruct s(t) from its in-phase and quadrature components, we may use the scheme
shown in Figure 2.20b. In light of these statements, we may refer to the scheme in Figure
2.20a as an analyzer, in the sense that it extracts the in-phase and quadrature components,
sI(t) and sQ(t), from the band-pass signal s(t). By the same token, we may refer to the
second scheme in Figure 2.20b as a synthesizer, in the sense it reconstructs the band-pass
signal s(t) from its in-phase and quadrature components, sI(t) and sQ(t).

The two schemes shown in Figure 2.20 are basic to the study of linear modulation
schemes, be they of an analog or digital kind. Multiplication of the low-pass in-phase
component sI(t) by cos(2πfct) and multiplication of the quadrature component sQ(t) by
sin(2πfct) represent linear forms of modulation. Provided that the carrier frequency fc is
larger than the low-pass bandwidth W, the resulting band-pass function s(t) defined in
(2.68) is referred to as a passband signal waveform. Correspondingly, the mapping from
sI(t) and sQ(t) combined into s(t) is known as passband modulation.

Polar Representation of Band-Pass Signals

Equation (2.67) is the Cartesian form of defining the complex envelope  of the band-
pass signal s(t). Alternatively, we may define  in the polar form as 

(2.69)

where a(t) and φ(t) are both real-valued low-pass functions. Based on the polar
representation of (2.69), the original band-pass signal s(t) is itself defined by

(2.70)

We refer to a(t) as the natural envelope or simply the envelope of the band-pass signal s(t)
and refer to φ(t) as the phase of the signal. We now see why the term “pre-envelope” was
used in referring to (2.58), the formulation of which preceded that of (2.70).

Figure 2.20 (a) Scheme for deriving the in-phase and quadrature components of a band-pass 
signal g(t). (b) Scheme for reconstructing the band-pass signal from its in-phase and quadrature 
components.
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52 Chapter 2 Fourier Analysis of Signals and Systems

Relationship Between Cartesian and Polar Representations of 
Band-Pass Signal

The envelope a(t) and phase φ(t) of a band-pass signal s(t) are respectively related to the
in-phase and quadrature components sI(t) and sQ(t) as follows (see the time-varying
phasor representation of Figure 2.19a):

(2.71)

and

(2.72)

Conversely, we may write

(2.73)

and
(2.74)

Thus, both the in-phase and quadrature components of a band-pass signal contain
amplitude and phase information, both of which are uniquely defined for a prescribed
phase φ(t), modulo 2π.

2.12 Complex Low-Pass Representations of Band-Pass Systems

Now that we know how to handle the complex low-pass representation of band-pass
signals, it is logical that we develop a corresponding procedure for handling the
representation of linear time-invariant band-pass systems. Specifically, we wish to show
that the analysis of band-pass systems is greatly simplified by establishing an analogy,
more precisely an isomorphism, between band-pass and low-pass systems. For example,
this analogy would help us to facilitate the computer simulation of a wireless
communication channel driven by a sinusoidally modulated signal, which otherwise could
be a difficult proposition.

Consider a narrowband signal s(t), with its Fourier transform denoted by S(f). We
assume that the spectrum of the signal s(t) is limited to frequencies within ±W hertz of the
carrier frequency fc. We also assume that W < fc. Let the signal s(t) be applied to a linear
time-invariant band-pass system with impulse response h(t) and frequency response H(f).
We assume that the frequency response of the system is limited to frequencies within ±B
of the carrier frequency fc. The system bandwidth 2B is usually narrower than or equal to
the input signal bandwidth 2W. We wish to represent the band-pass impulse response h(t)
in terms of two quadrature components, denoted by hI(t) and hQ(t). In particular, by
analogy to the representation of band-pass signals, we express h(t) in the form

(2.75)

Correspondingly, we define the complex impulse response of the band-pass system as

(2.76)

a t( ) sI
2

t( ) sQ
2

t( )+=

φ t( )
sQ t( )
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------------ 
 1–tan=

sI t( ) a t( ) φ t( )[ ]cos=

sQ t( ) a t( ) φ t( )[ ]sin=

h t( ) hI t( ) 2πfct( ) hQ t( ) 2πfct( )sin–cos=

h̃ t( ) hI t( ) jhQ t( )+=
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Hence, following (2.66), we may express h(t) in terms of  as

(2.77)

Note that hI(t), hQ(t), and  are all low-pass functions, limited to the frequency band 
–B ≤ f ≤ B.

We may determine the complex impulse response  in terms of the in-phase and
quadrature components hI(t) and hQ(t) of the band-pass impulse response h(t) by building
on (2.76). Alternatively, we may determine it from the band-pass frequency response H(f)
in the following way. We first use (2.77) to write

 (2.78)

where  is the complex conjugate of ; the rationale for introducing the factor of 2
on the left-hand side of (2.78) follows from the fact that if we add a complex signal and its
complex conjugate, the sum adds up to twice the real part and the imaginary parts cancel.
Applying the Fourier transform to both sides of (2.78) and using the complex-conjugation
property of the Fourier transform, we get

 (2.79)

where  and . Equation (2.79) satisfies the requirement that
H*(f) = H(–f) for a real-valued impulse response h(t). Since  represents a low-pass
frequency response limited to | f | ≤ B with B < fc, we infer from (2.79) that

(2.80)

Equation (2.80) states:

For a specified band-pass frequency response H(f), we may determine the 
corresponding complex low-pass frequency response  by taking the part of 
H(f) defined for positive frequencies, shifting it to the origin, and scaling it by 
the factor 2. 

Having determined the complex frequency response , we decompose it into its in-
phase and quadrature components, as shown by

(2.81)

where the in-phase component is defined by

(2.82)

and the quadrature component is defined by

(2.83)

Finally, to determine the complex impulse response  of the band-pass system, we take
the inverse Fourier transform of , obtaining

(2.84)

which is the formula we have been seeking.
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2.13 Putting the Complex Representations of Band-Pass Signals 
and Systems All Together

Examining (2.66) and (2.77), we immediately see that these two equations share a
common multiplying factor: the exponential exp(j2πfct). In practical terms, the inclusion
of this factor accounts for a sinusoidal carrier of frequency fc, which facilitates
transmission of the modulated (band-pass) signal s(t) across a band-pass channel of
midband frequency fc. In analytic terms, however, the presence of this exponential factor
in both (2.66) and (2.77) complicates the analysis of the band-pass system driven by the
modulated signal s(t). This analysis can be simplified through the combined use of
complex low-pass equivalent representations of both the modulated signal s(t) and the
band-pass system characterized by the impulse response h(t). The simplification can be
carried out in the time domain or frequency domain, as discussed next.

The Time-Domain Procedure 

Equipped with the complex representations of band-pass signals and systems, we are
ready to derive an analytically efficient method for determining the output of a band-pass
system driven by a corresponding band-pass signal. To proceed with the derivation,
assume that S(f), denoting the spectrum of the input signal s(t), and H(f), denoting the
frequency response of the system, are both centered around the same frequency fc. In
practice, there is no need to consider a situation in which the carrier frequency of the input
signal is not aligned with the midband frequency of the band-pass system, since we have
considerable freedom in choosing the carrier or midband frequency. Thus, changing the
carrier frequency of the input signal by an amount Δfc, for example, simply corresponds to
absorbing (or removing) the factor exp(±j2πΔfct) in the complex envelope of the input
signal or the complex impulse response of the band-pass system. We are therefore justified
in proceeding on the assumption that S(f) and H(f) are both centered around the same
carrier frequency fc.

Let x(t) denote the output signal of the band-pass system produced in response to the
incoming band-pass signal s(t). Clearly, x(t) is also a band-pass signal, so we may
represent it in terms of its own low-pass complex envelope  as 

(2.85)

The output signal x(t) is related to the input signal s(t) and impulse response h(t) of the
system in the usual way by the convolution integral

(2.86)

In terms of pre-envelopes, we have h(t) = Re[h+(t)] and s(t) = Re[s+(t)]. We may therefore
rewrite (2.86) in terms of the pre-envelopes s+(t) and h+(t) as

(2.87)
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To proceed further, we make use of a basic property of pre-envelopes that is described by
the following relation:

(2.88)

where we have used τ as the integration variable to be consistent with that in (2.87); details
of (2.88) are presented in Problem 2.20. Next, from Fourier-transform theory we note that
using s(–τ) in place of s(τ) has the effect of removing the complex conjugation on the
right-hand side of (2.88). Hence, bearing in mind the algebraic difference between the
argument of s+(τ) in (2.88) and that of s+(t – τ) in (2.87), and using the relationship
between the pre-envelope and complex envelope of a band-pass signal, we may express
(2.87) in the equivalent form

(2.89)

Thus, comparing the right-hand sides of (2.85) and (2.89), we readily find that for a large
enough carrier frequency fc, the complex envelope  of the output signal is simply
defined in terms of the complex envelope  of the input signal and the complex impulse
response  of the band-pass system as follows:

(2.90)

This important relationship is the result of the isomorphism between a band-pass function
and the corresponding complex low-pass function, in light of which we may now make the
following summarizing statement:

Except for the scaling factor 1/2, the complex envelope  of the output 
signal of a band-pass system is obtained by convolving the complex impulse 
response  of the system with the complex envelope  of the input 
band-pass signal. 

In computational terms, the significance of this statement is profound. Specifically, in
dealing with band-pass signals and systems, we need only concern ourselves with the
functions , , and , representing the complex low-pass equivalents of the
excitation applied to the input of the system, the response produced at the output of the
system, and the impulse response of the system respectively, as illustrated in Figure 2.21.
The essence of the filtering process performed in the original system of Figure 2.21a is
completely retained in the complex low-pass equivalent representation depicted in Figure
2.21b.

The complex envelope  of the input band-pass signal and the complex impulse
response  of the band-pass system are defined in terms of their respective in-phase
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and quadrature components by (2.67) and (2.76), respectively. Substituting these relations
into (2.90), we get

(2.91)

where the symbol  denotes convolution. Because convolution is distributive, we may
rewrite (2.91) in the equivalent form

(2.92)

Let the complex envelope  of the response be defined in terms of its in-phase and
quadrature components as 

(2.93)

Then, comparing the real and imaginary parts in (2.92) and (2.93), we find that the in-
phase component xI(t) is defined by the relation

(2.94)

and its quadrature component xQ(t) is defined by the relation

(2.95)

Thus, for the purpose of evaluating the in-phase and quadrature components of the
complex envelope  of the system output, we may use the low-pass equivalent model
shown in Figure 2.22. All the signals and impulse responses shown in this model are real-
valued low-pass functions; hence a time-domain procedure for simplifying the analysis of
band-pass systems driven by band-pass signals.   

The Frequency-Domain Procedure 

Alternatively, Fourier-transforming the convolution integral of (2.90) and recognizing that
convolution in the time domain is changed into multiplication in the frequency domain, we
get

(2.96)

Figure 2.21
(a) Input–output description of a band-pass 
system; (b) Complex low-pass equivalent 
model of the band-pass system.
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2.13 Putting the Complex Representations of Band-Pass Signals and Systems All Together 57

where , and . The  is itself related to the
frequency response H(f) of the band-pass system by (2.80). Thus, assuming that H(f) is
known, we may use the frequency-domain procedure summarized in Table 2.4 for
computing the system output x(t) in response to the system input s(t).

In actual fact, the procedure of Table 2.4 is the frequency-domain representation of the
low-pass equivalent to the band-pass system, depicted in Figure 2.21b. In computational
terms, this procedure is of profound practical significance. We say so because its use
alleviates the analytic and computational difficulty encountered in having to include the
carrier frequency fc in the pertinent calculations. 

As discussed earlier in the chapter, the theoretical formulation of the low-pass
equivalent in Figure 2.21b is rooted in the Hilbert transformation, the evaluation of which
poses a practical problem of its own, because of the wideband 90o-phase shifter involved
in its theory. Fortunately, however, we do not need to invoke the Hilbert transform in
constructing the low-pass equivalent. This is indeed so, when a message signal modulated
onto a sinusoidal carrier is processed by a band-pass filter, as explained here:

1. Typically, the message signal is band limited for all practical purposes. Moreover,
the carrier frequency is larger than the highest frequency component of the signal;
the modulated signal is therefore a band-pass signal with a well-defined passband.
Hence, the in-phase and quadrature components of the modulated signal s(t),
represented respectively by sI(t) and sQ(t), are readily obtained from the canonical
representation of s(t), described in (2.68).

2. Given the well-defined frequency response H(f) of the band-pass system, we may
readily evaluate the corresponding complex low-pass frequency response ; see
(2.80). Hence, we may compute the system output x(t) produced in response to the
carrier-modulated input s(t) without invoking the Hilbert transform.  

Figure 2.22 Block diagram illustrating the relationship between the 
in-phase and quadrature components of the response of a band-pass 
filter and those of the input signal.
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Procedure for Efficient Simulation of Communication Systems

To summarize, the frequency-domain procedure described in Table 2.4 is well suited for
the efficient simulation of communication systems on a computer for two reasons:

1. The low-pass equivalents of the incoming band-pass signal and the band-pass system
work by eliminating the exponential factor exp(j2πfct) from the computation without
loss of information.

2. The fast Fourier transform (FFT) algorithm, discussed later in the chapter, is used
for numerical computation of the Fourier transform. This algorithm is used twice in
Table 2.4, once in step 2 to perform Fourier transformation, and then again in step 4
to perform inverse Fourier transformation.

The procedure of this table, rooted largely in the frequency domain, assumes availability
of the band-pass system’s frequency response H(f). If, however, it is the system’s impulse
response h(t) that is known, then all we need is an additional step to Fourier transform h(t)
into H(f) before initiating the procedure of Table 2.4.

2.14 Linear Modulation Theory

The material presented in Sections 2.8–2.13 on the complex low-pass representation of
band-pass signals and systems is of profound importance in the study of communication
theory. In particular, we may use the canonical formula of (2.68) as the mathematical basis
for a unified treatment of linear modulation theory, which is the subject matter of this
section. 

Table 2.4 Procedure for the computational analysis of a band-pass system 
driven by a band-pass signal

Given the frequency response H(f) of a band-pass system, computation of the output 
signal x(t) of the system in response to an input band-pass signal s(t) is summarized as 
follows:

1. Use (2.80), namely , for f > 0 to determine .

2. Expressing the input band-pass signal s(t) in the canonical form of (2.68), evaluate 

the complex envelope  where sI(t) is the in-phase component 

of s(t) and sQ(t) is its quadrature component. Hence, compute the Fourier 

transform 

3. Using (2.96), compute , which defines the Fourier transform of 

the complex envelope  of the output signal x(t).

4. Compute the inverse Fourier transform of , yielding 

5. Use (2.85) to compute the desired output signal 
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We start this treatment with a formal definition:

Modulation is a process by means of which one or more parameters of a 
sinusoidal carrier are varied in accordance with a message signal so as to 
facilitate transmission of that signal over a communication channel.

The message signal (e.g., voice, video, data sequence) is referred to as the modulating
signal, and the result of the modulation process is referred to as the modulated signal.
Naturally, in a communication system, modulation is performed in the transmitter. The
reverse of modulation, aimed at recovery of the original message signal in the receiver, is
called demodulation. 

Consider the block diagram of Figure 2.23, depicting a modulator, where m(t) is the
message signal, cos(2πfct) is the carrier, and s(t) is the modulated signal. To apply (2.68)
to this modulator, the in-phase component sI(t) in that equation is treated simply as a
scaled version of the message signal denoted by m(t). As for the quadrature component
sQ(t), it is defined by a spectrally shaped version of m(t) that is performed linearly. In such
a scenario, it follows that a modulated signal s(t) defined by (2.68) is a linear function of
the message signal m(t); hence the reference to this equation as the mathematical basis of
linear modulation theory.

To recover the original message signal m(t) from the modulated signal s(t), we may use
a demodulator, the block diagram of which is depicted in Figure 2.24. An elegant feature
of linear modulation theory is that demodulation of s(t) is also achieved using linear
operations. However, for linear demodulation of s(t) to be feasible, the locally generated
carrier in the demodulator of Figure 2.24 has to be synchronous with the original
sinusoidal carrier used in the modulator of Figure 2.23. Accordingly, we speak of
synchronous demodulation or coherent detection.

Figure 2.23 Block diagram of a modulator.

Figure 2.24 Block diagram of a demodulator.
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Depending on the spectral composition of the modulated signal, we have three kinds of
linear modulation in analog communications:

• double sideband-suppressed carrier (DSB-SC) modulation;
• vestigial sideband (VSB) modulation;
• single sideband (SSB) modulation.

These three methods of modulation are discussed in what follows and in this order.

DSB-SC Modulation

DSB-SC modulation is the simplest form of linear modulation, which is obtained by
setting

and

Accordingly, (2.68) is reduced to

(2.97)

the implementation of which simply requires a product modulator that multiplies the
message signal m(t) by the carrier , assumed to be of unit amplitude.

For a frequency-domain description of the DSB-SC-modulated signal defined in (2.97),
suppose that the message signal m(t) occupies the frequency band –W ≤ f ≤ W, as depicted
in Figure 2.25a; hereafter, W is referred to as the message bandwidth. Then, provided that
the carrier frequency satisfies the condition fc > W, we find that the spectrum of the DSB-
SC-modulated signal consists of an upper sideband and lower sideband, as depicted in
Figure 2.25b. Comparing the two parts of this figure, we immediately see that the channel
bandwidth, B, required to support the transmission of the DSB-SC-modulated signal from
the transmitter to the receiver is twice the message bandwidth.

Figure 2.25 (a) Message spectrum. (b) Spectrum of DSB-SC 
modulated wave s(t), assuming fc > W.
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2.14 Linear Modulation Theory 61

One other interesting point apparent from Figure 2.25b is that the spectrum of the DSB-SC
modulated signal is entirely void of delta functions. This statement is further testimony to the
fact that the carrier is suppressed from the generation of the modulated signal s(t) of (2.97).

Summarizing the useful features of DSB-SC modulation:

• suppression of the carrier, which results in saving of transmitted power;
• desirable spectral characteristics, which make it applicable to the modulation of

band-limited message signals;
• ease of synchronizing the receiver to the transmitter for coherent detection.

On the downside, DSB-SC modulation is wasteful of channel bandwidth. We say so for
the following reason. The two sidebands, constituting the spectral composition of the
modulated signal s(t), are actually the image of each other with respect to the carrier
frequency fc; hence, the transmission of either sideband is sufficient for transporting s(t)
across the channel. 

VSB Modulation

In VSB modulation, one sideband is partially suppressed and a vestige of the other
sideband is configured in such a way to compensate for the partial sideband suppression
by exploiting the fact that the two sidebands in DSB-SC modulation are the image of each
other. A popular method of achieving this design objective is to use the frequency
discrimination method. Specifically, a DSB-SC-modulated signal is first generated using a
product modulator, followed by a band-pass filter, as shown in Figure 2.26. The desired
spectral shaping is thereby realized through the appropriate design of the band-pass filter.

Suppose that a vestige of the lower sideband is to be transmitted. Then, the frequency
response of the band-pass filter, H( f ), takes the form shown in Figure 2.27; to simplify
matters, only the frequency response for positive frequencies is shown in the figure.
Examination of this figure reveals two characteristics of the band-pass filter:

1. Normalization of the frequency response, which means that

(2.98)

where fν is the vestigial bandwidth and the other parameters are as previously
defined.

2. Odd symmetry of the cutoff portion inside the transition interval fc – fν ≤ | f | ≤ fc + fν,
which means that values of the frequency response H(f) at any two frequencies
equally spaced above and below the carrier frequency add up to unity.

H f( )
1 for fc fν f fc W+<≤+

1
2
---   for  f fc=







=

Figure 2.26
Frequency-discrimination method 
for producing VSB modulation 
where the intermediate signal sI(t) 
is DSB-SC modulated.
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62 Chapter 2 Fourier Analysis of Signals and Systems

Consequently, we find that shifted versions of the frequency response H( f ) satisfy the
condition

  (2.99)

Outside the frequency band of interest defined by | f | ≥ fc + W, the frequency response
H( f ) can assume arbitrary values. We may thus express the channel bandwidth required
for the transmission of VSB-modulated signals as

(2.100)

With this background, we now address the issue of how to specify H( f ). We first use the
canonical formula of (2.68) to express the VSB-modulated signal s1(t), containing a
vestige of the lower sideband, as

(2.101)

where m(t) is the message signal, as before, and mQ(t) is the spectrally shaped version of
m(t); the reason for the factor 1/2 will become apparent later. Note that if mQ(t) is set equal
to zero, (2.101) reduces to DSB-SC modulation. It is therefore in the quadrature signal
mQ(t) that VSB modulation distinguishes itself from DSB-SC modulation. In particular,
the role of mQ(t) is to interfere with the message signal m(t) in such a way that power in
one of the sidebands of the VSB-modulated signal s(t) (e.g., the lower sideband in Figure
2.27) is appropriately reduced.

To determine mQ(t), we examine two different procedures: 

1. Phase-discrimination, which is rooted in the time-domain description of (2.101);
transforming this equation into the frequency domain, we obtain

(2.102)

where

2. Frequency-discrimination, which is structured in the manner described in Figure
2.26; passing the DSB-SC-modulated signal (i.e., the intermediate signal sI(t) in
Figure 2.26) through the band-pass filter, we write

(2.103)

Figure 2.27 Magnitude response of VSB filter; only the 
positive-frequency portion is shown
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In both (2.102) and (2.103), the spectrum S1( f ) is defined in the frequency interval 

fc – W ≤ | f | ≤ fc + W

Equating the right-hand sides of these two equations, we get (after canceling common
terms)

(2.104)

Shifting both sides of (2.104) to the left by the amount fc, we get (after canceling common
terms)

(2.105)

where the terms  and  are ignored as they both lie outside the
interval – W ≤ | f | ≤ W. Next, shifting both sides of (2.104) by the amount fc, but this time
to the right, we get (after canceling common terms)

(2.106)

where, this time, the terms  and  are ignored as they both lie
outside the interval – W ≤ | f | ≤ W.

Given (2.105) and (2.106), all that remains to be done now is to follow two simple
steps:

1. Adding these two equations and then factoring out the common term M(f), we get
the condition of (2.99) previously imposed on H( f ); indeed, it is with this condition
in mind that we introduced the scaling factor 1/2 in (2.101).

2. Subtracting (2.105) from (2.106) and rearranging terms, we get the desired
relationship between MQ( f ) and M( f ):

(2.107)

Let HQ( f ) denote the frequency response of a quadrature filter that operates on the
message spectrum M( f ) to produce MQ( f ). In light of (2.107), we may readily define
HQ( f ) in terms of H( f ) as

(2.108)

Equation (2.108) provides the frequency-domain basis for the phase-discrimination
method for generating the VSB-modulated signal s1(t), where only a vestige of the lower
sideband is retained. With this equation at hand, it is instructive to plot the frequency
response HQ( f ). For the frequency interval –W ≤ f ≤ W, the term H(f – fc) is defined by the
response H( f ) for negative frequencies shifted to the right by fc, whereas the term H(f + fc)
is defined by the response H( f ) for positive frequencies shifted to the left by fc.
Accordingly, building on the positive frequency response plotted in Figure 2.27, we find
that the corresponding plot of HQ( f ) is shaped as shown in Figure 2.28.
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64 Chapter 2 Fourier Analysis of Signals and Systems

The discussion on VSB modulation has thus far focused on the case where a vestige of the
lower sideband is transmitted. For the alternative case when a vestige of the upper sideband
is transmitted, we find that the corresponding VSB-modulated wave is described by

(2.109)

where the quadrature signal  is constructed from the message signal m(t) in exactly
the same way as before.

Equations (2.101) and (2.109) are of the same mathematical form, except for an
algebraic difference; they may, therefore, be combined into the single formula

(2.110)

where the minus sign applies to a VSB-modulated signal containing a vestige of the lower
sideband and the plus sign applies to the alternative case when the modulated signal
contains a vestige of the upper sideband.

The formula of (2.110) for VSB modulation includes DSB-SC modulation as a special
case. Specifically, setting mQ(t) = 0, this formula reduces to that of (2.97) for DSB-SC
modulation, except for the trivial scaling factor of 1/2.

SSB Modulation

Next, considering SSB modulation, we may identify two choices:

1. The carrier and the lower sideband are both suppressed, leaving the upper sideband
for transmission in its full spectral content; this first SSB-modulated signal is
denoted by sUSB(t).

2. The carrier and the upper sideband are both suppressed, leaving the lower sideband
for transmission in its full spectral content; this second SSB-modulated signal is
denoted by sLSB(t).

The Fourier transforms of these two modulated signals are the image of each other with
respect to the carrier frequency fc, which, as mentioned previously, emphasizes that the
transmission of either sideband is actually sufficient for transporting the message signal
m(t) over the communication channel. In practical terms, both sUSB(t) and sLSB(t) require

Figure 2.28 Frequency response of the quadrature filter for 
producing the quadrature component of the VSB wave.
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2.14 Linear Modulation Theory 65

the smallest feasible channel bandwidth, B=W, without compromising the perfect
recovery of the message signal under noiseless conditions. It is for these reasons that we
say SSB modulation is the optimum form of linear modulation for analog
communications, preserving both the transmitted power and channel bandwidth in the best
manner possible.

SSB modulation may be viewed as a special case of VSB modulation. Specifically,
setting the vestigial bandwidth fν = 0, we find that the frequency response of the
quadrature filter plotted in Figure 2.28 takes the limiting form of the signum function
shown in Figure 2.29. In light of the material presented in (2.60) on Hilbert
transformation, we therefore find that for fν = 0 the quadrature component mQ(t) becomes
the Hilbert transform of the message signal m(t), denoted by . Accordingly, using

 in place of mQ(t) in (2.110) yields the SSB formula

(2.111)

where the minus sign applies to the SSB-modulated signal sUSB(t) and the plus sign
applies to the alternative SSB-modulated signal sLSB(t).

Unlike DSB-SC and VSB methods of modulation, SSB modulation is of limited
applicability. Specifically, we say:

For SSB modulation to be feasible in practical terms, the spectral content of the 
message signal m(t) must have an energy gap centered on the origin.

This requirement, illustrated in Figure 2.30, is imposed on the message signal m(t) so that
the band-pass filter in the frequency-discrimination method of Figure 2.26 has a finite
transition band for the filter to be physically realizable. With the transition band
separating the pass-band from the stop-band, it is only when the transition band is finite
that the undesired sideband can be suppressed. An example of message signals for which
the energy-gap requirement is satisfied is voice signals; for such signals, the energy gap is
about 600 Hz, extending from –300 to +300 Hz.

In contrast, the spectral contents of television signals and wideband data extend
practically to a few hertz, thereby ruling out the applicability of SSB modulation to this
second class of message signals. It is for this reason that VSB modulation is preferred over
SSB modulation for the transmission of wideband signals. 

Figure 2.29
Frequency response of the quadrature 
filter in SSB modulation.
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Summary of Linear Modulation Methods

Equation (2.97) for DSB-SC modulation, (2.110) for VSB modulation, and (2.111) for
SSB modulation are summarized in Table 2.5 as special cases of the canonical formula of
(2.68). Correspondingly, we may treat the time-domain generations of these three linearly
modulated signals as special cases of the “synthesizer” depicted in Figure 2.20b.  

2.15 Phase and Group Delays

A discussion of signal transmission through linear time-invariant systems is incomplete
without considering the phase and group delays involved in the signal transmission
process. 

Whenever a signal is transmitted through a dispersive system, exemplified by a
communication channel (or band-pass filter), some delay is introduced into the output
signal, the delay being measured with respect to the input signal. In an ideal channel, the
phase response varies linearly with frequency inside the passband of the channel, in which
case the filter introduces a constant delay equal to t0, where the parameter t0 controls the
slope of the linear phase response of the channel. Now, what if the phase response of the
channel is a nonlinear function of frequency, which is frequently the case in practice? The
purpose of this section is to address this practical issue.

Figure 2.30
Spectrum of a message signal m(t) with an 
energy gap centered around the origin.
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Table 2.5 Summary of linear modulation methods viewed as special cases of the 
canonical formula s(t) = sI(t)cos(2fct) – sQ(t)sin(2fct)

Type of modulation
In-phase 
component, sI(t)

Quadrature 
component, sQ(t) Comments

DSB-SC m(t) zero m(t) = message signal

VSB
Plus sign applies to using vestige of 
lower sideband and minus sign applies 
to using vestige of upper sideband

SSB
Plus sign applies to transmission of 
upper sideband and minus sign applies 
to transmission of lower sideband
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2
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To begin the discussion, suppose that a steady sinusoidal signal at frequency fc is
transmitted through a dispersive channel that has a phase-shift of β(fc) radians at that
frequency. By using two phasors to represent the input signal and the received signal, we
see that the received signal phasor lags the input signal phasor by β(fc) radians. The time
taken by the received signal phasor to sweep out this phase lag is simply equal to the ratio
β(fc)/(2πfc) seconds. This time is called the phase delay of the channel.

It is important to realize, however, that the phase delay is not necessarily the true signal
delay. This follows from the fact that a steady sinusoidal signal does not carry information,
so it would be incorrect to deduce from the above reasoning that the phase delay is the true
signal delay. To substantiate this statement, suppose that a slowly varying signal, over the
interval –(T/2) ≤ t ≤ (T/2), is multiplied by the carrier, so that the resulting modulated
signal consists of a narrow group of frequencies centered around the carrier frequency; the
DSB-SC waveform of Figure 2.31 illustrates such a modulated signal. When this
modulated signal is transmitted through a communication channel, we find that there is
indeed a delay between the envelope of the input signal and that of the received signal.
This delay, called the envelope or group delay of the channel, represents the true signal
delay insofar as the information-bearing signal is concerned.

Assume that the dispersive channel is described by the transfer function

(2.112)

where the amplitude K is a constant scaling factor and the phase β(f) is a nonlinear
function of frequency f; it is the nonlinearity of β(f) that is responsible for the dispersive

H f( ) K jβ f( )[ ]exp=

Figure 2.31 (a) Block diagram of product modulator; (b) Baseband signal; 
(c) DSB-SC modulated wave.
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68 Chapter 2 Fourier Analysis of Signals and Systems

nature of the channel. The input signal s(t) is assumed to be of the kind displayed in Figure
2.31; that is, the DSB-SC-modulated signal

(2.113)

where m(t) is the message signal, assumed to be of a low-pass kind and limited to the
frequency interval | f | ≤ W. Moreover, we assume that the carrier frequency fc > W. By
expanding the phase β(f) in a Taylor series about the point f = fc and retaining only the
first two terms, we may approximate β(f) as

(2.114)

Define two new terms:

(2.115)

and

(2.116)

Then, we may rewrite (2.114) in the equivalent form

(2.117)

Correspondingly, the transfer function of the channel takes the approximate form

(2.118)

Following the band-pass-to-low-pass transformation described in Section 2.12, in
particular using (2.80), we may replace the band-pass channel described by H(f) by an
equivalent low-pass filter whose transfer function is approximately given by

(2.119)

Correspondingly, using (2.67) we may replace the modulated signal s(t) of (2.113) by its
low-pass complex envelope, which, for the DSB-SC example at hand, is simply defined by 

(2.120)

Transforming  into the frequency domain, we may write

(2.121)

Therefore, in light of (2.96), the Fourier transform of the complex envelope of the signal
received at the channel output is given by 

(2.122)

We note that the multiplying factor  is a constant for fixed values of fc
and τp. We also note from the time-shifting property of the Fourier transform that the term

 represents the Fourier transform of the delayed signal m(t – τg).
Accordingly, the complex envelope of the channel output is

(2.123)
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Finally, using (2.66) we find that the actual channel output is itself given by 

(2.124)

Equation (2.124) reveals that, as a result of transmitting the modulated signal s(t) through
the dispersive channel, two different delay effects occur at the channel output:

1. The sinusoidal carrier wave cos(2πfct) is delayed by τp seconds; hence, τp
represents the phase delay; sometimes τp is referred to as the carrier delay.

2. The envelope m(t) is delayed by τg seconds; hence, τg represents the envelope or
group delay.

Note that τg is related to the slope of the phase β(f), measured at f = fc. Note also that
when the phase response β(f) varies linearly with frequency f and β(fc) is zero, the phase
delay and group delay assume a common value. It is only then that we can think of these
two delays being equal.

2.16 Numerical Computation of the Fourier Transform

The material presented in this chapter clearly testifies to the importance of the Fourier
transform as a theoretical tool for the representation of deterministic signals and linear
time-invariant systems, be they of the low-pass or band-pass kind. The importance of the
Fourier transform is further enhanced by the fact that there exists a class of algorithms
called FFT algorithms6 for numerical computation of the Fourier transform in an efficient
manner.

The FFT algorithm is derived from the discrete Fourier transform (DFT) in which, as
the name implies, both time and frequency are represented in discrete form. The DFT
provides an approximation to the Fourier transform. In order to properly represent the
information content of the original signal, we have to take special care in performing the
sampling operations involved in defining the DFT. A detailed treatment of the sampling
process is presented in Chapter 6. For the present, it suffices to say that, given a band-
limited signal, the sampling rate should be greater than twice the highest frequency
component of the input signal. Moreover, if the samples are uniformly spaced by Ts
seconds, the spectrum of the signal becomes periodic, repeating every fs = (1/Ts) hz in
accordance with (2.43). Let N denote the number of frequency samples contained in the
interval fs. Hence, the frequency resolution involved in numerical computation of the
Fourier transform is defined by

(2.125)

where T is the total duration of the signal.
Consider then a finite data sequence {g0, g1, ..., gN – 1}. For brevity, we refer to this

sequence as gn, in which the subscript is the time index n = 0, 1, ..., N – 1. Such a sequence
may represent the result of sampling an analog signal g(t) at times t = 0, Ts, ..., (N – 1)Ts,
where Ts is the sampling interval. The ordering of the data sequence defines the sample

x t( ) Re x̃ t( ) j2πfct( )exp[ ]=

Km t τg–( ) 2πfc t τp–( )[ ]cos=
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fs

N
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NTs
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70 Chapter 2 Fourier Analysis of Signals and Systems

time in that g0, g1, ..., gN – 1 denote samples of g(t) taken at times 0, Ts, ..., (N – 1)Ts,
respectively. Thus we have

(2.126)

We formally define the DFT of gn as

(2.127)

The sequence {G0, G1, ..., GN – 1} is called the transform sequence. For brevity, we refer
to this second sequence simply as Gk, in which the subscript is the frequency index k = 0,
1, ..., N – 1.

Correspondingly, we define the inverse discrete Fourier transform (IDFT) of Gk as

(2.128)

The DFT and the IDFT form a discrete transform pair. Specifically, given a data sequence
gn, we may use the DFT to compute the transform sequence Gk; and given the transform
sequence Gk, we may use the IDFT to recover the original data sequence gn. A distinctive
feature of the DFT is that, for the finite summations defined in (2.127) and (2.128), there is
no question of convergence.

When discussing the DFT (and algorithms for its computation), the words “sample”
and “point” are used interchangeably to refer to a sequence value. Also, it is common
practice to refer to a sequence of length N as an N-point sequence and to refer to the DFT
of a data sequence of length N as an N-point DFT.

Interpretation of the DFT and the IDFT

We may visualize the DFT process described in (2.127) as a collection of N complex
heterodyning and averaging operations, as shown in Figure 2.32a. We say that the
heterodyning is complex in that samples of the data sequence are multiplied by complex
exponential sequences. There is a total of N complex exponential sequences to be
considered, corresponding to the frequency index k = 0, 1, ..., N – 1. Their periods have
been selected in such a way that each complex exponential sequence has precisely an
integer number of cycles in the total interval 0 to N – 1. The zero-frequency response,
corresponding to k = 0, is the only exception.

For the interpretation of the IDFT process, described in (2.128), we may use the
scheme shown in Figure 2.32b. Here we have a collection of N complex signal generators,
each of which produces the complex exponential sequence

(2.129)

Thus, in reality, each complex signal generator consists of a pair of generators that output
a cosinusoidal and a sinusoidal sequence of k cycles per observation interval. The output
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of each complex signal generator is weighted by the complex Fourier coefficient Gk. At
each time index n, an output is formed by summing the weighted complex generator
outputs.

It is noteworthy that although the DFT and the IDFT are similar in their mathematical
formulations, as described in (2.127) and (2.128), their interpretations as depicted in
Figure 2.32a and b are so completely different.

Figure 2.32 Interpretations of (a) the DFT and (b) the IDFT.
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72 Chapter 2 Fourier Analysis of Signals and Systems

Also, the addition of harmonically related periodic signals, involved in these two parts
of the figure, suggests that their outputs Gk and gn must be both periodic. Moreover, the
processors shown in Figure 2.32 are linear, suggesting that the DFT and IDFT are both
linear operations. This important property is also obvious from the defining equations
(2.127) and (2.128).

FFT Algorithms

In the DFT both the input and the output consist of sequences of numbers defined at
uniformly spaced points in time and frequency, respectively. This feature makes the DFT
ideally suited for direct numerical evaluation on a computer. Moreover, the computation
can be implemented most efficiently using a class of algorithms, collectively called FFT
algorithms. An algorithm refers to a “recipe” that can be written in the form of a computer
program.

FFT algorithms are efficient because they use a greatly reduced number of arithmetic
operations as compared with the brute force (i.e., direct) computation of the DFT.
Basically, an FFT algorithm attains its computational efficiency by following the
engineering strategy of “divide and conquer,” whereby the original DFT computation is
decomposed successively into smaller DFT computations. In this section, we describe one
version of a popular FFT algorithm, the development of which is based on such a strategy.

To proceed with the development, we first rewrite (2.127), defining the DFT of gn, in
the convenient mathematical form

 (2.130)

where we have introduced the complex parameter

(2.131)

From this definition, we readily see that

                   

That is, Wkn is periodic with period N. The periodicity of Wkn is a key feature in the
development of FFT algorithms.

Let N, the number of points in the data sequence, be an integer power of two, as shown
by

where L is an integer; the rationale for this choice is explained later. Since N is an even
integer, N/2 is an integer, and so we may divide the data sequence into the first half and
last half of the points. 
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Thus, we may rewrite (2.130) as

 (2.132)

Since , we have

Accordingly, the factor WkN/2 in (2.132) takes on only one of two possible values, namely
+1 or –1, depending on whether the frequency index k is even or odd, respectively. These
two cases are considered in what follows.

First, let k be even, so that WkN/2 = 1. Also let

 

and define

(2.133)

Then, we may put (2.132) into the new form

 (2.134)

From the definition of W given in (2.131), we readily see that

Hence, we recognize the sum on the right-hand side of (2.134) as the (N/2)-point DFT of
the sequence xn.

Next, let k be odd so that WkN/2 = –1. Also, let
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and define
(2.135)

Then, we may put (2.132) into the corresponding form

 (2.136)

We recognize the sum on the right-hand side of (2.136) as the (N/2)-point DFT of the
sequence ynWn. The parameter Wn associated with yn is called the twiddle factor.

Equations (2.134) and (2.136) show that the even- and odd-valued samples of the
transform sequence Gk can be obtained from the (N/2)-point DFTs of the sequences xn and
ynWn, respectively. The sequences xn and yn are themselves related to the original data
sequence gn by (2.133) and (2.135), respectively. Thus, the problem of computing an
N-point DFT is reduced to that of computing two (N/2)-point DFTs. The procedure just
described is repeated a second time, whereby an (N/2)-point DFT is decomposed into two
(N/4)-point DFTs. The decomposition procedure is continued in this fashion until (after
L = log2N stages) we reach the trivial case of N single-point DFTs.

Figure 2.33 illustrates the computations involved in applying the formulas of (2.134)
and (2.136) to an eight-point data sequence; that is, N = 8. In constructing left-hand
portions of the figure, we have used signal-flow graph notation. A signal-flow graph
consists of an interconnection of nodes and branches. The direction of signal transmission
along a branch is indicated by an arrow. A branch multiplies the variable at a node (to
which it is connected) by the branch transmittance. A node sums the outputs of all
incoming branches. The convention used for branch transmittances in Figure 2.33 is as
follows. When no coefficient is indicated on a branch, the transmittance of that branch is
assumed to be unity. For other branches, the transmittance of a branch is indicated by –1 or
an integer power of W, placed alongside the arrow on the branch.

Thus, in Figure 2.33a the computation of an eight-point DFT is reduced to that of two
four-point DFTs. The procedure for the eight-point DFT may be mimicked to simplify the
computation of the four-point DFT. This is illustrated in Figure 2.33b, where the
computation of a four-point DFT is reduced to that of two two-point DFTs. Finally, the
computation of a two-point DFT is shown in Figure 2.33c.

Combining the ideas described in Figure 2.33, we obtain the complete signal-flow
graph of Figure 2.34 for the computation of the eight-point DFT. A repetitive structure,
called the butterfly with two inputs and two outputs, can be discerned in the FFT algorithm
of Figure 2.34. Examples of butterflies (for the three stages of the algorithm) are shown by
the bold-faced lines in Figure 2.34. 

For the general case of N = 2L, the algorithm requires L = log2N stages of computation.
Each stage requires (N/2) butterflies. Each butterfly involves one complex multiplication
and two complex additions (to be precise, one addition and one subtraction). Accordingly,
the FFT structure described here requires (N/2)log2N complex multiplications and Nlog2N
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Figure 2.33 (a) Reduction of eight-point DFT into two four-point DFTs. (b) Reduction of four-point 
DFT into two two-point DFTs. (c) Trivial case of two-point DFT.
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76 Chapter 2 Fourier Analysis of Signals and Systems

complex additions; actually, the number of multiplications quoted is pessimistic, because
we may omit all twiddle factors W0 = 1 and WN/2 = –1, WN/4 = j, W3N/4 = –j. This
computational complexity is significantly smaller than that of the N2 complex
multiplications and N(N – 1) complex additions required for direct computation of the
DFT. The computational savings made possible by the FFT algorithm become more
substantial as we increase the data length N. For example, for N = 8192 = 211, the direct
approach requires approximately 630 times as many arithmetic operations as the FFT
algorithm, hence the popular use of the FFT algorithm in computing the DFT.

We may establish two other important features of the FFT algorithm by carefully
examining the signal-flow graph shown in Figure 2.34:

1. At each stage of the computation, the new set of N complex numbers resulting from
the computation can be stored in the same memory locations used to store the
previous set. This kind of computation is referred to as in-place computation.

Figure 2.34
Decimation-in-frequency 
FFT algorithm.
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2.16 Numerical Computation of the Fourier Transform 77

2. The samples of the transform sequence Gk are stored in a bit-reversed order. To
illustrate the meaning of this terminology, consider Table 2.6 constructed for the
case of N = 8. At the left of the table, we show the eight possible values of the
frequency index k (in their natural order) and their 3-bit binary representations. At
the right of the table, we show the corresponding bit-reversed binary representations
and indices. We observe that the bit-reversed indices in the rightmost column of
Table 2.6 appear in the same order as the indices at the output of the FFT algorithm
in Figure 2.34.

The FFT algorithm depicted in Figure 2.34 is referred to as a decimation-in-frequency
algorithm, because the transform (frequency) sequence Gk is divided successively into
smaller subsequences. In another popular FFT algorithm, called a decimation-in-time
algorithm, the data (time) sequence gn is divided successively into smaller subsequences.
Both algorithms have the same computational complexity. They differ from each other in
two respects. First, for decimation-in-frequency, the input is in natural order, whereas the
output is in bit-reversed order; the reverse is true for decimation-in-time. Second, the
butterfly for decimation-in-time is slightly different from that for decimation-in-
frequency. The reader is invited to derive the details of the decimation-in-time algorithm
using the divide-and-conquer strategy that led to the development of the algorithm
described in Figure 2.34.

In devising the FFT algorithm presented herein, we placed the factor 1N in the formula
for the forward DFT, as shown in (2.128). In some other FFT algorithms, location of the
factor 1N is reversed. In yet other formulations, the factor  is placed in the
formulas for both the forward and inverse DFTs for the sake of symmetry.  

Computation of the IDFT

The IDFT of the transform Gk is defined by (2.128). We may rewrite this equation in terms
of the complex parameter W as

 (2.137)

Table 2.6 Illustrating bit reversal

Frequency
index, k

Binary
representation

Bit-reversed
binary representation

Bit-reversed 
index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7
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78 Chapter 2 Fourier Analysis of Signals and Systems

Taking the complex conjugate of (2.137) and multiplying by N, we get

(2.138)

The right-hand side of (2.138) is recognized as the N-point DFT of the complex-
conjugated sequence . Accordingly, (2.138) suggests that we may compute the desired
sequence gn using the scheme shown in Figure 2.35, based on an N-point FFT algorithm.
Thus, the same FFT algorithm can be used to handle the computation of both the IDFT
and the DFT.

2.17 Summary and Discussion

In this chapter we have described the Fourier transform as a fundamental tool for relating
the time-domain and frequency-domain descriptions of a deterministic signal. The signal
of interest may be an energy signal or a power signal. The Fourier transform includes the
exponential Fourier series as a special case, provided that we permit the use of the Dirac
delta function.

An inverse relationship exists between the time-domain and frequency-domain
descriptions of a signal. Whenever an operation is performed on the waveform of a signal
in the time domain, a corresponding modification is applied to the spectrum of the signal
in the frequency domain. An important consequence of this inverse relationship is the fact
that the time–bandwidth product of an energy signal is a constant; the definitions of signal
duration and bandwidth merely affect the value of the constant.

An important signal-processing operation frequently encountered in communication
systems is that of linear filtering. This operation involves the convolution of the input
signal with the impulse response of the filter or, equivalently, the multiplication of the
Fourier transform of the input signal by the transfer function (i.e., Fourier transform of the
impulse response) of the filter. Low-pass and band-pass filters represent two commonly
used types of filters. Band-pass filtering is usually more complicated than low-pass
filtering. However, through the combined use of a complex envelope for the representation
of an input band-pass signal and the complex impulse response for the representation of a
band-pass filter, we may formulate a complex low-pass equivalent for the band-pass
filtering problem and thereby replace a difficult problem with a much simpler one. It is
also important to note that there is no loss of information in establishing this equivalence.
A rigorous treatment of the concepts of complex envelope and complex impulse response
as presented in this chapter is rooted in Hilbert transformation.

The material on Fourier analysis, as presented in this chapter, deals with signals whose
waveforms can be nonperiodic or periodic, and whose spectra can be continuous or
discrete functions of frequency. In this sense, the material has general appeal.

Figure 2.35 Use of the FFT algorithm for computing the IDFT.
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Building on the canonical representation of a band-pass signal involving the in-phase
and quadrature components of the signal, we showed that this representation provides an
elegant way of describing the three basic forms of linear modulation, namely DSB-SC,
VSB, and SSB.

With the Fourier transform playing such a pervasive role in the study of signals and
linear systems, we finally described the FFT algorithm as an efficient tool for numerical
computation of the DFT that represents the uniformly sampled versions of the forward and
inverse forms of the ordinary Fourier transform.

Problems

The Fourier Transform

2.1 Prove the dilation property of the Fourier transform, listed as Property 2 in Table 2.1.

 2.2 a. Prove the duality property of the Fourier transform, listed as Property 3 in Table 2.1.

b. Prove the time-shifting property, listed as Property 4; and then use the duality property to prove
the frequency-shifting property, listed as Property 5 in the table.

c. Using the frequency-shifting property, determine the Fourier transform of the radio frequency RF
pulse

assuming that fc is larger than (1/T).

 2.3 a. Prove the multiplication-in-the-time-domain property of the Fourier transform, listed as Property
11 in Table 2.1.

b. Prove the convolution in the time-domain property, listed as Property 12.

c. Using the result obtained in part b, prove the correlation theorem, listed as Property 13.

2.4 Prove Rayleigh’s energy theorem listed as Property 14 in Table 2.1.

2.5 The following expression may be viewed as an approximate representation of a pulse with finite rise
time:

where it is assumed that T >> τ. Determine the Fourier transform of g(t). What happens to this
transform when we allow τ to become zero? Hint: Express g(t) as the superposition of two signals,
one corresponding to integration from t – T to 0, and the other from 0 to t + T.

2.6 The Fourier transform of a signal g(t) is denoted by G( f ). Prove the following properties of the
Fourier transform:

a. If a real signal g(t) is an even function of time t, the Fourier transform G( f ) is purely real. If a
real signal g(t) is an odd function of time t, the Fourier transform G( f ) is purely imaginary.

b.

where G(n)( f ) is the nth derivative of G( f ) with respect to f.
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d. Assuming that both g1(t) and g2(t) are complex signals, show that:

and

 2.7 a. The root mean-square (rms) bandwidth of a low-pass signal g(t) of finite energy is defined by

where |G(f)|2 is the energy spectral density of the signal. Correspondingly, the root mean-square
(rms) duration of the signal is defined by

Using these definitions, show that

Assume that  faster than  as .

b. Consider a Gaussian pulse defined by

Show that for this signal the equality

is satisfied.

Hint: Use Schwarz’s inequality 

in which we set

and

2.8 The Dirac comb, formulated in the time domain, is defined by

where T0 is the period.
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a. Show that the Dirac comb is its own Fourier transform. That is, the Fourier transform of  is
also an infinitely long periodic train of delta functions, weighted by the factor f0 = (1/T0) and
regularly spaced by f0 along the frequency axis.

b. Hence, prove the pair of dual relations:

c. Finally, prove the validity of (2.38).

Signal Transmission through Linear Time-invariant Systems

2.9 The periodic signal

is applied to a linear system of impulse response h(t). Show that the average power of the signal y(t)
produced at the system output is defined by

where H(f) is the frequency response of the system, and f0 = 1/T0.

2.10 According to the bounded input–bounded output stability criterion, the impulse response h(t) of a
linear-invariant system must be absolutely integrable; that is,

Prove that this condition is both necessary and sufficient for stability of the system.

Hilbert Transform and Pre-envelopes 

2.11 Prove the three properties of the Hilbert transform itemized on pages 43 and 44.

2.12 Let  denote the Hilbert transform of g(t). Derive the set of Hilbert-transform pairs listed as
items 5 to 8 in Table 2.3.

2.13 Evaluate the inverse Fourier transform g(t) of the one-sided frequency function:

Show that g(t) is complex, and that its real and imaginary parts constitute a Hilbert-transform pair.

2.14 Let  denote the Hilbert transform of a Fourier transformable signal g(t). Show that  is
equal to the Hilbert transform of .

δT0
t( )

δ t mT0–( )
m ∞–=

∞

 f0 j2πnf0t( )exp

n ∞–=

∞

=

T0 j2πmfT0( )exp

m ∞–=

∞

 δ f nf0–( )
n ∞–=

∞

=

x t( ) x nT0( )δ t nT0–( )
m ∞–=

∞

=

Pav,y x nT0( ) 2
H nf0( ) 2

n ∞–=

∞

=

h t( ) t ∞<d
∞–

∞


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2.15 In this problem, we revisit Problem 2.14, except that this time we use integration rather than

differentiation. Doing so, we find that, in general, the integral  is not equal to the Hilbert

transform of the integral .

a. Justify this statement.

b. Find the condition for which exact equality holds.

2.16 Determine the pre-envelope g+(t) corresponding to each of the following two signals:

a. g(t) = sinc(t)

b. g(t) = [1 + k cos(2πfmt)]cos(2πfct)

Complex Envelope

2.17 Show that the complex envelope of the sum of two narrowband signals (with the same carrier
frequency) is equal to the sum of their individual complex envelopes.

2.18 The definition of the complex envelope  of a band-pass signal given in (2.65) is based on the
pre-envelope s+(t) for positive frequencies. How is the complex envelope defined in terms of the pre-
envelope s–(t) for negative frequencies? Justify your answer.

2.19 Consider the signal

whose m(t) is a low-pass signal whose Fourier transform M(f) vanishes for | f | > W, and c(t) is a
high-pass signal whose Fourier transform C(f) vanishes for | f | < W. Show that the Hilbert transform
of s(t) is  = , where  is the Hilbert transform of c(t).

 2.20 a. Consider two real-valued signals s1(t) and s2(t) whose pre-envelopes are denoted by s1+(t) and
s2+(t), respectively. Show that

b. Suppose that s2(t) is replaced by s2(–t). Show that this modification has the effect of removing
the complex conjugation in the right-hand side of the formula given in part a.

c. Assuming that s(t) is a narrowband signal with complex envelope  and carrier frequency fc,
use the result of part a to show that

2.21 Let a narrow-band signal s(t) be expressed in the form

Using S+(f) to denote the Fourier transform of the pre-envelope of s+(t), show that the Fourier
transforms of the in-phase component sI(t) and quadrature component sQ(t) are given by

respectively, where the asterisk denotes complex conjugation.

2.22 The block diagram of Figure 2.20a illustrates a method for extracting the in-phase component sI(t)
and quadrature component sQ(t) of a narrowband signal s(t). Given that the spectrum of s(t) is
limited to the interval fc – W ≤ | f | fc + W, demonstrate the validity of this method. Hence, show that

ĝ t( ) dt
∞–

∞


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∞–

∞
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∞
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and

where SI(f), SQ(f), and S(f) are the Fourier transforms of sI(t), sQ(t), and s(t), respectively.

Low-Pass Equivalent Models of Band-Pass Systems

2.23 Equations (2.82) and (2.83) define the in-phase component  and the quadrature component
 of the frequency response  of the complex low-pass equivalent model of a band-pass

system of impulse response h(t). Prove the validity of these two equations.

2.24 Explain what happens to the low-pass equivalent model of Figure 2.21b when the amplitude
response of the corresponding bandpass filter has even symmetry and the phase response has odd
symmetry with respect to the mid-band frequency fc.

2.25 The rectangular RF pulse

is applied to a linear filter with impulse response

Assume that the frequency fc equals a large integer multiple of 1/T. Determine the response of the
filter and sketch it.

2.26 Figure P2.26 depicts the frequency response of an idealized band-pass filter in the receiver of a
communication system, namely H(f), which is characterized by a bandwidth of 2B centered on the
carrier frequency fc. The signal applied to the band-pass filter is described by the modulated sinc
function:

where  is frequency misalignment introduced due to the receiver’s imperfections, measured with
respect to the carrier .

a. Find the complex low-pass equivalent models of the signal x(t) and the frequency response H(f).

SI f( ) S f fc–( ) S f fc+( ),+ W f W≤ ≤–

0,          elsewhere






=

SQ f( ) j S f fc–( ) S– f fc+( )[ ], W f W≤ ≤–

0,          elsewhere






=

H̃I f( )
H̃Q f( ) H̃ f( )

x t( ) A 2πfct( ),cos 0 t T≤ ≤

0, elsewhere






=

h t( ) x T t–( )=

x t( ) 4AcB sinc 2Bt( ) cos 2π fc Δf±( )t[ ]=

Δf
Ac 2πfct( )cos

Figure P2.26
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84 Chapter 2 Fourier Analysis of Signals and Systems

b. Then, go on to find the complex low-pass response of the filter output, denoted by , which
includes distortion due to .

c. Building on the formula derived for  obtained in part b, explain how you would mitigate the
misalignment distortion in the receiver.

Nonlinear Modulations

2.27 In analog communications, amplitude modulation is defined by 

where  is the carrier, m(t) is the message signal, and ka is a constant called amplitude
sensitivity of the modulator. Assume that  for all time t. 

a. Justify the statement that, in a strict sense, sAM(t) violates the principle of superposition.

b. Formulate the complex envelope and its spectrum. 

c. Compare the result obtained in part b with the complex envelope of DSB-SC. Hence, comment
on the advantages and disadvantages of amplitude modulation.

2.28 Continuing on with analog communications, frequency modulation (FM) is defined by

where  is the carrier, m(t) is the message signal, and kf is a constant called the
frequency sensitivity of the modulator.

a. Show that frequency modulation is nonlinear in that it violates the principle of superposition.

b. Formulate the complex envelope of the FM signal, namely .

c. Consider the message signal to be in the form of a square wave as shown in Figure P2.28. The
modulation frequencies used for the positive and negative amplitudes of the square wave, namely
f1 and f2, are defined as follows: 

where Tb is the duration of each positive or negative amplitude in the square wave. Show that
under these conditions the complex envelope  maintains continuity for all time t,
including the switching times between positive and negative amplitudes.

d. Plot the real and imaginary parts of  for the following values:

Phase and Group Delays

2.29 The phase response of a band-pass communication channel is defined by.
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A sinusoidally modulated signal defined by

is transmitted through the channel; fc is the carrier frequency and fm is the modulation frequency. 

a. Determine the phase delay τp.
b. Determine the group delay τg.
c. Display the waveform produced at the channel output; hence, comment on the results obtained in

parts a and b.

Notes

1. For a proof of convergence of the Fourier series, see Kammler (2000).

2. If a time function g(t) is such that the value of the energy  is defined and finite, then
the Fourier transform G(f) of the function g(t) exists and 

This result is known as Plancherel’s theorem. For a proof of this theorem, see Titchmarsh (1950).

3. The notation δ(t) for a delta function was first introduced into quantum mechanics by Dirac. This
notation is now in general use in the signal processing literature. For detailed discussions of the delta
function, see Bracewell (1986).

In a rigorous sense, the Dirac delta function is a distribution, not a function; for a rigorous treatment
of the subject, see the book by Lighthill (1958).

4. The Paley–Wiener criterion is named in honor of the authors of the paper by Paley and Wiener
(1934). 

5. The integral in (2.54), defining the Hilbert transform of a signal, is an improper integral in that
the integrand has a singularity at τ = t. To avoid this singularity, the integration must be carried out in
a symmetrical manner about the point τ = t. For this purpose, we use the definition

where the symbol P denotes Cauchy’s principal value of the integral and is incrementally
small. For notational simplicity, the symbol P has been omitted from (2.54) and (2.55).

6. The complex representation of an arbitrary signal defined in (2.58) was first described by Gabor
(1946). Gabor used the term “analytic signal.” The term “pre-envelope” was used in Arens (1957)
and Dungundji (1958). For a review of the different envelopes, see the paper by Rice (1982).

7. The FFT is ubiquitous in that it is applicable to a great variety of unrelated fields. For a detailed
mathematical treatment of this widely used tool and its applications, the reader is referred to
Brigham (1988).

Figure P2.28
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CHAPTER

3
Probability Theory and 
Bayesian Inference

3.1 Introduction

The idea of a mathematical model used to describe a physical phenomenon is well
established in the physical sciences and engineering. In this context, we may distinguish
two classes of mathematical models: deterministic and probabilistic. A model is said to be
deterministic if there is no uncertainty about its time-dependent behavior at any instant of
time; linear time-invariant systems considered in Chapter 2 are examples of a
deterministic model. However, in many real-world problems, the use of a deterministic
model is inappropriate because the underlying physical phenomenon involves too many
unknown factors. In such situations, we resort to a probabilistic model that accounts for
uncertainty in mathematical terms.

Probabilistic models are needed for the design of systems that are reliable in
performance in the face of uncertainty, efficient in computational terms, and cost effective
in building them. Consider for example, a digital communication system that is required to
provide practically error-free communication across a wireless channel. Unfortunately, the
wireless channel is subject to uncertainties, the sources of which include:

• noise, internally generated due to thermal agitation of electrons in the conductors
and electronic devices at the front-end of the receiver;

• fading of the channel, due to the multipath phenomenon—an inherent characteristic
of wireless channels;

• interference, representing spurious electromagnetic waves emitted by other
communication systems or microwave devices operating in the vicinity of the receiver.

To account for these uncertainties in the design of a wireless communication system, we
need a probabilistic model of the wireless channel.

The objective of this chapter, devoted to probability theory, is twofold:

• the formulation of a logical basis for the mathematical description of probabilistic
models and

• the development of probabilistic reasoning procedures for handling uncertainty.

Since the probabilistic models are intended to assign probabilities to the collections (sets)
of possible outcomes of random experiments, we begin the study of probability theory
with a review of set theory, which we do next.
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88 Chapter 3 Probability Theory and Bayesian Inference

3.2 Set Theory

Definitions

The objects constituting a set are called the elements of the set. Let A be a set and x be an
element of the set A. To describe this statement, we write ; otherwise, we write

. If the set A is empty (i.e., it has no elements), we denote it by .
If x1, x2, ..., xN are all elements of the set A, we write

in which case we say that the set A is countably finite. Otherwise, the set is said to be
countably infinite. Consider, for example, an experiment involving the throws of a die. In
this experiment, there are six possible outcomes: the showing of one, two, three, four, five,
and six dots on the upper surface of the die; the set of possible outcomes of the experiment
is therefore countably finite. On the other hand, the set of all possible odd integers, written
as {1, 3, 5, }, is countably infinite.

If every element of the set A is also an element of another set B, we say that A is a
subset of B, which we describe by writing .

If two sets A and B satisfy the conditions  and , then the two sets are said
to be identical or equal, in which case we write A = B. 

In a discussion of set theory, we also find it expedient to think of a universal set,
denoted by S. Such a set contains every possible element that could occur in the context of
a random experiment.

Boolean Operations on Sets

To illustrate the validity of Boolean operations on sets, the use of Venn diagrams can be
helpful, as shown in what follows.

Unions and Intersections
The union of two sets A and B is defined by the set of elements that belong to A or B, or to
both. This operation, written as , is illustrated in the Venn diagram of Figure 3.1.
The intersection of two sets A and B is defined by the particular set of elements that belong
to both A and B, for which we write . The shaded part of the Venn diagram in
Figure 3.1 represents this second operation. 

Figure 3.1
Illustrating the union and intersection 
of two sets, A and B.

x A
x A 

A x1 x2  xN   =

A B
A B B A

A B

A B

Universal set S

A B

A B

∩

∪
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Let x be an element of interest. Mathematically, the operations of union and
intersection are respectively described by

and

where the symbol | is shorthand for “such that.”

Disjoint and Partition Sets
Two sets A and B are said to be disjoint if their intersection is empty; that is, they have no
common elements.

The partition of a set A refers to a collection of disjoint subsets A1, A2, ..., AN of the set
A, the union of which equals A; that is,

The Venn diagram illustrating the partition operation is depicted in Figure 3.2 for the
example of N = 3. 

Complements
The set Ac is said to be the complement of the set A, with respect to the universal set S, if it
is made up of all the elements of S that do not belong to A, as depicted in Figure 3.3.

Figure 3.2
Illustrating the partition of set A into 
three subsets: A1, A2, and A3.

Figure 3.3
Illustrating the complement Ac of set A.

A1

A2

A3

Universal set S

A B x x A or x B =

A B x x A and x B =

A A1 A2  AN=

A

Universal set S

Ac
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90 Chapter 3 Probability Theory and Bayesian Inference

The Algebra of Sets
Boolean operations on sets have several properties, summarized here:

1. Idempotence property

(Ac)c = A

2. Commutative property

3. Associative property

4. Distributive property

Note that the commutative and associative properties apply to both the union and
intersection, whereas the distributive property applies only to the intersection.

5. De Morgan’s laws

The complement of the union of two sets A and B is equal to the intersection of their
respective complements; that is

The complement of the intersection of two sets A and B is equal to the union of their
respective complements; that is,

For illustrations of these five properties and their confirmation, the reader is referred to
Problem 3.1.

3.3 Probability Theory

Probabilistic Models

The mathematical description of an experiment with uncertain outcomes is called a
probabilistic model,1 the formulation of which rests on three fundamental ingredients:

1. Sample space or universal set S, which is the set of all conceivable outcomes of a
random experiment under study.

2. A class E of events that are subsets of S.

3. Probability law, according to which a nonnegative measure or number �[A] is
assigned to an event A. The measure �[A] is called the probability of event A. In a
sense, �[A] encodes our belief in the likelihood of event A occurring when the
experiment is conducted.

Throughout the book, we will use the symbol �[.] to denote the probability of occurrence
of the event that appears inside the square brackets.

A B B A=

A B B A=

A B C  A B  C=

A B C  A B  C=

A B C  A B  A C =

A B C  A B  A C =

A B c A
c

B
c=

A B c A
c

B
c=
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As illustrated in Figure 3.4, an event may involve a single outcome or a subset of
possible outcomes in the sample space S. These possibilities are exemplified by the way in
which three events, A, B, and C, are pictured in Figure 3.4. In light of such a reality, we
identify two extreme cases:

• Sure event, which embodies all the possible outcomes in the sample space S.
• Null or impossible event, which corresponds to the empty set or empty space .

Axioms of Probability

Fundamentally, the probability measure �[A], assigned to event A in the class E, is
governed by three axioms:

Axiom I   Nonnegativity The first axiom states that the probability of event A is a
nonnegative number bounded by unity, as shown by

       for any event A (3.1)

Axiom II   Additivity The second axiom states that if A and B are two disjoint events,
then the probability of their union satisfies the equality 

(3.2)

In general, if the sample space has N elements and A1, A2, , AN is a sequence of disjoint
events, then the probability of the union of these N events satisfies the equality

Axiom III   Normalization The third and final axiom states that the probability of the
entire sample space S is equal to unity, as shown by

(3.3)

These three axioms provide an implicit definition of probability. Indeed, we may use them
to develop some other basic properties of probability, as described next.

Figure 3.4 Illustration of the relationship between sample space, events, and probability

s1

sk

A
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space

S

1

0

B
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

O � A  1

� A B  � A  � B +=

� A1 A2  AN   � A1  � A2   � AN + + +=

� S  1=

Haykin_ch03_pp3.fm  Page 91  Saturday, November 17, 2012  5:21 PM



92 Chapter 3 Probability Theory and Bayesian Inference

PROPERTY 1 The probability of an impossible event is zero.

To prove this property, we first use the axiom of normalization, then express the sample
space S as the union of itself with the empty space , and then use the axiom of
additivity. We thus write

from which the property  follows immediately.

PROPERTY 2 Let Ac denote the complement of event A; we may then write

       for any event A (3.4)

To prove this property, we first note that the sample space S is the union of the two
mutually exclusive events A and Ac. Hence, the use of the additivity and normalization
axioms yields

from which, after rearranging terms, (3.4) follows immediately.

PROPERTY 3 If event A lies within the subspace of another event B, then

          for (3.5)

To prove this third property, consider the Venn diagram depicted in Figure 3.5. From this
diagram, we observe that event B may be expressed as the union of two disjoint events, one
defined by A and the other defined by the intersection of B with the complement of A; that is,



1 � S =

� S  =

� S  �  +=

1 �  +=

�   0=

� A
c  1 � A –=

1 � S =

� A A
c =

� A  � A
c +=

Figure 3.5
The Venn diagram for proving (3.5).

� A  � B  A B

B A B A
c =

A

Universal set S

B
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Therefore, applying the additivity axiom to this relation, we get

Next, invoking the nonnegativity axiom, we immediately find that the probability of event
B must be equal to or greater than the probability of event A, as indicated in (3.5).

PROPERTY 4 Let N disjoint events A1, A2, , AN satisfy the condition

(3.6)

then
(3.7)

To prove this fourth property, we first apply the normalization axiom to (3.6) to write

Next, recalling the generalized form of the additivity axiom 

From these two relations, (3.7) follows immediately.
For the special case of N equally probable events, (3.7) reduces to

(3.8)

PROPERTY 5 If two events A and B are not disjoint, then the probability of their union event is defined by

 (3.9)

where  is called the joint probability of A and B.
To prove this last property, consider the Venn diagram of Figure 3.6. From this figure,

we first observe that the union of A and B may be expressed as the union of two disjoint
events: A itself and , where Ac is the complement of A. We may therefore apply the
additivity axiom to write

(3.10)
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c +=
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� Ai  1
N
---- for i 1 2,  N==

Figure 3.6
The Venn diagram for proving (3.9).
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94 Chapter 3 Probability Theory and Bayesian Inference

From the Venn diagram of Figure 3.6, we next observe that the event B may be expressed as

That is, B is the union of two disjoint events:  and ; therefore, applying the
additivity axiom to this second relation yields

(3.11)

Subtracting (3.11) from (3.10), canceling the common term  and rearranging
terms, (3.9) follows and Property 4 is proved.

It is of interest to note that the joint probability  accounts for that part of the
sample space S where the events A and B coincide. If these two events are disjoint, then the
joint probability  is zero, in which case (3.9) reduces to the additivity axiom of
(3.2).

Conditional Probability

When an experiment is performed and we only obtain partial information on the outcome
of the experiment, we may reason about that particular outcome by invoking the notion of
conditional probability. Stated the other way round, we may make the statement: 

Conditional probability provides the premise for probabilistic reasoning.

To be specific, suppose we perform an experiment that involves a pair of events A and B.
Let �[A |B] denote the probability of event A given that event B has occurred. The
probability �[A |B] is called the conditional probability of A given B. Assuming that B has
nonzero probability, the conditional probability �[A |B] is formally defined by

(3.12)

where  is the joint probability of events A and B, and �[B] is nonzero.
For a fixed event B, the conditional probability �[A |B] is a legitimate probability law

as it satisfies all three axioms of probability:

1. Since by definition, �[A |B] is a probability, the nonnegativity axiom is clearly
satisfied.

2. Viewing the entire sample space S as event A and noting that , we may
use (3.12) to write

Hence, the normalization axiom is also satisfied.

3. Finally, to verify the additivity axiom, assume that A1 and A2 are two mutually
exclusive events. We may then use (3.12) to write
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Applying the distributive property to the numerator on the right-hand side, we have

Next, recognizing that the two events  and  are actually disjoint, we
may apply the additivity axiom to write

(3.13)

which proves that the conditional probability also satisfies the additivity axiom.

We therefore conclude that all three axioms of probability (and therefore all known
properties of probability laws) are equally valid for the conditional probability �[A |B]. In
a sense, this conditional probability captures the partial information that the occurrence of
event B provides about event A; we may therefore view the conditional probability �[A |B]
as a probability law concentrated on event B.

Bayes’ Rule

Suppose we are confronted with a situation where the conditional probability �[A |B] and
the individual probabilities �[A] and �[B] are all easily determined directly, but the
conditional probability �[B |A] is desired. To deal with this situation, we first rewrite
(3.12) in the form

Clearly, we may equally write

The left-hand parts of these two relations are identical; we therefore have

Provided that �[A] is nonzero, we may determine the desired conditional probability
�[B |A] by using the relation

(3.14)

This relation is known as Bayes’ rule.
As simple as it looks, Bayes’ rule provides the correct language for describing

inference, the formulation of which cannot be done without making assumptions.2 The
following example illustrates an application of Bayes’ rule.

EXAMPLE 1 Radar Detection

Radar, a remote sensing system, operates by transmitting a sequence of pulses and has its
receiver listen to echoes produced by a target (e.g., aircraft) that could be present in its
surveillance area. 

� A1 A2 B 
� A1 B  A2 B  

� B 
--------------------------------------------------------------=

A1 B A2 B

� A1 A2 B 
� A1 B  � A2 B +

� B 
------------------------------------------------------------=

� A1 B 
� B 

---------------------------
� A2 B 

� B 
---------------------------+=

� A B  � A B � B =

� A B  � B A � A =

� A B � B  � B A � A =

� B A  � A B � B 
� A 

--------------------------------=
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96 Chapter 3 Probability Theory and Bayesian Inference

Let the events A and B be defined as follows:

A = {a target is present in the area under surveillance}

Ac = {there is no target in the area}

B = {the radar receiver detects a target}

In the radar detection problem, there are three probabilities of particular interest:

�[A] probability that a target is present in the area; this probability is called the
prior probability.

�[B |A] probability that the radar receiver detects a target, given that a target is
actually present in the area; this second probability is called the probability
of detection.

�[B |Ac] probability that the radar receiver detects a target in the area, given that there
is no target in the surveillance area; this third probability is called the
probability of false alarm.

Suppose these three probabilities have the following values:

�[A] = 0.02

�[B |A] = 0.99

�[B |Ac] = 0.01

The problem is to calculate the conditional probability �[A |B] which defines the
probability that a target is present in the surveillance area given that the radar receiver has
made a target detection.

Applying Bayes’ rule, we write

  

Independence

Suppose that the occurrence of event A provides no information whatsoever about event B;
that is,

Then, (3.14) also teaches us that

� A B  � B A � A 
� B 

--------------------------------=

� B A � A 

� B A � A  � B A
c � A

c +
----------------------------------------------------------------------------=

0.99 0.02
0.99 0.02 0.01 0.98+
-------------------------------------------------------------=

0.0198
0.0296
----------------=

0.69

� B A  � B =

� A B  � A =
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3.4 Random Variables 97

In this special case, we see that knowledge of the occurrence of either event, A or B, tells
us no more about the probability of occurrence of the other event than we knew without
that knowledge. Events A and B that satisfy this condition are said to be independent.

From the definition of conditional probability given in (3.12), namely,

we see that the condition �[A |B]= �[A] is equivalent to

We therefore adopt this latter relation as the formal definition of independence. The
important point to note here is that the definition still holds even if the probability �[B] is
zero, in which case the conditional probability �[A |B] is undefined. Moreover, the
definition has a symmetric property, in light of which we can say the following:

If an event A is independent of another event B, then B is independent of A, and 
A and B are therefore independent events.

3.4 Random Variables

It is customary, particularly when using the language of sample space pertaining to an
experiment, to describe the outcome of the experiment by using one or more real-valued
quantities or measurements that help us think in probabilistic terms. These quantities are
called random variables, for which we offer the following definition:

The random variable is a function whose domain is a sample space and whose 
range is some set of real numbers.

The following two examples illustrate the notion of a random variable embodied in this
definition.

Consider, for example, the sample space that represents the integers 1, 2, , 6, each
one of which is the number of dots that shows uppermost when a die is thrown. Let the
sample point k denote the event that k dots show in one throw of the die. The random
variable used to describe the probabilistic event k in this experiment is said to be a discrete
random variable.

For an entirely different experiment, consider the noise being observed at the front end
of a communication receiver. In this new situation, the random variable, representing the
amplitude of the noise voltage at a particular instant of time, occupies a continuous range
of values, both positive and negative. Accordingly, the random variable representing the
noise amplitude is said to be a continuous random variable.

The concept of a continuous random variable is illustrated in Figure 3.7, which is a
modified version of Figure 3.4. Specifically, for the sake of clarity, we have suppressed the
events but show subsets of the sample space S being mapped directly to a subset of a real
line representing the random variable. The notion of the random variable depicted in
Figure 3.7 applies in exactly the same manner as it applies to the underlying events. The
benefit of random variables, pictured in Figure 3.7, is that probability analysis can now be
developed in terms of real-valued quantities, regardless of the form or shape of the
underlying events of the random experiment under study.

� A B  � A B 
� B 

------------------------=

� A B  � A � B =
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98 Chapter 3 Probability Theory and Bayesian Inference

One last comment is in order before we proceed further. Throughout the whole book,
we will be using the following notation: 

Uppercase characters denote random variables and lowercase characters denote 
real values taken by random variables.

3.5 Distribution Functions

To proceed with the probability analysis in mathematical terms, we need a probabilistic
description of random variables that works equally well for discrete and continuous
random variables. Let us consider the random variable X and the probability of the event
X  x. We denote this probability by �[X  x]. It is apparent that this probability is a
function of the dummy variable x. To simplify the notation, we write

(3.15)

The function FX(x) is called the cumulative distribution function or simply the distribution
function of the random variable X. Note that FX(x) is a function of x, not of the random
variable X. For any point x in the sample space, the distribution function FX(x) expresses
the probability of an event.

The distribution function FX(x), applicable to both continuous and discrete random
variables, has two fundamental properties:

PROPERTY 1 Boundedness of the Distribution

The distribution function FX(x) is a bounded function of the dummy variable x that lies
between zero and one. 

Specifically, FX(x) tends to zero as x tends to , and it tends to one as x tends to .

Figure 3.7 Illustration of the relationship between sample 
space, random variables, and probability.

s1

sk

Sample
space

S

Random
variable ∞

–∞

Probability

1

0

0

FX x  � X x  for all x=

– 
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3.5 Distribution Functions 99

PROPERTY 2 Monotonicity of the Distribution

The distribution function FX(x) is a monotone nondecreasing function of x.

In mathematical terms, we write

Both of these properties follow directly from (3.15).
The random variable X is said to be continuous if the distribution function FX(x) is

differentiable with respect to the dummy variable x everywhere, as shown by

(3.16)

The new function fX(x) is called the probability density function of the random variable X.
The name, density function, arises from the fact that the probability of the event x1 < X  x2 is

(3.17)

The probability of an interval is therefore the area under the probability density function in
that interval. Putting  in (3.17) and changing the notation somewhat, we readily
see that the distribution function is defined in terms of the probability density function as

(3.18)

where  is a dummy variable. Since  = 1, corresponding to the probability of a
sure event, and  = 0, corresponding to the probability of an impossible event, we
readily find from (3.17) that 

(3.19)

Earlier we mentioned that a distribution function must always be a monotone
nondecreasing function of its argument. It follows, therefore, that the probability density
function must always be nonnegative. Accordingly, we may now formally make the
statement:

The probability density function fX(x) of a continuous random variable X has 
two defining properties: nonnegativity and normalization.

PROPERTY 3 Nonnegativity

The probability density function fX(x) is a nonnegative function of the sample value x of
the random variable X.

PROPERTY 4 Normalization

The total area under the graph of the probability density function fX(x) is equal to unity.

FX x1  FX x2  for x1 x2

fX x  d
dx
------FX x  for all x=

� x1 X x2  � X x2  � X x1 –=

FX x2  FX x1 –=

fX x  dx
x1

x2

=

x1 –=

FX x  fX   d
–

x

=

 FX  
FX – 

fX x  xd
–



 1=
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100 Chapter 3 Probability Theory and Bayesian Inference

An important point that should be stressed here is that the probability density function
fX(x) contains all the conceivable information needed for statistical characterization of the
random variable X.

EXAMPLE 2 Uniform Distribution

To illustrate the properties of the distribution function FX(x) and the probability density
function fX(x) for a continuous random variable, consider a uniformly distributed random
variable, described by

(3.20)

Integrating fX(x) with respect to x yields the associated distribution function

(3.21)

Plots of these two functions versus the dummy variable x are shown in Figure 3.8.

Probability Mass Function

Consider next the case of a discrete random variable, X, which is a real-valued function of
the outcome of a probabilistic experiment that can take a finite or countably infinite
number of values. As mentioned previously, the distribution function FX(x) defined in
(3.15) also applies to discrete random variables. However, unlike a continuous random
variable, the distribution function of a discrete random variable is not differentiable with
respect to its dummy variable x.

Figure 3.8 Uniform distribution.
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
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------------ , a x b
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
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

=
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3.5 Distribution Functions 101

To get around this mathematical difficulty, we introduce the notion of the probability
mass function as another way of characterizing discrete random variables. Let X denote a
discrete random variable and let x be any possible value of X taken from a set of real
numbers. We may then make the statement:

The probability mass function of x, denoted by pX(x), is defined as the 
probability of the event X = x, which consists of all possible outcomes of 
an experiment that lead to a value of X equal to x.

Stated in mathematical terms, we write

(3.22)

which is illustrated in the next example.

EXAMPLE 3 The Bernoulli Random Variable

Consider a probabilistic experiment involving the discrete random variable X that takes
one of two possible values:

• the value 1 with probability p;
• the value 0 with probability 1 – p.

Such a random variable is called the Bernoulli random variable, the probability mass
function of which is defined by

(3.23)

This probability mass function is illustrated in Figure 3.9. The two delta functions, each of
weight 1/2, depicted in Figure 3.9 represent the probability mass function at each of the
sample points x = 0 and x = 1.

From here on, we will, largely but not exclusively, focus on the characterization of
continuous random variables. A parallel development and similar concepts are possible for
discrete random variables as well.3

pX x  �[X x]= =

Figure 3.9 Illustrating the probability mass 
function for a fair coin-tossing experiment.

pX x 
1 p– x 0=

p, x 1=

0, otherwise


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

=
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�[X = x]

x
0 1

1
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1
2
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102 Chapter 3 Probability Theory and Bayesian Inference

Multiple Random Variables

Thus far we have focused attention on situations involving a single random variable.
However, we frequently find that the outcome of an experiment requires several random
variables for its description. In what follows, we consider situations involving two random
variables. The probabilistic description developed in this way may be readily extended to
any number of random variables.

Consider two random variables X and Y. In this new situation, we say:

The joint distribution function FX,Y(x,y) is the probability that the random 
variable X is less than or equal to a specified value x, and that the random 
variable Y is less than or equal to another specified value y. 

The variables X and Y may be two separate one-dimensional random variables or the
components of a single two-dimensional random vector. In either case, the joint sample
space is the xy-plane. The joint distribution function FX ,Y(x,y) is the probability that the
outcome of an experiment will result in a sample point lying inside the quadrant

 of the joint sample space. That is,

(3.24)

Suppose that the joint distribution function FX,Y(x,y) is continuous everywhere and that the
second-order partial derivative

(3.25)

exists and is continuous everywhere too. We call the new function fX ,Y(x,y) the joint
probability density function of the random variables X and Y. The joint distribution
function FX ,Y(x,y) is a monotone nondecreasing function of both x and y. Therefore, from
(3.25) it follows that the joint probability density function fX ,Y(x,y) is always nonnegative.
Also, the total volume under the graph of a joint probability density function must be
unity, as shown by the double integral

 (3.26)

The so-called marginal probability density functions, fX(x) and fY(y), are obtained by
differentiating the corresponding marginal distribution functions

and

with respect to the dummy variables x and y, respectively. We thus write

(3.27)

 X x  Y y–– 

FX Y x y  � X x Y y =

fX Y x y 
2

FX Y x y 
xy

-------------------------------=

fX Y x y  xd yd
–




–



 1=

FX x  fX Y x  =

FY y  fX Y  y =

fX x  d
dx
------FX x =

d
dx
------ fX Y  y  yd

–



 d
–

x

=

fX Y x y  yd
–



=
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3.5 Distribution Functions 103

Similarly, we write

(3.28)

In words, the first marginal probability density function fX(x), defined in (3.27), is
obtained from the joint probability density function fX,Y(x,y) by simply integrating it over
all possible values of the undesired random variable Y. Similarly, the second marginal
probability density function fY(y), defined in (3.28), is obtained from fX,Y(x,y) by
integrating it over all possible values of the undesired random variable; this time, the
undesirable random variable is X. Henceforth, we refer to fX(x) and fY(y), obtained in the
manner described herein, as the marginal densities of the random variables X and Y, whose
joint probability density function is fX,Y(x,y). Here again, we conclude the discussion on a
pair of random variables with the following statement:

The joint probability density function fX,Y(x,y) contains all the conceivable 
information on the two continuous random variables X and Y that is needed for 
the probability analysis of joint random variables. 

This statement can be generalized to cover the joint probability density function of many
random variables.

Conditional Probability Density Function

Suppose that X and Y are two continuous random variables with their joint probability
density function fX,Y(x,y). The conditional probability density function of Y, such that
X = x, is defined by

(3.29)

provided that fX(x) > 0, where fX(x) is the marginal density of X; fY(y |x) is a shortened
version of fY |X(y |x), both of which are used interchangeably. The function fY(y |x) may be
thought of as a function of the variable Y, with the variable x arbitrary but fixed;
accordingly, it satisfies all the requirements of an ordinary probability density function for
any x, as shown by

and

(3.30)

Cross-multiplying terms in (3.29) yields

which is referred to as the multiplication rule.
Suppose that knowledge of the outcome of X can, in no way, affect the distribution of Y.

Then, the conditional probability density function fY(y |x) reduces to the marginal density
fY(y), as shown by

fY y  fX Y x y  xd
–



=

fY y x 
fX Y x y 

fX x 
-----------------------=

fY y x  0

fY y x  yd
–



 1=

fX Y x y  fY y x fX x =

fY y x  fY y =
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104 Chapter 3 Probability Theory and Bayesian Inference

In such a case, we may express the joint probability density function of the random
variables X and Y as the product of their respective marginal densities; that is,

On the basis of this relation, we may now make the following statement on the
independence of random variables:

If the joint probability density function of the random variables X and Y equals the 
product of their marginal densities, then X and Y are statistically independent.

Sum of Independent Random Variables: Convolution

Let X and Y be two continuous random variables that are statistically independent; their
respective probability density functions are denoted by fX(x) and fY(y). Define the sum

The issue of interest is to find the probability density function of the new random variable
Z, which is denoted by fZ(z).

To proceed with this evaluation, we first use probabilistic arguments to write

where, in the second line, the given value x is used for the random variable X. Since X and
Y are statistically independent, we may simplify matters by writing

Equivalently, in terms of the pertinent distribution functions, we may write

Hence, differentiating both sides of this equation, we get the corresponding probability
density functions

Using the multiplication rule described in (3.30), we have

(3.31)

Next, adapting the definition of the marginal density given in (3.27) to the problem at
hand, we write

(3.32)

Finally, substituting (3.31) into (3.32), we find that the desired fZ(z) is equal to the
convolution of fX(x) and fY(y), as shown by

(3.33)

fX Y x y  fX x fY y =

Z X Y+=

� Z z X x=  � X Y z X+ x= =

� x Y z X+ x= =

� Z z X x=  � x Y z+ =

� Y z x– =

FZ z x  FY z x– =

fz z x  fY z x– =

fZ X z x  fY z x– fX x =

fZ z  fZ X z x  xd
–



=

fZ z  fX x fY z x–  xd
–



=

Haykin_ch03_pp3.fm  Page 104  Saturday, November 17, 2012  5:21 PM



3.6 The Concept of Expectation 105

In words, we may therefore state:

The summation of two independent continuous random variables leads to the 
convolution of their respective probability density functions.

Note, however, that no assumptions were made in arriving at this statement except for the
random variables X and Y being continuous random variables.

3.6 The Concept of Expectation

As pointed out earlier, the probability density function fX(x) provides a complete statistical
description of a continuous random variable X. However, in many instances, we find that
this description includes more detail than is deemed to be essential for practical
applications. In situations of this kind, simple statistical averages are usually considered
to be adequate for the statistical characterization of the random variable X.

In this section, we focus attention on the first-order statistical average, called the
expected value or mean of a random variable; second-order statistical averages are studied
in the next section. The rationale for focusing attention on the mean of a random variable
is its practical importance in statistical terms, as explained next. 

Mean

The expected value or mean of a continuous random variable X is formally defined by

(3.34)

where � denotes the expectation or averaging operator. According to this definition, the
expectation operator �, applied to a continuous random variable x, produces a single
number that is derived uniquely from the probability density function fX(x).

To describe the meaning of the defining equation (3.34), we may say the following: 

The mean X of a random variable X, defined by the expectation �[x], locates 
the center of gravity of the area under the probability density curve of the 
random variable X. 

To elaborate on this statement, we write the integral in (3.34) as the limit of an
approximating sum formulated as follows. Let {xk|k = 0, 1, 2, } denote a set of
uniformly spaced points on the real line

(3.35)

where  is the spacing between adjacent points on the line. We may thus rewrite (3.34) in
the form of a limit as follows:

X � X  xfX x  xd
–



= =

xk k 1
2
---+ 

  , k 0 1 2 ==

� X 
 0
lim xk fX x  xd

k

k+1 


k –=



=

 0
lim xk� xk


2
--- X xk


2
---+–

k –=



=

Haykin_ch03_pp3.fm  Page 105  Saturday, November 17, 2012  5:21 PM



106 Chapter 3 Probability Theory and Bayesian Inference

For a physical interpretation of the sum in the second line of the right-hand side of this
equation, suppose that we make n independent observations of the random variable X. Let
Nn(k) denote the number of times that the random variable X falls inside the kth bin,
defined by

Arguing heuristically, we may say that, as the number of observations n is made large, the
ratio Nn(k)/n approaches the probability �[xk – /2 < X  xk + /2]. Accordingly, we may
approximate the expected value of the random variable X as

(3.36)

We now recognize the quantity on the right-hand side of (3.36) simply as the “sample
average.” The sum is taken over all the values xk, each of which is weighted by the number
of times it occurs; the sum is then divided by the total number of observations to give the
sample average. Indeed, (3.36) provides the basis for computing the expectation �[X].

In a loose sense, we may say that the discretization, introduced in (3.35), has changed
the expectation of a continuous random variable to the sample averaging over a discrete
random variable. Indeed, in light of (3.36), we may formally define the expectation of a
discrete random variable X as

(3.37)

where pX(x) is the probability mass function of X, defined in (3.22), and where the
summation extends over all possible discrete values of the dummy variable x. Comparing
the summation in (3.37) with that of (3.36), we see that, roughly speaking, the ratio Nn(x)/n
plays a role similar to that of the probability mass function pX(x), which is intuitively
satisfying.

Just as in the case of a continuous random variable, here again we see from the defining
equation (3.37) that the expectation operator �, applied to a discrete random variable X,
produces a single number derived uniquely from the probability mass function pX(x).

Simply put, the expectation operator � applies equally well to discrete and continuous
random variables.

Properties of the Expectation Operator

The expectation operator � plays a dominant role in the statistical analysis of random
variables (as well as random processes studied in Chapter 4). It is therefore befitting that
we study two important properties of this operation in this section; other properties are
addressed in the end-of-chapter Problem 3.13.

xk

2
--- X xk


2
--- ,     k 0 1 2 =+–

� X  xk

Nn k 
n

-------------- 
 

k=–





1
n
--- xkNn k 

k=–



     for large n=

� X  xpX x 
x
=
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3.6 The Concept of Expectation 107

PROPERTY 1 Linearity

Consider a random variable Z, defined by

where X and Y are two continuous random variables whose probability density functions
are respectively denoted by fX(x) and fY(y). Extending the definition of expectation
introduced in (3.34) to the random variable Z, we write

where fZ(z) is defined by the convolution integral of (3.33). Accordingly, we may go on to
express the expectation �[Z] as the double integral

where the joint probability density function

Making the one-to-one change of variables

and
x = x

we may now express the expectation �[Z] in the expanded form

Next, we recall from (3.27) that the first marginal density of the random variable X is

and, similarly, for the second marginal density

The formula for the expectation �[Z] is therefore simplified as follows:

 

Z X Y+=

� Z  zfZ z  zd
–



=

� Z  zfX x fY z x–  xd zd
–




–



=

zfX Y x z x–  xd zd
–




–



=

fX Y x z x–  fX x fY z x– =

y z x–=

� Z  x y+ fX Y x y  xd yd
–




–



=

xfX Y x y  xd yd yfX Y x y  xd yd
–




–



+
–




–



=

fX x  fX Y x y  dy
–



=

fY y  fX Y x y  dx
–



=

� Z  xfX x  dx yfY y  dy
–



+
–



=

� X  � Y +=
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108 Chapter 3 Probability Theory and Bayesian Inference

We may extend this result to the sum of many random variables by the method of induction
and thus write that, in general,

(3.38)

In words, we may therefore state:

The expectation of a sum of random variables is equal to the sum of the 
individual expectations.

This statement proves the linearity property of the expectation operator, which makes this
operator all the more appealing.

PROPERTY 2 Statistical Independence

Consider next the random variable Z, defined as the product of two independent random
variables X and Y, whose probability density functions are respectively denoted by fX(x)
and fY(y). As before, the expectation of Z is defined by

except that, this time, we have

where, in the second line, we used the statistical independence of X and Y. With Z = XY, we
may therefore recast the expectation �[Z] as

(3.39)

In words, we may therefore state:

The expectation of the product of two statistically independent random 
variables is equal to the product of their individual expectations.

Here again, by induction, we may extend this statement to the product of many
independent random variables.

3.7 Second-Order Statistical Averages

Function of a Random Variable

In the previous section we studied the mean of random variables in some detail. In this
section, we expand on the mean by studying different second-order statistical averages.

� Xi
i=1

n

 �[Xi )
i=1

n

=

� Z  zfZ z  zd
–



=

fZ z  fX Y x y =

fX x fY y =

� XY  xyfX x fY y  xd yd
–



=

xfX x  xd yfY y  yd
–




–



=

� X � Y =
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3.7 Second-Order Statistical Averages 109

These statistical averages, together with the mean, complete the partial characterization
of random variables.

To this end, let X denote a random variable and let g(X) denote a real-valued function of
X defined on the real line. The quantity obtained by letting the argument of the function
g(X) be a random variable is also a random variable, which we denote as

(3.40)

To find the expectation of the random variable Y, we could, of course, find the probability
density function fY(y) and then apply the standard formula

A simpler procedure, however, is to write

(3.41)

Equation (3.41) is called the expected value rule; validity of this rule for a continuous
random variable is addressed in Problem 3.14.

EXAMPLE 4 The Cosine Transformation of a Random Variable

Let

where X is a random variable uniformly distributed in the interval (–,); that is,

According to (3.41), the expected value of Y is

This result is intuitively satisfying in light of what we know about the dependence of a
cosine function on its argument.

Second-order Moments

For the special case of g(X) = Xn, the application of (3.41) leads to the nth moment of the
probability distribution of a random variable X; that is,

(3.42)

Y g X =

� Y  yfY y  yd
–



=

� g X   g x fX x  xd
–



=

Y g X  X cos= =

fX x 
1

2
------ ,  x  –

0, otherwise





=

� Y  xcos  1
2
------ 
  xd

–



=

1
2
------ x x –=


sin–=

0=

� X
n  x

n
fX x  xd

–



=
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110 Chapter 3 Probability Theory and Bayesian Inference

From an engineering perspective, however, the most important moments of X are the first
two moments. Putting n = 1 in (3.42) gives the mean of the random variable, which was
discussed in Section 3.6. Putting n = 2 gives the mean-square value of X, defined by

(3.43)

Variance

We may also define central moments, which are simply the moments of the difference
between a random variable X and its mean X. Thus, the nth central moment of X is

(3.44)

For n = 1, the central moment is, of course, zero. For n = 2, the second central moment is
referred to as the variance of the random variable X, defined by

(3.45)

The variance of a random variable X is commonly denoted by . The square root of the
variance, namely , is called the standard deviation of the random variable X.

In a sense, the variance  of the random variable X is a measure of the variable’s
“randomness” or “volatility.” By specifying the variance  we essentially constrain the
effective width of the probability density function fX(x) of the random variable X about the
mean . A precise statement of this constraint is contained in the Chebyshev inequality,
which states that for any positive number , we have the probability

(3.46)

From this inequality we see that the mean and variance of a random variable provide a
weak description of its probability distribution; hence the practical importance of these
two statistical averages.

Using (3.43) and (3.45), we find that the variance  and the mean-square value �[X2]
are related by

(3.47)

where, in the second line, we used the linearity property of the statistical expectation
operator �. Equation (3.47) shows that if the mean X is zero, then the variance  and
the mean-square value � [X2] of the random variable X are equal.

� X
2  x

2
fX x  xd

–



=

� X X– n  (x X– nfX x  xd
–



=

var X  � X x– 2=

(x X– 2fX x  xd
–



=

X
2

X
X

2

X
2

X

�[ X X–  ]
X

2

2
------

X
2

X
2

� X
2

2XX– X
2

+ =

� X
2  2X� X – X

2
+=

� X
2  X

2
–=

X
2
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3.8 Characteristic Function 111

Covariance

Thus far, we have considered the characterization of a single random variable. Consider
next a pair of random variables X and Y. In this new setting, a set of statistical averages of
importance is the joint moments, namely the expectation of XiYk, where i and k may
assume any positive integer values. Specifically, by definition, we have

(3.48)

A joint moment of particular importance is the correlation, defined by �[XY], which
corresponds to i = k = 1 in this equation.

More specifically, the correlation of the centered random variables (X – �[X]) and 
(Y – �[Y]), that is, the joint moment

(3.49)

is called the covariance of X and Y. Let X = �[X] and Y = �[Y]; we may then expand
(3.49) to obtain the result

(3.50)

where we have made use of the linearity property of the expectation operator �. Let 
and  denote the variances of X and Y, respectively. Then, the covariance of X and Y,
normalized with respect to the product XY, is called the correlation coefficient of X and
Y, expressed as

(3.51)

The two random variables X and Y are said to be uncorrelated if, and only if, their
covariance is zero; that is, 

They are said to be orthogonal if and only if their correlation is zero; that is, 

In light of (3.50), we may therefore make the following statement:

If one of the random variables X and Y or both have zero means, and if they are 
orthogonal, then they are uncorrelated, and vice versa. 

3.8 Characteristic Function

In the preceding section we showed that, given a continuous random variable X, we can
formulate the probability law defining the expectation of Xn (i.e., nth moment of X) in
terms of the probability density function fX(x), as shown in (3.42). We now introduce
another way of formulating this probability law; we do so through the characteristic
function.

� X
i
Y

k  x
i
y

k
fX Y x y  xd yd

–




–



=

cov XY  � X � X –  Y � Y –  =

cov XY  � XY  XY–=

X
2

Y
2

 X Y  cov XY 
XY

---------------------=

cov XY  0=

� XY  0=
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112 Chapter 3 Probability Theory and Bayesian Inference

For a formal definition of this new concept, we say: 

The characteristic function of a continuous random variable X, denoted by 
, is defined as the expectation of the complex exponential function 

exp(jX), that is

(3.52)

where  is real and . 

According to the second expression on the right-hand side of (3.52), we may also view the
characteristic function  of the random variable X as the Fourier transform of the
associated probability density function fX(x), except for a sign change in the exponent. In
this interpretation of the characteristic function we have used  rather than

 so as to conform with the convention adopted in probability theory.
Recognizing that  and x play roles analogous to the variables 2f and t respectively in

the Fourier-transform theory, we may appeal to the Fourier transform theory of Chapter 2
to recover the probability density function fX(x) of the random variable X given the
characteristic function . Specifically, we may use the inversion formula to write

(3.53)

Thus, with fX(f) and X(f) forming a Fourier-transform pair, we may obtain the moments
of the random variable X from the function X(f). To pursue this issue, we differentiate
both sides of (3.52) with respect to v a total of n times, and then set  = 0; we thus get the
result

(3.54)

The integral on the right-hand side of this relation is recognized as the nth moment of the
random variable X. Accordingly, we may recast (3.54) in the equivalent form

(3.55)

This equation is a mathematical statement of the so-called moment theorem. Indeed, it is
because of (3.55) that the characteristic function  is also referred to as a moment-
generating function. 

EXAMPLE 5 Exponential Distribution

The exponential distribution is defined by

(3.56)

X  

X   � jX exp =

fX x  jx exp xd
–



=

 j 1–=

X  

j x exp
j–  x exp



X  

fX x  1
2
------ X   j–  x exp dx

–



=

d
n

d n
--------X   v=0 j n x

n
fX x  dx

–



=

� X
n  j– n d

n

d n
--------X    0=

=

X  

fX x   x– ,exp x 0
0, otherwise




=
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3.9 The Gaussian Distribution 113

where  is the only parameter of the distribution. The characteristic function of the
distribution is therefore

We wish to use this result to find the mean of the exponentially distributed random
variable X. To do this evaluation, we differentiate the characteristic function  with
respect to  once, obtaining

where the prime in  signifies first-order differentiation with respect to the
argument . Hence, applying the moment theorem of (3.55), we get the desired result

(3.57)

3.9 The Gaussian Distribution

Among the many distributions studied in the literature on probability theory, the Gaussian
distribution stands out, by far, as the most commonly used distribution in the statistical
analysis of communications systems, for reasons that will become apparent in Section
3.10. Let X denote a continuous random variable; the variable X is said to be Gaussian
distributed if its probability density function has the general form

(3.58)

where  and  are two scalar parameters that characterize the distribution. The parameter
 can assume both positive and negative values (including zero), whereas the parameter 
is always positive. Under these two conditions, the fX(x) of (3.58) satisfies all the
properties of a probability density function, including the normalization property; namely,

(3.59)

Properties of the Gaussian Distribution

A Gaussian random variable has many important properties, four of which are
summarized on the next two pages.

    x–  j x  dexpexp x
0



=


 j–
--------------=

  


X   j

 j– 2
---------------------=

X  


� X  jX    0=
–=

1

---=

fX x  1

2
-------------- x – 2

22
-------------------–exp=

1

2
-------------- x – 2

22
-------------------–exp xd

–



 1=
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114 Chapter 3 Probability Theory and Bayesian Inference

PROPERTY 1 Mean and Variance

In the defining (3.58), the parameter  is the mean of the Gaussian random variable X and
 is its variance. We may therefore state:

A Gaussian random variable is uniquely defined by specifying its mean and 
variance.

PROPERTY 2 Linear Function of a Gaussian Random Variable

Let X be a Gaussian random variable with mean  and variance . Define a new random
variable

where a and b are scalars and . Then Y is also Gaussian with mean

and variance

In words, we may state:

Gaussianity is preserved by a linear transformation.

PROPERTY 3 Sum of Independent Gaussian Random Variables

Let X and Y be independent Gaussian random variables with means X and Y,
respectively, and variances  and , respectively. Define a new random variable

The random variable Z is also Gaussian with mean

(3.60)

and variance

(3.61)

In general, we may therefore state:

The sum of independent Gaussian random variables is also a Gaussian random 
variable, whose mean and variance are respectively equal to the sum of the 
means and the sum of the variances of the constituent random variables.

PROPERTY 4 Jointly Gaussian Random Variables

Let X and Y be a pair of jointly Gaussian random variables with zero means and variances
 and , respectively. The joint probability density function of X and Y is completely

determined by X, Y, and , where  is the correlation coefficient defined in (3.51).
Specifically, we have

(3.62)

where the normalization constant c is defined by

(3.63)

2

2

Y aX b+=

a 0

� Y  a b+=

var Y  a
22

=

X
2 Y

2

Z X Y+=

� Z  X Y+=

var Z  X
2 Y

2
+=

X
2 Y

2

fX Y x y  c q x y – exp=

c 1

2 1 2
– XY

----------------------------------------=
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3.9 The Gaussian Distribution 115

and the exponential term is defined by

(3.64)

In the special case where the correlation coefficient  is zero, the joint probability density
function of X and Y assumes the simple form

(3.65)

Accordingly, we may make the statement:

If the random variables X and Y are both Gaussian with zero mean and if they 
are also orthogonal (that is, �[XY] = 0), then they are statistically independent.

By virtue of Gaussianity, this statement is stronger than the last statement made at the end
of the subsection on covariance.

Commonly Used Notation

In light of Property 1, the notation 𝒩( ) is commonly used as the shorthand
description of a Gaussian distribution parameterized in terms of its mean  and variance

. The symbol 𝒩 is used in recognition of the fact that the Gaussian distribution is also
referred to as the normal distribution, particularly in the mathematics literature.

The Standard Gaussian Distribution

When  = 0 and = 1, the probability density function of (3.58) reduces to the special
form:

(3.66)

A Gaussian random variable X so described is said to be in its standard form.4

Correspondingly, the distribution function of the standard Gaussian random variable is
defined by

(3.67)

Owing to the frequent use of integrals of the type described in (3.67), several related
functions have been defined and tabulated in the literature. The related function commonly
used in the context of communication systems is the Q-function, which is formally defined as

(3.68)

q x y  1

2 1 2
– 

----------------------- x
2

X
2

------ 2 xy
XY
-------------– y

2

Y
2

------+
 
 
 

=

fX Y x y  1
2XY
-------------------- x

2

2X
2

----------– y
2

2Y
2

---------–
 
 
 

exp=

fX x fY y =

2

2

2

fX x  1

2
---------- x

2

2
-----– 

 exp=

FX x  1

2
---------- t

2

2
----– 

 exp td
–

x

=

Q x  1 FX x –=

1

2
---------- t

2

2
----– 

 exp td
x



=
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116 Chapter 3 Probability Theory and Bayesian Inference

In words, we may describe the Q-function as follows:

The Q-function, Q(x), is equal to the area covered by the tail of the probability 
density function of the standard Gaussian random variable X, extending from x 
to infinity.

Unfortunately, the integral of (3.67) defining the standard Gaussian distribution FX(x) does
not have a closed-form solution. Rather, with accuracy being an issue of importance, FX(x) is
usually presented in the form of a table for varying x. Table 3.1 is one such recording. To
utilize this table for calculating the Q-function, we build on two defining equations:

1. For nonnegative values of x, the first line of (3.68) is used.

2. For negative values of x, use is made of the symmetric property of the Q-function:
(3.69)

Standard Gaussian Graphics

To visualize the graphical formats of the commonly used standard Gaussian functions,
FX(x), fX(x), and Q(x), three plots are presented at the bottom of this page:

1. Figure 3.10a plots the distribution function, FX(x), defined in (3.67).

2. Figure 3.10b plots the density function, fX(x), defined in (3.66).

3. Figure 3.11 plots the Q-function defined in (3.68). 

Q x–  1 Q x –=

Figure 3.10 The normalized Gaussian (a) distribution 
function and (b) probability density function.

Figure 3.11 The Q-function.
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3.9 The Gaussian Distribution 117

Table 3.1 The standard Gaussian distribution (Q-function) table5

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6460 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7485 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9149 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

1. The entries in this table, x say, occupy the range [0.0, 3.49]; the x is sample value of the random variable X. 
2. For each value of x, the table provides the corresponding value of the Q-function:

Q x  1 Fx x  1

2
---------- t

2
– 2  dtexp

x



=–=
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118 Chapter 3 Probability Theory and Bayesian Inference

3.10 The Central Limit Theorem

The central limit theorem occupies an important place in probability theory: it provides the
mathematical justification for using the Gaussian distribution as a model for an observed
random variable that is known to be the result of a large number of random events.

For a formal statement of the central limit theorem, let X1, X2, ..., Xn denote a sequence of
independently and identically distributed (iid) random variables with common mean  and
variance . Define the related random variable

(3.70)

The subtraction of the product term n from the sum  ensures that the random

variable Yn has zero mean; the division by the factor  ensures that Yn has unit variance.

Given the setting described in (3.70), the central limit theorem formally states:

As the number of random variables n in (3.70) approaches infinity, the 
normalized random variable Yn converges to the standard Gaussian random 
variable with the distribution function

in the sense that
(3.71)

where Q(y) is the Q-function.

To appreciate the practical importance of the central limit theorem, suppose that we have a
physical phenomenon whose occurrence is attributed to a large number of random events.
The theorem, embodying (3.67)–(3.71), permits us to calculate certain probabilities
simply by referring to a Q-function table (e.g., Table 3.1). Moreover, to perform the
calculation, all that we need to know are means and variances.

However, a word of caution is in order here. The central limit theorem gives only the
“limiting” form of the probability distribution of the standardized random variable Yn as n
approaches infinity. When n is finite, it is sometimes found that the Gaussian limit
provides a relatively poor approximation for the actual probability distribution of Yn, even
though n may be large.

EXAMPLE 6 Sum of Uniformly Distributed Random Variables

Consider the random variable

2

Yn
1

 n
----------- Xi n–

i 1=

n


 
 
 
 

=

Xi
i 1=

n


 n

FY y  1

2
----------= x

2

2
-----– 

 exp xd
–

y



� Yn y 
n 
lim Q y =

Yn Xi
i 1=

n

=
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3.11 Bayesian Inference 119

where the Xi are independent and uniformly distributed random variables on the interval
from –1 to +1. Suppose that we generate 20000 samples of the random variable Yn for
n = 10, and then compute the probability density function of Yn by forming a histogram of
the results. Figure 3.11a compares the computed histogram (scaled for unit area) with the
probability density function of a Gaussian random variable with the same mean and
variance. The figure clearly illustrates that in this particular example the number of
independent distributions n does not have to be large for the sum Yn to closely
approximate a Gaussian distribution. Indeed, the results of this example confirm how
powerful the central limit theorem is. Moreover, the results explain why Gaussian models
are so ubiquitous in the analysis of random signals not only in the study of communication
systems, but also in so many other disciplines.

3.11 Bayesian Inference

The material covered up to this point in the chapter has largely addressed issues involved
in the mathematical description of probabilistic models. In the remaining part of the
chapter we will study the role of probability theory in probabilistic reasoning based on the
Bayesian5 paradigm, which occupies a central place in statistical communication theory.

To proceed with the discussion, consider Figure 3.12, which depicts two finite-
dimensional spaces: a parameter space and an observation space, with the parameter
space being hidden from the observer. A parameter vector , drawn from the parameter
space, is mapped probabilistically onto the observation space, producing the observation
vector x. The vector x is the sample value of a random vector X, which provides the

Figure 3.11 Simulation supporting validity of the central limit theorem.
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120 Chapter 3 Probability Theory and Bayesian Inference

observer information about Given the probabilistic scenario depicted in Figure 3.12, we
may identify two different operations that are the dual of each other.6

1. Probabilistic modeling. The aim of this operation is to formulate the conditional
probability density function , which provides an adequate description of
the underlying physical behavior of the observation space.

2. Statistical analysis. The aim of this second operation is the inverse of probabilistic
modeling, for which we need the conditional probability density function

.

In a fundamental sense, statistical analysis is more profound than probabilistic modeling.
We may justify this assertion by viewing the unknown parameter vector  as the cause for
the physical behavior of the observation space and viewing the observation vector x as the
effect. In essence, statistical analysis solves an inverse problem by retrieving the causes
(i.e., the parameter vector ) from the effects (i.e., the observation vector x). Indeed, we
may go on to say that whereas probabilistic modeling helps us to characterize the future
behavior of x conditional on , statistical analysis permits us to make inference about 
given x.

To formulate the conditional probability density function of , we recast
Bayes’ theorem of (3.14) in its continuous version, as shown by

(3.72)

The denominator is itself defined in terms of the numerator as

(3.73)

Figure 3.12 Probabilistic model for Bayesian inference.
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x

fX  x  

f X  x 

fX  x  

f X  x 
fX  x  f  

fX x 
--------------------------------------=

fX x  fX  x  f   d

=

fX  x   d

=
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3.11 Bayesian Inference 121

which is the marginal density of X, obtained by integrating out the dependence of the joint
probability density function . In words, fX(x) is a marginal density of the joint
probability density function . The inversion formula of (3.72) is sometimes
referred to as the principle of inverse probability.

In light of this principle, we may now introduce four notions:

1. Observation density. This stands for the conditional probability density function
, referring to the “observation” vector x given the parameter vector .

2. Prior. This stands for the probability density function , referring to the
parameter vector  “prior” to receiving the observation vector x.

3. Posterior. This stands for the conditional probability density function ,
referring to the parameter vector  “after” receiving the observation vector x.

4. Evidence. This stands for the probability density function , referring to the
“information” contained in the observation vector X for statistical analysis.

The posterior  is central to Bayesian inference. In particular, we may view it as
the updating of information available on the parameter vector  in light of the information
contained in the observation vector x, while the prior  is the information available on
 prior to receiving the observation vector x.

Likelihood

The inversion aspect of statistics manifests itself in the notion of the likelihood function.7

In a formal sense, the likelihood, denoted by l(|x), is just the observation density
 reformulated in a different order, as shown by

(3.74)

The important point to note here is that the likelihood and the observation density are both
governed by exactly the same function that involves the parameter vector  and the obser-
vation vector x. There is, however, a difference in interpretation: the likelihood function
l( |x) is treated as a function of the parameter vector  given x, whereas the observation
density  is treated as a function of the observation vector x given .

Note, however, unlike , the likelihood l( |x) is not a distribution; rather, it is
a function of the parameter vector , given x.

In light of the terminologies introduced, namely the posterior, prior, likelihood, and
evidence, we may now express Bayes’ rule of (3.72) in words as follows:

The Likelihood Principle

For convenience of presentation, let

(3.75)

Then, recognizing that the evidence defined in (3.73) plays merely the role of a
normalizing function that is independent of , we may now sum up (3.72) on the principle
of inverse probability succinctly as follows:

fX  x  
fX  x  

fX  x  
f  

f X  x 

fX x 

f X  x 

f  

fX  x  

l  x  fX  x  =

fX  x  
fX  x  

posterior likelihood prior
evidence

------------------------------------------=

   f  =
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122 Chapter 3 Probability Theory and Bayesian Inference

The Bayesian statistical model is essentially made up of two components: the 
likelihood function l(|x) and the prior (), where  is an unknown parameter 
vector and x is the observation vector.

To elaborate on the significance of the defining equation (3.74), consider the likelihood
functions l( |x1) and l( |x2) on parameter vector . If, for a prescribed prior (), these
two likelihood functions are scaled versions of each other, then the corresponding
posterior densities of  are essentially identical, the validity of which is a straightforward
consequence of Bayes’ theorem. In light of this result we may now formulate the so-called
likelihood principle8 as follows:

If x1 and x2 are two observation vectors depending on an unknown parameter vector ,
such that

l( | x1) = c l( |x2) for all 

where c is a scaling factor, then these two observation vectors lead to an identical
inference on  for any prescribed prior f().

Sufficient Statistic

Consider a model, parameterized by the vector  and given the observation vector x. In
statistical terms, the model is described by the posterior density . In this context,
we may now introduce a function t(x), which is said to be a sufficient statistic if the
probability density function of the parameter vector  given t(x) satisfies the condition

(3.76)

This condition imposed on t(x), for it to be a sufficient statistic, appears intuitively
appealing, as evidenced by the following statement:

The function t(x) provides a sufficient summary of the whole information about 
the unknown parameter vector , which is contained in the observation vector x.

We may thus view the notion of sufficient statistic as a tool for “data reduction,” the use of
which results in considerable simplification in analysis.9 The data reduction power of the
sufficient statistic t(x) is well illustrated in Example 7.

3.12 Parameter Estimation

As pointed out previously, the posterior density  is central to the formulation of
a Bayesian probabilistic model, where  is an unknown parameter vector and x is the
observation vector. It is logical, therefore, that we use this conditional probability density
function for parameter estimation.10 Accordingly, we define the maximum a posteriori
(MAP) estimate of  as

(3.77)

where l( |x) is the likelihood function defined in (3.74), and () is the prior defined in
(3.75). To compute the estimate , we require availability of the prior ().

f X  x 

f X  x  f T x   t x  =

f X  x 

̂MAP max


f X  x arg=

max


l  x   arg=

̂MAP

Haykin_ch03_pp3.fm  Page 122  Saturday, November 17, 2012  5:21 PM



3.12 Parameter Estimation 123

In words, the right-hand side of (3.77) reads as follows:

Given the observation vector x, the estimate  is that particular value of the 
parameter vector  in the argument of the posterior density , for 
which this density attains its maximum value. 

Generalizing the statement made at the end of the discussion on multiple random variables
in Section 3.5, we may now go on to say that, for the problem at hand, the conditional
probability density function  contains all the conceivable information about the
multidimensional parameter vector  given the observation vector x. The recognition of
this fact leads us to make the follow-up important statement, illustrated in Figure 3.13 for
the simple case of a one-dimensional parameter vector:

The maximum a posterior estimate  of the unknown parameter vector  is 
the globally optimal solution to the parameter-estimation problem, in the sense 
that there is no other estimator that can do better.

In referring to  as the MAP estimate, we have made a slight change in our
terminology: we have, in effect, referred to  as the a posteriori density rather
than the posterior density of . We have made this minor change so as to conform to the
MAP terminology that is well and truly embedded in the literature on statistical
communication theory.

In another approach to parameter estimation, known as maximum likelihood estimation,
the parameter vector  is estimated using the formula

(3.78)

That is, the maximum likelihood estimate  is that value of the parameter vector  that
maximizes the conditional distribution  at the observation vector x. Note that
this second estimate ignores the prior () and, therefore, lies at the fringe of the Bayesian
paradigm. Nevertheless, maximum likelihood estimation is widely used in the literature on
statistical communication theory, largely because in ignoring the prior (), it is less
demanding than maximum posterior estimation in computational complexity.

Figure 3.13 Illustrating the a posteriori  for the case of a one-dimensional 
parameter space.
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124 Chapter 3 Probability Theory and Bayesian Inference

The MAP and ML estimates do share a common possibility, in that the maximizations
in (3.77) and (3.78) may lead to more than one global maximum. However, they do differ
in one important result: the maximization indicated in (3.78) may not always be possible;
that is, the procedure used to perform the maximization may diverge. To overcome this
difficulty, the solution to (3.78) has to be stabilized by incorporating prior information on
the parameter space, exemplified by the distribution (), into the solution, which brings
us back to the Bayesian approach and, therefore, (3.77). The most critical part in the
Bayesian approach to statistical modeling and parameter estimation is how to choose the
prior (). There is also the possibility of the Bayesian approach requiring high-
dimensional computations. We should not, therefore, underestimate the challenges
involved in applying the Bayesian approach, on which note we may say the following:

There is no free lunch: for every gain made, there is a price to be paid.

EXAMPLE 7 Parameter Estimation in Additive Noise

Consider a set N of scalar observations, defined by

(3.79)

where the unknown parameter  is drawn from the Gaussian distribution ; that is,

(3.80)

Each ni is drawn from another Gaussian distribution ; that is,

It is assumed that the random variables Ni are all independent of each other, and also
independent from . The issue of interest is to find the MAP of the parameter .

To find the distribution of the random variable Xi, we invoke Property 2 of the Gaussian
distribution, described in Section 3.9, in light of which we may say that Xi is also Gaussian
with mean  and variance . Furthermore, since the Ni are independent, by assumption,
it follows that the Xi are also independent. Hence, using the vector x to denote the N
observations, we express the observation density of x as

(3.81)

The problem is to determine the MAP estimate of the unknown parameter .
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3.12 Parameter Estimation 125

To solve this problem, we need to know the posterior density . Applying
(3.72), we write

(3.82)

where

(3.83)

The normalization factor c(x) is independent of the parameter  and, therefore, has no
relevance to the MAP of . We therefore need only pay attention to the exponent in (3.82).

Rearranging terms and completing the square in the exponent in (3.82), and introducing
a new normalization factor  that absorbs all the terms involving , we get

(3.84)

where

(3.85)

Equation (3.84) shows that the posterior density of the unknown parameter  is Gaussian
with mean  and variance . We therefore readily find that the MAP estimate of  is

(3.86)

which is the desired result.
Examining (3.84), we also see that the N observations enter the posterior density of 

only through the sum of the xi. It follows, therefore, that

(3.87)

is a sufficient statistic for the example at hand. This statement merely confirms that (3.84)
and (3.87) satisfy the condition of (3.76) for a sufficient statistic.
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126 Chapter 3 Probability Theory and Bayesian Inference

3.13 Hypothesis Testing

The Bayesian paradigm discussed in Section 3.11 focused on two basic issues: predictive
modeling of the observation space and statistical analysis aimed at parameter estimation.
As mentioned previously in that section, these two issues are the dual of each other. In this
section we discuss another facet of the Bayesian paradigm, aimed at hypothesis testing,11

which is basic to signal detection in digital communications, and beyond.

Binary Hypotheses

To set the stage for the study of hypothesis testing, consider the model of Figure 3.14. A
source of binary data emits a sequence of 0s and 1s, which are respectively denoted by
hypotheses H0 and H1. The source (e.g., digital communication transmitter) is followed by
a probabilistic transition mechanism (e.g., communication channel). According to some
probabilistic law, the transition mechanism generates an observation vector x that defines
a specific point in the observation space.

The mechanism responsible for probabilistic transition is hidden from the observer
(e.g., digital communication receiver). Given the observation vector x and knowledge of
the probabilistic law characterizing the transition mechanism, the observer chooses
whether hypothesis H0 or H1 is true. Assuming that a decision must be made, the observer
has to have a decision rule that works on the observation vector x, thereby dividing the
observation space Z into two regions: Z0 corresponding to H0 being true and Z1
corresponding to H1 being true. To simplify matters, the decision rule is not shown in
Figure 3.14.

In the context of a digital communication system, for example, the channel plays the
role of the probabilistic transition mechanism. The observation space of some finite

Figure 3.14 Diagram illustrating the binary hypothesis-testing problem. Note: according to the 
likelihood ration test, the bottom observation vector x is incorrectly assigned to Z1.
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3.13 Hypothesis Testing 127

dimension corresponds to the ensemble of channel outputs. Finally, the receiver performs
the decision rule.

Likelihood Receiver

To proceed with the solution to the binary hypothesis-testing problem, we introduce the
following notations:

1. , which denotes the conditional density of the observation vector x
given that hypothesis H0 is true.

2. , denotes the conditional density of x given that the other hypothesis
H1 is true.

3. 0 and 1 denote the priors of hypotheses H0 and H1, respectively.

In the context of hypothesis testing, the two conditional probability density functions
 and  are referred to as likelihood functions, or just simply

likelihoods.
Suppose we perform a measurement on the transition mechanism’s output, obtaining

the observation vector x. In processing x, there are two kinds of errors that can be made by
the decision rule:

1. Error of the first kind. This arises when hypothesis H0 is true but the rule makes a
decision in favor of H1, as illustrated in Figure 3.14.

2. Error of the second kind. This arises when hypothesis H1 is true but the rule makes a
decision in favor of H0.

The conditional probability of an error of the first kind is

where Z1 is part of the observation space that corresponds to hypothesis H1. Similarly, the
conditional probability of an error of the second kind is

By definition, an optimum decision rule is one for which a prescribed cost function is
minimized. A logical choice for the cost function in digital communications is the average
probability of symbol error, which, in a Bayesian context, is referred to as the Bayes risk.
Thus, with the probable occurrence of the two kinds of errors identified above, we define
the Bayes risk for the binary hypothesis-testing problem as

(3.88)

where we have accounted for the prior probabilities for which hypotheses H0 and H1 are
known to occur. Using the language of set theory, let the union of the disjoint subspaces Z0
and Z1 be

(3.89)

fX H0
x H0 

fX H1
x H1 
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x H0  fX H1

x H1 

fX H0
x H0  xd

Z1


fX H1
x H1  xd

Z0


ℛ 0 fX H0
x H0 dx 1 fX H1

x H1  xd
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Z1
=

Z Z0= Z1
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128 Chapter 3 Probability Theory and Bayesian Inference

Then, recognizing that the subspace Z1 is the complement of the subspace Z0 with respect
to the total observation space Z, we may rewrite (3.88) in the equivalent form:

(3.90)

The integral  represents the total volume under the conditional density

, which, by definition, equals unity. Accordingly, we may reduce (3.90) to

(3.91)

The term 0 on its own on the right-hand side of (3.91) represents a fixed cost. The integral
term represents the cost controlled by how we assign the observation vector x to Z0.
Recognizing that the two terms inside the square brackets are both positive, we must
therefore insist on the following plan of action for the average risk to be minimized:

Make the integrand in (3.91) negative for the observation vector x to be 
assigned to Z0.

In light of this statement, the optimum decision rule proceeds as follows:

1. If

then the observation vector x should be assigned to Z0, because these two terms
contribute a negative amount to the integral in (3.91). In this case, we say H0 is true.

2. If, on the other hand,

then the observation vector x should be excluded from Z0 (i.e., assigned to Z1),
because these two terms would contribute a positive amount to the integral in (3.91).
In this second case, H1 is true.

When the two terms are equal, the integral would clearly have no effect on the average risk
; in such a situation, the observation vector x may be assigned arbitrarily.
Thus, combining points (1) and (2) on the action plan into a single decision rule, we

may write

(3.92)

The observation-dependent quantity on the left-hand side of (3.92) is called the likelihood
ratio; it is defined by

(3.93)

From this definition, we see that  is the ratio of two functions of a random variable;
therefore, it follows that  is itself a random variable. Moreover, it is a one-
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3.13 Hypothesis Testing 129

dimensional variable, which holds regardless of the dimensionality of the observation
vector x. Most importantly, the likelihood ratio is a sufficient statistic.

The scalar quantity on the right-hand side of (3.92), namely,

(3.94)

is called the threshold of the test. Thus, minimization of the Bayes risk  leads to the
likelihood ratio test, described by the combined form of two decisions:

   (3.95)

Correspondingly, the hypothesis testing structure built on (3.93)–(3.95) is called the
likelihood receiver; it is shown in the form of a block diagram in Figure 3.15a. An elegant
characteristic of this receiver is that all the necessary data processing is confined to
computing the likelihood ratio . This characteristic is of considerable practical
importance: adjustments to our knowledge of the priors 0 and 1 are made simply
through the assignment of an appropriate value to the threshold .

The natural logarithm is known to be a monotone function of its argument. Moreover,
both sides of the likelihood ratio test in (3.95) are positive. Accordingly, we may express
the test in its logarithmic form, as shown by

(3.96)

where ln is the symbol for the natural logarithm. Equation (3.96) leads to the equivalent
log-likelihood ratio receiver, depicted in Figure 3.15b.


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-----=
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<
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

 x 



ln x 
H1>
<
H0

ln

Figure 3.15 Two versions of the 
likelihood receiver: (a) based on the 
likelihood ratio ; (b) based on the 
log-likelihood ratio ln .
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130 Chapter 3 Probability Theory and Bayesian Inference

EXAMPLE 8 Binary Hypothesis Testing

Consider a binary hypothesis testing problem, described by the pair of equations:

(3.97)

The term m is a constant that is nonzero only under hypothesis H1. As in Example 7, the ni
are independent and Gaussian . The requirement is to formulate a likelihood ratio
test for this example to come up with a decision rule.

Following the discussion presented in Example 7, under hypothesis H1 we write

(3.98)

As in Example 7, let the vector x denote the set of N observations xi for i = 1, 2, ..., N.
Then, invoking the independence of the ni, we may express the joint density of the xi under
hypothesis H1 as

(3.99)

Setting m to zero in (3.99), we get the corresponding joint density of the xi under
hypothesis H0 as

(3.100)

Hence, substituting (3.99) and (3.100) into the likelihood ratio of (3.93), we get (after
canceling common terms)

(3.101)

Equivalently, we may express the likelihood ratio in its logarithmic form

(3.102)

Using (3.102) in the log-likelihood ratio test of (3.96), we get
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3.13 Hypothesis Testing 131

Dividing both sides of this test by  and rearranging terms, we finally write

(3.103)

where the threshold  is itself defined by the ratio of priors, namely 0/1. Equation
(3.103) is the desired formula for the decision rule to solve the binary hypothesis-testing
problem of (3.97).

One last comment is in order. As with Example 7, the sum of the xi over the N
observations; that is,

is a sufficient statistic for the problem at hand. We say so because the only way in which
the observations can enter the likelihood ratio  is in the sum; see (3.101).

Multiple Hypotheses

Now that we understand binary hypothesis testing, we are ready to consider the more
general scenario where we have M possible source outputs to deal with. As before, we
assume that a decision must be made as to which one of the M possible source outputs was
actually emitted, given an observation vector x.

To develop insight into how to construct a decision rule for testing multiple hypotheses,
we consider first the case of M = 3 and then generalize the result. Moreover, in formulating
the decision rule, we will use probabilistic reasoning that builds on the findings of the
binary hypothesis-testing procedure. In this context, however, we find it more convenient
to work with likelihood functions rather than likelihood ratios.

To proceed then, suppose we make a measurement on the probabilistic transition
mechanism’s output, obtaining the observation vector x. We use this observation vector
and knowledge of the probability law characterizing the transition mechanism to construct
three likelihood functions, one for each of the three possible hypotheses. For the sake of
illustrating what we have in mind, suppose further that in formulating the three possible
probabilistic inequalities, each with its own inference, we get the following three results:

1.

from which we infer that hypothesis H0 or H2 is true.

2.

from which we infer that hypothesis H0 or H1 is true.

3.

from which we infer that hypothesis H1 or H0 is true.

Examining these three possible results for M = 3, we immediately see that hypothesis H0
is the only one that shows up in all three inferences. Accordingly, for the particular
scenario we have picked, the decision rule should say that hypothesis H0 is true. Moreover,
it is a straightforward matter for us to make similar statements pertaining to hypothesis H1
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132 Chapter 3 Probability Theory and Bayesian Inference

or H2. The rationale just described for arriving at this test is an example of what we mean
by probabilistic reasoning: the use of multiple inferences to reach a specific decision.

For an equivalent test, let both sides of each inequality under points 1, 2, and 3 be
divided by the evidence fX(x). Let Hi, i = 1, 2, 3, denote the three hypotheses. We may then
use the definition of joint probability density function to write

(3.104)

Hence, recognizing that the conditional probability  is actually the posterior
probability of hypothesis Hi after receiving the observation vector x, we may now go on to
generalize the equivalent test for M possible source outputs as follows:

Given an observation vector x in a multiple hypothesis test, the average 
probability of error is minimized by choosing the hypothesis Hi for which the 
posterior probability  has the largest value for i = 0, 1, ..., M – 1.

A processor based on this decision rule is frequently referred to as the MAP probability
computer. It is with this general hypothesis testing rule that earlier we made the
supposition embodied under points 1, 2, and 3.

3.14 Composite Hypothesis Testing

Throughout the discussion presented in Section 3.13, the hypotheses considered therein
were all simple, in that the probability density function for each hypothesis was
completely specified. However, in practice, it is common to find that one or more of the
probability density functions are not simple due to imperfections in the probabilistic
transition mechanism. In situations of this kind, the hypotheses are said to be composite.

As an illustrative example, let us revisit the binary hypothesis-testing problem
considered in Example 8. This time, however, we treat the mean m of the observable xi
under hypothesis H1 not as a constant, but as a variable inside some interval [ma, mb]. If,
then, we were to use the likelihood ratio test of (3.93) for simple binary hypothesis testing,
we would find that the likelihood ratio  involves the unknown mean m. We cannot
therefore compute , thereby negating applicability of the simple likelihood ratio test.

The message to take from this illustrative example is that we have to modify the
likelihood ratio test to make it applicable to composite hypotheses. To this end, consider the
model depicted in Figure 3.16, which is similar to that of Figure 3.14 for the simple case
except for one difference: the transition mechanism is now characterized by the conditional
probability density function , where  is a realization of the unknown
parameter vector , and the index i = 0, 1. It is the conditional dependence on  that makes

i fX Hi
x Hi 

fX x 
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� Hi  fX Hi
x Hi 

fX x 
--------------------------------------------- where � Hi  pi==

� Hi x 
fX x 

----------------------=

� Hi x  fX x 

fX x 
-----------------------------------=

� Hi x  for i 0 1  M 1–  = =
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 xi 
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3.15 Summary and Discussion 133

the hypotheses H0 and H1 to be of the composite kind. Unlike the simple model of Figure
3.14, we now have two spaces to deal with: an observation space and a parameter space. It
is assumed that the conditional probability density function of the unknown parameter
vector , that is, , is known for i = 0, 1.

To formulate the likelihood ratio for the composite hypotheses described in the model
of Figure 3.16, we require the likelihood function  for i = 1, 2. We may satisfy
this requirement by reducing the composite hypothesis-testing problem to a simple one by
integrating over , as shown by

(3.105)

the evaluation of which is contingent on knowing the conditional probability density
function of  given the Hi for i = 1, 2. With this specification at hand, we may now
formulate the likelihood ratio for composite hypotheses as

(3.106)

Accordingly, we may now extend applicability of the likelihood ratio test described in
(3.95) to composite hypotheses.

From this discussion, it is clearly apparent that hypothesis testing for composite
hypotheses is computationally more demanding than it is for simple hypotheses. Chapter 7
presents applications of composite hypothesis testing to noncoherent detection, in the
course of which the phase information in the received signal is accounted for.

3.15 Summary and Discussion

The material presented in this chapter on probability theory is another mathematical pillar
in the study of communication systems. Herein, the emphasis has been on how to deal
with uncertainty, which is a natural feature of every communication system in one form or

Figure 3.16 Model of composite hypothesis-testing for a binary scenario.
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134 Chapter 3 Probability Theory and Bayesian Inference

another. Typically, uncertainties affect the behavior of channels connecting the transmitter
of a communication system to its receiver. Sources of uncertainty include noise, generated
internally and externally, and interference from other transmitters.

In this chapter, the emphasis has been on probabilistic modeling, in the context of
which we did the following:

1. Starting with set theory, we went on to state the three axioms of probability theory.
This introductory material set the stage for the calculation of probabilities and
conditional probabilities of events of interest. When partial information is available
on the outcome of an experiment, conditional probabilities permit us to reason in a
probabilistic sense and thereby enrich our understanding of a random experiment.

2. We discussed the notion of random variables, which provide the natural tools for
formulating probabilistic models of random experiments. In particular, we
characterized continuous random variables in terms of the cumulative distribution
function and probability density function; the latter contains all the conceivable
information about a random variable. Through focusing on the mean of a random
variable, we studied the expectation or averaging operator, which occupies a
dominant role in probability theory. The mean and the variance, considered in that
order, provide a weak characterization of a random variable. We also introduced the
characteristic function as another way of describing the statistics of a random
variable. Although much of the material in the early part of the chapter focused on
continuous random variables, we did emphasize important aspects of discrete
random variables by describing the concept of the probability mass function (unique
to discrete random variables) and the parallel development and similar concepts that
embody these two kinds of random variables.

3. Table 3.2 on page 135 summarizes the probabilistic descriptions of some important
random variances under two headings: discrete and random. Except for the Rayleigh
random variable, these random variables were discussed in the text or are given as
end-of-chapter problems; the Rayleigh random variable is discussed in Chapter 4.
Appendix A presents advanced probabilistic models that go beyond the contents of
Table 3.2.

4. We discussed the characterization of a pair of random variables and introduced the
basic concepts of covariance and correlation, and the independence of random
variables.

5. We provided a detailed description of the Gaussian distribution and discussed its
important properties. Gaussian random variables play a key role in the study of
communication systems.

The second part of the chapter focused on the Bayesian paradigm, wherein inference may
take one of two forms:

• Probabilistic modeling, the aim of which is to develop a model for describing the
physical behavior of an observation space.

• Statistical analysis, the aim of which is the inverse of probabilistic modeling.

In a fundamental sense, statistical analysis is more profound than probabilistic modeling,
hence the focused attention on it in the chapter.
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Table 3.2 Some important random variables

Discrete random variables

1. Bernoulli

2. Poisson

Continuous random variables

1. Uniform

2. Exponential

3. Gaussian

4. Rayleigh

5. Laplacian
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136 Chapter 3 Probability Theory and Bayesian Inference

Under statistical analysis, viewed from a digital communications perspective, we
discussed the following:

1. Parameter estimation, where the requirement is to estimate an unknown parameter
given an observation vector; herein we covered:

• the maximum a posteriori (MAP) rule that requires prior information, and 
• the maximum likelihood procedure that by-passes the need for the prior and

therefore sits on the fringe of the Bayesian paradigm.
2. Hypothesis testing, where in a simple but important scenario, we have two

hypotheses to deal with, namely H1 and H0. In this case, the requirement is to make
an optimal decision in favor of hypothesis H1 or hypothesis H0 given an observation
vector. The likelihood ratio test plays the key role here.

To summarize, the material on probability theory sets the stage for the study of stochastic
processes in Chapter 4. On the other hand, the material on Bayesian inference plays a key
role in Chapters 7, 8, and 9 in one form or another.

Problems

Set Theory

3.1 Using Venn diagrams, justify the five properties of the algebra of sets, which were stated (without
proofs) in Section 3.1: 

a. idempotence property

b. commutative property

c. associative property

d. distributive property

e. De Morgan’s laws.

3.2 Let A and B denote two different sets. Validate the following three equalities:

a.

b.

c.

Probability Theory

3.3 Using the Bernoulli distribution of Table 3.2, develop an experiment that involves three independent
tosses of a fair coin. Irrespective of whether the toss is a head or tail, the probability of every toss is
to be conditioned on the results of preceding tosses. Display graphically the sequential evolution of
the results.

3.4 Use Bayes’ rule to convert the conditioning of event B given event Ai into the conditioning of event
Ai given event B for the i = 1, 2, , N.

3.5 A discrete memoryless channel is used to transmit binary data. The channel is discrete in that it is
designed to handle discrete messages and it is memoryless in that at any instant of time the channel
output depends on the channel input only at that time. Owing to the unavoidable presence of noise in
the channel, errors are made in the received binary data stream. The channel is symmetric in that the
probability of receiving symbol 1 when symbol 0 is sent is the same as the probability of receiving
symbol 0 when symbol 1 is sent.
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The transmitter sends 0s across the channel with probability p0 and 1s with probability p1. The
receiver occasionally makes random decision errors with probability p; that is, when symbol 0 is
sent across the channel, the receiver makes a decision in favor of symbol 1, and vice versa.

Referring to Figure P3.5, determine the following a posteriori probabilities: 

a. The conditional probability of sending symbol A0 given that symbol B0 was received.

b. The conditional probability of sending symbol A1 given that symbol B1 was received.

Hint: Formulate expressions for the probability of receiving event B0, and likewise for event B1.

3.6 Let B1, B2, , Bn denote a set of joint events whose union equals the sample space S, and assume
that �[Bi] > 0 for all i. Let A be any event in the sample space S.

a. Show that

b. The total probability theorem states:

This theorem is useful for finding the probability of event B when the conditional probabilities
�[A |Bi] are known or easy to find for all i. Justify the theorem.

3.7 Figure P3.7 shows the connectivity diagram of a computer network that connects node A to node B
along different possible paths. The labeled branches of the diagram display the probabilities for
which the links in the network are up; for example, 0.8 is the probability that the link from node A to
intermediate node C is up, and so on for the other links. Link failures in the network are assumed to
be independent of each other.

a. When all the links in the network are up, find the probability that there is a path connecting node
A to node B.

b. What is the probability of complete failure in the network, with no connection from node A to
node B?
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138 Chapter 3 Probability Theory and Bayesian Inference

Distribution Functions

3.8 The probability density function of a continuous random variable X is defined by

Despite the fact that this function becomes infinitely large as x approaches zero, it may qualify to be a
legitimate probability density function. Find the value of scalar c for which this condition is satisfied.

3.9 The joint probability density function of two random variables X and Y is defined by the two-
dimensional uniform distribution

Find the scalar c for which fX,Y(x,y) satisfies the normalization property of a two-dimensional
probability density function.

3.10 In Table 3.2, the probability density function of a Rayleigh random variable is defined by

a. Show that the mean of X is 

b. Using the result of part a, show that the variance of X is

c. Use the results of a and b to determine the Rayleigh cumulative distribution function.

3.11 The probability density function of an exponentially distributed random variable X is defined by

where  is a positive parameter.

a. Show that fX(x) is a legitimate probability density function.

b. Determine the cumulative distribution function of X. 

3.12 Consider the one-sided conditional exponential distribution

where  > 0 and Z() is the normalizing constant required to make the area under fX(x|) equal
unity.

a. Determine the normalizing constant Z().

b. Given N independent values of x, namely x1, x2, , xN, use Bayes’ rule to formulate the
conditional probability density function of the parameter , given this data set.

fX x 
c

x
------ for 0 x 1 

0 otherwise





=

fX Y x y 
c for a x b and a y b  
0 otherwise




=

fX x  x

2
------ x

2

22
---------–

 
 
 

for x 0 and  0exp=

𝔼 X   
2
---=

var X  2

2
---– 

  2
=

fX x 
 exp x–  for 0 x  
0 otherwise




=

fX x  


Z  
----------- x– ,exp 1 x 20 

0, otherwise





=
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Expectation Operator

3.13 In Section 3.6 we described two properties of the expectation operator �, one on linearity and the
other on statistical independence. In this problem, we address two other important properties of the
expectation operator.

a. Scaling property: Show that

�(ax) = a�[X]

where a is a constant scaling factor.

b. Linearity of conditional expectation: Show that

�[X1 + X2|Y] = �[X1|Y] + �[X2|Y]

3.14 Validate the expected value rule of (3.41) by building on two expressions:

a.

b. For any  provided that 

3.15 Let X be a discrete random variable with probability mass function pX(x) and let g(X) be a function
of the random variable X. Prove the following rule:

where the summation is over all possible discrete values of X.

3.16 Continuing with the Bernoulli random variable X in (3.23), find the mean and variance of X.

3.17 The mass probability function of the Poisson random variable X is defined by

Find the mean and variance of X.

3.18 Find the mean and variance of the exponentially distributed random variable X in Problem 3.11.

3.19 The probability density function of the Laplacian random variable X in Table 3.2 is defined by

for the parameter  > 0. Find the mean and variance of X.

3.20 In Example 5 we used the characteristic function  to calculate the mean of an exponentially
distributed random variable X. Continuing with that example, calculate the variance of X and check
your result against that found in Problem 3.18.

3.21 The characteristic function of a continuous random variable X, denoted by , has some
important properties of its own:

a. The transformed version of the random variable X, namely, aX + b, has the following
characteristic function

where a and b are constants.

b. The characteristic function  is real if, and only if, the distribution function FX(x), pertaining
to the random variable X, is symmetric.

g x  max g x  0  max g– x  0 –=

a 0 g x  a max g x  0  a

� g X   g x pX x 
x
=

pX k  1
k!
----k –  k 0 1 2  and  0   =exp=

fX x 

1
2
--- x– exp for x 0

1
2
---  x exp for x 0









=

 j 

  

� j aX b+  exp  jb  X a exp=

  
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140 Chapter 3 Probability Theory and Bayesian Inference

Prove the validity of these two properties, and demonstrate that property b is satisfied by the two-
sided exponential distribution described in Problem 3.19.

3.22 Let X and Y be two continuous random variables. One version of the total expectation theorem states

Justify this theorem.

Inequalities and Theorems

3.23 Let X be a continuous random variable that can only assume nonnegative values. The Markov
inequality states

Justify this inequality.

3.24 In (3.46) we stated the Chebyshev inequality without proof. Justify this inequality. 
Hint: consider the probability  and then apply the Markov inequality, considered
in Problem 3.23, with a = 2.

3.25 Consider a sequence X1, X2, ..., Xn of independent and identically distributed random variables with

mean  and variance . The sample mean of this sequence is defined by

The weak law of large numbers states

Justify this law. Hint: use the Chebyshev inequality.

3.26 Let event A denote one of the possible outcomes of a random experiment. Suppose that in n
independent trials of the experiment the event A occurs nA times. The ratio

is called the relative frequency or empirical frequency of the event A. Let p = �[A] denote the
probability of the event A. The experiment is said to exhibit “statistical regularity” if the relative
frequency Mn is most likely to be within  of p for large n. Use the weak law of large numbers,
considered in Problem 3.25, to justify this statement.

The Gaussian Distribution

3.27 In the literature on signaling over additive white Gaussian noise (AWGN) channels, formulas are
derived for probabilistic error calculations using the complementary error function

Show that the erfc(x) is related to the Q-function as follows

a.

b.

� X  �[X Y
–



 y]= = fY y dy

� X a  1
a
---� X  a 0

� X – 2 2 

2

Mn
1
n
--- Xi

i=1

n

=

� Mn –  
n 
lim 0 for  0=

Mn

nA

n
------=

erfc x  1
1


-------– t

2
– exp  dt

0

x

=

Q x  1
2
---  erfc

x

2
------- 
 =

erfc x  2Q 2 x =
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3.28 Equation (3.58) defines the probability density function of a Gaussian random variable X. Show that
the area under this function is unity, in accordance with the normalization property described in
(3.59).

3.29 Continuing with Problem3.28, justify the four properties of the Gaussian distribution stated in
Section 3.8 without proofs.

 3.30 a. Show that the characteristic function of a Gaussian random variable X of mean X and variance
 is

b. Using the result of part a, show that the nth central moment of this Gaussian random variable is
as follows:

3.31 A Gaussian-distributed random variable X of zero mean and variance  is transformed by a
piecewise-linear rectifier characterized by the input–output relation (see Figure P3.31):

 

The probability density function of the new random variable Y is described by

a. Explain the physical reasons for the functional form of this result.

b. Determine the value of the constant k by which the delta function (y) is weighted.

3.32 In Section 3.9 we stated the central limit theorem embodied in (3.71) without proof. Justify this
theorem.

Bayesian Inference

3.33 Justify the likelihood principle stated (without proof) in Section 3.11.

3.34 In this problem we address a procedure for estimating the mean of the random variable; the
procedure was discussed in Section 3.6.

X
2

X   j X
1
2
---2X

2
– 

 exp=

� X X– n 
1 3 5 n 1– X

n for n even

0 for n odd



=

X
2

Y X, X 0
0, X 0




=

Figure P3.31
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----------–
 
 
 
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









=
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142 Chapter 3 Probability Theory and Bayesian Inference

Consider a Gaussian-distributed variable X with unknown mean X and unit variance. The mean X
is itself a random variable, uniformly distributed over the interval [a, b]. To do the estimation, we are
given N independent observations of the random variable X. Justify the estimator of (3.36).

3.35 In this problem, we address the issue of estimating the standard deviation  of a Gaussian-
distributed random variable X of zero mean. The standard deviation itself is uniformly distributed
inside the interval [1, 2]. For the estimation, we have N independent observations of the random
variable X, namely, x1, x2, ..., xN.

a. Derive a formula for the estimator  using the MAP rule.

b. Repeat the estimation using the maximum likelihood criterion.

c. Comment on the results of parts a and b.

3.36 A binary symbol X is transmitted over a noisy channel. Specifically, symbol X = 1 is transmitted with
probability p and symbol X = 0 is transmitted with probability (1 – p). The received signals at the
channel output are defined by

Y = X + N

The random variable N represents channel noise, modeled as a Gaussian-distributed random variable
with zero mean and unit variance. The random variables X and N are independent.

a. Describe how the conditional probability �[X = 0|Y = y] varies with increasing y, all the way
from  to .

b. Repeat the problem for the conditional probability �[X = 1|Y = y].

3.37 Consider an experiment involving the Poisson distribution, whose parameter  is unknown. Given
that the distribution of  follows the exponential law

where a > 0, show that the MAP estimate of the parameter  is given by

where k is the number of events used in the observation.

3.38 In this problem we investigate the use of analytic arguments to justify the optimality of the MAP
estimate for the simple case of a one-dimensional parameter vector.

Define the estimation error

where is the value of an unknown parameter,  is the estimator to be optimized, and x is the
observation vector. Figure P3.38 shows a uniform cost function, C(e), for this problem, with zero
cost being incurred only when the absolute value of the estimation error  is less than or equal
to /2.

a. Formulate the Bayes’ risk  for this parameter estimation problem, accounting for the joint
probability density function fA,X( ,x). 

b. Hence, determine the MAP estimate  by minimizing the risk  with respect to . For
this minimization, assume that  is an arbitrarily small number but nonzero.

̂

– +

fn   a a– ,exp  0
0, otherwise




=

̂MAP k  k
1 a+
------------=

e x   ̂ x –=

 ̂ x 

e x 

ℛ


̂MAP ℛ ̂ x 
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3.39 In this problem we generalize the likelihood ratio test for simple binary hypotheses by including
costs incurred in the decision-making process. Let Cij denote the cost incurred in deciding in favor of
hypothesis Hi when hypothesis Hj is true. Hence, show that the likelihood ratio test of (3.95) still
holds, except for the fact that the threshold of the test is now defined by

3.40 Consider a binary hypothesis-testing procedure where the two hypotheses H0 and H1 are described
by different Poisson distributions, characterized by the parameters 0 and 1, respectively. The
observation is simply a number of events k, depending on whether H0 or H1 is true. Specifically, for
these two hypotheses, the probability mass functions are defined by

where i = 0 for hypothesis H0 and i = 1 for hypothesis H1. Determine the log-likelihood ratio test for
this problem.

3.41 Consider the binary hypothesis-testing problem
H1 : X = M + N

H0 : X = N

The M and N are independent exponentially distributed random variables, as shown by

Determine the likelihood ratio test for this problem.

3.42 In this problem we revisit Example 8. But this time we assume that the mean m under hypothesis H1
is Gaussian distributed, as shown by

a. Derive the likelihood ratio test for the composite hypothesis scenario just described.

b. Compare your result with that derived in Example 8.

Figure P3.38
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Notes

1. For a readable account of probability theory, see Bertsekas and Tsitsiklis (2008). For an advanced
treatment of probability theory aimed at electrical engineering, see the book by Fine (2006). For an
advanced treatment of probability theory, see the two-volume book by Feller (1968, 1971).

2. For an interesting account of inference, see the book by MacKay (2003).

3. For a detailed treatment of the characterization of discrete random variables, see Chapter 2 of the
book by Bertsekas and Tsitsiklis (2008).

4. Indeed, we may readily transform the probability density function of (3.58) into the standard
form by using the linear transformation

In so doing, (3.58) is simplified as follows: 

which has exactly the same mathematical form as (3.65), except for the use of y in place of x.

5. Calculations based on Bayes’ rule, presented previously as (3.14), are referred to as “Bayesian.”
In actual fact, Bayes provided a continuous version of the rule; see (3.72). In a historical context, it is
also of interest to note that the full generality of (3.72) was not actually perceived by Bayes; rather,
the task of generalization was left to Laplace.

6. It is because of this duality that the Bayesian paradigm is referred to as a principle of duality; see
Robert (2001). Robert’s book presents a detailed and readable treatment of the Bayesian paradigm.
For a more advanced treatment of the subject, see Bernardo and Smith (1998).

7. In a paper published in 1912, R.A. Fisher moved away from the Bayesian approach. Then, in a
classic paper published in 1922, he introduced the likelihood.

8. In Appendix B of their book, Bernardo and Smith (1998) show that many non-Bayesian inference
procedures do not lead to identical inferences when applied to such proportional likelihoods.

9. For detailed discussion of the sufficient statistic, see Bernardo and Smith (1998).

10. A more detailed treatment of parameter-estimation theory is presented in the classic book by
Van Trees (1968); the notation used by Van Trees is somewhat different from that used in this
chapter. See also the book by McDonough and Whalen (1995).

11. For a more detailed treatment and readable account of hypothesis testing, see the classic book
by Van Trees (1968). See also the book by McDonough and Whalen (1995).

Y
1

--- X – =

fY y  1

2
---------- y

2
2– exp=
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CHAPTER

4
Stochastic Processes

4.1 Introduction

Stated in simple terms, we may say:

A stochastic process is a set of random variables indexed in time.

Elaborating on this succinct statement, we find that in many of the real-life phenomena
encountered in practice, time features prominently in their description. Moreover, their
actual behavior has a random appearance. Referring back to the example of wireless
communications briefly described in Section 3.1, we find that the received signal at the
wireless channel output varies randomly with time. Processes of this kind are said to be
random or stochastic;1 hereafter, we will use the term “stochastic.” Although probability
theory does not involve time, the study of stochastic processes naturally builds on
probability theory. 

The way to think about the relationship between probability theory and stochastic
processes is as follows. When we consider the statistical characterization of a stochastic
process at a particular instant of time, we are basically dealing with the characterization of
a random variable sampled (i.e., observed) at that instant of time. When, however, we
consider a single realization of the process, we have a random waveform that evolves
across time. The study of stochastic processes, therefore, embodies two approaches: one
based on ensemble averaging and the other based on temporal averaging. Both
approaches and their characterizations are considered in this chapter.

Although it is not possible to predict the exact value of a signal drawn from a stochastic
process, it is possible to characterize the process in terms of statistical parameters such as
average power, correlation functions, and power spectra. This chapter is devoted to the
mathematical definitions, properties, and measurements of these functions, and related issues.

4.2 Mathematical Definition of a Stochastic Process

To summarize the introduction: stochastic processes have two properties. First, they are
functions of time. Second, they are random in the sense that, before conducting an experiment,
it is not possible to define the waveforms that will be observed in the future exactly.

In describing a stochastic process, it is convenient to think in terms of a sample space.
Specifically, each realization of the process is associated with a sample point. The totality
of sample points corresponding to the aggregate of all possible realizations of the
stochastic process is called the sample space. Unlike the sample space in probability
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146 Chapter 4 Stochastic Processes

theory, each sample point of the sample space pertaining to a stochastic process is a
function of time. We may therefore think of a stochastic process as the sample space or
ensemble composed of functions of time. As an integral part of this way of thinking, we
assume the existence of a probability distribution defined over an appropriate class of sets
in the sample space, so that we may speak with confidence of the probability of various
events observed at different points of time.2

Consider, then, a stochastic process specified by 

a. outcomes s observed from some sample space S; 

b. events defined on the sample space S; and 

c. probabilities of these events. 

Suppose that we assign to each sample point s a function of time in accordance with the rule

where 2T is the total observation interval. For a fixed sample point sj, the graph of the
function X(t, sj) versus time t is called a realization or sample function of the stochastic
process. To simplify the notation, we denote this sample function as

 (4.1)

Figure 4.1 illustrates a set of sample functions {xj(t)| j = 1, 2, , n}. From this figure, we
see that, for a fixed time tk inside the observation interval, the set of numbers

X t s  T t T –

xj t  X t sj  T– t T =

x1 tk  x2 tk   xn tk    X tk s1  X tk s2   X tk sn   =

Figure 4.1 An ensemble of sample functions.
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4.3 Two Classes of Stochastic Processes: Strictly Stationary and Weakly Stationary 147

constitutes a random variable. Thus, a stochastic process X(t, s) is represented by the time-
indexed ensemble (family) of random variables {X(t, s)}. To simplify the notation, the
customary practice is to suppress the s and simply use X(t) to denote a stochastic process.
We may now formally introduce the definition: 

A stochastic process X(t) is an ensemble of time functions, which, together with 
a probability rule, assigns a probability to any meaningful event associated with 
an observation of one of the sample functions of the stochastic process. 

Moreover, we may distinguish between a random variable and a random process as
follows. For a random variable, the outcome of a stochastic experiment is mapped into a
number. On the other hand, for a stochastic process, the outcome of a stochastic
experiment is mapped into a waveform that is a function of time.

4.3 Two Classes of Stochastic Processes: Strictly Stationary and 
Weakly Stationary

In dealing with stochastic processes encountered in the real world, we often find that the
statistical characterization of a process is independent of the time at which observation of
the process is initiated. That is, if such a process is divided into a number of time intervals,
the various sections of the process exhibit essentially the same statistical properties. Such
a stochastic process is said to be stationary. Otherwise, it is said to be nonstationary.
Generally speaking, we may say:

A stationary process arises from a stable phenomenon that has evolved into a 
steady-state mode of behavior, whereas a nonstationary process arises from an 
unstable phenomenon.

To be more precise, consider a stochastic process X(t) that is initiated at . Let
X(t1), X(t2), , X(tk) denote the random variables obtained by sampling the process X(t) at
times t1, t2, , tk, respectively. The joint (cumulative) distribution function of this set of
random variables is . Suppose next we shift all the sampling
times by a fixed amount  denoting the time shift, thereby obtaining the new set of random
variables: X(t1), X(t2), , X(tk+). The joint distribution function of this latter set of
random variables is . The stochastic process X(t) is said to
be stationary in the strict sense, or strictly stationary, if the invariance condition

(4.2)

holds for all values of time shift , all positive integers k, and any possible choice of
sampling times t1, , tk. In other words, we may state:

A stochastic process X(t), initiated at time , is strictly stationary if the 
joint distribution of any set of random variables obtained by observing the 
process X(t) is invariant with respect to the location of the origin t = 0. 

Note that the finite-dimensional distributions in (4.2) depend on the relative time
separation between random variables, but not on their absolute time. That is, the stochastic
process has the same probabilistic behavior throughout the global time t.

t –=

FX t1   X tk   x1  xk  

FX t1 +   X tk +   x1  xk  

FX t1 +   X tk +   x1  xk   FX t1   X tk   x1  xk  =

t –=
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Similarly, we may say that two stochastic processes X(t) and Y(t) are jointly strictly
stationary if the joint finite-dimensional distributions of the two sets of stochastic
variables  and  are invariant with respect to the origin
t = 0 for all positive integers k and j, and all choices of the sampling times t1, , tk and

.
Returning to (4.2), we may identify two important properties:

1. For k = 1, we have

 (4.3)

In words, the first-order distribution function of a strictly stationary stochastic
process is independent of time t.

2. For k = 2 and  = –t2, we have

(4.4)

In words, the second-order distribution function of a strictly stationary stochastic
process depends only on the time difference between the sampling instants and not
on the particular times at which the stochastic process is sampled.

These two properties have profound practical implications for the statistical
parameterization of a strictly stationary stochastic process, as discussed in Section 4.4.

EXAMPLE 1 Multiple Spatial Windows for Illustrating Strict Stationarity

Consider Figure 4.2, depicting three spatial windows located at times t1, t2, t3. We wish to
evaluate the probability of obtaining a sample function x(t) of a stochastic process X(t) that
passes through this set of windows; that is, the probability of the joint event

Suppose now the stochastic process X(t) is known to be strictly stationary. An implication
of strict stationarity is that the probability of the set of sample functions of this process
passing through the windows of Figure 4.3a is equal to the probability of the set of sample
functions passing through the corresponding time-shifted windows of Figure 4.3b. Note,
however, that it is not necessary that these two sets consist of the same sample functions.

X t1   X tk  Y t1   Y tj 

t1  tj 

FX t  x  FX t +  x  FX x  for all t and= =

FX t1  X t2  x1 x2  FX 0  X t1 t2–  x1 x2  for all t1 and t
2

=

Figure 4.2 Illustrating the probability of a joint event.

� A  FX t1  X t2  X t3  b1 b2 b3   FX t1  X t2  X t3  a1 a2 a3  = =

b1

a1
b3

a3

t3t1

a2

t2

b2

A possible
sample
function 

t
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Another important class of stochastic processes is the so-called weakly stationary
processes. To be specific, a stochastic process X(t) is said to be weakly stationary if its
second-order moments satisfy the following two conditions:

1. The mean of the process X(t) is constant for all time t.

2. The autocorrelation function of the process X(t) depends solely on the difference
between any two times at which the process is sampled; the “auto” in autocorrelation
refers to the correlation of the process with itself.

In this book we focus on weakly stationary processes whose second-order statistics satisfy
conditions 1 and 2; both of them are easy to measure and considered to be adequate for
practical purposes. Such processes are also referred to as wide-sense stationary processes
in the literature. Henceforth, both terminologies are used interchangeably.

4.4 Mean, Correlation, and Covariance Functions of 
Weakly Stationary Processes

Consider a real-valued stochastic process X(t). We define the mean of the process X(t) as
the expectation of the random variable obtained by sampling the process at some time t, as
shown by

 (4.5)

Figure 4.3
Illustrating the concept of 
stationarity in Example 1.

(a)

b1

a1

b3

a3

t3
t

t1

a2

t2

b2

(b)

b1
a1

b3

a3

t3 +
t

t1 + 

a2

t2 +

b2τ
τ

τ

X t  � X t  =

xfX t  x  dx
–



=
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where  is the first-order probability density function of the process X(t), observed
at time t; note also that the use of single X as subscript in X(t) is intended to emphasize
the fact that X(t) is a first-order moment. For the mean X(t) to be a constant for all time t
so that the process X(t) satisfies the first condition of weak stationarity, we require that
fX(t)(x) be independent of time t. Consequently, (4.5) simplifies to

(4.6)

We next define the autocorrelation function of the stochastic process X(t) as the
expectation of the product of two random variables, X(t1) and X(t2), obtained by sampling
the process X(t) at times t1 and t2, respectively. Specifically, we write

(4.7)

where  is the joint probability density function of the process X(t)
sampled at times t1 and t2; here, again, note that the use of the double X subscripts is
intended to emphasize the fact that MXX(t1, t2) is a second-order moment. For MXX(t1,t2) to
depend only on the time difference t2 – t1 so that the process X(t) satisfies the second
condition of weak stationarity, it is necessary for  to depend only on the
time difference t2 – t1. Consequently, (4.7) reduces to

(4.8)

In (4.8) we have purposely used two different symbols for the autocorrelation function:
MXX(t1, t2) for any stochastic process X(t) and RXX(t2 – t1) for a stochastic process that is
weakly stationary.

Similarly, the autocovariance function of a weakly stationary process X(t) is defined by

(4.9)

Equation (4.9) shows that, like the autocorrelation function, the autocovariance function of
a weakly stationary process X(t) depends only on the time difference (t2 – t1). This
equation also shows that if we know the mean and the autocorrelation function of the
process X(t), we can uniquely determine the autocovariance function. The mean and
autocorrelation function are therefore sufficient to describe the first two moments of the
process.

However, two important points should be carefully noted:

1. The mean and autocorrelation function only provide a weak description of the
distribution of the stochastic process X(t).

2. The conditions involved in defining (4.6) and (4.8) are not sufficient to guarantee the
stochastic process X(t) to be strictly stationary, which emphasizes a remark that was
made in the preceding section.

fX t  x 

X t  X for all t=

MXX t1 t2  � X t1 X t2  =

x1x2 fX t1  X t2  x1 x2  dx1 dx2
–




–



=

fX t1  X t2  x1 x2 

fX t1  X t2  x1 x2 

MXX t1 t2  � X t1 X t2  =

R= XX t2 t1–  for all t1 and t2

CXX t1 t2  � X t1  X–  X t2  X–  =

RXX t2 t1–  X
2

–=
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4.4 Mean, Correlation, and Covariance Functions of Weakly Stationary Processes 151

Nevertheless, practical considerations often dictate that we simply limit ourselves to a
weak description of the process given by the mean and autocorrelation function because
the computation of higher order moments can be computationally intractable. 

Henceforth, the treatment of stochastic processes is confined to weakly stationary pro-
cesses, for which the definitions of the second-order moments in (4.6), (4.8), and (4.9) hold.

Properties of the Autocorrelation Function

For convenience of notation, we reformulate the definition of the autocorrelation function
of a weakly stationary process X(t), presented in (4.8), as

(4.10)

where denotes a time shift; that is, . This autocorrelation function
has several important properties.

PROPERTY 1 Mean-square Value

The mean-square value of a weakly stationary process X(t) is obtained from RXX() simply
by putting  = 0 in (4.10), as shown by

(4.11)

PROPERTY 2 Symmetry

The autocorrelation function RXX() of a weakly stationary process X(t) is an even
function of the time shift ; that is, 

(4.12)

This property follows directly from (4.10). Accordingly, we may also define the
autocorrelation function RXX  as

In words, we may say that a graph of the autocorrelation function RXX(), plotted versus ,
is symmetric about the origin.

PROPERTY 3 Bound on the Autocorrelation Function

The autocorrelation function RXX() attains its maximum magnitude at  = 0; that is,

(4.13)

To prove this property, consider the nonnegative quantity

Expanding terms and taking their individual expectations, we readily find that

which, in light of (4.11) and (4.12), reduces to

RXX   � X t + X t   for all t=

t t2 and  t1 t2–= =

RXX 0  � X
2

t  =

RXX   RXX – =

 

RXX   � X t X t –  =

RXX   RXX 0 

� X t +  X t  2  0

� X
2

t +   2� X t +   � X
2

t   0+

2RXX 0  2RXX   0
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Equivalently, we may write

from which (4.13) follows directly.

PROPERTY 4 Normalization

Values of the normalized autocorrelation function

(4.14)

are confined to the range [–1, 1].

This last property follows directly from (4.13).

Physical Significance of the Autocorrelation Function

The autocorrelation function RXX  is significant because it provides a means of
describing the interdependence of two random variables obtained by sampling the
stochastic process X(t) at times  seconds apart. It is apparent, therefore, that the more
rapidly the stochastic process X(t) changes with time, the more rapidly will the
autocorrelation function RXX() decrease from its maximum RXX(0) as  increases, as
illustrated in Figure 4.4. This behavior of the autocorrelation function may be
characterized by a decorrelation time dec, such that, for  > dec, the magnitude of the
autocorrelation function RXX( ) remains below some prescribed value. We may thus
introduce the following definition:

The decorrelation time dec of a weakly stationary process X(t) of zero mean is 
the time taken for the magnitude of the autocorrelation function RXX(t) to 
decrease, for example, to 1% of its maximum value RXX(0).

For the example used in this definition, the parameter dec is referred to as the one-percent
decorrelation time.

EXAMPLE 2 Sinusoidal Wave with Random Phase

Consider a sinusoidal signal with random phase, defined by

(4.15)

RXX 0  RXX   RXX 0 –

XX  
RXX  
RXX 0 
------------------=

 

Figure 4.4
Illustrating the 
autocorrelation 
functions of slowly and 
rapidly fluctuating 
stochastic processes.

X t  A 2fct + cos=

0

Slowly fluctuating
stochastic process

Rapidly fluctuating
stochastic process

RXX( )τ

τ
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where A and fc are constants and  is a random variable that is uniformly distributed over
the interval [–]; that is,

(4.16)

According to (4.16), the random variable  is equally likely to have any value  in the
interval [– ]. Each value of  corresponds to a point in the sample space S of the
stochastic process X(t).

The process X(t) defined by (4.15) and (4.16) may represent a locally generated carrier
in the receiver of a communication system, which is used in the demodulation of a
received signal. In such an application, the random variable  in (4.15) accounts for
uncertainties experienced in the course of signal transmission across the communication
channel.

The autocorrelation function of X(t) is

The first term integrates to zero, so we simply have

(4.17)

which is plotted in Figure 4.5. From this figure we see that the autocorrelation function of
a sinusoidal wave with random phase is another sinusoid at the same frequency in the
“local time domain” denoted by the time shift  rather than the global time domain
denoted by t.

Figure 4.5 Autocorrelation function of a sine wave with random phase.

f  
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RXX   � X t + X t  =
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154 Chapter 4 Stochastic Processes

EXAMPLE 3 Random Binary Wave

Figure 4.6 shows the sample function x(t) of a weakly stationary process X(t) consisting of
a random sequence of binary symbols 1 and 0. Three assumptions are made:

1. The symbols 1 and 0 are represented by pulses of amplitude +A and –A volts
respectively and duration T seconds.

2. The pulses are not synchronized, so the starting time td of the first complete pulse
for positive time is equally likely to lie anywhere between zero and T seconds. That
is, td is the sample value of a uniformly distributed random variable Td, whose
probability density function is defined by

3. During any time interval (n  – 1)T < t  – td < nT, where n is a positive integer, the
presence of a 1 or a 0 is determined by tossing a fair coin. Specifically, if the
outcome is heads, we have a 1; if the outcome is tails, we have a 0. These two
symbols are thus equally likely, and the presence of a 1 or 0 in any one interval is
independent of all other intervals.

Since the amplitude levels –A and +A occur with equal probability, it follows immediately
that �[X(t)] = 0 for all t and the mean of the process is therefore zero.

To find the autocorrelation function RXX(tk,ti), we have to evaluate the expectation
�[X(tk)X(ti)], where X(tk) and X(ti) are random variables obtained by sampling the
stochastic process X(t) at times tk and ti respectively. To proceed further, we need to
consider two distinct conditions:

Condition 1: |tk – ti| > T

Under this condition, the random variables X(tk) and X(ti) occur in different pulse intervals
and are therefore independent. We thus have

Figure 4.6 Sample function of random binary wave.

fTd
td 

1
T
--- , 0 td T 

0, elsewhere





=

� X tk X ti   � X tk  � X ti   0, tk ti– T= =

td T

x(t)

t

 +A

 –A
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Condition 2: |tk – ti| > T, with tk = 0 and ti < tk

Under this second condition, we observe from Figure 4.6 that the random variables X(tk)
and X(ti) occur in the same pulse interval if, and only if, the delay td satisfies the condition
td < T – |tk – ti|. We thus have the conditional expectation

Averaging this result over all possible values of td, we get

By similar reasoning for any other value of tk, we conclude that the autocorrelation
function of a random binary wave, represented by the sample function shown in Figure
4.6, is only a function of the time difference = tk – ti, as shown by

(4.18)

This triangular result, described in (4.18), is plotted in Figure 4.7.

Cross-correlation Functions

Consider next the more general case of two stochastic processes X(t) and Y(t) with
autocorrelation functions MXX(t, u) and MYY(t, u) respectively. There are two possible
cross-correlation functions of X(t) and Y(t) to be considered. 

Figure 4.7 Autocorrelation function of random binary wave.

� X tk X ti  td  A
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Specifically, we have

(4.19)

and

(4.20)

where t and u denote two values of the global time at which the processes are observed.
All four correlation parameters of the two stochastic processes X(t) and Y(t) may now be
displayed conveniently in the form of the two-by-two matrix 

which is called the cross-correlation matrix of the stochastic processes X(t) and Y(t). If the
stochastic processes X(t) and Y(t) are each weakly stationary and, in addition, they are
jointly stationary, then the correlation matrix can be expressed by

(4.21)

where the time shift = u – t.
In general, the cross-correlation function is not an even function of the time-shift  as

was true for the autocorrelation function, nor does it have a maximum at the origin.
However, it does obey a certain symmetry relationship, described by

(4.22)

EXAMPLE 4 Quadrature-Modulated Processes

Consider a pair of quadrature-modulated processes X1(t) and X2(t) that are respectively
related to a weakly stationary process X(t) as follows:

where fc is a carrier frequency and the random variable  is uniformly distributed over the
interval [0, 2]. Moreover,  is independent of X(t). One cross-correlation function of
X1(t) and X2(t) is given by

(4.23)

MXY t u  � X t Y u  =

MYX t u  � Y t X u  =

M t u 
MXX t u  MXY t u 

MYX t u  MYY t u 
=

R  
RXX   RXY  

RYX   RYY  
=

RXY   RYX – =

X1 t  X t  2fct + cos=

X2 t  X t  2fct + sin=

R12   � X1 t X2 t –  =

� X t X t –  2fct +  2fct 2fc +– sincos =

� X t X t – ]�[ 2fct +  2fct 2fc +– sincos =

1
2
---RXX  � 4fc 2fct– 2+  2fc sin–sin =

1
2
---RXX   2fc sin–=
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4.5 Ergodic Processes 157

where, in the last line, we have made use of the uniform distribution of the random
variable , representing phase. Invoking (4.22), we find that the other cross-correlation
function of X1(t) and X2(t) is given by

 

At  = 0, the factor sin(2fc) is zero, in which case we have

This result shows that the random variables obtained by simultaneously sampling the
quadrature-modulated processes X1(t) and X2(t) at some fixed value of time t are
orthogonal to each other.

4.5 Ergodic Processes

Ergodic processes are subsets of weakly stationary processes. Most importantly, from a
practical perspective, the property of ergodicity permits us to substitute time averages for
ensemble averages.

To elaborate on these two succinct statements, we know that the expectations or
ensemble averages of a stochastic process X(t) are averages “across the process.” For
example, the mean of a stochastic process X(t) at some fixed time tk is the expectation of
the random variable X(tk) that describes all possible values of sample functions of the
process X(t) sampled at time t = tk. Naturally, we may also define long-term sample
averages or time averages that are averages “along the process.” Whereas in ensemble
averaging we consider a set of independent realizations of the process X(t) sampled at
some fixed time tk, in time averaging we focus on a single waveform evolving across time
t and representing one waveform realization of the process X(t).

With time averages providing the basis of a practical method for possible estimation of
ensemble averages of a stochastic process, we would like to explore the conditions under
which this estimation is justifiable. To address this important issue, consider the sample
function x(t) of a weakly stationary process X(t) observed over the interval –T  t  T. The
time-average value of the sample function x(t) is defined by the definite integral

(4.24)

Clearly, the time average x(T) is a random variable, as its value depends on the
observation interval and which particular sample function of the process X(t) is picked for
use in (4.24). Since the process X(t) is assumed to be weakly stationary, the mean of the
time average x(T) is given by (after interchanging the operations of expectation and
integration, which is permissible because both operations are linear)

R21   1
2
---RXX –  2fc sin=

1
2
---RXX   2fc sin=

R12 0  R21 0  0= =

x T  1
2T
------ x t  dt

T–

T

=
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(4.25)

where X is the mean of the process X(t). Accordingly, the time average x(T) represents
an unbiased estimate of the ensemble-averaged mean X. Most importantly, we say that
the process X(t) is ergodic in the mean if two conditions are satisfied:

1. The time average x(T) approaches the ensemble average X in the limit as the
observation interval approaches infinity; that is,

2. The variance of x(T), treated as a random variable, approaches zero in the limit as
the observation interval approaches infinity; that is,

The other time average of particular interest is the autocorrelation function Rxx(, T),
defined in terms of the sample function x(t) observed over the interval –T < t < T.
Following (4.24), we may formally define the time-averaged autocorrelation function of
x(t) as 

(4.26)

This second time average should also be viewed as a random variable with a mean and
variance of its own. In a manner similar to ergodicity of the mean, we say that the process
x(t) is ergodic in the autocorrelation function if the following two limiting conditions are
satisfied:

With the property of ergodicity confined to the mean and autocorrelation functions, it
follows that ergodic processes are subsets of weakly stationary processes. In other words,
all ergodic processes are weakly stationary; however, the converse is not necessarily true.

4.6 Transmission of a Weakly Stationary Process through a 
Linear Time-invariant Filter 

Suppose that a stochastic process X(t) is applied as input to a linear time-invariant filter of
impulse response h(t), producing a new stochastic process Y(t) at the filter output, as
depicted in Figure 4.8. In general, it is difficult to describe the probability distribution of
the output stochastic process Y(t), even when the probability distribution of the input
stochastic process X(t) is completely specified for the entire time interval .

� x T   1
2T
------ � x t   dt

T–

T

=

1
2T
------ X dt

T–

T

=

X=

x T 
T 
lim X=

var x T  
T 
lim 0=

Rxx  T  1
2T
------ x t + x t  dt

T–

T

=

Rxx  T 
T 
lim RXX  =

var Rxx  T  
T 
lim 0=

 t  –
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4.6 Transmission of a Weakly Stationary Process through a Linear Time-invariant Filter 159

For the sake of mathematical tractability, we limit the discussion in this section to the
time-domain form of the input–output relations of the filter for defining the mean and
autocorrelation functions of the output stochastic process Y(t) in terms of those of the
input X(t), assuming that X(t) is a weakly stationary process.

The transmission of a process through a linear time-invariant filter is governed by the
convolution integral, which was discussed in Chapter 2. For the problem at hand, we may
thus express the output stochastic process Y(t) in terms of the input stochastic process X(t) as

where 1 is a local time. Hence, the mean of Y(t) is

(4.27)

Provided that the expectation �[X(t)] is finite for all t and the filter is stable, we may
interchange the order of expectation and integration in (4.27), in which case we obtain

(4.28)

When the input stochastic process X(t) is weakly stationary, the mean X(t) is a constant
X; therefore, we may simplify (4.28) as 

(4.29)

where H(0) is the zero-frequency response of the system. Equation (4.29) states: 

The mean of the stochastic process Y(t) produced at the output of a linear 
time-invariant filter in response to a weakly stationary process X(t), acting as 
the input process, is equal to the mean of X(t) multiplied by the zero-frequency 
response of the filter. 

This result is intuitively satisfying.

Figure 4.8 Transmission of a 
stochastic process through a 
linear time-invariant filter.

Impulse
response

h(t)
X(t) Y(t)

Y t  h 1 X t 1–  d1
–



=

Y t  � Y t  =

� h 1 X t 1–  d1
–



=

Y t  h 1 � X t 1–   d1
–



=

h 1 X t 1–  d1
–



=

Y X h 1  d1
–



=

XH 0 =
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160 Chapter 4 Stochastic Processes

Consider next the autocorrelation function of the output stochastic process Y(t). By
definition, we have

where t and u denote two values of the time at which the output process Y(t) is sampled.
We may therefore apply the convolution integral twice to write

(4.30)

Here again, provided that the mean-square value �[X2(t)] is finite for all t and the filter is
stable, we may interchange the order of the expectation and the integrations with respect
to 1 and 2 in (4.30), obtaining

(4.31)

When the input X(t) is a weakly stationary process, the autocorrelation function of X(t) is
only a function of the difference between the sampling times t – 1 and u – 2. Thus,
putting  = u – t in (4.31), we may go on to write

(4.32)

which depends only on the time difference .
On combining the result of (4.32) with that involving the mean Y in (4.29), we may

now make the following statement: 

If the input to a stable linear time-invariant filter is a weakly stationary process, 
then the output of the filter is also a weakly stationary process.

By definition, we have RYY(0) = �[Y2(t)]. In light of Property 1 of the autocorrelation
function RYY , it follows, therefore, that the mean-square value of the output process
Y(t) is obtained by putting  = 0 in (4.32), as shown by

(4.33)

which, of course, is a constant.

4.7 Power Spectral Density of a Weakly Stationary Process

Thus far we have considered the time-domain characterization of a weakly stationary
process applied to a linear filter. We next study the characterization of linearly filtered
weakly stationary processes by using frequency-domain ideas. In particular, we wish to
derive the frequency-domain equivalent to the result of (4.33), defining the mean-square
value of the filter output Y(t). The term “filter” used here should be viewed in a generic
sense; for example, it may represent the channel of a communication system.

MYY t u  � Y t Y u  =

MYY t u  � h 1 X t 1–  d1 h 2 X u 2–  d2
–




–



=

MYY t u  h 1  d2 h 2 � X t 1– X u 2–  
–



  d1
–



=

h 1  d2 h 2 MXX t 1 u 2–– 
–



  d1
–



=

RYY   h 1 h 2 RXX  1 2–+  d1 d2
–




–



=

 

� Y
2

t   h 1 h 2 RXX 1 2–  d1 d2
–




–



=
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4.7 Power Spectral Density of a Weakly Stationary Process 161

From Chapter 2, we recall that the impulse response of a linear time-invariant filter is
equal to the inverse Fourier transform of the frequency response of the filter. Using H(f) to
denote the frequency response of the filter, we may thus write

(4.34)

Substituting this expression for h(1) into (4.33) and then changing the order of
integrations, we get the triple integral

(4.35)

At first, the expression on the right-hand side of (4.35) looks rather overwhelming.
However, we may simplify it considerably by first introducing the variable

Then, we may rewrite (4.35) in the new form

(4.36)

The middle integral involving the variable 2 inside the square brackets on the right-hand
side in (4.36) is simply H*(f), the complex conjugate of the frequency response of the
filter. Hence, using |H(f)|2 = H(f)H*(f), where |H(f)| is the magnitude response of the
filter, we may simplify (4.36) as

(4.37)

We may further simplify (4.37) by recognizing that the integral inside the square brackets
in this equation with respect to the variable  is simply the Fourier transform of the
autocorrelation function RXX  of the input process X(t). In particular, we may now
define a new function

(4.38)

The new function SXX(f) is called the power spectral density, or power spectrum, of the
weakly stationary process X(t). Thus, substituting (4.38) into (4.37), we obtain the simple
formula

(4.39)

which is the desired frequency-domain equivalent to the time-domain relation of (4.33). In
words, (4.39) states: 

The mean-square value of the output of a stable linear time-invariant filter 
in response to a weakly stationary process is equal to the integral over all 

h 1  H f  j2f1 exp  df
–



=

� Y
2

t   H f  j2f1  dexp f
–



 h 2 RXX 1 2–  d1 d2
–




–



=

H f  d2h 2  RXX 1 2–  j2f1  d1exp
–




–



  df
–



=

 1 2–=

� Y
2

t   H f  h 2  j2f2 exp  d2 RXX   j– 2f  dexp
–




–



  df
–



=

� Y
2

t   H f  2
RXX   j– 2f  dexp

–



  df
–



=

 

SXX f  RXX   j– 2f  dexp
–



=

� Y
2

t   H f  2
SXX f  df

–



=
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162 Chapter 4 Stochastic Processes

frequencies of the power spectral density of the input process multiplied by 
the squared magnitude response of the filter. 

Physical Significance of the Power Spectral Density

To investigate the physical significance of the power spectral density, suppose that the
weakly stationary process X(t) is passed through an ideal narrowband filter with a
magnitude response |H(f)| centered about the frequency fc, depicted in Figure 4.9; we may
thus write

(4.40)

where f is the bandwidth of the filter. From (4.39) we readily find that if the bandwidth f
is made sufficiently small compared with the midband frequency fc of the filter and SXX(f)
is a continuous function of the frequency f, then the mean-square value of the filter output
is approximately given by

(4.41)

where, for the sake of generality, we have used f in place of fc. According to (4.41),
however, the filter passes only those frequency components of the input random process
X(t) that lie inside the narrow frequency band of width f. We may, therefore, say that
SX(f) represents the density of the average power in the weakly stationary process X(t),
evaluated at the frequency f. The power spectral density is therefore measured in watts per
hertz (W/Hz).

The Wiener–Khintchine Relations

According to (4.38), the power spectral density SXX(f) of a weakly stationary process X(t)
is the Fourier transform of its autocorrelation function RXX . Building on what we know
about Fourier theory from Chapter 2, we may go on to say that the autocorrelation
function RXX  is the inverse Fourier transform of the power spectral density SXX(f).

Figure 4.9 Magnitude response of ideal narrowband filter.

H f 
1, f fc 1

2
---f

0, f fc 1
2
---f
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
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




=

� Y
2

t   2f SXX f  for all f

 

 

|H( f )|
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4.7 Power Spectral Density of a Weakly Stationary Process 163

Simply put, RXX  and SXX(f) form a Fourier-transform pair, as shown by the following
pair of related equations:

(4.42)

(4.43)

These two equations are known as the Wiener–Khintchine relations,3 which play a
fundamental role in the spectral analysis of weakly stationary processes.

The Wiener–Khintchine relations show that if either the autocorrelation function or
power spectral density of a weakly stationary process is known, then the other can be
found exactly. Naturally, these functions display different aspects of correlation-related
information about the process. Nevertheless, it is commonly accepted that, for practical
purposes, the power spectral density is the more useful function of the two for reasons that
will become apparent as we progress forward in this chapter and the rest of the book.

Properties of the Power Spectral Density

 PROPERTY 1  Zero Correlation among Frequency Components

The individual frequency components of the power spectral density SXX(f) of a weakly
stationary process X(t) are uncorrelated with each other.

To justify this property, consider Figure 4.10, which shows two adjacent narrow bands
of the power spectral density SXX(f), with the width of each band being denoted by f.
From this figure, we see that there is no overlap, and therefore no correlation, between the
contents of these two bands. As f approaches zero, the two narrow bands will
correspondingly evolve into two adjacent frequency components of SXX(f), remaining
uncorrelated with each other. This important property of the power spectral density SXX(f)
is attributed to the weak stationarity assumption of the stochastic process X(t). 

 

SXX f  RXX   j2f– exp  d
–



=

RXX   SXX f  j2f exp  df
–



=

Figure 4.10 Illustration of zero correlation between two adjacent narrow 
bands of an example power spectral density.

SXX( f )

0

Δf
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164 Chapter 4 Stochastic Processes

PROPERTY 2 Zero-frequency Value of Power Spectral Density

The zero-frequency value of the power spectral density of a weakly stationary process
equals the total area under the graph of the autocorrelation function; that is,

(4.44)

This second property follows directly from (4.42) by putting f = 0.

PROPERTY 3 Mean-square Value of Stationary Process

The mean-square value of a weakly stationary process X(t) equals the total area under the
graph of the power spectral density of the process; that is,

(4.45)

This third property follows directly from (4.43) by putting  = 0 and using Property 1 of
the autocorrelation function described in (4.11) namely RX(0) = �[X2(t)] for all t.

PROPERTY 4 Nonnegativeness of Power Spectral Density

The power spectral density of a stationary process X(t) is always nonnegative; that is,

(4.46)

This property is an immediate consequence of the fact that, since the mean-square
value �[Y2(t)] is always nonnegative in accordance with (4.41), it follows that

 must also be nonnegative.

PROPERTY 5 Symmetry

The power spectral density of a real-valued weakly stationary process is an even function
of frequency; that is,

(4.47)

This property is readily obtained by first substituting –f for the variable f in (4.42):

Next, substituting – for , and recognizing that RXX(–) = RXX  in accordance with
Property 2 of the autocorrelation function described in (4.12), we get

which is the desired result. It follows, therefore, that the graph of the power spectral
density SXX(f), plotted versus frequency f, is symmetric about the origin.

SXX 0  RXX   d
–



=

� X
2

t   SXX f  df
–



=

SXX f  0 for all f

SXX f  � Y
2

t   2f 

SXX f–  SXX f =

SXX f–  RXX   j2f exp  d
–



=

 

SXX f–  RXX   j– 2f exp  d
–



 SXX f = =
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4.7 Power Spectral Density of a Weakly Stationary Process 165

PROPERTY 6 Normalization

The power spectral density, appropriately normalized, has the properties associated with
a probability density function in probability theory.

The normalization we have in mind here is with respect to the total area under the graph
of the power spectral density (i.e., the mean-square value of the process). Consider then
the function

(4.48)

In light of Properties 3 and 4, we note that pXX(f)  0 for all f. Moreover, the total area
under the function pXX(f) is unity. Hence, the normalized power spectral density, as
defined in (4.48), behaves in a manner similar to a probability density function.

Building on Property 6, we may go on to define the spectral distribution function of a
weakly stationary process X(t) as

(4.49)

which has the following properties:

1.

2.

3.  is a nondecreasing function of the frequency f.

Conversely, we may state that every nondecreasing and bounded function FXX(f) is the
spectral distribution function of a weakly stationary process.

Just as important, we may also state that the spectral distribution function FXX(f) has all
the properties of the cumulative distribution function in probability theory, discussed in
Chapter 3.

EXAMPLE 5 Sinusoidal Wave with Random Phase (continued)

Consider the stochastic process X(t) = Acos(2fct + ), where  is a uniformly
distributed random variable over the interval [–, ]. The autocorrelation function of this
stochastic process is given by (4.17), which is reproduced here for convenience:

Let (f) denote the delta function at f = 0. Taking the Fourier transform of both sides of the
formula defining RXX , we find that the power spectral density of the sinusoidal process
X(t) is

(4.50)

which consists of a pair of delta functions weighted by the factor A2/4 and located at fc,
as illustrated in Figure 4.11. Since the total area under a delta function is one, it follows
that the total area under SXX(f) is equal to A2/2, as expected.

pXX f 
SXX f 

SXX f  df
–




--------------------------------=

FXX f  pXX   d
–

f

=

FXX –  0=

FXX   1=

FXX f 

RXX   A
2

2
------ 2fc cos=

 

SXX f  A
2

4
------  f fc–   f fc+ + =
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166 Chapter 4 Stochastic Processes

EXAMPLE 6 Random Binary Wave (continued)

Consider again a random binary wave consisting of a sequence of 1s and 0s represented by
the values +A and –A respectively. In Example 3 we showed that the autocorrelation
function of this random process has the triangular form 

The power spectral density of the process is therefore

Using the Fourier transform of a triangular function (see Table 2.2 of Chapter 2), we
obtain

(4.51)

which is plotted in Figure 4.12. Here again we see that the power spectral density is non-
negative for all f and that it is an even function of f. Noting that RXX(0) = A2 and using

Figure 4.11 Power spectral density of sine wave with 
random phase; (f) denotes the delta function at f = 0.

 ( f + fc)
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0 fc
f

– fc
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Figure 4.12 Power spectral density of random binary wave.
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4.7 Power Spectral Density of a Weakly Stationary Process 167

Property 2 of power spectral density, we find that the total area under SXX(f), or the aver-
age power of the random binary wave described here, is A2, which is intuitively satisfying.

Generalization of Equation (4.51)

It is informative to generalize (4.51) so that it assumes a more broadly applicable form.
With this objective in mind, we first note that the energy spectral density (i.e., the squared
magnitude of the Fourier transform) of a rectangular pulse g(t) of amplitude A and
duration T is given by

(4.52)

We may therefore express (4.51) in terms of Eg(f) simply as

(4.53)

In words, (4.53) states: 

For a random binary wave X(t) in which binary symbols 1 and 0 are represented 
by pulses g(t) and –g(t) respectively, the power spectral density SXX(f) is equal 
to the energy spectral density Eg(f) of the symbol-shaping pulse g(t) divided by 
the symbol duration T.

EXAMPLE 7 Mixing of a Random Process with a Sinusoidal Process

A situation that often arises in practice is that of mixing (i.e., multiplication) of a weakly
stationary process X(t) with a sinusoidal wave cos(2fct + ),where the phase  is a
random variable that is uniformly distributed over the interval [0, 2]. The addition of the
random phase  in this manner merely recognizes the fact that the time origin is arbitrarily
chosen when both X(t) and cos(2fct + ) come from physically independent sources, as is
usually the case in practice. We are interested in determining the power spectral density of
the stochastic process 

(4.54)

Using the definition of autocorrelation function of a weakly stationary process and noting
that the random variable  is independent of X(t), we find that the autocorrelation function
of the process Y(t) is given by

(4.55)

Eg f  A
2
T

2
 sinc

2
fT =

SXX f 
Eg f 

T
-------------=

Y t  X t  2fct + cos=

RYY   � Y t + Y t  =

� X t +  2fct 2fc + + X t  2fct + coscos =

� X t + x t  � 2fct 2fc + + cos  2fct + cos =

1
2
---RXX  � 2fct  4fct 2fc 2+ + cos+cos =

1
2
---RXX   2fct cos=
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168 Chapter 4 Stochastic Processes

Since the power spectral density of a weakly stationary process is the Fourier transform of
its autocorrelation function, we may go on to express the relationship between the power
spectral densities of the processes X(t) and Y(t) as follows:

(4.56)

Equation (4.56) teaches us that the power spectral density of the stochastic process Y(t)
defined in (4.54) can be obtained as follows: 

Shift the given power spectral density SXX(f) of the weakly stationary process 
X(t) to the right by fc, shift it to the left by fc, add the two shifted power spectra, 
and then divide the result by 4, thereby obtaining the desired power spectral 
density SYY(f). 

Relationship between the Power Spectral Densities of Input and 
Output Weakly Stationary Processes

Let SYY(f) denote the power spectral density of the output stochastic processes Y(t)
obtained by passing the weakly stationary process X(t) through a linear time-invariant
filter of frequency response H(f). Then, by definition, recognizing that the power spectral
density of a weakly stationary process is equal to the Fourier transform of its
autocorrelation function and using (4.32), we obtain

(4.57)

Let  + 1 – 2 = 0, or equivalently  = 0 – 1 + 2. By making this substitution into
(4.57), we find that SYY(f) may be expressed as the product of three terms: 

• the frequency response H(f) of the filter; 
• the complex conjugate of H(f); and 
• the power spectral density SXX(f) of the input process X(t). 

We may thus simplify (4.57) as shown by

(4.58)

Since |H(f)|2 = H(f)H*(f), we finally find that the relationship among the power spectral
densities of the input and output processes is expressed in the frequency domain by

(4.59)

Equation (4.59) states: 

The power spectral density of the output process Y(t) equals the power spectral 
density of the input process X(t), multiplied by the squared magnitude response 
of the filter. 

By using (4.59), we can therefore determine the effect of passing a weakly stationary
process through a stable, linear time-invariant filter. In computational terms, (4.59) is

SYY f  1
4
--- SXX f fc–  SXX f fc+ + =

SYY f  RYY   j2f– exp  d
–



=

h 1 h 2 RXX  1 2–+  j2f–  d1 d2 dexp
–




–




–



=

SYY f  H f H* f SXX f =

SYY f  H f  2
SXX f =
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4.7 Power Spectral Density of a Weakly Stationary Process 169

obviously easier to handle than its time-domain counterpart of (4.32) that involves the
autocorrelation function.

The Wiener–Khintchine Theorem

At this point in the discussion, a basic question that comes to mind is the following:

Given a function XX  whose argument is some time shift , how do we know 
that XX  is the legitimate normalized autocorrelation function of a weakly 
stationary process X(t)?

The answer to this question is embodied in a theorem that was first proved by Wiener
(1930) and at a later date by Khintchine (1934). Formally, the Wiener–Khintchine
theorem4 states:

A necessary and sufficient condition for XX  to be the normalized autocorrelation
function of a weakly stationary process X(t) is that there exists a distribution
function FXX(f) such that for all possible values of the time shift , the function
XX  may be expressed in terms of the well-known Fourier–Stieltjes theorem,
defined by

(4.60)

The Wiener–Khintchine theorem described in (4.60) is of fundamental importance to a
theoretical treatment of weakly stationary processes.

Referring back to the definition of the spectral distribution function FXX(f) given in
(4.49), we may express the integrated spectrum dFXX(f) as

(4.61)

which may be interpreted as the probability of X(t) contained in the frequency interval
[f, f + df]. Hence, we may rewrite (4.60) in the equivalent form

(4.62)

which expresses XX  as the inverse Fourier transform of pXX(f). At this point, we
proceed by taking three steps:

1. Substitute (4.14) for XX  on the left-hand side of (4.62). 

2. Substitute (4.48) for pXX  inside the integral on the right-hand side of (4.62).

3. Use Property 3 of power spectral density in Section 4.7. 

The end result of these three steps is the reformulation of (4.62) as shown by

Hence, canceling out the common term RXX(0), we obtain

(4.63)

 
 

 

 

XX   j2f exp  dFXX f 
–



=

dFXX f  pXX f  df=

XX   pXX f  j2f  dexp f
–



=

 

 
 

RXX  
RXX 0 
------------------

SXX f 
RXX 0 
------------------ j2f  dfexp

–



=

RXX   SXX f  j2f exp  df
–



=
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170 Chapter 4 Stochastic Processes

which is a rewrite of (4.43). We may argue, therefore, that basically the two Wiener–
Khintchine equations follow from either one of the following two approaches:

1. The definition of the power spectral density as the Fourier transform of the
autocorrelation function, which was first derived in (4.38).

2. The Wiener–Khintchine theorem described in (4.60).

4.8 Another Definition of the Power Spectral Density

Equation (4.38) provides one definition of the power spectral density SXX(f) of a weakly
stationary process X(t); that is, SXX(f) is the Fourier transform of the autocorrelation
function RXX  of the process X(t). We arrived at this definition by working on the mean-
square value (i.e., average power) of the process Y(t) produced at the output of a linear
time-invariant filter, driven by a weakly stationary process X(t). In this section, we provide
another definition of the power spectral density by working on the process X(t) directly.
The definition so developed is not only mathematically satisfying, but it also provides
another way of interpreting the power spectral density.

Consider, then, a stochastic process X(t), which is known to be weakly stationary. Let
x(t) represent a sample function of the process X(t). For the sample function to be Fourier
transformable, it must be absolutely integrable; that is,

This condition can never be satisfied by any sample function x(t) of infinite duration. To
get around this problem, we consider a truncated segment of x(t) defined over the
observation interval –T t  T, as illustrated in Figure 4.13, as shown by

 (4.64)

Clearly, the truncated signal xT(t) has finite energy; therefore, it is Fourier transformable.
Let XT(f) denote the Fourier transform of xT(t), as shown by the transform pair:

Figure 4.13 Illustration of the truncation of a sample x(t) for 
Fourier transformability; the actual function x(t) extends beyond 
the observation interval (–T, T) as shown by the dashed lines.

 

|
–



 x t | dt 

xT t  x t , T t T –

0, otherwise



=

xT t  ⇌ XT f 

x(t)   

t    
0

t = –T t = T
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4.8 Another Definition of the Power Spectral Density 171

in light of which we may invoke Rayleigh’s energy theorem (Property 14 in Table 2.1) to
write

Since (4.64) implies that

we may also apply Rayleigh’s energy theorem to the problem at hand as follows:

(4.65)

With the two sides of (4.65) based on a single realization of the process X(t), they are both
subject to numerical variability (i.e., instability) as we go from one sample function of the
process X(t) to another. To mitigate this difficulty, we take the ensemble average of (4.65),
and thus write

(4.66)

What we have in (4.66) are two energy-based quantities. However, in the weakly
stationary process X(t), we have a process with some finite power. To put matters right, we
multiply both sides of (4.66) by the scaling factor 1/(2T) and take the limiting form of the
equation as the observation interval T approaches infinity. In so doing, we obtain

(4.67)

The quantity on the left-hand side of (4.67) is now recognized as the average power of the
process X(t), denoted by Pav, which applies to all possible sample functions of the process
X(t). We may therefore recast (4.67) in the equivalent form

(4.68)

In (4.68), we next recognize that there are two mathematical operations of fundamental
interest:

1. Integration with respect to the frequency f.

2. Limiting operation with respect to the total observation interval 2T followed by
ensemble averaging.

These two operations, viewed in a composite manner, result in a statistically stable
quantity defined by Pav. Therefore, it is permissible for us to interchange the order of the
two operations on the right-hand side of (4.68), recasting this equation in the desired form:

(4.69)

xT t  2
 dt

–



 XT f 
–




2
 df=

xT t  2
 dt

–



 x t  2
 dt

T–

T

=

x t  2
 dt

T–

T

 XT f  2
 df

–



=

� x t  2

T–

T

 dt � XT f  2

–



  df=

1
2T
------

T 
lim � x t  2

 dt
T–

T

 �
XT f 

2T
----------------

2
 df

–



T 
lim=

Pav �
XT f 

2T
----------------

2
 df

–



T 
lim=

Pav �
XT f  2

2T
-------------------

T 
lim

 
 
 

–



  df=
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172 Chapter 4 Stochastic Processes

With (4.69) at hand, we are now ready to formulate another definition for the power
spectral density as5

(4.70)

This new definition has the following interpretation:

SXX(f) df is the average of the contributions to the total power from components 
in a weakly stationary process X(t) with frequencies extending from f to f + df, 
and the average is taken over all possible realizations of the process X(t).

This new interpretation of the power spectral density is all the more satisfying when (4.70)
is substituted into (4.68), yielding

(4.71)

which is immediately recognized as another way of describing Property 3 of the power
spectral density (i.e., (4.45). End-of-chapter Problem 4.8 invites the reader to prove other
properties of the power spectral density, using the definition of (4.70).

One last comment must be carefully noted: in the definition of the power spectral
density given in (4.70), it is not permissible to let the observation interval T approach
infinity before taking the expectation; in other words, these two operations are not
commutative.

4.9 Cross-spectral Densities

Just as the power spectral density provides a measure of the frequency distribution of a
single weakly stationary process, cross-spectral densities provide measures of the
frequency interrelationships between two such processes. To be specific, let X(t) and Y(t)
be two jointly weakly stationary processes with their cross-correlation functions denoted
by RXY  and RYX . We define the corresponding cross-spectral densities SXY(f) and
SYX(f) of this pair of processes to be the Fourier transforms of their respective cross-
correlation functions, as shown by

(4.72)

and

(4.73)

The cross-correlation functions and cross-spectral densities form Fourier-transform pairs.
Accordingly, using the formula for inverse Fourier transformation, we may also
respectively write

(4.74)

SXX f  �
XT f  2

2T
-------------------

T 
lim=

Pav SXX f 
–



  df=

   

SXY f  RXY   j2f– exp  d
–



=

SYX f  RYX   j2f– exp  d
–



=

RXY   SXY f  j2f  dexp f
–



=
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4.9 Cross-spectral Densities 173

and

(4.75)

The cross-spectral densities SXY(f) and SYX(f) are not necessarily real functions of the
frequency f. However, substituting the following relationship (i.e., Property 2 of the
autocorrelation function)

into (4.72) and then using (4.73), we find that SXY(f) and SYX(f) are related as follows:

(4.76)

where the asterisk denotes complex conjugation.

EXAMPLE 8 Sum of Two Weakly Stationary Processes

Suppose that the stochastic processes X(t) and Y(t) have zero mean and let their sum be
denoted by

The problem is to determine the power spectral density of the process Z(t).
The autocorrelation function of Z(t) is given by the second-order moment

Defining  = t – u and assuming the joint weakly stationarity of the two processes, we
may go on to write

(4.77)

Accordingly, taking the Fourier transform of both sides of (4.77), we get

(4.78)

This equation shows that the cross-spectral densities SXY(f) and SYX(f) represent the
spectral components that must be added to the individual power spectral densities of a pair
of correlated weakly stationary processes in order to obtain the power spectral density of
their sum.

When the stationary processes X(t) and Y(t) are uncorrelated, the cross-spectral
densities SXY(f) and SYX(f) are zero, in which case (4.78) reduces to

(4.79)

We may generalize this latter result by stating: 

When there is a multiplicity of zero-mean weakly stationary processes that are 
uncorrelated with each other, the power spectral density of their sum is equal to 
the sum of their individual power spectral densities.

RYX   SYX f  j2f exp  df
–



=

RXY   RYX – =

SXY f  SYX f–  SYX
* f = =

Z t  X t  Y t +=

MZZ t u  � Z t Z u  =

� X t  Y t +  X u  Y u +  =

� X t X u   � X t Y u   � Y t X u   � Y t Y u  + + +=

MXX t u  MXY t u  MYX t u  MYY t u + + +=

RZZ   RXX   RXY   RYX   RYY  + + +=

SZZ f  SXX f  SXY f  SYX f  SYY f + + +=

SZZ f  SXX f  SYY f +=
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174 Chapter 4 Stochastic Processes

EXAMPLE 9 Filtering of Two Jointly Weakly Stationary Processes

Consider next the problem of passing two jointly weakly stationary processes through a
pair of separate, stable, linear time-invariant filters, as shown in Figure 4.14. The
stochastic process X(t) is the input to the filter of impulse response h1(t), and the stochastic
process Y(t) is the input to the filter of the impulse response h2(t). Let V(t) and Z(t) denote
the processes at the respective filter outputs. The cross-correlation function of the output
processes V(t) and Z(t) is therefore defined by the second-order moment 

(4.80)

where MXY(t, u) is the cross-correlation function of X(t) and Y(t). Because the input
stochastic processes are jointly weakly stationary, by hypothesis, we may set  = t – u, and
thereby rewrite (4.80) as 

(4.81)

Taking the Fourier transform of both sides of (4.81) and using a procedure similar to that
which led to the development of (4.39), we finally get

(4.82)

where H1(f) and H2(f) are the frequency responses of the respective filters in Figure 4.14
and  is the complex conjugate of H2(f). This is the desired relationship between the
cross-spectral density of the output processes and that of the input processes. Note that
(4.82) includes (4.59) as a special case.

4.10 The Poisson Process

Having covered the basics of stochastic process theory, we now turn our attention to
different kinds of stochastic processes that are commonly encountered in the study of
communication systems. We begin the study with the Poisson process,6 which is the
simplest process dealing with the issue of counting the number of occurrences of random
events.

Figure 4.14
A pair of separate linear 
time-invariant filters.

MVZ t u  � V t Z u  =

� h1 1 X t 1–  d1 h2 2 Y u 2–  d2
–




–



=

h1 1 h
2
2 � X t 1– Y u 2–   d1 d2

–




–



=

h1 1 h
2
2 MXY t 1– u 2–  d1 d2

–




–
=

RVZ   h1 1 h
2
2 RXY  1– 2+  d1 d2

–




–



=

SVZ f  H1 f H2
* f SXY f =

H2
* f 

h2(t)Y (t) Z (t)h1(t)X(t) V (t)
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4.10 The Poisson Process 175

Consider, for example, a situation in which events occur at random instants of time,
such that the average rate of events per second is equal to . The sample path of such a
random process is illustrated in Figure 4.15, where i denotes the occurrence time of the
ith event with i = 1, 2, . Let N(t) be the number of event occurrences in the time interval
[0, t]. As illustrated in Figure 4.15, we see that N(t) is a nondecreasing, integer-valued,
continuous process. Let pk, denote the probability that exactly k events occur during an
interval of duration ; that is,

(4.83)

With this background, we may now formally define the Poisson process:

A random counting process is said to be a Poisson process with average rate  if 
it satisfies the three basic properties listed below.

PROPERTY 1 Time Homogeneity

The probability pk, of k event occurrences is the same for all intervals of the same
duration .

The essence of Property 1 is that the events are equally likely at all times.

PROPERTY 2 Distribution Function

The number of event occurrences, N0,t in the interval [0, t] has a distribution function with
mean t, defined by

(4.84)

That is, the time between events is exponentially distributed.
From Chapter 3, this distribution function is recognized to be the Poisson distribution.

It is for this reason that N(t) is called the Poisson process.

Figure 4.15 Sample function of a Poisson counting process.
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τ

pk  � N t t +  k= =

� N t  k=  t k

k!
------------  t– , k 0 1 2   =exp=
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176 Chapter 4 Stochastic Processes

PROPERTY 3 Independence

The numbers of events in nonoverlapping time intervals are statistically independent,
regardless of how small or large the intervals happen to be and no matter how close or
distant they could be.

Property 3 is the most distinguishing property of the Poisson process. To illustrate the
significance of this property, let [ti,ui] for i = 1, 2, , k denote k disjoint intervals on the
line . We may then write

(4.85)

The important point to take from this discussion is that these three properties provide a
complete characterization of the Poisson process. 

This kind of stochastic process arises, for example, in the statistical characterization of
a special kind of noise called shot noise in electronic devices (e.g., diodes and transistors),
which arises due to the discrete nature of current flow.

4.11 The Gaussian Process

The second stochastic process of interest is the Gaussian process, which builds on the
Gaussian distribution discussed in Chapter 3. The Gaussian process is by far the most
frequently encountered random process in the study of communication systems. We say so
for two reasons: practical applicability and mathematical tractability.7

Let us suppose that we observe a stochastic process X(t) for an interval that starts at
time t = 0 and lasts until t = T. Suppose also that we weight the process X(t) by some
function g(t) and then integrate the product g(t)X(t) over the observation interval [0, T],
thereby obtaining the random variable 

(4.86)

We refer to Y as a linear functional of X(t). The distinction between a function and a
functional should be carefully noted. For example, the sum , where the ai
are constants and the Xi are random variables, is a linear function of the Xi; for each
observed set of values for the random variable Xi, we have a corresponding value for the
random variable Y. On the other hand, the value of the random variable Y in (4.86) depends
on the course of the integrand function g(t)X(t) over the entire observation interval from 0
to T. Thus, a functional is a quantity that depends on the entire course of one or more
functions rather than on a number of discrete variables. In other words, the domain of a
functional is a space of admissible functions rather than a region of coordinate space.

If, in (4.86), the weighting function g(t) is such that the mean-square value of the
random variable Y is finite and if the random variable Y is a Gaussian-distributed random
variable for every g(t) in this class of functions, then the process X(t) is said to be a
Gaussian process. In words, we may state: 

A process X(t) is said to be a Gaussian process if every linear functional of X(t) 
is a Gaussian random variable.

0  

�[N t1 u1  n1 N; t2 u2 = n2 ; N; tk uk = tk] � N ti ui  ni= 
i 1=

k

= =

Y g t X t  dt
0

T

=

Y i=1
N

aiXi=
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4.11 The Gaussian Process 177

From Chapter 3 we recall that the random variable Y has a Gaussian distribution if its
probability density function has the form

(4.87)

where  is the mean and  is the variance of the random variable Y. The distribution of a
Gaussian process X(t), sampled at some fixed time tk, say, satisfies (4.87).

From a theoretical as well as practical perspective, a Gaussian process has two main
virtues: 

1. The Gaussian process has many properties that make analytic results possible; we
will discuss these properties later in the section. 

2. The stochastic processes produced by physical phenomena are often such that a
Gaussian model is appropriate. Furthermore, the use of a Gaussian model to describe
physical phenomena is often confirmed by experiments. Last, but by no means least,
the central limit theorem (discussed in Chapter 3) provides mathematical justification
for the Gaussian distribution. 

Thus, the frequent occurrence of physical phenomena for which a Gaussian model is
appropriate and the ease with which a Gaussian process is handled mathematically make
the Gaussian process very important in the study of communication systems.

Properties of a Gaussian Process

PROPERTY 1 Linear Filtering

If a Gaussian process X(t) is applied to a stable linear filter, then the stochastic process
Y(t) developed at the output of the filter is also Gaussian.

This property is readily derived by using the definition of a Gaussian process based on
(4.86). Consider the situation depicted in Figure 4.8, where we have a linear time-invariant
filter of impulse response h(t), with the stochastic process X(t) as input and the stochastic
process Y(t) as output. We assume that X(t) is a Gaussian process. The process Y(t) is
related to X(t) by the convolution integral

(4.88)

We assume that the impulse response h(t) is such that the mean-square value of the output
random process Y(t) is finite for all time t in the range , for which the process
Y(t) is defined. To demonstrate that the output process Y(t) is Gaussian, we must show that
any linear functional of it is also a Gaussian random variable. That is, if we define the
random variable

(4.89)

then Z must be a Gaussian random variable for every function gY(t), such that the mean-
square value of Z is finite. The two operations performed in the right-hand side of (4.89)

fY y  1

2
----------------- y – 2

22
-------------------





–




exp=

2

Y t  h t – X   d 0 t 
0

T

=

0 t 

Z gY t  h t – X  d
0

T

  dt
0



=
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178 Chapter 4 Stochastic Processes

are both linear; therefore, it is permissible to interchange the order of integrations,
obtaining

(4.90)

where the new function

(4.91)

Since X(t) is a Gaussian process by hypothesis, it follows from (4.91) that Z must also be a
Gaussian random variable. We have thus shown that if the input X(t) to a linear filter is a
Gaussian process, then the output Y(t) is also a Gaussian process. Note, however, that
although our proof was carried out assuming a time-invariant linear filter, this property is
also true for any arbitrary stable linear filter.

PROPERTY 2 Multivariate Distribution

Consider the set of random variables X(t1), X(t2), , X(tn), obtained by sampling a
stochastic process X(t) at times t1, t2, , tn. If the process X(t) is Gaussian, then this set of
random variables is jointly Gaussian for any n, with their n-fold joint probability density
function being completely determined by specifying the set of means

(4.92)

and the set of covariance functions

(4.93)

Let the n-by-1 vector X denote the set of random variables X(t1), X(t2), , X(tn) derived
from the Gaussian process X(t) by sampling it at times t1, t2, , tn. Let the vector x denote
a sample value of X. According to Property 2, the random vector X has a multivariate
Gaussian distribution, defined in matrix form as

(4.94)

where the superscript T denotes matrix transposition, the mean vector

= [1, 2,, n]T

the covariance matrix

 =

–1 is the inverse of the covariance matrix and  is the determinant of the covariance
matrix 

Property 2 is frequently used as the definition of a Gaussian process. However, this
definition is more difficult to use than that based on (4.86) for evaluating the effects of
filtering on a Gaussian process.

Note also that the covariance matrix  is a symmetric nonnegative definite matrix. For a
nondegenerate Gaussian process,  is positive definite, in which case the covariance
matrix is invertible.

Z g t X   d
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2
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4.12 Noise 179

PROPERTY 3 Stationarity

If a Gaussian process is weakly stationary, then the process is also strictly stationary.

This follows directly from Property 2.

PROPERTY 4 Independence

If the random variables X(t1), X(t2), , X(tn), obtained by respectively sampling a
Gaussian process X(t) at times t1, t2, , tn, are uncorrelated, that is

(4.95)

then these random variables are statistically independent.

The uncorrelatedness of X(t1), , X(tn) means that the covariance matrix  is reduced
to a diagonal matrix, as shown by

(4.96)

where the 0s denote two sets of elements whose values are all zero, and the diagonal terms

(4.97)

Under this special condition, the multivariate Gaussian distribution described in (4.94)
simplifies to

(4.98)

where Xi = X(ti) and

(4.99)

In words, if the Gaussian random variables X(t1), X(t2), , X(tn) are uncorrelated, then
they are statistically independent, which, in turn, means that the joint probability density
function of this set of random variables is expressed as the product of the probability
density functions of the individual random variables in the set.

4.12 Noise

The term noise is used customarily to designate unwanted signals that tend to disturb the
transmission and processing of signals in communication systems, and over which we
have incomplete control. In practice, we find that there are many potential sources of noise
in a communication system. The sources of noise may be external to the system (e.g.,

� X tk  X tk – (X ti  X ti )–  0= i k
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2
0

0 n
2

=

. .
 .

i
2

� X ti  � X ti  – 2 i 1, 2,  n==

fX x  fXi
xi 

i 1=

n
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fXi
xi  1

2i

----------------
xi Xi

– 2

2i
2

-------------------------– i 1, 2,  n=exp=
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180 Chapter 4 Stochastic Processes

atmospheric noise, galactic noise, man-made noise) or internal to the system. The second
category includes an important type of noise that arises from the phenomenon of
spontaneous fluctuations of current flow that is experienced in all electrical circuits. In a
physical context, the most common examples of the spontaneous fluctuation phenomenon
are shot noise, which, as stated in Section 4.10, arises because of the discrete nature of
current flow in electronic devices; and thermal noise, which is attributed to the random
motion of electrons in a conductor.8 However, insofar as the noise analysis of
communication systems is concerned, be they analog or digital, the analysis is customarily
based on a source of noise called white-noise, which is discussed next.

White Noise

This source of noise is idealized, in that its power spectral density is assumed to be
constant and, therefore, independent of the operating frequency. The adjective “white” is
used in the sense that white light contains equal amounts of all frequencies within the
visible band of electromagnetic radiation. We may thus make the statement:

White noise, denoted by W(t), is a stationary process whose power spectral density 
SW(f) has a constant value across the entire frequency interval .

Clearly, white-noise can only be meaningful as an abstract mathematical concept; we say
so because a constant power spectral density corresponds to an unbounded spectral
distribution function and, therefore, infinite average power, which is physically
nonrealizable. Nevertheless, the utility of white-noise is justified in the study of
communication theory by virtue of the fact that it is used to model channel noise at the
front end of a receiver. Typically, the receiver includes a filter whose frequency response is
essentially zero outside a frequency band of some finite value. Consequently, when white-
noise is applied to the model of such a receiver, there is no need to describe how the power
spectral density SWW(f) falls off outside the usable frequency band of the receiver.9

Let

(4.100)

as illustrated in Figure 4.16a. Since the autocorrelation function is the inverse Fourier
transform of the power spectral density in accordance with the Wiener–Khintchine
relations, it follows that for white-noise the autocorrelation function is

(4.101)

Hence, the autocorrelation function of white noise consists of a delta function weighted by
the factor N02 and occurring at the time shift  = 0, as shown in Figure 4.16b. 

Since RWW  is zero for , it follows that any two different samples of white noise
are uncorrelated no matter how closely together in time those two samples are taken. If the
white noise is also Gaussian, then the two samples are statistically independent in
accordance with Property 4 of the Gaussian process. In a sense, then, white Gaussian
noise represents the ultimate in “randomness.”

The utility of a white-noise process in the noise analysis of communication systems is
parallel to that of an impulse function or delta function in the analysis of linear systems.

 f  –

SWW f 
N0

2
------ for all f=

RWW  
N0

2
------  =

   0
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4.12 Noise 181

Just as we may observe the effect of an impulse only after it has been passed through a
linear system with a finite bandwidth, so it is with white noise whose effect is observed
only after passing through a similar system. We may therefore state:

As long as the bandwidth of a noise process at the input of a system is 
appreciably larger than the bandwidth of the system itself, then we may model 
the noise process as white noise.

EXAMPLE 10 Ideal Low-pass Filtered White Noise

Suppose that a white Gaussian noise of zero mean and power spectral density N02 is
applied to an ideal low-pass filter of bandwidth B and passband magnitude response of
one. The power spectral density of the noise N(t) appearing at the filter output, as shown in
Figure 4.17a, is therefore

(4.102)

Since the autocorrelation function is the inverse Fourier transform of the power spectral
density, it follows that 

(4.103)

whose dependence on  is plotted in Figure 4.17b. From this figure, we see that RNN
has the maximum value N0B at the origin and it passes through zero at  =k(2B), where
k = 1, 2, 3, .

Since the input noise W(t) is Gaussian (by hypothesis), it follows that the band-limited
noise N(t) at the filter output is also Gaussian. Suppose, then, that N(t) is sampled at the
rate of 2B times per second. From Figure 4.17b, we see that the resulting noise samples are
uncorrelated and, being Gaussian, they are statistically independent. Accordingly, the joint
probability density function of a set of noise samples obtained in this way is equal to the
product of the individual probability density functions. Note that each such noise sample
has a mean of zero and variance of N0B.

Figure 4.16 Characteristics of white-noise: (a) power spectral density; (b) autocorrelation function.
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182 Chapter 4 Stochastic Processes

EXAMPLE 11 Correlation of White Noise with Sinusoidal Wave

Consider the sample function

(4.104)

which is the output of a correlator with white Gaussian noise sample function w(t) and
sinusoidal wave  as its two inputs; the scaling factor  is included
in (4.104) to make the sinusoidal wave input have unit energy over the interval 0 t  T.
With w(t) having zero mean, it immediately follows that the correlator output  has
zero mean too. The variance of the correlator output is therefore defined by

(4.105)

where, in the last line, we made use of (4.101). We now invoke the sifting property of the
delta function, namely

(4.106)

where g(t) is a continuous function of time that has the value g(0) at time t = 0. Hence, we
may further simplify the expression for the noise variance as

(4.107)

Figure 4.17 Characteristics of low-pass filtered white noise; (a) power spectral density; 
(b) autocorrelation function.
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4.13 Narrowband Noise 183

where, in the last line, it is assumed that the frequency fc of the sinusoidal wave input is an
integer multiple of the reciprocal of T for mathematical convenience.

4.13 Narrowband Noise

The receiver of a communication system usually includes some provision for
preprocessing the received signal. Typically, the preprocessing takes the form of a
narrowband filter whose bandwidth is just large enough to pass the modulated component
of the received signal essentially undistorted, so as to limit the effect of channel noise
passing through the receiver. The noise process appearing at the output of such a filter is
called narrowband noise. With the spectral components of narrowband noise concentrated
about some midband frequency fc as in Figure 4.18a, we find that a sample function n(t)
of such a process appears somewhat similar to a sine wave of frequency fc. The sample
function n(t) may, therefore, undulate slowly in both amplitude and phase, as illustrated in
Figure 4.18b.

Consider, then, the n(t) produced at the output of a narrowband filter in response to the
sample function w(t) of a white Gaussian noise process of zero mean and unit power spec-
tral density applied to the filter input; w(t) and n(t) are sample functions of the respective
processes W(t) and N(t). Let H(f) denote the transfer function of this filter. Accordingly,
we may express the power spectral density SN(f) of the noise N(t) in terms of H(f) as

(4.108)

On the basis of this equation, we may now make the following statement:

Any narrowband noise encountered in practice may be modeled by applying a 
white-noise to a suitable filter in the manner described in (4.108).

In this section we wish to represent the narrowband noise n(t) in terms of its in-phase and
quadrature components in a manner similar to that described for a narrowband signal in
Section 2.10. The derivation presented here is based on the idea of pre-envelope and related
concepts, which were discussed in Chapter 2 on Fourier analysis of signals and systems.

SNN f  H f  2
=

Figure 4.18 (a) Power spectral density of narrowband noise. (b) Sample function of 
narrowband noise.
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184 Chapter 4 Stochastic Processes

Let n+(t) and , respectively, denote the pre-envelope and complex envelope of the
narrowband noise n(t). We assume that the power spectrum of n(t) is centered about the
frequency fc. Then we may write

(4.109)

and
(4.110)

where  is the Hilbert transform of n(t). The complex envelope  may itself be
expressed as

 (4.111)

Hence, combining (4.109) through (4.111), we find that the in-phase component nI(t) and
the quadrature component nQ(t) of the narrowband noise n(t) are 

(4.112)

and
(4.113)

respectively. Eliminating  between (4.112) and (4.113), we get the desired canonical
form for representing the narrowband noise n(t), as shown by

(4.114)

Using (4.112) to (4.114), we may now derive some important properties of the in-phase
and quadrature components of a narrowband noise, as described next.

PROPERTY 1 The in-phase component nI(t) and quadrature component nQ(t) of narrowband noise n(t)
have zero mean.

To prove this property, we first observe that the noise  is obtained by passing n(t)
through a linear filter (i.e., Hilbert transformer). Accordingly,  will have zero mean
because n(t) has zero mean by virtue of its narrowband nature. Furthermore, from (4.112)
and (4.113), we see that nI(t) and nQ(t) are weighted sums of n(t) and . It follows,
therefore, that the in-phase and quadrature components, nI(t) and nQ(t), both have zero
mean.

PROPERTY 2 If the narrowband noise n(t) is Gaussian, then its in-phase component  and quadra-
ture component  are jointly Gaussian.

To prove this property, we observe that  is derived from n(t) by a linear filtering
operation. Hence, if  is Gaussian, the Hilbert transform  is also Gaussian, and

 and  are jointly Gaussian. It follows, therefore, that the in-phase and quadrature
components, nI(t) and nQ(t), are jointly Gaussian, since they are weighted sums of jointly
Gaussian processes.

PROPERTY 3 If the narrowband noise  is weakly stationary, then its in-phase component  and
quadrature component  are jointly weakly stationary.

If n(t) is weakly stationary, so is its Hilbert transform . However, since the in-phase
and quadrature components,  and , are both weighted sums of  and 
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4.13 Narrowband Noise 185

and the weighting functions, cos(2fct) and sin(2fct), vary with time, we cannot directly
assert that  and  are weakly stationary. To prove Property 3, we have to
evaluate their correlation functions.

Using (4.112) and (4.113), we find that the in-phase and quadrature components, 
and , of a narrowband noise  have the same autocorrelation function, as shown by

(4.115)

and their cross-correlation functions are given by

(4.116)

where RNN  is the autocorrelation function of , and  is the Hilbert transform

of RNN(). From (4.115) and (4.116), we readily see that the correlation functions

, , and  of the in-phase and quadrature components  and

 depend only on the time shift . This dependence, in conjunction with Property 1,

proves that  and  are weakly stationary if the original narrowband noise  is

weakly stationary.

PROPERTY 4 Both the in-phase noise  and quadrature noise  have the same power spectral
density, which is related to the power spectral density SNN(f) of the original narrowband
noise  as follows:

(4.117)

where it is assumed that SNN(f) occupies the frequency interval  and
fc  B.

To prove this fourth property, we take the Fourier transforms of both sides of (4.115),
and use the fact that

(4.118)

We thus obtain the result

(4.119)

Now, with the power spectral density SNN(f) of the original narrowband noise n(t)
occupying the frequency interval , where fc > B, as illustrated in
Figure 4.19, we find that the corresponding shapes of SNN(f – fc) and SNN(f + fc) are as in
Figures 4.19b and 4.19c respectively. Figures 4.19d, 4.19e, and 4.19f show the shapes of
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186 Chapter 4 Stochastic Processes

sgn(f), sgn(f – fc), and sgn(f + fc) respectively. Accordingly, we may make the following
observation from Figure 4.19:

1. For frequencies defined by –B f  B, we have

sgn(f – fc) = –1
and

sgn(f  fc) = +1

Hence, substituting these results into (4.119), we obtain

SNINI
f  SNQNQ

f =

SNN f fc–  SNN f fc+  B– f B +=

Figure 4.19
(a) Power spectral density SNN(f) 
pertaining to narrowband noise n(t). 
(b), (c) Frequency-shifted versions 
of SNN(f) in opposite directions. 
(d) Signum function sgn(f). 
(e), (f) Frequency-shifted versions 
of sgn(f) in opposite directions.
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2. For 2fc – B f  2fc  B, we have 

sgn(f – fc) = 1
and

sgn(f + fc) = 0

with the result that  and  are both zero.

3. For –2fc – B f  –2fc B, we have

sgn(f – fc) = 0
and

sgn(f + fc) = –1

with the result that, here also,  and  are both zero.

4. Outside the frequency intervals defined in points 1, 2, and 3, both SNN(f – fc) and
SNN(f + fc) are zero, and in a corresponding way, SNN(f – fc) and  are also
zero.

Combining these results, we obtain the simple relationship defined in (4.117).
As a consequence of this property, we may extract the in-phase component  and

quadrature component , except for scaling factors, from the narrowband noise n(t)
by using the scheme shown in Figure 4.20a, where both low-pass filters have a cutoff
frequency at B. The scheme shown in Figure 4.20a may be viewed as an analyzer. Given
the in-phase component  and the quadrature component , we may generate the
narrowband noise n(t) using the scheme shown in Figure 4.20b, which may be viewed as a
synthesizer.

PROPERTY 5 The in-phase and quadrature components nI(t) and nQ(t) have the same variance as the
narrowband noise n(t).

This property follows directly from (4.117), according to which the total area under the
power spectral density curve  or  is the same as the total area under the power
spectral density curve of n(t). Hence,  and  have the same mean-square value
as n(t). Earlier we showed that since n(t) has zero mean, then  and  have zero
mean, too. It follows, therefore, that  and  have the same variance as the
narrowband noise n(t).
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nI t  nQ t 

Figure 4.20 (a) Extraction of in-phase and quadrature components of a narrowband process. 
(b) Generation of a narrowband process from its in-phase and quadrature components.
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188 Chapter 4 Stochastic Processes

PROPERTY 6 The cross-spectral densities of the in-phase and quadrature components of a narrowband
noise are purely imaginary, as shown by

(4.120)

To prove this property, we take the Fourier transforms of both sides of (4.116), and use the
relation of (4.118), obtaining

(4.121)

Following a procedure similar to that described for proving Property 4, we find that
(4.121) reduces to the form shown in (4.120).

PROPERTY 7 If a narrowband noise n(t) is Gaussian with zero mean and a power spectral density
SNN(f) that is locally symmetric about the midband frequency fc, then the in-phase noise

 and the quadrature noise  are statistically independent.

To prove this property, we observe that if SNN(f) is locally symmetric about fc, then

(4.122)

Consequently, we find from (4.120) that the cross-spectral densities of the in-phase and
quadrature components,  and , are zero for all frequencies. This, in turn, means
that the cross-correlation functions  and  are zero for all , as shown by

(4.123)

which implies that the random variables NI(tk + ) and NQ(tk) (obtained by observing the
in-phase component at time tk +  and observing the quadrature component at time tk
respectively) are orthogonal for all .

The narrowband noise n(t) is assumed to be Gaussian with zero mean; hence, from
Properties 1 and 2 it follows that both NI(tk + ) and NQ(tk) are also Gaussian with zero
mean. We thus conclude that because NI(tk + ) and NQ(tk) are orthogonal and have zero
mean, they are uncorrelated, and being Gaussian, they are statistically independent for all
. In other words, the in-phase component  and the quadrature component  are
statistically independent.

In light of Property 7, we may express the joint probability density function of the
random variables NI(tk + ) and NQ(tk) (for any time shift ) as the product of their
individual probability density functions, as shown by

SNINQ
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f =

j SN f fc+  SN f fc– – , B f B –
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
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j
2
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j
2
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j
2
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2
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4.13 Narrowband Noise 189

(4.124)

where  is the variance of the original narrowband noise n(t). Equation (4.124) holds if,
and only if, the spectral density SNN(f) or n(t) is locally symmetric about fc. Otherwise,
this relation holds only for  = 0 or those values of  for which  and  are
uncorrelated.

Summarizing Remarks

To sum up, if the narrowband noise n(t) is zero mean, weakly stationary, and Gaussian,
then its in-phase and quadrature components  and  are both zero mean, jointly
stationary, and jointly Gaussian. To evaluate the power spectral density of  or ,
we may proceed as follows:

1. Shift the positive frequency portion of the power spectral density SNN(f) of the
original narrowband noise n(t) to the left by fc.

2. Shift the negative frequency portion of SNN(f) to the right by fc.

3. Add these two shifted spectra to obtain the desired  or .

EXAMPLE 12 Ideal Band-pass Filtered White Noise

Consider a white Gaussian noise of zero mean and power spectral density N02, which is
passed through an ideal band-pass filter of passband magnitude response equal to one,
midband frequency fc, and bandwidth 2B. The power spectral density characteristic of the
filtered noise n(t) is, therefore, as shown in Figure 4.21a. The problem is to determine the
autocorrelation functions of n(t) and those of its in-phase and quadrature components.

The autocorrelation function of n(t) is the inverse Fourier transform of the power
spectral density characteristic shown in Figure 4.21a, as shown by

(4.125)

which is plotted in Figure 4.21b.
The spectral density characteristic of Figure 4.21a is symmetric about fc. The

corresponding spectral density characteristics of the in-phase noise component  and
the quadrature noise component  are equal, as shown in Figure 4.21c. Scaling the
result of Example 10 by a factor of two in accordance with the spectral characteristics of
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190 Chapter 4 Stochastic Processes

Figure 4.21a and 4.21c, we find that the autocorrelation function of  or  is
given by

(4.126)

Figure 4.21 Characteristics of ideal band-pass filtered white noise: (a) power 
spectral density, (b) autocorrelation function, (c) power spectral density of in-phase 
and quadrature components.
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4.13 Narrowband Noise 191

Representation of Narrowband Noise in Terms of Envelope and 
Phase Components

In the preceding subsection we used the Cartesian representation of a narrowband noise
n(t) in terms of its in-phase and quadrature components. In this subsection we use the
polar representation of the noise n(t) in terms of its envelope and phase components, as
shown by

(4.127)

where

(4.128)

and

(4.129)

The function r(t) is the envelope of n(t) and the function  is the phase of n(t).
The probability density functions of r(t) and  may be obtained from those of

and  as follows. Let NI and NQ denote the random variables obtained by
sampling (at some fixed time) the stochastic processes represented by the sample
functions  and  respectively. We note that NI and NQ are independent Gaussian
random variables of zero mean and variance , so we may express their joint probability
density function as

(4.130)

Accordingly, the probability of the joint event that NI lies between nI and nI + dnI and NQ
lies between nQ + dnQ (i.e., the pair of random variables NI and NQ lies jointly inside the
shaded area of Figure 4.22a) is given by

(4.131)
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Figure 4.22
Illustrating the coordinate system 
for representation of narrowband 
noise: (a) in terms of in-phase and 
quadrature components; (b) in 
terms of envelope and phase.
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192 Chapter 4 Stochastic Processes

where dnI and dnQ are incrementally small. Now, define the transformations (see Figure 4.22b)

(4.132)

(4.133)

In a limiting sense, we may equate the two incremental areas shown shaded in parts a and
b of Figure 4.22 and thus write

(4.134)

Now, let R and  denote the random variables obtained by observing (at some fixed time
t) the stochastic processes represented by the envelope r(t) and phase  respectively.
Then substituting (4.132)–(4.134) into (4.131), we find that the probability of the random
variables R and  lying jointly inside the shaded area of Figure 4.22b is equal to the
expression

That is, the joint probability density function of R and  is given by

(4.135)

This probability density function is independent of the angle , which means that the
random variables R and  are statistically independent. We may thus express 
as the product of the two probability density functions:  and . In particular,
the random variable  representing the phase is uniformly distributed inside the interval
[0, 2], as shown by

(4.136)

This result leaves the probability density function of the random variable R as

(4.137)

where  is the variance of the original narrowband noise n(t). A random variable having
the probability density function of (4.137) is said to be Rayleigh distributed.10

For convenience of graphical presentation, let

(4.138)

(4.139)
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4.14 Sine Wave Plus Narrowband Noise 193

Then, we may rewrite the Rayleigh distribution of (4.137) in the normalized form

(4.140)

Equation (4.140) is plotted in Figure 4.23. The peak value of the distribution fV(v) occurs
at v = 1 and is equal to 0.607. Note also that, unlike the Gaussian distribution, the Rayleigh
distribution is zero for negative values of v, which follows naturally from the fact that the
envelope r(t) of the narrowband noise n(t) can only assume nonnegative values.

4.14 Sine Wave Plus Narrowband Noise

Suppose next that we add the sinusoidal wave  to the narrowband noise n(t),
where A and fc are both constants. We assume that the frequency of the sinusoidal wave is
the same as the nominal carrier frequency of the noise. A sample function of the sinusoidal
wave plus noise is then expressed by

(4.141)

Representing the narrowband noise n(t) in terms of its in-phase and quadrature
components, we may write

(4.142)

where

(4.143)

We assume that n(t) is Gaussian with zero mean and variance . Accordingly, we may
state the following:

1. Both  and nQ(t) are Gaussian and statistically independent.

2. The mean of  is A and that of nQ(t) is zero.

3. The variance of both  and nQ(t) is .

Figure 4.23 Normalized Rayleigh distribution.

f V
(v

)

0 1 2 3

0.2

0.4

0.6

0.8

v

fV v  v v
2

2
-----– 

  ,exp v 0

0, elsewhere





=

A 2fct cos

x t  A 2fct  n t +cos=

x t  nI
 t  2fct  nQ t  2fct sin–cos=

nI t  A nl t +=

2

nI t 
nI t 

nI t  2

Haykin_ch04_pp3.fm  Page 193  Saturday, November 17, 2012  5:32 PM



194 Chapter 4 Stochastic Processes

We may, therefore, express the joint probability density function of the random variables
 and NQ, corresponding to  and , as follows:

(4.144)

Let r(t) denote the envelope of x(t) and  denote its phase. From (4.142), we thus find
that

(4.145)

and

(4.146)

Following a procedure similar to that described in Section 4.12 for the derivation of the
Rayleigh distribution, we find that the joint probability density function of the random
variables R and , corresponding to r(t) and  for some fixed time t, is given by

(4.147)

We see that in this case, however, we cannot express the joint probability density function
 as a product , because we now have a term involving the values of

both random variables multiplied together as . Hence, R and  are dependent
random variables for nonzero values of the amplitude A of the sinusoidal component.

We are interested, in particular, in the probability density function of R. To determine
this probability density function, we integrate (4.147) over all possible values of ,
obtaining the desired marginal density

 (4.148)

An integral similar to that in the right-hand side of (4.148) is referred to in the literature as
the modified Bessel function of the first kind of zero order (see Appendix C); that is,

(4.149)

Thus, letting x = Ar , we may rewrite (4.148) in the compact form

(4.150)

This new distribution is called the Rician distribution.11
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4.14 Sine Wave Plus Narrowband Noise 195

As with the Rayleigh distribution, the graphical presentation of the Rician distribution
is simplified by putting

(4.151)

(4.152)

(4.153)

Then we may express the Rician distribution of (4.150) in the normalized form

(4.154)

which is plotted in Figure 4.24 for the values 0, 1, 2, 3, 5, of the parameter a.12 Based on
these curves, we may make two observations:

1. When the parameter a = 0, and therefore I0(0) = 1, the Rician distribution reduces to
the Rayleigh distribution.

2. The envelope distribution is approximately Gaussian in the vicinity of v = a when a
is large; that is, when the sine-wave amplitude A is large compared with , the
square root of the average power of the noise n(t).

4.15 Summary and Discussion

Much of the material presented in this chapter has dealt with the characterization of a
particular class of stochastic processes known to be weakly stationary. The implication of
“weak” stationarity is that we may develop a partial description of a stochastic process in
terms of two ensemble-averaged parameters: (1) a mean that is independent of time and
(2) an autocorrelation function that depends only on the difference between the times at
which two samples of the process are drawn. We also discussed ergodicity, which enables

Figure 4.24 Normalized Rician distribution.
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196 Chapter 4 Stochastic Processes

us to use time averages as “estimates” of these parameters. The time averages are
computed using a sample function (i.e., single waveform realization) of the stochastic
process, evolving as a function of time.

The autocorrelation function RXX , expressed in terms of the time shift , is one way
of describing the second-order statistic of a weakly (wide-sense) stationary process X(t).
Another equally important parameter, if not more so, for describing the second-order
statistic of X(t) is the power spectral density SXX(f), expressed in terms of the frequency f.
The Fourier transform and the inverse Fourier transform formulas that relate these two
parameters to each other constitute the celebrated Wiener–Khintchine equations. The first
of these two equations, namely (4.42), provides the basis for a definition of the power
spectral density SXX(f) as the Fourier transform of the autocorrelation function RXX ,
given that RXX  is known. This definition was arrived at by working on the output of a
linear time-invariant filter, driven by a weakly stationary process X(t). We also described
another definition for the power spectral density SXX(f), described in (4.70); this second
definition was derived by working directly on the process X(t).

Another celebrated theorem discussed in the chapter is the Wiener–Khintchine
theorem, which provides the necessary and sufficient condition for confirming the
function XX  as the normalized autocorrelation function of a weakly stationary process
X(t), provided that it satisfies the Fourier–Stieltjes transform, described in (4.60).

The stochastic-process theory described in this chapter also included the topic of cross-
power spectral densities SXY(f) and SYX(f), involving a pair of jointly weakly stationary
processes X(t) and Y(t), and how these two frequency-dependent parameters are related to
the respective cross-correlation functions RXY  and RYX .

The remaining part of the chapter was devoted to the statistical characterization of
different kinds of stochastic processes:

• The Poisson process, which is well-suited for the characterization of random-
counting processes.

• The ubiquitous Gaussian process, which is widely used in the statistical study of
communication systems.

• The two kinds of electrical noise, namely shot noise and thermal noise.
• White noise, which plays a fundamental role in the noise analysis of communication

systems similar to that of the impulse function in the study of linear systems.
• Narrowband noise, which is produced by passing white noise through a linear band-

pass filter. Two different methods for the description of narrowband noise were
presented: one in terms of the in-phase and quadrature components and the other in
terms of the envelope and phase.

• The Rayleigh distribution, which is described by the envelope of a narrowband noise
process.

• The Rician distribution, which is described by the envelope of narrowband noise
plus a sinusoidal component, with the midband frequency of the narrowband noise
and the frequency of the sinusoidal component being coincident.

We conclude this chapter on stochastic processes by including Table 4.1, where we present
a graphical summary of the autocorrelation functions and power spectral densities of
important stochastic processes. All the processes described in this table are assumed to
have zero mean and unit variance. This table should give the reader a feeling for (1) the

 

 
 

 

   
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Summary and Discussion 197

interplay between the autocorrelation function and power spectral density of a stochastic
process and (2) the role of linear filtering in shaping the autocorrelation function or,
equivalently, the power spectral density of a white-noise process.

Table 4.1 Graphical summary of autocorrelation functions and power 
spectral densities of random processes of zero mean and unit variance
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198 Chapter 4 Stochastic Processes

Problems

Stationarity and Ergodicity

4.1 Consider a pair of stochastic processes X(t) and Y(t). In the strictly stationary world of stochastic
processes, the statistical independence of X(t) and Y(t) corresponds to their uncorrelatedness in the
world of weakly stationary processes. Justify this statement.

4.2 Let X1, X2, , Xk denote a sequence obtained by uniformly sampling a stochastic process X(t). The
sequence consists of statistically independent and identically distributed (iid) random variables, with
a common cumulative distribution function FX(x), mean  and variance  2. Show that this sequence
is strictly stationary.

4.3 A stochastic process X(t) is defined by

where A is a Gaussian-distributed random variable of zero mean and variance . The process X(t) is
applied to an ideal integrator, producing the output

a. Determine the probability density function of the output Y(t) at a particular time tk.

b. Determine whether or not Y(t) is strictly stationary.

4.4 Continuing with Problem 4.3, determine whether or not the integrator output Y(t) produced in
response to the input process X(t) is ergodic.

Autocorrelation Function and Power Spectral Density

4.5 The square wave x(t) of Figure P4.5, having constant amplitude A, period T0, and time shift td,
represents the sample function of a stochastic process X(t). The time shift td is a random variable,
described by the probability density function

a. Determine the probability density function of the random variable X(tk), obtained by sampling
the stochastic process X(t) at time tk.

b. Determine the mean and autocorrelation function of X(t) using ensemble averaging.

c. Determine the mean and autocorrelation function of X(t) using time averaging.

d. Establish whether or not X(t) is weakly stationary. In what sense is it ergodic?

4.6 A binary wave consists of a random sequence of symbols 1 and 0, similar to that described in
Example 6, with one basic difference: symbol 1 is now represented by a pulse of amplitude A volts,

X t  A 2fct cos=

A
2

Y t  X   d
0

t

=

Figure P4.5

fTd
td 

1
T0
----- ,

1
2
---T0 td

1
2
---T0 –

0, otherwise





=

td

A

x(t)

t
0

T0
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and symbol 0 is represented by zero volts. All other parameters are the same as before. Show that
this new random binary wave X(t) is characterized as follows:

a. The autocorrelation function is

b. The power spectral density is

What is the percentage power contained in the dc component of the binary wave?

4.7 The output of an oscillator is described by

where the amplitude A is constant, and F and  are independent random variables. The probability
density function of  is defined by

Find the power spectral density of X(t) in terms of the probability density function of the frequency F.
What happens to this power spectral density when the randomized frequency F assumes a constant
value?

4.8 Equation (4.70) presents the second of two definitions introduced in the chapter for the power
spectral density function, SXX(f), pertaining to a weakly stationary process X(t). This definition
reconfirms Property 3 of SXX(f), as shown in (4.71).

a. Using (4.70), prove the other properties of SXX(f): zero correlation among frequency
components, zero-frequency value, nonnegativity, symmetry, and normalization, which were
discussed in Section 4.8.

b. Starting with (4.70), derive (4.43) that defines the autocorrelation function RXX  of the
stationary process X(t) in terms of SXX(f).

4.9 In the definition of (4.70) for the power spectral density of a weakly stationary process X(t), it is not
permissible to interchange the order of expectation and limiting operations. Justify the validity of
this statement.

The Wiener–Khintchine Theorem

In the next four problems we explore the application of the Wiener–Khintchine theorem of (4.60) to
see whether a given function  , expressed in terms of the time shift , is a legitimate normalized
autocorrelation function or not.

4.10 Consider the Fourier transformable function

By inspection, we see that f  is an odd function of . It cannot, therefore, be a legitimate
autocorrelation function as it violates a fundamental property of the autocorrelation function. Apply
the Wiener–Khintchine theorem to arrive at this same conclusion.

RXX  

A
2

4
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2

4
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  ,+  T

     
A

2

4
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







=

SXX f  A
2

4
------ f  A

2
T

4
---------sinc

2
fT +=

X t  A Ft + cos=

f  
1

2
------ , 0  2 

0, otherwise





=

 

 

f   A
2

2
------ 2fc  for all sin=

 
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200 Chapter 4 Stochastic Processes

4.11 Consider the infinite series

 

which is an even function of , thereby satisfying the symmetry property of the autocorrelation
function. Apply the Wiener–Khintchine theorem to confirm that f  is indeed a legitimate
autocorrelation function of a weakly stationary process.

4.12 Consider the Gaussian function

which is Fourier transformable. Moreover, it is an even function of , thereby satisfying the
symmetry property of the autocorrelation function around the origin  = 0. Apply the Wiener–
Khintchine theorem to confirm that f  is indeed a legitimate normalized autocorrelation function
of a weakly stationary process.

4.13 Consider the Fourier transformable function

which is an odd function of . It cannot, therefore, be a legitimate autocorrelation function. Apply
the Wiener–Khintchine theorem to arrive at this same conclusion. 

Cross-correlation Functions and Cross-spectral Densities 

4.14 Consider a pair of weakly stationary processes X(t) and Y(t). Show that the cross-correlations
RXY  and RYX  of these two processes have the following properties:

a. RXY  = RYX(– )

b.

where RXX  and RYY  are the autocorrelation functions of X(t) and Y(t) respectively.

4.15 A weakly stationary process X(t), with zero mean and autocorrelation function RXX , is passed
through a differentiator, yielding the new process

a. Determine the autocorrelation function of Y(t).

b. Determine the cross-correlation function between X(t) and Y(t).

4.16 Consider two linear filters connected in cascade as in Figure P4.16. Let X(t) be a weakly stationary
process with autocorrelation function RXX . The weakly stationary process appearing at the first
filter output is denoted by V(t) and that at the second filter output is denoted by Y(t).

a. Find the autocorrelation function of Y(t).

b. Find the cross-correlation function RVY  of V(t) and Y(t). 
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4.17 A weakly stationary process X(t) is applied to a linear time-invariant filter of impulse response h(t),
producing the output Y(t).

a. Show that the cross-correlation function RYX  of the output Y(t) and the input X(t) is equal to
the impulse response h  convolved with the autocorrelation function RXX  of the input, as
shown by

Show that the second cross-correlation function RXY  is

 

b. Find the cross-spectral densities SYX(f) and SXY(f).
c. Assuming that X(t) is a white-noise process with zero mean and power spectral density N02,

show that

Comment on the practical significance of this result.

Poisson Process

4.18 The sample function of a stochastic process X(t) is shown in Figure P4.18a, where we see that the
sample function x(t) assumes the values 1 in a random manner. It is assumed that at time t = 0, the
values X(0) = –1 and X(1) = 1 are equiprobable. From there on, the changes in X(t) occur in
accordance with a Poisson process of average rate . The process X(t), described herein, is
sometimes referred to as a telegraph signal.

a. Show that, for any time t  0, the values X(t) = –1 and X(t) = +1 are equiprobable.

b. Building on the result of part a, show that the mean of X(t) is zero and its variance is unity.

c. Show that the autocorrelation function of X(t) is given by

d. The process X(t) is applied to the simple low-pass filter of Figure P4.18b. Determine the power
spectral density of the process Y(t) produced at the filter output.

 
   

RYX   h u RXX  u–  du
–



=

 

RXY   h u– RXX  u–  du
–



=

RYX  
N0

2
------h  =
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202 Chapter 4 Stochastic Processes

Gaussian Process

4.19 Consider the pair of integrals

and

where X(t) is a Gaussian process and h1(t) and h2(t) are two different weighting functions. Show
that the two random variables Y1 and Y2, resulting from the integrations, are jointly Gaussian.

4.20 A Gaussian process X(t), with zero mean and variance , is passed through a full-wave rectifier,
which is described by the input–output relationship of Figure P4.20. Show that the probability
density function of the random variable Y(tk), obtained by observing the stochastic process Y(t)
produced at the rectifier output at time tk, is one sided, as shown by

Confirm that the total area under the graph of  is unity. 

4.21 A stationary Gaussian process X(t), with mean X and variance , is passed through two linear
filters with impulse responses h1(t) and h2(t), yielding the processes Y(t) and Z(t), as shown in
Figure P4.21. Determine the necessary and sufficient conditions, for which Y(t1) and Z(t2) are
statistically independent Gaussian processes. 

White Noise

4.22 Consider the stochastic process

where W(t) is a white-noise process of power spectral density N02 and the parameters a and t0 are
constants.

Y1 h1 t X t  dt
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a. Determine the autocorrelation function of the process X(t), and sketch it.

b. Determine the power spectral density of the process X(t), and sketch it.

4.23 The process

describes a sinusoidal process that is corrupted by an additive white-noise process W(t) of known
power spectral density N02. The phase of the sinusoidal process, denoted by , is a uniformly
distributed random variable, defined by

The amplitude A and frequency f0 are both constant but unknown.

a. Determine the autocorrelation function of the process X(t) and its power spectral density.

b. How would you use the two results of part a to measure the unknown parameters A and f0?

4.24 A white Gaussian noise process of zero mean and power spectral density N02 is applied to the
filtering scheme shown in Figure P4.24. The noise at the low-pass filter output is denoted by n(t).

a. Find the power spectral density and the autocorrelation function of n(t).

b. Find the mean and variance of n(t).

c. What is the maximum rate at which n(t) can be sampled so that the resulting samples are
essentially uncorrelated?

4.25 Let X(t) be a weakly stationary process with zero mean, autocorrelation function RXX , and power
spectral density SXX(f). We are required to find a linear filter with impulse response h(t), such that
the filter output is X(t) when the input is white-noise of power spectral density N02.

a. Determine the condition that the impulse response h(t) must satisfy in order to achieve this
requirement.

b. What is the corresponding condition on the transfer function H(f) of the filter?

c. Using the Paley–Wiener criterion discussed in Chapter 2, find the requirement on SXX(f) for the
filter to be causal.

X t  A 2f0t +  W t +cos=
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204 Chapter 4 Stochastic Processes

Narrowband Noise

4.26 Consider a narrowband noise n(t) with its Hilbert transform denoted by .

a. Show that the cross-correlation functions of n(t) and  are given by

 

and

where  is the Hilbert transform of the autocorrelation function RNN  of n(t). 

Hint: use the formula

b. Show that, for  = 0, we have .

4.27 A narrowband noise n(t) has zero mean and autocorrelation function RNN( ). Its power spectral
density SNN(f) is centered about fc. The in-phase and quadrature components,  and , of
n(t) are defined by the weighted sums

and

where  is the Hilbert transform of the noise n(t). Using the result obtained in part a of Problem
4.26, show that nI(t) and nQ(t) have the following autocorrelation functions:

and

Rayleigh and Rician Distributions

4.28 Consider the problem of propagating signals through so-called random or fading communications
channels. Examples of such channels include the ionosphere from which short-wave (high-
frequency) signals are reflected back to the earth producing long-range radio transmission, and
underwater communications. A simple model of such a channel is shown in Figure P4.28, which
consists of a large collection of random scatterers, with the result that a single incident beam is
converted into a correspondingly large number of scattered beams at the receiver. The transmitted
signal is equal to . Assume that all scattered beams travel at the same mean velocity.
However, each scattered beam differs in amplitude and phase from the incident beam, so that the kth
scattered beam is given by , where the amplitude Ak and the phase vary
slowly and randomly with time. In particular, assume that the  are all independent of one another
and uniformly distributed random variables.

a. With the received signal denoted by

show that the random variable R, obtained by observing the envelope of the received signal at
time t, is Rayleigh-distributed, and that the random variable , obtained by observing the phase
at some fixed time, is uniformly distributed.

b. Assuming that the channel includes a line-of-sight path, so that the received signal contains a
sinusoidal component of frequency fc, show that in this case the envelope of the received signal is
Rician distributed.
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4.29 Referring back to the graphical plots of Figure 4.23, describing the Rician envelope distribution for
varying parameter a, we see that for the parameter a = 5, this distribution is approximately Gaussian.
Justify the validity of this statement.

Notes

1. Stochastic is of Greek origin.

2. For rigorous treatment of stochastic processes, see the classic books by Doob (1953), Loève
(1963), and Cramér and Leadbetter (1967).

3. Traditionally, (4.42) and (4.43) have been referred to in the literature as the Wiener–Khintchine
relations in recognition of pioneering work done by Norbert Wiener and A.I. Khintchine; for their
original papers, see Wiener (1930) and Khintchine (1934). The discovery of a forgotten paper by
Albert Einstein on time-series analysis (delivered at the Swiss Physical Society’s February 1914
meeting in Basel) reveals that Einstein had discussed the autocorrelation function and its relationship
to the spectral content of a time series many years before Wiener and Khintchine. An English
translation of Einstein’s paper is reproduced in the IEEE ASSP Magazine, vol. 4, October 1987. This
particular issue also contains articles by W.A. Gardner and A.M. Yaglom, which elaborate on
Einstein’s original work.

4. For a mathematical proof of the Wiener–Khintchine theorem, see Priestley (1981).

5. Equation (4.70) provides the mathematical basis for estimating the power spectral density of a
weakly stationary process. There is a plethora of procedures that have been formulated for
performing this estimation. For a detailed treatment of reliable procedures to do the estimation, see
the book by Percival and Walden (1993).

6. The Poisson process is named in honor of S.D. Poisson. The distribution bearing his name first
appeared in an exposition by Poisson on the role of probability in the administration of justice. The
classic book on Poisson processes is Snyder (1975). For an introductory treatment of the subject, see
Bertsekas and Tsitsiklis (2008: Chapter 6).

7. The Gaussian distribution and the associated Gaussian process are named after the great
mathematician C.F. Gauss. At age 18, Gauss invented the method of least squares for finding the
best value of a sequence of measurements of some quantity. Gauss later used the method of least
squares in fitting orbits of planets to data measurements, a procedure that was published in 1809 in
his book entitled Theory of Motion of the Heavenly Bodies. In connection with the error of
observation, he developed the Gaussian distribution. 
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206 Chapter 4 Stochastic Processes

8. Thermal noise was first studied experimentally by J.B. Johnson in 1928, and for this reason it is
sometimes referred to as the Johnson noise. Johnson’s experiments were confirmed theoretically by
Nyquist (1928a).

9. For further insight into white noise, see Appendix I on generalized random processes in the book
by Yaglom (1962). 

10. The Rayleigh distribution is named in honor of the English physicist J.W. Strutt, Lord Rayleigh.

11. The Rician distribution is named in honor of S.O. Rice (1945).

12. In mobile wireless communications to be covered in Chapter 9, the sinusoidal term
 in (4.141) is viewed as a line-of-sight (LOS) component of average power A22 and the

additive noise term n(t) is viewed as a Gaussian diffuse component of average power , with both
being assumed to have zero mean. In such an environment, it is the Rice factor K that is used to
characterize the Rician distribution. Formally, we write 

In effect, . Thus for the graphical plots of Figure 4.23, the running parameter K would

assume the values 0, 0.5, 2, 4.5, 12.5.

A 2fct cos
2

K Average power of the LOS component
Average power of the diffuse component
--------------------------------------------------------------------------------------------------=

A
2

22
---------=

K a
2

2
-----=
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CHAPTER

5
Information Theory 

5.1 Introduction

As mentioned in Chapter 1 and reiterated along the way, the purpose of a communication
system is to facilitate the transmission of signals generated by a source of information over a
communication channel. But, in basic terms, what do we mean by the term information? To
address this important issue, we need to understand the fundamentals of information theory.1 

The rationale for studying the fundamentals of information theory at this early stage in
the book is threefold:

1. Information theory makes extensive use of probability theory, which we studied in
Chapter 3; it is, therefore, a logical follow-up to that chapter.

2. It adds meaning to the term “information” used in previous chapters of the book.

3. Most importantly, information theory paves the way for many important concepts
and topics discussed in subsequent chapters.

In the context of communications, information theory deals with mathematical modeling
and analysis of a communication system rather than with physical sources and physical
channels. In particular, it provides answers to two fundamental questions (among others):

1. What is the irreducible complexity, below which a signal cannot be compressed?

2. What is the ultimate transmission rate for reliable communication over a noisy channel?

The answers to these two questions lie in the entropy of a source and the capacity of a
channel, respectively: 

1. Entropy is defined in terms of the probabilistic behavior of a source of information;
it is so named in deference to the parallel use of this concept in thermodynamics. 

2. Capacity is defined as the intrinsic ability of a channel to convey information; it is
naturally related to the noise characteristics of the channel. 

A remarkable result that emerges from information theory is that if the entropy of the
source is less than the capacity of the channel, then, ideally, error-free communication over
the channel can be achieved. It is, therefore, fitting that we begin our study of information
theory by discussing the relationships among uncertainty, information, and entropy.

5.2 Entropy

Suppose that a probabilistic experiment involves observation of the output emitted by a
discrete source during every signaling interval. The source output is modeled as a
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208 Chapter 5 Information Theory

stochastic process, a sample of which is denoted by the discrete random variable S. This
random variable takes on symbols from the fixed finite alphabet

(5.1)

with probabilities
(5.2)

Of course, this set of probabilities must satisfy the normalization property

(5.3)

We assume that the symbols emitted by the source during successive signaling intervals
are statistically independent. Given such a scenario, can we find a measure of how much
information is produced by such a source? To answer this question, we recognize that the
idea of information is closely related to that of uncertainty or surprise, as described next.

Consider the event S = sk, describing the emission of symbol sk by the source with
probability pk, as defined in (5.2). Clearly, if the probability pk = 1 and pi = 0 for all ,
then there is no “surprise” and, therefore, no “information” when symbol sk is emitted,
because we know what the message from the source must be. If, on the other hand, the
source symbols occur with different probabilities and the probability pk is low, then there
is more surprise and, therefore, information when symbol sk is emitted by the source than
when another symbol si, , with higher probability is emitted. Thus, the words uncer-
tainty, surprise, and information are all related. Before the event S = sk occurs, there is an
amount of uncertainty. When the event S = sk occurs, there is an amount of surprise. After
the occurrence of the event S = sk, there is gain in the amount of information, the essence
of which may be viewed as the resolution of uncertainty. Most importantly, the amount of
information is related to the inverse of the probability of occurrence of the event S = sk.

We define the amount of information gained after observing the event S = sk, which
occurs with probability pk, as the logarithmic function2

(5.4)

which is often termed “self-information” of the event S = sk. This definition exhibits the
following important properties that are intuitively satisfying:

PROPERTY 1 (5.5)

Obviously, if we are absolutely certain of the outcome of an event, even before it occurs,
there is no information gained.

PROPERTY 2 (5.6)

That is to say, the occurrence of an event S = sk either provides some or no information,
but never brings about a loss of information.

PROPERTY 3 (5.7)

That is, the less probable an event is, the more information we gain when it occurs.

𝒮 s0 s1 , sK 1–  =

� S=sk  pk,= k 0 1  K 1–  =

pk
k 0=

K 1–

 1, pk 0=

i k

i k

I sk  1
pk
----- 

 log=

I sk  0 for pk 1= =

I sk  0 for 0 pk 1

I sk  I si  for pk p i
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5.2 Entropy 209

PROPERTY 4  if sk and sl are statistically independent

This additive property follows from the logarithmic definition described in (5.4).
The base of the logarithm in (5.4) specifies the units of information measure.

Nevertheless, it is standard practice in information theory to use a logarithm to base 2 with
binary signaling in mind. The resulting unit of information is called the bit, which is a
contraction of the words binary digit. We thus write

(5.8)

When pk = 12, we have I(sk) = 1 bit. We may, therefore, state:

One bit is the amount of information that we gain when one of two possible and 
equally likely (i.e., equiprobable) events occurs. 

Note that the information I(sk) is positive, because the logarithm of a number less than
one, such as a probability, is negative. Note also that if pk is zero, then the self-information

 assumes an unbounded value.
The amount of information I(sk) produced by the source during an arbitrary signaling

interval depends on the symbol sk emitted by the source at the time. The self-information
I(sk) is a discrete random variable that takes on the values I(s0), I(s1), , I(sK – 1) with
probabilities p0, p1, , pK – 1 respectively. The expectation of I(sk) over all the probable
values taken by the random variable S is given by

(5.9)

The quantity H(S) is called the entropy,3 formally defined as follows:

The entropy of a discrete random variable, representing the output of a 
source of information, is a measure of the average information content per 
source symbol. 

Note that the entropy H(S) is independent of the alphabet 𝒮; it depends only on the
probabilities of the symbols in the alphabet 𝒮 of the source. 

Properties of Entropy

Building on the definition of entropy given in (5.9), we find that entropy of the discrete
random variable S is bounded as follows:

(5.10)

where K is the number of symbols in the alphabet 𝒮. 

I sk sl  I sk  I sl +=

I sk  1
pk
----- 

 
2log=

p2 k for log– k 0 1,  K 1–= =

Isk

H S  � I sk  =

pkI sk 
k 0=

K 1–

=

pk 
1
pk
----- 

 
2log

k 0=

K 1–

=

0 H S   K2log

Haykin_ch05_pp3.fm  Page 209  Monday, November 26, 2012  12:44 PM



210 Chapter 5 Information Theory

Elaborating on the two bounds on entropy in (5.10), we now make two statements:

1. H(S) = 0, if, and only if, the probability pk = 1 for some k, and the remaining
probabilities in the set are all zero; this lower bound on entropy corresponds to no
uncertainty.

2. H(S) = log K, if, and only if, pk = 1/K for all k (i.e., all the symbols in the source
alphabet 𝒮 are equiprobable); this upper bound on entropy corresponds to maximum
uncertainty.

To prove these properties of H(S), we proceed as follows. First, since each probability pk is
less than or equal to unity, it follows that each term pklog2(1/pk) in (5.9) is always
nonnegative, so H(S) > 0. Next, we note that the product term pk log2(1/pk) is zero if, and
only if, pk = 0 or 1. We therefore deduce that H(S) = 0 if, and only if, pk = 0 or 1 for some
k and all the rest are zero. This completes the proofs of the lower bound in (5.10) and
statement 1.

To prove the upper bound in (5.10) and statement 2, we make use of a property of the
natural logarithm:

(5.11)

where loge is another way of describing the natural logarithm, commonly denoted by ln;
both notations are used interchangeably. This inequality can be readily verified by plotting
the functions lnx and (x – 1) versus x, as shown in Figure 5.1. Here we see that the line
y = x – 1 always lies above the curve y = logex. The equality holds only at the point x = 1,
where the line is tangential to the curve.

To proceed with the proof, consider first any two different probability distributions
denoted by p0, p1, , pK – 1 and q0, q1, , qK – 1 on the alphabet 𝒮 = {s0, s1, , sK – 1) of a
discrete source. We may then define the relative entropy of these two distributions:

(5.12)

Figure 5.1 Graphs of the functions x – 1 and log x versus x.
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5.2 Entropy 211

Hence, changing to the natural logarithm and using the inequality of (5.11), we may
express the summation on the right-hand side of (5.12) as follows:

where, in the third line of the equation, it is noted that the sums over pk and qk are both
equal to unity in accordance with (5.3). We thus have the fundamental property of
probability theory:

(5.13)

In words, (5.13) states:

The relative entropy of a pair of different discrete distributions is always 
nonnegative; it is zero only when the two distributions are identical.

Suppose we next put

which corresponds to a source alphabet 𝒮 with equiprobable symbols. Using this
distribution in (5.12) yields

where we have made use of (5.3) and (5.9). Hence, invoking the fundamental inequality of
(5.13), we may finally write

(5.14)

Thus, H(S) is always less than or equal to log2 K. The equality holds if, and only if, the
symbols in the alphabet 𝒮 are equiprobable. This completes the proof of (5.10) and with it
the accompanying statements 1 and 2.

EXAMPLE 1 Entropy of Bernoulli Random Variable

To illustrate the properties of H(S) summed up in (5.10), consider the Bernoulli random
variable for which symbol 0 occurs with probability p0 and symbol 1 with probability
p1 = 1 – p0. 
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212 Chapter 5 Information Theory

The entropy of this random variable is

(5.15)

from which we observe the following:

1. When p0 = 0, the entropy H(S) = 0; this follows from the fact that  as
.

2. When p0 = 1, the entropy H(S) = 0.

3. The entropy H(S) attains its maximum value Hmax = 1 bit when p1 = p0 = 12; that is,
when symbols 1 and 0 are equally probable.

In other words, H(S) is symmetric about p0 = 12.
The function of p0 given on the right-hand side of (5.15) is frequently encountered in

information-theoretic problems. It is customary, therefore, to assign a special symbol to
this function. Specifically, we define

(5.16)

We refer to H(p0) as the entropy function. The distinction between (5.15) and (5.16)
should be carefully noted. The H(S) of (5.15) gives the entropy of the Bernoulli random
variable S. The H(p0) of (5.16), on the other hand, is a function of the prior probability p0
defined on the interval [0, 1]. Accordingly, we may plot the entropy function H(p0) versus
p0, defined on the interval [0, 1], as shown in Figure 5.2. The curve in Figure 5.2
highlights the observations made under points 1, 2, and 3.

Extension of a Discrete Memoryless Source

To add specificity to the discrete source of symbols that has been the focus of attention up
until now, we now assume it to be memoryless in the sense that the symbol emitted by the
source at any time is independent of previous and future emissions. 

In this context, we often find it useful to consider blocks rather than individual symbols,
with each block consisting of n successive source symbols. We may view each such block

Figure 5.2
Entropy function H(p0).
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5.2 Entropy 213

as being produced by an extended source with a source alphabet described by the Cartesian
product of a set Sn that has Kn distinct blocks, where K is the number of distinct symbols in
the source alphabet S  of the original source. With the source symbols being statistically
independent, it follows that the probability of a source symbol in Sn is equal to the product
of the probabilities of the n source symbols in S that constitute a particular source symbol of
Sn. We may thus intuitively expect that H(Sn), the entropy of the extended source, is equal
to n times H(S), the entropy of the original source. That is, we may write

(5.17)

We illustrate the validity of this relationship by way of an example.

EXAMPLE 2 Entropy of Extended Source

Consider a discrete memoryless source with source alphabet 𝒮 = {s0, s1, s2}, whose three
distinct symbols have the following probabilities:

Hence, the use of (5.9) yields the entropy of the discrete random variable S representing
the source as

Consider next the second-order extension of the source. With the source alphabet 𝒮
consisting of three symbols, it follows that the source alphabet of the extended source S(2)

has nine symbols. The first row of Table 5.1 presents the nine symbols of S(2), denoted by
0, 1, , 8. The second row of the table presents the composition of these nine symbols
in terms of the corresponding sequences of source symbols s0, s1, and s2, taken two at a

H S
n   nH S =

p0 1
4
---=

p1 1
4
---=

p2 1
2
---=

H S  p0 
1
p0
----- 

  p1 
1
p1
----- 

  p2 
1
p2
----- 

 
2log+2log+2log=

1
4
---  log2 4  1

4
---  4 2log

1
2
---  2 2log+ +=

3
2
---=  bits

Table 5.1 Alphabets of second-order extension of a discrete memoryless source

Symbols of S(2) 0 1 2 3 4 5 6 7 8

Corresponding sequences of
symbols of S

s0s0 s0s1 s0s2 s1s0 s1s1 s1s2 s2s0 s2s1 s2s2

Probability �(i), i 0 1  8  =
1
16
------ 1

16
------ 1

8
--- 1

16
------ 1

16
------ 1

8
--- 1

8
--- 1

8
--- 1

4
---
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214 Chapter 5 Information Theory

time. The probabilities of the nine source symbols of the extended source are presented in
the last row of the table. Accordingly, the use of (5.9) yields the entropy of the extended
source as

We thus see that H(S (2)) = 2H(S) in accordance with (5.17).

5.3 Source-coding Theorem

Now that we understand the meaning of entropy of a random variable, we are equipped to
address an important issue in communication theory: the representation of data generated
by a discrete source of information. 

The process by which this representation is accomplished is called source encoding.
The device that performs the representation is called a source encoder. For reasons to be
described, it may be desirable to know the statistics of the source. In particular, if some
source symbols are known to be more probable than others, then we may exploit this
feature in the generation of a source code by assigning short codewords to frequent source
symbols, and long codewords to rare source symbols. We refer to such a source code as a
variable-length code. The Morse code, used in telegraphy in the past, is an example of a
variable-length code. Our primary interest is in the formulation of a source encoder that
satisfies two requirements:

1. The codewords produced by the encoder are in binary form.

2. The source code is uniquely decodable, so that the original source sequence can be
reconstructed perfectly from the encoded binary sequence.

The second requirement is particularly important: it constitutes the basis for a perfect
source code.

Consider then the scheme shown in Figure 5.3 that depicts a discrete memoryless
source whose output sk is converted by the source encoder into a sequence of 0s and 1s,
denoted by bk. We assume that the source has an alphabet with K different symbols and
that the kth symbol sk occurs with probability pk, k = 0, 1, , K – 1. Let the binary

H S
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Figure 5.3 Source encoding. 
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5.4 Lossless Data Compression Algorithms 215

codeword assigned to symbol sk by the encoder have length lk, measured in bits. We define
the average codeword length  of the source encoder as

(5.18)

In physical terms, the parameter  represents the average number of bits per source
symbol used in the source encoding process. Let Lmin denote the minimum possible value
of L. We then define the coding efficiency of the source encoder as

(5.19)

With , we clearly have   1. The source encoder is said to be efficient when 
approaches unity.

But how is the minimum value Lmin determined? The answer to this fundamental
question is embodied in Shannon’s first theorem: the source-coding theorem,4 which may
be stated as follows:

Given a discrete memoryless source whose output is denoted by the random 
variable S, the entropy H(S) imposes the following bound on the average 
codeword length  for any source encoding scheme:

 (5.20)

According to this theorem, the entropy H(S) represents a fundamental limit on the average
number of bits per source symbol necessary to represent a discrete memoryless source, in
that it can be made as small as but no smaller than the entropy H(S). Thus, setting
Lmin = H(S), we may rewrite (5.19), defining the efficiency of a source encoder in terms of
the entropy H(S) as shown by

(5.21)

where as before we have  < 1.

5.4 Lossless Data Compression Algorithms

A common characteristic of signals generated by physical sources is that, in their natural
form, they contain a significant amount of redundant information, the transmission of
which is therefore wasteful of primary communication resources. For example, the output
of a computer used for business transactions constitutes a redundant sequence in the sense
that any two adjacent symbols are typically correlated with each other.

For efficient signal transmission, the redundant information should, therefore, be
removed from the signal prior to transmission. This operation, with no loss of information,
is ordinarily performed on a signal in digital form, in which case we refer to the operation
as lossless data compression. The code resulting from such an operation provides a
representation of the source output that is not only efficient in terms of the average number
of bits per symbol, but also exact in the sense that the original data can be reconstructed
with no loss of information. The entropy of the source establishes the fundamental limit on
the removal of redundancy from the data. Basically, lossless data compression is achieved

L

L pklk
k 0=

K 1–

=

L


Lmin

L
-----------=

L Lmin

L

L H S 

 H S 
L

------------=

Haykin_ch05_pp3.fm  Page 215  Monday, November 26, 2012  12:44 PM



216 Chapter 5 Information Theory

by assigning short descriptions to the most frequent outcomes of the source output and
longer descriptions to the less frequent ones.

In this section we discuss some source-coding schemes for lossless data compression.
We begin the discussion by describing a type of source code known as a prefix code,
which not only is uniquely decodable, but also offers the possibility of realizing an
average codeword length that can be made arbitrarily close to the source entropy.

Prefix Coding

Consider a discrete memoryless source of alphabet {s0, s1, , sK – 1} and respective
probabilities {p0, p1, , pK – 1}. For a source code representing the output of this source to
be of practical use, the code has to be uniquely decodable. This restriction ensures that, for
each finite sequence of symbols emitted by the source, the corresponding sequence of
codewords is different from the sequence of codewords corresponding to any other source
sequence. We are specifically interested in a special class of codes satisfying a restriction
known as the prefix condition. To define the prefix condition, let the codeword assigned to
source symbol sk be denoted by , where the individual elements

 are 0s and 1s and n is the codeword length. The initial part of the codeword
is represented by the elements  for some i  n. Any sequence made up of the
initial part of the codeword is called a prefix of the codeword. We thus say:

A prefix code is defined as a code in which no codeword is the prefix of any 
other codeword.

Prefix codes are distinguished from other uniquely decodable codes by the fact that the
end of a codeword is always recognizable. Hence, the decoding of a prefix can be
accomplished as soon as the binary sequence representing a source symbol is fully
received. For this reason, prefix codes are also referred to as instantaneous codes.

EXAMPLE 3 Illustrative Example of Prefix Coding

To illustrate the meaning of a prefix code, consider the three source codes described in
Table 5.2. Code I is not a prefix code because the bit 0, the codeword for s0, is a prefix of
00, the codeword for s2. Likewise, the bit 1, the codeword for s1, is a prefix of 11, the
codeword for s3. Similarly, we may show that code III is not a prefix code but code II is. 

mk1
mk2

 mkn
   

mk1
 mkn
 

mk1
 mki
 

Table 5.2 Illustrating the definition of a prefix code

Symbol source Probability of occurrence Code I Code II Code III

s0 0.5 0 0 0

s1 0.25 1 10 01

s2 0.125 00 110 011

s3 0.125 11 111 0111
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5.4 Lossless Data Compression Algorithms 217

Decoding of Prefix Code

To decode a sequence of codewords generated from a prefix source code, the source
decoder simply starts at the beginning of the sequence and decodes one codeword at a
time. Specifically, it sets up what is equivalent to a decision tree, which is a graphical
portrayal of the codewords in the particular source code. For example, Figure 5.4 depicts
the decision tree corresponding to code II in Table 5.2. The tree has an initial state and
four terminal states corresponding to source symbols s0, s1, s2, and s3. The decoder always
starts at the initial state. The first received bit moves the decoder to the terminal state s0 if
it is 0 or else to a second decision point if it is 1. In the latter case, the second bit moves the
decoder one step further down the tree, either to terminal state s1 if it is 0 or else to a third
decision point if it is 1, and so on. Once each terminal state emits its symbol, the decoder
is reset to its initial state. Note also that each bit in the received encoded sequence is
examined only once. Consider, for example, the following encoded sequence:

This sequence is readily decoded as the source sequence s1s3s2s0s0 The reader is
invited to carry out this decoding.

As mentioned previously, a prefix code has the important property that it is
instantaneously decodable. But the converse is not necessarily true. For example, code III
in Table 5.2 does not satisfy the prefix condition, yet it is uniquely decodable because the
bit 0 indicates the beginning of each codeword in the code.

To probe more deeply into prefix codes, exemplified by that in Table 5.2, we resort to
an inequality, which is considered next.

Kraft Inequality

Consider a discrete memoryless source with source alphabet {s0, s1, , sK – 1} and source
probabilities {p0, p1, , pK – 1}, with the codeword of symbol sk having length lk, k = 0, 1,

Figure 5.4 Decision tree for code II of Table 5.2.
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218 Chapter 5 Information Theory

, K – 1. Then, according to the Kraft inequality,5 the codeword lengths always satisfy the
following inequality:

(5.22)

where the factor 2 refers to the number of symbols in the binary alphabet. The Kraft
inequality is a necessary but not sufficient condition for a source code to be a prefix code.
In other words, the inequality of (5.22) is merely a condition on the codeword lengths of a
prefix code and not on the codewords themselves. For example, referring to the three
codes listed in Table 5.2, we see:

• Code I violates the Kraft inequality; it cannot, therefore, be a prefix code.
• The Kraft inequality is satisfied by both codes II and III, but only code II is a 

prefix code.

Given a discrete memoryless source of entropy H(S), a prefix code can be constructed with
an average codeword length , which is bounded as follows:

(5.23)

The left-hand bound of (5.23) is satisfied with equality under the condition that symbol sk
is emitted by the source with probability

(5.24)

where lk is the length of the codeword assigned to source symbol sk. A distribution governed
by (5.24) is said to be a dyadic distribution. For this distribution, we naturally have

Under this condition, the Kraft inequality of (5.22) confirms that we can construct a prefix
code, such that the length of the codeword assigned to source symbol sk is . For
such a code, the average codeword length is

(5.25)

and the corresponding entropy of the source is

(5.26)

Hence, in this special (rather meretricious) case, we find from (5.25) and (5.26) that the
prefix code is matched to the source in that .

But how do we match the prefix code to an arbitrary discrete memoryless source? The
answer to this basic problem lies in the use of an extended code. Let  denote the
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5.4 Lossless Data Compression Algorithms 219

average codeword length of the extended prefix code. For a uniquely decodable code, 
is the smallest possible. From (5.23), we find that

(5.27)

or, equivalently, 

(5.28)

In the limit, as n approaches infinity, the lower and upper bounds in (5.28) converge as
shown by

(5.29)

We may, therefore, make the statement:

By making the order n of an extended prefix source encoder large enough, 
we can make the code faithfully represent the discrete memoryless source S 
as closely as desired. 

In other words, the average codeword length of an extended prefix code can be made as
small as the entropy of the source, provided that the extended code has a high enough
order in accordance with the source-coding theorem. However, the price we have to pay
for decreasing the average codeword length is increased decoding complexity, which is
brought about by the high order of the extended prefix code.

Huffman Coding

We next describe an important class of prefix codes known as Huffman codes. The basic
idea behind Huffman coding6 is the construction of a simple algorithm that computes an
optimal prefix code for a given distribution, optimal in the sense that the code has the
shortest expected length. The end result is a source code whose average codeword length
approaches the fundamental limit set by the entropy of a discrete memoryless source,
namely H(S). The essence of the algorithm used to synthesize the Huffman code is to
replace the prescribed set of source statistics of a discrete memoryless source with a
simpler one. This reduction process is continued in a step-by-step manner until we are left
with a final set of only two source statistics (symbols), for which (0, 1) is an optimal code.
Starting from this trivial code, we then work backward and thereby construct the Huffman
code for the given source. 

To be specific, the Huffman encoding algorithm proceeds as follows:

1. The source symbols are listed in order of decreasing probability. The two source
symbols of lowest probability are assigned 0 and 1. This part of the step is referred
to as the splitting stage.

2. These two source symbols are then combined into a new source symbol with
probability equal to the sum of the two original probabilities. (The list of source
symbols, and, therefore, source statistics, is thereby reduced in size by one.) The
probability of the new symbol is placed in the list in accordance with its value.

3. The procedure is repeated until we are left with a final list of source statistics
(symbols) of only two for which the symbols 0 and 1 are assigned.

Ln

nH S  Ln nH S  1+

H S 
Ln

n
----- H S  1

n
---+

1
n
---

n 
lim Ln H S =
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The code for each (original) source is found by working backward and tracing the
sequence of 0s and 1s assigned to that symbol as well as its successors.

EXAMPLE 4 Huffman Tree

To illustrate the construction of a Huffman code, consider the five symbols of the alphabet
of a discrete memoryless source and their probabilities, which are shown in the two
leftmost columns of Figure 5.5b. Following through the Huffman algorithm, we reach the
end of the computation in four steps, resulting in a Huffman tree similar to that shown in
Figure 5.5; the Huffman tree is not to be confused with the decision tree discussed
previously in Figure 5.4. The codewords of the Huffman code for the source are tabulated
in Figure 5.5a. The average codeword length is, therefore,

The entropy of the specified discrete memoryless source is calculated as follows (see (5.9)):

For this example, we may make two observations:

1. The average codeword length  exceeds the entropy H(S) by only 3.67%.

2. The average codeword length  does indeed satisfy (5.23).

It is noteworthy that the Huffman encoding process (i.e., the Huffman tree) is not unique.
In particular, we may cite two variations in the process that are responsible for the
nonuniqueness of the Huffman code. First, at each splitting stage in the construction of a
Huffman code, there is arbitrariness in the way the symbols 0 and 1 are assigned to the last
two source symbols. Whichever way the assignments are made, however, the resulting
differences are trivial. Second, ambiguity arises when the probability of a combined

L 0.4 2  0.2 2  0.2 2  0.1 3  0.1 3 + + + +=

2.2 binary symbols=

H S  0.4 log2
1

0.4
------- 

  0.2 log2
1

0.2
------- 

  0.2++ log2
1

0.2
------- 

  0.1 log2
1

0.1
------- 

  0.1+  log2
1

0.1
------- 

 +=

0.529 0.464 0.464 0.332 0.332+ + + +=

2.121 bits=

L

L

Figure 5.5 (a) Example of the Huffman encoding algorithm. (b) Source code. 
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symbol (obtained by adding the last two probabilities pertinent to a particular step) is
found to equal another probability in the list. We may proceed by placing the probability
of the new symbol as high as possible, as in Example 4. Alternatively, we may place it as
low as possible. (It is presumed that whichever way the placement is made, high or low, it
is consistently adhered to throughout the encoding process.) By this time, noticeable
differences arise in that the codewords in the resulting source code can have different
lengths. Nevertheless, the average codeword length remains the same.

As a measure of the variability in codeword lengths of a source code, we define the
variance of the average codeword length  over the ensemble of source symbols as

(5.30)

where p0, p1, , pK – 1 are the source statistics and lk is the length of the codeword
assigned to source symbol sk. It is usually found that when a combined symbol is moved
as high as possible, the resulting Huffman code has a significantly smaller variance 
than when it is moved as low as possible. On this basis, it is reasonable to choose the
former Huffman code over the latter.

Lempel–Ziv Coding

A drawback of the Huffman code is that it requires knowledge of a probabilistic model of
the source; unfortunately, in practice, source statistics are not always known a priori.
Moreover, in the modeling of text we find that storage requirements prevent the Huffman
code from capturing the higher-order relationships between words and phrases because the
codebook grows exponentially fast in the size of each super-symbol of letters (i.e.,
grouping of letters); the efficiency of the code is therefore compromised. To overcome
these practical limitations of Huffman codes, we may use the Lempel–Ziv algorithm,7

which is intrinsically adaptive and simpler to implement than Huffman coding.
Basically, the idea behind encoding in the Lempel–Ziv algorithm is described as

follows:

The source data stream is parsed into segments that are the shortest 
subsequences not encountered previously. 

To illustrate this simple yet elegant idea, consider the example of the binary sequence 

000101110010100101 …

It is assumed that the binary symbols 0 and 1 are already stored in that order in the code
book. We thus write

Subsequences stored: 0, 1
Data to be parsed: 000101110010100101 …

The encoding process begins at the left. With symbols 0 and 1 already stored, the shortest
subsequence of the data stream encountered for the first time and not seen before is 00; so
we write

Subsequences stored: 0, 1, 00
Data to be parsed: 0101110010100101 …

L

2
pk lk L– 

2

k 0=

K 1–

=

2
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222 Chapter 5 Information Theory

The second shortest subsequence not seen before is 01; accordingly, we go on to write

Subsequences stored: 0, 0, 00, 01
Data to be parsed: 01110010100101 …

The next shortest subsequence not encountered previously is 011; hence, we write

Subsequences stored: 0, 1, 00, 01, 011
Data to be parsed: 10010100101 …

We continue in the manner described here until the given data stream has been completely
parsed. Thus, for the example at hand, we get the code book of binary subsequences
shown in the second row of Figure 5.6.8

The first row shown in this figure merely indicates the numerical positions of the
individual subsequences in the code book. We now recognize that the first subsequence of
the data stream, 00, is made up of the concatenation of the first code book entry, 0, with
itself; it is, therefore, represented by the number 11. The second subsequence of the data
stream, 01, consists of the first code book entry, 0, concatenated with the second code book
entry, 1; it is, therefore, represented by the number 12. The remaining subsequences are
treated in a similar fashion. The complete set of numerical representations for the various
subsequences in the code book is shown in the third row of Figure 5.6. As a further example
illustrating the composition of this row, we note that the subsequence 010 consists of the
concatenation of the subsequence 01 in position 4 and symbol 0 in position 1; hence, the
numerical representation is 41. The last row shown in Figure 5.6 is the binary encoded
representation of the different subsequences of the data stream.

The last symbol of each subsequence in the code book (i.e., the second row of Figure
5.6) is an innovation symbol, which is so called in recognition of the fact that its
appendage to a particular subsequence distinguishes it from all previous subsequences
stored in the code book. Correspondingly, the last bit of each uniform block of bits in the
binary encoded representation of the data stream (i.e., the fourth row in Figure 5.6)
represents the innovation symbol for the particular subsequence under consideration. The
remaining bits provide the equivalent binary representation of the “pointer” to the root
subsequence that matches the one in question, except for the innovation symbol.

The Lempel–Ziv decoder is just as simple as the encoder. Specifically, it uses the
pointer to identify the root subsequence and then appends the innovation symbol.
Consider, for example, the binary encoded block 1101 in position 9. The last bit, 1, is the
innovation symbol. The remaining bits, 110, point to the root subsequence 10 in position
6. Hence, the block 1101 is decoded into 101, which is correct.

From the example described here, we note that, in contrast to Huffman coding, the
Lempel–Ziv algorithm uses fixed-length codes to represent a variable number of source
symbols; this feature makes the Lempel–Ziv code suitable for synchronous transmission.

Figure 5.6 Illustrating the encoding process performed by the Lempel–Ziv algorithm 
on the binary sequence 000101110010100101  

Numerical positions 1 2 3 4 5 6 7 8 9

Subsequences 0 1 00 01 011 10 010 100 101

Numerical representations   11 12 42 21 41 61 62

Binary encoded blocks   0010 0011 1001 0100 1000 1100 1101
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5.5 Discrete Memoryless Channels 223

In practice, fixed blocks of 12 bits long are used, which implies a code book of 212 = 4096
entries.

For a long time, Huffman coding was unchallenged as the algorithm of choice for
lossless data compression; Huffman coding is still optimal, but in practice it is hard to
implement. It is on account of practical implementation that the Lempel–Ziv algorithm
has taken over almost completely from the Huffman algorithm. The Lempel–Ziv
algorithm is now the standard algorithm for file compression. 

5.5 Discrete Memoryless Channels

Up to this point in the chapter we have been preoccupied with discrete memoryless
sources responsible for information generation. We next consider the related issue of
information transmission. To this end, we start the discussion by considering a discrete
memoryless channel, the counterpart of a discrete memoryless source.

A discrete memoryless channel is a statistical model with an input X and an output Y that
is a noisy version of X; both X and Y are random variables. Every unit of time, the channel
accepts an input symbol X selected from an alphabet 𝒳 and, in response, it emits an output
symbol Y from an alphabet 𝒴. The channel is said to be “discrete” when both of the alphabets
𝒳  and 𝒴  have finite sizes. It is said to be “memoryless” when the current output symbol
depends only on the current input symbol and not any previous or future symbol.

Figure 5.7a shows a view of a discrete memoryless channel. The channel is described in
terms of an input alphabet

(5.31)

and an output alphabet

(5.32)

Figure 5.7 (a) Discrete memoryless channel; (b) Simplified 
graphical representation of the channel. 

𝒳 x0 x1  xJ 1–   =

𝒴 y0 y1  yK 1–   =

y0

y1

.

.

.
yK – 1
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.

.

.
xJ – 1
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The cardinality of the alphabets 𝒳 and 𝒴, or any other alphabet for that matter, is defined
as the number of elements in the alphabet. Moreover, the channel is characterized by a set
of transition probabilities

(5.33)

for which, according to probability theory, we naturally have 

(5.34)

and
(5.35)

When the number of input symbols J and the number of output symbols K are not large, we
may depict the discrete memoryless channel graphically in another way, as shown in Figure
5.7b. In this latter depiction, each input–output symbol pair (x, y), characterized by the
transition probability p(y |x)  0, is joined together by a line labeled with the number p(y |x).

Also, the input alphabet 𝒳 and output alphabet 𝒴  need not have the same size; hence
the use of J for the size of 𝒳 and K for the size of 𝒴. For example, in channel coding, the
size K of the output alphabet 𝒴 may be larger than the size J of the input alphabet 𝒳; thus,
K  J. On the other hand, we may have a situation in which the channel emits the same
symbol when either one of two input symbols is sent, in which case we have K  J.

A convenient way of describing a discrete memoryless channel is to arrange the various
transition probabilities of the channel in the form of a matrix

(5.36)

The J-by-K matrix P is called the channel matrix, or stochastic matrix. Note that each row
of the channel matrix P corresponds to a fixed channel input, whereas each column of the
matrix corresponds to a fixed channel output. Note also that a fundamental property of the
channel matrix P, as defined here, is that the sum of the elements along any row of the
stochastic matrix is always equal to one, according to (5.35).

Suppose now that the inputs to a discrete memoryless channel are selected according to
the probability distribution {p(xj), j = 0, 1, , J – 1}. In other words, the event that the
channel input X = xj occurs with probability

(5.37)

Having specified the random variable X denoting the channel input, we may now specify
the second random variable Y denoting the channel output. The joint probability
distribution of the random variables X and Y is given by

(5.38)

p yk xj  � Y yk X xj= =  for all j and k=

0 p yk xj  1 for all j and k

p yk xj 
k
 1 for fixed j=

P

p y0 x0  p y1 x0   p yK 1– x0 

p y0 x1  p y1 x1   p yK 1– x1 

p y0 xJ 1–  p y1 xJ 1–   p yK 1– xJ 1– 

=
. .

 .

. .
 .

. .
 .

p xj  �(X xj) for j 0 1,  J 1–= = =

p xj yk  � X xj Y yk= = =

� Y yk X xj= = �(X xj)= =

p yk xj p xj =
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5.5 Discrete Memoryless Channels 225

The marginal probability distribution of the output random variable Y is obtained by
averaging out the dependence of p(xj, yk) on xj, obtaining

(5.39)

The probabilities p(xj) for j = 0, 1, , J – 1, are known as the prior probabilities of the
various input symbols. Equation (5.39) states: 

If we are given the input prior probabilities p(xj) and the stochastic matrix 
(i.e., the matrix of transition probabilities p(yk|xj)), then we may calculate the 
probabilities of the various output symbols, the p(yk).

EXAMPLE 5 Binary Symmetric Channel

The binary symmetric channel is of theoretical interest and practical importance. It is a
special case of the discrete memoryless channel with J = K = 2. The channel has two input
symbols (x0 = 0, x1 = 1) and two output symbols (y0 = 0, y1 = 1). The channel is symmetric
because the probability of receiving 1 if 0 is sent is the same as the probability of receiving
0 if 1 is sent. This conditional probability of error is denoted by p (i.e., the probability of a
bit flipping). The transition probability diagram of a binary symmetric channel is as
shown in Figure 5.8. Correspondingly, we may express the stochastic matrix as

p yk  �(Y yk)= =

� Y yk X xj== �(X
j 0=

J 1–

 xj)= =

p yk xj p xj  for k 0 1  K 1–  =
j 0=

J 1–

=

Figure 5.8 Transition probability diagram of binary symmetric channel.
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5.6 Mutual Information

Given that we think of the channel output Y (selected from alphabet 𝒴) as a noisy version
of the channel input X (selected from alphabet 𝒳) and that the entropy H(X) is a measure of
the prior uncertainty about X, how can we measure the uncertainty about X after observing
Y? To answer this basic question, we extend the ideas developed in Section 5.2 by defining
the conditional entropy of X selected from alphabet 𝒳, given Y = yk. Specifically, we write

(5.40)

This quantity is itself a random variable that takes on the values H(X|Y = y0), ,
H(X|Y = yK – 1) with probabilities p(y0), , p(yK – 1), respectively. The expectation of
entropy H(X|Y = yk) over the output alphabet 𝒴 is therefore given by

(5.41)

where, in the last line, we used the definition of the probability of the joint event (X = xj,
Y = yk) as shown by

(5.42)

The quantity H(X|Y) in (5.41) is called the conditional entropy, formally defined as
follows: 

The conditional entropy, H(X|Y), is the average amount of uncertainty 
remaining about the channel input after the channel output has been observed.

The conditional entropy H(X|Y) relates the channel output Y to the channel input X. The
entropy H(X) defines the entropy of the channel input X by itself. Given these two
entropies, we now introduce the definition

(5.43)

which is called the mutual information of the channel. To add meaning to this new
concept, we recognize that the entropy H(X) accounts for the uncertainty about the
channel input before observing the channel output and the conditional entropy H(X|Y)
accounts for the uncertainty about the channel input after observing the channel output.
We may, therefore, go on to make the statement: 

The mutual information I(X;Y) is a measure of the uncertainty about the 
channel input, which is resolved by observing the channel output.

H(X Y yk) p xj yk  1
p xj yk 
------------------- 

 
2log

j 0=

J 1–

= =

H(X Y) H(X Y yk)=
k 0=

K 1–

= p yk 

 p xj yk p yk  1
p xj yk 
------------------- 

 
2log

j 0=

J 1–


k 0=

K 1–

=

 p xj yk  1
p xj yk 
------------------- 

 
2log

j 0=

J 1–


k 0=

K 1–

=

p xj yk  p xj yk p yk =

I X Y;  H X  H X Y –=
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Equation (5.43) is not the only way of defining the mutual information of a channel.
Rather, we may define it in another way, as shown by

(5.44)

on the basis of which we may make the next statement:

The mutual information I(Y;X) is a measure of the uncertainty about the 
channel output that is resolved by sending the channel input.

On first sight, the two definitions of (5.43) and (5.44) look different. In reality, however,
they embody equivalent statements on the mutual information of the channel that are
worded differently. More specifically, they could be used interchangeably, as
demonstrated next. 

Properties of Mutual Information

 PROPERTY 1 Symmetry

The mutual information of a channel is symmetric in the sense that

(5.45)

To prove this property, we first use the formula for entropy and then use (5.35) and (5.38),
in that order, obtaining

(5.46)

where, in going from the third to the final line, we made use of the definition of a joint
probability. Hence, substituting (5.41) and (5.46) into (5.43) and then combining terms,
we obtain

(5.47)

Note that the double summation on the right-hand side of (5.47) is invariant with respect
to swapping the x and y. In other words, the symmetry of the mutual information I(X;Y) is
already evident from (5.47).

I Y X;  H Y  H Y X –=

I X Y;  I Y X; =

H X  p xj  1
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------------ 
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2log
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p xj  log2
1

p xj 
------------ 

  p yk xj 
k 0=
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
j 0=
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=

p yk xj p xj  1
p xj 
------------ 

 
2log

k 0=

K 1–


j 0=

J 1–

=

p xj yk  1
p xj 
------------ 

 
2log

k 0=

K 1–


j 0=

J 1–

=

I X Y;  p xj yk  log2

p xj yk 
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-------------------
 
 
 
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To further confirm this property, we may use Bayes’ rule for conditional probabilities,
previously discussed in Chapter 3, to write 

(5.48)

Hence, substituting (5.48) into (5.47) and interchanging the order of summation, we get

(5.49)

which proves Property1.

PROPERTY 2 Nonnegativity

The mutual information is always nonnegative; that is;

(5.50)

To prove this property, we first note from (5.42) that

(5.51)

Hence, substituting (5.51) into (5.47), we may express the mutual information of the
channel as

(5.52)

Next, a direct application of the fundamental inequality of (5.12) on relative entropy
confirms (5.50), with equality if, and only if,

(5.53)

In words, Property 2 states the following: 

We cannot lose information, on the average, by observing the output 
of a channel. 

Moreover, the mutual information is zero if, and only if, the input and output symbols of
the channel are statistically independent; that is, when (5.53) is satisfied.

PROPERTY 3 Expansion of the Mutual Information

The mutual information of a channel is related to the joint entropy of the channel input
and channel output by

(5.54)

where the joint entropy H(X, Y) is defined by

(5.55)

p xj yk 
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 
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To prove (5.54), we first rewrite the joint entropy in the equivalent form

(5.56)

The first double summation term on the right-hand side of (5.56) is recognized as the
negative of the mutual information of the channel, I(X;Y), previously given in (5.52). As
for the second summation term, we manipulate it as follows:

(5.57)

where, in the first line, we made use of the following relationship from probability theory:

and a similar relationship holds for the second line of the equation.
Accordingly, using (5.52) and (5.57) in (5.56), we get the result

(5.58)

which, on rearrangement, proves Property 3.
We conclude our discussion of the mutual information of a channel by providing a

diagramatic interpretation in Figure 5.9 of (5.43), (5.44), and (5.54). 
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Figure 5.9 Illustrating the relations among various channel entropies.
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5.7 Channel Capacity

The concept of entropy introduced in Section 5.2 prepared us for formulating Shannon’s
first theorem: the source-coding theorem. To set the stage for formulating Shannon’s
second theorem, namely the channel-coding theorem, this section introduces the concept of
capacity, which, as mentioned previously, defines the intrinsic ability of a communication
channel to convey information.

To proceed, consider a discrete memoryless channel with input alphabet 𝒳, output
alphabet 𝒴, and transition probabilities p(yk|xj), where j = 0, 1, …, J – 1 and k = 0, 1, …,
K – 1. The mutual information of the channel is defined by the first line of (5.49), which is
reproduced here for convenience:

where, according to (5.38),

Also, from (5.39), we have

Putting these three equations into a single equation, we write

Careful examination of the double summation in this equation reveals two different
probabilities, on which the essence of mutual information I(X;Y) depends:

• the probability distribution  that characterizes the channel input and

• the transition probability distribution  that characterizes the
channel itself.

These two probability distributions are obviously independent of each other. Thus, given a
channel characterized by the transition probability distribution {p(yk|x j}, we may now
introduce the channel capacity, which is formally defined in terms of the mutual
information between the channel input and output as follows:

(5.59)

The maximization in (5.59) is performed, subject to two input probabilistic constraints:
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5.7 Channel Capacity 231

and

Accordingly, we make the following statement:

The channel capacity of a discrete memoryless channel, commonly denoted by 
C, is defined as the maximum mutual information I(X;Y) in any single use of the 
channel (i.e., signaling interval), where the maximization is over all possible 
input probability distributions {p(xj)} on X. 

The channel capacity is clearly an intrinsic property of the channel.

EXAMPLE 6 Binary Symmetric Channel (Revisited)

Consider again the binary symmetric channel, which is described by the transition
probability diagram of Figure 5.8. This diagram is uniquely defined by the conditional
probability of error p.

From Example 1 we recall that the entropy H(X) is maximized when the channel input
probability p(x0) = p(x1) = 12, where x0 and x1 are each 0 or 1. Hence, invoking the
defining equation (5.59), we find that the mutual information I(X;Y) is similarly
maximized and thus write

From Figure 5.8 we have

and

Therefore, substituting these channel transition probabilities into (5.49) with J = K = 2 and
then setting the input probability p(x0) = p(x1) = 12 in (5.59), we find that the capacity of
the binary symmetric channel is

(5.60)

Moreover, using the definition of the entropy function introduced in (5.16), we may reduce
(5.60) to

The channel capacity C varies with the probability of error (i.e., transition probability) p in
a convex manner as shown in Figure 5.10, which is symmetric about p = 12. Comparing
the curve in this figure with that in Figure 5.2, we make two observations:

1. When the channel is noise free, permitting us to set p = 0, the channel capacity C
attains its maximum value of one bit per channel use, which is exactly the
information in each channel input. At this value of p, the entropy function H(p)
attains its minimum value of zero.

2. When the conditional probability of error p = 12 due to channel noise, the channel
capacity C attains its minimum value of zero, whereas the entropy function H(p)
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232 Chapter 5 Information Theory

attains its maximum value of unity; in such a case, the channel is said to be useless in
the sense that the channel input and output assume statistically independent structures.

5.8 Channel-coding Theorem

With the entropy of a discrete memoryless source and the corresponding capacity of a
discrete memoryless channel at hand, we are now equipped with the concepts needed for
formulating Shannon’s second theorem: the channel-coding theorem.

To this end, we first recognize that the inevitable presence of noise in a channel causes
discrepancies (errors) between the output and input data sequences of a digital
communication system. For a relatively noisy channel (e.g., wireless communication
channel), the probability of error may reach a value as high as 10–1, which means that (on the
average) only 9 out of 10 transmitted bits are received correctly. For many applications, this
level of reliability is utterly unacceptable. Indeed, a probability of error equal to 10–6 or even
lower is often a necessary practical requirement. To achieve such a high level of
performance, we resort to the use of channel coding.

The design goal of channel coding is to increase the resistance of a digital communication
system to channel noise. Specifically, channel coding consists of mapping the incoming data
sequence into a channel input sequence and inverse mapping the channel output sequence
into an output data sequence in such a way that the overall effect of channel noise on the
system is minimized. The first mapping operation is performed in the transmitter by a
channel encoder, whereas the inverse mapping operation is performed in the receiver by a
channel decoder, as shown in the block diagram of Figure 5.11; to simplify the exposition,
we have not included source encoding (before channel encoding) and source decoding (after
channel decoding) in this figure.9

Figure 5.10
Variation of channel capacity of a 
binary symmetric channel with 
transition probability p. 
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5.8 Channel-coding Theorem 233

The channel encoder and channel decoder in Figure 5.11 are both under the designer’s
control and should be designed to optimize the overall reliability of the communication
system. The approach taken is to introduce redundancy in the channel encoder in a
controlled manner, so as to reconstruct the original source sequence as accurately as
possible. In a rather loose sense, we may thus view channel coding as the dual of source
coding, in that the former introduces controlled redundancy to improve reliability whereas
the latter reduces redundancy to improve efficiency. 

Treatment of the channel-coding techniques is deferred to Chapter 10. For the purpose
of our present discussion, it suffices to confine our attention to block codes. In this class of
codes, the message sequence is subdivided into sequential blocks each k bits long, and
each k-bit block is mapped into an n-bit block, where n > k. The number of redundant bits
added by the encoder to each transmitted block is n – k bits. The ratio kn is called the code
rate. Using r to denote the code rate, we write

(5.61)

where, of course, r is less than unity. For a prescribed k, the code rate r (and, therefore, the
system’s coding efficiency) approaches zero as the block length n approaches infinity.

The accurate reconstruction of the original source sequence at the destination requires
that the average probability of symbol error be arbitrarily low. This raises the following
important question: 

Does a channel-coding scheme exist such that the probability that a message bit 
will be in error is less than any positive number  (i.e., as small as we want it), 
and yet the channel-coding scheme is efficient in that the code rate need not be 
too small? 

The answer to this fundamental question is an emphatic “yes.” Indeed, the answer to the
question is provided by Shannon’s second theorem in terms of the channel capacity C, as
described in what follows. 

Up until this point, time has not played an important role in our discussion of channel
capacity. Suppose then the discrete memoryless source in Figure 5.11 has the source
alphabet 𝒮 and entropy H(S) bits per source symbol. We assume that the source emits
symbols once every Ts seconds. Hence, the average information rate of the source is H(S)Ts
bits per second. The decoder delivers decoded symbols to the destination from the source
alphabet S and at the same source rate of one symbol every Ts seconds. The discrete
memoryless channel has a channel capacity equal to C bits per use of the channel. We
assume that the channel is capable of being used once every Tc seconds. Hence, the
channel capacity per unit time is CTc bits per second, which represents the maximum rate
of information transfer over the channel. With this background, we are now ready to state
Shannon’s second theorem, the channel-coding theorem,10 in two parts as follows:

1. Let a discrete memoryless source with an alphabet 𝒮 have entropy H(S) for random
variable S and produce symbols once every Ts seconds. Let a discrete memoryless
channel have capacity C and be used once every Tc seconds, Then, if

(5.62)

r k
n
---=

H S 
Ts

------------ C
Tc
-----
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234 Chapter 5 Information Theory

there exists a coding scheme for which the source output can be transmitted over the
channel and be reconstructed with an arbitrarily small probability of error. The
parameter CTc is called the critical rate; when (5.62) is satisfied with the equality
sign, the system is said to be signaling at the critical rate.

2. Conversely, if

it is not possible to transmit information over the channel and reconstruct it with an
arbitrarily small probability of error.

The channel-coding theorem is the single most important result of information theory. The
theorem specifies the channel capacity C as a fundamental limit on the rate at which the
transmission of reliable error-free messages can take place over a discrete memoryless
channel. However, it is important to note two limitations of the theorem:

1. The channel-coding theorem does not show us how to construct a good code. Rather,
the theorem should be viewed as an existence proof in the sense that it tells us that if
the condition of (5.62) is satisfied, then good codes do exist. Later, in Chapter10, we
describe good codes for discrete memoryless channels.

2. The theorem does not have a precise result for the probability of symbol error after
decoding the channel output. Rather, it tells us that the probability of symbol error
tends to zero as the length of the code increases, again provided that the condition of
(5.62) is satisfied.

Application of the Channel-coding Theorem to Binary 
Symmetric Channels

Consider a discrete memoryless source that emits equally likely binary symbols (0s and
1s) once every Ts seconds. With the source entropy equal to one bit per source symbol (see
Example 1), the information rate of the source is (1Ts) bits per second. The source
sequence is applied to a channel encoder with code rate r. The channel encoder produces a
symbol once every Tc seconds. Hence, the encoded symbol transmission rate is (1Tc)
symbols per second. The channel encoder engages a binary symmetric channel once every
Tc seconds. Hence, the channel capacity per unit time is (CTc) bits per second, where C is
determined by the prescribed channel transition probability p in accordance with (5.60).
Accordingly, part (1) of the channel-coding theorem implies that if

(5.63)

then the probability of error can be made arbitrarily low by the use of a suitable channel-
encoding scheme. But the ratio TcTs equals the code rate of the channel encoder:

(5.64)

Hence, we may restate the condition of (5.63) simply as

H S 
Ts

------------ C
Tc
-----

1
Ts
----- C

Tc
-----

r
Tc

Ts
-----=

r C
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5.8 Channel-coding Theorem 235

That is, for r  C, there exists a code (with code rate less than or equal to channel capacity
C) capable of achieving an arbitrarily low probability of error.

EXAMPLE 7 Repetition Code

In this example we present a graphical interpretation of the channel-coding theorem. We also
bring out a surprising aspect of the theorem by taking a look at a simple coding scheme.

Consider first a binary symmetric channel with transition probability p = 10–2. For this
value of p, we find from (5.60) that the channel capacity C = 0.9192. Hence, from the
channel-coding theorem, we may state that, for any   0 and r  0.9192, there exists a
code of large enough length n, code rate r, and an appropriate decoding algorithm such
that, when the coded bit stream is sent over the given channel, the average probability of
channel decoding error is less than . This result is depicted in Figure 5.12 for the limiting
value  = 10–8.

To put the significance of this result in perspective, consider next a simple coding
scheme that involves the use of a repetition code, in which each bit of the message is
repeated several times. Let each bit (0 or 1) be repeated n times, where n = 2m + 1 is an
odd integer. For example, for n = 3, we transmit 0 and 1 as 000 and 111, respectively.

Figure 5.12 Illustrating the significance of the channel-coding theorem. 
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236 Chapter 5 Information Theory

Intuitively, it would seem logical to use a majority rule for decoding, which operates as
follows: 

If in a block of n repeated bits (representing one bit of the message) the number 
of 0s exceeds the number of 1s, the decoder decides in favor of a 0; otherwise, it 
decides in favor of a 1. 

Hence, an error occurs when m + 1 or more bits out of n = 2m + 1 bits are received
incorrectly. Because of the assumed symmetric nature of the channel, the average
probability of error, denoted by Pe, is independent of the prior probabilities of 0 and 1.
Accordingly, we find that Pe is given by 

(5.65)

where p is the transition probability of the channel.
Table 5.3 gives the average probability of error Pe for a repetition code that is

calculated by using (5.65) for different values of the code rate r. The values given here
assume the use of a binary symmetric channel with transition probability p = 10–2. The
improvement in reliability displayed in Table 5.3 is achieved at the cost of decreasing code
rate. The results of this table are also shown plotted as the curve labeled “repetition code”
in Figure 5.12. This curve illustrates the exchange of code rate for message reliability,
which is a characteristic of repetition codes.

This example highlights the unexpected result presented to us by the channel-coding
theorem. The result is that it is not necessary to have the code rate r approach zero (as in
the case of repetition codes) to achieve more and more reliable operation of the
communication link. The theorem merely requires that the code rate be less than the
channel capacity C.

Table 5.3 Average probability of error for repetition code

Code rate, r = 1/n Average probability of error, Pe
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5.9 Differential Entropy and Mutual Information for Continuous 
Random Ensembles

The sources and channels considered in our discussion of information-theoretic concepts
thus far have involved ensembles of random variables that are discrete in amplitude. In this
section, we extend these concepts to continuous random variables. The motivation for
doing so is to pave the way for the description of another fundamental limit in information
theory, which we take up in Section 5.10.

Consider a continuous random variable X with the probability density function fX(x).
By analogy with the entropy of a discrete random variable, we introduce the following
definition:

(5.66)

We refer to the new term h(X) as the differential entropy of X to distinguish it from the
ordinary or absolute entropy. We do so in recognition of the fact that, although h(X) is a
useful mathematical quantity to know, it is not in any sense a measure of the randomness
of X. Nevertheless, we justify the use of (5.66) in what follows. We begin by viewing the
continuous random variable X as the limiting form of a discrete random variable that
assumes the value xk = kx, where k = 0, 1, 2, , and x approaches zero. By
definition, the continuous random variable X assumes a value in the interval [xk, xk  x]
with probability fX(xk)x. Hence, permitting x to approach zero, the ordinary entropy of
the continuous random variable X takes the limiting form

(5.67)

In the last line of (5.67), use has been made of (5.66) and the fact that the total area under
the curve of the probability density function fX(x) is unity. In the limit as x approaches
zero, the term –log2x approaches infinity. This means that the entropy of a continuous
random variable is infinitely large. Intuitively, we would expect this to be true because a
continuous random variable may assume a value anywhere in the interval ; we
may, therefore, encounter uncountable infinite numbers of probable outcomes. To avoid the
problem associated with the term log2x, we adopt h(X) as a differential entropy, with the
term –log2x serving merely as a reference. Moreover, since the information transmitted
over a channel is actually the difference between two entropy terms that have a common
reference, the information will be the same as the difference between the corresponding
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differential entropy terms. We are, therefore, perfectly justified in using the term h(X),
defined in (5.66), as the differential entropy of the continuous random variable X.

When we have a continuous random vector X consisting of n random variables X1, X2,
, Xn, we define the differential entropy of X as the n-fold integral

(5.68)

where fX(x) is the joint probability density function of X.

EXAMPLE 8 Uniform Distribution

To illustrate the notion of differential entropy, consider a random variable X uniformly
distributed over the interval (0, a). The probability density function of X is

Applying (5.66) to this distribution, we get

(5.69)

Note that loga < 0 for a < 1. Thus, this example shows that, unlike a discrete random vari-
able, the differential entropy of a continuous random variable can assume a negative value.

Relative Entropy of Continuous Distributions

In (5.12) we defined the relative entropy of a pair of different discrete distributions. To
extend that definition to a pair of continuous distributions, consider the continuous random
variables X and Y whose respective probability density functions are denoted by fX(x) and
fY(x) for the same sample value (argument) x. The relative entropy11 of the random
variables X and Y is defined by

(5.70)

where fX(x) is viewed as the “reference” distribution. In a corresponding way to the
fundamental property of (5.13), we have

(5.71)

Combining (5.70) and (5.71) into a single inequality, we may thus write
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The expression on the left-hand side of this inequality is recognized as the differential
entropy of the random variable Y, namely h(Y). Accordingly,

(5.72)

The next example illustrates an insightful application of (5.72).

EXAMPLE 9 Gaussian Distribution

Suppose two random variables, X and Y, are described as follows:

• the random variables X and Y have the common mean  and variance ; 
• the random variable X is Gaussian distributed (see Section 3.9) as shown by 

(5.73)

Hence, substituting (5.73) into (5.72) and changing the base of the logarithm from 2 to
e = 2.7183, we get

(5.74)

where e is the base of the natural algorithm. We now recognize the following
characterizations of the random variable Y (given that its mean is  and its variance is ):

We may, therefore, simplify (5.74) as

(5.75)

The quantity on the right-hand side of (5.75) is, in fact, the differential entropy of the
Gaussian random variable X:

(5.76)

Finally, combining (5.75) and (5.76), we may write

(5.77)

where equality holds if, and only if, Y = X.
We may now summarize the results of this important example by describing two

entropic properties of a random variable:
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240 Chapter 5 Information Theory

PROPERTY 1  For any finite variance, a Gaussian random variable has the largest differential entropy
attainable by any other random variable.

PROPERTY 2 The entropy of a Gaussian random variable is uniquely determined by its variance (i.e.,
the entropy is independent of the mean).

Indeed, it is because of Property1 that the Gaussian channel model is so widely used as a
conservative model in the study of digital communication systems.

Mutual Information

Continuing with the information-theoretic characterization of continuous random
variables, we may use analogy with (5.47) to define the mutual information between the
pair of continuous random variables X and Y as follows:

(5.78)

where fX,Y(x,y) is the joint probability density function of X and Y and fX(x|y) is the
conditional probability density function of X given Y = y. Also, by analogy with (5.45),
(5.50), (5.43), and (5.44), we find that the mutual information between the pair of Gausian
random variables has the following properties:

(5.79)

(5.80)

(5.81)

The parameter h(X) is the differential entropy of X; likewise for h(Y). The parameter
h(X|Y) is the conditional differential entropy of X given Y; it is defined by the double
integral (see (5.41))

(5.82)

The parameter h(Y |X) is the conditional differential entropy of Y given X; it is defined in a
manner similar to h(X|Y).

5.10 Information Capacity Law

In this section we use our knowledge of probability theory to expand Shannon’s channel-
coding theorem, so as to formulate the information capacity for a band-limited, power-
limited Gaussian channel, depicted in Figure 5.13. To be specific, consider a zero-mean
stationary process X(t) that is band-limited to B hertz. Let Xk, k = 1, 2, , K, denote the
continuous random variables obtained by uniform sampling of the process X(t) at a rate of
2B samples per second. The rate 2B samples per second is the smallest permissible rate for
a bandwidth B that would not result in a loss of information in accordance with the
sampling theorem; this is discussed in Chapter 6. Suppose that these samples are

I X Y;  fX Y x y  log2

fX x y 
fX x 

-----------------  dx dy
–




–



=

I X Y;  I Y X; =

I X Y;  0

I X Y;  h X  h X Y –=

h Y  h Y X –=

h X Y  fX Y x y  1
fX x y 
-----------------

2log  dx dy
–




–



=

Haykin_ch05_pp3.fm  Page 240  Monday, November 26, 2012  12:44 PM



5.10 Information Capacity Law 241

transmitted in T seconds over a noisy channel, also band-limited to B hertz. Hence, the
total number of samples K is given by

K = 2BT (5.83)

We refer to Xk as a sample of the transmitted signal. The channel output is perturbed by
additive white Gaussian noise (AWGN) of zero mean and power spectral density N02.
The noise is band-limited to B hertz. Let the continuous random variables Yk, k = 1, 2, ,
K, denote the corresponding samples of the channel output, as shown by

Yk = Xk + Nk, k = 1, 2, , K (5.84)

The noise sample Nk in (5.84) is Gaussian with zero mean and variance 

 = N0B (5.85)

We assume that the samples Yk, k = 1, 2, , K, are statistically independent.
A channel for which the noise and the received signal are as described in (5.84) and

(5.85) is called a discrete-time, memoryless Gaussian channel, modeled as shown in
Figure 5.13. To make meaningful statements about the channel, however, we have to
assign a cost to each channel input. Typically, the transmitter is power limited; therefore, it
is reasonable to define the cost as

(5.86)

where P is the average transmitted power. The power-limited Gaussian channel described
herein is not only of theoretical importance but also of practical importance, in that it
models many communication channels, including line-of-sight radio and satellite links.

The information capacity of the channel is defined as the maximum of the mutual
information between the channel input Xk and the channel output Yk over all distributions
of the input Xk that satisfy the power constraint of (5.86). Let I(Xk;Yk) denote the mutual
information between Xk and Yk. We may then define the information capacity of the
channel as

, subject to the constraint for all k (5.87)

In words, maximization of the mutual information I(Xk;Yk) is done with respect to all prob-
ability distributions of the channel input Xk, satisfying the power constraint .

The mutual information I(Xk;Yk) can be expressed in one of the two equivalent forms
shown in (5.81). For the purpose at hand, we use the second line of this equation to write

(5.88)

Figure 5.13 Model of discrete-time, memoryless Gaussian channel. 
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242 Chapter 5 Information Theory

Since Xk and Nk are independent random variables and their sum equals Yk in accordance
with (5.84), we find that the conditional differential entropy of Yk given Xk is equal to the
differential entropy of Nk, as shown by 

(5.89)

Hence, we may rewrite (5.88) as

(5.90)

With h(Nk) being independent of the distribution of Xk, it follows that maximizing I(Xk;Yk)
in accordance with (5.87) requires maximizing the differential entropy h(Yk). For h(Yk) to
be maximum, Yk has to be a Gaussian random variable. That is to say, samples of the
channel output represent a noiselike process. Next, we observe that since Nk is Gaussian
by assumption, the sample Xk of the channel input must be Gaussian too. We may
therefore state that the maximization specified in (5.87) is attained by choosing samples of
the channel input from a noiselike Gaussian-distributed process of average power P.
Correspondingly, we may reformulate (5.87) as

 and for all k (5.91)

where the mutual information I(Xk;Yk) is defined in accordance with (5.90).
For evaluation of the information capacity C, we now proceed in three stages:

1. The variance of sample Yk of the channel output equals P + , which is a
consequence of the fact that the random variables X and N are statistically
independent; hence, the use of (5.76) yields the differential entropy 

(5.92)

2. The variance of the noisy sample Nk equals ; hence, the use of (5.76) yields the
differential entropy 

(5.93)

3. Substituting (5.92) and (5.93) into (5.90), and recognizing the definition of
information capacity given in (5.91), we get the formula:

bits per channel use (5.94)

With the channel used K times for the transmission of K samples of the process X(t) in
T seconds, we find that the information capacity per unit time is (KT) times the result
given in (5.94). The number K equals 2BT, as in (5.83). Accordingly, we may express the
information capacity of the channel in the following equivalent form:

bits per second (5.95)

where N0B is the total noise power at the channel output, defined in accordance with (5.85).
Based on the formula of (5.95), we may now make the following statement 

The information capacity of a continuous channel of bandwidth B hertz, 
perturbed by AWGN of power spectral density N02 and limited in bandwidth 
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5.10 Information Capacity Law 243

to B, is given by the formula

bits per second

where P is the average transmitted power.

The information capacity law12 of (5.95) is one of the most remarkable results of
Shannon’s information theory. In a single formula, it highlights most vividly the interplay
among three key system parameters: channel bandwidth, average transmitted power, and
power spectral density of channel noise. Note, however, that the dependence of
information capacity C on channel bandwidth B is linear, whereas its dependence on
signal-to-noise ratio P(N0B) is logarithmic. Accordingly, we may make another insightful
statement:

It is easier to increase the information capacity of a continuous communication 
channel by expanding its bandwidth than by increasing the transmitted power 
for a prescribed noise variance.

The information capacity formula implies that, for given average transmitted power P and
channel bandwidth B, we can transmit information at the rate of C bits per second, as
defined in (5.95), with arbitrarily small probability of error by employing a sufficiently
complex encoding system. It is not possible to transmit at a rate higher than C bits per
second by any encoding system without a definite probability of error. Hence, the channel
capacity law defines the fundamental limit on the permissible rate of error-free
transmission for a power-limited, band-limited Gaussian channel. To approach this limit,
however, the transmitted signal must have statistical properties approximating those of
white Gaussian noise.

Sphere Packing

To provide a plausible argument supporting the information capacity law, suppose that we
use an encoding scheme that yields K codewords, one for each sample of the transmitted
signal. Let n denote the length (i.e., the number of bits) of each codeword. It is presumed
that the coding scheme is designed to produce an acceptably low probability of symbol
error. Furthermore, the codewords satisfy the power constraint; that is, the average power
contained in the transmission of each codeword with n bits is nP, where P is the average
power per bit.

Suppose that any codeword in the code is transmitted. The received vector of n bits is

Gaussian distributed with a mean equal to the transmitted codeword and a variance equal

to n , where  is the noise variance. With a high probability, we may say that the

received signal vector at the channel output lies inside a sphere of radius ; that is,

centered on the transmitted codeword. This sphere is itself contained in a larger sphere of

radius , where n(P + 2) is the average power of the received signal vector.

We may thus visualize the sphere packing13 as portrayed in Figure 5.14. With

everything inside a small sphere of radius  assigned to the codeword on which it is

C B log2 1 P
N0B
----------+ 

 =

2 2

n2

n P 2
+ 
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244 Chapter 5 Information Theory

centered. It is therefore reasonable to say that, when this particular codeword is

transmitted, the probability that the received signal vector will lie inside the correct

“decoding” sphere is high. The key question is: 

How many decoding spheres can be packed inside the larger sphere of received 
signal vectors? In other words, how many codewords can we in fact choose? 

To answer this question, we want to eliminate the overlap between the decoding spheres as
depicted in Figure 5.14. Moreover, expressing the volume of an n-dimensional sphere of
radius r as Anrn, where An is a scaling factor, we may go on to make two statements:

1. The volume of the sphere of received signal vectors is An[n(P + )]n/2.

2. The volume of the decoding sphere is An(n )n/2.

Accordingly, it follows that the maximum number of nonintersecting decoding spheres
that can be packed inside the sphere of possible received signal vectors is given by

(5.96)

Taking the logarithm of this result to base 2, we readily see that the maximum number of
bits per transmission for a low probability of error is indeed as defined previously in (5.94).

A final comment is in order: (5.94) is an idealized manifestation of Shannon’s channel-
coding theorem, in that it provides an upper bound on the physically realizable
information capacity of a communication channel.

5.11 Implications of the Information Capacity Law

Now that we have a good understanding of the information capacity law, we may go on to
discuss its implications in the context of a Gaussian channel that is limited in both power

Figure 5.14 The sphere-packing problem. 
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5.11 Implications of the Information Capacity Law 245

and bandwidth. For the discussion to be useful, however, we need an ideal framework
against which the performance of a practical communication system can be assessed. To
this end, we introduce the notion of an ideal system, defined as a system that transmits
data at a bit rate Rb equal to the information capacity C. We may then express the average
transmitted power as

P = EbC (5.97)

where Eb is the transmitted energy per bit. Accordingly, the ideal system is defined by the
equation

(5.98)

Rearranging this formula, we may define the signal energy-per-bit to noise power spectral
density ratio, Eb/N0, in terms of the ratio CB for the ideal system as follows:

(5.99)

A plot of the bandwidth efficiency Rb/B versus Eb/N0 is called the bandwidth-efficiency
diagram. A generic form of this diagram is displayed in Figure 5.15, where the curve
labeled “capacity boundary” corresponds to the ideal system for which Rb = C.

Figure 5.15 Bandwidth-efficiency diagram. 
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246 Chapter 5 Information Theory

Based on Figure 5.15, we can make three observations:

1. For infinite channel bandwidth, the ratio Eb/N0 approaches the limiting value 

(5.100)

where loge stands for the natural logarithm ln. The value defined in (5.100) is called
the Shannon limit for an AWGN channel, assuming a code rate of zero. Expressed in
decibels, the Shannon limit equals –1.6 dB. The corresponding limiting value of the
channel capacity is obtained by letting the channel bandwidth B in (5.95) approach
infinity, in which case we obtain

(5.101)

2. The capacity boundary is defined by the curve for the critical bit rate Rb = C. For
any point on this boundary, we may flip a fair coin (with probability of 12) whether
we have error-free transmission or not. As such, the boundary separates
combinations of system parameters that have the potential for supporting error-free
transmission (Rb < C) from those for which error-free transmission is not possible
(Rb > C). The latter region is shown shaded in Figure 5.15.

3. The diagram highlights potential trade-offs among three quantities: the EbN0, the
ratio RbB, and the probability of symbol error Pe. In particular, we may view
movement of the operating point along a horizontal line as trading Pe versus EbN0
for a fixed RbB. On the other hand, we may view movement of the operating point
along a vertical line as trading Pe versus RbB for a fixed EbN0.

EXAMPLE 10 Capacity of Binary-Input AWGN Channel

In this example, we investigate the capacity of an AWGN channel using encoded binary
antipodal signaling (i.e., levels –1 and 1 for binary symbols 0 and 1, respectively). In
particular, we address the issue of determining the minimum achievable bit error rate as a
function of EbN0 for varying code rate r. It is assumed that the binary symbols 0 and 1 are
equiprobable.

Let the random variables X and Y denote the channel input and channel output
respectively; X is a discrete variable, whereas Y is a continuous variable. In light of the
second line of (5.81), we may express the mutual information between the channel input
and channel output as

The second term, h(Y |X), is the conditional differential entropy of the channel output Y,
given the channel input X. By virtue of (5.89) and (5.93), this term is just the entropy of a
Gaussian distribution. Hence, using  to denote the variance of the channel noise, we write
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5.11 Implications of the Information Capacity Law 247

Next, the first term, h(Y), is the differential entropy of the channel output Y. With the use of
binary antipodal signaling, the probability density function of Y, given X = x, is a mixture
of two Gaussian distributions with common variance  and mean values –1 and +1, as
shown by

(5.102)

Hence, we may determine the differential entropy of Y using the formula

where fY(yi | x) is defined by (5.102). From the formulas of h(Y |X) and h(Y), it is clear that
the mutual information is solely a function of the noise variance . Using M( ) to
denote this functional dependence, we may thus write

Unfortunately, there is no closed formula that we can derive for M( ) because of the
difficulty of determining h(Y). Nevertheless, the differential entropy h(Y) can be well
approximated using Monte Carlo integration; see Appendix E for details. 

Because symbols 0 and 1 are equiprobable, it follows that the channel capacity C is
equal to the mutual information between X and Y. Hence, for error-free data transmission
over the AWGN channel, the code rate r must satisfy the condition

(5.103)

A robust measure of the ratio Eb/N0, is

where P is the average transmitted power and N0/2 is the two-sided power spectral density
of the channel noise. Without loss of generality, we may set P = 1. We may then express
the noise variance as

(5.104)

Substituting Equation (5.104) into (5.103) and rearranging terms, we get the desired
relation:

(5.105)

where M–1(r) is the inverse of the mutual information between the channel input and
putput, expressed as a function of the code rate r.

Using the Monte Carlo method to estimate the differential entropy h(Y) and therefore
M–1(r), the plots of Figure 5.16 are computed.14 Figure 5.16a plots the minimum Eb/N0
versus the code rate r for error-free transmission. Figure 5.16b plots the minimum
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248 Chapter 5 Information Theory

achievable bit error rate versus Eb/N0 with the code rate r as a running parameter. From
Figure 5.16 we may draw the following conclusions:

• For uncoded binary signaling (i.e., r = 1), an infinite Eb/N0 is required for error-free
communication, which agrees with what we know about uncoded data transmission
over an AWGN channel.

• The minimum Eb/N0, decreases with decreasing code rate r, which is intuitively
satisfying. For example, for r = 1/2, the minimum value of Eb/N0 is slightly less than
0.2 dB.

• As r approaches zero, the minimum Eb/N0 approaches the limiting value of –1.6 dB,
which agrees with the Shannon limit derived earlier; see (5.100).

5.12 Information Capacity of Colored Noisy Channel

The information capacity theorem as formulated in (5.95) applies to a band-limited white
noise channel. In this section we extend Shannon’s information capacity law to the more
general case of a nonwhite, or colored, noisy channel.15 To be specific, consider the
channel model shown in Figure 5.17a where the transfer function of the channel is denoted
by H(f ). The channel noise n(t), which appears additively at the channel output, is
modeled as the sample function of a stationary Gaussian process of zero mean and power
spectral density SN(f ). The requirement is twofold:

1. Find the input ensemble, described by the power spectral density Sxx(f ), that
maximizes the mutual information between the channel output y(t) and the channel
input x(t), subject to the constraint that the average power of x(t) is fixed at a
constant value P.

2. Hence, determine the optimum information capacity of the channel. 

Figure 5.16 Binary antipodal signaling over an AWGN channel. (a) Minimum Eb/N0 versus the 
code rate r. (b) Minimum bit error rate versus Eb/N0 for varying code rate r.
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5.12 Information Capacity of Colored Noisy Channel 249

This problem is a constrained optimization problem. To solve it, we proceed as follows:

• Because the channel is linear, we may replace the model of Figure 5.17a with the
equivalent model shown in Figure 5.17b. From the viewpoint of the spectral
characteristics of the signal plus noise measured at the channel output, the two
models of Figure 5.17 are equivalent, provided that the power spectral density of the
noise n'(t) in Figure 5.17b is defined in terms of the power spectral density of the
noise n(t) in Figure 5.17a as

(5.106)

where |H(f ) | is the magnitude response of the channel.

• To simplify the analysis, we use the “principle of divide and conquer” to
approximate the continuous |H(f ) | described as a function of frequency f in the form
of a staircase, as illustrated in Figure 5.18. Specifically, the channel is divided into a
large number of adjoining frequency slots. The smaller we make the incremental
frequency interval  of each subchannel, the better this approximation is.

The net result of these two points is that the original model of Figure 5.17a is replaced by
the parallel combination of a finite number of subchannels, N, each of which is corrupted
essentially by “band-limited white Gaussian noise.”

Figure 5.17 (a) Model of band-limited, power-limited noisy channel. (b) Equivalent 
model of the channel.

Figure 5.18 Staricase approximation of an arbitrary magnitude response 
|H(f ) |; only the positive frequency portion of the response is shown.
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The kth subchannel in the approximation to the model of Figure 5.17b is described by

(5.107)

The average power of the signal component xk(t) is

(5.108)

where SX(fk) is the power spectral density of the input signal evaluated at the frequency
f = fk. The variance of the noise component nk(t) is

(5.109)

where SN(fk) and |H(fk)| are the noise spectral density and the channel’s magnitude response
evaluated at the frequency fk, respectively. The information capacity of the kth subchannel is

(5.110)

where the factor 1/2 accounts for the fact that  applies to both positive and negative
frequencies. All the N subchannels are independent of one another. Hence, the total
capacity of the overall channel is approximately given by the summation

(5.111)

The problem we have to address is to maximize the overall information capacity C subject
to the constraint

(5.112)

The usual procedure to solve a constrained optimization problem is to use the method of
Lagrange multipliers (see Appendix D for a discussion of this method). To proceed with
this optimization, we first define an objective function that incorporates both the
information capacity C and the constraint (i.e., (5.111) and (5.112)), as shown by

(5.113)

where  is the Lagrange multiplier. Next, differentiating the objective function J(Pk) with
respect to Pk and setting the result equal to zero, we obtain
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5.12 Information Capacity of Colored Noisy Channel 251

To satisfy this optimizing solution, we impose the following requirement:

(5.114)

where K is a constant that is the same for all k. The constant K is chosen to satisfy the
average power constraint.

Inserting the defining values of (5.108) and (5.109) in the optimizing condition of
(5.114), simplifying, and rearranging terms we get

(5.115)

Let ℱdenote the frequency range for which the constant K satisfies the condition

Then, as the incremental frequency interval  is allowed to approach zero and the
number of subchannels N goes to infinity, we may use (5.115) to formally state that the
power spectral density of the input ensemble that achieves the optimum information
capacity is a nonnegative quantity defined by

(5.116)

Because the average power of a random process is the total area under the curve of the
power spectral density of the process, we may express the average power of the channel
input x(t) as

(5.117)

For a prescribed P and specified SN(f ) and H(f ), the constant K is the solution to (5.117).
The only thing that remains for us to do is to find the optimum information capacity.

Substituting the optimizing solution of (5.114) into (5.111) and then using the defining
values of (5.108) and (5.109), we obtain

When the incremental frequency interval  is allowed to approach zero, this equation
takes the limiting form

(5.118)

where the constant K is chosen as the solution to (5.117) for a prescribed input signal
power P.
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Water-filling Interpretation of the Information Capacity Law

Equations (5.116) and (5.117) suggest the picture portrayed in Figure 5.19. Specifically,
we make the following observations:

• The appropriate input power spectral density SX(f ) is described as the bottom
regions of the function SN(f )/ |H(f )|2 that lie below the constant level K, which are
shown shaded.

• The input power P is defined by the total area of these shaded regions. 

The spectral-domain picture portrayed here is called the water-filling (pouring)
interpretation, in the sense that the process by which the input power is distributed across
the function SN(f )/ |H(f )|2 is identical to the way in which water distributes itself in a vessel.

Consider now the idealized case of a band-limited signal in AWGN channel of power spectral
density N(f) = N0/2. The transfer function H(f ) is that of an ideal band-pass filter defined by

where fc is the midband frequency and B is the channel bandwidth. For this special case,
(5.117) and (5.118) reduce respectively to

and

Hence, eliminating K between these two equations, we get the standard form of Shannon’s
capacity theorem, defined by (5.95).

EXAMPLE 11 Capacity of NEXT-Dominated Channel

Digital subscriber lines (DSLs) refer to a family of different technologies that operate
over a closed transmission loop; they will be discussed in Chapter 8, Section 8.11. For the
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Figure 5.19 Water-filling interpretation of information-capacity 
theorem for a colored noisy channel.
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5.13 Rate Distortion Theory 253

present, it suffices to say that a DSL is designed to provide for data transmission between
a user terminal (e.g., computer) and the central office of a telephone company. A major
channel impairment that arises in the deployment of a DSL is the near-end cross-talk
(NEXT). The power spectral density of this crosstalk may be taken as

(5.119)

where SX(f ) is the power spectral density of the transmitted signal and HNEXT(f ) is the
transfer function that couples adjacent twisted pairs. The only constraint we have to satisfy
in this example is that the power spectral density function SX(f ) be nonnegative for all f.
Substituting (5.119) into (5.116), we readily find that this condition is satisfied by solving
for K as

Finally, using this result in (5.118), we find that the capacity of the NEXT-dominated
digital subscriber channel is given by

where ℱA is the set of positive and negative frequencies for which SX(f ) > 0.

5.13 Rate Distortion Theory

In Section 5.3 we introduced the source-coding theorem for a discrete memoryless source,
according to which the average codeword length must be at least as large as the source
entropy for perfect coding (i.e., perfect representation of the source). However, in many
practical situations there are constraints that force the coding to be imperfect, thereby
resulting in unavoidable distortion. For example, constraints imposed by a communication
channel may place an upper limit on the permissible code rate and, therefore, on average
codeword length assigned to the information source. As another example, the information
source may have a continuous amplitude as in the case of speech, and the requirement is to
quantize the amplitude of each sample generated by the source to permit its representation
by a codeword of finite length as in pulse-code modulation to be discussed in Chapter 6. In
such cases, the problem is referred to as source coding with a fidelity criterion, and the
branch of information theory that deals with it is called rate distortion theory.16 Rate
distortion theory finds applications in two types of situations:

• Source coding where the permitted coding alphabet cannot exactly represent the
information source, in which case we are forced to do lossy data compression.

• Information transmission at a rate greater than channel capacity.

Accordingly, rate distortion theory may be viewed as a natural extension of Shannon’s
coding theorem.
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254 Chapter 5 Information Theory

Rate Distortion Function

Consider a discrete memoryless source defined by an M-ary alphabet 𝒳 : {xi | i = 1, 2, M},
which consists of a set of statistically independent symbols together with the associated sym-
bol probabilities {pi |i = 1, 2,  M}. Let R be the average code rate in bits per codeword.
The representation codewords are taken from another alphabet 𝒴 :{yj | j = 1, 2,  N}. The
source-coding theorem states that this second alphabet provides a perfect representation of
the source provided that R  H, where H is the source entropy. But if we are forced to have
R  H, then there is unavoidable distortion and, therefore, loss of information.

Let p(xi, yj) denote the joint probability of occurrence of source symbol xi and
representation symbol yj. From probability theory, we have

(5.120)

where p(yj|xi) is a transition probability. Let d(xi, yj) denote a measure of the cost incurred
in representing the source symbol xi by the symbol yj; the quantity d(xi, yj) is referred to as
a single-letter distortion measure. The statistical average of d(xi, yj) over all possible
source symbols and representation symbols is given by

(5.121)

Note that the average distortion  is a nonnegative continuous function of the transition
probabilities p(yj|xi) that are determined by the source encoder–decoder pair.

A conditional probability assignment p(yj|xi) is said to be D-admissible if, and only if,
the average distortion  is less than or equal to some acceptable value D. The set of all
D-admissible conditional probability assignments is denoted by

(5.122)

For each set of transition probabilities, we have a mutual information

(5.123)

A rate distortion function R(D) is defined as the smallest coding rate possible for which
the average distortion is guaranteed not to exceed D. Let 𝒫D denote the set to which the
conditional probability p(yj|xi) belongs for a prescribed D. Then, for a fixed D we write17

(5.124)

subject to the constraint

(5.125)

The rate distortion function R(D) is measured in units of bits if the base-2 logarithm is
used in (5.123). Intuitively, we expect the distortion D to decrease as the rate distortion
function R(D) is increased. We may say conversely that tolerating a large distortion D
permits the use of a smaller rate for coding and/or transmission of information.
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5.13 Rate Distortion Theory 255

Figure 5.20 summarizes the main parameters of rate distortion theory. In particular,
given the source symbols {xi} and their probabilities {pi}, and given a definition of the
single-letter distortion measure d(xi,yj), the calculation of the rate distortion function R(D)
involves finding the conditional probability assignment p(yj | xi) subject to certain
constraints imposed on p(yj | xi). This is a variational problem, the solution of which is
unfortunately not straightforward in general.

EXAMPLE 12 Gaussian Source

Consider a discrete-time, memoryless Gaussian source with zero mean and variance .
Let x denote the value of a sample generated by such a source. Let y denote a quantized
version of x that permits a finite representation of it. The square-error distortion

provides a distortion measure that is widely used for continuous alphabets. The rate
distortion function for the Gaussian source with square-error distortion, as described
herein, is given by

(5.126)

In this case, we see that R(D)   as D  0, and R(D) = 0 for D = .

EXAMPLE 13 Set of Parallel Gaussian Sources

Consider next a set of N independent Gaussian random variables , where Xi has
zero mean and variance i

2.Using the distortion measure

and building on the result of Example 12, we may express the rate distortion function for
the set of parallel Gaussian sources described here as

(5.127)

Figure 5.20
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256 Chapter 5 Information Theory

where Di is itself defined by

(5.128)

and the constant  is chosen so as to satisfy the condition

(5.129)

Compared to Figure 5.19, (5.128) and (5.129) may be interpreted as a kind of “water-
filling in reverse,” as illustrated in Figure 5.21. First, we choose a constant  and only the
subset of random variables whose variances exceed the constant . No bits are used to
describe the remaining subset of random variables whose variances are less than the
constant . 

5.14 Summary and Discussion

In this chapter we established two fundamental limits on different aspects of a communi-
cation system, which are embodied in the source-coding theorem and the channel-coding
theorem.

The source-coding theorem, Shannon’s first theorem, provides the mathematical tool
for assessing data compaction; that is, lossless compression of data generated by a
discrete memoryless source. The theorem teaches us that we can make the average number
of binary code elements (bits) per source symbol as small as, but no smaller than, the
entropy of the source measured in bits. The entropy of a source is a function of the
probabilities of the source symbols that constitute the alphabet of the source. Since

Figure 5.21 Reverse water-filling picture for a set of 
parallel Gaussian processes.
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entropy is a measure of uncertainty, the entropy is maximum when the associated
probability distribution generates maximum uncertainty.

The channel-coding theorem, Shannon’s second theorem, is both the most surprising
and the single most important result of information theory. For a binary symmetric
channel, the channel-coding theorem teaches us that, for any code rate r less than or equal
to the channel capacity C, codes do exist such that the average probability of error is as
small as we want it. A binary symmetric channel is the simplest form of a discrete
memoryless channel. It is symmetric, because the probability of receiving symbol 1 if
symbol 0 is sent is the same as the probability of receiving symbol 0 if symbol 1 is sent.
This probability, the probability that an error will occur, is termed a transition probability.
The transition probability p is determined not only by the additive noise at the channel
output, but also by the kind of receiver used. The value of p uniquely defines the channel
capacity C.

The information capacity law, an application of the channel-coding theorem, teaches us
that there is an upper limit to the rate at which any communication system can operate
reliably (i.e., free of errors) when the system is constrained in power. This maximum rate,
called the information capacity, is measured in bits per second. When the system operates
at a rate greater than the information capacity, it is condemned to a high probability of
error, regardless of the choice of signal set used for transmission or the receiver used for
processing the channel output.

When the output of a source of information is compressed in a lossless manner, the
resulting data stream usually contains redundant bits. These redundant bits can be
removed by using a lossless algorithm such as Huffman coding or the Lempel–Ziv
algorithm for data compaction. We may thus speak of data compression followed by data
compaction as two constituents of the dissection of source coding, which is so called
because it refers exclusively to the sources of information. 

We conclude this chapter on Shannon’s information theory by pointing out that, in
many practical situations, there are constraints that force source coding to be imperfect,
thereby resulting in unavoidable distortion. For example, constraints imposed by a
communication channel may place an upper limit on the permissible code rate and,
therefore, average codeword length assigned to the information source. As another
example, the information source may have a continuous amplitude, as in the case of
speech, and the requirement is to quantize the amplitude of each sample generated by the
source to permit its representation by a codeword of finite length, as in pulse-code
modulation discussed in Chapter 6. In such cases, the information-theoretic problem is
referred to as source coding with a fidelity criterion, and the branch of information theory
that deals with it is called rate distortion theory, which may be viewed as a natural
extension of Shannon’s coding theorem.

Problems

Entropy

5.1 Let p denote the probability of some event. Plot the amount of information gained by the occurrence
of this event for 0  p  1.
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258 Chapter 5 Information Theory

5.2 A source emits one of four possible symbols during each signaling interval. The symbols occur with
the probabilities

p0 = 0.4

p1 = 0.3

p2 = 0.2

p3 = 0.1

which sum to unity as they should. Find the amount of information gained by observing the source
emitting each of these symbols.

5.3 A source emits one of four symbols s0, s1, s2, and s3 with probabilities 1/3, 1/6, 1/4 and 1/4,
respectively. The successive symbols emitted by the source are statistically independent. Calculate
the entropy of the source.

5.4 Let X represent the outcome of a single roll of a fair die. What is the entropy of X?

5.5 The sample function of a Gaussian process of zero mean and unit variance is uniformly sampled and
then applied to a uniform quantizer having the input–output amplitude characteristic shown in
Figure P5.5. Calculate the entropy of the quantizer output. 

5.6 Consider a discrete memoryless source with source alphabet S = {s0, s1, , sK – 1} and source statistics
{p0, p1, , pK – 1}. The nth extension of this source is another discrete memoryless source with source
alphabet S(n) = {0, 1, , M – 1}, where M = Kn. Let P(i) denote the probability ofi.

a. Show that, as expected,

b. Show that

where  is the probability of symbol  and H(S) is the entropy of the original source.

c. Hence, show that

Figure P5.5
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5.7 Consider a discrete memoryless source with source alphabet S = {s0, s1, s2} and source statistics
{0.7, 0.15, 0.15}.

a. Calculate the entropy of the source.

b. Calculate the entropy of the second-order extension of the source.

5.8 It may come as a surprise, but the number of bits needed to store text is much less than that required
to store its spoken equivalent. Can you explain the reason for this statement?

5.9 Let a discrete random variable X assume values in the set {x1, x2, , xn}. Show that the entropy of X
satisfies the inequality

and with equality if, and only if, the probability pi = 1/n for all i.

Lossless Data Compression

5.10 Consider a discrete memoryless source whose alphabet consists of K equiprobable symbols.

a. Explain why the use of a fixed-length code for the representation of such a source is about as
efficient as any code can be.

b. What conditions have to be satisfied by K and the codeword length for the coding efficiency to
be 100%?

5.11 Consider the four codes listed below:

a. Two of these four codes are prefix codes. Identify them and construct their individual decision
trees.

b. Apply the Kraft inequality to codes I, II, III, and IV. Discuss your results in light of those
obtained in part a.

5.12 Consider a sequence of letters of the English alphabet with their probabilities of occurrence

Compute two different Huffman codes for this alphabet. In one case, move a combined symbol in
the coding procedure as high as possible; in the second case, move it as low as possible. Hence, for
each of the two codes, find the average codeword length and the variance of the average codeword
length over the ensemble of letters. Comment on your results.

5.13 A discrete memoryless source has an alphabet of seven symbols whose probabilities of occurrence
are as described here: 

H X  nlog

Symbol Code I Code II Code III Code IV

s0 0 0  0  00

s1 10 01  01  01

s2 110 001  011  10

s3 1110 0010  110  110

s4 1111 0011  111  111

Letter
Probability

a
0.1

i
0.1

l
0.2

m
0.1

n
0.1

o
0.2

p
0.1

y
0.1

Symbol
Probability

s0

0.25

s1

0.25

s2

0.125

s3

0.125

s4

0.125

s5

0.0625

s6

0.0625
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Compute the Huffman code for this source, moving a “combined” symbol as high as possible.
Explain why the computed source code has an efficiency of 100%.

5.14 Consider a discrete memoryless source with alphabet {s0, s1, s2} and statistics {0.7, 0.15, 0.15} for
its output.

a. Apply the Huffman algorithm to this source. Hence, show that the average codeword length of
the Huffman code equals 1.3 bits/symbol.

b. Let the source be extended to order two. Apply the Huffman algorithm to the resulting extended
source and show that the average codeword length of the new code equals 1.1975 bits/symbol.

c. Extend the order of the extended source to three and reapply the Huffman algorithm; hence,
calculate the average codeword length.

d. Compare the average codeword length calculated in parts b and c with the entropy of the original
source.

5.15 Figure P5.15 shows a Huffman tree. What is the codeword for each of the symbols A, B, C, D, E, F,
and G represented by this Huffman tree? What are their individual codeword lengths? 

5.16 A computer executes four instructions that are designated by the codewords (00, 01, 10, 11).
Assuming that the instructions are used independently with probabilities (12, 18, 18, 14),
calculate the percentage by which the number of bits used for the instructions may be reduced by the
use of an optimum source code. Construct a Huffman code to realize the reduction.

5.17 Consider the following binary sequence

11101001100010110100 
Use the Lempel–Ziv algorithm to encode this sequence, assuming that the binary symbols 0 and 1
are already in the cookbook.

Binary Symmetric Channel

5.18 Consider the transition probability diagram of a binary symmetric channel shown in Figure 5.8. The
input binary symbols 0 and 1 occur with equal probability. Find the probabilities of the binary
symbols 0 and 1 appearing at the channel output.

5.19 Repeat the calculation in Problem 5.18, assuming that the input binary symbols 0 and 1 occur with
probabilities 14 and 34, respectively.

Figure P5.15
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Mutual Information and Channel Capacity

5.20 Consider a binary symmetric channel characterized by the transition probability p. Plot the mutual
information of the channel as a function of p1, the a priori probability of symbol 1 at the channel
input. Do your calculations for the transition probability p = 0, 0.1, 0.2, 0.3, 0.5.

5.21 Revisiting (5.12), express the mutual information I(X;Y) in terms of the relative entropy 

D(p(x,y)||p(x)p(y))

5.22 Figure 5.10 depicts the variation of the channel capacity of a binary symmetric channel with the
transition probability p. Use the results of Problem 5.19 to explain this variation.

5.23 Consider the binary symmetric channel described in Figure 5.8. Let p0 denote the probability of
sending binary symbol x0 = 0 and let p1 = 1 – p0 denote the probability of sending binary symbol
x1 = 1. Let p denote the transition probability of the channel.

a. Show that the mutual information between the channel input and channel output is given by

where the two entropy functions

and

b. Show that the value of p0 that maximizes I(X;Y) is equal to 1/2.

c. Hence, show that the channel capacity equals

5.24 Two binary symmetric channels are connected in cascade as shown in Figure P5.24. Find the overall
channel capacity of the cascaded connection, assuming that both channels have the same transition
probability diagram of Figure 5.8. 

5.25 The binary erasure channel has two inputs and three outputs as described in Figure P5.25. The
inputs are labeled 0 and 1 and the outputs are labeled 0, 1, and e. A fraction  of the incoming bits is
erased by the channel. Find the capacity of the channel. 
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262 Chapter 5 Information Theory

5.26 Consider a digital communication system that uses a repetition code for the channel encoding/decoding.
In particular, each transmission is repeated n times, where n = 2m + 1 is an odd integer. The decoder
operates as follows. If in a block of n received bits the number of 0s exceeds the number of 1s, then
the decoder decides in favor of a 0; otherwise, it decides in favor of a 1. An error occurs when m + 1
or more transmissions out of n = 2m + 1 are incorrect. Assume a binary symmetric channel.

a. For n = 3, show that the average probability of error is given by

where p is the transition probability of the channel.

b. For n = 5, show that the average probability of error is given by

c. Hence, for the general case, deduce that the average probability of error is given by

5.27 Let X, Y, and Z be three discrete random variables. For each value of the random variable Z,
represented by sample z, define

Show that the conditional entropy H(X | Y) satisfies the inequality

where � is the expectation operator.

5.28 Consider two correlated discrete random variables X and Y, each of which takes a value in the set
. Suppose that the value taken by Y is known. The requirement is to guess the value of X. Let

Pe denote the probability of error, defined by

Show that Pe is related to the conditional entropy of X given Y by the inequality

This inequality is known as Fano’s inequality. Hint: Use the result derived in Problem 5.27.

5.29 In this problem we explore the convexity of the mutual information I(X;Y), involving the pair of
discrete random variables X and Y.

Consider a discrete memoryless channel, for which the transition probability p(y |x) is fixed for all x
and y. Let X1 and X2 be two input random variables, whose input probability distributions are
respectively denoted by p(x1) and p(x2). The corresponding probability distribution of X is defined
by the convex combination

p(x) = a1p(x1) + a2 p(x2)

where a1 and a2 are arbitrary constants. Prove the inequality

I(X;Y)  a1I(X1;Y1) + a2I(X2;Y2)

where X1, X2, and X are the channel inputs, and Y1, Y2, and Y are the corresponding channel outputs.

For the proof, you may use the following form of Jensen’s inequality:
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Differential Entropy

5.30 The differential entropy of a continuous random variable X is defined by the integral of (5.66).
Similarly, the differential entropy of a continuous random vector X is defined by the integral of
(5.68). These two integrals may not exist. Justify this statement.

5.31 Show that the differential entropy of a continuous random variable X is invariant to translation; that is,

h(X + c) = h(X)
for some constant c.

5.32 Let X1, X2, , Xn denote the elements of a Gaussian vector X. The Xi are independent with mean mi
and variance , i = 1, 2, , n. Show that the differential entropy of the vector X is given by

where e is the base of the natural logarithm.What does h(X) reduce to if the variances are all equal? 

5.33 A continuous random variable X is constrained to a peak magnitude M; that is, 

–M < X < M

a. Show that the differential entropy of X is maximum when it is uniformly distributed, as shown by

b. Determine the maximum differential entropy of X.

5.34 Referring to (5.75), do the following:

a. Verify that the differential entropy of a Gaussian random variable of mean  and variance  is
given by , where e is the base of the natural algorithm.

b. Hence, confirm the inequality of (5.75).

5.35 Demonstrate the properties of symmetry, nonnegativity, and expansion of the mutual information
I(X;Y) described in Section 5.6.

5.36 Consider the continuous random variable Y, defined by

Y = X + N

where the random variables X and N are statistically independent. Show that the conditional
differential entropy of Y, given X, equals

h(Y | X) = h(N)

where h(N) is the differential entropy of N.

Information Capacity Law

5.37 A voice-grade channel of the telephone network has a bandwidth of 3.4 kHz.

a. Calculate the information capacity of the telephone channel for a signal-to-noise ratio of 30 dB.

b. Calculate the minimum signal-to-noise ratio required to support information transmission
through the telephone channel at the rate of 9600 bits/s.

5.38 Alphanumeric data are entered into a computer from a remote terminal through a voice-grade
telephone channel. The channel has a bandwidth of 3.4 kHz and output signal-to-noise ratio of
20 dB. The terminal has a total of 128 symbols. Assume that the symbols are equiprobable and the
successive transmissions are statistically independent.

a. Calculate the information capacity of the channel.

b. Calculate the maximum symbol rate for which error-free transmission over the channel is
possible.
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2
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264 Chapter 5 Information Theory

5.39 A black-and-white television picture may be viewed as consisting of approximately 
elements, each of which may occupy one of 10 distinct brightness levels with equal probability.
Assume that (1) the rate of transmission is 30 picture frames per second and (2) the signal-to-noise
ratio is 30 dB.

Using the information capacity law, calculate the minimum bandwidth required to support the
transmission of the resulting video signal.

5.40 In Section 5.10 we made the statement that it is easier to increase the information capacity of a
communication channel by expanding its bandwidth B than increasing the transmitted power for a
prescribed noise variance N0B. This statement assumes that the noise spectral density N0 varies
inversely with B. Why is this inverse relationship the case?

5.41 In this problem, we revisit Example 5.10, which deals with coded binary antipodal signaling over an
additive white Gaussian noise (AWGN) channel. Starting with (5.105) and the underlying theory,
develop a software package for computing the minimum EbN0 required for a given bit error rate,
where Eb is the signal energy per bit, and N02 is the noise spectral density. Hence, compute the
results plotted in parts a and b of Figure 5.16. 

As mentioned in Example 5.10, the computation of the mutual information between the channel input
and channel output is well approximated using Monte Carlo integration. To explain how this method
works, consider a function g(y) that is difficult to sample randomly, which is indeed the case for the
problem at hand. (For this problem, the function g(y) represents the complicated integrand in the for-
mula for the differential entropy of the channel output.) For the computation, proceed as follows: 

• Find an area A that includes the region of interest and that is easily sampled.

• Choose N points, uniformly randomly inside the area A.

Then the Monte Carlo integration theorem states that the integral of the function g(y) with respect to
y is approximately equal to the area A multiplied by the fraction of points that reside below the curve
of g, as illustrated in Figure P5.41. The accuracy of the approximation improves with increasing N.

Notes

1. According to Lucky (1989), the first mention of the term information theory by Shannon
occurred in a 1945 memorandum entitled “A mathematical theory of cryptography.” It is rather
curious that the term was never used in Shannon’s (1948) classic paper, which laid down the
foundations of information theory. For an introductory treatment of information theory, see Part 1 of
the book by McEliece (2004), Chapters 1–6. For an advanced treatment of this subject, viewed in a
rather broad context and treated with rigor, and clarity of presentation, see Cover and Thomas
(2006). 

3 10
5

Figure P5.41 y

Area A

Shaded area
    = ∫ g(y) dy
          A
where    is the fraction of
randomly chosen points that
lie under the curve of g(y).

g(y)

ρ
ρ
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Notes 265

For a collection of papers on the development of information theory (including the 1948 classic
paper by Shannon), see Slepian (1974). For a collection of the original papers published by Shannon,
see Sloane and Wyner (1993).

2. The use of a logarithmic measure of information was first suggested by Hartley (1928); however,
Hartley used logarithms to base 10.

3. In statistical physics, the entropy of a physical system is defined by (Rief, 1965: 147)

where kB is Boltzmann’s constant,  is the number of states accessible to the system, and ln denotes
the natural logarithm. This entropy has the dimensions of energy, because its definition involves the
constant kB. In particular, it provides a quantitative measure of the degree of randomness of the
system. Comparing the entropy of statistical physics with that of information theory, we see that they
have a similar form. 

4. For the original proof of the source coding theorem, see Shannon (1948). A general proof of the
source coding theorem is also given in Cover and Thomas (2006). The source coding theorem is also
referred to in the literature as the noiseless coding theorem, noiseless in the sense that it establishes
the condition for error-free encoding to be possible.

5. For proof of the Kraft inequality, see Cover and Thomas (2006). The Kraft inequality is also
referred to as the Kraft–McMillan inequality in the literature.

6. The Huffman code is named after its inventor D.A. Huffman (1952). For a detailed account of
Huffman coding and its use in data compaction, see Cover and Thomas (2006).

7. The original papers on the Lempel–Ziv algorithm are Ziv and Lempel (1977, 1978). For detailed
treatment of the algorithm, see Cover and Thomas (2006).

8. It is also of interest to note that once a “parent” subsequence is joined by its two children, that
parent subsequence can be replaced in constructing the Lempel–Ziv algorithm. To illustrate this nice
feature of the algorithm, suppose we have the following example sequence:

01, 010, 011, 
where 01 plays the role of a parent and 010 and 011 play the roles of the parent’s children. In this
example, the algorithm removes the 01, thereby reducing the length of the table through the use of a
pointer.

9. In Cover and Thomas (2006), it is proved that the two-stage method, where the source coding and
channel coding are considered separately as depicted in Figure 5.11, is as good as any other method
of transmitting information across a noisy channel. This result has practical implications, in that the
design of a communication system may be approached in two separate parts: source coding followed
by channel coding. Specifically, we may proceed as follows:

• Design a source code for the most efficient representation of data generated by a discrete
memoryless source of information.

• Separately and independently, design a channel code that is appropriate for a discrete
memoryless channel.

The combination of source coding and channel coding designed in this manner will be as efficient as
anything that could be designed by considering the two coding problems jointly.

10. To prove the channel-coding theorem, Shannon used several ideas that were new at the time;
however, it was some time later when the proof was made rigorous (Cover and Thomas, 2006: 199).

Perhaps the most thoroughly rigorous proof of this basic theorem of information theory is presented
in Chapter 7 of the book by Cover and Thomas (2006). Our statement of the theorem, though
slightly different from that presented by Cover and Thomas, in essence is the same.

11. In the literature, the relative entropy is also referred to as the Kullback–Leibler divergence (KLD).

L kB  ln=


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266 Chapter 5 Information Theory

12. Equation (5.95) is also referred to in the literature as the Shannon–Hartley law in recognition of
the early work by Hartley on information transmission (Hartley, 1928). In particular, Hartley showed
that the amount of information that can be transmitted over a given channel is proportional to the
product of the channel bandwidth and the time of operation.

13. A lucid exposition of sphere packing is presented in Cover and Thomas (2006); see also
Wozencraft and Jacobs (1965).

14. Parts a and b of Figure 5.16 follow the corresponding parts of Figure 6.2 in the book by Frey
(1998).

15. For a rigorous treatment of information capacity of a colored noisy channel, see Gallager
(1968). The idea of replacing the channel model of Figure 5.17a with that of Figure 5.17b is
discussed in Gitlin, Hayes, and Weinstein (1992)

16. For a complete treatment of rate distortion theory, see the classic book by Berger (1971); this
subject is also treated in somewhat less detail in Cover and Thomas (1991), McEliece (1977), and
Gallager (1968).

17. For the derivation of (5.124), see Cover and Thomas (2006). An algorithm for computation of
the rate distortion function R(D) defined in (5.124) is described in Blahut (1987) and Cover and
Thomas (2006).
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CHAPTER

6
Conversion of Analog 
Waveforms into Coded Pulses

6.1 Introduction

In continuous-wave (CW) modulation, which was studied briefly in Chapter 2, some
parameter of a sinusoidal carrier wave is varied continuously in accordance with the
message signal. This is in direct contrast to pulse modulation, which we study in this
chapter. In pulse modulation, some parameter of a pulse train is varied in accordance with
the message signal. On this basis, we may distinguish two families of pulse modulation: 

1. Analog pulse modulation, in which a periodic pulse train is used as the carrier wave
and some characteristic feature of each pulse (e.g., amplitude, duration, or position)
is varied in a continuous manner in accordance with the corresponding sample value
of the message signal. Thus, in analog pulse modulation, information is transmitted
basically in analog form but the transmission takes place at discrete times. 

2. Digital pulse modulation, in which the message signal is represented in a form that
is discrete in both time and amplitude, thereby permitting transmission of the
message in digital form as a sequence of coded pulses; this form of signal
transmission has no CW counterpart.

The use of coded pulses for the transmission of analog information-bearing signals
represents a basic ingredient in digital communications. In this chapter, we focus attention
on digital pulse modulation, which, in basic terms, is described as the conversion of
analog waveforms into coded pulses. As such, the conversion may be viewed as the
transition from analog to digital communications. 

Three different kinds of digital pulse modulation are studied in the chapter:

1. Pulse-code modulation (PCM), which has emerged as the most favored scheme for
the digital transmission of analog information-bearing signals (e.g., voice and video
signals). The important advantages of PCM are summarized thus:

• robustness to channel noise and interference;
• efficient regeneration of the coded signal along the transmission path;
• efficient exchange of increased channel bandwidth for improved signal-to-

quantization noise ratio, obeying an exponential law;
• a uniform format for the transmission of different kinds of baseband signals,

hence their integration with other forms of digital data in a common network;
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268 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

• comparative ease with which message sources may be dropped or reinserted in a
multiplex system;

• secure communication through the use of special modulation schemes or
encryption.

These advantages, however, are attained at the cost of increased system complexity
and increased transmission bandwidth. Simply stated:

There is no free lunch.

For every gain we make, there is a price to pay.

2. Differential pulse-code modulation (DPCM), which exploits the use of lossy data
compression to remove the redundancy inherent in a message signal, such as voice or
video, so as to reduce the bit rate of the transmitted data without serious degradation
in overall system response. In effect, increased system complexity is traded off for
reduced bit rate, therefore reducing the bandwidth requirement of PCM.

3. Delta modulation (DM), which addresses another practical limitation of PCM: the
need for simplicity of implementation when it is a necessary requirement. DM
satisfies this requirement by intentionally “oversampling” the message signal. In
effect, increased transmission bandwidth is traded off for reduced system
complexity. DM may therefore be viewed as the dual of DPCM.

Although, indeed, these three methods of analog-to-digital conversion are quite different,
they do share two basic signal-processing operations, namely sampling and quantization:

• the process of sampling, followed by 
• pulse-amplitude modulation (PAM) and finally
• amplitude quantization 

are studied in what follows in this order.

6.2 Sampling Theory

The sampling process is usually described in the time domain. As such, it is an operation
that is basic to digital signal processing and digital communications. Through use of the
sampling process, an analog signal is converted into a corresponding sequence of samples
that are usually spaced uniformly in time. Clearly, for such a procedure to have practical
utility, it is necessary that we choose the sampling rate properly in relation to the bandwidth
of the message signal, so that the sequence of samples uniquely defines the original analog
signal. This is the essence of the sampling theorem, which is derived in what follows.

Frequency-Domain Description of Sampling

Consider an arbitrary signal g(t) of finite energy, which is specified for all time t. A
segment of the signal g(t) is shown in Figure 6.1a. Suppose that we sample the signal g(t)
instantaneously and at a uniform rate, once every Ts seconds. Consequently, we obtain an
infinite sequence of samples spaced Ts seconds apart and denoted by {g(nTs)}, where n
takes on all possible integer values, positive as well as negative. We refer to Ts as the
sampling period, and to its reciprocal fs = 1/Ts as the sampling rate. For obvious reasons,
this ideal form of sampling is called instantaneous sampling.
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6.2 Sampling Theory 269

Let g (t) denote the signal obtained by individually weighting the elements of a
periodic sequence of delta functions spaced Ts seconds apart by the sequence of numbers
{g(nTs)}, as shown by (see Figure 6.1b):

(6.1)

We refer to g (t) as the ideal sampled signal. The term  (t – nTs) represents a delta func-
tion positioned at time t = nTs. From the definition of the delta function, we recall from
Chapter 2 that such an idealized function has unit area. We may therefore view the multi-
plying factor g(nTs) in (6.1) as a “mass” assigned to the delta function  (t – nTs). A delta
function weighted in this manner is closely approximated by a rectangular pulse of dura-
tion t and amplitude g(nTs)/t; the smaller we make t the better the approximation will
be.

Referring to the table of Fourier-transform pairs in Table 2.2, we have

(6.2)

where G( f ) is the Fourier transform of the original signal g(t) and fs is the sampling rate.
Equation (6.2) states: 

The process of uniformly sampling a continuous-time signal of finite energy 
results in a periodic spectrum with a frequency equal to the sampling rate.

Another useful expression for the Fourier transform of the ideal sampled signal g(t) may
be obtained by taking the Fourier transform of both sides of (6.1) and noting that the
Fourier transform of the delta function  (t – nTs) is equal to exp(–j2nfTs). Letting G ( f )
denote the Fourier transform of g ( t), we may write

(6.3)

Equation (6.3) describes the discrete-time Fourier transform. It may be viewed as a
complex Fourier series representation of the periodic frequency function G ( f ), with the
sequence of samples {g(nTs)} defining the coefficients of the expansion.

Figure 6.1 The sampling process. (a) Analog signal. (b) Instantaneously sampled version of the 
analog signal.
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270 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

The discussion presented thus far applies to any continuous-time signal g(t) of finite
energy and infinite duration. Suppose, however, that the signal g(t) is strictly band limited,
with no frequency components higher than W hertz. That is, the Fourier transform G( f ) of
the signal g(t) has the property that G( f ) is zero for | f | W, as illustrated in Figure 6.2a;
the shape of the spectrum shown in this figure is merely intended for the purpose of
illustration. Suppose also that we choose the sampling period Ts = 12W. Then the
corresponding spectrum G (f ) of the sampled signal g ( t) is as shown in Figure 6.2b.
Putting Ts = 1/2W in (6.3) yields

(6.4)

Isolating the term on the right-hand side of (6.2), corresponding to m = 0, we readily see
that the Fourier transform of g ( t) may also be expressed as

(6.5)

Suppose, now, we impose the following two conditions:

1. G( f ) = 0 for | f | W.

2. fs = 2W.

We may then reduce (6.5) to

(6.6)

Substituting (6.4) into (6.6), we may also write

(6.7)

Equation (6.7) is the desired formula for the frequency-domain description of sampling.
This formula reveals that if the sample values g(n/2W) of the signal g(t) are specified for
all n, then the Fourier transform G( f ) of that signal is uniquely determined. Because g(t) is
related to G( f ) by the inverse Fourier transform, it follows, therefore, that g(t) is itself
uniquely determined by the sample values g(n/2W) for . In other words, the
sequence {g(n/2W)} has all the information contained in the original signal g(t).

Figure 6.2 (a) Spectrum of a strictly band-limited signal g(t). (b) Spectrum of the sampled version 
of g(t) for a sampling period Ts = 1/2W.
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6.2 Sampling Theory 271

Consider next the problem of reconstructing the signal g(t) from the sequence of
sample values {g(n/2W)}. Substituting (6.7) in the formula for the inverse Fourier
transform 

and interchanging the order of summation and integration, which is permissible because
both operations are linear, we may go on to write

(6.8)

The definite integral in (6.8), including the multiplying factor 1/2W, is readily evaluated in
terms of the sinc function, as shown by

Accordingly, (6.8) reduces to the infinite-series expansion

(6.9)

Equation (6.9) is the desired reconstruction formula. This formula provides the basis for
reconstructing the original signal g(t) from the sequence of sample values {g(n/2W)}, with
the sinc function sinc(2Wt) playing the role of a basis function of the expansion. Each
sample, g(n/2W), is multiplied by a delayed version of the basis function, sinc(2Wt – n),
and all the resulting individual waveforms in the expansion are added to reconstruct the
original signal g(t).

The Sampling Theorem

Equipped with the frequency-domain description of sampling given in (6.7) and the
reconstruction formula of (6.9), we may now state the sampling theorem for strictly band-
limited signals of finite energy in two equivalent parts:

1. A band-limited signal of finite energy that has no frequency components higher than
W hertz is completely described by specifying the values of the signal instants of
time separated by 1/2W seconds.

2. A band-limited signal of finite energy that has no frequency components higher than
W hertz is completely recovered from a knowledge of its samples taken at the rate of
2W samples per second.

Part 1 of the theorem, following from (6.7), is performed in the transmitter. Part 2 of the
theorem, following from (6.9), is performed in the receiver. For a signal bandwidth of
W hertz, the sampling rate of 2W samples per second, for a signal bandwidth of W hertz, is
called the Nyquist rate; its reciprocal 1/2W (measured in seconds) is called the Nyquist
interval; see the classic paper (Nyquist, 1928b).

g t  G f  j2ft exp  df
–



=

g t  g
n

2W
-------- 
  1

2W
-------- j2f t n

2W
--------– 

   dfexp
W–

W


n –=



=

1
2W
-------- j2f t n

2W
--------– 

   dfexp
W–

W

 2Wt n– sin
2Wt n–

---------------------------------------=

sinc 2Wt n– =

g t  g
n

2W
-------- 
  sinc 2Wt n–   t  –

n –=



=

Haykin_ch06_pp3.fm  Page 271  Monday, November 26, 2012  1:00 PM



272 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Aliasing Phenomenon

Derivation of the sampling theorem just described is based on the assumption that the
signal g(t) is strictly band limited. In practice, however, a message signal is not strictly band
limited, with the result that some degree of undersampling is encountered, as a consequence
of which aliasing is produced by the sampling process. Aliasing refers to the phenomenon
of a high-frequency component in the spectrum of the signal seemingly taking on the
identity of a lower frequency in the spectrum of its sampled version, as illustrated in Figure
6.3. The aliased spectrum, shown by the solid curve in Figure 6.3b, pertains to the
undersampled version of the message signal represented by the spectrum of Figure 6.3a.

To combat the effects of aliasing in practice, we may use two corrective measures:

1. Prior to sampling, a low-pass anti-aliasing filter is used to attenuate those high-
frequency components of the signal that are not essential to the information being
conveyed by the message signal g(t).

2. The filtered signal is sampled at a rate slightly higher than the Nyquist rate.

The use of a sampling rate higher than the Nyquist rate also has the beneficial effect of
easing the design of the reconstruction filter used to recover the original signal from its
sampled version. Consider the example of a message signal that has been anti-alias (low-
pass) filtered, resulting in the spectrum shown in Figure 6.4a. The corresponding spectrum
of the instantaneously sampled version of the signal is shown in Figure 6.4b, assuming a
sampling rate higher than the Nyquist rate. According to Figure 6.4b, we readily see that
design of the reconstruction filter may be specified as follows:

• The reconstruction filter is low-pass with a passband extending from –W to W,
which is itself determined by the anti-aliasing filter.

• The reconstruction filter has a transition band extending (for positive frequencies)
from W to (fs – W), where fs is the sampling rate. 

Figure 6.3 (a) Spectrum of a signal. (b) Spectrum of an under-sampled version 
of the signal exhibiting the aliasing phenomenon. 
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6.2 Sampling Theory 273

EXAMPLE 1 Sampling of Voice Signals

As an illustrative example, consider the sampling of voice signals for waveform coding.
Typically, the frequency band, extending from 100 Hz to 3.1 kHz, is considered to be
adequate for telephonic communication. This limited frequency band is accomplished by
passing the voice signal through a low-pass filter with its cutoff frequency set at 3.1 kHz;
such a filter may be viewed as an anti-aliasing filter. With such a cutoff frequency, the
Nyquist rate is fs = 2 3.1 = 6.2 kHz. The standard sampling rate for the waveform coding
of voice signals is 8 kHz. Putting these numbers together, design specifications for the
reconstruction (low-pass) filter in the receiver are as follows:

Cutoff frequency 3.1 kHz

Transition band 6.2 to 8 kHz

Transition-band width 1.8 kHz. 

Figure 6.4 (a) Anti-alias filtered spectrum of an information-bearing signal. (b) Spectrum of 
instantaneously sampled version of the signal, assuming the use of a sampling rate greater than the 
Nyquist rate. (c) Magnitude response of reconstruction filter. 
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6.3 Pulse-Amplitude Modulation

Now that we understand the essence of the sampling process, we are ready to formally
define PAM, which is the simplest and most basic form of analog pulse modulation. It is
formally defined as follows:

PAM is a linear modulation process where the amplitudes of regularly spaced 
pulses are varied in proportion to the corresponding sample values of a 
continuous message signal. 

The pulses themselves can be of a rectangular form or some other appropriate shape. 
The waveform of a PAM signal is illustrated in Figure 6.5. The dashed curve in this

figure depicts the waveform of a message signal m(t), and the sequence of amplitude-
modulated rectangular pulses shown as solid lines represents the corresponding PAM
signal s(t). There are two operations involved in the generation of the PAM signal:

1. Instantaneous sampling of the message signal m(t) every Ts seconds, where the
sampling rate fs = 1Ts is chosen in accordance with the sampling theorem.

2. Lengthening the duration of each sample so obtained to some constant value T.

In digital circuit technology, these two operations are jointly referred to as “sample and
hold.” One important reason for intentionally lengthening the duration of each sample is to
avoid the use of an excessive channel bandwidth, because bandwidth is inversely
proportional to pulse duration. However, care has to be exercised in how long we make the
sample duration T, as the following analysis reveals.

Let s(t) denote the sequence of flat-top pulses generated in the manner described in
Figure 6.5. We may express the PAM signal as a discrete convolution sum:

(6.10)

where Ts is the sampling period and m(nTs) is the sample value of m(t) obtained at time
t = nTs. The h(t) is a Fourier-transformal pulse. With spectral analysis of s(t) in mind, we
would like to recast (6.10) in the form of a convolution integral. To this end, we begin by
invoking the sifting property of a delta function (discussed in Chapter 2) to express the
delayed version of the pulse shape h(t) in (6.10) as

(6.11)

Figure 6.5  Flat-top samples, representing an analog signal. 
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6.3 Pulse-Amplitude Modulation 275

Hence, substituting (6.11) into (6.10), and interchanging the order of summation and
integration, we get

(6.12)

Referring to (6.1), we recognize that the expression inside the brackets in (6.12) is simply
the instantaneously sampled version of the message signal m(t), as shown by

(6.13)

Accordingly, substituting (6.13) into (6.12), we may reformulate the PAM signal s(t) in the
desired form

(6.14)

which is the convolution of the two time functions;  and .
The stage is now set for taking the Fourier transform of both sides of (6.14) and

recognizing that the convolution of two time functions is transformed into the
multiplication of their respective Fourier transforms; we get the simple result

(6.15)

where S( f ) = F[s(t)], M ( f ) = F[m ( t)], and H( f ) = F[h(t)]. Adapting (6.2) to the problem
at hand, we note that the Fourier transform M ( f ) is related to the Fourier transform M( f )
of the original message signal m(t) as follows:

(6.16)

where fs is the sampling rate. Therefore, the substitution of (6.16) into (6.15) yields the
desired formula for the Fourier transform of the PAM signal s(t), as shown by

(6.17)

Given this formula, how do we recover the original message signal m(t)? As a first step in
this reconstruction, we may pass s(t) through a low-pass filter whose frequency response is
defined in Figure 6.4c; here, it is assumed that the message signal is limited to bandwidth
W and the sampling rate fs is larger than the Nyquist rate 2W. Then, from (6.17) we find
that the spectrum of the resulting filter output is equal to M( f )H( f ). This output is
equivalent to passing the original message signal m(t) through another low-pass filter of
frequency response H( f ).

Equation (6.17) applies to any Fourier-transformable pulse shape h(t). 
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276 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Consider now the special case of a rectangular pulse of unit amplitude and duration T,
as shown in Figure 6.6a; specifically:

(6.18)

Correspondingly, the Fourier transform of h(t) is given by

(6.19)

which is plotted in Figure 6.6b. We therefore find from (6.17) that by using flat-top
samples to generate a PAM signal we have introduced amplitude distortion as well as a
delay of T/2. This effect is rather similar to the variation in transmission with frequency
that is caused by the finite size of the scanning aperture in television. Accordingly, the
distortion caused by the use of PAM to transmit an analog information-bearing signal is
referred to as the aperture effect.

To correct for this distortion, we connect an equalizer in cascade with the low-pass
reconstruction filter, as shown in Figure 6.7. The equalizer has the effect of decreasing the
in-band loss of the reconstruction filter as the frequency increases in such a manner as to
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H f  Tsinc fT  jfT– exp=

Figure 6.6 (a) Rectangular pulse h(t). (b) Transfer function H( f ), made up of the magnitude |H( f )| 
and phase arg[H( f )].
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6.3 Pulse-Amplitude Modulation 277

compensate for the aperture effect. In light of (6.19), the magnitude response of the
equalizer should ideally be

The amount of equalization needed in practice is usually small. Indeed, for a duty cycle
defined by the ratio TTs  0.1, the amplitude distortion is less than 0.5%. In such a
situation, the need for equalization may be omitted altogether.

Practical Considerations

The transmission of a PAM signal imposes rather stringent requirements on the frequency
response of the channel, because of the relatively short duration of the transmitted pulses.
One other point that should be noted: relying on amplitude as the parameter subject to
modulation, the noise performance of a PAM system can never be better than baseband-
signal transmission. Accordingly, in practice, we find that for transmission over a
communication channel PAM is used only as the preliminary means of message
processing, whereafter the PAM signal is changed to some other more appropriate form of
pulse modulation.

With analog-to-digital conversion as the aim, what would be the appropriate form of
modulation to build on PAM? Basically, there are three potential candidates, each with its
own advantages and disadvantages, as summarized here:

1. PCM, which, as remarked previously in Section 6.1, is robust but demanding in both
transmission bandwidth and computational requirements. Indeed, PCM has
established itself as the standard method for the conversion of speech and video
signals into digital form.

2. DPCM, which provides a method for the reduction in transmission bandwidth but at
the expense of increased computational complexity.

3. DM, which is relatively simple to implement but requires a significant increase in
transmission bandwidth.

Before we go on, a comment on terminology is in order. The term “modulation” used
herein is a misnomer. In reality, PCM, DM, and DPCM are different forms of source
coding, with source coding being understood in the sense described in Chapter 5 on
information theory. Nevertheless, the terminologies used to describe them have become
embedded in the digital communications literature, so much so that we just have to live
with them.

Despite their basic differences, PCM, DPCM and DM do share an important feature:
the message signal is represented in discrete form in both time and amplitude. PAM takes
care of the discrete-time representation. As for the discrete-amplitude representation, we
resort to a process known as quantization, which is discussed next.

Figure 6.7 System for recovering message signal m(t) from PAM signal s(t). 
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278 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

6.4 Quantization and its Statistical Characterization

Typically, an analog message signal (e.g., voice) has a continuous range of amplitudes
and, therefore, its samples have a continuous amplitude range. In other words, within the
finite amplitude range of the signal, we find an infinite number of amplitude levels. In
actual fact, however, it is not necessary to transmit the exact amplitudes of the samples for
the following reason: any human sense (the ear or the eye) as ultimate receiver can detect
only finite intensity differences. This means that the message signal may be approximated
by a signal constructed of discrete amplitudes selected on a minimum error basis from an
available set. The existence of a finite number of discrete amplitude levels is a basic
condition of waveform coding exemplified by PCM. Clearly, if we assign the discrete
amplitude levels with sufficiently close spacing, then we may make the approximated
signal practically indistinguishable from the original message signal. For a formal
definition of amplitude quantization, or just quantization for short, we say:

Quantization is the process of transforming the sample amplitude m(nTs) of a 
message signal m(t) at time t = nTs into a discrete amplitude v(nTs) taken from a 
finite set of possible amplitudes. 

This definition assumes that the quantizer (i.e., the device performing the quantization
process) is memoryless and instantaneous, which means that the transformation at time
t = nTs is not affected by earlier or later samples of the message signal m(t). This simple
form of scalar quantization, though not optimum, is commonly used in practice.

When dealing with a memoryless quantizer, we may simplify the notation by dropping
the time index. Henceforth, the symbol mk is used in place of m(kTs), as indicated in the
block diagram of a quantizer shown in Figure 6.8a. Then, as shown in Figure 6.8b, the
signal amplitude m is specified by the index k if it lies inside the partition cell

(6.20)

where
(6.21)

and L is the total number of amplitude levels used in the quantizer. The discrete amplitudes
mk, k = 1, 2, , L, at the quantizer input are called decision levels or decision thresholds. At
the quantizer output, the index k is transformed into an amplitude vk that represents all ampli-
tudes of the cell Jk; the discrete amplitudes vk, k = 1, 2,, L, are called representation levels
or reconstruction levels. The spacing between two adjacent representation levels is called a
quantum or step-size. Thus, given a quantizer denoted by g(), the quantized output v equals
vk if the input sample m belongs to the interval Jk. In effect, the mapping (see Figure 6.8a)

(6.22)

defines the quantizer characteristic, described by a staircase function.

Jk: mk m mk+1  k 1 2  L  =

mk m kTs =

v g m =

Figure 6.8
Description of a 
memoryless quantizer. (a) (b)
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6.4 Quantization and its Statistical Characterization 279

Quantizers can be of a uniform or nonuniform type. In a uniform quantizer, the
representation levels are uniformly spaced; otherwise, the quantizer is nonuniform. In this
section, we consider only uniform quantizers; nonuniform quantizers are considered in
Section 6.5. The quantizer characteristic can also be of midtread or midrise type. Figure
6.9a shows the input–output characteristic of a uniform quantizer of the midtread type,
which is so called because the origin lies in the middle of a tread of the staircaselike graph.
Figure 6.9b shows the corresponding input–output characteristic of a uniform quantizer of
the midrise type, in which the origin lies in the middle of a rising part of the staircaselike
graph. Despite their different appearances, both the midtread and midrise types of uniform
quantizers illustrated in Figure 6.9 are symmetric about the origin.

Quantization Noise

Inevitably, the use of quantization introduces an error defined as the difference between
the continuous input sample m and the quantized output sample v. The error is called
quantization noise.1 Figure 6.10 illustrates a typical variation of quantization noise as a
function of time, assuming the use of a uniform quantizer of the midtread type.

Let the quantizer input m be the sample value of a zero-mean random variable M. (If
the input has a nonzero mean, we can always remove it by subtracting the mean from the
input and then adding it back after quantization.) A quantizer, denoted by g(), maps the
input random variable M of continuous amplitude into a discrete random variable V; their
respective sample values m and v are related by the nonlinear function g() in (6.22). Let
the quantization error be denoted by the random variable Q of sample value q. We may
thus write

(6.23)

or, correspondingly,
(6.24)

Figure 6.9 Two types of quantization: (a) midtread and (b) midrise. 
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280 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

With the input M having zero mean and the quantizer assumed to be symmetric as in
Figure 6.9, it follows that the quantizer output V and, therefore, the quantization error Q
will also have zero mean. Thus, for a partial statistical characterization of the quantizer in
terms of output signal-to-(quantization) noise ratio, we need only find the mean-square
value of the quantization error Q.

Consider, then, an input m of continuous amplitude, which, symmetrically, occupies the
range [–mmax, mmax]. Assuming a uniform quantizer of the midrise type illustrated in
Figure 6.9b, we find that the step size of the quantizer is given by

(6.25)

where L is the total number of representation levels. For a uniform quantizer, the
quantization error Q will have its sample values bounded by –/2  q  /2. If the step size
 is sufficiently small (i.e., the number of representation levels L is sufficiently large), it is
reasonable to assume that the quantization error Q is a uniformly distributed random
variable and the interfering effect of the quantization error on the quantizer input is similar
to that of thermal noise, hence the reference to quantization error as quantization noise.
We may thus express the probability density function of the quantization noise as 

(6.26)

For this to be true, however, we must ensure that the incoming continuous sample does not
overload the quantizer. Then, with the mean of the quantization noise being zero, its
variance  is the same as the mean-square value; that is,

Figure 6.10
Illustration of the 
quantization process. 
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6.4 Quantization and its Statistical Characterization 281

(6.27)

Substituting (6.26) into (6.27), we get

(6.28)

Typically, the L-ary number k, denoting the kth representation level of the quantizer, is
transmitted to the receiver in binary form. Let R denote the number of bits per sample used
in the construction of the binary code. We may then write

(6.29)

or, equivalently,
(6.30)

Hence, substituting (6.29) into (6.25), we get the step size

(6.31)

Thus, the use of (6.31) in (6.28) yields

(6.32)

Let P denote the average power of the original message signal m(t). We may then express
the output signal-to-noise ratio of a uniform quantizer as

(6.33)

Equation (6.33) shows that the output signal-to-noise ratio of a uniform quantizer (SNR)O
increases exponentially with increasing number of bits per sample R, which is intuitively
satisfying. 

EXAMPLE 2 Sinusoidal Modulating Signal

Consider the special case of a full-load sinusoidal modulating signal of amplitude Am,
which utilizes all the representation levels provided. The average signal power is
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282 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

The total range of the quantizer input is 2Am, because the modulating signal swings
between –Am and Am. We may, therefore, set mmax = Am, in which case the use of (6.32)
yields the average power (variance) of the quantization noise as

Thus, the output signal-to-noise of a uniform quantizer, for a full-load test tone, is 

(6.34)

Expressing the signal-to-noise (SNR) in decibels, we get

(6.35)

The corresponding values of signal-to-noise ratio for various values of L and R, are given in
Table 6.1. For sinusoidal modulation, this table provides a basis for making a quick estimate
of the number of bits per sample required for a desired output signal-to-noise ratio.

Conditions of Optimality of Scalar Quantizers

In designing a scalar quantizer, the challenge is how to select the representation levels and
surrounding partition cells so as to minimize the average quantization power for a fixed
number of representation levels.

To state the problem in mathematical terms: consider a message signal m(t) drawn from
a stationary process and whose dynamic range, denoted by –A  m  A, is partitioned into
a set of L cells, as depicted in Figure 6.11. The boundaries of the partition cells are defined
by a set of real numbers m1, m2, , mL – 1 that satisfy the following three conditions:

Table 6.1  Signal-to-(quantization) noise ratio for varying number of 
representation levels for sinusoidal modulation

No. of representation levels L No. of bits per sample R SNR (dB)
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Figure 6.11
Illustrating the partitioning of the dynamic range 
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6.4 Quantization and its Statistical Characterization 283

The kth partition cell is defined by (6.20), reproduced here for convenience:

Jk : mk < m < mk – 1 for k = 1, 2, , L (6.36)

Let the representation levels (i.e., quantization values) be denoted by vk, k = 1, 2, , L.
Then, assuming that d(m,vk) denotes a distortion measure for using vk to represent all
those values of the input m that lie inside the partition cell Jk, the goal is to find the two
sets  and  that minimize the average distortion

(6.37)

where fM(m) is the probability density function of the random variable M with sample
value m.

A commonly used distortion measure is defined by

(6.38)

in which case we speak of the mean-square distortion. In any event, the optimization problem
stated herein is nonlinear, defying an explicit, closed-form solution. To get around this diffi-
culty, we resort to an algorithmic approach for solving the problem in an iterative manner.

Structurally speaking, the quantizer consists of two components with interrelated
design parameters:

• An encoder characterized by the set of partition cells ; this is located in the
transmitter.

• A decoder characterized by the set of representation levels ; this is located
in the receiver.

Accordingly, we may identify two critically important conditions that provide the
mathematical basis for all algorithmic solutions to the optimum quantization problem.
One condition assumes that we are given a decoder and the problem is to find the optimum
encoder in the transmitter. The other condition assumes that we are given an encoder and
the problem is to find the optimum decoder in the receiver. Henceforth, these two
conditions are referred to as condition I and II, respectively.

Condition I: Optimality of the Encoder for a Given Decoder

The availability of a decoder means that we have a certain codebook in mind. Let the
codebook be defined by

(6.39)

Given the codebook 𝒞, the problem is to find the set of partition cells  that

minimizes the mean-square distortion D. That is, we wish to find the encoder defined by

the nonlinear mapping

 (6.40)

such that we have

(6.41)
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284 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

For the lower bound specified in (6.41) to be attained, we require that the nonlinear
mapping of (6.40) be satisfied only if the condition

 (6.42)

The necessary condition described in (6.42) for optimality of the encoder for a specified
codebook 𝒞  is recognized as the nearest-neighbor condition. In words, the nearest
neighbor condition requires that the partition cell Jk should embody all those values of the
input m that are closer to vk than any other element of the codebook 𝒞.  This optimality
condition is indeed intuitively satisfying.

Condition II: Optimality of the Decoder for a Given Encoder

Consider next the reverse situation to that described under condition I, which may be
stated as follows: optimize the codebook  for the decoder, given that the
set of partition cells characterizing the encoder is fixed. The criterion for
optimization is the average (mean-square) distortion:

(6.43)

The probability density function fM(m) is clearly independent of the codebook 𝒞. Hence,
differentiating D with respect to the representation level vk, we readily obtain

(6.44)

Setting  equal to zero and then solving for vk, we obtain the optimum value

(6.45)

The denominator in (6.45) is just the probability pk that the random variable M with
sample value m lies in the partition cell Jk, as shown by

(6.46)

Accordingly, we may interpret the optimality condition of (6.45) as choosing the
representation level vk to equal the conditional mean of the random variable M, given that
M lies in the partition cell Jk. We can thus formally state that the condition for optimality
of the decoder for a given encoder as follows:

(6.47)

where � is the expectation operator. Equation (6.47) is also intuitively satisfying.
Note that the nearest neighbor condition (I) for optimality of the encoder for a given

decoder was proved for a generic average distortion. However, the conditional mean
requirement (condition II) for optimality of the decoder for a given encoder was proved for

d m vk  d m vj  holds for all j k

𝒞 vk = Lk 1=
Jk 

k 1=
L

D m vk– 2fM m  dm
m Jk

k 1=

L

=

D
vk

------- 2 m vk– fM m  dm
m Jk

k 1=

L

–=

D/ vk

vk opt

mfM m  dm
m Jk

fM m  dm 
m Jk

----------------------------------------------=

pk � mk M mk 1+ =
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vk opt � M mk M mk 1+ =
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6.5 Pulse-Code Modulation 285

the special case of a mean-square distortion. In any event, these two conditions are
necessary for optimality of a scalar quantizer. Basically, the algorithm for designing the
quantizer consists of alternately optimizing the encoder in accordance with condition I,
then optimizing the decoder in accordance with condition II, and continuing in this
manner until the average distortion D reaches a minimum. The optimum quantizer
designed in this manner is called the Lloyd–Max quantizer.2

6.5 Pulse-Code Modulation

With the material on sampling, PAM, and quantization presented in the preceding
sections, the stage is set for describing PCM, for which we offer the following definition:

PCM is a discrete-time, discrete-amplitude waveform-coding process, by means 
of which an analog signal is directly represented by a sequence of coded pulses.

Specifically, the transmitter consists of two components: a pulse-amplitude modulator followed
by an analog-to-digital (A/D) converter. The latter component itself embodies a quantizer
followed by an encoder. The receiver performs the inverse of these two operations: digital-to-
analog (D/A) conversion followed by pulse-amplitude demodulation. The communication
channel is responsible for transporting the encoded pulses from the transmitter to the receiver. 

Figure 6.12, a block diagram of the PCM, shows the transmitter, the transmission path
from the transmitter output to the receiver input, and the receiver.

It is important to realize, however, that once distortion in the form of quantization noise
is introduced into the encoded pulses, there is absolutely nothing that can be done at the
receiver to compensate for that distortion. The only design precaution that can be taken is
to choose a number of representation levels in the receiver that is large enough to ensure
that the quantization noise is imperceptible for human use at the receiver output.

Figure 6.12 Block diagram of PCM system. 
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286 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Sampling in the Transmitter

The incoming message signal is sampled with a train of rectangular pulses short enough to
closely approximate the instantaneous sampling process. To ensure perfect reconstruction of
the message signal at the receiver, the sampling rate must be greater than twice the highest
frequency component W of the message signal in accordance with the sampling theorem. In
practice, a low-pass anti-aliasing filter is used at the front end of the pulse-amplitude
modulator to exclude frequencies greater than W before sampling and which are of
negligible practical importance. Thus, the application of sampling permits the reduction of
the continuously varying message signal to a limited number of discrete values per second.

Quantization in the Transmitter

The PAM representation of the message signal is then quantized in the analog-to-digital
converter, thereby providing a new representation of the signal that is discrete in both time
and amplitude. The quantization process may follow a uniform law as described in Section
6.4. In telephonic communication, however, it is preferable to use a variable separation
between the representation levels for efficient utilization of the communication channel.
Consider, for example, the quantization of voice signals. Typically, we find that the range
of voltages covered by voice signals, from the peaks of loud talk to the weak passages of
weak talk, is on the order of 1000 to 1. By using a nonuniform quantizer with the feature
that the step size increases as the separation from the origin of the input–output amplitude
characteristic of the quantizer is increased, the large end-steps of the quantizer can take
care of possible excursions of the voice signal into the large amplitude ranges that occur
relatively infrequently. In other words, the weak passages needing more protection are
favored at the expense of the loud passages. In this way, a nearly uniform percentage
precision is achieved throughout the greater part of the amplitude range of the input signal.
The end result is that fewer steps are needed than would be the case if a uniform quantizer
were used; hence the improvement in channel utilization.

Assuming memoryless quantization, the use of a nonuniform quantizer is equivalent to
passing the message signal through a compressor and then applying the compressed signal
to a uniform quantizer, as illustrated in Figure 6.13a. A particular form of compression law
that is used in practice is the so-called -law,3 which is defined by

(6.48)

where ln, i.e., loge, denotes the natural logarithm, m and v are the input and output
voltages of the compressor, and  is a positive constant. It is assumed that m and,

v 1  m+ ln
1 + ln

------------------------------=

Figure 6.13
(a) Nonuniform quantization 
of the message signal in the 
transmitter. (b) Uniform 
quantization of the original 
message signal in the receiver. 
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6.5 Pulse-Code Modulation 287

therefore, v are scaled so that they both lie inside the interval [–1, 1]. The -law is plotted
for three different values of  in Figure 6.14a. The case of uniform quantization
corresponds to  = 0. For a given value of , the reciprocal slope of the compression curve
that defines the quantum steps is given by the derivative of the absolute value |m| with
respect to the corresponding absolute value |v |; that is,

(6.49)

From (6.49) it is apparent that the -law is neither strictly linear nor strictly logarithmic.
Rather, it is approximately linear at low input levels corresponding to |m|  1 and
approximately logarithmic at high input levels corresponding to |m|  1.

Another compression law that is used in practice is the so-called A-law, defined by

(6.50)

where A is another positive constant. Equation (6.50) is plotted in Figure 6.14b for varying
A. The case of uniform quantization corresponds to A = 1. The reciprocal slope of this
second compression curve is given by the derivative of |m| with respect to |v |, as shown by 

(6.51)

Figure 6.14
Compression laws: 
(a) µ-law; 
(b) A-law. 
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288 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

To restore the signal samples to their correct relative level, we must, of course, use a device
in the receiver with a characteristic complementary to the compressor. Such a device is
called an expander. Ideally, the compression and expansion laws are exactly the inverse of
each other. With this provision in place, we find that, except for the effect of quantization, the
expander output is equal to the compressor input. The cascade combination of a compressor
and an expander, depicted in Figure 6.13, is called a compander.

For both the -law and A-law, the dynamic range capability of the compander improves
with increasing  and A, respectively. The SNR for low-level signals increases at the expense
of the SNR for high-level signals. To accommodate these two conflicting requirements (i.e.,
a reasonable SNR for both low- and high-level signals), a compromise is usually made in
choosing the value of parameter  for the -law and parameter A for the A-law. The typical
values used in practice are  = 255 for the law and A = 87.6 for the A-law.4

Encoding in the Transmitter

Through the combined use of sampling and quantization, the specification of an analog
message signal becomes limited to a discrete set of values, but not in the form best suited
to transmission over a telephone line or radio link. To exploit the advantages of sampling
and quantizing for the purpose of making the transmitted signal more robust to noise,
interference, and other channel impairments, we require the use of an encoding process to
translate the discrete set of sample values to a more appropriate form of signal. Any plan
for representing each of this discrete set of values as a particular arrangement of discrete
events constitutes a code. Table 6.2 describes the one-to-one correspondence between
representation levels and codewords for a binary number system for R = 4 bits per sample.
Following the terminology of Chapter 5, the two symbols of a binary code are customarily
denoted as 0 and 1. In practice, the binary code is the preferred choice for encoding for the
following reason:

The maximum advantage over the effects of noise encountered in a communication 
system is obtained by using a binary code because a binary symbol withstands a 
relatively high level of noise and, furthermore, it is easy to regenerate. 

The last signal-processing operation in the transmitter is that of line coding, the purpose of
which is to represent each binary codeword by a sequence of pulses; for example,
symbol 1 is represented by the presence of a pulse and symbol 0 is represented by absence
of the pulse. Line codes are discussed in Section 6.10. Suppose that, in a binary code, each
codeword consists of R bits. Then, using such a code, we may represent a total of 2R

distinct numbers. For example, a sample quantized into one of 256 levels may be
represented by an 8-bit codeword.

Inverse Operations in the PCM Receiver

The first operation in the receiver of a PCM system is to regenerate (i.e., reshape and clean
up) the received pulses. These clean pulses are then regrouped into codewords and decoded
(i.e., mapped back) into a quantized pulse-amplitude modulated signal. The decoding
process involves generating a pulse the amplitude of which is the linear sum of all the pulses
in the codeword. Each pulse is weighted by its place value (20, 21, 22, , 2R – 1) in the code,
where R is the number of bits per sample. Note, however, that whereas the analog-to-digital
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6.5 Pulse-Code Modulation 289

converter in the transmitter involves both quantization and encoding, the digital-to-analog
converter in the receiver involves decoding only, as illustrated in Figure 6.12.

The final operation in the receiver is that of signal reconstruction. Specifically, an
estimate of the original message signal is produced by passing the decoder output through
a low-pass reconstruction filter whose cutoff frequency is equal to the message
bandwidth W. Assuming that the transmission link (connecting the receiver to the
transmitter) is error free, the reconstructed message signal includes no noise with the
exception of the initial distortion introduced by the quantization process.

PCM Regeneration along the Transmission Path

The most important feature of a PCM systems is its ability to control the effects of
distortion and noise produced by transmitting a PCM signal through the channel,
connecting the receiver to the transmitter. This capability is accomplished by
reconstructing the PCM signal through a chain of regenerative repeaters, located at
sufficiently close spacing along the transmission path.

Table 6.2 Binary number system for T = 4 bits/sample

Ordinal number of 
representation level

Level number expressed 
as sum of powers of 2

Binary 
number

0 0000

1  20 0001

2 21 0010

3 21 + 20 0011

4 22 0100

5 22 + 20 0101

6 22 + 21 0110

7 22 + 21 + 20 0111

8 23 1000

9 23   + 20 1001

10 23 + 21 1010

11 23 + 21 + 20 1011

12 23 + 22 1100

13 23 + 22  + 20 1101

14 23 + 22 + 21 1110

15 23 + 22 + 21 + 20 1111
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290 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

As illustrated in Figure 6.15, three basic functions are performed in a regenerative
repeater: equalization, timing, and decision making. The equalizer shapes the received
pulses so as to compensate for the effects of amplitude and phase distortions produced by
the non-ideal transmission characteristics of the channel. The timing circuitry provides a
periodic pulse train, derived from the received pulses, for sampling the equalized pulses at
the instants of time where the SNR ratio is a maximum. Each sample so extracted is com-
pared with a predetermined threshold in the decision-making device. In each bit interval, a
decision is then made on whether the received symbol is 1 or 0 by observing whether the
threshold is exceeded or not. If the threshold is exceeded, a clean new pulse representing
symbol 1 is transmitted to the next repeater; otherwise, another clean new pulse represent-
ing symbol 0 is transmitted. In this way, it is possible for the accumulation of distortion and
noise in a repeater span to be almost completely removed, provided that the disturbance is
not too large to cause an error in the decision-making process. Ideally, except for delay, the
regenerated signal is exactly the same as the signal originally transmitted. In practice, how-
ever, the regenerated signal departs from the original signal for two main reasons:

1. The unavoidable presence of channel noise and interference causes the repeater to
make wrong decisions occasionally, thereby introducing bit errors into the
regenerated signal.

2. If the spacing between received pulses deviates from its assigned value, a jitter is
introduced into the regenerated pulse position, thereby causing distortion.

The important point to take from this subsection on PCM is the fact that regeneration
along the transmission path is provided across the spacing between individual regenerative
repeaters (including the last stage of regeneration at the receiver input) provided that the
spacing is short enough. If the transmitted SNR ratio is high enough, then the regenerated
PCM data stream is the same as the transmitted PCM data stream, except for a practically
negligibly small bit error rate (BER). In other words, under these operating conditions,
performance degradation in the PCM system is essentially confined to quantization noise
in the transmitter.

6.6 Noise Considerations in PCM Systems

The performance of a PCM system is influenced by two major sources of noise:

1. Channel noise, which is introduced anywhere between the transmitter output and the
receiver input; channel noise is always present, once the equipment is switched on.

2. Quantization noise, which is introduced in the transmitter and is carried all the way
along to the receiver output; unlike channel noise, quantization noise is signal
dependent, in the sense that it disappears when the message signal is switched off.

Figure 6.15
Block diagram of 
regenerative repeater. 
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6.6 Noise Considerations in PCM Systems 291

Naturally, these two sources of noise appear simultaneously once the PCM system is in
operation. However, the traditional practice is to consider them separately, so that we may
develop insight into their individual effects on the system performance.

The main effect of channel noise is to introduce bit errors into the received signal. In
the case of a binary PCM system, the presence of a bit error causes symbol 1 to be
mistaken for symbol 0, or vice versa. Clearly, the more frequently bit errors occur, the
more dissimilar the receiver output becomes compared with the original message signal.
The fidelity of information transmission by PCM in the presence of channel noise may be
measured in terms of the average probability of symbol error, which is defined as the
probability that the reconstructed symbol at the receiver output differs from the
transmitted binary symbol on the average. The average probability of symbol error, also
referred to as the BER, assumes that all the bits in the original binary wave are of equal
importance. When, however, there is more interest in restructuring the analog waveform of
the original message signal, different symbol errors may be weighted differently; for
example, an error in the most significant bit in a codeword (representing a quantized
sample of the message signal) is more harmful than an error in the least significant bit.

To optimize system performance in the presence of channel noise, we need to minimize
the average probability of symbol error. For this evaluation, it is customary to model the
channel noise as an ideal additive white Gaussian noise (AWGN) channel. The effect of
channel noise can be made practically negligible by using an adequate signal energy-to-
noise density ratio through the provision of short-enough spacing between the regenerative
repeaters in the PCM system. In such a situation, the performance of the PCM system is
essentially limited by quantization noise acting alone.

From the discussion of quantization noise presented in Section 6.4, we recognize that
quantization noise is essentially under the designer’s control. It can be made negligibly
small through the use of an adequate number of representation levels in the quantizer and
the selection of a companding strategy matched to the characteristics of the type of
message signal being transmitted. We thus find that the use of PCM offers the possibility
of building a communication system that is rugged with respect to channel noise on a scale
that is beyond the capability of any analog communication system; hence its use as a
standard against which other waveform coders (e.g., DPCM and DM) are compared.

Error Threshold

The underlying theory of BER calculation in a PCM system is deferred to Chapter 8. For
the present, it suffices to say that the average probability of symbol error in a binary
encoded PCM receiver due to AWGN depends solely on EbN0, which is defined as the
ratio of the transmitted signal energy per bit Eb, to the noise spectral density N0. Note that
the ratio EbN0 is dimensionless even though the quantities Eb and N0 have different
physical meaning. In Table 6.3, we present a summary of this dependence for the case of a
binary PCM system, in which symbols 1 and 0 are represented by rectangular pulses of
equal but opposite amplitudes. The results presented in the last column of the table assume
a bit rate of 105 bits/s.

From Table 6.3 it is clear that there is an error threshold (at about 11 dB). For EbN0
below the error threshold the receiver performance involves significant numbers of errors,
and above it the effect of channel noise is practically negligible. In other words, provided
that the ratio EbN0 exceeds the error threshold, channel noise has virtually no effect on
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292 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

the receiver performance, which is precisely the goal of PCM. When, however, EbN0
drops below the error threshold, there is a sharp increase in the rate at which errors occur
in the receiver. Because decision errors result in the construction of incorrect codewords,
we find that when the errors are frequent, the reconstructed message at the receiver output
bears little resemblance to the original message signal.

An important characteristic of a PCM system is its ruggedness to interference, caused
by impulsive noise or cross-channel interference. The combined presence of channel noise
and interference causes the error threshold necessary for satisfactory operation of the PCM
system to increase. If, however, an adequate margin over the error threshold is provided in
the first place, the system can withstand the presence of relatively large amounts of
interference. In other words, a PCM system is robust with respect to channel noise and
interference, providing further confirmation to the point made in the previous section that
performance degradation in PCM is essentially confined to quantization noise in the
transmitter.

PCM Noise Performance Viewed in Light of the Information 
Capacity Law

Consider now a PCM system that is known to operate above the error threshold, in which
case we would be justified to ignore the effect of channel noise. In other words, the noise
performance of the PCM system is essentially determined by quantization noise acting
alone. Given such a scenario, how does the PCM system fare compared with the
information capacity law, derived in Chapter 5?

To address this question of practical importance, suppose that the system uses a
codeword consisting of n symbols with each symbol representing one of M possible
discrete amplitude levels; hence the reference to the system as an “M-ary” PCM system.
For this system to operate above the error threshold, there must be provision for a large
enough noise margin.

 For the PCM system to operate above the error threshold as proposed, the requirement
for a noise margin that is sufficiently large to maintain a negligible error rate due to
channel noise. This, in turn, means there must be a certain separation between the M
discrete amplitude levels. Call this separation c, where c is a constant and = N0B is the

Table 6.3 Influence of EbN0 on the probability of error

EbN0 (dB)
Probability of 
error Pe

For a bit rate of 105 bits/s,
this is about one error every

 4.3 10–2 10–3 s

8.4 10–4 10–1 s

10.6 10–6 10 s

12.0 10–8 20 min

13.0 10–10 1 day

14.0 10–12 3 months

2
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6.6 Noise Considerations in PCM Systems 293

noise variance measured in a channel bandwidth B. The number of amplitude levels M is
usually an integer power of 2. The average transmitted power will be least if the amplitude
range is symmetrical about zero. Then, the discrete amplitude levels, normalized with
respect to the separation c, will have the values 12, 32, , (M – 1)2. We assume
that these M different amplitude levels are equally likely. Accordingly, we find that the
average transmitted power is given by

 (6.52)

Suppose that the M-ary PCM system described herein is used to transmit a message signal
with its highest frequency component equal to W hertz. The signal is sampled at the
Nyquist rate of 2W samples per second. We assume that the system uses a quantizer of the
midrise type, with L equally likely representation levels. Hence, the probability of
occurrence of any one of the L representation levels is 1L. Correspondingly, the amount
of information carried by a single sample of the signal is log2 L bits. With a maximum
sampling rate of 2W samples per second, the maximum rate of information transmission of
the PCM system measured in bits per second is given by

 bits/s (6.53)

Since the PCM system uses a codeword consisting of n code elements with each one
having M possible discrete amplitude values, we have Mn different possible codewords.
For a unique encoding process, therefore, we require

(6.54)

Clearly, the rate of information transmission in the system is unaffected by the use of an
encoding process. We may, therefore, eliminate L between (6.53) and (6.54) to obtain

 bits/s (6.55)

Equation (6.52) defines the average transmitted power required to maintain an M-ary PCM
system operating above the error threshold. Hence, solving this equation for the number of
discrete amplitude levels, we may express the number M in terms of the average
transmitted power P and channel noise variance = N0B as follows:

(6.56)

Therefore, substituting (6.56) into (6.55), we obtain

(6.57)

The channel bandwidth B required to transmit a rectangular pulse of duration 1/(2nW),
representing a symbol in the codeword, is given by

(6.58)
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294 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

where  is a constant with a value lying between 1 and 2. Using the minimum possible
value  = 1, we find that the channel bandwidth B = nW. We may thus rewrite (6.57) as

 bits/s (6.59)

which defines the upper bound on the information capacity realizable by an M-ary PCM
system.

From Chapter 5 we recall that, in accordance with Shannon’s information capacity law,
the ideal transmission system is described by the formula

 bits/s (6.60)

The most interesting point derived from the comparison of (6.59) with (6.60) is the fact
that (6.59) is of the right mathematical form in an information-theoretic context. To be
more specific, we make the following statement: 

Power and bandwidth in a PCM system are exchanged on a logarithmic 
basis, and the information capacity of the system is proportional to the 
channel bandwidth B.

As a corollary, we may go on to state:

When the SNR ratio is high, the bandwidth-noise trade-off follows an 
exponential law in PCM.

From the study of noise in analog modulation systems,5 it is known that the use of
frequency modulation provides the best improvement in SNR ratio. To be specific, when
the carrier-to-noise ratio is high enough, the bandwidth-noise trade-off follows a square
law in frequency modulation (FM). Accordingly, in comparing the noise performance of
FM with that of PCM we make the concluding statement:

PCM is more efficient than FM in trading off an increase in bandwidth for 
improved noise performance.

Indeed, this statement is further testimony for the PCM being viewed as a standard for
waveform coding.

6.7 Prediction-Error Filtering for Redundancy Reduction

When a voice or video signal is sampled at a rate slightly higher than the Nyquist rate, as
usually done in PCM, the resulting sampled signal is found to exhibit a high degree of
correlation between adjacent samples. The meaning of this high correlation is that, in an
average sense, the signal does not change rapidly from one sample to the next. As a result,
the difference between adjacent samples has a variance that is smaller than the variance of
the original signal. When these highly correlated samples are encoded, as in the standard
PCM system, the resulting encoded signal contains redundant information. This kind of
signal structure means that symbols that are not absolutely essential to the transmission of
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6.7 Prediction-Error Filtering for Redundancy Reduction 295

information are generated as a result of the conventional encoding process described in
Section 6.5. By reducing this redundancy before encoding, we obtain a more efficient coded
signal, which is the basic idea behind DPCM. Discussion of this latter form of waveform
coding is deferred to the next section. In this section we discuss prediction-error filtering,
which provides a method for reduction and, therefore, improved waveform coding.

Theoretical Considerations

To elaborate, consider the block diagram of Figure 6.16a, which includes:

• a direct forward path from the input to the output;
• a predictor in the forward direction as well; and
• a comparator for computing the difference between the input signal and the

predictor output.

The difference signal, so computed, is called the prediction error. Correspondingly, a filter
that operates on the message signal to produce the prediction error, illustrated in Figure
6.16a, is called a prediction-error filter.

To simplify the presentation, let

(6.61)

denote a sample of the message signal m(t) taken at time t = nTs. Then, with  denoting
the corresponding predictor output, the prediction error is defined by 

(6.62)

where en is the amount by which the predictor fails to predict the input sample mn exactly.
In any case, the objective is to design the predictor so as to minimize the variance of the
prediction error en. In so doing, we effectively end up using a smaller number of bits to
represent en than the original message sample mn; hence, the need for a smaller
transmission bandwidth.

Figure 6.16 Block diagram of (a) prediction-error filter and (b) its inverse. 
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296 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

The prediction-error filter operates on the message signal on a sample-by-sample basis
to produce the prediction error. With such an operation performed in the transmitter, how
do we recover the original message signal from the prediction error at the receiver? To
address this fundamental question in a simple-minded and yet practical way, we invoke the
use of linerarity. Let the operator L denote the action of the predictor, as shown by

(6.63)

Accordingly, we may rewrite (6.62) in operator form as follows:

 (6.64)

Under the assumption of linearity, we may invert (6.64) to recover the message sample
from the prediction error, as shown by

(6.65)

Equation (6.65) is immediately recognized as the equation of a feedback system, as
illustrated in Figure 6.16b. Most importantly, in functional terms, this feedback system
may be viewed as the inverse of prediction-error filtering.

Discrete-Time Structure for Prediction

To simplify the design of the linear predictor in Figure 6.16, we propose to use a discrete-time
structure in the form of a finite-duration impulse response (FIR) filter, which is well known in
the digital signal-processing literature. The FIR filter was briefly discussed in Chapter 2.

Figure 6.17 depicts an FIR filter, consisting of two functional components:

• a set of p unit-delay elements, each of which is represented by z–1; and
• a corresponding set of adders used to sum the scaled versions of the delayed inputs, 

mn – 1, mn – 2, , mn – p.

The overall linearly predicted output is thus defined by the convolution sum

(6.66)

where p is called the prediction order. Minimization of the prediction-error variance is
achieved by a proper choice of the FIR filter-coefficients as described next.

Figure 6.17 Block diagram of an FIR filter of order p. 
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6.7 Prediction-Error Filtering for Redundancy Reduction 297

First, however, we make the following assumption:

The message signal m(t) is drawn from a stationary stochastic processor M(t) 
with zero mean.

This assumption may be satisfied by processing the message signal on a block-by-block
basis, with each block being just long enough to satisfy the assumption in a pseudo-
stationary manner. For example, a block duration of 40 ms is considered to be adequate
for voice signals.

With the random variable Mn assumed to have zero mean, it follows that the variance of
the prediction error en is the same as its mean-square value. We may thus define

(6.67)

as the index of performance. Substituting (6.65) and (6.66) into (6.67) and then expanding
terms, the index of performance is expressed as follows:

(6.68)

Moreover, under the above assumption of pseudo-stationarity, we may go on to introduce
the following second-order statistical parameters for mn treated as a sample of the
stochastic process M(t) at t = nTs:

1. Variance

(6.69)

2. Autocorrelation function

(6.70)

Note that to simplify the notation in (6.67) to (6.70), we have applied the expectation
operator 𝔼 to samples rather than the corresponding random variables. 

In any event, using (6.69) and (6.70), we may reformulate the index of performance of
(6.68) in the new form involving statistical parameters:

(6.71)

Differentiating this index of performance with respect to the filter coefficients, setting the
resulting expression equal to zero, and then rearranging terms, we obtain the following
system of simultaneous equations:

(6.72)

where wo, j is the optimal value of the jth filter coefficient wj. This optimal set of equations
is the discrete-time version of the celebrated Wiener–Hopf equations for linear prediction.
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298 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

With compactness of mathematical exposition in mind, we find it convenient to
formulate the Wiener–Hopf equations in matrix form, as shown by

(6.73)

where

 (6.74)

is the p-by-1 optimum coefficient vector of the FIR predictor,

 (6.75)

is the p-by-1 autocorrelation vector of the original message signal, excluding the mean-
square value represented by RM, 0, and 

 (6.76)

is the p-by-y correlation matrix of the original message signal, including RM, 0.6

Careful examination of (6.76) reveals the Toeplitz property of the autocorrelation
matrix RM, which embodies two distinctive characteristics:

1. All the elements on the main diagonal of the matrix RM are equal to the mean-
square value or, equivalently under the zero-mean assumption, the variance of the
message sample mn, as shown by

2. The matrix is symmetric about the main diagonal. 

This Toeplitz property is a direct consequence of the assumption that message signal m(t)
is the sample function of a stationary stochastic process. From a practical perspective, the
Toeplitz property of the autocorrelation matrix RM is important in that all of its elements
are uniquely defined by the autocorrelation sequence . Moreover, from the
defining equation (6.75), it is clear that the autocorrelation vector rM is uniquely defined
by the autocorrelation sequence . We may therefore make the following
statement:

The p filter coefficients of the optimized linear predictor, configured in the form 
of an FIR filter, are uniquely defined by the variance  and the 
autocorrelation sequence , which pertain to the message signal 
m(t) drawn from a weakly stationary process.

Typically, we have
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6.7 Prediction-Error Filtering for Redundancy Reduction 299

Under this condition, we find that the autocorrelation matrix RM is also invertible; that is,
the inverse matrix  exists. We may therefore solve (6.73) for the unknown value of the
optimal coefficient vector wo using the formula7

(6.77)

Thus, given the variance  and autocorrelation sequence , we may uniquely
determine the optimized coefficient vector of the linear predictor, wo, defining an FIR
filter of order p; and with it our design objective is satisfied.

To complete the linear prediction theory presented herein, we need to find the
minimum mean-square value of prediction error, resulting from the use of the optimized
predictor. We do this by first reformulating (6.71) in the matrix form:

(6.78)

where the superscript T denotes matrix transposition,  is the inner product of the

p-by-1 vectors wo and rM, and the matrix product  is a quadratic form. Then,

substituting the optimum formula of (6.77) into (6.78), we find that the minimum mean-

square value of prediction error is given by

(6.79)

where we have used the property that the autocorrelation matrix of a weakly stationary
process is symmetric; that is, 

(6.80)

By definition, the quadratic form  is always positive. Accordingly, from (6.79)
it follows that the minimum value of the mean-square prediction error Jmin is always
smaller than the variance  of the zero-mean message sample mn that is being
predicted. Through the use of linear prediction as described herein, we have thus satisfied
the objective: 

To design a prediction-error filter the output of which has a smaller variance 
than the variance of the message sample applied to its input, we need to follow 
the optimum formula of (6.77).

This statement provides the rationale for going on to describe how the bandwidth
requirement of the standard PCM can be reduced through redundancy reduction. However,
before proceeding to do so, it is instructive that we consider an adaptive implementation of
the linear predictor.
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300 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Linear Adaptive Prediction

The use of (6.77) for calculating the optimum weight vector of a linear predictor requires
knowledge of the autocorrelation function Rm,k of the message signal sequence 
where p is the prediction order. What if knowledge of this sequence is not available? In
situations of this kind, which occur frequently in practice, we may resort to the use of an
adaptive predictor.

The predictor is said to be adaptive in the following sense:

• Computation of the tap weights wk, k = 1, 2, , p, proceeds in an iterative manner,
starting from some arbitrary initial values of the tap weights.

• The algorithm used to adjust the tap weights (from one iteration to the next) is “self-
designed,” operating solely on the basis of available data.

The aim of the algorithm is to find the minimum point of the bowl-shaped error surface
that describes the dependence of the cost function J on the tap weights. It is, therefore,
intuitively reasonable that successive adjustments to the tap weights of the predictor be
made in the direction of the steepest descent of the error surface; that is, in a direction
opposite to the gradient vector whose elements are defined by

(6.81)

This is indeed the idea behind the method of deepest descent. Let wk, n denote the value of
the kth tap weight at iteration n. Then, the updated value of this weight at iteration n + 1 is
defined by

(6.82)

where  is a step-size parameter that controls the speed of adaptation and the factor 1/2 is
included for convenience of presentation. Differentiating the cost function J of (6.68) with
respect to wk, we readily find that

(6.83)

From a practical perspective, the formula for the gradient gk in (6.83) could do with further
simplification that ignores the expectation operator. In effect, instantaneous values are
used as estimates of autocorrelation functions. The motivation for this simplification is to
permit the adaptive process to proceed forward on a step-by-step basis in a self-organized
manner. Clearly, by ignoring the expectation operator in (6.83), the gradient gk takes on a
time-dependent value, denoted by gk, n. We may thus write

(6.84)

where  is an estimate of the filter coefficient wj, n at time n. 
The stage is now set for substituting (6.84) into (6.82), where in the latter equation 

is substituted for wk, n; this change is made to account for dispensing with the expectation
operator:
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6.8 Differential Pulse-Code Modulation 301

(6.85)

where en is the new prediction error defined by 

(6.86)

Note that the current value of the message signal, mn, plays a role as the desired response
for predicting the value of mn given the past values of the message signal: mn – 1, mn – 2,
, mn – p.

In words, we may express the adaptive filtering algorithm of (6.85) as follows:

The algorithm just described is the popular least-mean-square (LMS) algorithm,
formulated for the purpose of linear prediction. The reason for popularity of this adaptive
filtering algorithm is the simplicity of its implementation. In particular, the computational
complexity of the algorithm, measured in terms of the number of additions and
multiplications, is linear in the prediction order p. Moreover, the algorithm is not only
computationally efficient but it is also effective in performance.

The LMS algorithm is a stochastic adaptive filtering algorithm, stochastic in the sense
that, starting from the initial condition defined by , it seeks to find the
minimum point of the error surface by following a zig-zag path. However, it never finds
this minimum point exactly. Rather, it continues to execute a random motion around the
minimum point of the error surface (Haykin, 2013).

6.8 Differential Pulse-Code Modulation

DPCM, the scheme to be considered for channel-bandwidth conservation, exploits the
idea of linear prediction theory with a practical difference:

In the transmitter, the linear prediction is performed on a quantized version 
of the message sample instead of the message sample itself, as illustrated in 
Figure 6.18.
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302 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

The resulting process is referred to as differential quantization. The motivation behind the
use of differential quantization follows from two practical considerations:

1. Waveform encoding in the transmitter requires the use of quantization.

2. Waveform decoding in the receiver, therefore, has to process a quantized signal.

In order to cater to both requirements in such a way that the same structure is used for
predictors in both the transmitter and the receiver, the transmitter has to perform prediction-
error filtering on the quantized version of the message signal rather than the signal itself, as
shown in Figure 6.19a. Then, assuming a noise-free channel, the predictors in the transmitter
and receiver operate on exactly the same sequence of quantized message samples.

To demonstrate this highly desirable and distinctive characteristic of differential PCM,
we see from Figure 6.19a that

(6.87)

Figure 6.18 Block diagram of a differential quantizer. 

Figure 6.19 DPCM system: (a) transmitter; (b) receiver. 
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6.8 Differential Pulse-Code Modulation 303

where qn is the quantization noise produced by the quantizer operating on the prediction
error en. Moreover, from Figure 6.19a, we readily see that

(6.88)

where  is the predicted value of the original message sample mn; thus, (6.88) is in
perfect agreement with Figure 6.18. Hence, the use of (6.87) in (6.88) yields

(6.89)

We may now invoke (6.88) of linear prediction theory to rewrite (6.89) in the equivalent
form:

(6.90)

which describes a quantized version of the original message sample mn.
With the differential quantization scheme of Figure 6.19a at hand, we may now expand

on the structures of the transmitter and receiver of DPCM.

DPCM Transmitter

Operation of the DPCM transmitter proceeds as follows:

1. Given the predicted message sample , the comparator at the transmitter input
computes the prediction error en, which is quantized to produce the quantized
version of en in accordance with (6.87).

2. With  and eq, n at hand, the adder in the transmitter produces the quantized
version of the original message sample mn, namely mq, n, in accordance with (6.88).

3. The required one-step prediction  is produced by applying the sequence of
quantized samples  to a linear FIR predictor of order p.

This multistage operation is clearly cyclic, encompassing three steps that are repeated at
each time step n. Moreover, at each time step, the encoder operates on the quantized
prediction error eq, n to produce the DPCM-encoded version of the original message
sample mn. The DPCM code so produced is a lossy-compressed version of the PCM code;
it is “lossy” because of the prediction error.

DPCM Receiver

The structure of the receiver is much simpler than that of the transmitter, as depicted in
Figure 6.19b. Specifically, first, the decoder reconstructs the quantized version of the
prediction error, namely eq, n. An estimate of the original message sample mn is then
computed by applying the decoder output to the same predictor used in the transmitter of
Figure 6.19a. In the absence of channel noise, the encoded signal at the receiver input is
identical to the encoded signal at the transmitter output. Under this ideal condition, we
find that the corresponding receiver output is equal to mq, n, which differs from the original
signal sample mn only by the quantization error qn incurred as a result of quantizing the
prediction error en.

From the foregoing analysis, we thus observe that, in a noise-free environment, the
linear predictors in the transmitter and receiver of DPCM operate on the same sequence of
samples, mq, n. It is with this point in mind that a feedback path is appended to the
quantizer in the transmitter of Figure 6.19a.
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304 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Processing Gain

The output SNR of the DPCM system, shown in Figure 6.19, is, by definition,

(6.91)

where  is the variance of the original signal sample mn, assumed to be of zero mean,
and  is the variance of the quantization error qn, also of zero mean. We may rewrite
(6.91) as the product of two factors, as shown by

(6.92)

where, in the first line,  is the variance of the prediction error en. The factor (SNR)Q

introduced in the second line is the signal-to-quantization noise ratio, which is itself

defined by

(6.93)

The other factor Gp is the processing gain produced by the differential quantization
scheme; it is formally defined by

(6.94)

The quantity Gp, when it is greater than unity, represents a gain in signal-to-noise ratio,

which is due to the differential quantization scheme of Figure 6.19. Now, for a given

message signal, the variance  is fixed, so that Gp is maximized by minimizing the

variance  of the prediction error en. Accordingly, the objective in implementing the

DPCM should be to design the prediction filter so as to minimize the prediction-error

variance, .

In the case of voice signals, it is found that the optimum signal-to-quantization noise
advantage of the DPCM over the standard PCM is in the neighborhood of 4–11dB. Based
on experimental studies, it appears that the greatest improvement occurs in going from no
prediction to first-order prediction, with some additional gain resulting from increasing
the order p of the prediction filter up to 4 or 5, after which little additional gain is obtained.
Since 6 dB of quantization noise is equivalent to 1 bit per sample by virtue of the results
presented in Table 6.1 for sinusoidal modulation, the advantage of DPCM may also be
expressed in terms of bit rate. For a constant signal-to-quantization noise ratio, and
assuming a sampling rate of 8 kHz, the use of DPCM may provide a saving of about 8–
16 kHz (i.e., 1 to 2 bits per sample) compared with the standard PCM.
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6.9 Delta Modulation 305

6.9 Delta Modulation

In choosing DPCM for waveform coding, we are, in effect, economizing on transmission
bandwidth by increasing system complexity, compared with standard PCM. In other
words, DPCM exploits the complexity–bandwidth tradeoff. However, in practice, the need
may arise for reduced system complexity compared with the standard PCM. To achieve
this other objective, transmission bandwidth is traded off for reduced system complexity,
which is precisely the motivation behind DM. Thus, whereas DPCM exploits the
complexity–bandwidth tradeoff, DM exploits the bandwidth–complexity tradeoff. We may,
therefore, differentiate between the standard PCM, the DPCM, and the DM along the lines
described in Figure 6.20. With the bandwidth–complexity tradeoff being at the heart of
DM, the incoming message signal m(t) is oversampled, which requires the use of a
sampling rate higher than the Nyquist rate. Accordingly, the correlation between adjacent
samples of the message signal is purposely increased so as to permit the use of a simple
quantizing strategy for constructing the encoded signal.

DM Transmitter

In the DM transmitter, system complexity is reduced to the minimum possible by using the
combination of two strategies:

1. Single-bit quantizer, which is the simplest quantizing strategy; as depicted in Figure
6.21, the quantizer acts as a hard limiter with only two decision levels, namely, .

2. Single unit-delay element, which is the most primitive form of a predictor; in other
words, the only component retained in the FIR predictor of Figure 6.17 is the front-end
block labeled z–1, which acts as an accumulator.

Thus, replacing the multilevel quantizer and the FIR predictor in the DPCM transmitter of
Figure 6.19a in the manner described under points 1 and 2, respectively, we obtain the
block diagram of Figure 6.21a for the DM transmitter.

From this figure, we may express the equations underlying the operation of the DM
transmitter by the following set of equations (6.95)–(6.97):

 (6.95)

Figure 6.20 Illustrating the tradeoffs 
between standard PCM, DPCM, and DM. 
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306 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

(6.96)

(6.97)

According to (6.95) and (6.96), two possibilities may naturally occur:

1. The error signal en (i.e., the difference between the message sample mn and its

approximation ) is positive, in which case the approximation  is

increased by the amount ; in this first case, the encoder sends out symbol 1.

2. The error signal en is negative, in which case the approximation  is

reduced by the amount ; in this second case, the encoder sends out symbol 0.

From this description it is apparent that the delta modulator produces a staircase
approximation to the message signal, as illustrated in Figure 6.22a. Moreover, the rate of
data transmission in DM is equal to the sampling rate fs = 1Ts, as illustrated in the binary
sequence of Figure 6.22b.

Figure 6.21 DM system: (a) transmitter; (b) receiver. 
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6.9 Delta Modulation 307

DM Receiver

Following a procedure similar to the way in which we constructed the DM transmitter of
Figure 6.21a, we may construct the DM receiver of Figure 6.21b as a special case of the
DPCM receiver of Figure 6.19b. Working through the operation of the DM receiver, we
find that reconstruction of the staircase approximation to the original message signal is
achieved by passing the sequence of positive and negative pulses (representing symbols 1
and 0, respectively) through the block labeled “accumulator.” 

Under the assumption that the channel is distortionless, the accumulated output is the
desired mq,n given that the decoded channel output is eq,n. The out-of-band quantization
noise in the high-frequency staircase waveform in the accumulator output is suppressed by
passing it through a low-pass filter with a cutoff frequency equal to the message
bandwidth.

Quantization Errors in DM

DM is subject to two types of quantization error: slope overload distortion and granular
noise. We will discuss the case of slope overload distortion first.

Starting with (6.97), we observe that this equation is the digital equivalent of
integration, in the sense that it represents the accumulation of positive and negative
increments of magnitude . Moreover, denoting the quantization error applied to the
message sample mn by qn, we may express the quantized message sample as

(6.98)

With this expression for mq,n at hand, we find from (6.98) that the quantizer input is

(6.99)

Thus, except for the delayed quantization error qn –1 , the quantizer input is a first
backward difference of the original message sample. This difference may be viewed as a

Figure 6.22 Illustration of DM. 

0

0

Binary
sequence
at modulator
output

0 1 0 1 1 1 11 0 1 0 0 0 0 0 0

Ts

t

�

m (t)

Staircase
approximation

mq , n

(a)

(b)

mq n mn qn+=

en mn mn 1– qn 1–+ –=

Haykin_ch06_pp3.fm  Page 307  Monday, November 26, 2012  1:00 PM



308 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

digital approximation to the quantizer input or, equivalently, as the inverse of the digital
integration process carried out in the DM transmitter. If, then, we consider the maximum
slope of the original message signal m(t), it is clear that in order for the sequence of
samples {mq,n} to increase as fast as the sequence of message samples {mn} in a region of
maximum slope of m(t), we require that the condition

(6.100)

be satisfied. Otherwise, we find that the step-size  is too small for the staircase
approximation mq(t) to follow a steep segment of the message signal m(t), with the result
that mq(t) falls behind m(t), as illustrated in Figure 6.23. This condition is called slope
overload, and the resulting quantization error is called slope-overload distortion (noise).
Note that since the maximum slope of the staircase approximation mq(t) is fixed by the
step size , increases and decreases in mq(t) tend to occur along straight lines. For this
reason, a delta modulator using a fixed step size is often referred to as a linear delta
modulator. 

In contrast to slope-overload distortion, granular noise occurs when the step size  is
too large relative to the local slope characteristics of the message signal m(t), thereby
causing the staircase approximation mq(t) to hunt around a relatively flat segment of m(t);
this phenomenon is also illustrated in the tail end of Figure 6.23. Granular noise is
analogous to quantization noise in a PCM system.

Adaptive DM

From the discussion just presented, it is appropriate that we need to have a large step size
to accommodate a wide dynamic range, whereas a small step size is required for the
accurate representation of relatively low-level signals. It is clear, therefore, that the choice
of the optimum step size that minimizes the mean-square value of the quantization error in
a linear delta modulator will be the result of a compromise between slope-overload
distortion and granular noise. To satisfy such a requirement, we need to make the delta
modulator “adaptive,” in the sense that the step size is made to vary in accordance with the
input signal. The step size is thereby made variable, such that it is enlarged during
intervals when the slope-overload distortion is dominant and reduced in value when the
granular (quantization) noise is dominant.

Figure 6.23 Illustration of the two different forms of quantization error in DM. 
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6.10 Line Codes 309

6.10 Line Codes

In this chapter, we have described three basic waveform-coding schemes: PCM, DPCM,
and DM. Naturally, they differ from each other in several ways: transmission–bandwidth
requirement, transmitter–receiver structural composition and complexity, and quantization
noise. Nevertheless, all three of them have a common need: line codes for electrical
representation of the encoded binary streams produced by their individual transmitters, so
as to facilitate transmission of the binary streams across the communication channel.

Figure 6.24 displays the waveforms of five important line codes for the example data
stream 01101001. Figure 6.25 displays their individual power spectra (for positive
frequencies) for randomly generated binary data, assuming that first, symbols 0 and 1 are
equiprobable, second, the average power is normalized to unity, and third, the frequency f
is normalized with respect to the bit rate 1Tb. In what follows, we describe the five line
codes involved in generating the coded waveforms of Figure 6.24. 

Figure 6.24 Line codes for the electrical representations of binary data: (a) unipolar 
nonreturn-to-zero (NRZ) signaling; (b) polar NRZ signaling; (c) unipolar return-to-zero 
(RZ) signaling; (d) bipolar RZ signaling; (e) split-phase or Manchester code. 
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310 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Figure 6.25 Power spectra of line codes: (a) unipolar NRZ signal; (b) polar NRZ signal; (c) unipolar 
RZ signal; (d) bipolar RZ signal; (e) Manchester-encoded signal. The frequency is normalized with 
respect to the bit rate 1Tb, and the average power is normalized to unity. 
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6.10 Line Codes 311

Unipolar NRZ Signaling

In this line code, symbol 1 is represented by transmitting a pulse of amplitude A for the
duration of the symbol, and symbol 0 is represented by switching off the pulse, as in
Figure 6.24a. The unipolar NRZ line code is also referred to as on–off signaling.
Disadvantages of on–off signaling are the waste of power due to the transmitted DC level
and the fact that the power spectrum of the transmitted signal does not approach zero at
zero frequency.

Polar NRZ Signaling

In this second line code, symbols 1 and 0 are represented by transmitting pulses of
amplitudes +A and –A, respectively, as illustrated in Figure 6.24b. The polar NRZ line
code is relatively easy to generate, but its disadvantage is that the power spectrum of the
signal is large near zero frequency.

Unipolar RZ Signaling

In this third line code, symbol 1 is represented by a rectangular pulse of amplitude A and
half-symbol width and symbol 0 is represented by transmitting no pulse, as illustrated in
Figure 6.24c. An attractive feature of the unipolar RZ line code is the presence of delta
functions at f = 0, 1Tb in the power spectrum of the transmitted signal; the delta
functions can be used for bit-timing recovery at the receiver. However, its disadvantage is
that it requires 3 dB more power than polar RZ signaling for the same probability of
symbol error.

Bipolar RZ Signaling

This line code uses three amplitude levels, as indicated in Figure 6.24(d). Specifically,
positive and negative pulses of equal amplitude (i.e., +A and –A) are used alternately for
symbol 1, with each pulse having a half-symbol width; no pulse is always used for symbol
0. A useful property of the bipolar RZ signaling is that the power spectrum of the
transmitted signal has no DC component and relatively insignificant low-frequency
components for the case when symbols 1 and 0 occur with equal probability. The bipolar
RZ line code is also called alternate mark inversion (AMI) signaling.

Split-Phase (Manchester Code)

In this final method of signaling, illustrated in Figure 6.24e, symbol 1 is represented by a
positive pulse of amplitude A followed by a negative pulse of amplitude –A, with both
pulses being half-symbol wide. For symbol 0, the polarities of these two pulses are
reversed. A unique property of the Manchester code is that it suppresses the DC
component and has relatively insignificant low-frequency components, regardless of the
signal statistics. This property is essential in some applications.
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312 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

6.11 Summary and Discussion

In this chapter we introduced two fundamental and complementary processes:

• Sampling, which operates in the time domain; the sampling process is the link
between an analog waveform and its discrete-time representation.

• Quantization, which operates in the amplitude domain; the quantization process is
the link between an analog waveform and its discrete-amplitude representation.

The sampling process builds on the sampling theorem, which states that a strictly band-
limited signal with no frequency components higher than W Hz is represented uniquely by
a sequence of samples taken at a uniform rate equal to or greater than the Nyquist rate of
2W samples per second. The quantization process exploits the fact that any human sense,
as ultimate receiver, can only detect finite intensity differences.

The sampling process is basic to the operation of all pulse modulation systems, which
may be classified into analog pulse modulation and digital pulse modulation. The
distinguishing feature between them is that analog pulse modulation systems maintain a
continuous amplitude representation of the message signal, whereas digital pulse
modulation systems also employ quantization to provide a representation of the message
signal that is discrete in both time and amplitude.

Analog pulse modulation results from varying some parameter of the transmitted
pulses, such as amplitude, duration, or position, in which case we speak of PAM, pulse-
duration modulation, or pulse-position modulation, respectively. In this chapter we
focused on PAM, as it is used in all forms of digital pulse modulation.

Digital pulse modulation systems transmit analog message signals as a sequence of
coded pulses, which is made possible through the combined use of sampling and
quantization. PCM is an important form of digital pulse modulation that is endowed with
some unique system advantages, which, in turn, have made it the standard method of
modulation for the transmission of such analog signals as voice and video signals. The
advantages of PCM include robustness to noise and interference, efficient regeneration of
the coded pulses along the transmission path, and a uniform format for different kinds of
baseband signals.

Indeed, it is because of this list of advantages unique to PCM that it has become the
method of choice for the construction of public switched telephone networks (PSTNs). In
this context, the reader should carefully note that the telephone channel viewed from the
PSTN by an Internet service provider, for example, is nonlinear due to the use of
companding and, most importantly, it is entirely digital. This observation has a significant
impact on the design of high-speed modems for communications between a computer user
and server, which will be discussed in Chapter 8.

DM and DPCM are two other useful forms of digital pulse modulation. The principal
advantage of DM is the simplicity of its circuitry, which is achieved at the expense of
increased transmission bandwidth. In contrast, DPCM employs increased circuit
complexity to reduce channel bandwidth. The improvement is achieved by using the idea
of prediction to reduce redundant symbols from an incoming data stream. A further
improvement in the operation of DPCM can be made through the use of adaptivity to
account for statistical variations in the input data. By so doing, bandwidth requirement
may be reduced significantly without serious degradation in system performance.8
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Problems

Sampling Process

6.1 In natural sampling, an analog signal g(t) is multiplied by a periodic train of rectangular pulses c(t),
each of unit area. Given that the pulse repetition frequency of this periodic train is fs and the duration
of each rectangular pulse is T (with fsT  1), do the following:

a. Find the spectrum of the signal s(t) that results from the use of natural sampling; you may assume
that time t = 0 corresponds to the midpoint of a rectangular pulse in c(t).

b. Show that the original signal g(t) may be recovered exactly from its naturally sampled version,
provided that the conditions embodied in the sampling theorem are satisfied.

6.2 Specify the Nyquist rate and the Nyquist interval for each of the following signals:

a. g(t) = sinc(200t).

b. g(t) = sinc2(200t).

c. g(t) = sinc(200t) + sinc2(200t).

6.3 Discussion of the sampling theorem presented in Section 6.2 was confined to the time domain.
Describe how the sampling theorem can be applied in the frequency domain.

Pulse-Amplitude Modulation

6.4 Figure P6.4 shows the idealized spectrum of a message signal m(t). The signal is sampled at a rate
equal to 1 kHz using flat-top pulses, with each pulse being of unit amplitude and duration 0.1ms.
Determine and sketch the spectrum of the resulting PAM signal.

6.5 In this problem, we evaluate the equalization needed for the aperture effect in a PAM system. The
operating frequency f = fs2, which corresponds to the highest frequency component of the message
signal for a sampling rate equal to the Nyquist rate. Plot 1/sinc(0.5TTs) versus TTs, and hence find
the equalization needed when TTs = 0.1.

6.6 Consider a PAM wave transmitted through a channel with white Gaussian noise and minimum
bandwidth BT = 1/2Ts, where Ts is the sampling period. The noise is of zero mean and power
spectral density N02. The PAM signal uses a standard pulse g(t) with its Fourier transform defined
by

By considering a full-load sinusoidal modulating wave, show that PAM and baseband-signal
transmission have equal SNRs for the same average transmitted power.

6.7 Twenty-four voice signals are sampled uniformly and then time-division multiplexed (TDM). The
sampling operation uses flat-top samples with 1 s duration. The multiplexing operation includes

Figure P6.4
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314 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

provision for synchronization by adding an extra pulse of sufficient amplitude and also 1 s duration.
The highest frequency component of each voice signal is 3.4 kHz.

a. Assuming a sampling rate of 8 kHz, calculate the spacing between successive pulses of the
multiplexed signal.

b. Repeat your calculation assuming the use of Nyquist rate sampling.

6.8 Twelve different message signals, each with a bandwidth of 10 kHz, are to be multiplexed and
transmitted. Determine the minimum bandwidth required if the multiplexing/modulation method
used is time-division multiplexing (TDM), which was discussed in Chapter 1.

Pulse-Code Modulation

6.9 A speech signal has a total duration of 10 s. It is sampled at the rate of 8 kHz and then encoded. The
signal-to-(quantization) noise ratio is required to be 40 dB. Calculate the minimum storage capacity
needed to accommodate this digitized speech signal.

6.10 Consider a uniform quantizer characterized by the input-output relation illustrated in Figure 6.9a.
Assume that a Gaussian-distributed random variable with zero mean and unit variance is applied to
this quantizer input.

a. What is the probability that the amplitude of the input lies outside the range –4 to +4?

b. Using the result of part a, show that the output SNR of the quantizer is given by

where R is the number of bits per sample. Specifically, you may assume that the quantizer input
extends from –4 to 4. Compare the result of part b with that obtained in Example 2.

6.11 A PCM system uses a uniform quantizer followed by a 7-bit binary encoder. The bit rate of the
system is equal to 50  106 bits/s.

a. What is the maximum message bandwidth for which the system operates satisfactorily?

b. Determine the output signal-to-(quantization) noise when a full-load sinusoidal modulating wave
of frequency 1 MHz is applied to the input.

6.12 Show that with a nonuniform quantizer the mean-square value of the quantization error is

approximately equal to , where i is the ith step size and pi is the probability that the

input signal amplitude lies within the ith interval. Assume that the step size i is small compared

with the excursion of the input signal.

 6.13 a. A sinusoidal signal with an amplitude of 3.25 V is applied to a uniform quantizer of the midtread
type whose output takes on the values 0, 1, 2, 3 V. Sketch the waveform of the resulting
quantizer output for one complete cycle of the input.

b. Repeat this evaluation for the case when the quantizer is of the midrise type whose output takes
on the values 0.5, 1.5, 2.5, 3.5 V.

6.14 The signal

is transmitted using a 40-bit binary PCM system. The quantizer is of the midrise type, with a step
size of 1V. Sketch the resulting PCM wave for one complete cycle of the input. Assume a sampling
rate of four samples per second, with samples taken at t(s) = 1/8, 3/8, 5/8, 

6.15 Figure P6.15 shows a PCM signal in which the amplitude levels of +1V and –1V are used to
represent binary symbols 1 and 0, respectively. The codeword used consists of three bits. Find the
sampled version of an analog signal from which this PCM signal is derived.

SNR O 6R 7.2 dB–=

1 12 ii
2
pi

m t  (volts) 6 2t sin=
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6.16 Consider a chain of (n – 1) regenerative repeaters, with a total of n sequential decisions made on a
binary PCM wave, including the final decision made at the receiver. Assume that any binary symbol
transmitted through the system has an independent probability p1 of being inverted by any repeater.
Let pn represent the probability that a binary symbol is in error after transmission through the
complete system.

a. Show that

b. If p1 is very small and n is not too large, what is the corresponding value of pn?

6.17 Discuss the basic issues involved in the design of a regenerative repeater for PCM.

Linear Prediction

6.18 A one-step linear predictor operates on the sampled version of a sinusoidal signal. The sampling rate
is equal to 10f0, where f0 is the frequency of the sinusoid. The predictor has a single coefficient
denoted by w1.

a. Determine the optimum value of w1 required to minimize the prediction-error variance.

b. Determine the minimum value of the prediction error variance.

6.19 A stationary process X(t) has the following values for its autocorrelation function:

a. Calculate the coefficients of an optimum linear predictor involving the use of three unit-time
delays.

b. Calculate the variance of the resulting prediction error.

6.20 Repeat the calculations of Problem 6.19, but this time use a linear predictor with two unit-time
delays. Compare the performance of this second optimum linear predictor with that considered in
Problem 6.19.

Differential Pulse-Code Modulation

6.21 A DPCM system uses a linear predictor with a single tap. The normalized autocorrelation function
of the input signal for a lag of one sampling interval is 0.75. The predictor is designed to minimize
the prediction-error variance. Determine the processing gain attained by the use of this predictor.

6.22 Calculate the improvement in processing gain of a DPCM system using the optimized three-tap
linear predictor. For this calculation, use the autocorrelation function values of the input signal
specified in Problem 6.19.

6.23 In this problem, we compare the performance of a DPCM system with that of an ordinary PCM
system using companding.
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316 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

For a sufficiently large number of representation levels, the signal-to-(quantization) noise ratio of
PCM systems, in general, is defined by

where 2n is the number of representation levels. For a companded PCM system using the -law, the
constant  is itself defined by

For a DPCM system, on the other hand, the constant  lies in the range –3 <  < 15 dBs. The
formulas quoted herein apply to telephone-quality speech signals.

Compare the performance of the DPCM system against that of the -companded PCM system with
 = 255 for each of the following scenarios:

a. The improvement in (SNR)O realized by DPCM over companded PCM for the same number of
bits per sample.

b. The reduction in the number of bits per sample required by DPCM, compared with the
companded PCM for the same (SNR)O.

6.24 In the DPCM system depicted in Figure P6.24, show that in the absence of channel noise, the
transmitting and receiving prediction filters operate on slightly different input signals.

6.25 Figure P6.25 depicts the block diagram of adaptive quantization for DPCM. The quantization is of a
backward estimation kind because samples of the quantization output and prediction errors are used
to continuously derive backward estimates of the variance of the message signal. This estimate
computed at time n is denoted by . Given this estimate, the step size is varied so as to match the
actual variance of the message sample mn, as shown by

where  is the estimate of the standard deviation and  is a constant. An attractive feature of the
adaptive scheme in Figure P6.25 is that samples of the quantization output and the prediction error
are used to compute the predictor’s coefficients. 
Modify the block diagram of the DPCM transmitter in Figure 6.19a so as to accommodate adaptive
prediction with backward estimation.

10 SNR 10 Olog  (dB)  6n+=

 (dB) 4.77 20  1 + log10log–
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Delta Modulation

6.26 Consider a test signal m(t) defined by a hyperbolic tangent function:

where A and  are constants. Determine the minimum step size  for DM of this signal, which is
required to avoid slope-overload distortion.

6.27 Consider a sine wave of frequency fm and amplitude Am, which is applied to a delta modulator of
step size . Show that slope-overload distortion will occur if

where Ts is the sampling period. What is the maximum power that may be transmitted without
slope-overload distortion?

6.28 A linear delta modulator is designed to operate on speech signals limited to 3.4 kHz. The
specifications of the modulator are as follows:

• Sampling rate = 10fNyquist, where fNyquist is the Nyquist rate of the speech signal.

• Step size  = 100 mV.

The modulator is tested with a 1kHz sinusoidal signal. Determine the maximum amplitude of this
test signal required to avoid slope-overload distortion.

6.29 In this problem, we derive an empirical formula for the average signal-to-(quantization) noise ratio of
a DM system with a sinusoidal signal of amplitude A and frequency fm as the test signal. Assume that
the power spectral density of the granular noise generated by the system is governed by the formula

where fs is the sampling rate and  is the step size. (Note that this formula is basically the same as that
for the power spectral density of quantization noise in a PCM system with /2 for PCM being replaced
by  for DM.) The DM system is designed to handle analog message signals limited to bandwidth W.

a. Show that the average quantization noise power produced by the system is

where it is assumed that the step size  has been chosen in accordance with the formula used in
Problem 6.28 so as to avoid slope-overload distortion.

b. Hence, determine the signal-to-(quantization) noise ratio of the DM system for a sinusoidal input.

6.30 Consider a DM system designed to accommodate analog message signals limited to bandwidth
W = 5 kHz. A sinusoidal test signal of amplitude A = 1V and frequency fm = 1 kHz is applied to the
system. The sampling rate of the system is 50 kHz.

a. Calculate the step size  required to minimize slope overload distortion.

b. Calculate the signal-to-(quantization) noise ratio of the system for the specified sinusoidal test
signal.

For these calculations, use the formula derived in Problem 6.29.

6.31 Consider a low-pass signal with a bandwidth of 3 kHz. A linear DM system with step size  = 0.1V
is used to process this signal at a sampling rate 10 times the Nyquist rate.

a. Evaluate the maximum amplitude of a test sinusoidal signal of frequency 1kHz, which can be
processed by the system without slope-overload distortion.

m t  A t tanh=
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318 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

b. For the specifications given in part a, evaluate the output SNR under (i) prefiltered and (ii)
postfiltered conditions.

6.32 In the conventional form of DM, the quantizer input may be viewed as an approximate to the
derivative of the incoming message signal m(t). This behavior leads to a drawback of DM:
transmission disturbances (e.g., noise) result in an accumulation error in the demodulated signal.
This drawback can be overcome by integrating the message signal m(t) prior to DM, resulting in
three beneficial effects:

a. Low frequency content of m(t) is pre-emphasized. 

b. Correlation between adjacent samples of m(t) is increased, tending to improve overall system
performance by reducing the variance of the error signal at the quantizer input.

c. Design of the receiver is simplified. 

Such a DM scheme is called delta–sigma modulation.

Construct a block diagram of the delta–sigma modulation system in such a way that it provides an
interpretation of the system as a “smoothed” version of 1-bit PCM in the following composite sense:

• smoothness implies that the comparator output is integrated prior to quantization, and 

• 1-bit modulation merely restates that the quantizer consists of a hard limiter with only two
representation levels.

Explain how the receiver of the delta–sigma modulation system is simplified, compared with
conventional DM. 

Line Codes

6.33 In this problem, we derive the formulas used to compute the power spectra of Figure 6.25 for the five
line codes described in Section 6.10. In the case of each line code, the bit duration is Tb and the pulse
amplitude A is conditioned to normalize the average power of the line code to unity as indicated in Fig-
ure 6.25. Assume that the data stream is randomly generated and symbols 0 and 1 are equally likely.

Derive the power spectral densities of these line codes as summarized here:

a. Unipolar NRZ signals:

b. Polar NRZ signals:

c. Unipolar RZ signals:

d. Bipolar RZ signals:

e. Manchester-encoded signals:

Hence, confirm the spectral plots displayed in Figure 6.25.
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6.34 A randomly generated data stream consists of equiprobable binary symbols 0 and 1. It is encoded
into a polar NRZ waveform with each binary symbol being defined as follows:

a. Sketch the waveform so generated, assuming that the data stream is 00101110.

b. Derive an expression for the power spectral density of this signal and sketch it. 

c. Compare the power spectral density of this random waveform with that defined in part b of
Problem 6.33.

6.35 Given the data stream 1110010100, sketch the transmitted sequence of pulses for each of the
following line codes:

a. unipolar NRZ

b. polar NRZ

c. unipolar RZ

d. bipolar RZ

e. Manchester code.

Computer Experiments

 **6.36 A sinusoidal signal of frequency  is sampled at the rate of 8 kHz and then applied to
a sample-and-hold circuit to produce a flat-topped PAM signal s(t) with pulse duration T = 500 .

a. Compute the waveform of the PAM signal s(t).

b. Compute , denoting the magnitude spectrum of the PAM signal s(t).

c. Compute the envelope of . Hence confirm that the frequency at which this envelope goes
through zero for the first time is equal to (1T) = 20 kHz.

 **6.37 In this problem, we use computer simulation to compare the performance of a companded PCM
system using the -law against that of the corresponding system using a uniform quantizer. The
simulation is to be performed for a sinusoidal input signal of varying amplitude.

With a companded PCM system in mind, Table 6.4 describes the 15-segment pseudo-linear
characteristic that consists of 15 linear segments configured to approximate the logarithmic -law
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Table 6.4 The 15-segment companding characteristic (  = 255)

Linear segment 
number Step-size

Projections of segment end 
points onto the horizontal axis

0 2 ±31

1a, 1b 4 ±95

2a, 2b 8 ±223

3a, 3b 16 ±479

4a, 4b 32 ±991

5a, 5b 64 ±2015

6a, 6b 128 ±4063

7a, 7b 256 ±8159






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320 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

of (6.48), with  = 255. This approximation is constructed in such a way that the segment endpoints
in Table 6.4 lie on the compression curve computed from (6.48).

a. Using the -law described in Table 6.4, plot the output signal-to-noise ratio as a function of the
input signal-to-noise ratio, both ratios being expressed in decibels.

b. Compare the results of your computation in part (a) with a uniform quantizer having 256
representation levels.

 **6.38 In this experiment we study the linear adaptive prediction of a signal xn governed by the following
recursion:

where vn is drawn from a discrete–time white noise process of zero mean and unit variance. (A
process generated in this manner is referred to as an autoregressive process of order two.)
Specifically, the adaptive prediction is performed using the normalized LMS algorithm defined by 

where p is the prediction order and  is the normalized step-size parameter. The important point to
note here is that  is dimensionless and stability of the algorithm is assured by choosing it in
accordance with the formula

The algorithm is initiated by setting

The learning curve of the algorithm is defined as a plot of the mean-square error versus the number
of iterations n for specified parameter values, which is obtained by averaging the plot of  versus n
over a large number of different realizations of the algorithm.

a. Plot the learning curves for the adaptive prediction of xn for a fixed prediction order p = 5 and
three different values of step-size parameter:  = 0.0075, 0.05, and 0.5.

b. What observations can you make from the learning curves of part a?

 **6.39 In this problem, we study adaptive delta modulation, the underlying principle of which is two-fold:

1. If successive errors are of opposite polarity, then the delta modulator is operating in the granular
mode, in which case the step size is reduced.

2. If, on the other hand, the successive errors are of the same polarity, then the delta modulator is
operating in the slope-overload mode, in which case the step size is increased.

Parts a and b of Figure P6.39 depict the block diagrams of the transmitter and receiver of the
adaptive delta modulator, respectively, in which the step size, is increased or decreased by a factor
of 50% at each iteration of the adaptive process, as shown by:
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where n is the step size at iteration (time step) n of the adaptation algorithm, and mq,n is the 1-bit
quantizer output that equals .

Specifications: The input signal applied to the transmitter is sinusoidal as shown by 

where A = 10 and fm = fs 100 where fs is the sampling frequency; the step size ;
.

a. Using the above-described adaptation algorithm, use a computer to plot the resulting waveform
for one complete cycle of the sinusoidal modulating signal, and also display the coded modulator
output in the transmitter.

b. For the same specifications, repeat the computation using linear modulation.

c. Comment on the results obtained in parts a and b of the problem.
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322 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

Notes

1. For an exhaustive study of quantization noise in signal processing and communications, see
Widrow and Kollar (2008).

2. The two necessary conditions of (3.42) and (3.47) for optimality of a scalar quantizer were
reported independently by Lloyd (1957) and Max (1960), hence the name “Lloyd–Max quantizer.”
The derivation of these two optimality conditions presented in this chapter follows the book by
Gersho and Gray (1992).

3. The -law is used in the USA, Canada, and Japan. On the other hand, in Europe, the A-law is
used for signal compression. 

4. In actual PCM systems, the companding circuitry does not produce an exact replica of the
nonlinear compression curves shown in Figure 6.14. Rather, it provides a piecewise linear
approximation to the desired curve. By using a large enough number of linear segments, the
approximation can approach the true compression curve very closely; for detailed discussion of this
issue, see Bellamy (1991).

5. For a discussion of noise in analog modulation systems with particular reference to FM, see
Chapter 4 of Communication Systems (Haykin, 2001).

6. To simplify notational matters, RM is used to denote the autocorrelation matrix in (6.70) rather
than RMM as in Chapter 4 on Stochastic Processes. To see the rationale for this simplification, the
reader is referred to (6.79) for simplicity. For the same reason, henceforth the practice adopted in this
chapter will be continued for the rest of the book, dealing with autocorrelation matrices and power
spectral density.

7. An optimum predictor that follows (6.77) is said to be a special case of the Wiener filter.

8. For a detailed discussion of adaptive DPCM involving the use of adaptive quantization with
forward estimation as well as backward estimation, the reader is referred to the classic book (Jayant
and Noll, 1984).
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CHAPTER

7
Signaling over AWGN Channels 

7.1 Introduction

Chapter 6 on the conversion of analog waveforms into coded pulses represents the
transition from analog communications to digital communications. This transition has
been empowered by several factors:

1. Ever-increasing advancement of digital silicon chips, digital signal processing, and
computers, which, in turn, has prompted further enhancement in digital silicon
chips, thereby repeating the cycle of improvement.

2. Improved reliability, which is afforded by digital communications to a much greater
extent than is possible with analog communications.

3. Broadened range of multiplexing of users, which is enabled by the use of digital
modulation techniques.

4. Communication networks, for which, in one form or another, the use of digital
communications is the preferred choice.

In light of these compelling factors, we may justifiably say that we live in a “digital
communications world.” For an illustrative example, consider the remote connection of
two digital computers, with one computer acting as the information source by calculating
digital outputs based on observations and inputs fed into it; the other computer acts as the
recipient of the information. The source output consists of a sequence of 1s and 0s, with
each binary symbol being emitted every Tb seconds. The transmitting part of the digital
communication system takes the 1s and 0s emitted by the source computer and encodes
them into distinct signals denoted by s1(t) and s2(t), respectively, which are suitable for
transmission over the analog channel. Both s1(t) and s2(t) are real-valued energy signals,
as shown by

(7.1)

With the analog channel represented by an AWGN model, depicted in Figure 7.1, the
received signal is defined by

(7.2)

where w(t) is the channel noise. The receiver has the task of observing the received signal
x(t) for a duration of Tb seconds and then making an estimate of the transmitted signal

Ei si
2

t  dt i 1 2=
0
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x t  si t  w t ,+=
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i 1 2=


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324 Chapter 7 Signaling over AWGN Channels

si(t), or equivalently the ith symbol, i = 1, 2. However, owing to the presence of channel
noise, the receiver will inevitably make occasional errors. The requirement, therefore, is to
design the receiver so as to minimize the average probability of symbol error, defined as

(7.3)

where 1 and 2 are the prior probabilities of transmitting symbols 1 and 0, respectively,
and  is the estimate of the symbol 1 or 0 sent by the source, which is computed by the
receiver. The  and  are conditional probabilities.

In minimizing the average probability of symbol error between the receiver output and
the symbol emitted by the source, the motivation is to make the digital communication
system as reliable as possible. To achieve this important design objective in a generic
setting that involves an M-ary alphabet whose symbols are denoted by m1, m2, , mM, we
have to understand two basic issues:

1. How to optimize the design of the receiver so as to minimize the average probability
of symbol error.

2. How to choose the set of signals s1(t), s2(t), , sM(t) for representing the symbols
m1, m2, , mM, respectively, since this choice affects the average probability of
symbol error.

The key question is how to develop this understanding in a principled as well as insightful
manner. The answer to this fundamental question is found in the geometric representation
of signals. 

7.2 Geometric Representation of Signals

The essence of geometric representation of signals1 is to represent any set of M energy
signals {si(t)} as linear combinations of N orthonormal basis functions, where N  M.
That is to say, given a set of real-valued energy signals, s1(t), s2(t), , sM(t), each of
duration T seconds, we write

(7.4)

where the coefficients of the expansion are defined by

(7.5)

Figure 7.1 AWGN model of a channel.
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7.2 Geometric Representaton of Signals 325

The real-valued basis functions 1(t), 2(t), , N(t) form an orthonormal set, by which
we mean

(7.6)

where ij is the Kronecker delta. The first condition of (7.6) states that each basis function
is normalized to have unit energy. The second condition states that the basis functions
1(t), 2(t), , N(t) are orthogonal with respect to each other over the interval 0  t  T.

For prescribed i, the set of coefficients  may be viewed as an N-dimensional
signal vector, denoted by si. The important point to note here is that the vector si bears a
one-to-one relationship with the transmitted signal si(t):

• Given the N elements of the vector si operating as input, we may use the scheme
shown in Figure 7.2a to generate the signal si(t), which follows directly from (7.4).
This figure consists of a bank of N multipliers with each multiplier having its own
basis function followed by a summer. The scheme of Figure 7.2a may be viewed as
a synthesizer.

• Conversely, given the signals si(t), i = 1, 2, , M, operating as input, we may use
the scheme shown in Figure 7.2b to calculate the coefficients si1, si2, , siN which
follows directly from (7.5). This second scheme consists of a bank of N product-
integrators or correlators with a common input, and with each one of them supplied
with its own basis function. The scheme of Figure 7.2b may be viewed as an
analyzer.

Figure 7.2 (a) Synthesizer for generating the signal si(t). (b) Analyzer for reconstructing the signal 
vector {si}. 
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326 Chapter 7 Signaling over AWGN Channels

Accordingly, we may state that each signal in the set {si(t)} is completely determined by
the signal vector 

(7.7)

Furthermore, if we conceptually extend our conventional notion of two- and three-
dimensional Euclidean spaces to an N-dimensional Euclidean space, we may visualize the
set of signal vectors {si |i = 1, 2, , M} as defining a corresponding set of M points in an
N-dimensional Euclidean space, with N mutually perpendicular axes labeled 1, 2, ,
N. This N-dimensional Euclidean space is called the signal space.

The idea of visualizing a set of energy signals geometrically, as just described, is of
profound theoretical and practical importance. It provides the mathematical basis for the
geometric representation of energy signals in a conceptually satisfying manner. This form
of representation is illustrated in Figure 7.3 for the case of a two-dimensional signal space
with three signals; that is, N = 2 and M = 3.

In an N-dimensional Euclidean space, we may define lengths of vectors and angles
between vectors. It is customary to denote the length (also called the absolute value or
norm) of a signal vector si by the symbol . The squared length of any signal vector si is
defined to be the inner product or dot product of si with itself, as shown by

Figure 7.3 Illustrating the geometric representation of signals for 
the case when N = 2 and M = 3.
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7.2 Geometric Representaton of Signals 327

(7.8)

where sij is the jth element of si and the superscript T denotes matrix transposition.
There is an interesting relationship between the energy content of a signal and its

representation as a vector. By definition, the energy of a signal si(t) of duration T seconds is

(7.9)

Therefore, substituting (7.4) into (7.9), we get

Interchanging the order of summation and integration, which we can do because they are
both linear operations, and then rearranging terms we get

(7.10)

Since, by definition, the j(t) form an orthonormal set in accordance with the two
conditions of (7.6), we find that (7.10) reduces simply to

 (7.11)

Thus, (7.8) and (7.11) show that the energy of an energy signal si(t) is equal to the squared
length of the corresponding signal vector si(t).

In the case of a pair of signals si(t) and sk(t) represented by the signal vectors si and sk,
respectively, we may also show that

(7.12)

Equation (7.12) states: 

The inner product of the energy signals si(t) and sk(t) over the interval [0,T] is 
equal to the inner product of their respective vector representations si and sk.

Note that the inner product  is invariant to the choice of basis functions ,
in that it only depends on the components of the signals si(t) and sk(t) projected onto each
of the basis functions.
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328 Chapter 7 Signaling over AWGN Channels

Yet another useful relation involving the vector representations of the energy signals
si(t) and sk(t) is described by

(7.13)

where  is the Euclidean distance dik between the points represented by the signal
vectors si and sk.

To complete the geometric representation of energy signals, we need to have a
representation for the angle ik subtended between two signal vectors si and sk. By
definition, the cosine of the angle ik is equal to the inner product of these two vectors
divided by the product of their individual norms, as shown by

(7.14)

The two vectors si and sk are thus orthogonal or perpendicular to each other if their inner
product  is zero, in which case ik = 90°; this condition is intuitively satisfying.

EXAMPLE 1 The Schwarz Inequality

Consider any pair of energy signals s1(t) and s2(t). The Schwarz inequality states

(7.15)

The equality holds if, and only if, s2(t) = cs1(t), where c is any constant.
To prove this important inequality, let s1(t) and s2(t) be expressed in terms of the pair of

orthonormal basis functions 1(t) and 2(t) as follows:

where 1(t) and 2(t) satisfy the orthonormality conditions over the time interval :

On this basis, we may represent the signals s1(t) and s2(t) by the following respective pair
of vectors, as illustrated in Figure 7.4:
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From Figure 7.4 we readily see that the cosine of angle  subtended between the vectors s1
and s2 is

(7.16)

where we have made use of (7.14) and (7.12). Recognizing that |cos |   1, the Schwarz
inequality of (7.15) immediately follows from (7.16). Moreover, from the first line of
(7.16) we note that |cos |  = 1 if, and only if, s2 = cs1; that is, s2(t) = cs1(t), where c is an
arbitrary constant.

Proof of the Schwarz inequality, as presented here, applies to real-valued signals. It may
be readily extended to complex-valued signals, in which case (7.15) is reformulated as

(7.17)

where the asterisk denotes complex conjugation and the equality holds if, and only if,
s2(t) = cs1(t), where c is a constant.

Gram–Schmidt Orthogonalization Procedure

Having demonstrated the elegance of the geometric representation of energy signals with
an example, how do we justify it in mathematical terms? The answer to this question lies
in the Gram–Schmidt orthogonalization procedure, for which we need a complete
orthonormal set of basis functions. To proceed with the formulation of this procedure,
suppose we have a set of M energy signals denoted by s1(t), s2(t), , sM(t). Starting with
s1(t) chosen from this set arbitrarily, the first basis function is defined by

(7.18)

where E1 is the energy of the signal s1(t). 

Figure 7.4 Vector representations of signals s1(t) and s2(t), providing 
the background picture for proving the Schwarz inequality.
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Then, clearly, we have

where the coefficient  and 1(t) has unit energy as required.
Next, using the signal s2(t), we define the coefficient s21 as

We may thus introduce a new intermediate function

(7.19)

which is orthogonal to 1(t) over the interval 0  t  T by virtue of the definition of s21 and
the fact that the basis function 1(t) has unit energy. Now, we are ready to define the
second basis function as

(7.20)

Substituting (7.19) into (7.20) and simplifying, we get the desired result

(7.21)

where E2 is the energy of the signal s2(t). From (7.20) we readily see that

in which case (7.21) yields

That is to say, 1(t) and 2(t) form an orthonormal pair as required. 
Continuing the procedure in this fashion, we may, in general, define

(7.22)

where the coefficients sij are themselves defined by

For i = 1, the function gi(t) reduces to si(t).
Given the gi(t), we may now define the set of basis functions

(7.23)

s1 t  E11 t =

s11 t 1 t =

s11 E1=

s21 s2 t 1 t  dt
0

T

=

g2 t  s2 t  s211 t –=

2 t 
g2 t 

g2
2

t  dt
0

T


-----------------------------=

2 t 
s2 t  s211 t –
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2
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t  dt
0
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 1=

1 t 
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t  dt
0

T

 0=

gi t  si t  sijj t 
j 1=

i 1–
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sij si t 
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which form an orthonormal set. The dimension N is less than or equal to the number of
given signals, M, depending on one of two possibilities:

• The signals s1(t), s2(t), , sM(t) form a linearly independent set, in which case
N = M.

• The signals s1(t), s2(t), , sM(t) are not linearly independent, in which case N  M
and the intermediate function gi(t) is zero for i > N.

Note that the conventional Fourier series expansion of a periodic signal, discussed in
Chapter 2, may be viewed as a special case of the Gram–Schmidt orthogonalization
procedure. Moreover, the representation of a band-limited signal in terms of its samples
taken at the Nyquist rate, discussed in Chapter 6, may be viewed as another special case.
However, in saying what we have here, two important distinctions should be made:

1. The form of the basis functions 1(t), 2(t), , N(t) has not been specified. That is
to say, unlike the Fourier series expansion of a periodic signal or the sampled
representation of a band-limited signal, we have not restricted the Gram–Schmidt
orthogonalization procedure to be in terms of sinusoidal functions (as in the Fourier
series) or sinc functions of time (as in the sampling process).

2. The expansion of the signal si(t) in terms of a finite number of terms is not an
approximation wherein only the first N terms are significant; rather, it is an exact
expression, where N and only N terms are significant.

EXAMPLE 2 2B1Q Code

The 2B1Q code is the North American line code for a special class of modems called
digital subscriber lines. This code represents a quaternary PAM signal as shown in the
Gray-encoded alphabet of Table 7.1. The four possible signals s1(t), s2(t), s3(t), and s4(t)
are amplitude-scaled versions of a Nyquist pulse. Each signal represents a dibit (i.e., pair
of bits). The issue of interest is to find the vector representation of the 2B1Q code.  

This example is simple enough for us to solve it by inspection. Let 1(t) denote a pulse
normalized to have unit energy. The 1(t) so defined is the only basis function for the
vector representation of the 2B1Q code. Accordingly, the signal-space representation of
this code is as shown in Figure 7.5. It consists of four signal vectors s1, s2, s3, and s4,
which are located on the 1-axis in a symmetric manner about the origin. In this example,
we have M = 4 and N = 1.

Table 7.1 Amplitude levels of the 2B1Q code

Signal Amplitude Gray code

s1(t) –3 00

s2(t) –1 01

s3(t) +1 11

s4(t) +3 10
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332 Chapter 7 Signaling over AWGN Channels

We may generalize the result depicted in Figure 7.5 for the 2B1Q code as follows: the
signal-space diagram of an M-ary PAM signal, in general, is one-dimensional with M
signal points uniformly positioned on the only axis of the diagram.

7.3 Conversion of the Continuous AWGN Channel into a 
Vector Channel 

Suppose that the input to the bank of N product integrators or correlators in Figure 7.2b is
not the transmitted signal si(t) but rather the received signal x(t) defined in accordance
with the AWGN channel of Figure 7.1. That is to say,

(7.24)

where w(t) is a sample function of the white Gaussian noise process W(t) of zero mean and
power spectral density N02. Correspondingly, we find that the output of correlator j, say,
is the sample value of a random variable Xj, whose sample value is defined by

(7.25)

The first component, sij, is the deterministic component of xj due to the transmitted signal
si(t), as shown by

(7.26)

The second component, wj, is the sample value of a random variable Wj due to the channel
noise w(t), as shown by

(7.27)

Consider next a new stochastic process  whose sample function  is related to
the received signal x(t) as follows:

(7.28)

Figure 7.5 Signal-space representation of the 2B1Q code. 

2
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Substituting (7.24) and (7.25) into (7.28), and then using the expansion of (7.4), we get

(7.29)

The sample function , therefore, depends solely on the channel noise w(t). On the
basis of (7.28) and (7.29), we may thus express the received signal as

 (7.30)

Accordingly, we may view  as a remainder term that must be included on the right-
hand side of (7.30) to preserve equality. It is informative to contrast the expansion of the
received signal x(t) given in (7.30) with the corresponding expansion of the transmitted
signal si(t) given in (7.4): the expansion of (7.4), pertaining to the transmitter, is entirely
deterministic; on the other hand, the expansion of (7.30) is random (stochastic) due to the
channel noise at the receiver input.

Statistical Characterization of the Correlator Outputs

We now wish to develop a statistical characterization of the set of N correlator outputs. Let
X(t) denote the stochastic process, a sample function of which is represented by the
received signal x(t). Correspondingly, let Xj denote the random variable whose sample
value is represented by the correlator output xj, j = 1, 2, , N. According to the AWGN
model of Figure 7.1, the stochastic process X(t) is a Gaussian process. It follows,
therefore, that Xj is a Gaussian random variable for all j in accordance with Property 1 of a
Gaussian process (Chapter 4). Hence, Xj is characterized completely by its mean and
variance, which are determined next.

Let Wj denote the random variable represented by the sample value wj produced by the
jth correlator in response to the white Gaussian noise component w(t). The random
variable Wj has zero mean because the channel noise process W(t) represented by w(t) in
the AWGN model of Figure 7.1 has zero mean by definition. Consequently, the mean of Xj
depends only on sij, as shown by

(7.31)

x t  si t  w t  sij wj+ j t 
j 1=

N

–+=

w t  wjj t 
j 1=

N

–=

w t =

x t 

x t  xjj t  x t +
j 1=

N

=

xjj t  w t +
j 1=

N

=

w t 

Xj
� Xj =

� sij Wj+ =

sij � Wj +=

sij=

Haykin_ch07_pp3.fm  Page 333  Monday, November 26, 2012  1:16 PM



334 Chapter 7 Signaling over AWGN Channels

To find the variance of Xj, we start with the definition

(7.32)

where the last line follows from (7.25) with xj and wj replaced by Xj and Wj, respectively.
According to (7.27), the random variable Wj is defined by

We may therefore expand (7.32) as 

(7.33)

Interchanging the order of integration and expectation, which we can do because they are
both linear operations, we obtain

(7.34)

where RW(t,u) is the autocorrelation function of the noise process W(t). Since this noise is
stationary, RW(t,u) depends only on the time difference t – u. Furthermore, since W(t) is
white with a constant power spectral density N02, we may express RW(t,u) as 

(7.35)

Therefore, substituting (7.35) into (7.34) and then using the sifting property of the delta
function (t), we get

Since the j(t) have unit energy, by definition, the expression for noise variance 
reduces to

(7.36)

This important result shows that all the correlator outputs, denoted by Xj with j = 1, 2, ,
N, have a variance equal to the power spectral density N02 of the noise process W(t).

Xj

2
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Moreover, since the basic functions j(t) form an orthonormal set, Xj and Xk are
mutually uncorrelated, as shown by

(7.37)

Since the Xj are Gaussian random variables, (7.37) implies that they are also statistically
independent in accordance with Property 4 of a Gaussian process (Chapter 4).

Define the vector of N random variables

(7.38)

whose elements are independent Gaussian random variables with mean values equal to sij
and variances equal to N02. Since the elements of the vector X are statistically
independent, we may express the conditional probability density function of the vector X,
given that the signal si(t) or the corresponding symbol mi was sent, as the product of the
conditional probability density functions of its individual elements; that is,

(7.39)

where the vector x and scalar xj are sample values of the random vector X and random
variable Xj, respectively. The vector x is called the observation vector; correspondingly, xj
is called an element of the observation vector. A channel that satisfies (7.39) is said to be a
memoryless channel.

Since each Xj is a Gaussian random variable with mean sij and variance N02, we have

(7.40)
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Therefore, substituting (7.40) into (7.39) yields

(7.41)

which completely characterizes the first term of (7.30). 
However, there remains the noise term  in (7.30) to be accounted for. Since the

noise process W(t) represented by w(t) is Gaussian with zero mean, it follows that the noise
process  represented by the sample function  is also a zero-mean Gaussian
process. Finally, we note that any random variable , say, derived from the noise
process  by sampling it at time tk, is in fact statistically independent of the random
variable Xj; that is to say: 

(7.42)

Since any random variable based on the remainder noise process  is independent of
the set of random variables {Xj} as well as the set of transmitted signals {si(t)}, (7.42)
states that the random variable  is irrelevant to the decision as to which particular
signal was actually transmitted. In other words, the correlator outputs determined by the
received signal x(t) are the only data that are useful for the decision-making process;
therefore, they represent sufficient statistics for the problem at hand. By definition,
sufficient statistics summarize the whole of the relevant information supplied by an
observation vector.

We may now summarize the results presented in this section by formulating the
theorem of irrelevance:

Insofar as signal detection in AWGN is concerned, only the projections of the 

noise onto the basis functions of the signal set  affect the sufficient 

statistics of the detection problem; the remainder of the noise is irrelevant.

Putting this theorem into a mathematical context, we may say that the AWGN channel
model of Figure 7.1a is equivalent to an N-dimensional vector channel described by the
equation

x = si + w, i = 1, 2, , M (7.43)

where the dimension N is the number of basis functions involved in formulating the signal
vector si for all i. The individual components of the signal vector si and the additive Gaussian
noise vector w are defined by (7.5) and (7.27), respectively. The theorem of irrelevance and
its mathematical description given in (7.43) are indeed basic to the understanding of the
signal-detection problem as described next. Just as importantly, (7.43) may be viewed as the
baseband version of the time-dependent received signal of (7.24).

Likelihood Function

The conditional probability density functions fX(x |mi), i = 1, 2, , M, provide the very
characterization of an AWGN channel. Their derivation leads to a functional dependence
on the observation vector x given the transmitted message symbol mi. However, at the

fX x mi  N0  N 2– 1
N0
------ xj sij– 2

j 1=

N

–  i 1 2  M  =exp=

w t 

W t  w t 
W tk 

W t 

� XjW tk   0=
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0 tk T 



W t 
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si t  
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M
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receiver we have the exact opposite situation: we are given the observation vector x and
the requirement is to estimate the message symbol mi that is responsible for generating x.
To emphasize this latter viewpoint, we follow Chapter 3 by introducing the idea of a
likelihood function, denoted by l(mi) and defined by

(7.44)

However, tt is important to recall from Chapter 3 that although l(mi) and fX(x |mi) have
exactly the same mathematical form, their individual meanings are quite different.

In practice, we find it more convenient to work with the log-likelihood function,
denoted by L(mi) and defined by

(7.45)

where ln denotes the natural logarithm. The log-likelihood function bears a one-to-one
relationship to the likelihood function for two reasons:

1. By definition, a probability density function is always nonnegative. It follows,
therefore, that the likelihood function is likewise a nonnegative quantity.

2. The logarithmic function is a monotonically increasing function of its argument.

The use of (7.41) in (7.45) yields the log-likelihood function for an AWGN channel as

 (7.46)

where we have ignored the constant term –(N2)ln(N0) since it bears no relation
whatsoever to the message symbol mi. Recall that the sij, j = 1, 2, , N, are the elements
of the signal vector si representing the message symbol mi. With (7.46) at our disposal, we
are now ready to address the basic receiver design problem.

7.4 Optimum Receivers Using Coherent Detection 

Maximum Likelihood Decoding

Suppose that, in each time slot of duration T seconds, one of the M possible signals s1(t),
s2(t), , sM(t) is transmitted with equal probability, 1M. For geometric signal representa-
tion, the signal si(t), i = 1, 2, , M, is applied to a bank of correlators with a common input
and supplied with an appropriate set of N orthonormal basis functions, as depicted in Figure
7.2b. The resulting correlator outputs define the signal vector si. Since knowledge of the
signal vector si is as good as knowing the transmitted signal si(t) itself, and vice versa, we
may represent si(t) by a point in a Euclidean space of dimension N  M. We refer to this
point as the transmitted signal point, or message point for short. The set of message points
corresponding to the set of transmitted signals  is called a message constellation.

However, representation of the received signal x(t) is complicated by the presence of
additive noise w(t). We note that when the received signal x(t) is applied to the bank of N
correlators, the correlator outputs define the observation vector x. According to (7.43), the
vector x differs from the signal vector si by the noise vector w, whose orientation is
completely random, as it should be. 

l mi  fX x mi  i 1 2  M  = =

L mi  lln mi  i 1 2  M  = =

L mi  1
N0
------ xj sij– 2 i 1 2  M  =

j 1=

N

–=

si t  
i 1=
M
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338 Chapter 7 Signaling over AWGN Channels

The noise vector w is completely characterized by the channel noise w(t); the converse
of this statement, however, is not true, as explained previously. The noise vector w
represents that portion of the noise w(t) that will interfere with the detection process; the
remaining portion of this noise, denoted by , is tuned out by the bank of correlators
and, therefore, irrelevant.

Based on the observation vector x, we may represent the received signal x(t) by a point
in the same Euclidean space used to represent the transmitted signal. We refer to this
second point as the received signal point. Owing to the presence of noise, the received
signal point wanders about the message point in a completely random fashion, in the sense
that it may lie anywhere inside a Gaussian-distributed “cloud” centered on the message
point. This is illustrated in Figure 7.6a for the case of a three-dimensional signal space.
For a particular realization of the noise vector w (i.e., a particular point inside the random
cloud of Figure 7.6a) the relationship between the observation vector x and the signal
vector si is as illustrated in Figure 7.6b.

We are now ready to state the signal-detection problem:

Given the observation vector x, perform a mapping from x to an estimate  of 
the transmitted symbol, mi, in a way that would minimize the probability of 
error in the decision-making process.

Given the observation vector x, suppose that we make the decision . The
probability of error in this decision, which we denote by Pe(mi |x), is simply

(7.47)

The requirement is to minimize the average probability of error in mapping each given
observation vector x into a decision. On the basis of (7.47), we may, therefore, state the
optimum decision rule:

Set  if

 for all  and k = 1, 2, , M. (7.48)

Figure 7.6 Illustrating the effect of (a) noise perturbation on (b) the location of the received
signal point. 
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The decision rule described in (7.48) is referred to as the maximum a posteriori probability
(MAP) rule. Correspondingly, the system used to implement this rule is called a maximum
a posteriori decoder.

The requirement of (7.48) may be expressed more explicitly in terms of the prior
probabilities of the transmitted signals and the likelihood functions, using Bayes’ rule
discussed in Chapter 3. For the moment, ignoring possible ties in the decision-making
process, we may restate the MAP rule as follows:

Set  if

(7.49)

where k is the prior probability of transmitting symbol mk,  fX(x |mi) is the 
conditional probability density function of the random observation vector X 
given the transmission of symbol mk, and fX(x) is the unconditional probability 
density function of X. 

In (7.49), we now note the following points:

• the denominator term fX(x) is independent of the transmitted symbol;

• the prior probability k =  i when all the source symbols are transmitted with equal
probability; and

• the conditional probability density function fX(x |mk) bears a one-to-one relationship
to the log-likelihood function L(mk).

Accordingly, we may simply restate the decision rule of (7.49) in terms of L(mk) as
follows:

Set  if  is maximum for k = i. (7.50)

The decision rule of (7.50) is known as the maximum likelihood rule, discussed previously
in Chapter 3; the system used for its implementation is correspondingly referred to as the
maximum likelihood decoder. According to this decision rule, a maximum likelihood
decoder computes the log-likelihood functions as metrics for all the M possible message
symbols, compares them, and then decides in favor of the maximum. Thus, the maximum
likelihood decoder is a simplified version of the maximum a posteriori decoder, in that the
M message symbols are assumed to be equally likely.

It is useful to have a graphical interpretation of the maximum likelihood decision rule.
Let Z denote the N-dimensional space of all possible observation vectors x. We refer to
this space as the observation space. Because we have assumed that the decision rule must
say , where i = 1, 2, , M, the total observation space Z is correspondingly
partitioned into M-decision regions, denoted by Z1, Z2, , ZM. Accordingly, we may
restate the decision rule of (7.50) as 

Observation vector x lies in region Zi if  is maximum for k = i. (7.51)

Aside from the boundaries between the decision regions Z1, Z2, , ZM, it is clear that this
set of regions covers the entire observation space. We now adopt the convention that all
ties are resolved at random; that is, the receiver simply makes a random guess.
Specifically, if the observation vector x falls on the boundary between any two decision

m̂ mi=

kfX x mi 
fX x 

--------------------------- is maximum for k i=

m̂ mi= L mk 

m̂ mi=

L mk 
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340 Chapter 7 Signaling over AWGN Channels

regions, Zi and Zk, say, the choice between the two possible decisions  and
 is resolved a priori by the flip of a fair coin. Clearly, the outcome of such an

event does not affect the ultimate value of the probability of error since, on this boundary,
the condition of (7.48) is satisfied with the equality sign.

The maximum likelihood decision rule of (7.50) or its geometric counterpart described
in (7.51) assumes that the channel noise w(t) is additive. We next specialize this rule for
the case when w(t) is both white and Gaussian.

From the log-likelihood function defined in (7.46) for an AWGN channel, we note that

L(mk) attains its maximum value when the summation term  is minimized by

the choice k = i. Accordingly, we may formulate the maximum likelihood decision rule for

an AWGN channel as

Observation vector x lies in region Zi if  is minimum for k = i. (7.52)

Note we have used “minimum” as the optimizing condition in (7.52) because the minus
sign in (7.46) has been ignored. Next, we note from the discussion presented in Section
7.2 that

(7.53)

where  is the Euclidean distance between the observation vector x at the receiver
input and the transmitted signal vector sk. Accordingly, we may restate the decision rule of
(7.53) as 

(7.54)

In words, (7.54) states that the maximum likelihood decision rule is simply to choose the
message point closest to the received signal point, which is intuitively satisfying.

In practice, the decision rule of (7.54) is simplified by expanding the summation on the
left-hand side of (7.53) as

(7.55)

The first summation term of this expansion is independent of the index k pertaining to the
transmitted signal vector sk and, therefore, may be ignored. The second summation term is
the inner product of the observation vector x and the transmitted signal vector sk. The third
summation term is the transmitted signal energy

 (7.56)

m̂ mi=
m̂ mk=

xj skj– 2

j 1=

N



xj skj– 2

j 1=

N



xj skj– 2

j 1=

N

 x sk–
2

=

x sk–

Observation vector x lies in region Zi if Euclidean distance x sk–
is minimum for k i=

xj skj– 2

j 1=

N

 xj
2

2 xjskj skj
2

j 1=

N

+
j 1=

N

–
j 1=

N

=

Ek skj
2

j 1=

N

=

Haykin_ch07_pp3.fm  Page 340  Monday, November 26, 2012  1:16 PM
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Accordingly, we may reformulate the maximum-likelihood decision rule one last time:

 (7.57)

From (7.57) we infer that, for an AWGN channel, the M decision regions are bounded by
linear hyperplane boundaries. The example in Figure 7.7 illustrates this statement for
M = 4 signals and N = 2 dimensions, assuming that the signals are transmitted with equal
energy E and equal probability.

Correlation Receiver

In light of the material just presented, the optimum receiver for an AWGN channel and for
the case when the transmitted signals s1(t), s2(t), , sM(t) are equally likely is called a
correlation receiver; it consists of two subsystems, which are detailed in Figure 7.8:

1. Detector (Figure 7.8a), which consists of M correlators supplied with a set of
orthonormal basis functions 1(t), 2(t), , N(t) that are generated locally; this
bank of correlators operates on the received signal x(t), 0  t  T, to produce the
observation vector x.

2. Maximum-likelihood decoder (Figure 7.8b), which operates on the observation
vector x to produce an estimate  of the transmitted symbol mi, i = 1, 2, , M, in
such a way that the average probability of symbol error is minimized. 

In accordance with the maximum likelihood decision rule of (7.57), the decoder multiplies
the N elements of the observation vector x by the corresponding N elements of each of the
M signal vectors s1, s2, , sM. Then, the resulting products are successively summed in
accumulators to form the corresponding set of inner products {xTsk|k = 1, 2, , M}.

Figure 7.7
Illustrating the partitioning of the 
observation space into decision regions 
for the case when N = 2 and M = 4; it is 
assumed that the M transmitted symbols 
are equally likely. 
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342 Chapter 7 Signaling over AWGN Channels

Next, the inner products are corrected for the fact that the transmitted signal energies may
be unequal. Finally, the largest one in the resulting set of numbers is selected, and an
appropriate decision on the transmitted message is thereby made.

Matched Filter Receiver

The detector shown in Figure 7.8a involves a set of correlators. Alternatively, we may use
a different but equivalent structure in place of the correlators. To explore this alternative
method of implementing the optimum receiver, consider a linear time-invariant filter with
impulse response hj(t). With the received signal x(t) operating as input, the resulting filter
output is defined by the convolution integral

Figure 7.8
(a) Detector or demodulator. (b) Signal 
transmission decoder. 
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7.4 Optimum Receivers Using Coherent Detection 343

To proceed further, we evaluate this integral over the duration of a transmitted symbol,
namely 0  t  T. With time t restricted in this manner, we may replace the variable  with
t and go on to write

(7.58)

Consider next a detector based on a bank of correlators. The output of the jth correlator is
defined by the first line of (7.25), reproduced here for convenience of representation:

(7.59)

For yj(T) to equal xj, we find from (7.58) and (7.59) that this condition is satisfied provided
that we choose

Equivalently, we may express the condition imposed on the desired impulse response of
the filter as

(7.60)

We may now generalize the condition described in (7.60) by stating:

Given a pulse signal (t) occupying the interval 0  t  T, a linear time-invariant 
filter is said to be matched to the signal (t) if its impulse response h(t) satisfies 
the condition

(7.61)

A time-invariant filter defined in this way is called a matched filter. Correspondingly, an
optimum receiver using matched filters in place of correlators is called a matched-filter
receiver. Such a receiver is depicted in Figure 7.9, shown below.

yj t  x  hj t –  d
–



=

yj T  x t hj T t–  dt
0

T

=

xj x t j t  dt
0

T

=

hj T t–  j t = for 0 t T  and j 1 2  M  =

hj t  j T t– = for 0 t T  and j 1 2  M  =

h t   T t–  for 0 t T =

Figure 7.9 Detector part of matched 
filter receiver; the signal transmission 
decoder is as shown in Figure 7.8(b). 
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344 Chapter 7 Signaling over AWGN Channels

7.5 Probability of Error

To complete the statistical characterization of the correlation receiver of Figure 7.8a or its
equivalent, the matched filter receiver of Figure 7.9, we need to evaluate its performance
in the presence of AWGN. To do so, suppose that the observation space Z is partitioned
into a set of regions, , in accordance with the maximum likelihood decision rule.
Suppose also that symbol mi (or, equivalently, signal vector si) is transmitted and an
observation vector x is received. Then, an error occurs whenever the received signal point
represented by x does not fall inside region Zi associated with the message point si.
Averaging over all possible transmitted symbols assumed to be equiprobable, we see that
the average probability of symbol error is

 (7.62)

where we have used the standard notation to denote the conditional probability of an
event. Since x is the sample value of random vector X, we may rewrite (7.62) in terms of
the likelihood function as follows, given that the message symbol mi is sent:

(7.63)

For an N-dimensional observation vector, the integral in (7.63) is likewise N-dimensional.

Invariance of the Probability of Error to Rotation

There is a uniqueness to the way in which the observation space Z is partitioned into the
set of regions Z1, Z2, , ZM in accordance with the maximum likelihood detection of a
signal in AWGN; that uniqueness is defined by the message constellation under study. In
particular, we may make the statement:

Changes in the orientation of the message constellation with respect to both the 
coordinate axes and origin of the signal space do not affect the probability of 
symbol error Pe defined in (7.63). 

This statement embodies the invariance property of the average probability of symbol
error Pe with respect to notation and translation, which is the result of two facts:

1. In maximum likelihood detection, the probability of symbol error Pe depends solely
on the relative Euclidean distance between a received signal point and message point
in the constellation.

2. The AWGN is spherically symmetric in all directions in the signal space.

Zi 
j 1=
M

Pe i�(x does not lie in Zi mi sent)
i 1=

M

=

1
M
----- � x does not lie in Zi mi sent  i 1 M=

i 1=

M

=

1
1
M
----- � x lies in Zi mi sent 

i 1=

M

–=

Pe 1
1
M
----- fX

Zi
 x mi  dx

i 1=

M

–=
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7.5 Probability of Error 345

To elaborate, consider first the invariance of Pe with respect to rotation. The effect of a
rotation applied to all the message points in a constellation is equivalent to multiplying the
N-dimensional signal vector si by an N-by-N orthonormal matrix denoted by Q for all i.
By definition, the matrix Q satisfies the condition

(7.64)

where the superscript T denotes matrix transposition and I is the identity matrix whose
diagonal elements are all unity and its off-diagonal elements are all zero. According to
(7.64), the inverse of the real-valued orthonormal matrix Q is equal to its own transpose.
Thus, in dealing with rotation, the message vector si is replaced by its rotated version

(7.65)

Correspondingly, the N-by-1 noise vector w is replaced by its rotated version

(7.66)

However, the statistical characteristics of the noise vector are unaffected by this rotation
for three reasons:

1. From Chapter 4 we recall that a linear combination of Gaussian random variables is
also Gaussian. Since the noise vector w is Gaussian, by assumption, then it follows
that the rotated noise vector wrotate is also Gaussian.

2. Since the noise vector w has zero mean, the rotated noise vector wrotate also has zero
mean, as shown by

(7.67)

3. The covariance matrix of the noise vector w is equal to (N02)I, where N02 is the
power spectral density of the AWGN w(t) and I is the identity matrix; that is

(7.68)

Hence, the covariance matrix of the rotated noise vector is

(7.69)

where, in the last two lines, we have made use of (7.68) and (7.64).
In light of these three reasons, we may, therefore, express the observation vector in the

rotated message constellation as
(7.70)

QQ
T

I=

si rotate Qsi i 1 2  M  ==

wrotate Qw=

� wrotate  � Qw =

Q� w =

0=

� ww
T 

N0

2
------I=

� wrotatewrotate
T  � Qw Qw T =

� Qww
T

Q
T =

Q� ww
T QT

=

N0

2
------QQ

T
=

N0

2
------I=

xrotate Qsi w i 1 2  M  =+=
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346 Chapter 7 Signaling over AWGN Channels

Using (7.65) and (7.70), we may now express the Euclidean distance between the rotated
vectors xrotate and srotate as

(7.71)

where, in the last line, we made use of (7.43).
We may, therefore, formally state the principle of rotational invariance:

If a message constellation is rotated by the transformation

si,rotate = Qsi, i = 1, 2, , M

where Q is an orthonormal matrix, then the probability of symbol error Pe 
incurred in maximum likelihood signal-detection over an AWGN channel is 
completely unchanged.

EXAMPLE 3 Illustration of Rotational Invariance

To illustrate the principle of rotational invariance, consider the signal constellation shown
in Figure 7.10a. The constellation is the same as that of Figure 7.10b, except for the fact
that it has been rotated through 45°. Although these two constellations do indeed look
different in a geometric sense, the principle of rotational invariance teaches us
immediately that the Pe is the same for both of them.

Invariance of the Probability to Translation

Consider next the invariance of Pe to translation. Suppose all the message points in a
signal constellation are translated by a constant vector amount a, as shown by

(7.72)

xrotate si rotate– Qsi w Qsi–+=

w=

x si– i 1 2  M  ==

Figure 7.10 A pair of signal constellations for illustrating the principle 
of rotational invariance. 
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7.5 Probability of Error 347

The observation vector is correspondingly translated by the same vector amount, as shown
by

(7.73)

From (7.72) and (7.73) we see that the translation a is common to both the translated signal
vector si and translated observation vector x. We, therefore, immediately deduce that

(7.74)

and thus formulate the principle of translational invariance:

If a signal constellation is translated by a constant vector amount, then the 
probability of symbol error Pe incurred in maximum likelihood signal detection 
over an AWGN channel is completely unchanged.

EXAMPLE 4 Translation of Signal Constellation

As an example, consider the two signal constellations shown in Figure 7.11, which pertain
to a pair of different four-level PAM signals. The constellation of Figure 7.11b is the same
as that of Figure 7.11a, except for a translation 32 to the right along the 1-axis. The
principle of translational invariance teaches us that the Pe is the same for both of these
signal constellations.

Union Bound on the Probability of Error

For AWGN channels, the formulation of the average probability of symbol error2 Pe is
conceptually straightforward, in that we simply substitute (7.41) into (7.63).
Unfortunately, however, numerical computation of the integral so obtained is impractical,
except in a few simple (nevertheless, important) cases. To overcome this computational
difficulty, we may resort to the use of bounds, which are usually adequate to predict the
SNR (within a decibel or so) required to maintain a prescribed error rate. The
approximation to the integral defining Pe is made by simplifying the integral or
simplifying the region of integration. In the following, we use the latter procedure to
develop a simple yet useful upper bound, called the union bound, as an approximation to
the average probability of symbol error for a set of M equally likely signals (symbols) in
an AWGN channel.

Let Aik, with (i,k) = 1, 2, , M, denote the event that the observation vector x is closer

to the signal vector sk than to si, when the symbol mi (message vector si) is sent. The

conditional probability of symbol error when symbol mi is sent, Pe(mi), is equal to the

xtranslate x a–=

xtranslate si translate– x si– for i 1 2  M  ==

Figure 7.11 A pair of signal constellations for illustrating the principle of translational invariance. 
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348 Chapter 7 Signaling over AWGN Channels

probability of the union of events, defined by the set . Probability theory

teaches us that the probability of a finite union of events is overbounded by the sum of the

probabilities of the constituent events. We may, therefore, write

(7.75)

EXAMPLE 5 Constellation of Four Message Points

To illustrate applicability of the union bound, consider Figure 7.12 for the case of M = 4.
Figure 7.12a shows the four message points and associated decision regions, with the
point s1 assumed to represent a transmitted symbol. Figure 7.12b shows the three
constituent signal-space descriptions where, in each case, the transmitted message point s1
and one other message point are retained. According to Figure 7.12a the conditional
probability of symbol error, Pe(mi), is equal to the probability that the observation vector x

Aik 
k 1=
k i

M

Pe mi  � Aik  i 1 2  M  =
k 1=
k i

M



Figure 7.12 Illustrating the union bound. (a) Constellation of four message points. (b) Three 
constellations with a common message point and one other message point x retained from the 
original constellation. 
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7.5 Probability of Error 349

lies in the shaded region of the two-dimensional signal-space diagram. Clearly, this
probability is less than the sum of the probabilities of the three individual events that x lies
in the shaded regions of the three constituent signal spaces depicted in Figure 7.12b.

Pairwise Error Probability

It is important to note that, in general, the probability �(Aik) is different from the
probability , which is the probability that the observation vector x is closer
to the signal vector sk (i.e., symbol mk) than every other when the vector si (i.e., symbol
mi) is sent. On the other hand, the probability �(Aik) depends on only two signal vectors,
si and sk. To emphasize this difference, we rewrite (7.75) by adopting pik in place of
�(Aik). We thus write

(7.76)

The probability pik is called the pairwise error probability, in that if a digital
communication system uses only a pair of signals, si and sk, then pik is the probability of
the receiver mistaking sk for si.

Consider then a simplified digital communication system that involves the use of two
equally likely messages represented by the vectors si and sk. Since white Gaussian noise is
identically distributed along any set of orthogonal axes, we may temporarily choose the
first axis in such a set as one that passes through the points si and sk; for three illustrative
examples, see Figure 7.12b. The corresponding decision boundary is represented by the
bisector that is perpendicular to the line joining the points si and sk. Accordingly, when the
vector si (i.e., symbol mi) is sent, and if the observation vector x lies on the side of the
bisector where sk lies, an error is made. The probability of this event is given by

(7.77)

where dik in the lower limit of the integral is the Euclidean distance between signal vectors
si and sk; that is,

(7.78)

To change the integral of (7.77) into a standard form, define a new integration variable

(7.79)

Equation (7.77) is then rewritten in the desired form

(7.80)

� m̂ mk mi= 

Pe mi  pik i 1 2  M  =

k 1=
k i

M



pik �(x is closer to skthan si when si is sent)=

1

N0

-------------- v
2

N0
------–

 
 
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
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dik si sk–=

z 2
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350 Chapter 7 Signaling over AWGN Channels

The integral in (7.80) is the Q-function of (3.68) that was introduced in Chapter 3. In terms
of the Q-function, we may now express the probability pik in the compact form

(7.81)

Correspondingly, substituting (7.81) into (7.76), we write

(7.82)

The probability of symbol error, averaged over all the M symbols, is, therefore, over-
bounded as follows:

(7.83)

where  i is the probability of sending symbol mi.
There are two special forms of (7.83) that are noteworthy:

1. Suppose that the signal constellation is circularly symmetric about the origin. Then,
the conditional probability of error Pe(mi) is the same for all i, in which case (7.83)
reduces to

(7.84)

Figure 7.10 illustrates two examples of circularly symmetric signal constellations.

2. Define the minimum distance of a signal constellation dmin as the smallest Euclidean
distance between any two transmitted signal points in the constellation, as shown by

(7.85)

Then, recognizing that the Q-function is a monotonically decreasing function of its
argument, we have

(7.86)

Therefore, in general, we may simplify the bound on the average probability of
symbol error in (7.83) as

(7.87)
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 
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 
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 
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 
 
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The Q-function in (7.87) is itself upper bounded as3

(7.88)

Accordingly, we may further simplify the bound on Pe in (7.87) as

(7.89)

In words, (7.89) states the following:

In an AWGN channel, the average probability of symbol error Pe 
decreases exponentially as the squared minimum distance, .

Bit Versus Symbol Error Probabilities

Thus far, the only figure of merit we have used to assess the noise performance of a digital
communication system in AWGN has been the average probability of symbol (word)
error. This figure of merit is the natural choice when messages of length m = log2 M are
transmitted, such as alphanumeric symbols. However, when the requirement is to transmit
binary data such as digital computer data, it is often more meaningful to use another figure
of merit called the BER. Although, in general, there are no unique relationships between
these two figures of merit, it is fortunate that such relationships can be derived for two
cases of practical interest, as discussed next.

Case 1: M-tuples Differing in Only a Single Bit

Suppose that it is possible to perform the mapping from binary to M-ary symbols in such a
way that the two binary M-tuples corresponding to any pair of adjacent symbols in the M-ary
modulation scheme differ in only one bit position. This mapping constraint is satisfied by
using a Gray code. When the probability of symbol error Pe is acceptably small, we find that
the probability of mistaking one symbol for either one of the two “nearest” symbols is
greater than any other kind of symbol error. Moreover, given a symbol error, the most
probable number of bit errors is one, subject to the aforementioned mapping constraint.
Since there are log2M bits per symbol, it follows that the average probability of symbol error
is related to the BER as follows:

(7.90)

where, in the first line,  is the symbol for “union” as used in set theory. We also note that

(7.91)
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It follows, therefore, that the BER is bounded as follows:

(7.92)

Case 2: Number of Symbols Equal to Integer Power of 2

Suppose next M = 2K, where K is an integer. We assume that all symbol errors are equally
likely and occur with probability

where Pe is the average probability of symbol error. To find the probability that the ith bit
in a symbol is in error, we note that there are 2K – 1 cases of symbol error in which this
particular bit is changed and there are 2K – 1 cases in which it is not. Hence, the BER is

(7.93)

or, equivalently,

(7.94)

Note that, for large M, the BER approaches the limiting value of Pe2. Note also that the
bit errors are not independent in general.

7.6 Phase-Shift Keying Techniques Using Coherent Detection

With the background material on the coherent detection of signals in AWGN presented in
Sections 7.2–7.4 at our disposal, we are now ready to study specific passband data-
transmission systems. In this section, we focus on the family of phase-shift keying (PSK)
techniques, starting with the simplest member of the family discussed next.

Binary Phase-Shift Keying

In a binary PSK system, the pair of signals s1(t) and s2(t) used to represent binary symbols
1 and 0, respectively, is defined by

(7.95)

(7.96)

where Tb is the bit duration and Eb is the transmitted signal energy per bit. We find it con-
venient, although not necessary, to assume that each transmitted bit contains an integral
number of cycles of the carrier wave; that is, the carrier frequency fc is chosen equal to
ncTb for some fixed integer nc. A pair of sinusoidal waves that differ only in a relative
phase-shift of 180°, defined in (7.95) and (7.96), is referred to as an antipodal signal.
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Signal-Space Diagram of Binary PSK Signals
From this pair of equations it is clear that, in the case of binary PSK, there is only one
basis function of unit energy:

(7.97)

Then, we may respectively express the transmitted signals s1(t) and s2(t) in terms of 1(t) as 

(7.98)

 (7.99)

A binary PSK system is, therefore, characterized by having a signal space that is
one-dimensional (i.e., N = 1), with a signal constellation consisting of two message points
(i.e., M = 2). The respective coordinates of the two message points are

(7.100)

(7.101)

In words, the message point corresponding to s1(t) is located at  and the
message point corresponding to s2(t) is located at . Figure 7.13a displays the
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Figure 7.13
(a) Signal-space diagram 
for coherent binary 
PSK system. (b) The 
waveforms depicting 
the transmitted signals 
s1(t) and s2(t), assuming 
nc = 2. 
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354 Chapter 7 Signaling over AWGN Channels

signal-space diagram for binary PSK and Figure 7.13b shows example waveforms of
antipodal signals representing s1(t) and s2(t). Note that the binary constellation of Figure
7.13 has minimum average energy.

Generation of a binary PSK signal follows readily from (7.97) to (7.99). Specifically, as
shown in the block diagram of Figure 7.14a, the generator (transmitter) consists of two
components:

1. Polar NRZ-level encoder, which represents symbols 1 and 0 of the incoming binary
sequence by amplitude levels  and , respectively.

2. Product modulator, which multiplies the output of the polar NRZ encoder by the
basis function 1(t); in effect, the sinusoidal 1(t) acts as the “carrier” of the binary
PSK signal.

Accordingly, binary PSK may be viewed as a special form of DSB-SC modulation that
was studied in Section 2.14.

Error Probability of Binary PSK Using Coherent Detection
To make an optimum decision on the received signal x(t) in favor of symbol 1 or symbol 0
(i.e., estimate the original binary sequence at the transmitter input), we assume that the
receiver has access to a locally generated replica of the basis function 1(t). In other
words, the receiver is synchronized with the transmitter, as shown in the block diagram of
Figure 7.14b. We may identify two basic components in the binary PSK receiver:

1. Correlator, which correlates the received signal x(t) with the basis function 1(t) on
a bit-by-bit basis.

2. Decision device, which compares the correlator output against a zero-threshold,
assuming that binary symbols 1 and 0 are equiprobable. If the threshold is exceeded,
a decision is made in favor of symbol 1; if not, the decision is made in favor of
symbol 0. Equality of the correlator with the zero-threshold is decided by the toss of
a fair coin (i.e., in a random manner).

With coherent detection in place, we may apply the decision rule of (7.54). Specifically,
we partition the signal space of Figure 7.13 into two regions:

• the set of points closest to message point 1 at ; and

• the set of points closest to message point 2 at .

This is accomplished by constructing the midpoint of the line joining these two message
points and then marking off the appropriate decision regions. In Figure 7.13, these two
decision regions are marked Z1 and Z2, according to the message point around which they
are constructed.

The decision rule is now simply to decide that signal s1(t) (i.e., binary symbol 1) was
transmitted if the received signal point falls in region Z1 and to decide that signal s2(t)
(i.e., binary symbol 0) was transmitted if the received signal point falls in region Z2. Two
kinds of erroneous decisions may, however, be made:

1. Error of the first kind. Signal s2(t) is transmitted but the noise is such that the received
signal point falls inside region Z1; so the receiver decides in favor of signal s1(t). 

2. Error of the second kind. Signal s1(t) is transmitted but the noise is such that the
received signal point falls inside region Z2; so the receiver decides in favor of signal s2(t).

+ Eb Eb–

+ Eb

Eb–
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 355

To calculate the probability of making an error of the first kind, we note from Figure 7.13a
that the decision region associated with symbol 1 or signal s1(t) is described by

where the observable element x1 is related to the received signal x(t) by

(7.102)

The conditional probability density function of random variable X1, given that symbol 0
(i.e., signal s2(t)) was transmitted, is defined by

(7.103)

Using (7.101) in this equation yields 

(7.104)

The conditional probability of the receiver deciding in favor of symbol 1, given that
symbol 0 was transmitted, is therefore

(7.105)

Putting

(7.106)

Figure 7.14 Block diagrams for (a) binary PSK transmitter and (b) coherent 
binary PSK receiver. 
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356 Chapter 7 Signaling over AWGN Channels

and changing the variable of integration from x1 to z, we may compactly rewrite (7.105) in
terms of the Q-function:

(7.107)

Using the formula of (3.68) in Chapter 3 for the Q-function in (7.107) we get

(7.108)

Consider next an error of the second kind. We note that the signal space of Figure 7.13a is
symmetric with respect to the origin. It follows, therefore, that p01, the conditional
probability of the receiver deciding in favor of symbol 0, given that symbol 1 was
transmitted, also has the same value as in (7.108).

Thus, averaging the conditional error probabilities p10 and p01, we find that the average
probability of symbol error or, equivalently, the BER for binary PSK using coherent
detection and assuming equiprobable symbols is given by

(7.109)

As we increase the transmitted signal energy per bit Eb for a specified noise spectral
density N02, the message points corresponding to symbols 1 and 0 move further apart and
the average probability of error Pe is correspondingly reduced in accordance with (7.109),
which is intuitively satisfying.

Power Spectra of Binary PSK Signals
Examining (7.97) and (7.98), we see that a binary PSK wave is an example of DSB-SC
modulation that was discussed in Section 2.14. More specifically, it consists of an in-phase
component only. Let g(t) denote the underlying pulse-shaping function defined by

(7.110)

Depending on whether the transmitter input is binary symbol 1 or 0, the corresponding
transmitter output is +g(t) or –g(t), respectively. It is assumed that the incoming binary
sequence is random, with symbols 1 and 0 being equally likely and the symbols
transmitted during the different time slots being statistically independent. 

In Example 6 of Chapter 4, it was shown that the power spectral density of a random
binary wave so described is equal to the energy spectral density of the symbol shaping
function divided by the symbol duration. The energy spectral density of a Fourier-
transformable signal g(t) is defined as the squared magnitude of the signal’s Fourier
transform. For the binary PSK signal at hand, the baseband power spectral density is,
therefore, defined by

p10
1

2
---------- z

2

2
----– 

 exp  dz
2Eb N0



=

p10 Q
2Eb

N0
---------

 
 
 

=

Pe Q
2Eb

N0
---------

 
 
 

=

g t 
2Eb

Tb
--------- , 0 t Tb 

0, otherwise





=

Haykin_ch07_pp3.fm  Page 356  Monday, November 26, 2012  1:16 PM
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(7.111)

Examining (7.111), we may make the following observations on binary PSK:

1. The power spectral density SB(f) is symmetric about the vertical axis, as expected.

2. SB(f) goes through zero at multiples of the bit rate; that is, f = 1Tb, 2Tb, 
3. With sin2(Tb f) limited to a maximum value of unity, SB(f) falls off as the inverse

square of the frequency, f.

These three observations are all embodied in the plot of SB(f) versus f, presented in Figure 7.15.
Figure 7.15 also includes a plot of the baseband power spectral density of a binary

frequency-shift keying (FSK) signal, details of which are presented in Section 7.8.
Comparison of these two spectra is deferred to that section.

Quadriphase-Shift Keying

The provision of reliable performance, exemplified by a very low probability of error, is
one important goal in the design of a digital communication system. Another important
goal is the efficient utilization of channel bandwidth. In this subsection we study a
bandwidth-conserving modulation scheme known as quadriphase-shift keying (QPSK),
using coherent detection.

As with binary PSK, information about the message symbols in QPSK is contained in
the carrier phase. In particular, the phase of the carrier takes on one of four equally spaced

Figure 7.15 Power spectra of binary PSK and FSK signals. 
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358 Chapter 7 Signaling over AWGN Channels

values, such as 4, 34, 54, and 74. For this set of values, we may define the trans-
mitted signal as

(7.112)

where E is the transmitted signal energy per symbol and T is the symbol duration. The
carrier frequency fc equals nc/T for some fixed integer nc. Each possible value of the phase
corresponds to a unique dibit (i.e., pair of bits). Thus, for example, we may choose the
foregoing set of phase values to represent the Gray-encoded set of dibits, 10, 00, 01, and
11, where only a single bit is changed from one dibit to the next.

Signal-Space Diagram of QPSK Signals
Using a well-known trigonometric identity, we may expand (7.112) to redefine the
transmitted signal in the canonical form:

(7.113)

where i = 1, 2, 3, 4. Based on this representation, we make two observations:

1. There are two orthonormal basis functions, defined by a pair of quadrature carriers:

 (7.114)

  (7.115)
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2. There are four message points, defined by the two-dimensional signal vector

(7.116)

Elements of the signal vectors, namely si1 and si2, have their values summarized in
Table 7.2; the first two columns give the associated dibit and phase of the QPSK signal.

Accordingly, a QPSK signal has a two-dimensional signal constellation (i.e., N = 2) and
four message points (i.e., M = 4) whose phase angles increase in a counterclockwise
direction, as illustrated in Figure 7.16. As with binary PSK, the QPSK signal has minimum
average energy. 

EXAMPLE 6 QPSK Waveforms

Figure 7.17 illustrates the sequences and waveforms involved in the generation of a QPSK
signal. The input binary sequence 01101000 is shown in Figure 7.17a. This sequence is
divided into two other sequences, consisting of odd- and even-numbered bits of the input
sequence. These two sequences are shown in the top lines of Figure 7.17b and c. The
waveforms representing the two components of the QPSK signal, namely si11(t) and
si22(t) are also shown in Figure 7.17b and c, respectively. These two waveforms may
individually be viewed as examples of a binary PSK signal. Adding them, we get the
QPSK waveform shown in Figure 7.17d.

To define the decision rule for the coherent detection of the transmitted data sequence,
we partition the signal space into four regions, in accordance with Table 7.2. The
individual regions are defined by the set of symbols closest to the message point
represented by message vectors s1, s2, s3, and s4. This is readily accomplished by
constructing the perpendicular bisectors of the square formed by joining the four message
points and then marking off the appropriate regions. We thus find that the decision regions

Table 7.2 Signal-space characterization of QPSK

Gray-encoded 
input dibit

Phase of 
QPSK signal 
(radians)

Coordinates of message points

 si1  si2

11 /4

01 3/4

00 5/4

10 7/4
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360 Chapter 7 Signaling over AWGN Channels

are quadrants whose vertices coincide with the origin. These regions are marked Z1, Z2,
Z3, and Z4 in Figure 7.17, according to the message point around which they are
constructed.

Generation and Coherent Detection of QPSK Signals
Expanding on the binary PSK transmitter of Figure 7.14a, we may build on (7.113) to
(7.115) to construct the QPSK transmitter shown in Figure 7.18a. A distinguishing feature
of the QPSK transmitter is the block labeled demultiplexer. The function of the
demultiplexer is to divide the binary wave produced by the polar NRZ-level encoder into
two separate binary waves, one of which represents the odd-numbered dibits in the
incoming binary sequence and the other represents the even-numbered dibits.
Accordingly, we may make the following statement:

The QPSK transmitter may be viewed as two binary PSK generators that work 
in parallel, each at a bit rate equal to one-half the bit rate of the original binary 
sequence at the QPSK transmitter input.

Figure 7.17 (a) Input binary sequence. (b) Odd-numbered dibits of input sequence and associated 
binary PSK signal. (c) Even-numbered dibits of input sequence and associated binary PSK signal. 
(d) QPSK waveform defined as s(t) = si1 1 (t) + si2 2 (t).
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 361

Expanding on the binary PSK receiver of Figure 7.14b, we find that the QPSK receiver is
structured in the form of an in-phase path and a quadrature path, working in parallel as
depicted in Figure 7.18b. The functional composition of the QPSK receiver is as follows:

1. Pair of correlators, which have a common input x(t). The two correlators are
supplied with a pair of locally generated orthonormal basis functions 1(t) and 2(t),
which means that the receiver is synchronized with the transmitter. The correlator
outputs, produced in response to the received signal x(t), are denoted by x1 and x2,
respectively.

2. Pair of decision devices, which act on the correlator outputs x1 and x2 by comparing
each one with a zero-threshold; here, it is assumed that the symbols 1 and 0 in the

Figure 7.18 Block diagram of (a) QPSK transmitter and (b) coherent QPSK receiver. 
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362 Chapter 7 Signaling over AWGN Channels

original binary stream at the transmitter input are equally likely. If x1 > 0, a decision
is made in favor of symbol 1 for the in-phase channel output; on the other hand, if
x1  0, then a decision is made in favor of symbol 0. Similar binary decisions are
made for the quadrature channel.

3.  Multiplexer, the function of which is to combine the two binary sequences produced
by the pair of decision devices. The resulting binary sequence so produced provides
an estimate of the original binary stream at the transmitter input.

Error Probability of QPSK
In a QPSK system operating on an AWGN channel, the received signal x(t) is defined by

(7.117)

where w(t) is the sample function of a white Gaussian noise process of zero mean and
power spectral density N02.

Referring to Figure 7.18a, we see that the two correlator outputs, x1 and x2, are
respectively defined as follows:

(7.118)

and

(7.119)

Thus, the observable elements x1 and x2 are sample values of independent Gaussian
random variables with mean values equal to  and , respectively, and with
a common variance equal to N02.

The decision rule is now simply to say that s1(t) was transmitted if the received signal
point associated with the observation vector x falls inside region Z1; say that s2(t) was
transmitted if the received signal point falls inside region Z2, and so on for the other two
regions Z3 and Z4. An erroneous decision will be made if, for example, signal s4(t) is
transmitted but the noise w(t) is such that the received signal point falls outside region Z4.

To calculate the average probability of symbol error, recall that a QPSK receiver is in
fact equivalent to two binary PSK receivers working in parallel and using two carriers that
are in phase quadrature. The in-phase channel x1 and the quadrature channel output x2
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 363

(i.e., the two elements of the observation vector x) may be viewed as the individual
outputs of two binary PSK receivers. Thus, according to (7.118) and (7.119), these two
binary PSK receivers are characterized as follows:

• signal energy per bit equal to E2, and
• noise spectral density equal to N02.

Hence, using (7.109) for the average probability of bit error of a coherent binary PSK
receiver, we may express the average probability of bit error in the in-phase and
quadrature paths of the coherent QPSK receiver as

(7.120)

where E is written in place of 2Eb. Another important point to note is that the bit errors in
the in-phase and quadrature paths of the QPSK receiver are statistically independent. The
decision device in the in-phase path accounts for one of the two bits constituting a symbol
(dibit) of the QPSK signal, and the decision device in the quadrature path takes care of the
other dibit. Accordingly, the average probability of a correct detection resulting from the
combined action of the two channels (paths) working together is

(7.121)

The average probability of symbol error for QPSK is therefore

(7.122)

In the region where (EN0) >> 1, we may ignore the quadratic term on the right-hand side of
(7.122), so the average probability of symbol error for the QPSK receiver is approximated as

(7.123)

Equation (7.123) may also be derived in another insightful way, using the signal-space
diagram of Figure 7.16. Since the four message points of this diagram are circularly
symmetric with respect to the origin, we may apply the approximate formula of (7.85)
based on the union bound. Consider, for example, message point m1 (corresponding to
dibit 10) chosen as the transmitted message point. The message points m2 and m4
(corresponding to dibits 00 and 11) are the closest to m1. From Figure 7.16 we readily find
that m1 is equidistant from m2 and m4 in a Euclidean sense, as shown by

Assuming that EN0 is large enough to ignore the contribution of the most distant message
point m3 (corresponding to dibit 01) relative to m1, we find that the use of (7.85) with the
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364 Chapter 7 Signaling over AWGN Channels

equality sign yields an approximate expression for Pe that is the same as that of (7.123).
Note that in mistaking either m2 or m4 for m1, a single bit error is made; on the other hand,
in mistaking m3 for m1, two bit errors are made. For a high enough EN0, the likelihood of
both bits of a symbol being in error is much less than a single bit, which is a further
justification for ignoring m3 in calculating Pe when m1 is sent.

In a QPSK system, we note that since there are two bits per symbol, the transmitted
signal energy per symbol is twice the signal energy per bit, as shown by

(7.124)

Thus, expressing the average probability of symbol error in terms of the ratio EbN0, we
may write

(7.125)

With Gray encoding used for the incoming symbols, we find from (7.120) and (7.124) that
the BER of QPSK is exactly

(7.126)

We may, therefore, state that a QPSK system achieves the same average probability of bit
error as a binary PSK system for the same bit rate and the same EbN0, but uses only half
the channel bandwidth. Stated in another way: 

For the same Eb/N0 and, therefore, the same average probability of bit error, a 
QPSK system transmits information at twice the bit rate of a binary PSK system 
for the same channel bandwidth. 

For a prescribed performance, QPSK uses channel bandwidth better than binary PSK,
which explains the preferred use of QPSK over binary PSK in practice.

Earlier we stated that the binary PSK may be viewed as a special case of DSB-SC
modulation. In a corresponding way, we may view the QPSK as a special case of the
quadrature amplitude modulation (QAM) in analog modulation theory.

Power Spectra of QPSK Signals
Assume that the binary wave at the modulator input is random with symbols 1 and 0 being
equally likely, and with the symbols transmitted during adjacent time slots being
statistically independent. We then make the following observations pertaining to the in-
phase and quadrature components of a QPSK signal:

1. Depending on the dibit sent during the signaling interval –Tb  t  Tb, the in-phase
component equals +g(t) or –g(t), and similarly for the quadrature component. The
g(t) denotes the symbol-shaping function defined by

(7.127)
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Hence, the in-phase and quadrature components have a common power spectral
density, namely, E sinc2(Tf).

2. The in-phase and quadrature components are statistically independent. Accordingly,
the baseband power spectral density of the QPSK signal equals the sum of the
individual power spectral densities of the in-phase and quadrature components, so
we may write

(7.128)

Figure 7.19 plots SB(f ), normalized with respect to 4Eb, versus the normalized frequency
Tb f. This figure also includes a plot of the baseband power spectral density of a certain
form of binary FSK called minimum shift keying, the evaluation of which is presented in
Section 7.8. Comparison of these two spectra is deferred to that section.

Offset QPSK

For a variation of the QPSK, consider the signal-space diagram of Figure 7.20a that
embodies all the possible phase transitions that can arise in the generation of a QPSK
signal. More specifically, examining the QPSK waveform illustrated in Figure 7.17 for
Example 6, we may make three observations:

1. The carrier phase changes by 180° whenever both the in-phase and quadrature
components of the QPSK signal change sign. An example of this situation is
illustrated in Figure 7.17 when the input binary sequence switches from dibit 01 to
dibit 10.

Figure 7.19 Power spectra of QPSK and MSK signals.
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366 Chapter 7 Signaling over AWGN Channels

2. The carrier phase changes by 90° whenever the in-phase or quadrature component
changes sign. An example of this second situation is illustrated in Figure 7.17 when
the input binary sequence switches from dibit 10 to dibit 00, during which the in-
phase component changes sign, whereas the quadrature component is unchanged.

3. The carrier phase is unchanged when neither the in-phase component nor the
quadrature component changes sign. This last situation is illustrated in Figure 7.17
when dibit 10 is transmitted in two successive symbol intervals.

Situation 1 and, to a much lesser extent, situation 2 can be of a particular concern when the
QPSK signal is filtered during the course of transmission, prior to detection. Specifically,
the 180° and 90° shifts in carrier phase can result in changes in the carrier amplitude (i.e.,
envelope of the QPSK signal) during the course of transmission over the channel, thereby
causing additional symbol errors on detection at the receiver.

To mitigate this shortcoming of QPSK, we need to reduce the extent of its amplitude
fluctuations. To this end, we may use offset QPSK.4 In this variant of QPSK, the bit stream
responsible for generating the quadrature component is delayed (i.e., offset) by half a
symbol interval with respect to the bit stream responsible for generating the in-phase
component. Specifically, the two basis functions of offset QPSK are defined by

(7.129)

and

(7.130)

The 1(t) of (7.129) is exactly the same as that of (7.114) for QPSK, but the 2(t) of
(7.130) is different from that of (7.115) for QPSK. Accordingly, unlike QPSK, the phase
transitions likely to occur in offset QPSK are confined to 90°, as indicated in the signal-
space diagram of Figure 7.20b. However, 90° phase transitions in offset QPSK occur
twice as frequently but with half the intensity encountered in QPSK. Since, in addition to
90° phase transitions, 180° phase transitions also occur in QPSK, we find that
amplitude fluctuations in offset QPSK due to filtering have a smaller amplitude than in the
case of QPSK.

Figure 7.20 Possible paths for switching between the message points 
in (a) QPSK and (b) offset QPSK.
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 367

Despite the delay T/2 applied to the basis function 2(t) in (7.130) compared with that
in (7.115) for QPSK, the offset QPSK has exactly the same probability of symbol error in
an AWGN channel as QPSK. The equivalence in noise performance between these PSK
schemes assumes the use of coherent detection at the receiver. The reason for the
equivalence is that the statistical independence of the in-phase and quadrature components
applies to both QPSK and offset QPSK. We may, therefore, say that Equation (7.123) for
the average probability of symbol error applies equally well to the offset QPSK.

M-ary PSK

QPSK is a special case of the generic form of PSK commonly referred to as M-ary PSK,
where the phase of the carrier takes on one of M possible values: i = 2(i – 1)M, where
i = 1, 2, , M. Accordingly, during each signaling interval of duration T, one of the M
possible signals

(7.131)

is sent, where E is the signal energy per symbol. The carrier frequency fc = ncT for some
fixed integer nc.

Each si(t) may be expanded in terms of the same two basis functions 1(t) and 2(t); the
signal constellation of M-ary PSK is, therefore, two-dimensional. The M message points
are equally spaced on a circle of radius  and center at the origin, as illustrated in Figure
7.21a for the case of octaphase-shift-keying (i.e., M = 8). 

From Figure 7.21a we see that the signal-space diagram is circularly symmetric. We
may, therefore, apply (7.85), based on the union bound, to develop an approximate formula
for the average probability of symbol error for M-ary PSK. Suppose that the transmitted
signal corresponds to the message point m1, whose coordinates along the 1- and 2-axes are

 and 0, respectively. Suppose that the ratio EN0 is large enough to consider the nearest
two message points, one on either side of m1, as potential candidates for being mistaken for
m1 due to channel noise. This is illustrated in Figure 7.21b for the case of M = 8. The
Euclidean distance for each of these two points from m1 is (for M = 8)

Hence, the use of (7.85) yields the average probability of symbol error for coherent M-ary
PSK as

(7.132)

where it is assumed that M  4. The approximation becomes extremely tight for fixed M, as
EN0 is increased. For M = 4, (7.132) reduces to the same form given in (7.123) for QPSK.

Power Spectra of M-ary PSK Signals
The symbol duration of M-ary PSK is defined by

(7.133)
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368 Chapter 7 Signaling over AWGN Channels

Figure 7.21  (a) Signal-space diagram for octaphase-shift keying (i.e., M = 8). The 
decision boundaries are shown as dashed lines. (b) Signal-space diagram illustrating 
the application of the union bound for octaphase-shift keying. 
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7.6 Phase-Shift Keying Techniques Using Coherent Detection 369

where Tb is the bit duration. Proceeding in a manner similar to that described for a QPSK
signal, we may show that the baseband power spectral density of an M-ary PSK signal is
given by

(7.134)

Figure 7.22 is a plot of the normalized power spectral density SB(f)2Eb versus the
normalized frequency Tbf for three different values of M, namely M = 2, 4, 8. Equation
(7.134) includes (7.111) for M = 2 and (7.128) for M = 4 as two special cases.

The baseband power spectra of M-ary PSK signals plotted in Figure 7.22 possess a
main lobe bounded by well-defined spectral nulls (i.e., frequencies at which the power
spectral density is zero). In light of the discussion on the bandwidth of signals presented in
Chapter 2, we may use the main lobe as a basis for bandwidth assessment. Accordingly,
invoking the notion of null-to-null bandwidth, we may say that the spectral width of the
main lobe provides a simple, yet informative, measure for the bandwidth of M-ary PSK
signals. Most importantly, a large fraction of the average signal power is contained inside
the main lobe. On this basis, we may define the channel bandwidth required to pass M-ary
PSK signals through an analog channel as

(7.135)

where T is the symbol duration. But the symbol duration T is related to the bit duration Tb
by (7.133). Moreover, the bit rate Rb = 1Tb. Hence, we may redefine the channel
bandwidth of (7.135) in terms of the bit rate as

(7.136)

Figure 7.22 Power spectra of M-ary PSK signals for M = 2, 4, 8.
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370 Chapter 7 Signaling over AWGN Channels

Based on this formula, the bandwidth efficiency of M-ary PSK signals is given by

(7.137)

Table 7.3 gives the values of  calculated from (7.137) for varying M. In light of (7.132)
and Table 7.3, we now make the statement:

As the number of states in M-ary PSK is increased, the bandwidth efficiency is 
improved at the expense of error performance. 

However, note that if we are to ensure that there is no degradation in error performance,
we have to increase EbN0 to compensate for the increase in M.

7.7 M-ary Quadrature Amplitude Modulation

In an M-ary PSK system, the in-phase and quadrature components of the modulated signal
are interrelated in such a way that the envelope is constrained to remain constant. This
constraint manifests itself in a circular constellation for the message points, as illustrated
in Figure 7.21a. However, if this constraint is removed so as to permit the in-phase and
quadrature components to be independent, we get a new modulation scheme called M-ary
QAM. The QAM is a hybrid form of modulation, in that the carrier experiences amplitude
as well as phase-modulation.

In M-ary PAM, the signal-space diagram is one-dimensional. M-ary QAM is a two-
dimensional generalization of M-ary PAM, in that its formulation involves two orthogonal
passband basis functions:

(7.138)

Let dmin denote the minimum distance between any two message points in the QAM
constellation. Then, the projections of the ith message point on the 1- and 2-axes are
respectively defined by ai dmin2 and bi dmin2, where i = 1, 2, , M. With the separation
between two message points in the signal-space diagram being proportional to the square
root of energy, we may therefore set

(7.139)

Table 7.3 Bandwidth efficiency of M-ary PSK signals
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7.7 M-ary Quadrature Amplitude Modulation 371

where E0 is the energy of the message signal with the lowest amplitude. The transmitted
M-ary QAM signal for symbol k can now be defined in terms of E0:

(7.140)

The signal sk(t) involves two phase-quadrature carriers, each one of which is modulated by
a set of discrete amplitudes; hence the terminology “quadrature amplitude modulation.”

In M-ary QAM, the constellation of message points depends on the number of possible
symbols, M. In what follows, we consider the case of square constellations, for which the
number of bits per symbol is even.

QAM Square Constellations
With an even number of bits per symbol, we write

(7.141)

Under this condition, an M-ary QAM square constellation can always be viewed as the
Cartesian product of a one-dimensional L-ary PAM constellation with itself. By definition,
the Cartesian product of two sets of coordinates (representing a pair of one-dimensional
constellations) is made up of the set of all possible ordered pairs of coordinates with the
first coordinate in each such pair being taken from the first set involved in the product and
the second coordinate taken from the second set in the product.

Thus, the ordered pairs of coordinates naturally form a square matrix, as shown by

(7.142)

To calculate the probability of symbol error for this M-ary QAM, we exploit the following
property:

A QAM square constellation can be factored into the product of the 
corresponding L-ary PAM constellation with itself.

To exploit this statement, we may proceed in one of two ways:

Approach 1: We start with a signal constellation of the M-ary PAM for a prescribed M,
and then build on it to construct the corresponding signal constellation of the M-ary QAM.

Approach 2: We start with a signal constellation of the M-ary QAM, and then use it to
construct the corresponding orthogonal M-ary PAMS.

In the example to follow, we present a systematic procedure based on Approach 1.

EXAMPLE 7 M-ary QAM for M = 4

In Figure 7.23, we have constructed two signal constellations for the 4-ary PAM, one
vertically oriented along the 1-axis in part a of the figure, and the other horizontally
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372 Chapter 7 Signaling over AWGN Channels

oriented along the 2-axis in part b of the figure. These two parts are spatially orthogonal
to each other, accounting for the two-dimensional structure of the M-ary QAM. In
developing this structure, the following points should be born in mind:

• The same binary sequence is used for both 4-ary PAM constellations.
• The Gray encoding rule is applied, which means that as we move from one

codeword to an adjacent one, only a single bit is changed.
• In constructing the 4-ary QAM constellation, we move from one quadrant to the

next in a counterclockwise direction.

With four quadrants constituting the 4-ary QAM, we proceed in four stages as follows:

Stage 1: First-quadrant constellation. Referring to Figure 7.23, we use the codewords
along the positive parts of the 2 and 1-axes, respectively, to write

Stage 2: Second-quadrant constellation. Following the same procedure as in Stage 1, we
write

11

10

Top to
bottom

10 11

Left to
right

 1110 1111

1010 1011

First quadrant

11

10

Top to
bottom

01 00

Left to
right

 1101 1100

1001 1000

Second quadrant

Figure 7.23
The two orthogonal constellations of the 
4-ary PAM. (a) Vertically oriented 
constellation. (b) Horizontally oriented 
constellation. As mentioned in the text, 
we move top-down along the 2-axis and 
from left to right along the 1-axis.
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7.7 M-ary Quadrature Amplitude Modulation 373

Stage 3: Third-quadrant constellation. Again, following the same procedure as before,
we next write

Stage 4: Fourth-quadrant constellation. Finally, we write

The final step is to piece together these four constituent 4-ary PAM constellations to
construct the 4-ary QAM constellations as described in Figure 7.24. The important point
to note here is that all the codewords in Figure 7.24 obey the Gray encoding rule, not only
within each quadrant but also as we move from one quadrant to the next.

Average Probability of Error
In light of the equivalence established between the M-ary QAM and M-ary PAM, we may
formulate the average probability of error of the M-ary QAM by proceeding as follows:

1. The probability of correct detection for M-ary QAM is written as

(7.143)

where  is the probability of symbol error for the L-ary PAM.
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Figure 7.24
(a) Signal-space diagram of M-ary QAM for 
M = 16; the message points in each quadrant 
are identified with Gray-encoded quadbits. 
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2. With , the probability of symbol error  is itself defined by

 (7.144)

3. The probability of symbol error for M-ary QAM is given by

(7.145)

where it is assumed that  is small enough compared with unity to justify ignoring
the quadratic term.

Hence, using (7.143) and (7.144) in (7.145), we find that the probability of symbol error
for M-ary QAM is approximately given by

(7.146)

The transmitted energy in M-ary QAM is variable, in that its instantaneous value naturally
depends on the particular symbol transmitted. Therefore, it is more logical to express Pe in
terms of the average value of the transmitted energy rather than E0. Assuming that the L
amplitude levels of the in-phase or quadrature component of the M-ary QAM signal are
equally likely, we have

(7.147)

where the overall scaling factor 2 accounts for the equal contributions made by the in-phase
and quadrature components. The limits of the summation and the scaling factor 2 inside the
large parentheses account for the symmetric nature of the pertinent amplitude levels around
zero. Summing the series in (7.147), we get

(7.148)

    (7.149)

Accordingly, we may rewrite (7.146) in terms of Eav as

(7.150)

which is the desired result.
The case of M = 4 is of special interest. The signal constellation for this particular value

of M is the same as that for QPSK. Indeed, putting M = 4 in (7.150) and noting that, for
this special case, Eav equals E, where E is the energy per symbol, we find that the resulting
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formula for the probability of symbol error becomes identical to that in (7.123) for QPSK;
and so it should.

7.8 Frequency-Shift Keying Techniques Using Coherent Detection 

M-ary PSK and M-ary QAM share a common property: both of them are examples of
linear modulation. In this section, we study a nonlinear method of modulation known as
FSK using coherent detection. We begin the study by considering the simple case of
binary FSK, for which M = 2. 

Binary FSK

In binary FSK, symbols 1 and 0 are distinguished from each other by transmitting one of
two sinusoidal waves that differ in frequency by a fixed amount. A typical pair of
sinusoidal waves is described by

(7.151)

where i = 1, 2 and Eb is the transmitted signal energy per bit; the transmitted frequency is
set at

(7.152)

Symbol 1 is represented by s1(t) and symbol 0 by s2(t). The FSK signal described here is
known as Sunde’s FSK. It is a continuous-phase signal, in the sense that phase continuity
is always maintained, including the inter-bit switching times. 

From (7.151) and (7.152), we observe directly that the signals s1(t) and s2(t) are
orthogonal, but not normalized to have unit energy. The most useful form for the set of
orthonormal basis functions is described by

(7.153)

where i = 1, 2. Correspondingly, the coefficient sij for where i = 1, 2 and j = 1, 2 is defined
by

(7.154)
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Carrying out the integration in (7.154), the formula for sij simplifies to

(7.155)

Thus, unlike binary PSK, binary FSK is characterized by having a signal-space diagram
that is two-dimensional (i.e., N = 2) with two message points (i.e., M = 2), as shown in
Figure 7.25. The two message points are defined by the vectors

(7.156)

sij
Eb, i j=

0, i j






=

s1
Eb

0
=

Figure 7.25 Signal-space diagram for binary FSK system. The diagram also includes example 
waveforms of the two modulated signals s1(t) and s2(t). 
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and

(7.157)

The Euclidean distance  is equal to . Figure 7.25 also includes a couple of
waveforms representative of signals s1(t) and s2(t).

Generation and Coherent Detection of Binary FSK Signals
The block diagram of Figure 7.26a describes a scheme for generating the binary FSK
signal; it consists of two components:

1. On–off level encoder, the output of which is a constant amplitude of  in
response to input symbol 1 and zero in response to input symbol 0.

2. Pair of oscillators, whose frequencies f1 and f2 differ by an integer multiple of the
bit rate 1Tb in accordance with (7.152). The lower oscillator with frequency f2 is
preceded by an inverter. When in a signaling interval, the input symbol is 1, the
upper oscillator with frequency f1 is switched on and signal s1(t) is transmitted,
while the lower oscillator is switched off. On the other hand, when the input symbol
is 0, the upper oscillator is switched off, while the lower oscillator is switched on

Figure 7.26 Block diagram for (a) binary FSK transmitter and (b) coherent binary FSK receiver. 
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and signal s2(t) with frequency f2 is transmitted. With phase continuity as a
requirement, the two oscillators are synchronized with each other. Alternatively, we
may use a voltage-controlled oscillator, in which case phase continuity is
automatically satisfied.

To coherently detect the original binary sequence given the noisy received signal x(t), we
may use the receiver shown in Figure 7.26b. It consists of two correlators with a common
input, which are supplied with locally generated coherent reference signals 1(t) and 2(t).
The correlator outputs are then subtracted, one from the other; the resulting difference y is
then compared with a threshold of zero. If y  0, the receiver decides in favor of 1. On the
other hand, if y  0, it decides in favor of 0. If y is exactly zero, the receiver makes a
random guess (i.e., flip of a fair coin) in favor of 1 or 0.

Error Probability of Binary FSK
The observation vector x has two elements x1 and x2 that are defined by, respectively,

(7.158)

and

(7.159)

where x(t) is the received signal, whose form depends on which symbol was transmitted.
Given that symbol 1 was transmitted, x(t) equals s1(t) + w(t), where w(t) is the sample
function of a white Gaussian noise process of zero mean and power spectral density N02.
If, on the other hand, symbol 0 was transmitted, x(t) equals s2(t) + w(t).

Now, applying the decision rule of (7.57) assuming the use of coherent detection at the
receiver, we find that the observation space is partitioned into two decision regions,
labeled Z1 and Z2 in Figure 7.25. The decision boundary, separating region Z1 from region
Z2, is the perpendicular bisector of the line joining the two message points. The receiver
decides in favor of symbol 1 if the received signal point represented by the observation
vector x falls inside region Z1. This occurs when x1  x2. If, on the other hand, we have
x1  x2, the received signal point falls inside region Z2 and the receiver decides in favor of
symbol 0. On the decision boundary, we have x1 = x2, in which case the receiver makes a
random guess in favor of symbol 1 or 0.

To proceed further, we define a new Gaussian random variable Y whose sample value y
is equal to the difference between x1 and x2; that is,

(7.160)

The mean value of the random variable Y depends on which binary symbol was
transmitted. Given that symbol 1 was sent, the Gaussian random variables X1 and X2,
whose sample values are denoted by x1 and x2, have mean values equal to  and zero,
respectively. Correspondingly, the conditional mean of the random variable Y given that
symbol 1 was sent is

(7.161)
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On the other hand, given that symbol 0 was sent, the random variables X1 and X2 have
mean values equal to zero and , respectively. Correspondingly, the conditional mean
of the random variable Y given that symbol 0 was sent is

(7.162)

The variance of the random variable Y is independent of which binary symbol was sent.
Since the random variables X1 and X2 are statistically independent, each with a variance
equal to N02, it follows that

(7.163)

Suppose we know that symbol 0 was sent. The conditional probability density function of
the random variable Y is then given by

(7.164)

Since the condition x1  x2 or, equivalently, y  0 corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional probability of error given
that symbol 0 was sent is

(7.165)

To put the integral in (7.165) in a standard form involving the Q-function, we set

(7.166)

Then, changing the variable of integration from y to z, we may rewrite (7.165) as 

(7.167)

Similarly, we may show the p01, the conditional probability of error given that symbol 1
was sent, has the same value as in (7.167). Accordingly, averaging p10 and p01 and
assuming equiprobable symbols, we find that the average probability of bit error or,
equivalently, the BER for binary FSK using coherent detection is 

(7.168)
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Comparing (7.108) and (7.168), we see that for a binary FSK receiver to maintain the
same BER as in a binary PSK receiver, the bit energy-to-noise density ratio, EbN0, has to
be doubled. This result is in perfect accord with the signal-space diagrams of Figures 7.13
and 7.25, where we see that in a binary PSK system the Euclidean distance between the
two message points is equal to , whereas in a binary FSK system the corresponding
distance is . For a prescribed Eb, the minimum distance dmin in binary PSK is,
therefore,  times that in binary FSK. Recall from (7.89) that the probability of error
decreases exponentially as ; hence the difference between (7.108) and (7.168).

Power Spectra of Binary FSK Signals
Consider the case of Sunde’s FSK, for which the two transmitted frequencies f1 and f2
differ by an amount equal to the bit rate 1Tb, and their arithmetic mean equals the nominal
carrier frequency fc; as mentioned previously, phase continuity is always maintained,
including inter-bit switching times. We may express this special binary FSK signal as a
frequency-modulated signal, defined by

(7.169)

Using a well-known trigonometric identity, we may reformulate s(t) in the expanded form

(7.170)

In the last line of (7.170), the plus sign corresponds to transmitting symbol 0 and the
minus sign corresponds to transmitting symbol 1. As before, we assume that the symbols 1
and 0 in the binary sequence applied to the modulator input are equally likely, and that the
symbols transmitted in adjacent time slots are statistically independent. Then, based on the
representation of (7.170), we may make two observations pertaining to the in-phase and
quadrature components of a binary FSK signal with continuous phase:

1. The in-phase component is completely independent of the input binary wave. It
equals  for all time t. The power spectral density of this
component, therefore, consists of two delta functions at  and weighted
by the factor Eb2Tb, and occurring at f = 12Tb.

2. The quadrature component is directly related to the input binary sequence. During
the signaling interval 0  t  Tb, it equals –g(t) when we have symbol 1 and +g(t)
when we have symbol 0, with g(t) denoting a symbol-shaping function defined by

(7.171)
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The energy spectral density of g(t) is defined by

(7.172)

The power spectral density of the quadrature component equals . It is also
apparent that the in-phase and quadrature components of the binary FSK signal are
independent of each other. Accordingly, the baseband power spectral density of Sunde’s
FSK signal equals the sum of the power spectral densities of these two components, as
shown by

(7.173)

From Chapter 4, we recall the following relationship between baseband modulated power
spectra:

(7.174)

where fc is the carrier frequency. Therefore, substituting (7.173) into (7.174), we find that
the power spectrum of the binary FSK signal contains two discrete frequency components,
one located at ( fc + 12Tb) = f1 and the other located at (fc – 12Tb) = f2, with their average
powers adding up to one-half the total power of the binary FSK signal. The presence of
these two discrete frequency components serves a useful purpose: it provides a practical
basis for synchronizing the receiver with the transmitter.

Examining (7.173), we may make the following statement:

The baseband power spectral density of a binary FSK signal with continuous 
phase ultimately falls off as the inverse fourth power of frequency. 

In Figure 7.15, we plotted the baseband power spectra of (7.111) and (7.173). (To simplify
matters, we have only plotted the results for positive frequencies.) In both cases, SB(f) is
shown normalized with respect to 2Eb, and the frequency is normalized with respect to the
bit rate Rb = 1Tb. The difference in the falloff rates of these spectra can be explained on
the basis of the pulse shape g(t). The smoother the pulse, the faster the drop of spectral
tails to zero. Thus, since binary FSK with continuous phase has a smoother pulse shape, it
has lower sidelobes than binary PSK does.

Suppose, next, the FSK signal exhibits phase discontinuity at the inter-bit switching
instants, which arises when the two oscillators supplying the basis functions with
frequencies f1 and f2 operate independently of each other. In this discontinuous scenario,
we find that power spectral density ultimately falls off as the inverse square of frequency.
Accordingly, we may state:

A binary FSK signal with continuous phase does not produce as much 
interference outside the signal band of interest as a corresponding FSK signal 
with discontinuous phase does. 
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The important point to take from this statement is summed up as follows: when
interference is an issue of practical concern, continuous FSK is preferred over its
discontinuous counterpart. However, this advantage of continuous FSK is gained at the
expense of increased system complexity.

Minimum Shift Keying

In the coherent detection of binary FSK signal, the phase information contained in the
received signal is not fully exploited, other than to provide for synchronization of the
receiver to the transmitter. We now show that by proper use of the continuous-phase
property when performing detection it is possible to improve the noise performance of the
receiver significantly. Here again, this improvement is achieved at the expense of
increased system complexity.

Consider a continuous-phase frequency-shift keying (CPFSK) signal, which is defined
for the signaling interval 0  t  Tb as follows:

(7.175)

where Eb is the transmitted signal energy per bit and Tb is the bit duration. The defining
equation (7.175) distinguishes itself from that of (7.151) in using the phase (0). This new
term, denoting the value of the phase at time t = 0, sums up the past history of the FM
process up to time t = 0. The frequencies f1 and f2 are sent in response to binary symbols 1
and 0, respectively, applied to the modulator input.

Another useful way of representing the CPFSK signal s(t) is to express it as a
conventional angle-modulated signal:

(7.176)

where (t) is the phase of s(t) at time t. When the phase (t) is a continuous function of
time, we find that the modulated signal s(t) is itself also continuous at all times, including
the inter-bit switching times. The phase (t) of a CPFSK signal increases or decreases
linearly with time during each bit duration of Tb seconds, as shown by

(7.177)

where the plus sign corresponds to sending symbol 1 and the minus sign corresponds to
sending symbol 0; the dimensionless parameter h is to be defined. Substituting (7.177)
into (7.176), and then comparing the angle of the cosine function with that of (7.175), we
deduce the following pair of relations:

(7.178)
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(7.179)

Solving this pair of equations for fc and h, we get

(7.180)

and
(7.181)

The nominal carrier frequency fc is, therefore, the arithmetic mean of the transmitted
frequencies f1 and f2. The difference between the frequencies f1 and f2, normalized with
respect to the bit rate 1Tb, defines the dimensionless parameter h, which is referred to as
the deviation ratio.

Phase Trellis
From (7.177) we find that, at time t = Tb,

(7.182)

That is to say, sending symbol 1 increases the phase of a CPFSK signal s(t) by h radians,
whereas sending symbol 0 reduces it by an equal amount.

The variation of phase (t) with time t follows a path consisting of a sequence of
straight lines, the slopes of which represent frequency changes. Figure 7.27 depicts
possible paths starting from t = 0. A plot like that shown in this figure is called a phase
tree. The tree makes clear the transitions of phase across successive signaling intervals.
Moreover, it is evident from the figure that the phase of a CPFSK signal is an odd or even
multiple of h radians at odd or even multiples of the bit duration Tb, respectively.

Figure 7.27 Phase tree. 
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The phase tree described in Figure 7.27 is a manifestation of phase continuity, which is
an inherent characteristic of a CPFSK signal. To appreciate the notion of phase continuity,
let us go back for a moment to Sunde’s FSK, which is also a CPFSK signal as previously
described. In this case, the deviation ratio h is exactly unity. Hence, according to Figure
7.27, the phase change over one bit interval is  radians. But, a change of + radians is
exactly the same as a change of – radians, modulo 2. It follows, therefore, that in the
case of Sunde’s FSK there is no memory; that is, knowing which particular change
occurred in the previous signaling interval provides no help in the current signaling
interval.

In contrast, we have a completely different situation when the deviation ratio h is
assigned the special value of 12. We now find that the phase can take on only the two
values 2 at odd multiples of Tb, and only the two values 0 and  at even multiples of Tb,
as in Figure 7.28. This second graph is called a phase trellis, since a “trellis” is a treelike
structure with re-emerging branches. Each path from left to right through the trellis of
Figure 7.28 corresponds to a specific binary sequence at the transmitter input. For
example, the path shown in boldface in Figure 7.28 corresponds to the binary sequence
1101000 with (0) = 0. Henceforth, we focus on h = 12.

With h = 12, we find from (7.181) that the frequency deviation (i.e., the difference
between the two signaling frequencies f1 and f2) equals half the bit rate; hence the
following statement:

The frequency deviation h = 1/2 is the minimum frequency spacing that allows 
the two FSK signals representing symbols 1 and 0 to be coherently orthogonal.

In other words, symbols 1 and 0 do not interfere with one another in the process of
detection. It is for this reason that a CPFSK signal with a deviation ratio of one-half is
commonly referred to as minimum shift-keying (MSK).5

Signal-Space Diagram of MSK
Using a well-known trigonometric identity in (7.176), we may expand the CPFSK signal
s(t) in terms of its in-phase and quadrature components as 

(7.183)

Figure 7.28 Phase trellis; boldfaced path represents the sequence 1101000. 
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Consider, first, the in-phase component . With the deviation ratio h = 12,
we have from (7.177) that

(7.184)

where the plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0.
A similar result holds for (t) in the interval –Tb  t  0, except that the algebraic sign is
not necessarily the same in both intervals. Since the phase (0) is 0 or  depending on the
past history of the modulation process, we find that in the interval –Tb  t  Tb, the polarity
of cos(t) depends only on (0), regardless of the sequence of 1s and 0s transmitted
before or after t = 0. Thus, for this time interval, the in-phase component consists of the
half-cycle cosine pulse: 

(7.185)

where the plus sign corresponds to (0) = 0 and the minus sign corresponds to (0) = . In
a similar way, we may show that, in the interval 0  t  2Tb, the quadrature component of
s(t) consists of the half-cycle sine pulse:

(7.186)

where the plus sign corresponds to (Tb) = 2 and the minus sign corresponds to
(Tb) = –2. From the discussion just presented, we see that the in-phase and quadrature
components of the MSK signal differ from each other in two important respects:

• they are in phase quadrature with respect to each other and
• the polarity of the in-phase component sI(t) depends on (0), whereas the polarity of

the quadrature component sQ(t) depends on (Tb).

Moreover, since the phase states (0) and (Tb) can each assume only one of two possible
values, any one of the following four possibilities can arise:

1. (0) = 0 and (Tb) = /2, which occur when sending symbol 1.

2. (0) =  and (Tb) = /2, which occur when sending symbol 0.

2Eb Tb  t cos

 t   0  
2Tb
--------- 0 t Tb =

sI t 
2Eb

Tb
---------  t cos=

2Eb

Tb
---------  0  

2Tb
---------t 
 coscos=

2Eb

Tb
---------


2Tb
---------t 

  Tb– t Tb cos=

sQ t 
2Eb

Tb
---------  t sin=

2Eb

Tb
---------  Tb  

2Tb
---------t 
 sinsin=

2Eb

Tb
---------


2Tb
---------t 
  0 t 2Tb sin=

Haykin_ch07_pp3.fm  Page 385  Monday, November 26, 2012  1:16 PM



386 Chapter 7 Signaling over AWGN Channels

3. (0) =  and (Tb) = –/2 (or, equivalently, 3/2 modulo 2), which occur when
sending symbol 1.

4. (0) = 0 and (Tb) = –/2, which occur when sending symbol 0.

This fourfold scenario, in turn, means that the MSK signal itself can assume one of four
possible forms, depending on the values of the phase-state pair: (0) and (Tb).

Signal-Space Diagram
Examining the expansion of (7.183), we see that there are two orthonormal basis functions
1(t) and 2(t) characterizing the generation of MSK; they are defined by the following
pair of sinusoidally modulated quadrature carriers:

(7.187)

(7.188)

With the formulation of a signal-space diagram in mind, we rewrite (7.183) in the compact
form

(7.189)

where the coefficients s1 and s2 are related to the phase states (0) and (Tb), respectively.
To evaluate s1, we integrate the product s(t)1(t) with respect to time t between the limits –Tb
and Tb, obtaining

(7.190)

Similarly, to evaluate s2 we integrate the product s(t)2(t) with respect to time t between
the limits 0 and 2Tb, obtaining

(7.191)

Examining (7.190) and (7.191), we now make three observations:

1. Both integrals are evaluated for a time interval equal to twice the bit duration.

2. The lower and upper limits of the integral in (7.190) used to evaluate s1 are shifted
by the bit duration Tb with respect to those used to evaluate s2.

3. The time interval 0  t  Tb, for which the phase states (0) and (Tb) are defined, is
common to both integrals.

It follows, therefore, that the signal constellation for an MSK signal is two-dimensional
(i.e., N = 2), with four possible message points (i.e., M = 4), as illustrated in the signal-
space diagram of Figure 7.29. Moving in a counterclockwise direction, the coordinates of
the message points are as follows:
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, , and . 

The possible values of (0) and (Tb), corresponding to these four message points, are
also included in Figure 7.29. The signal-space diagram of MSK is thus similar to that of
QPSK in that both of them have four message points in a two-dimensional space.
However, they differ in a subtle way that should be carefully noted: 

• QPSK, moving from one message point to an adjacent one, is produced by sending a
two-bit symbol (i.e., dibit).

• MSK, on the other hand, moving from one message point to an adjacent one, is
produced by sending a binary symbol, 0 or 1. However, each symbol shows up in
two opposite quadrants, depending on the value of the phase-pair: (0) and (Tb).

Table 7.4 presents a summary of the values of (0) and (Tb), as well as the corresponding
values of s1 and s2 that are calculated for the time intervals –Tb  t  Tb and 0  t  2Tb,
respectively. The first column of this table indicates whether symbol 1 or symbol 0 was
sent in the interval 0  t  Tb. Note that the coordinates of the message points, s1 and s2,
have opposite signs when symbol 1 is sent in this interval, but the same sign when symbol
0 is sent. Accordingly, for a given input data sequence, we may use the entries of Table 7.4
to derive on a bit-by-bit basis the two sequences of coefficients required to scale 1(t) and
2(t), and thereby determine the MSK signal s(t).

Figure 7.29 Signal-space diagram for MSK system.
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388 Chapter 7 Signaling over AWGN Channels

EXAMPLE 8 MSK Waveforms

Figure 7.30 shows the sequences and waveforms involved in the generation of an MSK
signal for the binary sequence 1101000. The input binary sequence is shown in Figure 7.30a.
The two modulation frequencies are f1 = 5/4Tb and f2 = 3/4Tb. Assuming that at time t = 0

Table 7.4 Signal-space characterization of MSK

Transmitted binary symbol, 0  t  Tb

Phase states (rad) Coordinates of message points

(0) (Tb) s1 s2

0 0 –/2

1 –/2

0 +/2

1 0 +/2

+ Eb + Eb

 Eb– + Eb

 Eb– Eb–

+ Eb Eb–

Figure 7.30 (a) Input binary sequence. 
(b) Waveform of scaled time function 
s11(t). (c) Waveform of scaled time 
function s22(t). (d) Waveform of the 
MSK signal s(t) obtained by adding 
s11(t) and s22(t) on a bit-by-bit basis. 
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 389

the phase (0) is zero, the sequence of phase states is as shown in Figure 7.30, modulo 2.
The polarities of the two sequences of factors used to scale the time functions 1(t) and 2(t)
are shown in the top lines of Figure 7.30b and c. These two sequences are offset relative to
each other by an interval equal to the bit duration Tb. The waveforms of the resulting two
components of s(t), namely, s11(t) and s22(t), are shown in Figure 7.30b and c. Adding
these two modulated waveforms, we get the desired MSK signal s(t) shown in Figure 7.30d.

Generation and Coherent Detection of MSK Signals

With h = 1/2, we may use the block diagram of Figure 7.31a to generate the MSK signal.
The advantage of this method of generating MSK signals is that the signal coherence and
deviation ratio are largely unaffected by variations in the input data rate. Two input sinu-
soidal waves, one of frequency fc = nc4Tb for some fixed integer nc and the other of
frequency 14Tb, are first applied to a product modulator. This modulator produces two
phase-coherent sinusoidal waves at frequencies f1 and f2, which are related to the carrier

Figure 7.31 Block diagrams for (a) MSK transmitter and (b) coherent MSK receiver. 
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390 Chapter 7 Signaling over AWGN Channels

frequency fc and the bit rate 1/Tb in accordance with (7.178) and (7.179) for deviation ratio
h = 12. These two sinusoidal waves are separated from each other by two narrowband fil-
ters, one centered at f1 and the other at f2. The resulting filter outputs are next linearly
combined to produce the pair of quadrature carriers or orthonormal basis functions 1(t)
and 2(t). Finally, 1(t) and 2(t) are multiplied with two binary waves a1(t) and a2(t), both
of which have a bit rate equal to 1/(2Tb). These two binary waves are extracted from the
incoming binary sequence in the manner described in Example 7.

Figure 7.31b shows the block diagram of the coherent MSK receiver. The received
signal x(t) is correlated with  1(t) and 2(t). In both cases, the integration interval is 2Tb
seconds, and the integration in the quadrature channel is delayed by Tb seconds with respect
to that in the in-phase channel. The resulting in-phase and quadrature channel correlator
outputs, x1 and x2, are each compared with a threshold of zero; estimates of the phase (0)
and (Tb) are then derived in the manner described previously. Finally, these phase
decisions are interleaved so as to estimate the original binary sequence at the transmitter
input with the minimum average probability of symbol error in an AWGN channel.

Error Probability of MSK

In the case of an AWGN channel, the received signal is given by

where s(t) is the transmitted MSK signal and w(t) is the sample function of a white
Gaussian noise process of zero mean and power spectral density N0/2. To decide whether
symbol 1 or symbol 0 was sent in the interval 0  t  Tb, say, we have to establish a
procedure for the use of x(t) to detect the phase states (0) and (Tb). 

For the optimum detection of (0), we project the received signal x(t) onto the
reference signal  over the interval –Tb  t  Tb, obtaining

(7.192)

where s1 is as defined by (7.190) and w1 is the sample value of a Gaussian random

variable of zero mean and variance N0/2. From the signal-space diagram of Figure 7.29,

we see that if x1 > 0, the receiver chooses the estimate . On the other hand, if

x1  0, it chooses the estimate .

Similarly, for the optimum detection of  (Tb), we project the received signal x(t) onto
the second reference signal 2(t) over the interval 0  t  2Tb, obtaining

(7.193)

where s2 is as defined by (7.191) and w2 is the sample value of another independent
Gaussian random variable of zero mean and variance N02. Referring again to the signal-
space diagram of Figure 7.29, we see that if x2  0, the receiver chooses the estimate

. If, however, , the receiver chooses the estimate . 
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 391

To reconstruct the original binary sequence, we interleave the above two sets of phase
estimates in accordance with Table 7.4, by proceeding as follows:

• If estimates  and , or alternatively if 
and , then the receiver decides in favor of symbol 0.

• If, on the other hand, the estimates  and , or alternatively
if  and , then the receiver decides in favor of symbol 1.

Most importantly, examining the signal-space diagram of Figure 7.29, we see that the
coordinates of the four message points characterizing the MSK signal are identical to those
of the QPSK signal in Figure 7.16. Moreover, the zero-mean noise variables in (7.192) and
(7.193) have exactly the same variance as those for the QPSK signal in (7.118) and (7.119).
It follows, therefore, that the BER for the coherent detection of MSK signals is given by

(7.194)

which is the same as that of QPSK in (7.126). In both MSK and QPSK, this good
performance is the result of coherent detection being performed in the receiver on the
basis of observations over 2Tb seconds.

Power Spectra of MSK Signals

As with the binary FSK signal, we assume that the input binary wave is random, with
symbols 1 and 0 being equally likely and the symbols sent during adjacent time slots being
statistically independent. Under these assumptions, we make three observations:

1. Depending on the value of phase state  (0), the in-phase component equals +g(t) or
–g(t), where the pulse-shaping function

(7.195)

The energy spectral density of g(t) is

(7.196)

The power spectral density of the in-phase component equals .

2. Depending on the value of the phase state  (Tb), the quadrature component equals
+g(t) or –g(t), where we now have

(7.197)

Despite the difference in which the time interval over two adjacent time slots is
defined in (7.195) and (7.197), we get the same energy spectral density as in (7.196).
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392 Chapter 7 Signaling over AWGN Channels

Hence, the in-phase and quadrature components have the same power spectral
density.

3. The in-phase and quadrature components of the MSK signal are statistically
independent; it follows that the baseband power spectral density of s(t) is given by

(7.198)

A plot of the baseband power spectrum of (7.198) is included in Figure 7.19, where the
power spectrum is normalized with respect to 4Eb and the frequency f is normalized with
respect to the bit rate 1Tb. Figure 7.19 also includes the corresponding plot of (7.128) for
the QPSK signal. As stated previously, for f 1/Tb the baseband power spectral density of
the MSK signal falls off as the inverse fourth power of frequency, whereas in the case of
the QPSK signal it falls off as the inverse square of frequency. Accordingly, MSK does not
produce as much interference outside the signal band of interest as QPSK does. This is a
desirable characteristic of MSK, especially when the digital communication system
operates with a bandwidth limitation in an interfering environment.

Gaussian-Filtered MSK

From the detailed study of MSK just presented, we may summarize its desirable
properties:

• modulated signal with constant envelope;
• relatively narrow-bandwidth occupancy;
• coherent detection performance equivalent to that of QPSK.

However, the out-of-band spectral characteristics of MSK signals, as good as they are, still
do not satisfy the stringent requirements of certain applications such as wireless communi-
cations. To illustrate this limitation, we find from (7.198) that, at Tb f = 0.5, the baseband
power spectral density of the MSK signal drops by only 10 log109 = 9.54 dB below its mid-
band value. Hence, when the MSK signal is assigned a transmission bandwidth of 1Tb, the
adjacent channel interference of a wireless-communication system using MSK is not low
enough to satisfy the practical requirements of a multiuser-communications environment.

Recognizing that the MSK signal can be generated by direct FM of a voltage-controlled
oscillator, we may overcome this practical limitation of MSK by modifying its power
spectrum into a more compact form while maintaining the constant-envelope property of
the MSK signal. This modification can be achieved through the use of a premodulation
low-pass filter, hereafter referred to as a baseband pulse-shaping filter. Desirably, the
pulse-shaping filter should satisfy the following three conditions:

• frequency response with narrow bandwidth and sharp cutoff characteristics;
• impulse response with relatively low overshoot; and
• evolution of a phase trellis with the carrier phase of the modulated signal assuming

the two values /2 at odd multiples of the bit duration Tb and the two values 0 and
 at even multiples of Tb as in MSK.
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 393

The frequency-response condition is needed to suppress the high-frequency components
of the modified frequency-modulated signal. The impulse-response condition avoids
excessive deviations in the instantaneous frequency of the modified frequency-modulated
signal. Finally, the condition imposed on phase-trellis evolution ensures that the modified
frequency-modulated signal can be coherently detected in the same way as the MSK
signal, or it can be noncoherently detected as a simple binary FSK signal if so desired.

These three conditions can be satisfied by passing an NRZ-level-encoded binary data
stream through a baseband pulse-shaping filter whose impulse response (and, likewise, its
frequency response) is defined by a Gaussian function. The resulting method of binary
FM is naturally referred to as Gaussian-filtered minimum-shift keying (GMSK).6

Let W denote the 3 dB baseband bandwidth of the pulse-shaping filter. We may then
define the transfer function H(f) and impulse response h(t) of the pulse-shaping filter as:

(7.199)

and

(7.200)

where ln denotes the natural algorithm. The response of this Gaussian filter to a
rectangular pulse of unit amplitude and duration Tb, centered on the origin, is given by

(7.201)

The pulse response g(t) in (7.201) provides the basis for building the GMSK modulator, with
the dimensionless time–bandwidth product WTb playing the role of a design parameter.
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Figure 7.32
Frequency-shaping pulse g(t) of (7.201) 
shifted in time by 2.5Tb and truncated 
at 2.5Tb for varying time–bandwidth 
product WTb. 
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394 Chapter 7 Signaling over AWGN Channels

Unfortunately, the pulse response g(t) is noncausal and, therefore, not physically
realizable for real-time operation. Specifically, g(t) is nonzero for t  –Tb2, where t = –Tb2
is the time at which the input rectangular pulse (symmetrically positioned around the origin)
is applied to the Gaussian filter. For a causal response, g(t) must be truncated and shifted in
time. Figure 7.32 presents plots of g(t), which has been truncated at t = 2.5Tb and then
shifted in time by 2.5Tb. The plots shown here are for three different settings: WTb = 0.2,
0.25, and 0.3. Note that as WTb is reduced, the time spread of the frequency-shaping pulse is
correspondingly increased.

Figure 7.33 shows the machine-computed power spectra of MSK signals (expressed in
decibels) versus the normalized frequency difference (f – fc)Tb, where fc is the mid-band
frequency and Tb is the bit duration.7 The results plotted in Figure 7.33 are for varying
values of the time–bandwidth product WTb. From this figure we may make the following
observations:

• The curve for the limiting condition WTb  corresponds to the case of ordinary
MSK.

• When WTb is less than unity, increasingly more of the transmit power is
concentrated inside the passband of the GMSK signal.

An undesirable feature of GMSK is that the processing of NRZ binary data by a Gaussian
filter generates a modulating signal that is no longer confined to a single bit interval as in
ordinary MSK, which is readily apparent from Figure 7.33. Stated in another way, the tails
of the Gaussian impulse response of the pulse-shaping filter cause the modulating signal to
spread out to adjust symbol intervals. The net result is the generation of intersymbol
interference, the extent of which increases with decreasing WTb. In light of this discussion
and the various plots presented in Figure 7.33, we find that the value assigned to the time–
bandwidth product WTb offers a tradeoff between spectral compactness and system-
performance loss.

Figure 7.33 Power spectra of MSK and GMSK signals for varying 
time–bandwidth product. 
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 395

To explore the issue of performance degradation resulting from the use of GMSK
compared with MSK, consider the coherent detection in the presence of AWGN.
Recognizing that GMSK is a special kind of binary FM, we may express its average
probability of symbol error Pe by the empirical formula

(7.202)

where, as before, Eb is the signal energy per bit and N0/2 is the noise spectral density. The
factor  is a constant whose value depends on the time–bandwidth product WTb. Comparing
(7.202) for GMSK with (7.194) for ordinary MSK, we may view 10 log10(2), expressed in
decibels, as a measure of performance degradation of GMSK compared with ordinary MSK.
Figure 7.34 shows the machine-computed value of 10 log10(2) versus WTb. For ordinary
MSK we have , in which case (7.202) with  = 2 assumes exactly the same form
as (7.194) and there is no degradation in performance, which is confirmed by Figure 7.34.
For GMSK with WTb = 0.3 we find from Figure 7.34 that there is a degradation in
performance of about 0.46dB, which corresponds to 2 = 0.9. This degradation in
performance is a small price to pay for the highly desirable spectral compactness of the
GMSK signal.

M-ary FSK

Consider next the M-ary version of FSK, for which the transmitted signals are defined by

(7.203)

where i = 1, 2, , M, and the carrier frequency fc = nc/(2T) for some fixed integer nc. The
transmitted symbols are of equal duration T and have equal energy E. Since the individual

Figure 7.34 Theoretical EbN0 degradation of GMSK for varying 
time–bandwidth product. 
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396 Chapter 7 Signaling over AWGN Channels

signal frequencies are separated by 1/(2T) Hz, the M-ary FSK signals in (7.203) constitute
an orthogonal set; that is,

(7.204)

Hence, we may use the transmitted signals si(t) themselves, except for energy
normalization, as a complete orthonormal set of basis functions, as shown by

(7.205)

Accordingly, the M-ary FSK is described by an M-dimensional signal-space diagram.
For the coherent detection of M-ary FSK signals, the optimum receiver consists of a

bank of M correlators or matched filters, with i(t) of (7.205) providing the basis
functions. At the sampling times t = kT, the receiver makes decisions based on the largest
matched filter output in accordance with the maximum likelihood decoding rule. An exact
formula for the probability of symbol error is, however, difficult to derive for a coherent
M-ary FSK system. Nevertheless, we may use the union bound of (7.88) to place an upper
bound on the average probability of symbol error for M-ary FSK. Specifically, since the
minimum distance dmin in M-ary FSK is , using (7.87) we get (assuming
equiprobable symbols)

(7.206)

For fixed M, this bound becomes increasingly tight as the ratio EN0 is increased. Indeed,
it becomes a good approximation to Pe for values of Pe  10–3. Moreover, for M = 2 (i.e.,
binary FSK), the bound of (7.202) becomes an equality; see (7.168).

Power Spectra of M-ary FSK Signals
The spectral analysis of M-ary FSK signals8 is much more complicated than that of M-ary
PSK signals. A case of particular interest occurs when the frequencies assigned to the
multilevels make the frequency spacing uniform and the frequency deviation h = 12. That
is, the M signal frequencies are separated by 1/2T, where T is the symbol duration. For
h = 12, the baseband power spectral density of M-ary FSK signals is plotted in Figure
7.35 for M = 2, 4, 8.  

Bandwidth Efficiency of M-ary FSK Signals
When the orthogonal signals of an M-ary FSK signal are detected coherently, the adjacent
signals need only be separated from each other by a frequency difference 12T so as to
maintain orthogonality. Hence, we may define the channel bandwidth required to transmit
M-ary FSK signals as

(7.207)

For multilevels with frequency assignments that make the frequency spacing uniform and
equal to 1/2T, the bandwidth B of (7.207) contains a large fraction of the signal power.

si t sj t  dt
0

T

 0 i j=

i t  1

E
-------si t  for 0 t T  and i 1 2  M  ==

2E

Pe M 1– Q E
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7.8 Frequency-Shift Keying Techniques Using Coherent Detection 397

This is readily confirmed by looking at the baseband power spectral plots shown in Figure
7.36. From (7.133) we recall that the symbol period T is equal to . Hence, using

, we may redefine the channel bandwidth B for M-ary FSK signals as

 (7.208)

The bandwidth efficiency of M-ary signals is therefore

 (7.209)

Table 7.5 gives the values of  calculated from (7.207) for varying M.
Comparing Tables 7.3 and 7.5, we see that increasing the number of levels M tends to

increase the bandwidth efficiency of M-ary PSK signals, but it also tends to decrease the
bandwidth efficiency of M-ary FSK signals. In other words, M-ary PSK signals are
spectrally efficient, whereas M-ary FSK signals are spectrally inefficient.

Figure 7.35 Power spectra of M-ary PSK signals for M = 2, 4, 8.

Table 7.5 Bandwidth efficiency of M-ary FSK signals
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398 Chapter 7 Signaling over AWGN Channels

7.9 Comparison of M-ary PSK and M-ary FSK from an 
Information-Theoretic Viewpoint

Bandwidth efficiency, as just discussed, provides one way of contrasting the capabilities of
M-ary PSK and M-ary FSK. Another way of contrasting the capabilities of these two
generalized digital modulation schemes is to look at the bandwidth–power tradeoff viewed
in light of Shannon’s information capacity law, which was discussed previously in Chapter 5.

Consider, first, an M-ary PSK system that employs a nonorthogonal set of M phase-
shifted signals for the transmission of binary data over an AWGN channel. Referring back
to Section 7.6, recall that (7.137) defines the bandwidth efficiency of the M-ary PSK
system, using the null-to-null bandwidth. Based on this equation, Figure 7.36 plots the
operating points for different phase-level numbers M = 2, 4, 8, 16, 32, 64. Each point on
the operating curve corresponds to an average probability of symbol error Pe = 10–5; this
value of Pe is small enough to assume “error-free” transmission. Given this fixed value of
Pe, (7.132) for the coherent detection of M-ary PSK is used to calculate the symbol
energy-to-noise density ratio EN0 and, therefore, EbN0 for a prescribed M; Figure 7.36
also includes the capacity boundary for the ideal transmission system, computed in
accordance with (5.99). Figure 7.36 teaches us the following:

In M-ary PSK using coherent detection, increasing M improves the bandwidth 
efficiency, but the Eb/N0 required for the idealized condition of “error-free” 
transmission moves away from the Shannon limit as M is increased.

Consider next an M-ary FSK system that uses an orthogonal set of M frequency-shifted
signals for the transmission of binary data over an AWGN channel. As discussed in
Section 7.8, the separation between adjacent signal frequencies in the set is 12T, where T
is the symbol period. The bandwidth efficiency of M-ary FSK is defined in (7.209), the
formulation of which also invokes the null-to-null bandwidth. Using this equation, Figure
7.37 plots the operating points for different frequency-level numbers M = 2, 4, 8, 16, 32,
64 for the same average probability of symbol error, namely Pe = 10–5. Given this fixed
value of Pe, (7.206) is used to calculate the E/N0 and, therefore, Eb/N0 required for a
prescribed value of M. As in Figure 7.36 for M-ary PSK, Figure 7.37 for M-ary FSK also
includes the capacity boundary for the ideal condition of error-free transmission. Figure
7.37 shows that increasing M in M-ary FSK has the opposite effect to that in M-ary PSK.
In more specific terms, we may state the following:

In M-ary FSK, as the number of frequency-shift levels M is increased—which is 
equivalent to increased channel-bandwidth requirement—the operating point 
moves closer to the Shannon limit.

In other words, in an information-theoretic context, M-ary FSK behaves better than M-ary
PSK.

In the final analysis, the choice of M-ary PSK or M-ary FSK for binary data
transmission over an AWGN channel is determined by the design criterion of interest:
bandwidth efficiency or the Eb/N0 needed for reliable data transmission.
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Figure 7.36 Comparison of M-ary PSK with the ideal system for Pe = 10–5. 

Figure 7.37 Comparison of M-ary FSK with the ideal system for Pe = 10–5. 
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400 Chapter 7 Signaling over AWGN Channels

7.10 Detection of Signals with Unknown Phase

Up to this point in the chapter we have assumed that the receiver is perfectly synchronized
to the transmitter and the only channel impairment is AWGN. In practice, however, it is
often found that, in addition to the uncertainty due to channel noise, there is also
uncertainty due to the randomness of certain signal parameters. The usual cause of this
uncertainty is distortion in the transmission medium. Perhaps the most common random
signal parameter is the carrier phase, which is especially true for narrowband signals. For
example, the transmission may take place over a multiplicity of paths of different and
variable length, or there may be rapidly varying delays in the propagating medium from
transmitter to receiver. These sources of uncertainty may cause the phase of the received
signal to change in a way that the receiver cannot follow. Synchronization with the phase
of the transmitted carrier is then too costly and the designer may simply choose to
disregard the phase information in the received signal at the expense of some degradation
in noise performance. A digital communication receiver with no provision made for
carrier phase recovery is said to be noncoherent.

Optimum Quadratic Receiver

Consider a binary communication system, in which the transmitted signal is defined by

(7.210)

where E is the signal energy, T is the duration of the signaling interval, and the carrier
frequency fi for symbol i is an integer multiple of 1/(2T). For reasons just mentioned, the
receiver operates noncoherently with respect to the transmitter, in which case the received
signal for an AWGN channel is written as

(7.211)

where  is the unknown carrier phase and, as before, w(t) is the sample function of a white
Gaussian noise process of zero mean and power spectral density N02. Assuming complete
lack of prior information about , we may treat it as the sample value of a random variable
with uniform distribution:

(7.212)

Such a distribution represents the worst-case scenario that could be encountered in
practice. The binary detection problem to be solved may now be stated as follows:

Given the received signal x(t) and confronted with the unknown carrier phase , 
design an optimum receiver for detecting symbol si represented by the signal 
component  that is contained in x(t).

Proceeding in a manner similar to that described in Section 7.4, we may formulate the
likelihood function of symbol si given the carrier phase  as

si t  2E
T

------- 2fit 
0 t T 
i 1 2=




cos=

x t  2E
T

------- 2fit +  w t +  for 0 t T  and i 1 2=cos=

f  
1

2
------ ,   –

0, otherwise





=

E 2T  2fit + cos
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7.10 Detection of Signals with Unknown Phase 401

(7.213)

To proceed further, we have to remove dependence of l(si()) on phase , which is
achieved by integrating it over all possible values of , as shown by

(7.214)

Using a well-known trigonometric formula, we may expand the cosine term in (7.214) as

Correspondingly, we may rewrite the integral in the exponent of (7.214) as

(7.215)

Define two new terms:

(7.216)

(7.217)

Then, we may go one step further and simplify the inner integral in (7.214) to

(7.218)

Accordingly, using (7.218) in (7.214), we obtain

(7.219)

where, in the last line, we have used the fact that the definite integral is unaffected by the
phase i.
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402 Chapter 7 Signaling over AWGN Channels

From Appendix C on Bessel functions, we recognize the integral of (7.219) as the
modified Bessel function of zero order, written in the compact form

(7.220)

Using this formula, we may correspondingly express the likelihood function for the
signal-detection problem described herein in the compact form

(7.221)

With binary transmission as the issue of interest, there are two hypotheses to be
considered: hypothesis H1, that signal s1(t) was sent, and hypothesis H2, that signal s2 was
sent. In light of (7.221), the binary-hypothesis test may now be formulated as follows:

The modified Bessel function I() is a monotonically increasing function of its argument.
Hence, we may simplify the hypothesis test by focusing on i for given E/N0T. For
convenience of implementation, however, the simplified hypothesis test is carried out in
terms of  rather than i; that is to say:

(7.222)

For obvious reasons, a receiver based on (7.222) is known as the quadratic receiver. In
light of the definition of i given in (7.216), the receiver structure for computing i is as
shown in Figure 7.38a. Since the test described in (7.222) is independent of the symbol
energy E, this hypothesis test is said to be uniformly most powerful with respect to E.

Two Equivalent Forms of the Quadratic Receiver

We next derive two equivalent forms of the quadrature receiver shown in Figure 7.38a.
The first form is obtained by replacing each correlator in this receiver with a
corresponding equivalent matched filter. We thus obtain the alternative form of quadrature
receiver shown in Figure 7.38b. In one branch of this receiver, we have a filter matched to
the signal cos(2fit) and in the other branch we have a filter matched to sin(2fit), both of
which are defined for the signaling interval   0  t  T. At time t = T, the filter outputs are
sampled, squared, and then added together.

To obtain the second equivalent form of the quadrature receiver, suppose we have a fil-
ter that is matched to s(t) = cos(2fit + ) for 0  t  T. The envelope of the matched filter
output is obviously unaffected by the value of phase . Therefore, we may simply choose a
matched filter with impulse response cos[2fi(T – t)], corresponding to  = 0. The output
of such a filter in response to the received signal x(t) is given by

(7.223)
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7.10 Detection of Signals with Unknown Phase 403

The envelope of the matched filter output is proportional to the square root of the sum of
the squares of the two definite integrals in (7.223). This envelope, evaluated at time t = T,
is, therefore, given by the following square root:

But this is just a repeat of the output of the quadrature receiver defined earlier. Therefore,
the output (at time T) of a filter matched to the signal cos(2fit + ) of arbitrary phase ,
followed by an envelope detector, is the same as the quadrature receiver’s output li. This
form of receiver is shown in Figure 7.38c. The combination of matched filter and envelope
detector shown in Figure 7.38c is called a noncoherent matched filter.

Figure 7.38 Noncoherent receivers: (a) quadrature receiver using correlators; 
(b) quadrature receiver using matched fiters; (c) noncoherent matched filter. 
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404 Chapter 7 Signaling over AWGN Channels

The need for an envelope detector following the matched filter in Figure 7.38c may also
be justified intuitively as follows. The output of a filter matched to a rectangular RF wave
reaches a positive peak at the sampling instant t = T. If, however, the phase of the filter is
not matched to that of the signal, the peak may occur at a time different from the sampling
instant. In actual fact, if the phases differ by 180°, we get a negative peak at the sampling
instant. Figure 7.39 illustrates the matched filter output for the two limiting conditions:
 = 0 and  = 180° for which the respective waveforms of the matched filter output are
displayed in parts a and b of the figure. To avoid poor sampling that arises in the absence
of prior information about the phase, it is reasonable to retain only the envelope of the
matched filter output, since it is completely independent of the phase mismatch .

7.11 Noncoherent Orthogonal Modulation Techniques 

With the noncoherent receiver structures of Figure 7.38 at our disposal, we may now
proceed to study the noise performance of noncoherent orthogonal modulation that
includes two noncoherent receivers as special cases: noncoherent binary FSK; and
differential PSK (called DPSK), which may be viewed as the noncoherent version of
binary PSK.

Consider a binary signaling scheme that involves the use of two orthogonal signals s1(t)
and s2(t), which have equal energy. During the signaling interval 0  t  T, where T may be

Figure 7.39 Output of matched filter for a rectangular RF wave: (a) ; (b) .
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7.11 Noncoherent Orthogonal Modulation Techniques 405

different from the bit duration Tb, one of these two signals is sent over an imperfect
channel that shifts the carrier phase by an unknown amount. Let g1(t) and g2(t) denote the
phase-shifted versions of s1(t) and s2(t) that result from this transmission, respectively. It is
assumed that the signals g1(t) and g2(t) remain orthogonal and have the same energy E,
regardless of the unknown carrier phase. We refer to such a signaling scheme as
noncoherent orthogonal modulation, hence the title of the section.

In addition to carrier-phase uncertainty, the channel also introduces AWGN w(t) of zero
mean and power spectral density N02, resulting in the received signal

(7.224)

To tackle the signal detection problem given x(t), we employ the generalized receiver
shown in Figure 7.39a, which consists of a pair of filters matched to the transmitted
signals s1(t) and s2(t). Because the carrier phase is unknown, the receiver relies on
amplitude as the only possible discriminant. Accordingly, the matched-filter outputs are
envelope-detected, sampled, and then compared with each other. If the upper path in
Figure 7.38a has an output amplitude l1 greater than the output amplitude l2 of the lower
path, the receiver decides in favor of s1(t); the l1 and l2 used here should not be confused
with the symbol l denoting the likelihood function in the preceding section. If the converse
is true, the receiver decides in favor of s2(t). When they are equal, the decision may be
made by flipping a fair coin (i.e., randomly). In any event, a decision error occurs when
the matched filter that rejects the signal component of the received signal x(t) has a larger
output amplitude (due to noise alone) than the matched filter that passes it.

From the discussion presented in Section 7.10 we note that a noncoherent matched
filter (constituting the upper or lower path in the receiver of Figure 7.40a), may be viewed
as being equivalent to a quadrature receiver. The quadrature receiver itself has two
channels. One version of the quadrature receiver is shown in Figure 7.40b. In the upper
path, called the in-phase path, the received signal x(t) is correlated with the function

, which represents a scaled version of the transmitted signal s1(t) or s2(t) with zero
carrier phase. In the lower path, called the quadrature path, on the other hand, x(t) is
correlated with another function , which represents the version of  that results
from shifting the carrier phase by –90°. The signals  and  are orthogonal to
each other.

In actual fact, the signal  is the Hilbert transform of ; the Hilbert transform
was discussed in Chapter 2. To illustrate the nature of this relationship, let

(7.225)

where m(t) is a band-limited message signal. Typically, the carrier frequency fi is greater than
the highest frequency component of m(t). Then the Hilbert transform  is defined by

(7.226)

for which reference should be made in Table 2.3 of Chapter 2. Since
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406 Chapter 7 Signaling over AWGN Channels

we see that  is indeed obtained from  by shifting the carrier cos(2fit) by –90°.
An important property of Hilbert transformation is that a signal and its Hilbert transform are
orthogonal to each other. Thus,  and  are indeed orthogonal to each other, as
already stated.

The average probability of error for the noncoherent receiver of Figure 7.40a is given
by the simple formula

(7.227)

where E is the signal energy per symbol and N0/2 is the noise spectral density.

Derivation of Equation (7.227)

To derive Equation (7.227)9 we make use of the equivalence depicted in Figure 7.40. In
particular, we observe that, since the carrier phase is unknown, noise at the output of each

Figure 7.40 (a) Generalized binary receiver for noncoherent orthogonal modulation. (b) Quadrature 
receiver equivalent to either one of the two matched filters in (a); the index i = 1, 2. 
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7.11 Noncoherent Orthogonal Modulation Techniques 407

matched filter in Figure 7.40a has two degrees of freedom: in-phase and quadrature.
Accordingly, the noncoherent receiver of Figure 7.40a has a total of four noisy parameters
that are conditionally independent given the phase , and also identically distributed. These
four noisy parameters have sample values denoted by xI1, xQ1, and xI2, and xQ2; the first
two account for degrees of freedom associated with the upper path of Figure 7.40a, and the
latter two account for degrees of freedom associated with the lower path of the figure.

The receiver of Figure 7.40a has a symmetric structure, meaning that the probability of
choosing s2(t) given that s1(t) was transmitted is the same as the probability of choosing
s1(t) given that s2(t) was transmitted. In other words, the average probability of error may
be obtained by transmitting s1(t) and calculating the probability of choosing s2(t), or vice
versa; it is assumed that the original binary symbols and therefore s1(t) and s2(t) are
equiprobable.

Suppose that signal s1(t) is transmitted for the interval 0  t  T. An error occurs if the
channel noise w(t) is such that the output l2 of the lower path in Figure 7.40a is greater than
the output l1 of the upper path. Then, the receiver decides in favor of s2(t) rather than s1(t).
To calculate the probability of error so made, we must have the probability density function
of the random variable L2 (represented by sample value l2). Since the filter in the lower
path is matched to s2(t) and s2(t) is orthogonal to the transmitted signal s1(t), it follows that
the output of this matched filter is due to noise alone. Let xI2 and xQ2 denote the in-phase
and quadrature components of the matched filter output in the lower path of Figure 7.40a.
Then, from the equivalent structure depicted in this figure, we see that (for i = 2)

(7.228)

Figure 7.41a shows a geometric interpretation of this relation. The channel noise w(t) is
both white (with power spectral density N0/2) and Gaussian (with zero mean). Corre-
spondingly, we find that the random variables XI2 and XQ2 (represented by sample values
xI2 and xQ2) are both Gaussian distributed with zero mean and variance N0/2, given the
phase . Hence, we may write

(7.229)

Figure 7.41 Geometric interpretations of the two path outputs l1 and l2 
in the generalized non-coherent receiver.
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408 Chapter 7 Signaling over AWGN Channels

and

(7.230)

Next, we use the well-known property presented in Chapter 4 on stochastic processes: the
envelope of a Gaussian process represented in polar form is Rayleigh distributed and
independent of the phase  For the situation at hand, therefore, we may state that the
random variable L2 whose sample value l2 is related to xI2 and xQ2 by (7.228) has the
following probability density function:

(7.231)

Figure 7.42 shows a plot of this probability density function, where the shaded area
defines the conditional probability that l2 > l1. Hence, we have

(7.232)

Substituting (7.231) into (7.232) and integrating, we get

(7.233)

Consider next the output amplitude l1, pertaining to the upper path in Figure 7.40a. Since
the filter in this path is matched to s1(t) and it is assumed that s1(t) is transmitted, it follows
that l1 is due to signal plus noise. Let xI1 and xQ1 denote the components at the output of
the matched filter in the upper path of Figure 7.39a that are in phase and in quadrature
with respect to the received signal, respectively. Then, from the equivalent structure
depicted in Figure 7.40b, we see that, for i = 1,

(7.234)
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7.11 Noncoherent Orthogonal Modulation Techniques 409

A geometric interpretation of li is presented in Figure 7.41b. Since a Fourier-transformable
signal and its Hilbert transform form an orthogonal pair, it follows that xI1 is due to signal
plus noise, whereas xQ1 is due to noise alone. This statement has two implications:

• The random variable XI1 represented by the sample value xI1 is Gaussian distributed
with mean  and variance N02, where E is the signal energy per symbol.

• The random variable XQ1 represented by the sample value xQ1 is Gaussian distrib-
uted with zero mean and variance N02. 

Hence, we may express the probability density functions of these two independent random
variables as 

(7.235)

and

(7.236)

respectively. Since the two random variables XI1 and XQ1 are statistically independent,
their joint probability density function is simply the product of the probability density
functions given in (7.235) and (7.236).

To find the average probability of error, we have to average the conditional probability
of error given in (7.233) over all possible values of l1. Naturally, this calculation requires
knowledge of the probability density function of random variables L1 represented by
sample value l1. The standard method is now to combine (7.235) and (7.236) to find the
probability density function of L1 due to signal plus noise. However, this leads to rather
complicated calculations involving the use of Bessel functions. This analytic difficulty
may be circumvented by the following approach. Given xI1 and xQ1, an error occurs when,
in Figure 7.40a, the lower path’s output amplitude l2 due to noise alone exceeds l1 due to
signal plus noise; squaring both sides of (7.234), we write

(7.237)

The probability of the occurrence just described is obtained by substituting (7.237) into
(7.233):

(7.238)

which is a probability of error conditioned on the output of the matched filter in the upper path
of Figure 7.40a taking on the sample values xI1 and xQ1. This conditional probability multi-
plied by the joint probability density function of the random variables XI1 and XQ1 is the
error-density given xI1 and xQ1. Since XI1 and XQ1 are statistically independent, their joint
probability density function equals the product of their individual probability density func-
tions. The resulting error-density is a complicated expression in xI1 and xQ1. However, the
average probability of error, which is the issue of interest, may be obtained in a relatively sim-
ple manner. We first use (7.234), (7.235), and (7.236) to evaluate the desired error-density as

(7.239)
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410 Chapter 7 Signaling over AWGN Channels

Completing the square in the exponent of (7.239) without the scaling factor –1/N0, we
may rewrite it as follows: 

(7.240)

Next, we substitute (7.240) into (7.239) and integrate the error-density over all possible
values of xI1 and xQ1, thereby obtaining the average probability of error:

(7.241)

We now use the following two identities:

(7.242)

and

(7.243)

The identity of (7.242) is obtained by considering a Gaussian-distributed variable with
mean  and variance N04 and recognizing the fact that the total area under the curve
of a random variable’s probability density function is unity. The identity of (7.243) follows
as a special case of (7.242). Thus, in light of these two identities, (7.241) reduces to 

which is the desired result presented previously as (7.227). With this formula at our
disposal, we are ready to consider noncoherent binary FSK and DPSK as special cases,
which we do next in that order.10

7.12 Binary Frequency-Shift Keying Using Noncoherent Detection 

In binary FSK, the transmitted signal is defined in (7.151) and repeated here for
convenience of presentation:

(7.244)

where Tb is the bit duration and the carrier frequency fi equals one of two possible values
f1 and f2; to ensure that the signals representing these two frequencies are orthogonal, we
choose fi = ni/Tb, where ni is an integer. The transmission of frequency f1 represents
symbol 1 and the transmission of frequency f2 represents symbol 0. For the noncoherent
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7.13 Differential Phase-Shift Keying 411

detection of this frequency-modulated signal, the receiver consists of a pair of matched
filters followed by envelope detectors, as in Figure 7.43. The filter in the upper path of the
receiver is matched to cos(2f1t) and the filter in the lower path is matched to cos(2f2t)
for the signaling interval 0  t  Tb. The resulting envelope detector outputs are sampled at
t = Tb and their values are compared. The envelope samples of the upper and lower paths
in Figure 7.43 are shown as l1 and l2. The receiver decides in favor of symbol 1 if l1 > l2
and in favor of symbol 0 if l1  l2. If l1 = l2, the receiver simply guesses randomly in favor
of symbol 1 or 0. 

The noncoherent binary FSK described herein is a special case of noncoherent
orthogonal modulation with T = Tb and E = Eb, where Eb is the signal energy per bit.
Hence, the BER for noncoherent binary FSK is

(7.245)

which follows directly from (7.227) as a special case of noncoherent orthogonal
modulation.

7.13 Differential Phase-Shift Keying

As remarked at the beginning of Section 7.9, we may view DPSK as the “noncoherent”
version of binary PSK. The distinguishing feature of DPSK is that it eliminates the need
for synchronizing the receiver to the transmitter by combining two basic operations at the
transmitter:

• differential encoding of the input binary sequence and
• PSK of the encoded sequence, 

from which the name of this new binary signaling scheme follows.

Figure 7.43 Noncoherent receiver for the detection of binary FSK signals. 
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412 Chapter 7 Signaling over AWGN Channels

Differential encoding starts with an arbitrary first bit, serving as the reference bit; to
this end, symbol 1 is used as the reference bit. Generation of the differentially encoded
sequence then proceeds in accordance with a two-part encoding rule as follows:

1. If the new bit at the transmitter input is 1, leave the differentially encoded symbol
unchanged with respect to the current bit.

2. If, on the other hand, the input bit is 0, change the differentially encoded symbol
with respect to the current bit.

The differentially encoded sequence, denoted by {dk}, is used to shift the sinusoidal
carrier phase by zero and 180o, representing symbols 1 and 0, respectively. Thus, in terms
of phase-shifts, the resulting DPSK signal follows the two-part rule:

1. To send symbol 1, the phase of the DPSK signal remains unchanged.

2. To send symbol 0, the phase of the DPSK signal is shifted by 180°.

EXAMPLE 9 Illustration of DPSK

Consider the input binary sequence, denoted , to be 10010011, which is used to
derive the generation of a DPSK signal. The differentially encoded process starts with the
reference bit 1. Let  denote the differentially encoded sequence starting in this
manner and  denote its delayed version by one bit. The complement of the
modulo-2 sum of  and  defines the desired , as illustrated in the top three
lines of Table 7.6. In the last line of this table, binary symbols 1 and 0 are represented by
phase-shifts of 1 and  radians. 

Error Probability of DPSK

Basically, the DPSK is also an example of noncoherent orthogonal modulation when its
behavior is considered over successive two-bit intervals; that is, 0  t  2Tb. To
elaborate, let the transmitted DPSK signal be  for the first-bit
interval 0  t  Tb, which corresponds to symbol 1. Suppose, then, the input symbol for
the second-bit interval Tb  t  2Tb is also symbol 1. According to part 1 of the DPSK
encoding rule, the carrier phase remains unchanged, thereby yielding the DPSK signal

Table 7.6 Illustrating the generation of DPSK signal

{bk} 1 0 0 1 0 0 1 1

{dk – 1} 1 1 0 1 1 0 1 1
reference

Differentially encoded sequence {dk} 1 1 0 1 1 0 1 1 1

Transmitted phase (radians) 0 0 0 0 0 0 0

bk 

dk 
dk 1– 

bk  dk 1–  dk 

 

2Eb Tb 2fct cos
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7.13 Differential Phase-Shift Keying 413

(7.246)

Suppose, next, the signaling over the two-bit interval changes such that the symbol at the
transmitter input for the second-bit interval Tb  t  2Tb is 0. Then, according to part 2 of
the DPSK encoding rule, the carrier phase is shifted by  radians (i.e., 180°), thereby
yielding the new DPSK signal

(7.247)

We now readily see from (7.246) and (7.247) that s1(t) and s2(t) are indeed orthogonal
over the two-bit interval 0  t  2Tb, which confirms that DPSK is indeed a special form of
noncoherent orthogonal modulation with one difference compared with the case of binary
FSK: for DPSK, we have T = 2Tb and E = 2Eb. Hence, using (7.227), we find that the BER
for DPSK is given by

(7.248)

According to this formula, DPSK provides a gain of 3 dB over binary FSK using
noncoherent detection for the same Eb/N0.

Generation of DPSK Signal

Figure 7.44 shows the block diagram of the DPSK transmitter. To be specific, the
transmitter consists of two functional blocks:

• Logic network and one-bit delay (storage) element, which are interconnected so as
to convert the raw input binary sequence {bk} into the differentially encoded
sequence {dk}.

• Binary PSK modulator, the output of which is the desired DPSK signal. 

Optimum Receiver for the Detection of DPSK

In the use of DPSK, the carrier phase is unknown, which complicates the received signal
x(t). To deal with the unknown phase  in the differentially coherent detection of the
DPSK signal in x(t), we equip the receiver with an in-phase and a quadrature path. We thus
have a signal-space diagram where the received signal points over the two-bit interval
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414 Chapter 7 Signaling over AWGN Channels

0  t  2Tb are defined by (Acos, Asin) and (–Acos, –Asin), where A denotes the
carrier amplitude.

This geometry of possible signals is illustrated in Figure 7.45. For the two-bit interval
0  t  2Tb, the receiver measures the coordinates , first, at time t = Tb and then
measures  at time t = 2Tb. The issue to be resolved is whether these two points map
to the same signal point or different ones. Recognizing that the vectors x0 and x1, with end
points  and , respectively, are points roughly in the same direction if their
inner product is positive, we may formulate the binary-hypothesis test with a question:

Is the inner product  positive or negative?

Expressing this statement in analytic terms, we may write

(7.249)

where the threshold is zero for equiprobable symbols.
We now note the following identity:

Figure 7.44 Block diagram of a DPSK transmitter. 

Figure 7.45 Signal-space diagram of received DPSK signal. 
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7.14 BER Comparison of Signaling Schemes over AWGN Channels 415

Hence, substituting this identity into (7.249), we get the equivalent test:

(7.250)

where the scaling factor 14 is ignored. In light of this equation, the question on the binary
hypothesis test for the detection of DPSK may now be restated as follows:

Given the current signal point  received in the time interval 

0 < t < 2Tb, is this point closer to the signal point  or its image 

 received in the next time interval Tb < t < 2Tb?

Thus, the optimum receiver11 for the detection of binary DPSK is as shown in Figure 7.46,
the formulation of which follows directly from the binary hypothesis test of (7.250). This
implementation is simple, in that it merely requires that sample values be stored. 

The receiver of Figure 7.46 is said to be optimum for two reasons:

1. In structural terms, the receiver avoids the use of fancy delay lines that could be
needed otherwise.

2. In operational terms, the receiver makes the decoding analysis straightforward to
handle, in that the two signals to be considered are orthogonal over the interval
[0,2Tb] in accordance with the formula of (7.227).

7.14 BER Comparison of Signaling Schemes over AWGN Channels

Much of the material covered in this chapter has been devoted to digital modulation
schemes operating over AWGN channels. In this section, we present a summary of the

Figure 7.46 Block diagram of a DPSK receiver. 
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416 Chapter 7 Signaling over AWGN Channels

BERs of some popular digital modulation schemes, classified into two categories,
depending on the method of detection used in the receiver:

Class I: Coherent detection

• binary PSK: two symbols, single carrier

• binary FSK: two symbols, two carriers one for each symbol

• QPSK: four symbols, single carrier—the QPSK also includes the QAM, employing
four symbols as a special case

• MSK: four symbols, two carriers.

Class II: Noncoherent detection

• DPSK: two symbols, single carrier
• binary FSK: two symbols, two carriers.

Table 7.7 presents a summary of the formulas of the BERs of these schemes separated
under Classes I and II. All the formulas are defined in terms of the ratio of energy per bit
to the noise spectral density, EbN0, as summarized herein:

1. Under Class I, the formulas are expressed in terms of the Q-function. This function
is defined as the area under the tail end of the standard Gaussian distribution with
zero mean and unit variance; the lower limit in the integral defining the Q-function
is dependent solely on EbN0, scaled by the factor 2 for binary PSK, QPSK, and
MSK. Naturally, as this SNR ratio is increased, the area under the Q-function is
reduced and with it the BER is correspondingly reduced.

2. Under Class II, the formulas are expressed in terms of an exponential function,
where the negative exponent depends on the EbN0 ratio for DPSK and its scaled
version by the factor 1/2 for binary FSK. Here again, as the Eb/N0 is increased, the
BER is correspondingly reduced.

The performance curves of the digital modulation schemes listed in Table 7.7 are shown in
Figure 7.47 where the BER is plotted versus EbN0. As expected, the BERs for all the

Table 7.7 Formulas for the BER of digital modulation schemes 
employing two or four symbols

Signaling Scheme BER

I. Coherent detection

Binary PSK
QPSK
MSK

Binary FSK

II. Noncoherent detection

DPSK

Binary FSK

Q 2Eb N0

Q Eb N0

1
2
---exp Eb N0– 

1
2
---exp Eb 2N0– 
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7.14 BER Comparison of Signaling Schemes over AWGN Channels 417

schemes decrease monotonically with increasing EbN0, with all the graphs having a
similar shape in the form of a waterfall. Moreover, we can make the following
observations from Figure 7.47:

1. For any value of Eb/N0, the schemes using coherent detection produce a smaller
BER than those using noncoherent detection, which is intuitively satisfying.

2. PSK schemes employing two symbols, namely binary PSK with coherent detection
and DPSK with noncoherent detection, require an EbN0 that is 3 dB less than their
FSK counterpart to realize the same BER.

3. At high values of EbN0, DPSK and binary FSK using noncoherent detection
perform almost as well, to within about 1 dB of their respective counterparts using
coherent detection for the same BER.

Figure 7.47 Comparison of the noise performance of different PSK and FSK schemes. 
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418 Chapter 7 Signaling over AWGN Channels

4. Although under Class I the BER for binary PSK, QPSK, and MSK is governed by
the same formula, there are important differences between them:

• For the same channel bandwidth and BER, the QPSK accommodates the
transmission of binary data at twice the rate attainable with binary PSK; in other
words, QPSK is bandwidth conserving.

• When sensitivity to interfering signals is an issue of practical concern, as in
wireless communications, MSK is preferred over QPSK.                                                                   

7.15 Synchronization

The coherent reception of a digitally modulated signal, discussed in previous sections of
this chapter, requires that the receiver be synchronous with the transmitter. In this context,
we define the process of synchronization as follows:

Two sequences of related events performed separately, one in the transmitter 
and the other in the receiver, are said to be synchronous relative to each other 
when the events in one sequence and the corresponding events in the other 
occur simultaneously, except for some finite delay.

There are two basic modes of synchronization:

1. Carrier synchronization. When coherent detection is used in signaling over AWGN
channels via the modulation of a sinusoidal carrier, knowledge of both the frequency
and phase of the carrier is necessary. The process of estimating the carrier phase and
frequency is called carrier recovery or carrier synchronization; in what follows,
both terminologies are used interchangeably.

2. To perform demodulation, the receiver has to know the instants of time at which the
modulation in the transmitter changes its state. That is, the receiver has to know the
starting and finishing times of the individual symbols, so that it may determine when
to sample and when to quench the product-integrators. The estimation of these times is
called clock recovery or symbol synchronization; here again, both terminologies are
used interchangeably. 

We may classify synchronization schemes as follows, depending on whether some form of
aiding is used or not:

1. Data-aided synchronization. In data-aided synchronization schemes, a preamble is
transmitted along with the data-bearing signal in a time-multiplexed manner on a
periodic basis. The preamble contains information about the symbol timing, which
is extracted by appropriate processing of the channel output at the receiver. Such an
approach is commonly used in digital satellite and wireless communications, where
the motivation is to minimize the time required to synchronize the receiver to the
transmitter. Limitations of data-aided synchronization are twofold:

• reduced data-throughput efficiency, which is incurred by assigning a certain
portion of each transmitted frame to the preamble, and 

• reduced power efficiency, which results from the allocation of a certain fraction
of the transmitted power to the transmission of the preamble.

Haykin_ch07_pp3.fm  Page 418  Monday, November 26, 2012  1:16 PM



7.16 Recursive Maximum Likelihood Estimation for Synchronization 419

2. Nondata-aided synchronization. In this second approach, the use of a preamble is
avoided and the receiver has the task of establishing synchronization by extracting
the necessary information from the noisy distorted modulated signal at the channel
output. Both throughput and power efficiency are thereby improved, but at the
expense of an increase in the time taken to establish synchronization.

In this section, the discussion is focused on nondata-aided forms of carrier and clock
recovery schemes. To be more specific, we adopt an algorithmic approach,12 which is so-
called on account of the fact that implementation of the sychronizer enables the receiver to
estimate the carrier phase and symbol timing in a recursive manner from one time instant
to another. The processing is performed on the baseband version of the received signal,
using discrete-time (digital) signal-processing algorithms.

Algorithmic Approach to Synchronization 

Maximum likelihood decoding played a key role in much of the material on signaling
techniques in AWGN channels presented in Sections 7.4 through 7.13. Maximum
likelihood parameter estimation plays a key role of its own in the algorithmic approach to
synchronization. Both of these methods were discussed previously in Chapter 3 on
probability theory and Bayesian inference. In this context, it may therefore be said that a
sense of continuity is being maintained throughout this chapter. 

Given the received signal, the maximum likelihood method is used to estimate two
parameters: carrier phase and symbol timing, both of which are, of course, unknown.
Here, we are assuming that knowledge of the carrier frequency is available at the receiver.

Moreover, in the algorithmic approach, the symbol-timing recovery is performed
before phase recovery. The rationale for proceeding in this way is that once we know the
envelope delay incurred by signal transmission through a dispersive channel, then one
sample per symbol at the matched filter output may be sufficient for estimating the
unknown carrier phase. Moreover, computational complexity of the receiver is minimized
by using synchronization algorithms that operate at the symbol rate 1/T.

In light of the remarks just made, we will develop the algorithmic approach to
synchronization by proceeding as follows:

1. Through processing the received signal corrupted by channel noise and channel
dispersion, the likelihood function is formulated. 

2. The likelihood function is maximized to recover the clock.

3. With clock recovery achieved, the next step is to maximize the likelihood function to
recover the carrier.

The derivations presented in this chapter focus on the QPSK signal. The resulting
formulas may be readily extended to binary PSK symbols as a special case and
generalized for M-ary PSK signals.

7.16 Recursive Maximum Likelihood Estimation for Synchronization

In the previous section, we remarked that, in algorithmic synchronization, estimation of
the two unknown parameters, namely carrier phase and symbol timing, is performed in a
recursive manner from one time instant to another. 
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420 Chapter 7 Signaling over AWGN Channels

In other words:

Discrete time is an essential dimension of recursive parameter estimation.

Moreover, the estimation is performed at time t = nT, where n is an integer and T is the
symbol duration. Equivalently, we may say that n = t/T denotes the normalized
(dimensionless) discrete time. 

One other important point to note: recursive estimation of the unknown parameter, be
that the carrier phase or symbol time, plays a key role in the synchronization process.
Specifically, it proceeds across discrete time in accordance with the following rule:

(7.251)

In other words, the recursive parameter estimation takes on the structure of an adaptive
filtering algorithm, in which the product of the step-size parameter and error signal
assumes the role of an algorithmic adjustment. 

In what follows, we derive adaptive filtering algorithms for estimating the unknown
synchronization parameters with the error signal being derived from the likelihood function.

Likelihood Functions

The idea of maximum likelihood parameter estimation based on continuous-time
waveforms was discussed in Chapter 3. To briefly review the material described therein,
consider a baseband signal defined by

where  is an unknown parameter and w(t) denotes an AWGN. Given a sample of the
signal x(t), the requirement is to estimate the parameter ; so, we say:

The most likely value of the estimate  is the particular  for which the 
likelihood function l( ) is a maximum. 

Note that we say “a maximum” rather than “the maximum” because it is possible for the
graph of l( ) plotted versus  to have multiple maxima. In any event, the likelihood
function given x, namely l( ), is defined as the probability density function  with
the roles of x and  interchanged, as shown by

where, for convenience of presentation, we have omitted the conditional dependence of 
on x in l( ). 

In the algorithmic synchronization procedures derived in this section, we will be
concerned only with cases in which the parameter  is a scalar. Such cases are referred to
as independent estimation. However, when we are confronted with the synchronization of a
digital communication receiver to its transmitter operating over a dispersive channel, we
have two unknown channel-related parameters to deal with: the phase (carrier) delay , and
the group (envelope) delay , both of which were discussed in Chapter 2. In the context of
these two parameters, when we speak of independent estimation for synchronization, we
mean that the two parameters  and  are considered individually rather than jointly.
Intuitively speaking, independent estimation is much easier to tackle and visualize than
joint estimation, and it may yield more robust estimates in general. 

Updated estimate
of the parameter 

  Old estimate
of the parameter 
  Step-size

parameter 
  Error

signal 
 +=

x t  s t   w t +=




̂ 


 
 f x  


l   f x  =






c
g

c g
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Let the transmitted signal for symbol i in the QPSK signal be defined by

(7.252)

where E is the signal energy per symbol, T is the symbol period, and  is the carrier
phase used for transmitting symbol i. For example, for the QPSK we have

Equivalently, we may write

(7.253)

where g(t) is the shaping pulse, namely a rectangular pulse of unit amplitude and duration
T. By definition, c affects the carrier and g affects the envelope. Accordingly, the
received signal at the channel output is given by

 (7.254)

where w(t) is the channel noise. The new term  introduced in (7.254) is an additive
carrier phase attributed to the phase delay  produced by the dispersive channel; it is
defined by

(7.255)

The minus sign is included in the right-hand side of (7.255) to be consistent with previous
notation used in dealing with signal detection.

Both the carrier phase  and group delay g are unknown. However, it is assumed that
they remain essentially constant over the observation interval 0  t  T0 or through the
transmission of a sequence made up of L0 = T0T symbols. 

With  used to account for the carrier delay , we may simplify matters by using 
in place of  for the group delay; that is, (7.254) is rewritten as

(7.256)

At the receiver, the orthogonal pair of basis functions for QPSK signals is defined by

(7.257)

(7.258)

Here, it is assumed that the receiver has perfect knowledge of the carrier frequency fc,
which is a reasonable assumption; otherwise, a carrier-frequency offset has to be included
that will complicate the analysis. 

si t  2E
T

------- 2fct 2+  0 t T cos=

i

i

4
--- 2i 1–  i 1 2 3 4  = =

si t  2E
T

------- 2fct i+ g t cos=

x t  2E
T

------- 2 fc t c–  i g t g–  w t + +cos=

2E
T

------- 2fct  i+ + g t g–  w t +cos=


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422 Chapter 7 Signaling over AWGN Channels

Accordingly, we may represent the received signal x(t) by the baseband vector

(7.259)

where

(7.260)

In a corresponding fashion, we may express the signal component of x( ) by the vector

(7.261)

where 

(7.262)

Assuming that fc is an integer multiple of the symbol rate 1/T, evaluation of the integral in
(7.262) shows that dependence of s1 and s2 on the group delay  is eliminated, as shown
by

(7.263)

(7.264)

We may thus expand on (7.259) to write

(7.265)

where

(7.266)

The two elements of the noise vector w are themselves defined by

(7.267)

The wk in (7.267) is the sample value of a Gaussian random variable W of zero mean and
variance N02, where N02 is the power spectral density of the channel noise w(t).
Dependence of the baseband signal vector x on delay  is inherited from (7.265).

The conditional probability density function of the random vector X, represented by the
sample x at the receiver input given transmission of the ith symbol, and occurrence of the
carrier phase  and group delay resulting from the dispersive channel, is defined by

(7.268)
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Setting  equal to zero, (7.268) reduces to

(7.269)

Equation (7.268) defines the probability density function of the random vector X in the
combined presence of signal and channel noise, whereas (7.269) defines the probability
density function of x in the presence of channel noise acting alone. Accordingly, we may
define the likelihood function for QPSK as the ratio of these two probability density
functions, as shown by

(7.270)

In QPSK, we have 

because all four message points lie on a circle of radius . Hence, ignoring the second
term in the exponent in (7.270), we may reduce the likelihood function to

(7.271)

Complex Terminology for Algorithmic Synchronization

Before proceeding with the derivations of adaptive filtering algorithms for recovery of the
clock and carrier, we find it instructive to reformulate the likelihood function of (7.271)
using complex terminology. Such a step is apropos given the fact that the received signal
vector as well as its contituent signal and noise vectors in (7.265) are all in their respective
baseband forms.

Specifically, the two-dimensional vector  is represented by the complex envelope
of the received signal

(7.272)

where . 
Correspondingly, the signal vector , comprising the pair of signal components

 and , is represented by the complex envelope of the transmitter signal
corrupted by carrier phase :

(7.273)

The new complex parameter  in (7.273) is a symbol indicator in the message
constellation of the QPSK; it is defined by

(7.274)
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Correspondingly, the complex experimental factor embodying the carrier phase  is
defined by

(7.275)

Both (7.274) and (7.275) follow from Euler’s formula.
With the complex representations of (7.272) to (7.275) at hand, we may now reformulate

the exponent of the likelihood function in (7.271) in the equivalent complex form:

(7.276)

where Re[.] denotes the real part of the complex expression inside the square brackets.
Hence, we may make the following statement:

The inner product of the two complex vectors  and  in (7.276) 
is replaced by  times the real part of the inner product of two complex 
variables:  and .

Two points are noteworthy here:

1. The complex envelope of the received signal is dependent on the group delay ,

hence . The product  is made up of the complex symbol indicator 

attributed to the QPSK signal generated in the transmitter and the exponential term

 attributed to phase distortion in the channel.

2. In complex variable theory, given a pair of complex terms  and , their

inner product could be defined as , as shown in (7.276).

The complex representation on the right-hand side of (7.276), expressed in Cartesian
form, is well suited for estimating the unknown phase . On the other hand, for estimating
the unknown group delay , we find it more convenient to use a polar representation for
the inner product of the two vectors  and , as shown by 

(7.277)

Indeed, it is a straightforward matter to show that the two complex representations on the
right-hand side of (7.276) and (7.277) are indeed equivalent. The reasons for why these
two representations befit the estimation of carrier phase  and group delay , respec-
tively, will become apparent in the next two subsections. 

Moreover, in light of what was said previously, estimation of the group delay should
precede that of the carrier phase. Accordingly, the next subsection is devoted to group-
delay estimation, followed by the sub-section devoted to carrier-phase estimation.

Recursive Estimation of the Group Delay

To begin the task of estimating the unknown group delay, first of all we have to remove
dependence of the likelihood function  on the unknown carrier phase  in
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(7.271). To do this, we will average the likelihood function over all possible values of 
inside the range . To this end,  is assumed to be uniformly distributed inside this
range, as shown by

 (7.278)

which is the worst possible situation that can arise in practice. Under this assumption, we
may thus express the average likelihood function as

(7.279)

where, in the last line, we used (7.271).
Examining the two alternative complex representations of the likelihood function’s

exponent given in (7.276) and (7.277), it is the latter that best suits solving the integration
in (7.279). Specifically, we may write

(7.280)

where, in the last line, we have made the substitution

We now invoke the definition of the modified Bessel function of zero order, as shown by
(see Appendix C)

(7.281)

Using this formula, we may, therefore, express the average likelihood function 
in (7.280) as follows:

(7.282)

where  is the complex envelope of the matched filter output in the receiver. By
definition, for QPSK we have
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426 Chapter 7 Signaling over AWGN Channels

It follows, therefore, that (7.282) reduces to

(7.283)

Here, it is important to note that, as a result of averaging the likelihood function over the
carrier phase , we have also removed dependence on the transmitted symbol  for
QPSK; this result is intuitively satisfying.

In any event, taking the natural logarithm of lav() in (7.283) to obtain the log-
likelihood function of , we write

(7.284)

where ln denotes the natural logarithm. To proceed further, we need to find a good
approximation for Lav(). To this end, we first note that the modified Bessel function I0(x)
may itself be expanded in a power series (see Appendix C):

where x stands for the product term . For small values of x, we may thus
approximate I0(x) as shown by

We may further simplify matters by using the approximation

(7.285)

For the problem at hand, small x corresponds to small SNR. Under this condition, we may
now approximate the log-likelihood function of (7.284) as follows:

(7.286)

With maximization of Lav() as the objective, we differentiate it with respect to the
envelope delay , obtaining

(7.287)

where  is the complex conjugate of  and  is its derivative with respect to .
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7.16 Recursive Maximum Likelihood Estimation for Synchronization 427

The formula in (7.287) is the result of operating on the received signal at the channel
output, , defined in (7.254) for a particular symbol of the QPSK signal defined in the
interval [ , T + ]. In the course of finding the baseband vector representation of the
received signal, namely , dependence on time t disappeared in (7.287).
Notwithstanding this point, the fact of the matter is the log-likelihood ratio  in
(7.287) pertains to some point in discrete time n = tT, and it changes with n. To go forward
with recursive estimation of the group delay , we must therefore bring discrete time n into
the procedure. To this end, n is assigned as a subscript to both  and  in (7.287).
Thus, with the recursive estimation of  following the format described in words in (7.251),
we may define the error signal needed for the recursive estimation of  (i.e., symbol-timing
recovery) as follows:

(7.288)

Let  denote the estimate of the unknown group delay  at discrete time n.
Correspondingly, we may introduce two definitions

(7.289)

and
(7.290)

Accordingly, we may reformulate the error signal en in (7.288) as follows:

(7.291)

Computation of the error signal en, therefore, requires the use of two filters:

1. Complex matched filter, which is used for generating .

2. Complex derivative matched filter, which is used for generating .

By design, the receiver is already equipped with the first filter. The second one is new. In
practice, the additional computational complexity due to the derivative matched filter is
found to be an undesireable requirement. To dispense with the need for it, we propose to
approximate the derivative using a finite difference, as shown by

 (7.292)

Note, however, that in using the finite-difference approximation of (7.292) we have
simplified computation of the derivative matched filter by doubling the symbol rate. It is
desirable to make one further modification to account for the fact that timing estimates are
updated at multiples of the symbol period T and the only available quantities are .
Consequently, we replace  by the current (updated estimate)  and replace 
by the old estimate . We may thus rewrite (7.292) as follows:

(7.293)

So, we finally redefine the error signal as follows:

(7.294)

where the scaling factor 1T is accounted for in what follows.
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428 Chapter 7 Signaling over AWGN Channels

Finally, building on the format of the recursive estimation procedure described in
(7.251), we may formulate the adaptive filtering algorithm for symbol timing recovery:

(7.295)

where we have the following:

• The  in (7.295) is the step-size parameter, in which the two scaling factors 
and 1/T are absorbed; the factor  was ignored in moving from (7.287) to
(7.288) and the factor 1/T was ignored from (7.293) to (7.294). 

• The error signal en is defined by (7.294). 
• The cn is a real number employed as control for the frequency of an oscillator,

referred to as a number-controlled oscillator (NCO). 

The closed-loop feedback system for implementing the timing-recovery algorithm of
(7.295) is shown in Figure 7.48. From a historical perspective, the scheme shown in this
figure is analogous to the continuous-time version of the traditional early–late gate
synchronizer widely used for timing recovery. In light of this analogy, the scheme of
Figure 7.48 is referred to as a recursive early–late delay (NDA-ELD) synchronizer. At
every recursion (i.e., time step), the synchronizer works on three successive samples of the
matched filter output, namely:

 and  

The first sample is early and the last one is late, both defined with respect to the middle one.

Recursive Estimation of the Carrier Phase

With estimation of the symbol time  taken care of, the next step is to estimate the carrier
phase . This estimation is also based on the likelihood function defined in (7.270), but

Figure 7.48 Nondata-aided early–late delay 
synchronizer for estimating the group delay. 
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7.16 Recursive Maximum Likelihood Estimation for Synchronization 429

with a difference: this time we use the complex representation on the right-hand side of
(7.276) for the likelihood function’s exponent. Thus, the likelihood function of  is now
expressed as follows:

(7.296)

Taking the natural logorithm of both sides of (7.296), the log-likelihood function of  is,
therefore, given by

(7.297)

Here again, maximizing the estimate of the carrier phase  as the issue of interest, we
differentiate  with respect to , obtaining

The real-part operator Re[] is linear; therefore, we may interchange this operation with
the differentiation. Moreover, we have 

As a result of the differentiation, the argument  in (7.297) is multiplied by –j,
which, in turn, has the effect of replacing the real-part operator Re[.] by the corresponding
imaginary-part operator Im[.] Accordingly, we may express derivative of the log-likelihood
function in (7.297) with respect to  as follows:

(7.298)

With this equation at hand, we are now ready to formulate the adaptive filtering algorithm
for estimating the unknown carrier phase . To this end, we incorporate discrete-time n
into the recursive estimation procedure for clock recovery in a manner similar to what we
did for the group delay; specifically: 

1. With the argument of the imaginary-part operator in (7.298) playing the role of error
signal, we write:

(7.299)

where n denotes the normalized discrete-time.

2. The scaling factor  is absorbed in the new step-size parameter .

3. With  denoting the old estimate of the carrier phase  and  denoting its
updated value, the update rule for the estimation is defined as follows:

(7.300)

Equations (7.299) and (7.300) not only define the adaptive filtering algorithm for carrier-
phase estimation, but also they provide the basis for implementing the algorithm, as shown
in Figure 7.49. This figure may be viewed as a generalization of the well-known Costas loop
for the analog synchronization of linear quadrature-amplitude modulation schemes that


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430 Chapter 7 Signaling over AWGN Channels

involve the combined use of in-phase and quadrature components, of which the QPSK is a
special example. As such, we may refer to the closed-loop synchronization scheme of Figure
7.49 as the recursive Costas loop for phase synchronization.

The following points should be noted in Figure 7.49:

• The detector supplies an estimate of the symbol indicator  and, therefore, the
transmitted symbol, given the matched filter output.

• For the input , the look-up table in the figure supplies the value of the exponential

• The output of the error generator is the error signal en, defined in (7.299).
• The block labeled z–1 represents a unit-time delay.

The recursive Costas loop of Figure 7.49 uses a first-order digital filter. To improve the
tracking performance of this synchronization system, we may use a second-order digital
filter. Figure 7.50 shows an example of a second-order recursive filter made up of a
cascade of two first-order sections, with  as an adjustable loop parameter. An important
property of a second-order recursive filter used in the Costas loop for phase recovery is
that it will eventually lock onto the incoming carrier with no static error, provided that the
frequency error between the receiver and transmitter is initially small.

Convergence Considerations

The adaptive behavior of the filtering schemes in Figures 7.48 and 7.49 for group-delay
and carrier-phase estimation, respectively, is governed by how the step-size parameters

Figure 7.49 The recursive Costas loop for estimating the carrier phase. 

Figure 7.50 Second-order recursive filter. 
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7.17 Summary and Discussion 431

 are selected. The smaller we make  and, likewise, , the more refined will be
the trajectories resulting from application of the algorithms. However, this benefit is
attained at the cost of the number of recursions required for convergence of the algorithms.
On the other hand, if the step-size parameter  and  is assigned a large value, then the
trajectories may follow a zig-zag sort of path. Indeed, if  and  exceeds a certain critical
value of its own, it is quite possible for the algorithm to diverge, which means that the
synchronization schemes of Figures 7.48 and 7.49 may become unstable. So, from a
design perspective, the compromise choice between accuracy of estimation and speed of
convergence may require a detailed attention, both theoretical and experimental.

7.17 Summary and Discussion

The primary goal of the material presented in this chapter is the formulation of a
systematic procedure for the analysis and design of a digital communication receiver in
the presence of AWGN. The procedure, known as maximum likelihood detection, decides
which particular transmitted symbol is the most likely cause of the noisy signal observed
at the channel output. The approach that led to the formulation of the maximum likelihood
detector (receiver) is called signal-space analysis. The basic idea of the approach is to
represent each member of a set of transmitted signals by an N-dimensional vector, where
N is the number of orthonormal basis functions needed for a unique geometric
representation of the transmitted signals. The set of signal vectors so formed defines a
signal constellation in an N-dimensional signal space.

For a given signal constellation, the (average) probability of symbol error, Pe, incurred
in maximum likelihood signal detection over an AWGN channel is invariant to rotation of
the signal constellation as well as its translation. However, except for a few simple (but
important) cases, the numerical calculation of Pe is an impractical proposition. To
overcome this difficulty, the customary practice is to resort to the use of bounds that lend
themselves to computation in a straightforward manner. In this context, we described the
union bound that follows directly from the signal-space diagram. The union bound is
based on an intuitively satisfying idea: 

The probability of symbol error Pe is dominated by the nearest neighbors to the 
transmitted signal in the signal-space diagram.

The results obtained using the union bound are usually fairly accurate, particularly when
the SNR is high.

With the basic background theory on optimum receivers covered in the early part of
Chapter 7 at our disposal, formulas were derived for, or bounds on, the BER for some
important digital modulation techniques in an AWGN channel:

1. PSK, using coherent detection; it is represented by

• binary PSK;
• QPSK and its variants, namely, such as the offset QPSK; 
• coherent M-ary PSK, which includes binary PSK and QPSK as special cases with

M = 2 and M = 4, respectively. 

The DPSK may be viewed as the pseudo-noncoherent form of PSK.

 and   

 
 
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432 Chapter 7 Signaling over AWGN Channels

2. M-ary QAM, using coherent detection; this modulation scheme is a hybrid form of
modulation that combines amplitude and phase-shift keying. For M = 4, it includes
QPSK as a special case. 

3. FSK, using coherent detection; it is represented by

• binary FSK;
• MSK and its Gaussian variant known as GMSK;
• M-ary FSK.

4. Noncoherent detection schemes, involving the use of binary FSK and DPSK.

Irrespective of the digital modulation system of interest, synchronization of the receiver to
the transmitter is essential to the operation of the system. Symbol timing recovery is
required whether the receiver is coherent or not. If the receiver is coherent, we also require
provision for carrier recovery. In the latter part of the chapter we discussed nondata-aided
synchronizers to cater to these two requirements with emphasis on M-ary PSK,
exemplified by QPSK signals, in which the carrier is suppressed. The presentation focused
on recursive synchronization techniques that are naturally suited for the use of discrete-
time signal processing algorithms.

We conclude the discussion with some additional notes on the two adaptive filtering
algorithms described in Section 7.16 on estimating the unknown parameters: carrier phase
and group delay. In a computational context, these two algorithms are in the same class as
the celebrated least-mean-square (LMS) algorithm described by Widrow and Hoff over
50 years ago. The LMS algorithm is known for its computational efficiency, effectiveness
in performance, and robustness with respect to the nonstationary character of the
environment in which it is embedded. The two algorithmic phase and delay synchronizers
share the first two properties of the LMS algorithm; for a conjecture, it may well be they
are also robust when operating in a nonstationary communication environment.

Problems

Representation of Signals

7.1 In Chapter 6 we described line codes for pulse-code modulation. Referring to the material presented
therein, formulate the signal constellations for the following line codes:

a. unipolar nonreturn-to-zero code

b. polar nonreturn-to-zero code

c. unipolar return-to-zero code

d. manchester code.

7.2 An 8-level PAM signal is defined by

where Ai = 1, 3, 5, 7. Formulate the signal constellation of .

7.3 Figure P7.3 displays the waveforms of four signals s1(t), s2(t), s3(t), and s4(t). 
a. Using the Gram–Schmidt orthogonalization procedure, find an orthonormal basis for this set of

signals.

b. Construct the corresponding signal-space diagram.

si t  Ai rect t
T
--- 1

2
---– 

 =

si t  
i 1=
8
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 7.4 a. Using the Gram–Schmidt orthogonalization procedure, find a set of orthonormal basis functions
to represent the three signals s1(t), s2(t), and s3(t) shown in Figure P7.4.

b. Express each of these signals in terms of the set of basis functions found in part a.

7.5 An orthogonal set of signals is characterized by the property that the inner product of any pair of
signals in the set is zero. Figure P7.5 shows a pair of signals s1(t) and s2(t) that satisfy this definition.
Construct the signal constellation for this pair of signals.

7.6 A source of information emits a set of symbols denoted by . Two candidate modulation
schemes, namely pulse-duration modulation (PDM) and pulse-position modulation (PPM), are
considered for the electrical representation of this set of symbols. In PDM, the ith symbol is
represented by a pulse of unit amplitude and duration (i/M)T. On the other hand, in PPM, the ith
symbol is represented by a short pulse of unit amplitude and fixed duration, which is transmitted at
time t = (i/M)T. Show that PPM is the only one of the two that can produce an orthogonal set of
signals over the interval 0  t  T.

7.7 A set of 2M biorthogonal signals is obtained from a set of M ordinary orthogonal signals by
augmenting it with the negative of each signal in the set.

a. The extension of orthogonal to biorthogonal signals leaves the dimensionality of the signal space
unchanged. Explain how.

b. Construct the signal constellation for the biorthogonal signals corresponding to the pair of
orthogonal signals shown in Figure P7.5.

Figure P7.3
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434 Chapter 7 Signaling over AWGN Channels

 7.8 a. A pair of signals si(t) and sk(t) have a common duration T. Show that the inner product of this
pair of signals is given by

where si and sk are the vector representations of si(t) and sk(t), respectively.

b. As a follow-up to part a of the problem, show that

7.9 Consider a pair of complex-valued signals si(t) and sk(t) that are respectively represented by

where the basis functions 1(t) and 2(t) are both real valued, but the coefficients a11, a12, a21, and
a22 are complex valued. Prove the complex form of the Schwarz inequality:

where the asterisk denotes complex conjugation. When is this relation satisfied with the equality sign?

Stochastic Processes

7.10 Consider a stochastic process X(t) expanded in the form

where  is a remainder noise term. The  form an orthonormal set over the interval
0  t  T, and the random variable Xi is defined by

 

Let  denote a random variable obtained by observing  at time t = tk. Show that

7.11 Consider the optimum detection of the sinusoidal signal in AWGN:

a. Determine the correlator output assuming a noiseless input.

b. Determine the corresponding matched filter output, assuming that the filter includes a delay T to
make it causal.

c. Hence, show that these two outputs are exactly the same only at the time instant t = T.

Probability of Error

7.12 Figure P7.12 shows a pair of signals s1(t) and s2(t) that are orthogonal to each other over the
observation interval 0  t  3T. The received signal is defined by
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where w(t) is white Gaussian noise of zero mean and power spectral density N0/2. 
a. Design a receiver that decides in favor of signals s1(t) or s2(t), assuming that these two signals are

equiprobable.

b. Calculate the average probability of symbol error incurred by this receiver for E/N0 = 4, where E
is the signal energy. 

7.13 In the Manchester code discussed in Chapter 6, binary symbol 1 is represented by the doublet pulse
s(t) shown in Figure P7.13, and binary symbol 0 is represented by the negative of this pulse. Derive
the formula for the probability of error incurred by the maximum likelihood detection procedure
applied to this form of signaling over an AWGN channel. 

7.14 In the Bayes’ test, applied to a binary hypothesis-testing problem where we have to choose one of
two possible hypotheses H0 and H1, we minimize the risk  defined by

The parameters C00, C10, C11, and C01 denote the costs assigned to the four possible outcomes of the
experiment: the first subscript indicates the hypothesis chosen and the second the hypothesis that is
true. Assume that C10 > C00 and C01 > C11. The p0 and p1 denote the a priori probabilities of
hypotheses H0 and H1, respectively.

a. Given the observation vector x, show that the partitioning of the observation space so as to
minimize the risk  leads to the likelihood ratio test:

say H0 if 

say H1 if 

where  is the likelihood ratio defined by
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436 Chapter 7 Signaling over AWGN Channels

and  is the threshold of the test defined by

b. What are the cost values for which the Bayes’ criterion reduces to the minimum probability of
error criterion?

Principles of Rotational and Translational Invariance

7.15 Continuing with the four line codes considered in Problem 7.1, identify the line codes that have
minimum average energy and those that do not. Compare your answers with the observations made
on these line codes in Chapter 6.

7.16 Consider the two constellations shown in Figure 7.10. Determine the orthonormal matrix Q that
transforms the constellation shown in Figure 7.10a into the one shown in Figure 7.10b.

 7.17 a. The two signal constellations shown in Figure P7.17 exhibit the same average probability of
symbol error. Justify the validity of this statement. 

b. Which of these two constellations has minimum average energy? Justify your answer.

You may assume that the symbols pertaining to the message points displayed in Figure P7.17 are
equally likely.

7.18 Simplex (transorthogonal) signals are equally likely highly-correlated signals with the most negative
correlation that can be achieved with a set of M orthogonal signals. That is, the correlation
coefficient between any pair of signals in the set is defined by

One method of constructing simplex signals is to start with a set of M orthogonal signals each with
energy E and then apply the minimum energy translate.

Consider a set of three equally likely symbols whose signal constellation consists of the vertices of
an equilateral triangle. Show that these three symbols constitute a simplex code.

Amplitude-Shift Keying

7.19 In the on–off keying version of an ASK system, symbol1 is represented by transmitting a sinusoidal
carrier of amplitude , where Eb is the signal energy per bit and Tb is the bit duration.
Symbol 0 is represented by switching off the carrier. Assume that symbols 1 and 0 occur with equal
probability. 


p0 C10 C00– 
p1 C01 C11– 
----------------------------------=

Figure P7.17
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For an AWGN channel, determine the average probability of error for this ASK system under the
following scenarios:

a. Coherent detection.

b. Noncoherent detection, operating with a large value of bit energy-to-noise spectral density ratio
EbN0.

Note: when x is large, the modified Bessel function of the first kind of zero order may be
approximated as follows (see AppendixC):

Phase-Shift Keying

7.20 The PSK signal is applied to a correlator supplied with a phase reference that lies within  radians
of the exact carrier phase. Determine the effect of the phase error  on the average probability of
error of the system.

7.21 The signal component of a PSK system scheme using coherent detection is defined by

where 0  t  Tb, the plus sign corresponds to symbol 1, and the minus sign corresponds to symbol
0; the parameter k lies in the range 0  k  1. The first term of s(t) represents a carrier component
included for the purpose of synchronizing the receiver to the transmitter.

a. Draw a signal-space diagram for the scheme described here. What observations can you make
about this diagram?

b. Show that, in the presence of AWGN of zero mean and power spectral density N0/2, the average
probability of error is

where

c. Suppose that 10% of the transmitted signal power is allocated to the carrier component.
Determine the EbN0 required to realize Pe = 10–4.

d. Compare this value of EbN0 with that required for a binary PSK scheme using coherent
detection, with the same probability of error.

 7.22 a. Given the input binary sequence 1100100010, sketch the waveforms of the in-phase and
quadrature components of a modulated wave obtained using the QPSK based on the signal set of
Figure 7.16.

b. Sketch the QPSK waveform itself for the input binary sequence specified in part a.

7.23 Let PeI and PeQ denote the probabilities of symbol error for the in-phase and quadrature channels,
respectively, of a narrowband digital communication system. Show that the average probability of
symbol error for the overall system is given by

Pe = PeI + PeQ – PeIPeQ

7.24 Equation (7.132) is an approximate formula for the average probability of symbol error for M-ary
PSK using coherent detection. This formula was derived using the union bound in light of the signal-
space diagram of Figure 7.22b. Given that message point m1 was transmitted, show that the
approximation of (7.132) may be derived directly from Figure 7.22b.
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438 Chapter 7 Signaling over AWGN Channels

7.25 Find the power spectral density of an offset QPSK signal produced by a random binary sequence in
which symbols 1 and 0 (represented by 1) are equally likely and the symbols in different time slots
are statistically independent and identically distributed.

7.26 Vestigial sideband modulation (VSB), discussed in Chapter 2, offers another possible modulation
method for signaling over an AWGN channel.

a. In particular, a digital VSB transmission system may be viewed as a time-varying one-
dimensional system operating at a rate of 2/T dimensions per second, where T is the symbol
period. Justify the validity of this statement.

b. Show that digital VSB is indeed equivalent in performance to the offset QPSK.

Quadrature Amplitude Modulation

7.27 Referring back to Example 7, develop a systematic procedure for constructing M-ary QAM
constellations given the M-ary QAM constellation of Figure 7.24 for M = 16. In effect, this problem
addresses the opposite approach to that described in Example 7.

7.28 Figure P7.28 describes the block diagram of a generalized M-ary QAM modulator. Basically, the
modulator includes a mapper that produces a complex amplitude am input for m = 0, 1, 
The real and imaginary parts of am input the basis functions  and , respectively. The
modulator is generalized in that it embodies M-ary PSK and M-ary PAM as special cases.

a. Formulate the underlying mathematics of the modulator described in Figure P7.28.

b. Hence, show that M-ary PSK and M-ary PAM are indeed special cases of the M-ary QPSK
generated by the block diagram of Figure P7.28.

Frequency-Shift Keying

7.29 The signal vectors s1 and s2 are used to represent binary symbols 1 and 0, respectively, in a binary
FSK system using coherent detection. The receiver decides in favor of symbol1 when

where xTsi is the inner product of the observation vector x and the signal vector si, i = 1, 2. Show that
this decision rule is equivalent to the condition x1 > x2, where x1 and x2 are the two elements of the
observation vector x. Assume that the signal vectors s1 and s2 have equal energy.

7.30 An FSK system transmits binary data at the rate of  bits/s. During the course of
transmission, white Gaussian noise of zero mean and power spectral density 10–20 W/Hz is added to

1 t  2 t 

Figure P7.28
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the signal. In the absence of noise, the amplitude of the received sinusoidal wave for digit 1 or 0 is
1mV. Determine the average probability of symbol error for the following system configurations:

a. binary FSK using coherent detection;

b. MSK using coherent detection;

c. binary FSK using noncoherent detection.

7.31 In an FSK system using coherent detection, the signals s1(t) and s2(t) representing binary symbols 1
and 0, respectively, are defined by

 

Assuming that fc > f, show that the correlation coefficient of the signals s1(t) and s2(t) is
approximately given by

a. What is the minimum value of frequency shift f for which the signals s1(t) and s2(t) are
orthogonal?

b. What is the value of f that minimizes the average probability of symbol error?

c. For the value of f obtained in part c, determine the increase in EbN0 required so that this FSK
scheme has the same noise performance as a binary PSK scheme system, also using coherent
detection.

7.32 A binary FSK signal with discontinuous phase is defined by

where Eb is the signal energy per bit, Tb is the bit duration, and 1 and 2 are sample values of
uniformly distributed random variables over the interval 0 to 2. In effect, the two oscillators
supplying the transmitted frequencies fc  f /2 operate independently of each other. Assume that
fc >>f.

a. Evaluate the power spectral density of the FSK signal.

b. Show that, for frequencies far removed from the carrier frequency fc, the power spectral density
falls off as the inverse square of frequency. How does this result compare with a binary FSK
signal with continuous phase?

7.33 Set up a block diagram for the generation of Sunde’s FSK signal s(t) with continuous phase by using
the representation given in (7.170), which is reproduced here

7.34 Discuss the similarities between MSK and offset QPSK, and the features that distinguish them.

7.35 There are two ways of detecting an MSK signal. One way is to use a coherent receiver to take full
advantage of the phase information content of the MSK signal. Another way is to use a noncoherent
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440 Chapter 7 Signaling over AWGN Channels

receiver and disregard the phase information. The second method offers the advantage of simplicity
of implementation at the expense of a degraded noise performance. By how many decibels do we
have to increase the bit energy-to-noise density ratio EbN0 in the second method so as to realize the
same average probability of symbol error equal to 10–5?

 7.36 a. Sketch the waveforms of the in-phase and quadrature components of the MSK signal in response
to the input binary sequence 1100100010.

b. Sketch the MSK waveform itself for the binary sequence specified in part a.

7.37 An NRZ data stream of amplitude levels 1 is passed through a low-pass filter whose impulse
response is defined by the Gaussian function

where  is a design parameter defined in terms of the filter’s 3dB bandwidth by

a. Show that the transfer function of the filter is defined by

Hence, demonstrate that the 3dB bandwidth of the filter is indeed equal to W. You may use the
list of Fourier-transform pairs in Table 2.1.

b. Determine the response of the filter to a rectangular pulse of unit amplitude and duration T
centered on the origin.

7.38 Summarize the similarities and differences between the standard MSK and Gaussian filtered MSK
signals.

7.39 Summarize the basic similarities and differences between the standard MSK and QPSK.

Noncoherent Receivers

7.40 In Section 7.12 we derived the formula for the BER of binary FSK using noncoherent detection as a
special case of noncoherent orthogonal modulation. In this problem we revisit this issue. As before,
we assume that symbol 1 is represented by signal s1(t) and symbol 0 is represented by signal s2(t).
According to the material presented in Section 7.12, we note the following:

• The random variable L2 represented by the sample value l2 is Rayleigh distributed.

• The random variable L1 represented by the sample value l1 is Rician distributed.

The Rayleigh and Rician distributions were discussed in Chapter 4. Using the probability
distributions defined in that chapter, derive (7.245) for the BER of binary FSK, using noncoherent
detection.

7.41 Figure P7.41a shows a noncoherent receiver using a matched filter for the detection of a sinusoidal
signal of known frequency but random phase and under the assumption of AWGN. An alternative
implementation of this receiver is its mechanization in the frequency domain as a spectrum analyzer
receiver, as in Figure P7.41b, where the correlator computes the finite-time autocorrelation function
defined by

Show that the square-law envelope detector output sampled at time t = T in Figure P7.41a is twice
the spectral output of the Fourier transform sampled at frequency f = fc in Figure P7.41b.
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7.42 The binary sequence 1100100010 is applied to the DPSK transmitter of Figure 7.44.

a. Sketch the resulting waveform at the transmitter output.

b. Applying this waveform to the DPSK receiver of Figure 7.46, show that in the absence of noise
the original binary sequence is reconstructed at the receiver output.

Comparison of Digital Modulation Schemes Using a Single Carrier

7.43 Binary data are transmitted over a microwave link at the rate of 106 bits/s and the power spectral
density of the noise at the receiver input is 10–10 W/Hz. Find the average carrier power required to
maintain an average probability of error Pe  10–4 for the following schemes: 

a. Binary PSK using coherent detection;

b. DPSK.

7.44 The values of EbN0 required to realize an average probability of symbol error Pe = 10–4 for binary
PSK and binary FSK schemes are equal to 7.2 and 13.5, respectively. Using the approximation

determine the separation in the values of EbN0 for Pe = 10–4, using:

a. binary PSK using coherent detection and DPSK;

b. binary PSK and QPSK, both using coherent detection;

c. binary FSK using (i) coherent detection and (ii) noncoherent detection;

d. binary FSK and MSK, both using coherent detection.

7.45 In Section 7.14 we compared the noise performances of various digital modulation schemes under
the two classes of coherent and noncoherent detection; therein, we used the BER as the basis of
comparison. In this problem we take a different viewpoint and use the average probability of symbol
error Pe, to do the comparison. Plot Pe versus EbN0 for each of these schemes and comment on
your results.

Synchronization

7.46 Demonstrate the equivalence of the two complex representations given in (7.276) and (7.277), which
pertain to the likelihood function.

 7.47 a. In the recursive algorithm of (7.295) for symbol timing recovery, the control signals cn and cn + 1
are both dimensionless. Discuss the units in which the error signal en and step-size parameter 
are measured.

b. In the recursive algorithm of (7.300) for phase recovery, the old estimate  and the updated
estimate  of the carrier phase  are both measured in radians. Discuss the units in which the
error signal en and step-size parameter  are measured.

7.48 The binary PSK is a special case of QPSK. Using the adaptive filtering algorithms derived in Section
7.16 for estimating the group delay  and carrier phase , find the corresponding adaptive filtering
algorithms for binary PSK.

7.49 Repeat Problem 7.48, but this time find the adaptive filtering algorithms for M-ary PSK. 

Figure P7.41
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442 Chapter 7 Signaling over AWGN Channels

7.50 Suppose we transmit a sequence of L0 statistically independent symbols of a QPSK signal, as shown
by

where L0 is not to be confused with the symbol for average log-likelihood Lav. The channel output is
corrupted by AWGN of zero mean and power spectral density N02, carrier phase , and unknown
group delay .

a. Determine the likelihood function with respect to the group delay , assuming that  is uni-
formly distributed. 

b. Hence, formulate the maximum likelihood estimate of the group delay .

c. Compare this feedforward scheme of group-delay estimation with that provided by the NDA-
ELD synchronizer of Figure 7.48.

7.51 Repeat Problem 7.50, but this time do the following:

a. Determine the likelihood function with respect to the carrier phase , assuming that the group
delay  is known. 

b. Hence, formulate the maximum likelihood estimate of the carrier phase .

c. Compare this feedforward scheme of a carrier-phase estimation with the recursive Costas loop of
Figure 7.49.

7.52 In Section 7.16 we studied a nondata-aided scheme for carrier phase recovery, based on the log-
likelihood function of (7.296). In this problem we explore the use of this equation for data-aided
carrier phase recovery.

a. Consider a receiver designed for a linear modulation system. Given that the receiver has
knowledge of a preamble of length L0, show that the maximum likelihood estimate of the carrier
phase is defined by

where the preamble  is a known sequence of complex symbols and  is the
complex envelope of the corresponding received signal.

b. Using the result derived in part a, construct a block diagram for the maximum likelihood phase
estimator.

7.53 Figure P7.53 shows the block diagram of a phase-synchronization system. Determine the phase
estimate  of the unknown carrier phase in the received signal .
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Computer Experiments

 **7.54 In this computer-oriented problem, we study the operation of the NDA-ELD synchronizer for
symbol timing recovery by considering a coherent QPSK system with the following specifications:

• The channel response is described by a raised cosine pulse with rolloff factor = 0.5. 

• The recursive filter is a first-order digital filter with transfer function

where z–1 denotes unit delay,  is the step-size parameter, and A is a parameter, to be defined.

• The loop bandwidth BL is 2 of the symbol rate 1T, that is, BLT = 0.02.

With symbol timing recovery as the objective, a logical way to proceed is to plot the S-curve for the
NDA-ELD under the following conditions:

a. EbN0 = 10 dB

b. EbN0 = (i.e., noiseless channel).

For NDA-ELD, the scheme shown in Figure P7.54 is responsible for generating the S-curve that
plots the timing offset versus the discrete time n = tT. 

Using this scheme, plot the S-curves, and comment on the results obtained for parts a and b.

7.55 In this follow-up to the computer-oriented Problem 7.54, we study the recursive Costas loop for
phase recovery using the same system specifications described in Problem 7.54. This time, however,
we use the scheme of Figure P7.54 for measuring the S-curve to plot the phase error versus discrete-
time n = tT. 
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444 Chapter 7 Signaling over AWGN Channels

The plot is to be carried out under the following conditions:

a. EbN0 = 5 dB

b. EbN0 = 10 dB

c. EbN0 = 30 dB (i.e., practically noiseless channel)

Comment on the results obtained for these three conditions.

Notes

1. The geometric representation of signals was first developed by Kotel’nikov (1947) which is a
translation of the original doctoral dissertation presented in January 1947 before the Academic
Council of the Molotov Energy Institute in Moscow. In particular, see Part II of the book. This method
was subsequently brought to fuller fruition in the classic book by Wozencraft and Jacobs (1965). 

2. The classic reference for the union bound is Wozencraft and Jacobs (1965). 

3. Appendix C addresses the derivation of simple bounds on the Q-function. In (7.88), we have used
the following bound:

which becomes increasingly tight for large positive values of x.

4. For an early paper on the offset QPSK, see Gitlin and Ho (1975).

5. The MSK signal was first described in Doelz and Heald (1961). For a tutorial review of MSK and
comparison with QPSK, see Pasupathy (1979). Since the frequency spacing is only half as much as
the conventional spacing of 1/Tb that is used in the coherent detection of binary FSK signals, this
signaling scheme is also referred to as fast FSK; see deBuda (1972), who was not aware of the
Doelz–Heald patent.

6. For early discussions of GMSK, see Murota and Hirade (1981) and Ishizuke and Hirade (1980).

7. The analytical specification of the power spectral density of digital FM is difficult to handle,
except for the case of a rectangular shaped modulating pulse. The paper by Garrison (1975) presents
a procedure based on the selection of an appropriate duration-limited/level-quantized approximation
for the modulating pulse. The equations developed therein are particularly suitable for machine
computation of the power spectra of digital FM signals; see the book by Stüber (1996).

8. A detailed analysis of the spectra of M-ary FSK for an arbitrary value of frequency deviation is
presented in the paper by Anderson and Salz (1965). 

9. Readers who are not interested in the formal derivation of (7.227) may at this point wish to move
on to the treatment of noncoherent binary FSK (in Section 7.12) and DPSK (in Section 7.13), two
special cases of noncoherent orthogonal modulation, without loss of continuity.

10. The standard method of deriving the BER for noncoherent binary FSK, presented in
McDonough and Whalen (1995) and that for DPSK presented in Arthurs and Dym (1962), involves
the use of the Rician distribution. This distribution arises when the envelope of a sine wave plus
additive Gaussian noise is of interest; see Chapter 4 for a discussion of the Rician distribution. The
derivations presented herein avoid the complications encountered in the standard method.

11. The optimum receiver for differential phase-shift keying is discussed in Simon and Divsalar
(1992).

12. For detailed treatment of the algorithmic approach for solving the synchronization problem in
signaling over AWGN channels, the reader is referred to the books by Mengali and D’Andrea (1997)
and Meyer et al. (1998). For books on the traditional approach to synchronization, the reader is
referred to Lindsey and Simon (1973). 
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CHAPTER

8
Signaling over Band-Limited 
Channels

8.1 Introduction

In Chapter 7 we focused attention on signaling over a channel that is assumed to be
distortionless except for the AWGN at the channel output. In other words, there was no
limitation imposed on the channel bandwidth, with the energy per bit to noise spectral
density ratio Eb/N0 being the only factor to affect the performance of the receiver. In
reality, however, every physical channel is not only noisy, but also limited to some finite
bandwidth. Hence the title of this chapter: signaling over band-limited channels.

The important point to note here is that if, for example, a rectangular pulse, represent-
ing one bit of information, is applied to the channel input, the shape of the pulse will be
distorted at the channel output. Typically, the distorted pulse may consist of a main lobe
representing the original bit of information surrounded by a long sequence of sidelobes on
each side of the main lobe. The sidelobes represent a new source of channel distortion,
referred to as intersymbol interference, so called because of its degrading influence on the
adjacent bits of information. 

There is a fundamental difference between intersymbol interference and channel noise
that could be summarized as follows:

• Channel noise is independent of the transmitted signal; its effect on data
transmission over the band-limited channel shows up at the receiver input, once the
data transmission system is switched on.

• Intersymbol interference, on the other hand, is signal dependent; it disappears only
when the transmitted signal is switched off.

In Chapter 7, channel noise was considered all by itself so as to develop a basic
understanding of how its presence affects receiver performance. It is logical, therefore,
that in the sequel to that chapter, we initially focus on intersymbol interference acting
alone. In practical terms, we may justify a noise-free condition by assuming that the SNR
is high enough to ignore the effect of channel noise. The study of signaling over a band-
limited channel, under the condition that the channel is effectively “noiseless,” occupies
the first part of the chapter. The objective here is that of signal design, whereby the effect
of symbol interference is reduced to zero. 

The second part of the chapter focuses on a noisy wideband channel. In this case, data
transmission over the channel is tackled by dividing it into a number of subchannels, with
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446 Chapter 8 Signaling over Band-Limited Channels

each subchannel being narrowband enough to permit the application of Shannon’s
information capacity law that was considered in Chapter 5. The objective here is that of
system design, whereby the rate of data transmission through the system is maximized to
the highest level physically possible.

8.2 Error Rate Due to Channel Noise in a Matched-Filter Receiver

We begin the study of signaling over band-limited channels by determining the operating
conditions that would permit us to view the channel to be effectively “noiseless.” To this
end, consider the block diagram of Figure 8.1, which depicts the following data-
transmission scenario: a binary data stream is applied to a noisy channel where the
additive channel noise w(t) is modeled as white and Gaussian with zero mean and power
spectral density N02. The data stream is based on polar NRZ signaling, in which symbols
1 and 0 are represented by positive and negative rectangular pulses of amplitude A and
duration Tb. In the signaling interval 0 < t < Tb, the received signal is defined by

(8.1)

The receiver operates synchronously with the transmitter, which means that the matched
filter at the front end of the receiver has knowledge of the starting and ending times of
each transmitted pulse. The matched filter is followed by a sampler, and then finally a
decision device. To simplify matters, it is assumed that the symbols 1 and 0 are equally
likely; the threshold in the decision device, namely , may then be set equal to zero. If
this threshold is exceeded, the receiver decides in favor of symbol 1; if not, it decides in
favor of symbol 0. A random choice is made in the case of a tie.

Following the geometric signal-space theory presented in Section 7.6 on binary PSK,
the transmitted signal constellation consists of a pair of message points located at 
and . The energy per bit is defined by

The only basis function of the signal-space diagram is a rectangular pulse defined as follows:

(8.2)

Figure 8.1  Receiver for baseband transmission of binary-encoded data stream using polar 
NRZ signaling.
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8.3 Intersymbol Interference 447

In mathematical terms, the form of signaling embodied in Figure 8.1 is equivalent to that
of binary PSK. Following (7.109), the average probability of symbol error incurred by the
matched-filter receiver in Figure 8.1 is therefore defined by the Q-function

(8.3)

Although this result for NRZ-signaling over an AWGN channel may seem to be special,
(8.3) holds for a binary data transmission system where symbol 1 is represented by a
generic pulse g(t) and symbol 0 is represented by –g(t) under the assumption that the
energy contained in g(t) is equal to Eb. This statement follows from matched-filter theory
presented in Chapter 7.

Figure 8.2 plots Pe versus the dimensionless SNR, EbN0. The important message to
take from this figure is summed up as follows:

The matched-filter receiver of Figure 8.1 exhibits an exponential improvement 
in the average probability of symbol error Pe with the increase in Eb/N0.

For example, expressing EbN0 in decibels we see from Figure 8.2 that Pe is on the order
of 10–6 when EbN0 = 10 dB. Such a value of Pe is small enough to say that the effect of
the channel noise is ignorable.

Henceforth, in the first part of the chapter dealing with signaling over band-limited
channels, we assume that the SNR, EbN0, is large enough to leave intersymbol
interference as the only source of interference.

8.3 Intersymbol Interference

To proceed with a mathematical study of intersymbol interference, consider a baseband
binary PAM system, a generic form of which is depicted in Figure 8.3. The term
“baseband” refers to an information-bearing signal whose spectrum extends from (or near)

Figure 8.2
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signaling scheme of Figure 8.1. 
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448 Chapter 8 Signaling over Band-Limited Channels

zero up to some finite value for positive frequencies. Thus, with the input data stream
being a baseband signal, the data-transmission system of Figure 8.3 is said to be a
baseband system. Consequently, unlike the subject matter studied in Chapter 7, there is no
carrier modulation in the transmitter and, therefore, no carrier demodulation in the
receiver to be considered.

Next, addressing the choice of discrete PAM, we say that this form of pulse modulation
is one of the most efficient schemes for data transmission over a baseband channel when
the utilization of both transmit power and channel bandwidth is of particular concern. In
this section, we consider the simple case of binary PAM. 

Referring back to Figure 8.3, the pulse-amplitude modulator changes the input binary
data stream {bk} into a new sequence of short pulses, short enough to approximate
impulses. More specifically, the pulse amplitude ak is represented in the polar form:

(8.4)

The sequence of short pulses so produced is applied to a transmit filter whose impulse
response is denoted by g(t). The transmitted signal is thus defined by the sequence

(8.5)

Equation (8.5) is a form of linear modulation, which may be stated in words as follows:

A binary data stream represented by the sequence {ak}, where ak = +1 for 
symbol 1 and ak = –1 for symbol 0, modulates the basis pulse g(t) and 
superposes linearly to form the transmitted signal s(t).

The signal s(t) is naturally modified as a result of transmission through the channel whose
impulse response is denoted by h(t). The noisy received signal x(t) is passed through a
receive filter of impulse response c(t). The resulting filter output y(t) is sampled
synchronously with the transmitter, with the sampling instants being determined by a clock
or timing signal that is usually extracted from the receive-filter output. Finally, the
sequence of samples thus obtained is used to reconstruct the original data sequence by
means of a decision device. Specifically, the amplitude of each sample is compared with a
zero threshold, assuming that the symbols 1 and 0 are equiprobable. If the zero threshold is
exceeded, a decision is made in favor of symbol 1; otherwise a decision is made in favor of

Figure 8.3 Baseband binary data transmission system. 
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8.3 Intersymbol Interference 449

symbol 0. If the sample amplitude equals the zero threshold exactly, the receiver simply
makes a random guess.

Except for a trivial scaling factor, we may now express the receive filter output as

(8.6)

where the pulse p(t) is to be defined. To be precise, an arbitrary time delay t0 should be
included in the argument of the pulse p(t – kTb) in (8.6) to represent the effect of
transmission delay through the system. To simplify the exposition, we have put this delay
equal to zero in (8.6) without loss of generality; moreover, the channel noise is ignored.

The scaled pulse p(t) is obtained by a double convolution involving the impulse
response g(t) of the transmit filter, the impulse response h(t) of the channel, and the
impulse response c(t) of the receive filter, as shown by

(8.7)

where, as usual, the star denotes convolution. We assume that the pulse p(t) is normalized
by setting

(8.8)

which justifies the use of a scaling factor to account for amplitude changes incurred in the
course of signal transmission through the system.

Since convolution in the time domain is transformed into multiplication in the
frequency domain, we may use the Fourier transform to change (8.7) into the equivalent
form

(8.9)

where P( f ), G( f ), H( f ), and C( f ) are the Fourier transforms of p(t), g(t), h(t), and c(t),
respectively.

The receive filter output y(t) is sampled at time ti = iTb, where i takes on integer values;
hence, we may use (8.6) to write

(8.10)

In (8.10), the first term ai represents the contribution of the ith transmitted bit. The second
term represents the residual effect of all other transmitted bits on the decoding of the ith
bit. This residual effect due to the occurrence of pulses before and after the sampling
instant ti is called intersymbol interference (ISI).

In the absence of ISI—and, of course, channel noise—we observe from (8.10) that the
summation term is zero, thereby reducing the equation to

which shows that, under these ideal conditions, the ith transmitted bit is decoded correctly. 
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450 Chapter 8 Signaling over Band-Limited Channels

8.4 Signal Design for Zero ISI 

The primary objective of this chapter is to formulate an overall pulse shape p(t) so as to
mitigate the ISI problem, given the impulse response of the channel h(t). With this
objective in mind, we may now state the problem at hand:

Construct the overall pulse shape p(t) produced by the entire binary data-
transmission system of Figure 8.3, such that the receiver is enabled to 
reconstruct the original data stream applied to the transmitter input exactly.

In effect, signaling over the band-limited channel becomes distortionless; hence, we may
refer to the pulse-shaping requirement as a signal-design problem.

In the next section we describe a signal-design procedure, whereby overlapping pulses
in the binary data-transmission system of Figure 8.3 are configured in such a way that at
the receiver output they do not interfere with each other at the sampling times ti = iTb. So
long as the reconstruction of the original binary data stream is accomplished, the behavior
of the overlapping pulses outside these sampling times is clearly of no practical
consequence. Such a design procedure is rooted in the criterion for distortionless
transmission, which was formulated by Nyquist (1928b) on telegraph transmission theory,
a theory that is as valid then as it is today.

Referring to (8.10), we see that the weighted pulse contribution, ak p(iTb – kTb), must
be zero for all k except for k = 1 for binary data transmission across the band-limited
channel to be ISI free. In other words, the overall pulse-shape p(t) must be designed to
satisfy the requirement

(8.11)

where p(0) is set equal to unity in accordance with the normalization condition of (8.8). A
pulse p(t) that satisfies the two-part condition of (8.11) is called a Nyquist pulse, and the
condition itself is referred to as Nyquist’s criterion for distortionless binary baseband data
transmission. However, there is no unique Nyquist pulse; rather, there are many pulse
shapes that satisfy the Nyquist criterion of (8.11). In the next section we describe two
kinds of Nyquist pulses, each with its own attributes.

8.5 Ideal Nyquist Pulse for Distortionless Baseband 
Data Transmission

From a design point of view, it is informative to transform the two-part condition of (8.11)
into the frequency domain. Consider then the sequence of samples {p(nTb)}, where n = 0,
1, 2,  From the discussion presented in Chapter 6 on the sampling process, we recall
that sampling in the time domain produces periodicity in the frequency domain. In
particular, we may write

(8.12)

p iTb kTb–  1 for i k=

0 for i k

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=
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8.5 Ideal Nyquist Pulse for Distortionless Baseband Data Transmission 451

where Rb = 1Tb is the bit rate in bits per second; P( f ) on the left-hand side of (8.12) is the
Fourier transform of an infinite periodic sequence of delta functions of period Tb whose
individual areas are weighted by the respective sample values of p(t). That is, P( f ) is
given by

(8.13)

Let the integer m = i – k. Then, i = k corresponds to m = 0 and, likewise, 
corresponds to . Accordingly, imposing the conditions of (8.11) on the sample
values of p(t) in the integral in (8.13), we get

(8.14)

where we have made use of the sifting property of the delta function. Since from (8.8) we
have p(0) = 1, it follows from (8.12) and (8.14) that the frequency-domain condition for
zero ISI is satisfied, provided that

(8.15)

where Tb = 1Rb. We may now make the following statement on the Nyquist criterion1 for
distortionless baseband transmission in the frequency domain:

The frequency function P( f ) eliminates intersymbol interference for samples 
taken at intervals Tb provided that it satisfies (8.15).

Note that P( f ) refers to the overall system, incorporating the transmit filter, the channel,
and the receive filter in accordance with (8.9).

Ideal Nyquist Pulse

The simplest way of satisfying (8.15) is to specify the frequency function P( f ) to be in the
form of a rectangular function, as shown by

(8.16)

where rect( f ) stands for a rectangular function of unit amplitude and unit support centered
on f = 0 and the overall baseband system bandwidth W is defined by

(8.17)
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452 Chapter 8 Signaling over Band-Limited Channels

According to the solution in (8.16), no frequencies of absolute value exceeding half the bit
rate are needed. Hence, from Fourier-transform pair 1 of Table 2.2 in Chapter 2, we find
that a signal waveform that produces zero ISI is defined by the sinc function:

(8.18)

The special value of the bit rate Rb = 2W is called the Nyquist rate and W is itself called the
Nyquist bandwidth. Correspondingly, the baseband pulse p(t) for distortionless
transmission described in (8.18) is called the ideal Nyquist pulse, ideal in the sense that the
bandwidth requirement is one half the bit rate.

Figure 8.4 shows plots of P( f ) and p(t). In part a of the figure, the normalized form of
the frequency function P( f ) is plotted for positive and negative frequencies. In part b of
the figure, we have also included the signaling intervals and the corresponding centered
sampling instants. The function p(t) can be regarded as the impulse response of an ideal
low-pass filter with passband magnitude response 12W and bandwidth W. The function
p(t) has its peak value at the origin and goes through zero at integer multiples of the bit
duration Tb. It is apparent, therefore, that if the received waveform y(t) is sampled at the
instants of time t = 0, Tb, 2Tb, , then the pulses defined by ai p(t – iTb) with amplitude
ai and index i = 0, 1, 2,  will not interfere with each other. This condition is illustrated
in Figure 8.5 for the binary sequence 1011010. 
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Figure 8.4  (a) Ideal magnitude response. (b) Ideal basic pulse shape. 
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8.5 Ideal Nyquist Pulse for Distortionless Baseband Data Transmission 453

Although the use of the ideal Nyquist pulse does indeed achieve economy in
bandwidth, in that it solves the problem of zero ISI with the minimum bandwidth possible,
there are two practical difficulties that make it an undesirable objective for signal design:

1. It requires that the magnitude characteristic of P( f ) be flat from –W to +W, and zero
elsewhere. This is physically unrealizable because of the abrupt transitions at the
band edges W, in that the Paley–Wiener criterion discussed in Chapter 2 is violated.

2. The pulse function p(t) decreases as 1| t | for large | t |, resulting in a slow rate of
decay. This is also caused by the discontinuity of P( f ) at W. Accordingly, there is
practically no margin of error in sampling times in the receiver.

To evaluate the effect of the timing error alluded to under point 2, consider the sample of
y(t) at t = t, where t is the timing error. To simplify the exposition, we may put the
correct sampling time ti equal to zero. In the absence of noise, we thus have from the first
line of (8.10):

(8.19)

Since 2WTb = 1, by definition, we may reduce (8.19) to

(8.20)

Figure 8.5  A series of sinc pulses corresponding to the sequence 1011010. 

–4 –2 0

–1.0

–0.5

0.0

A
m

pl
it

ud
e

0.5

1.0

Binary sequence 1 0 1 1 0 1 0

2
Time

6 84 10 12

y t  akp t kTb– 
k –=



=

ak

2W t kTb–  sin

2W t kTb– 
--------------------------------------------------

 
 
 

k –=



=

y t  a0 sinc 2Wt  2Wt sin


------------------------------
1– kak

2Wt k–
-----------------------

k –=
k 0



+=

Haykin_ch08_pp3.fm  Page 453  Tuesday, January 8, 2013  10:38 AM



454 Chapter 8 Signaling over Band-Limited Channels

The first term on the right-hand side of (8.20) defines the desired symbol, whereas the
remaining series represents the ISI caused by the timing error t in sampling the receiver
output y(t). Unfortunately, it is possible for this series to diverge, thereby causing the
receiver to make erroneous decisions that are undesirable.

8.6 Raised-Cosine Spectrum

We may overcome the practical difficulties encountered with the ideal Nyquist pulse by
extending the bandwidth from the minimum value W = Rb2 to an adjustable value
between W and 2W. In effect, we are trading off increased channel bandwidth for a more
robust signal design that is tolerant of timing errors. Specifically, the overall frequency
response P( f ) is designed to satisfy a condition more stringent than that for the ideal
Nyquist pulse, in that we retain three terms of the summation on the left-hand side of
(8.15) and restrict the frequency band of interest to [–W, W], as shown by

(8.21)

where, on the right-hand side, we have set Rb = 12W in accordance with (8.17). We may
now devise several band-limited functions that satisfy (8.21). A particular form of P( f )
that embodies many desirable features is provided by a raised-cosine (RC) spectrum. This
frequency response consists of a flat portion and a roll-off portion that has a sinusoidal
form, as shown by:

(8.22)

In (8.22), we have introduced a new frequency f1 and a dimensionless parameter , which
are related by

(8.23)

The parameter  is commonly called the roll-off factor; it indicates the excess bandwidth
over the ideal solution, W. Specifically, the new transmission bandwidth is defined by

(8.24)

The frequency response P( f ), normalized by multiplying it by the factor 2W, is plotted in
Figure 8.6a for  = 0, 0.5, and 1. We see that for  = 0.5 or 1, the frequency response P( f )
rolls off gradually compared with the ideal Nyquist pulse (i.e.,  = 0) and it is therefore
easier to implement in practice. This roll-off is cosine-like in shape, hence the terminology
“RC spectrum.” Just as importantly, the P( f ) exhibits odd symmetry with respect to the
Nyquist bandwidth W, which makes it possible to satisfy the frequency-domain condition
of (8.15).
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8.6 Raised-Cosine Spectrum 455

The time response p(t) is naturally the inverse Fourier transform of the frequency
response P( f ). Hence, transforming the P( f ) defined in (8.22) into the time domain, we
obtain

(8.25)

which is plotted in Figure 8.6b for  = 0, 0.5, and 1.

Figure 8.6  Responses for different roll-off factors: (a) frequency response; (b) time response. 
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456 Chapter 8 Signaling over Band-Limited Channels

The time response p(t) consists of the product of two factors: the factor sinc(2Wt)
characterizing the ideal Nyquist pulse and a second factor that decreases as 1| t |2 for large
| t |. The first factor ensures zero crossings of p(t) at the desired sampling instants of time
t = iTb, with i equal to an integer (positive and negative). The second factor reduces the
tails of the pulse considerably below those obtained from the ideal Nyquist pulse, so that
the transmission of binary data using such pulses is relatively insensitive to sampling time
errors. In fact, for  = 1 we have the most gradual roll-off, in that the amplitudes of the
oscillatory tails of p(t) are smallest. Thus, the amount of ISI resulting from timing error
decreases as the roll-off factor  is increased from zero to unity.

The special case with  = 1 (i.e., f1 = 0) is known as the full-cosine roll-off
characteristic, for which the frequency response of (8.22) simplifies to

(8.26)

Correspondingly, the time response p(t) simplifies to

(8.27)

The time response of (8.27) exhibits two interesting properties:

1. At t = +Tb2 = 14W, we have p(t) = 0.5; that is, the pulse width measured at half
amplitude is exactly equal to the bit duration Tb.

2. There are zero crossings at t = 3Tb2, 5Tb2,  in addition to the usual zero
crossings at the sampling times t = Tb, 2Tb, 

These two properties are extremely useful in extracting timing information from the
received signal for the purpose of synchronization. However, the price paid for this
desirable property is the use of a channel bandwidth double that required for the ideal
Nyquist channel for which  = 0: simply put, there is “no free lunch.”

EXAMPLE 1 FIR Modeling of the Raised-Cosine Pulse

In this example, we use the finite-duration impulse response (FIR) filter, also referred to as
the tapped-delay-line (TDL) filter, to model the raised-cosine (RC) filter; both terms are
used interchangeably. With the FIR filter operating in the discrete-time domain, there are
two time-scales to be considered:

1. Discretization of the input signal a(t) applied to the FIR model, for which we write

(8.28)

where T is the sampling period in the FIR model shown in Figure 8.7. The tap inputs

in this model are denoted by , which, for

some integer l, occupies the duration 2lT. Note that the FIR model in Figure 8.7 is

symmetric about the midpoint, , which satisfies the symmetric structure of the

RC pulse.
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8.6 Raised-Cosine Spectrum 457

2. Discretization of the RC pulse p(t) for which we have 

(8.29)

where Tb is the bit duration.

To model the RC pulse properly, the sampling rate of the model, 1T, must be higher than
the bit rate, 1Tb. It follows therefore that the integer m defined in (8.29) must be larger than
one. In assigning a suitable value to m, we must keep in mind the tradeoff between
modeling accuracy (requiring large m) and computational complexity (preferring small m).

In any event, using (8.17), (8.28), and (8.29), obtaining the product 

(8.30)

and then substituting this result into (8.25), we get the discretized version of RC pulse as
shown by 

(8.31)

There are two computational difficulties encountered in the way in which the discretized
RC pulse, pn, is defined in (8.31):

1. The pulse pn goes on indefinitely with increasing n.

2. The pulse is also noncausal in that the output signal yn in Figure 8.7 is produced
before the input an is applied to the FIR model.

To overcome difficulty 1, we truncate the sequence pn such that it occupies a finite dura-
tion 2lT for some prescribed integer l, which is indeed what has been done in Figure 8.8.
To mitigate the non-causality problem 2, with T > Tb, the ratio nm must be replaced by
(nm) – l. In so doing, the truncated causal RC pulse assumes the following modified form:

(8.32)

Figure 8.7  TDL model of linear time-invariant system.

Σ

Input
signal

h–l h–l + 1 h0 hl – 1 hl

T T T T

… …

… …
an an – 1 an – l an – 2l + 1 an – 2l

Output
signal

yn

m
Tb

T
-----=

Wt n
2m
-------=

pn sinc n m  n m cos

1 42
n m 2–

------------------------------------- n 0 1 2 ==

pn sinc n
m
---- l– 
 

 n
m
---- l– 
 cos

1 42 n
m
---- l– 
  2

–

---------------------------------------

 
 
 
 
 
 
 









l n l –=

0 otherwise

Haykin_ch08_pp3.fm  Page 457  Friday, January 4, 2013  5:00 PM



458 Chapter 8 Signaling over Band-Limited Channels

where the value assigned to the integer l is determined by how long the truncated sequence
 is desired to be.

With the desired formula of (8.32) for the FIR model of the RC pulse p(t) at hand,
Figure 8.8 plots this formula for the following specifications:2

Sampling of the RC pulse, T = 10 

Bit duration of the RC pulse, Tb = 1 

Number of the FIR samples per bit, m = 10 

Roll-off factor of the RC pulse, 

Two noteworthy points that follow from Figure 8.8:

1. The truncated causal RC pulse pn of length 2l – 10 is symmetric about the 
midpoint, n = 5.

2. The pn is exactly zero at integer multiples of the bit duration Tb. 

Both points reaffirm exactly what we know and therefore expect about the RC pulse p(t)
plotted in Figure 8.6b.

8.7 Square-Root Raised-Cosine Spectrum

A more sophisticated form of pulse shaping uses the square-root raised-cosine (SRRC)
spectrum3 rather than the conventional RC spectrum of (8.22). Specifically, the spectrum
of the basic pulse is now defined by the square root of the right-hand side of this equation.
Thus, using the trigonometric identity

where, for the problem at hand, the angle

Figure 8.8  Discretized RC pulse, computed using the TDL.
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8.7 Square-Root Raised-Cosine Spectrum 459

To avoid confusion, we use G( f ) as the symbol for the SRRC spectrum, and so we may write

(8.33)

where, as before, the roll-off factor  is defined in terms of the frequency parameter f1 and
the bandwidth W as in (8.23).

If, now, the transmitter includes a pre-modulation filter with the transfer function
defined in (8.33) and the receiver includes an identical post-modulation filter, then under
ideal conditions the overall pulse waveform will experience the squared spectrum G2( f ),
which is the regular RC spectrum. In effect, by adopting the SRRC spectrum G( f ) of
(8.33) for pulse shaping, we would be working with G2( f ) = P( f ) in an overall
transmitter–receiver sense. On this basis, we find that in wireless communications, for
example, if the channel is affected by both fading and AWGN and the pulse-shape filtering
is partitioned equally between the transmitter and the receiver in the manner described
herein, then effectively the receiver would maximize the output SNR at the sampling
instants.

The inverse Fourier transform of (8.33) defines the SRRC shaping pulse:

(8.34)

The important point to note here is the fact that the SRRC shaping pulse g(t) of (8.34) is
radically different from the conventional RC shaping pulse of (8.25). In particular, the
new shaping pulse has the distinct property of satisfying the orthogonality constraint
under T-shifts, described by

(8.35)

where T is the symbol duration. Yet, the new pulse g(t) has exactly the same excess
bandwidth as the conventional RC pulse.

It is also important to note, however, that despite the added property of orthogonality,
the SRRC shaping pulse of (8.34) lacks the zero-crossing property of the conventional RC
shaping pulse defined in (8.25).

Figure 8.9a plots the SRRC spectrum G( f ) for the roll-off factor  = 0, 0.5, 1; the
corresponding time-domain plots are shown in Figure 8.9b. These plots are naturally
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460 Chapter 8 Signaling over Band-Limited Channels

different from those of Figure 8.6 for nonzero . The following example contrasts the
waveform of a specific binary sequence using the SRRC shaping pulse with the
corresponding waveform using the regular RC shaping pulse.

Figure 8.9  (a) G( f ) for SRRC spectrum. (b) g(t) for SRRC pulse. 
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8.7 Square-Root Raised-Cosine Spectrum 461

EXAMPLE 2 Pulse Shaping Comparison Between SRRC and RC

Using the SRRC shaping pulse g(t) of (8.34) with roll-off factor  = 0.5, the requirement
is to plot the waveform for the binary sequence 01100 and compare it with the
corresponding waveform obtained by using the conventional RC shaping pulse p(t) of
(8.25) with the same roll-off factor.

Using the SRRC pulse g(t) of (8.34) with a multiplying plus sign for binary symbol 1 and
multiplying minus sign for binary symbol 0, we get the dashed pulse train shown in Figure
8.10 for the sequence 01100. The solid pulse train shown in the figure corresponds to the use
of the conventional RC pulse p(t) of (8.25). The figure clearly shows that the SRRC
waveform occupies a larger dynamic range than the conventional RC waveform: a feature
that distinguishes one from the other. 

EXAMPLE 3 FIR Modeling of the Square-Root-Raised-Cosine Pulse

In this example, we study FIR modeling of the SRRC pulse described in (8.34). To be
specific, we follow a procedure similar to that used for the RC pulse g(t) in Example 1,
taking care of the issues of truncation and noncausality. This is done by discretizing the

Figure 8.10 Two pulse trains for the sequence 01100, one using regular RC pulse (solid 
line), and the other using an SRRC pulse (dashed line). 
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462 Chapter 8 Signaling over Band-Limited Channels

SRRC pulse, g(t), and substituting the dimensionless parameter, (nm) – l, for Wt in
(8.34). In so doing we obtain the following sequence

(8.36)

Since, by definition, the Fourier transform of the SRRC pulse, g(t), is equal to the square
root of the Fourier transform of the RC pulse p(t), we may make the following statement:

The cascade connection of two identical FIR filters, each one defined by (8.36), 
is essentially equivalent to a TDL filter that exhibits zero intersymbol 
interference in accordance with (8.25).

We say “essentially” here on account of the truncation applied to both (8.32) and (8.36). In
practice, when using the SRRC pulse for “ISI-free” baseband data transmission across a
band-limited channel, one FIR filter would be placed in the transmitter and the other
would be in the receiver.

To conclude this example, Figure 8.11a plots the SRRC sequence gn of (8.36) for the
same set of values used for the RC sequence pn in Figure 8.8. Figure 8.11b displays the
result of convolving the sequence in part a with gn, which is, itself. 

Figure 8.11  (a) Discretized SRRC pulse, computed using FIR modeling. 
(b) Discretized pulse resulting from the convolution of the pulse in part a with itself.
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8.8 Post-Processing Techniques: The Eye Pattern 463

Two points are noteworthy from Figure 8.11:

1. The zero-crossings of the SRRC sequence gn do not occur at integer multiples of the
bit duration Tb, which is to be expected.

2. The sequence plotted in Figure 8.11b is essentially equivalent to the RC sequence
pn, the zero-crossings of which do occur at integer multiples of the bit duration, and
so they should.

8.8 Post-Processing Techniques: The Eye Pattern

The study of signaling over band-limited channels would be incomplete without discussing
the idea of post-processing, the essence of which is to manipulate a given set of data so as
to provide a visual interpretation of the data rather than just numerical listing of the data.
For an illustrative example, consider the formulas for the BER of digital modulation
schemes operating over an AWGN channel, which were summarized in Table 7.7 of
Chapter 7. The graphical plots of the schemes, shown in Figure 7.47, provide an immediate
comparison on how these different modulation schemes compete with each other in terms
of performance measured on the basis of their respective BERs for varying EbN0. In other
words, there is much to be gained from graphical plots that are most conveniently made
possible by computation. 

What we have in mind in this section, however, is the description of a commonly used
post-processor, namely eye patterns, which are particularly suited for the experimental
study of digital communication systems.

The eye pattern, also referred to as the eye diagram, is produced by the synchronized
superposition of (as many as possible) successive symbol intervals of the distorted
waveform appearing at the output of the receive filter prior to thresholding. As an
illustrative example, consider the distorted, but noise-free, waveform shown in part a of
Figure 8.12. Part b of the figure displays the corresponding synchronized superposition of
the waveform’s eight binary symbol intervals. The resulting display is called an “eye
pattern” because of its resemblance to a human eye. By the same token, the interior of the
eye pattern is called the eye opening.

Figure 8.12  (a) Binary data sequence and its waveform. (b) Corresponding eye pattern. 
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464 Chapter 8 Signaling over Band-Limited Channels

As long as the additive channel noise is not large, then the eye pattern is well defined
and may, therefore, be studied experimentally on an oscilloscope. The waveform under
study is applied to the deflection plates of the oscilloscope with its time-base circuit
operating in a synchronized condition. From an experimental perspective, the eye pattern
offers two compelling virtues:

• The simplicity of eye-pattern generation.
• The provision of a great deal of insightful information about the characteristics of

the data transmission system. Hence, the wide use of eye patterns as a visual
indicator of how well or poorly a data transmission system performs the task of
transporting a data sequence across a physical channel.

Timing Features

Figure 8.13 shows a generic eye pattern for distorted but noise-free binary data. The
horizontal axis, representing time, spans the symbol interval from  to , where
Tb is the bit duration. From this diagram, we may infer three timing features pertaining to
a binary data transmission system, exemplified by a PAM system:

1. Optimum sampling time. The width of the eye opening defines the time interval over
which the distorted binary waveform appearing at the output of the receive filter in
the PAM system can be uniformly sampled without decision errors. Clearly, the
optimum sampling time is the time at which the eye opening is at its widest.

2. Zero-crossing jitter. In practice, the timing signal (for synchronizing the receiver to
the transmitter) is extracted from the zero-crossings of the waveform that appears at
the receive-filter output. In such a form of synchronization, there will always be
irregularities in the zero-crossings, which, in turn, give rise to jitter and, therefore,
nonoptimum sampling times.

3. Timing sensitivity. Another timing-related feature is the sensitivity of the PAM
system to timing errors. This sensitivity is determined by the rate at which the eye
pattern is closed as the sampling time is varied.

Figure 8.13 indicates how these three timing features of the system (and other insightful
attributes) can be measured from the eye pattern.

Figure 8.13  Interpretation of the eye pattern for a baseband binary data transmission system.
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8.8 Post-Processing Techniques: The Eye Pattern 465

The Peak Distortion for Intersymbol Interference

Hereafter, we assume that the ideal signal amplitude is scaled to occupy the range from –1
to 1. We then find that, in the absence of channel noise, the eye opening assumes two
extreme values:

1. An eye opening of unity,4 which corresponds to zero ISI.

2. An eye opening of zero, which corresponds to a completely closed eye pattern; this
second extreme case occurs when the effect of intersymbol interference is severe
enough for some upper traces in the eye pattern to cross with its lower traces.

It is indeed possible for the receiver to make decision errors even when the channel is
noise free. Typically, an eye opening of 0.5 or better is considered to yield reliable data
transmission.

In a noisy environment, the extent of eye opening at the optimum sampling time
provides a measure of the operating margin over additive channel noise. This measure, as
illustrated in Figure 8.13, is referred to as the noise margin.

From this discussion, it is apparent that the eye opening plays an important role in
assessing system performance; hence the need for a formal definition of the eye opening.
To this end, we offer the following definition:

Eye opening = (8.37)

where Dpeak denotes a new criterion called the peak distortion. The point to note here is
that peak distortion is a worst-case criterion for assessing the effect of ISI on the
performance (i.e., error rate) of a data transmission system. The relationship between the
eye opening and peak distortion is illustrated in Figure 8.14. With the eye opening being
dimensionless, the peak distortion is dimensionless too. To emphasize this statement, the
two extreme values of the eye opening translate as follows:

1. Zero peak distortion, which occurs when the eye opening is unity.

2. Unity peak distortion, which occurs when the eye pattern is completely closed.

Figure 8.14  Illustrating the relationship between peak distortion and eye opening. 
Note: the ideal signal level is scaled to lie inside the range –1 to +1. 
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466 Chapter 8 Signaling over Band-Limited Channels

With this background, we offer the following definition: 

The peak distortion is the maximum value assumed by the intersymbol 
interference over all possible transmitted sequences, with this maximum value 
divided by a normalization factor equal to the absolute value of the 
corresponding signal level idealized for zero intersymbol interference. 

Referring to (8.10), the two components embodied in this definition are themselves
defined as follows:

1. The idealized signal component of the receive filter output is defined by the first
term in (8.10), namely ai, where ai is the ith encoded symbol and unit transmitted
signal energy per bit.

2. The intersymbol interference is defined by the second term, namely

(8.38)

where pi – k stands for the term . The maximum value of this summation
occurs when each encoded symbol ak has the same   algebraic sign as pi – k. Therefore,

(8.39)

Hence, invoking the definition of peak distortion, we get the desired formula:

(8.40)

where p0 = 1 for all i = k. Note that, by involving the assumption of a signal amplitude
from –1 to +1, we have scaled the transmitted signal energy for a binary symbol to be
unity. 

By its very nature, the peak distortion is a worst-case criterion for data transmission
over a noisy channel. The eye opening specifies the smallest possible noise margin.

Eye Patterns for M-ary Transmission

By definition, an M-ary data transmission system uses M encoded symbols in the
transmitter and  thresholds in the receiver. Correspondingly, the eye pattern for an
M-ary data transmission system contains  eye openings stacked vertically one on
top of the other. The thresholds are defined by the amplitude-transition levels as we move
up from one eye opening to the adjacent eye opening. When the encoded symbols are all
equiprobable, the thresholds will be equidistant from each other.

In a strictly linear data transmission system with truly transmitted random data
sequences, all the  eye openings would be identical. In practice, however, it is often
possible to find asymmetries in the eye pattern of an M-ary data transmission system,
which are caused by nonlinearities in the communication channel or other distortion-
sensitive parts of the system.
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8.8 Post-Processing Techniques: The Eye Pattern 467

EXAMPLE 4 Eye Patterns for Binary and Quaternary Systems

Figure 8.15a and b depict the eye patterns for a baseband PAM transmission system using
 and , respectively. The channel has no bandwidth limitation and the

source symbols used are obtained from a random number generator. An RC pulse is used
in both cases. The system parameters used for the generation of these eye patterns are a bit
rate of 1Hz and roll-off factor . For the binary case of  in Figure 8.15a,

Figure 8.15  Eye diagrams of received signal with no bandwidth limitation: (a) M = 2; (b) M = 4. 
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468 Chapter 8 Signaling over Band-Limited Channels

the symbol duration T and the bit duration Tb are the same, with Tb = 1s. For the case of
M = 4 in Figure 8.15b we have T = Tblog2 M = 2Tb. In both cases we see that the eyes are
open, indicating perfectly reliable operation of the system, perfect in the sense that the ISI
is zero. 

Figure 8.16a and b show the eye patterns for these two baseband-pulse transmission
systems using the same system parameters as before, but this time under a bandwidth-

Figure 8.16  Eye diagrams of received signal, using a bandwidth-limited channel: (a) M = 2; (b) M = 4. 
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8.9 Adaptive Equalization 469

limited condition. Specifically, the channel is now modeled by a low-pass Butterworth
filter, whose frequency response is defined by

where N is the order of the filter, and f0 is the 3-dB cutoff frequency of the filter. For the
results displayed in Figure 8.16, the following filter parameter values were used:

With the roll-off factor  and Nyquist bandwidth , for binary PAM,
the use of (8.24) defines the transmission bandwidth of the PAM transmission system to be

Although the channel bandwidth cutoff frequency is greater than absolutely necessary, its
effect on the passband is observed in a decrease in the size of the eye opening. Instead of
the distinct values at time t = 1s, shown in Figure 8.15a and b, now there is a blurred
region. If the channel bandwidth were to be reduced further, the eye would close even
more until finally no distinct eye opening would be recognizable. 

8.9 Adaptive Equalization

In this section we develop a simple and yet effective algorithm for the adaptive equaliza-
tion of a linear channel of unknown characteristics. Figure 8.17 shows the structure of an
adaptive synchronous equalizer, which incorporates the matched filtering action. The
algorithm used to adjust the equalizer coefficients assumes the availability of a desired
response. One’s first reaction to the availability of a replica of the transmitted signal is: If
such a signal is available at the receiver, why do we need adaptive equalization? To answer
this question, we first note that a typical telephone channel changes little during an aver-
age data call. Accordingly, prior to data transmission, the equalizer is adjusted under the
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Figure 8.17  Block diagram of adaptive equalizer using an adjustable TDL filter.
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470 Chapter 8 Signaling over Band-Limited Channels

guidance of a training sequence transmitted through the channel. A synchronized version
of this training sequence is generated at the receiver, where (after a time shift equal to the
transmission delay through the channel) it is applied to the equalizer as the desired
response. A training sequence commonly used in practice is the pseudonoise (PN)
sequence, which consists of a deterministic periodic sequence with noise-like characteris-
tics. Two identical PN sequence generators are used, one at the transmitter and the other at
the receiver. When the training process is completed, the PN sequence generator is
switched off and the adaptive equalizer is ready for normal data transmission. A detailed
description of PN sequence generators is presented in Appendix J.

Least-Mean-Square Algorithm (Revisited)

To simplify notational matters, we let

Then, the output yn of the tapped-delay-line (TDL) equalizer in response to the input
sequence {xn} is defined by the discrete convolution sum (see Figure 8.17)

(8.41)

where wk is the weight at the kth tap and N + 1 is the total number of taps. The tap weights
constitute the adaptive equalizer coefficients. We assume that the input sequence xn has
finite energy. We have used a notation for the equalizer weights in Figure 8.17 that is
different from the corresponding notation in Figure 6.17 to emphasize the fact that the
equalizer in Figure 8.17 also incorporates matched filtering.

The adaptation may be achieved by observing the error between the desired pulse shape
and the actual pulse shape at the equalizer output, measured at the sampling instants, and
then using this error to estimate the direction in which the tap weights of the equalizer
should be changed so as to approach an optimum set of values. For the adaptation, we may
use a criterion based on minimizing the peak distortion, defined as the worst-case
intersymbol interference at the output of the equalizer. However, the equalizer so designed
is optimum only when the peak distortion at its input is less than 100% (i.e., the
intersymbol interference is not too severe). A better approach is to use a mean-square error
criterion, which is more general in application; also, an adaptive equalizer based on the
mean-square error (MSE) criterion appears to be less sensitive to timing perturbations
than one based on the peak-distortion criterion. Accordingly, in what follows we use the
MSE criterion to derive the adaptive equalization algorithm.

Let an denote the desired response defined as the polar representation of the nth
transmitted binary symbol. Let en denote the error signal defined as the difference
between the desired response an and the actual response yn of the equalizer, as shown by

(8.42)

In the least-mean-square (LMS) algorithm for adaptive equalization, the error signal en
actuates the adjustments applied to the individual tap weights of the equalizer as the
algorithm proceeds from one iteration to the next. A derivation of the LMS algorithm for

xn x nT =

yn y nT =

yn wkxn k–
k 0=

N

=

en a=
n

yn–
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8.9 Adaptive Equalization 471

adaptive prediction was presented in Section 6.7 of Chapter 6. Recasting (6.85) into its
most general form, we may restate the formula for the LMS algorithm in words as follows:

(8.43)

Let denote the step-size parameter. From Figure 8.17 we see that the input signal applied
to the kth tap weight at time step n is xn – k. Hence, using as the old value of the kth
tap weight at time step n, the updated value of this tap weight at time step n + 1 is, in light
of (8.43), defined by

(8.44)

where

(8.45)

These two equations constitute the LMS algorithm for adaptive equalization. 
We may simplify the formulation of the LMS algorithm using matrix notation. Let the

(N + 1)-by-1 vector xn denote the tap inputs of the equalizer:

(8.46)

where the superscript T denotes matrix transposition. Correspondingly, let the (N + 1)-by-1
vector  denote the tap weights of the equalizer:

(8.47)

We may then use matrix notation to recast the discrete convolution sum of (8.41) in the
compact form

(8.48)

where  is referred to as the inner product of the vectors xn and . We may now
summarize the LMS algorithm for adaptive equalization as follows:

1. Initialize the algorithm by setting  (i.e., set all the tap weights of the
equalizer to zero at n = 1, which corresponds to time t = T.

2. For n = 1, 2, , compute

where  is the step-size parameter.

3. Continue the iterative computation until the equalizer reaches a “steady state,” by
which we mean that the actual mean-square error of the equalizer essentially reaches
a constant value.

The LMS algorithm is an example of a feedback system, as illustrated in the block
diagram of Figure 8.18, which pertains to the kth filter coefficient. It is therefore possible
for the algorithm to diverge (i.e., for the adaptive equalizer to become unstable).

Updated value
of kth tap weight 

  Old value of
kth tap weight 

  Step-size
parameter 

  Input signal applied
to kth tap weight 

  Error
signal 

 +=

wk
ˆ n 

ŵk n 1+ ŵk n= xn k– en k 0 1  N  =+

en a=
n

ŵk n xn k–
k 0=

N

–

xn xn=  xn N– 1+ xn N–    T

ŵn

ŵn ŵ0 n ŵ1 n  ŵN n   =
T

yn xn
T

= wn
ˆ

xn
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ŵn ŵn

ŵ1 0=

yn xn
T
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ˆ wn
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472 Chapter 8 Signaling over Band-Limited Channels

Unfortunately, the convergence behavior of the LMS algorithm is difficult to analyze.
Nevertheless, provided that the step-size parameter  is assigned a small value, we find
that after a large number of iterations the behavior of the LMS algorithm is roughly similar
to that of the steepest-descent algorithm (discussed in Chapter 6), which uses the actual
gradient rather than a noisy estimate for the computation of the tap weights. 

Operation of the Equalizer

There are two modes of operation for an adaptive equalizer, namely the training mode and
decision-directed mode, as shown in Figure 8.19. During the training mode, a known PN
sequence is transmitted and a synchronized version of it is generated in the receiver, where
(after a time shift equal to the transmission delay) it is applied to the adaptive equalizer as
the desired response; the tap weights of the equalizer are thereby adjusted in accordance
with the LMS algorithm.

When the training process is completed, the adaptive equalizer is switched to its second
mode of operation: the decision-directed mode. In this mode of operation, the error signal
is defined by

(8.49)

Figure 8.18  Signal-flow graph representation of 
the LMS algorithm involving the kth tap weight.

Figure 8.19 Illustrating the two operating modes of an adaptive equalizer: for the training mode, the 
switch is in position 1; for the tracking mode, it is moved to position 2.
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8.9 Adaptive Equalization 473

where yn is the equalizer output at time t = nT and  is the final (not necessarily) correct
estimate of the transmitted symbol . Now, in normal operation the decisions made by
the receiver are correct with high probability. This means that the error estimates are
correct most of the time, thereby permitting the adaptive equalizer to operate satisfactorily.
Furthermore, an adaptive equalizer operating in a decision-directed mode is able to track
relatively slow variations in channel characteristics.

It turns out that the larger the step-size parameter  is, the faster the tracking capability
of the adaptive equalizer. However, a large step-size parameter  may result in an
unacceptably high excess mean-square error, defined as that part of the mean-square value
of the error signal in excess of the minimum attainable value, which results when the tap
weights are at their optimum settings. We therefore find that, in practice, the choice of a
suitable value for the step-size parameter involves making a compromise between fast
tracking and reducing the excess mean-square error.

Decision-Feedback Equalization5

To develop further insight into adaptive equalization, consider a baseband channel with
impulse response denoted in its sampled form by the sequence {hn}, where hn = h(nT).
The response of this channel to an input sequence {xn}, in the absence of noise, is given by
the discrete convolution sum

(8.50)

The first term of (8.50) represents the desired data symbol. The second term is due to the
precursors of the channel impulse response that occur before the main sample h0
associated with the desired data symbol. The third term is due to the postcursors of the
channel impulse response that occur after the main sample h0. The precursors and
postcursors of a channel impulse response are illustrated in Figure 8.20. The idea of
decision-feedback equalization is to use data decisions made on the basis of precursors of

Figure 8.20 Impulse response of a discrete-time channel, depicting 
the precursors and postcursors.
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474 Chapter 8 Signaling over Band-Limited Channels

the channel impulse response to take care of the postcursors; for the idea to work,
however, the decisions would obviously have to be correct for the DFE to function
properly most of the time. 

A DFE consists of a feedforward section, a feedback section, and a decision device
connected together as shown in Figure 8.21. The feedforward section consists of a TDL
filter whose taps are spaced at the reciprocal of the signaling rate. The data sequence to be
equalized is applied to this section. The feedback section consists of another TDL filter
whose taps are also spaced at the reciprocal of the signaling rate. The input applied to the
feedback section consists of the decisions made on previously detected symbols of the
input sequence. The function of the feedback section is to subtract out that portion of the
intersymbol interference produced by previously detected symbols from the estimates of
future samples.

Note that the inclusion of the decision device in the feedback loop makes the equalizer
intrinsically nonlinear and, therefore, more difficult to analyze than an ordinary LMS
equalizer. Nevertheless, the mean-square error criterion can be used to obtain a
mathematically tractable optimization of a DFE. Indeed, the LMS algorithm can be used
to jointly adapt both the feedforward tap weights and the feedback tap weights based on a
common error signal.

8.10 Broadband Backbone Data Network: Signaling over Multiple 
Baseband Channels 

Up to this point in the chapter, the discussion has focused on signaling over a single band-
limited channel and related issues such as adaptive equalization. In order to set the stage for
the rest of the chapter devoted to signaling over a linear broadband channel purposely parti-
tioned into a set of subchannels, this section on the broadband backbone data network
(PSTN) is intended to provide a transition from the first part of the chapter to the second part. 

The PSTN was originally built to provide a ubiquitous structure for the digital
transmission of voice signals using PCM, which was discussed previously in Chapter 6.
As such, traditionally, the PSTN has been viewed as an analog network. In reality,
however, the PSTN has evolved into an almost entirely digital network. We say “almost
entirely” because the analog refers to the local network, which stands for short-
connections from a home to the central office.

For many decades past, data transmission over the PSTN relied on the use of modems;
the term “modem” is a contraction of modulator–demodulator. Despite the enormous

Figure 8.21 Block diagram of decision-feedback equalizer.
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8.11 Digital Subscriber Lines 475

effort that was put into the design of modems, they could not cope with the ever-increasing
rate of data transmission. This situation prevailed until the advent of digital subscriber line
(DSL) technology in the 1990s. The inquisitive reader may well ask the question: How was
it that the modem theorists and designers got it wrong while the DSL theorists and
designers got it right? Unfortunately, in the development of modems, the telephone
channel was treated as one whole entity. On the other hand, the development of DSL
abandoned the traditional approach by viewing the telephone channel as a conglomeration
of subchannels extending over a wide frequency band and operating in parallel, and with
each subchannel treated as a narrowband channel, thereby exploiting Shannon’s
information capacity law in a much more effective manner.

It is therefore not surprising that the DSL technology has converted an ordinary
telephone line into a broadband communication link, so much so that we may now view
the PSTN effectively as a broadband backbone data network, which is being widely used
all over the world. The data consist of digital signals generated by computers or Internet
service providers (ISPs). Most importantly, the deployment of DSL technology has
literally made it possible to increase the rate of data transmission across a telephone
channel by orders of magnitude compared with the old modems. This transition from
modem to DSL technology is indeed an impressive engineering accomplishment, which
resulted from “thinking outside the box.”

With this brief historical account, it is apropos that we devote the rest of the chapter to
the underlying theory of the widely used DSL technology.

8.11 Digital Subscriber Lines 

The term DSL is commonly used to refer to a family of different technologies that operate
over a local loop less than 1.5 km to provide for digital signal transmission between a user
terminal (e.g., computer) and the central office (CO) of a telephone company. Through the
CO, the user is connected directly to the so-called broadband backbone data network,
whereby transmission is maintained in the digital domain. In the course of transmission,
the digital signal is switched and routed at regular intervals. Figure 8.22 is a schematic
diagram illustrating that typically the data rate upstream (i.e., in the direction of the ISP) is
lower than the data rate downstream (i.e., in the direction of the user). It is for this reason
that the DSL is said to be asymmetric;6 hence the acronym ADSL.

The twisted wire-pair used in the local loop, the only analog part of the data
transmission system as remarked earlier, is inductively loaded. Specifically, extra
inductance is purposely supplied by local coils, which are inserted at regular intervals
across the wire-pair. This addition is made in order to produce a fairly flat frequency

Figure 8.22 Block diagram depicting the operational environment of DSL. 
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476 Chapter 8 Signaling over Band-Limited Channels

response across the effective voice band. However, the improvement so gained for the
transmission of voice signals is attained at the expense of continually increasing
attenuation at frequencies higher than 3.4 kHz. Figure 8.23a illustrates the two different
frequency bands allocated to a frequency-division multiplexive (FDM)-based ADSL; the
way in which two filters, one high-pass and the other low-pass, are used to connect the
DSL to the local loop is shown in Figure 8.23b.

With access to the wide band represented by frequencies higher than 3.6 kHz, the DSL
uses discrete multicarrier transmission (DMT) techniques to convert the twisted wire-pair
in the local loop into a broadband communication link; the two terms “multichannel” and
“multicarrier” are used interchangeably. The net result is that data rates of 1.5 to 9.0 Mbps
downstream in a bandwidth of up to 1 MHz and over a distance of 2.7 to 5.5 km. Very
high-bit-rate digital subscriber lines7 (VDSLs) do even better, supporting data rates of 13 to
52 Mbps downstream in a bandwidth of up to 30 MHz and over a distance of 0.3 to 1.5 km.
These numbers indicate that the data rates attainable by DSL technology depend on both
bandwidth and distance, and the technology continues to improve.

The basic idea behind DMT is rooted in a commonly used engineering paradigm: 

Divide and conquer. 

According to this paradigm, a difficult problem is solved by dividing it into a number of
simpler problems and then combining the solutions to those simple problems. In the
context of our present discussion, the difficult problem is that of data transmission over a
wideband channel with severe intersymbol interference, and the simpler problems are
exemplified by data transmission over relatively straightforward AWGN channels. We
may thus describe the essence of DMT theory, as follows:

Data transmission over a difficult channel is transformed through the use of 
advanced signal processing techniques into the parallel transmission of the 
given data stream over a large number of subchannels, such that each 
subchannel may be viewed effectively as an AWGN channel.

Figure 8.23 (a) Illustrating the different band allocations for an FDM-based ADSL system. 
(b) Block diagram of splitter performing the function of a multiplexer or demultiplexer. 
Note: both filters in the splitter are bidirectional filters. 
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8.12 Capacity of AWGN Channel Revisited 477

Naturally, the overall data rate is the sum of the individual data rates over the subchannels
designed to operate in parallel: this new way of thinking on signaling over wideband
channels is entirely different from the approach described in the first part of the chapter, in
that it builds on ideas described in Chapter 5 on Shannon’s information theory and in
Chapter 7 on signaling over AWGN channels.

8.12 Capacity of AWGN Channel Revisited

At the heart of discrete multichannel data transmission theory is Shannon’s information
capacity law, discussed in Chapter 5 on information theory. According to this law, the
capacity of an AWGN channel (free from ISI) is defined by

(8.51)

where B is the channel bandwidth in hertz and SNR is measured at the channel output.
Equation (8.51) teaches us that, for a given SNR, we can transmit data over an AWGN
channel of bandwidth B at the maximum rate of B bits with arbitrarily small probability of
error, provided that we employ an encoding system of sufficiently high complexity.
Equivalently, we may express the capacity C in bits per transmission of channel use as

(8.52)

In practice, we usually find that a physically realizable encoding system must transmit data
at a rate R less than the maximum possible rate C for it to be reliable. For an implementable
system operating at low enough probability of symbol error, we thus need to introduce an
SNR gap or just gap, denoted by . The gap is a function of the permissible probability of
symbol error Pe and the encoding system of interest. It provides a measure of the
“efficiency” of an encoding system with respect to the ideal transmission system of (8.52).
With C denoting the capacity of the ideal encoding system and R denoting the capacity of
the corresponding implementable encoding system, the gap is defined by

(8.53)

Rearranging (8.53) with R as the focus of interest, we may write

(8.54)

For an encoded PAM or QAM operating at Pe = 10–6, for example, the gap  is constant at
8.8 dB. Through the use of codes (e.g., trellis codes to be discussed in Chapter 10), the gap

 may be reduced to as low as 1 dB.
Let P denote the transmitted signal power and  denote the channel noise variance

measured over the bandwidth B. The SNR is therefore
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478 Chapter 8 Signaling over Band-Limited Channels

where

We may thus finally define the attainable data rate as

(8.55)

With this modified version of Shannon’s information capacity law at hand, we are ready to
describe discrete multichannel modulation in quantitative terms.

8.13 Partitioning Continuous-Time Channel into a Set 
of Subchannels

To be specific in practical terms, consider a linear wideband channel (e.g., twisted wire-
pair) with an arbitrary frequency response H( f ). Let the magnitude response of the
channel, denoted by |H( f )|, be approximated by a staircase function as illustrated in Figure
8.24, with f denoting the width of each frequency step (i.e., subchannel). In the limit, as
the frequency increment f approaches zero, the staircase approximation of the channel
approaches the actual H( f ). Along each step of the approximation, the channel may be
assumed to operate as an AWGN channel free from intersymbol interference. The problem
of transmitting a single wideband signal is thereby transformed into the transmission of a
set of narrowband orthogonal signals. Each orthogonal narrowband signal, with its own
carrier, is generated using a spectrally efficient modulation technique such as M-ary QAM,
with AWGN being essentially the only primary source of transmission impairment. This
scenario, in turn, means that data transmission over each subchannel of bandwidth f can
be optimized by invoking a modified form of Shannon’s information capacity law, with the
optimization of each subchannel being performed independently of all the others. Thus, in
practical signal-processing terms, we may make the following statement: 

The need for complicated equalization of a wideband channel is replaced by the 
need for multiplexing and demultiplexing the transmission of an incoming data 
stream over a large number of narrowband subchannels that are continuous and 
disjoint. 

Although the resulting complexity of a DMT system so described is indeed high for a
large number of subchannels, implementation of the entire system can be accomplished in
a cost-effective manner through the combined use of efficient digital signal-processing
algorithms and very-large-scale integration technology.

Figure 8.25 shows a block diagram of the DMT system in its most basic form. The
system configured here uses QAM, whose choice is justified by virtue of its spectral
efficiency. The incoming binary data stream is first applied to a demultiplexer (not shown in
the figure), thereby producing a set of N substreams. Each substream represents a sequence
of two-element subsymbols, which, for the symbol interval 0  t  T, is denoted by

where an and bn are element values along the two coordinates of subchannel n.
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8.13 Partitioning Continuous-Time Channel into a Set of Subchannels 479

Correspondingly, the passband basis functions of the quadrature-amplitude modulators
are defined by the following function pairs:

(8.56)

The carrier frequency fn of the nth modulator described in (8.56) is an integer multiple of
the symbol rate 1T, as shown by

 

and the low-pass function (t), common to all the subchannels, is the sinc function

(8.57)

The passband basis functions defined here have the following desirable properties, whose
proofs are presented as an end-of-chapter problem.

PROPERTY 1 For each n, the two quadrature-modulated sinc functions form an orthogonal pair, as
shown by

(8.58)

This orthogonal relationship provides the basis for formulating the signal constellation for
each of the N modulators in the form of a squared lattice.

PROPERTY 2 Recognizing that

we may completely redefine the passband basis functions in the complex form

(8.59)

where the factor  has been introduced to ensure that the scaled function  has
unit energy. Hence, these passband basis functions form an orthonormal set, as shown by

Figure 8.24 Staircase approximation of an arbitrary magnitude response of
a channel, |H( f )|; only positive-frequency portion of the response is shown. 
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(8.60)

The asterisk assigned to the second factor on the left-hand side denotes complex
conjugation.

Equation (8.60) provides the mathematical basis for ensuring that the N modulator-
demodulator pairs operate independently of each other.

PROPERTY 3 The set of channel-output functions {h(t) (t)} remains orthogonal for a linear channel

with arbitrary impulse response h(t), where  denotes convolution.

Thus, in light of these three properties, the original wideband channel is partitioned into an
ideal setting of independent subchannels operating in continuous time.
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Figure 8.25 Block diagram of DMT system.
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8.13 Partitioning Continuous-Time Channel into a Set of Subchannels 481

Figure 8.25 also includes the corresponding structure of the receiver. It consists of a
bank of N coherent detectors, with the channel output being simultaneously applied to the
detector inputs, operating in parallel. Each detector is supplied with a locally generated
pair of quadrature-modulated sinc functions operating in synchrony with the pair of
passband basis function applied to the corresponding modulator in the transmitter.

It is possible for each subchannel to have some residual ISI. However, as the number of
subchannels N approaches infinity, the ISI disappears for all practical purposes. From a
theoretical perspective, we find that, for a sufficiently large N, the bank of coherent
detectors in Figure 8.25 operates as maximum likelihood detectors, operating
independently of each other and on a subsymbol-by-subsymbol basis. (Maximum
likelihood detection was discussed in Chapter 7.)

To define the detector outputs in response to the input subsymbols, we find it
convenient to use complex notation. Let An denote the subsymbol applied to the nth
modulator during the symbol interval 0  t T, as shown by

(8.61)

The corresponding detector output is expressed as follows:

(8.62)

where Hn is the complex-valued frequency response of the channel evaluated at the
subchannel carrier frequency f = fn, that is,

(8.63)

The Wn in (8.62) is a complex-valued random variable produced by the channel noise
w(t); the real and imaginary parts of Wn have zero mean and variance N02. With
knowledge of the measured frequency response H( f ) available, we may therefore use
(8.62) to compute a maximum likelihood estimate of the transmitted subsymbol An. The
estimates  so obtained are finally multiplexed to produce the overall
estimate of the original binary data transmitted during the interval 0  t  T.

To summarize, for a sufficiently large N, we may implement the receiver as an optimum
maximum likelihood detector that operates as N subsymbol-by-subsymbol detectors. The
rationale for building a maximum likelihood receiver in such a simple way is motivated by
the following property:

PROPERTY 4 The passband basis functions constitute an orthonormal set and their orthogonality is
maintained for any channel impulse response h(t).

Geometric SNR

In the DMT system of Figure 8.25, each subchannel is characterized by an SNR of its
own. It would be highly desirable, therefore, to derive a single measure for the
performance of the entire system in Figure 8.25.

To simplify the derivation of such a measure, we assume that all of the subchannels in
Figure 8.25 are represented by one-dimensional constellations. Then, using the modified
Shannon information capacity law of (8.55), the channel capacity of the entire system is
successively expressed as follows:

An an jbn n 1 2  N  =+=

Yn HnAn Wn n 1 2  N  =+=

Hn H fn  n 1 2  N  ==

Â1 Â2  ÂN  
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482 Chapter 8 Signaling over Band-Limited Channels

(8.64)

Let (SNR)overall denote the overall SNR of the entire DMT system. Then, in light of
(8.54), we may express the rate R as

(8.65)

Accordingly, comparing (8.65) with (8.64) and rearranging terms, we may write

(8.66)

Assuming that the SNR, namely , is large enough to ignore the two unity terms
on the right-hand side of (8.66), we may approximate the overall SNR simply as follows:

(8.67)

which is independent of the gap . We may thus characterize the overall system by an
SNR that is the geometric mean of the SNRs of the individual subchannels.

The geometric form of the SNR of (8.67) can be improved considerably by distributing
the available transmit power among the N subchannels on a nonuniform basis. This
objective is attained through the use of loading, which is discussed next.

Loading of the DMT System

Equation (8.64) for the bit rate of the entire DMT system ignores the effect of the channel
on system performance. To account for this effect, define

 (8.68)

Then, assuming that the number of subchannels N is large enough, we may treat gn as a
constant over the entire bandwidth f assigned to subchannel n for all n. In such a case, we
may modify the second line of (8.64) for the overall SNR of the system into

R
1
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---- Rn
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log=
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bits per transmissionlog=
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 
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1–
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N

=
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 
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8.13 Partitioning Continuous-Time Channel into a Set of Subchannels 483

(8.69)

where the  and  are usually fixed. The noise variance  is f N0 for all n, where f
is the bandwidth of each subchannel and N02 is the noise power spectral density of the
subchannel. We may therefore optimize the overall bit rate R through a proper allocation
of the total transmit power among the various subchannels. However, for this optimization
to be of practical value, we must maintain the total transmit power at some constant value
denoted by P, as shown by

(8.70)

The optimization we therefore have to deal with is a constrained optimization problem,
stated as follows:

Maximize the bit rate R for the DMT system through an optimal sharing of the 
total transmit power P between the N subchannels, subject to the constraint that 
the total transmit power P is maintained constant.

To solve this optimization problem, we first use the method of Lagrange multipliers8 to set
up an objective function (i.e., the Lagrangian) that incorporates (8.69) and the constraint
of (8.70) as shown by

(8.71)

where  is the Lagrange multiplier; in the second line of (8.71) the logarithm to base 2 has
been changed to the natural logarithm written as log2e. Hence, differentiating the
Lagrangian J with respect to Pn, then setting the result equal to zero and finally
rearranging terms, we get

(8.72)

The result of (8.72) indicates that the solution to our constrained optimization problem is
to have

(8.73)
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484 Chapter 8 Signaling over Band-Limited Channels

where K is a prescribed constant under the designer’s control. That is, the sum of the
transmit power and the noise variance (power) scaled by the ratio  must be
maintained constant for each subchannel. The process of allocating the transmit power P
to the individual subchannels so as to maximize the bit rate of the entire multichannel
transmission system is called loading; this term is not to be confused with loading coils
used in twisted wire-pairs.

8.14 Water-Filling Interpretation of the Constrained 
Optimization Problem 

In solving the constrained optimization problem just described, the two conditions of
(8.70) and (8.73) must both be satisfied. The optimum solution so defined has an
interesting interpretation, as illustrated in Figure 8.26 for N = 6, assuming that the gap 
is maintained constant over all the subchannels. To simplify the illustration in Figure 8.26,
we have set ; that is, the average noise power is unity for all N
subchannels. Referring to this figure, we may now make three observations:

1. With , the sum of power Pn allocated to subchannel n and the scaled noise
power  satisfies the constraint of (8.73) for four of the subchannels for a
prescribed value of the constant K.

2. The sum of power allocations to these four subchannels consumes all the available
transmit power, maintained at the constant value P.

3. The remaining two subchannels have been eliminated from consideration because
they would each require negative power to satisfy (8.73) for the prescribed value of
the constant K; from a physical perspective, this condition is clearly unacceptable.

The interpretation illustrated in Figure 8.26 prompts us to refer to the optimum solution of
(8.73), subject to the constraint of (8.70), as the water-filling solution; the principle of water-
filling was discussed under Shannon’s information theory in Chapter 5. This terminology

 gn
2

Figure 8.26 Water-filling interpretation of the loading problem. 
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8.14 Water-Filling Interpretation of the Constrained Optimization Problem 485

follows from analogy of our optimization problem with a fixed amount of water—standing
for transmit power—being poured into a container with a number of connected regions, each
having a different depth—standing for noise power. In such a scenario, the water distributes
itself in such a way that a constant water level is attained across the whole container, hence
the term “water filling.”

Returning to the task of how to allocate the fixed transmit power P among the various
subchannels of a multichannel data transmission system so as to optimize the bit rate of
the entire system, we may proceed along the following pair of steps:

1. Let the total transmit power be fixed at the constant value P as in (8.70). 

2. Let K denote the constant value prescribed for the sum, , for all n as in
(8.73). 

On the basis of these two steps, we may then set up the following system of simultaneous
equations:

(8.74)

where we have a total of (N + 1) unknowns and (N + 1) equations to solve for them. Using
matrix notation, we may rewrite this system of N + K simultaneous equations in the
compact form

(8.75)

Premultiplying both sides of (8.75) by the inverse of the (N + 1)-by-(N + 1) matrix on the
left-hand side of the equation, we obtain solutions for the unknowns P1, P2, , PN, and K.
We should always find that K is positive, but it is possible for some of the P values to be
negative. In such a situation, the negative P values are discarded as power cannot be
negative for physical reasons.

EXAMPLE 5 Linear Channel with Squared Magnitude Response

Consider a linear channel whose squared magnitude response |H( f )|2 has the piecewise-

linear form shown in Figure 8.27. To simplify the example, we have set the gap  and

the noise variance = 1. 
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486 Chapter 8 Signaling over Band-Limited Channels

Under this set of values, the application of (8.74) yields

where the new parameter 0 < l < 1 has been introduced to distinguish the third equation
from the second one. Solving these three simultaneous equations for P1, P2, and K, we get

Since 0 < l < 1, it follows that P1 > 0, but it is possible for P2 to be negative. This latter
condition can arise if

But then P1 exceeds the prescribed value of transmit power P. Therefore, it follows that, in
this example, the only acceptable solution is to have l(P + 1) < l < 1. Suppose then we
have P = 10 and l = 0.1; under these two conditions the desired solution is

The corresponding water-filling picture for the problem at hand is portrayed in Figure 8.28.

Figure 8.27 Squared magnitude response for Example 5.
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8.15 DMT System using Discrete Fourier Transform 487

n

8.15 DMT System using Discrete Fourier Transform

The material presented in Sections 8.13 and 8.14 provides an insightful introduction to the
notion of multicarrier modulation in a DMT system. In particular, the continuous-time
channel partitioning induced by the passband (modulated) basis functions of (8.56), or equiv-
alently (8.59) in complex terms, exhibits a highly desirable property described as follows: 

Orthogonality of the basis functions, and therefore the channel partitioning, 
is preserved despite their individual convolutions with the impulse response 
of the channel. 

However, the DSL system so described has two practical shortcomings:

1. The passband basis functions use a sinc function that is nonzero for an infinite time
interval, whereas practical considerations favor a finite observation interval.

2. For a finite number of subchannels N the system is suboptimal; optimality of the
system is assured only when N approaches infinity.

We may overcome both shortcomings by using DMT, the basic idea of which is to
transform a noisy wideband channel into a set of N subchannels operating in parallel.
What makes DMT distinctive is the fact that the transformation is performed in discrete
time as well as discrete frequency, paving the way for exploiting digital signal processing.
Specifically, the transmitter’s input–output behavior of the entire communication system
admits a linear matrix representation, which lends itself to implementation using the DFT.
In the following we know from Chapter 2 on Fourier analysis of signals and systems that
the DFT is the result of discretizing the Fourier transform both in time and frequency.

To exploit this new approach, we first recognize that in a realistic situation the channel
has its nonzero impulse response h(t) essentially confined to a finite interval [0, Tb]. So,

Figure 8.28
Water-filling profile for 
Example 5. 
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488 Chapter 8 Signaling over Band-Limited Channels

let the sequence h0, h1, , h denote the baseband equivalent impulse response of the
channel sampled at the rate 1Ts, with

(8.76)

where the role of  is to be clarified. The sampling rate 1Ts is chosen to be greater than
twice the highest frequency component of interest in accordance with the sampling
theorem. To continue with the discrete-time description of the system, let sn = s(nTs)
denote a sample of the transmitted symbol s(t), wn = w(nTs) denote a sample of the
channel noise w(t), and xn = x(nTs) denote the corresponding sample of the channel output
(i.e., received signal). The channel performs linear convolution on the incoming symbol
sequence {sn} of length N to produce a channel output sequence {xn} of length N + .
Extension of the channel output sequence by  samples compared with the channel input
sequence is due to the intersymbol interference produced by the channel.

To overcome the effect of ISI, we create a cyclically extended guard interval, whereby
each symbol sequence is preceded by a periodic extension of the sequence itself.
Specifically, the last  samples of the symbol sequence are repeated at the beginning of the
sequence being transmitted, as shown by

(8.77)

The condition described in (8.77) is called a cyclic prefix. The excess bandwidth factor due
to the inclusion of the cyclic prefix is therefore N, where N is the number of transmitted
samples after the guard interval.

With the cyclic prefix in place, the matrix description of the channel now takes the new
form

(8.78)

In a compact way, we may describe the discrete-time representation of the channel in the
matrix form

(8.79)

where the transmitted symbol vector s, the channel noise vector w, and the received signal
vector x are all N-by-1 vectors that are respectively defined as follows:

(8.80)

(8.81)

(8.82)

Tb 1 + Ts=

sk sN K– for K 1 2    ==
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⋮
xN  1––
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⋮
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h0 h1 h2 h 1– h 0 ⋯ 0

0 h0 h1 h 2– h 1– h ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 h0 h1 ⋯ h
h 0 0 ⋯ 0 0 h0 ⋯ h 1–

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
h1 h2 h3 ⋯ h 0 0 ⋯ h0

sN 1–

sN 2–

⋮
sN  1––
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⋮
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wN 1–
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⋮
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⋮
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x Hs w+=

s sN 1– sN 2–  s0  T=

w wN 1– wN 2–  w0  T=
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8.15 DMT System using Discrete Fourier Transform 489

We may thus simply depict the discrete-time representation of the channel as in Figure
8.29. The N-by-N channel matrix H is itself defined by

(8.83)

From the definition in (8.83), we readily see that the matrix H has the following structural
composition: 

Every row of the matrix is obtained by cyclically applying a right-shift to the 
previous row by one position, with the added proviso that the rightmost element 
of the previous row spills over in the shifting process to be “circulated” back to 
the leftmost element of the next row. 

Accordingly, the matrix H is referred to as a circulant matrix.
Before proceeding further, it is befitting that we briefly review the DFT and its role in

the spectral decomposition of the circulant matrix H.

Discrete Fourier Transform

Consider the N-by-1 vector x of (8.79). Let the DFT of the vector x be denoted by the
N-by-1 vector

(8.84)

whose kth element is defined by

(8.85)

The exponential term exp(–j2knN) is the kernel of the DFT. Correspondingly, the IDFT
(i.e., inverse DFT) of the N-by-1 vector X is defined by

(8.86)

Figure 8.29
Discrete-time representation of 
multichannel data transmission system. 
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490 Chapter 8 Signaling over Band-Limited Channels

Equations (8.85) and (8.86) follow from discretizing the continuous-time Fourier
transform both in time and frequency, as discussed in Chapter 2 with one difference: the
DFT in (8.65) and its inverse in (8.66) have the same scaling factor,  for the purpose
of symmetry.

Although the DFT and IDFT appear to be similar in their mathematical formulations,
their interpretations are different, as discussed previously in Chapter 2. As a reminder, we
may interpret the DFT process described in (8.85) as a system of N complex heterodyning
and averaging operations, as shown in Figure 2.32a. In the picture depicted in this part of
the figure, heterodyning refers to the multiplication of the data sequence xn by one of N
complex exponentials, exp(–j2knN). As such, (8.85) may be viewed as the analysis
equation. For the interpretation of (8.86), we may view it as the synthesis equation:
specifically, the complex Fourier coefficient Xk is weighted by one of N complex
exponentials exp(–j2knN). At time n, the output xn is formed by summing the weighted
complex Fourier coefficients, as shown in Figure 2.32b.

An important property of a circulant matrix, exemplified by the channel matrix H of
(8.83), is that it permits the spectral decomposition defined by

(8.87)

where the superscript † denotes Hermitian transposition (i.e., the combination of complex
conjugation and ordinary matrix transposition). Descriptions of the matrices Q and  are
presented in the following in that order. The matrix Q is a square matrix defined in terms
of the kernel of the N-point DFT as shown by

(8.88)

From this definition, we readily see that the klth element of the N-by-N matrix, Q, starting
from the bottom right at k = 0 and l = 0 and counting up step-by-step, is

(8.89)

The matrix Q is an orthonormal matrix or unitary matrix, in the sense that it satisfies the
condition

(8.90)

where I is the identity matrix. That is, the inverse matrix of Q is equal to the Hermitian
transpose of Q.
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8.15 DMT System using Discrete Fourier Transform 491

The matrix  in (8.87) is a diagonal matrix that contains the N DFT values of the
sequence h0, h1, , h that characterize the channel. Denoting these transform values by
N – 1, , 1, 0, respectively, we may express  as

(8.91)

Note that  used here are not to be confused with the Lagrange multipliers in Section 8.13.
From a system design objective, the DFT has established itself as one of the principal

tools of digital signal processing by virtue of its efficient computation using the FFT
algorithm, which was also described in Chapter 2. Computationally speaking, the FFT
algorithm requires on the order of N log2N operations rather than the N2 operations for
direct computation of the DFT. For efficient implementation of the FFT algorithm, we
should choose the block length N to be an integer power of 2. The computational savings
obtained by using the FFT algorithm are made possible by exploiting the special structure
of the DFT defined in (8.85). Moreover, these savings become more substantial as we
increase the data length N.

Frequency–Domain Description of the Channel

With this brief review of the DFT and its FFT implementations at hand, we are ready to
resume our discussion of the DMT system. First, we define

(8.92)

where S is the frequency-domain vector representation of the transmitter output. Each
element of the N-by-1 vector S may be viewed as a complex-valued point in a two-
dimensional QAM signal constellation. Given the channel output vector x, we define its
corresponding frequency-domain representation as

(8.93)

Using (8.87), (8.92), and (8.93), we may rewrite (8.79) in the equivalent form

(8.94)

Hence, using the equality of (8.90) in (8.94) we may reduce the vector  to the simple
form

(8.95)

where
(8.96)

In expanded (scalar) form, the matrix equation (8.95) reads as follows:

(8.97)
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492 Chapter 8 Signaling over Band-Limited Channels

where the set of frequency-domain values  is known for a prescribed channel.
Note that Xk is a random variable and wk is a random variable sampled from a white
Gaussian noise process. 

For a channel with additive white noise, (8.97) leads us to make the following
important statement: 

The receiver of a DMT-based DSL is composed of a set of independent 
processors operating in parallel. 

With the k being all known, we may thus use the block of frequency-domain values
 to compute estimates of the corresponding transmitted block of frequency-

domain values .

DFT-Based DMT System

Equations (8.95), (8.85), (8.86), and (8.97) provide the mathematical basis for the
implementation of DMT using the DFT. Figure 8.30 illustrates the block diagram of the
system derived from these equations, setting the stage for their practical roles:

Figure 8.30 Block diagram of the DFT-based DMT system. 
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8.15 DMT System using Discrete Fourier Transform 493

1. The transmitter consists of the following functional blocks:

• Demultiplexer, which converts the incoming serial data stream into parallel form.
• Constellation encoder, which maps the parallel data into N2 multibit

subchannels with each subchannel being represented by a QAM signal
constellation. Bit allocation among the subchannels is also performed here in
accordance with a loading algorithm.

• IDFT, which transforms the frequency-domain parallel data at the constellation
encoder output into parallel time-domain data. For efficient implementation of
the IDFT using the FFT algorithm, we need to choose N = 2k, where k is a
positive integer.

• Parallel-to-serial converter, which converts the parallel time-domain data into
serial form. Guard intervals stuffed with cyclic prefixes are inserted into the serial
data on a periodic basis before conversion into analog form.

• Digital-to-analog converter (DAC), which converts the digital data into analog
form ready for transmission over the channel.

Typically, the DAC includes a transmit filter. Accordingly, the time function h(t) in
Figure 8.25 should be redefined as the combined impulse response of the cascade
connection of the transmit filter and the channel.

2. The receiver performs the inverse operations of the transmitter, as described here:

• Analog-to-digital converter (ADC), which converts the analog channel output
into digital form.

• Serial-to-parallel converter, which converts the resulting bit stream into parallel
form. Before this conversion takes place, the guard intervals (cyclic prefixes) are
removed.

• DFT, which transforms the time-domain parallel data into frequency-domain
parallel data; as with the IDFT, the FFT algorithm is used to implement the DFT.

• Decoder, which uses the DFT output to compute estimates of the original
multibit subchannel data supplied to the transmitter.

• Multiplexer, which combines the estimates so computed to produce a
reconstruction of the transmitted serial data stream.

To sum up:

Thanks to the computationally efficient FFT algorithm, the DMT has 
established itself as the standard core technology for the design of asymmetric 
and very high bit-rate versions of the DSL by virtue of two important 
operational attributes: effective performance and efficient implementation.

Practical Applications of DMT-based DSL

An important application of DMT is in the transmission of data over two-way channels.
Indeed, DMT has been standardized for use on ADSLs using twisted wire-pairs. In ADSL,
for example, the DMT provides for the transmission of data downstream (i.e., from an ISP
to a subscriber) at the rate of 1.544 Mbits/s and the simultaneous transmission of data
upstream (i.e., from the subscriber to the ISP) at 160 kbits/s. This kind of data
transmission capability is well suited for handling data-intensive applications such as
video-on-demand.
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DMT is also a core technology in implementing the asymmetric VDSLs, which differs
from all other DSL transmission techniques because of its ability to deliver extremely high
data rates. For example, a VDSL can provide data rates of 13 to 26 Mbits/s downstream
and 2 to 3 MB/s upstream over twisted wire-pairs that emanate from an optical network
unit and connect to the subscriber over distances of less than about 1 km. These high data
rates allow the delivery of digital TV, super-fast Web surfing and file transfer, and virtual
offices at home.

From a practical perspective, the use of DMT for implementing ADSL and VDSL
provides a number of advantages:

• The ability of DMT to maximize the transmitted bit rate, which is provided by
tailoring the distribution of information-bearing signals across the channel
according to channel attenuation and noise conditions.

• Adaptivity to changing line conditions, which is realized by virtue of the fact that the
channel is partitioned into a number of subchannels.

• Reduced sensitivity to impulse noise, which is achieved by spreading its energy over
the many subchannels of the receiver. As the name implies, impulse noise is
characterized by long, quiet intervals followed by narrow pulses of randomly
varying amplitude. In an ADSL or VDSL environment, impulse noise arises due to
switching transients coupled to twisted wire-pairs in the central office and to various
electrical devices on the user’s premises.

• Effectively, employment of the DMT system eliminates the need for adaptive
channel equalization.

8.16 Summary and Discussion

In this chapter devoted to data transmission over band-limited channels, two important
aspects of this practical problem were discussed.

In the first part of the chapter, we assumed that the SNR at the channel input is large
enough for the effect of channel noise to be ignored. Under this assumption, the issue of
dealing with intersymbol interference was viewed as a signal design problem. That is, the
overall pulse shape p(t) is configured in such a way that p(t) is zero at the sampling times
nTb, where Tb is the reciprocal of the bit rate Rb. In so doing, the intersymbol interference
is reduced to zero. Finding the pulse shape that satisfies this requirement is best handled in
the frequency domain. The ideal solution is a “brick-wall” spectrum that is constant over
the interval –W  f  W where W = 12Tb. Tb is the bit duration and W is called the Nyquist
bandwidth. Unfortunately, this ideal pulse shape is impractical on two accounts: noncausal
behavior and sensitivity to timing errors. To overcome these two practical difficulties, we
proposed the use of an RC spectrum that rolls off gradually from a constant value over a
prescribed band toward zero in a half-cosine-like manner on either side of the band. We
finished this first part of the chapter by introducing the SRRC spectrum, where the overall
pulse shaping is split equally between the transmitter and receiver; this latter form of
signal design finds application in wireless communication.

Turning next to the second part of the chapter, we discussed another way of tackling
data transmission over a wideband channel by applying the engineering principle of
“divide and conquer.” Specifically, a telephone channel, using a twisted wire-pair, is
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partitioned into a large number of narrowband subchannels, such that each noisy
subchannel can be handled by applying Shannon’s information-capacity law. Then,
through a series of clever mathematical steps, the treatment of a difficult “discrete
multicarrier transmission system” is modified into a new “DMT system.” Most
importantly, by exploiting the computational efficiency of the FFT algorithm, practical
implementation of the DMT assumes a well-structured transceiver (i.e., pair of transmitter
and receiver) that is effective in performance and efficient in computational terms. Indeed,
the DMT has established itself as the standard core technology for designing the
asymmetric and very high bit-rate members of the digital subscriber line family.
Moreover, the world-wide deployment of DSL technology has converted an ordinary
telephone line into a broadband communication link, so much so that we may now view
the PSTN as a broadband backbone data network. Most importantly, this analog-to-digital
network conversion has made it possible to transmit data at rates in the megabits per
second region, which is a truly a remarkable engineering achievement.

Problems

Nyquist’s Criterion

8.1 The NRZ pulse of Figure P8.1 may be viewed as a very crude form of a Nyquist pulse. Justify this
statement by comparing the spectral characteristics of these two pulses. 

8.2 A binary PAM signal is to be transmitted over a baseband channel with an absolute maximum
bandwidth of 75 kHz. The bit duration is 10 . Find an RC spectrum that satisfies these
requirements.

8.3 An analog signal is sampled, quantized, and encoded into a binary PCM. Specifications of the PCM
signal include the following:

• Sampling rate, 8 kHz

• Number of representation levels, 64.

The PCM signal is transmitted over a baseband channel using discrete PAM. Determine the
minimum bandwidth required for transmitting the PCM signal if each pulse is allowed to take on the
following number of amplitude levels: 2, 4, or 8.

8.4 Consider a baseband binary PAM system that is designed to have an RC spectrum P( f ). The
resulting pulse p(t) is defined in (8.25). How would this pulse be modified if the system is designed
to have a linear phase response?

8.5 Determine the Nyquist pulse whose inverse Fourier transform is defined by the frequency function
P( f ) defined in (8.26).

Figure P8.1
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496 Chapter 8 Signaling over Band-Limited Channels

8.6 Continuing with the defining condition in Problem 8.5, namely

demonstrate that the Nyquist pulse p(t) with the narrowest bandwidth  is described by the sinc
function:

8.7 A pulse p(t) is said to be orthogonal under T-shifts if it satisfies the condition

where Tb is the bit duration. In other words, the pulse p(t) is uncorrelated with itself when it is
shifted by any integer multiple of Tb. Show that this condition is satisfied by a Nyquist pulse.

8.8 Let P( f ) be an integrable function, the inverse Fourier transform of which is given by

and let Tb be given. The pulse p(t) so defined is a Nyquist pulse of bit duration Tb if, and only if, the
Fourier transform P( f ) satisfies the condition

Using the Poisson sum formula described in Chapter 2, demonstrate the validity of this statement.

8.9 Let g(t) denote a function, the Fourier transform of which is denoted by G( f ). The pulse g(t) is
orthogonal under T-shifts in that its Fourier transform G( f ) satisfies the condition

Show that this condition is satisfied by the SRRC shaping pulse.

Partial Response Signaling

8.10 The sinc pulse is the optimum Nyquist pulse, optimum in the sense it produces zero intersymbol
interference occupying the minimum bandwidth possible W = 1/2Tb, where Tb is the bit duration.
However, as discussed in Section 8.5, the sinc pulse is prone to timing errors; hence the preference
for the RC spectrum that requires twice the minimum bandwidth, 2W.

In this problem, we explore a new pulse that achieves the minimum possible bandwidth W = 12Tb as
the sinc pulse, but at the expense of a deterministic (i.e., controlled) intersymbol interference; being
controllable, appropriate measures can be taken at the receiver to account for it.

This new pulse is denoted by g1(t), the Fourier transform of which is denoted by

a. Plot the magnitude and phase spectrum of G1( f ).

b. Show that the pulse g1(t) is defined by
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and therefore justify the statement that the tails of g1(t) decay as , which is faster than the
rate of decay  that characterizes the sinc pulse. Comment on this advantage of g1(t) over the
sinc pulse.

c. Plot the waveform of g1(t) to demonstrate that g1(t) has only two distinguishable values at the
sampling instants; hence the reference to g1(t) as a duobinary code. 

d. Signaling over a band-limited channel with the use of a duobinary code is referred to partial-
response signaling. Explain why.

8.11 In this problem, we explore another form of partial-response signaling based on the modified
duobinary code. Let this second code be represented by the pulse g2(t) whose Fourier transform is
defined by

a. Plot the magnitude and phase spectra of G2( f ).

b. Show that the modified duobinary pulse is itself defined by 

and therefore demonstrate that it has three distinguishable levels at the sampling instants.

c. What is a practical advantage of the modified duobinary code over the duobinary code in terms of
transmission over a band-limited channel?

Multichannel Line Codes

8.12 Consider the passband basis functions defined in (8.56), where  is itself defined by (8.57).
Demonstrate the validity of Properties 1, 2, and 3 of these passband basis functions.

8.13 The water-filling solution for the loading problem is defined by (8.73) subject to the constraint of
(8.70). Using this pair of relations, formulate a recursive algorithm for computing the allocation of
the transmit power P among the N subchannels. The algorithm should start with an initial total or
sum noise-to-signal ratio NSR(i) = 0 for iteration i = 0, and the subchannels sorted in terms of those
with the smallest power allocation to the largest.

8.14 The squared magnitude response of a linear channel, denoted by |H( f )|2, is shown in Figure P8.14.
Assuming that the gap  and the noise variance  for all subchannels, do the following:

a. Derive the formulas for the optimum powers P1, P2, and P3, allocated to the three subchannels of
frequency bands (0, W1), (W1, W2), and (W2, W).

b. Given that the total transmit power P = 10, l1 = 2/3, and l2 = 1/3, calculate the corresponding
values of P1, P2, and P3.
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498 Chapter 8 Signaling over Band-Limited Channels

8.15 In this problem we explore the use of singular value decomposition (SVD) as an alternative to the
DFT for vector coding. This approach avoids the need for a cyclic prefix, with the channel matrix
being formulated as

where the sequence h0, h1, , hv denotes the sampled impulse response of the channel. The SVD of
the matrix H is defined by

where U is an N-by-N unitary matrix and V is an (N + v)-by-(N + v) unitary matrix; that is,

where I is the identity matrix and the superscript  denotes Hermitian transposition. The  is an
N-by-N diagonal matrix with singular values . The  is an N-by-v matrix of zeros.

a. Using this decomposition, show that the N subchannels resulting from the use of vector coding
are mathematically described by

The Xn is an element of the matrix product , where x is the received signal (channel output)
vector. An is the nth symbol an + jbn and Wn is a random variable due to channel noise.

b. Show that the SNR for vector coding as described herein is given by

where  is the number of channels for each of which the allocated transmit power is
nonnegative, (SNR)n is the SNR of subchannel n, and  is a prescribed gap.

c. As the block length N approaches infinity, the singular values approach the magnitudes of the
channel Fourier transform. Using this result, comment on the relationship between vector coding
and discrete multitone. 

Computer Experiments

 **8.16 In this computer-oriented problem, consisting of two parts, we demonstrate the effect of nonlinearity
on eye patterns.

a. Consider a 4-ary PAM system, operating under idealized conditions: no channel noise and no ISI.
the specifications are as follows:

Nyquist bandwidth, W = 0.5 Hz

Roll-off factor,  = 0.5

Symbol duration, T = 2Tb for M = 4 and Tb is the bit duration.

Compute the eye pattern for this noiseless PAM system.

b. Repeat the computation, this time assuming that the channel is nonlinear with the following
input–output relationship:
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where s(t) is the channel input and x(t) is the channel output (i.e., received signal); the a is a
constant. Compute the eye pattern for the following three nonlinear conditions:

Hence, discuss how varying the constant a affects the shape of the eye pattern for the 4-ary PAM
system.

Notes

1. The criterion described in (8.11) or (8.15) was first formulated by Nyquist in the study of
telegraph transmission theory; the Nyquist (1928b) paper is a classic. In the literature, this criterion
is referred to as Nyquist’s first criterion. In the 1928b paper, Nyquist described another method,
referred to in the literature as Nyquist’s second criterion. The second method makes use of the
instants of transition between unlike symbols in the received signal rather than centered samples. A
discussion of the first and second criteria is presented in Bennett (1970: 78–92) and in the paper by
Gibby and Smith (1965). A third criterion attributed to Nyquist is discussed in Sunde (1969); see
also the papers by Pasupathy (1974) and Sayar and Pasupathy (1987).

2. The specifications described in Example 1 follow the book by Tranter et al. (2004).

3. The SRRC pulse shaping is discussed in Chennakeshu and Saulnier (1993) in the context of /4-
shifted differential QPSK for digital cellular radio. It is also discussed in Anderson (2005: 27–29).

4. In a strict sense, an eye pattern that is completely open occupies the range from –1 to +1. On this
basis, zero intersymbol interference would correspond to an ideal eye opening of 2. However, for
two reasons, convenience of presentation and consistency with the literature, we have chosen an eye
opening of unity to refer to the ideal condition of zero intersymbol interference.

5. For a detailed treatment of decision feedback equalizers, see the fifth edition of the classic book
on Digital Communications by Proakis and Salehi (2008).

6. The idea of an ADSL is attributed to Lechleider (1989) in having had the insight that such an
arrangement offers the possibility of more than doubling the information capacity of a symmetric
arrangement.

7. For a detailed discussion of VDSL, see Chapter 7 of the book by Starr et al. (2003); see also the
paper by Cioffi et al. (1999).

8. The method of Lagrange multipliers is discussed in Appendix D.

a 0.05 0.1 0.2 =
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CHAPTER

9
Signaling over Fading Channels 

9.1 Introduction

In Chapters 7 and 8 we studied signaling over AWGN and band-limited channels, respec-
tively. In this chapter we go on to study a more complicated communications environment,
namely a fading channel, which is at the very core of ever-expanding wireless communica-
tions. Fading refers to the fact that even though the distance separating a mobile receiver
from the transmitter is essentially constant, a relatively small movement of the receiver
away from the transmitter could result in a significant change in the received power. The
physical phenomenon responsible for fading is multipath, which means that the transmitted
signal reaches the mobile receiver via multiple paths with varying spatio-temporal charac-
teristics, hence the challenging nature of the wireless channel for reliable communication.

This chapter consists of three related parts:
First we study signaling over a fading channel by characterizing its statistical behavior

in temporal as well as spacial terms. This statistical characterization is carried out from
three different perspectives: physical, mathematical, and computational, each of which
enriches our understanding of the multipath phenomenon in its own way. This first part of
the chapter finishes with: 

• BER comparison of different modulation schemes for AWGN and Rayleigh fading
channels.

• Graphical display of how different fading channels compare to a corresponding
AWGN channel using binary PSK.

This evaluation then prompts the issue of how to combat the degrading effect of multipath
and thereby realize reliable communication over a fading channel. Indeed, the second part
of the chapter is devoted to this important practical issue. Specifically, we study the use of
space diversity, which can be one of three kinds:

1. Diversity-on-receive, which involves the use of a single transmitter and multiple
receivers, with each receiver having its own antenna.

2. Diversity-on-transmit, which involves the use of multiple transmitting antennas and
a single receiver.

3. Multiple-input, multiple-output (MIMO) antenna system, which includes diversity
on receive and diversity on transmit in a combined manner.

The use of diversity-on-receive techniques is of long standing in the study of radio
communications. On the other hand, diversity-on-transmit and MIMO antenna systems are
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502 Chapter 9 Signaling over Fading Channels

of recent origin. The study of diversity is closely related to that of information capacity,
the evaluation of which is also given special attention in the latter part of the chapter.

For the third and final part of the chapter, we study spread-spectrum signals, which
provide the basis of another novel way of thinking about how to mitigate the degrading
effects of the multipath phenomenon. In more specific terms, the use of spread-spectrum
signaling leads to the formulation of code-division multiple access, a topic that was
covered briefly in the introductory Chapter 1.

9.2 Propagation Effects

The major propagation problems1 encountered in the use of mobile radio in built-up areas
are due to the fact that the antenna of a mobile unit may lie well below the surrounding
buildings. Simply put, there is no “line-of-sight” path to the base station. Instead, radio
propagation takes place mainly by way of scattering from the surfaces of the surrounding
buildings and by diffraction over and/or around them, as illustrated in Figure 9.1. The
important point to note from Figure 9.1 is that energy reaches the receiving antenna via
more than one path. Accordingly, we speak of a multipath phenomenon, in that the various
incoming radio waves reach their destination from different directions and with different
time delays. 

To understand the nature of the multipath phenomenon, consider first a “static”
multipath environment involving a stationary receiver and a transmitted signal that
consists of a narrowband signal (e.g., unmodulated sinusoidal carrier). Let it be assumed
that two attenuated versions of the transmitted signal arrive sequentially at the receiver.
The effect of the differential time delay is to introduce a relative phase shift between any
two components of the received signal. We may then identify one of two extreme cases
that can arise:

• The relative phase shift is zero, in which case the two components add
constructively, as illustrated in Figure 9.2a.

• The relative phase shift is 180, in which case the two components add destructively,
as illustrated in Figure 9.2b. 

Figure 9.1
Illustrating the mechanism of radio 
propagation in urban areas. 
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We may also use phasors to demonstrate the constructive and destructive effects of
multipath, as shown in Figures 9.3a and 9.3b, respectively. Note that, in the static
multipath environment described herein, the amplitude of the received signal does not vary
with time.

Consider next a “dynamic” multipath environment in which the receiver is in motion and
two versions of the transmitted narrowband signal reach the receiver via paths of different

Figure 9.2 (a) Constructive and (b) destructive forms of the multipath 
phenomenon for sinusoidal signals. 

Figure 9.3 Phasor representations of (a) constructive and (b) destructive forms of multipath. 
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lengths. Owing to motion of the receiver, there is a continuous change in the length of each
propagation path. Hence, the relative phase shift between the two components of the
received signal is a function of spatial location of the receiver. As the receiver moves, we
now find that the received amplitude (envelope) is no longer constant, as was the case in a
static environment; rather, it varies with distance, as illustrated in Figure 9.4. At the top of
this figure, we have also included the phasor relationships for two components of the
received signal at various locations of the receiver. Figure 9.4 shows that there is
constructive addition at some locations and almost complete cancellation at some other
locations. This physical phenomenon is referred to as fast fading. 

In a mobile radio environment encountered in practice, there may of course be a
multitude of propagation paths with different lengths and their contributions to the received
signal could combine in a variety of ways. The net result is that the envelope of the received
signal varies with location in a complicated fashion, as shown by the experimental record of
received signal envelope in an urban area that is presented in Figure 9.5. This figure clearly
displays the fading nature of the received signal. The received signal envelope in Figure 9.5
is measured in dBm. The unit dBm is defined as 10 log10(PP0), with P denoting the power
being measured and P0 = 1 mW as the frame of reference. In the case of Figure 9.5, P is the
instantaneous power in the received signal envelope. 

Signal fading is essentially a spatial phenomenon that manifests itself in the time
domain as the receiver moves. These variations can be related to the motion of the receiver
as follows. Consider the situation illustrated in Figure 9.6, where the receiver is assumed
to be moving along the line AA with a constant velocity . It is also assumed that the
received signal is due to a radio wave from a scatterer labelled S. Let t denote the time
taken for the receiver to move from point A to A. Using the notation described in Figure
9.6, the incremental change in the path length of the radio wave is deduced to be

(9.1)

Figure 9.4
Illustrating how the envelope fades as 
two incoming signals combine with 
different phases.
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where  is the spatial angle subtended between the incoming radio wave and the direction
of motion of the receiver. Correspondingly, the change in the phase angle of the received
signal at point A with respect to that at point A is given by

 

where  is the radio wavelength. The apparent change in frequency, or the Doppler shift, is
therefore defined by

(9.2)

The Doppler shift  is positive (resulting in an increase in frequency) when the radio
waves arrive from ahead of the mobile unit and it is negative when the radio waves arrive
from behind the mobile unit.

Figure 9.5 Experimental record of received signal envelope in an urban area. 
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506 Chapter 9 Signaling over Fading Channels

9.3 Jakes Model

To illustrate fast fading due to a moving receiver, consider a dynamic multipath
environment that involves N iid fixed scatterers surrounding such a receiver. Let the
transmitted signal be the complex sinusoidal function of unit amplitude and frequency fc,
as shown by

Then, the composite signal observed at the moving receiver, including relative effects of a
Doppler shift, is given by

where the amplitude An is contributed by the nth scatterer,  is the corresponding Doppler
shift, and  is some random phase. The complex envelope of the received signal is time
varying, as shown by 

(9.3)

Correspondingly, the autocorrelation function of the complex envelope  is defined by

(9.4)

where � is the expectation operator with respect to time t and the asterisk in 
denotes complex conjugation. Inserting (9.3) in (9.4) leads to a double summation, one
indexed by n and the other indexed by m. Then, simplifying the result under the iid
assumption, the autocorrelation function  reduces to

  (9.5)

At this point in the discussion, we make two observations:

1. The effects of small changes in distances between the moving receiver and the nth
scatterer are small enough for all n for us to write

(9.6)

where n = 1, 2, , N.

2. The Doppler shift  is proportional to the cosine of the angle  subtended
between the incoming radio wave from the nth scatterer and the direction of motion
of the receiver in Figure 9.6, which follows from (9.2).

We may therefore write

(9.7)

s t  exp j2fct =

x0 t  An exp j2 fc n+ t jn+ 
n 1=

N

=

n
n

x̃0 t  An exp j2nt jn+ 
n 1=

N

=

x̃0 t 

Rx̃0
t  � x̃0* t x̃0 t +  =

x̃0* t 

Rx̃0
 

Rx̃0
 

� An
2

exp j2n   if m n=
n 1=

N



0 if m n







=

� An
2 exp j2n   � An

2 � exp j2n  =

n ψn

n max ψn ncos 1 2  N  = =
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9.3 Jakes Model 507

where  is the maximum Doppler shift that occurs when the incoming radio waves
propogate in the same direction as the motion of the receiver. Accordingly, using (9.6) and
(9.7) in (9.5), we may write

(9.8)

where the multiplying factor

(9.9)

is the average signal power at the receiver input. 
We now make two final assumptions:

1. All the radio waves arrive at the receiver from a horizontal direction (Clarke, 1968).

2. The multipath is uniformly distributed over the range , as shown by the
probability density function (Jakes, 1974):

(9.10)

Under these two assumptions, the remaining expectation in (9.8) becomes independent of
n and with it, that equation simplifies further as follows:

The definite integral inside the brackets of this equation is recognized as the Bessel
function of the first kind of order zero,2 see Appendix C. By definition, for some argument
x, we have

(9.11)

We may therefore express the autocorrelation function of the complex signal  at the
input of the moving receiver in the compact form

(9.12)

The model described by the autocorrelation function of (9.12) is called the Jakes model.
Figure 9.7a shows a plot of the autocorrelation  according to this model.
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508 Chapter 9 Signaling over Fading Channels

According to the Wiener–Khintchine relations for a weakly (wide-sense) stationary
process (discussed in Chapter 4), the autocorrelaton function and power spectrum form a
Fourier-transform pair. Specifically, we may write

(9.13)

At first sight, it might seem that a closed form solution of this transformation is
mathematically intractable; in reality, however, the exact solution is given in (Jakes, 1974):

(9.14)

Figure 9.7
(a) Autocorrelation of the complex envelope of 
the received signal according to the Jakes model. 
(b) Power spectrum of the fading process for the 
Jakes model. 
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9.3 Jakes Model 509

and with it the model bears his name. Figure 9.7b plots the power spectrum in (9.14)
versus the Doppler shift  for . This idealized graph has the shape of a “bathtub,”
exhibiting two symmetric integrable singularities at the end points . 

EXAMPLE 1 Jakes Model Implemented as a FIR Filter

The objective of this example is to compute a FIR (TDL) filter that models the power
spectrum of (9.14). To this end, we make use of the following relationships in light of
material covered in Chapter 4 on stochastic processes:

1. The autocorrelation function and power spectrum of a weakly stationary process
form a Fourier-transform pair, as already mentioned.

2. In terms of stochastic processes, the input–output behavior of a linear system, in the
frequency domain, is described by

(9.15)

where H( f ) is the transfer function of the system, SX( f ) is the power spectrum of the
input process X(t), and SY(t) is the power spectrum of the output process Y(t), both
being weakly stationary.

3. If the input process X(t) is Gaussian, then the output process Y(t) is also Gaussian.

4. If the input X(t) is uncorrelated, then the ouput Y(t) will be correlated due to
dispersive behavior of the system.

The issue at hand is to find the H( f ) required to produce the desired power spectrum of
(9.14) using a white noise process of spectral density N0 2 as the input process X(t). Then,
given the SY( f ) and setting the constant K = N02, we may solve (9.15) for H( f ), obtaining

(9.16)

In other words, H( f ) is proportional to the square root of S( f ). (From a practical
perspective, the constant K is determined by truncating the power-delay profile, an issue
deferred to Section 9.14.)

In light of (9.14) and (9.16), we may now say that the H( f ) representing the desired
Jakes FIR filter is given by (ignoring the constant K)

(9.17)

where . Given this formula, we may then use inverse Fourier transformation
to compute the corresponding impulse response of the Jakes FIR filter.

However, before proceeding further, an important aspect of using Jakes model to
simulate a fading channel is to pay particular attention to the following point:

The sampling rate of the input signal applied to the Jakes model and the 
sampled values of the fading process are highly different.

To be specific, the former is a multiple of the symbol rate and the latter is a multiple of the
Doppler bandwidth, . In other words, the sampling rate is much larger than . It
follows therefore that a multiple sampling rate with interpolation must be used in the

P0 1=
 max=

SY f  H f  2
SX f =

H f 
SY f 

K
------------=

H f  1 f
2

– 
1 4–

for 1 f 1 –
0 otherwise




=

f  max=

max max
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510 Chapter 9 Signaling over Fading Channels

simulation; the need for interpolation is to go from a discrete spectrum to its continuous
version.

With this point in mind, a 512-point inverse FFT algorithm is applied to the transfer
function of (9.17) for the following set of specifications: 

maximum Doppler shift, 

sampling frequency, 

We thus obtain the discrete-time version of the truncated impulse response hn of the Jakes
FIR filter plotted in Figure 9.8a.

Having computed hn, we may go on to use the FFT algorithm to compute the
corresponding transfer function H( f ) of the Jakes FIR filter; the result of this computation
is plotted in Figure 9.8b, which has a bathtub-like shape of its own, as expected.

EXAMPLE 2 Illustrative Generation of Fading Process Using the Jakes FIR Filter

To expand the practical utility of the Jakes FIR filter computed in Example 1 to simulate
the fading process, the next thing we do is to pass a complex white noise process through
the filter, with the noise having uncorrelated samples. Figure 9.9a displays the power

max 100 Hz=

fs 16max=

Figure 9.8  Jakes FIR filter. (a) Discrete impulse response. (b) Interpolated power spectral 
density (PSD).
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9.4 Statistical Characterization of Wideband Wireless Channels 511

spectrum of the resulting stochastic process at the filter output. Figure 9.9b shows the
envelope of the output process, plotted on a logarithmic scale. This plot is typical of a
fading correlated signal. 

9.4 Statistical Characterization of Wideband Wireless Channels 

Physical characterization of the multipath environment described in Section 9.3 is
appropriate for narrowband mobile radio transmissions where the signal bandwidth is
small compared with the reciprocal of the spread in propagation path delays. 

However, in real-life situations, we find that the signals radiated in a mobile radio
environment occupy a wide bandwidth, such that statistical characterization of the wireless
channel requires more detailed mathematical considerations, which is the objective of this
section. To this end, we follow the complex notations described in Chapter 2 to simplify
the analysis.

To be specific, we may express the transmitted band-pass signal as follows:

(9.18)

where  is the complex (low-pass) envelope of x(t) and fc is the carrier frequency. Since
the channel is time varying due to multipath effects, the impulse response of the channel is

Figure 9.9 Jakes FIR filter driven by white Gaussian noise. (a) Output power spectrum. (b) Envelope 
of the output process.
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512 Chapter 9 Signaling over Fading Channels

delay dependent and, therefore, a time-varying function. Let the impulse response of the
channel be expressed as

(9.19)

where  is the complex low-pass impulse response of the channel and  is a delay
variable. The complex low-pass impulse response  is called the delay-spread
function of the channel. Correspondingly, the complex low-pass envelope of the channel
output, namely , is defined by the convolution integral

(9.20)

where the scaling factor 12 is the result of using complex notation; see Chapter 2 for
details. To be generic, the  in Section 9.2 has been changed to .

In general, the behavior of a mobile radio channel can be described only in statistical
terms. For analytic purposes and mathematical tractability, the delay-spread function

 is modeled as a zero-mean complex-valued Gaussian process. Then, at any time t
the envelope  is Rayleigh distributed and the channel is therefore referred to as a
Rayleigh fading channel. When, however, the mobile radio environment includes fixed
scatterers, we are no longer justified in using a zero-mean model to describe the delay-
spread function . In such a case, it is more appropriate to use a Rician distribution
to describe the envelope  and the channel is referred to as a Rician fading channel.
The Rayleigh and Rician distributions for a real-valued stochastic process were considered
in Chapter 3. In the discussion presented in this chapter we focus largely, but not
completely, on a Rayleigh fading channel.

Multipath Correlation Function of the Channel

The time-varying transfer function of the channel is defined as the Fourier transform of the
delay-spread function  with respect to the delay variable , as shown by

(9.21)

where f denotes the frequency variable. The time-varying transfer function  may be
viewed as a frequency transmission characteristic of the channel. 

For a mathematically tractable statistical characterization of the channel, we make two
assumptions motivated by physical considerations; hence the practical importance of the
model resulting from these two assumptions.

ASSUMPTION 1  Wide-Sense Stationarity

With interest confined to fast fading in the short term, it is reasonable to assume 
that the complex impulse response  is wide-sense stationary. 

As explained in Chapter 4, a stochastic process is said to be wide-sense (i.e., weakly)
stationary if its mean is time independent and its autocorrelation function is dependent
only on the difference between two time instants at which the process is observed. In what

h  t;  Re h̃  t;  j2fct exp =
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–


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H̃ f t;  h̃  t;  j2f– exp d
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9.4 Statistical Characterization of Wideband Wireless Channels 513

follows we use the “wide-sense stationary” terminology because of its common use in the
wireless literature. 

In the context of the discussion presented herein, this first assumption means that

• The expectation of  with respect to time t is dependent only on the delay .
• Insofar as time t is concerned, the expectation of the product 

is dependent only on the time difference .

Because Fourier transformation is a linear operation, it follows that if the complex delay-
spread function  is a zero-mean Gaussian wide-sense stationary process, then the
complex time-varying transfer function  has similar statistics.

ASSUMPTION 2  Uncorrelated Scattering

The channel is said to be an uncorrelated scattering channel, when contributions 
from two or more scatterers with different propagation delays are uncorrelated.

In other words, the second-order expectation with respect to time t satisfies the 
requirement

where  is a Dirac-delta function defined in the delay domain. That is, the
autocorrelation function of  is nonzero only when .

In the literature on statistical characterization of wireless channels, wide-sense
stationarity is abbreviated as WSS and uncorrelated scattering is abbreviated as US. Thus,
when both Assumptions 1 and 2 are satisfied simultaneously, the resulting channel model
is said to be the WSSUS model.

Consider then the correlation function3 of the delay-spread function . Since
 is complex valued, we use the following definition for the correlation function:

 (9.22)

where � is the statistical expectation operator, the asterisk denotes complex conjugation, 1
and 2 are propagation delays of the two paths involved in the calculation, and t1 and t2 are
the times at which the outputs of the two paths are observed. Under the combined WSSUS
channel model, we may reformulate the correlation function in (9.22) as shown by

(9.23)

where t is the difference between the observation times t1 and t2 and (1–2) is the delta
function in the -domain. Thus, using  in place of 1 for mathematical convenience, the
function in the second line of (9.23) is redefined as

(9.24)

The function  is called the multipath correlation profile of the channel. This new
correlation function  provides a statistical measure of the extent to which the
signal is distorted in the time domain as a result of transmission through the channel.
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514 Chapter 9 Signaling over Fading Channels

Spaced-Frequency, Spaced-Time Correlation Function of 
the Channel

Consider next statistical characterization of the channel in terms of the complex time-
varying transfer function . Following a formulation similar to that described in
(9.22), the correlation function of  is defined by

 (9.25)

where f1 and f2 represent two frequencies in the spectrum of the transmitted signal. The
correlation function  provides a statistical measure of the extent to which
the signal is distorted in the frequency-domain by transmission through the channel. From
(9.21), (9.22), and (9.25), it is apparent that the correlation functions  and

 form a two-dimensional Fourier-transform pair, defined as follows:

(9.26)

Invoking wide-sense stationarity in the time domain, we may reformulate (9.25) as

(9.27)

Equation (9.27) suggests that the correlation function  may be measured by
using pairs of spaced tones to carry out cross-correlation measurements on the resulting
channel outputs. Such a measurement presumes stationarity in the time domain. If we also
assume stationarity in the frequency domain, we may go one step further and write

(9.28)

The new correlation function , introduced in the first line of (9.28), is in fact the
Fourier transform of the multipath correlation profile  with respect to the delay-
time variable , as shown by

(9.29)

The new function  is called the spaced-frequency, spaced-time correlation
function of the channel, where the double use of “spaced” accounts for  and .

Scattering Function of the Channel

Finally, we introduce another new function denoted by S( ) that forms a Fourier-
transform pair with the multipath correlation profile  with respect to the variable
t; that is, by definition, we have

(9.30)

for the Fourier transform and

(9.31)

for the inverse Fourier transform. 
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9.4 Statistical Characterization of Wideband Wireless Channels 515

The function S( ) may also be defined in terms of  by applying a form of
double Fourier transformation: 

A Fourier transform with respect to the time variable t and an inverse Fourier 
transform with respect to the frequency variable f. 

That is to say,

(9.32)

Figure 9.10 displays the functional relationships between the three important functions:
, , and S() in terms of the Fourier transform and its inverse.

The function S( ) is called the scattering function of the channel. For a physical
interpretation of it, consider the transmission of a single tone of frequency  relative to
the carrier. The complex envelope of the resulting filter output is

(9.33)

The correlation function of  is given by

(9.34)

where, in the last line, we made use of (9.28). Putting f = 0 in (9.29) and then using
(9.31), we may write

(9.35)

Hence, we may view the integral inside the square brackets in (9.35), namely

Figure 9.10 Functional relationships between the multipath correlation profile , the 
spaced-frequency spaced-time correlation function , and the scattering function S( ).
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516 Chapter 9 Signaling over Fading Channels

as the power spectral density of the channel output relative to the frequency  of the
transmitted tone with the Doppler shift  acting as the frequency variable. Generalizing
this result, we may now make the statement:

The scattering function S(; ) provides a statistical measure of the output 
power of the channel, expressed as a function of the time delay  and the 
Doppler shift .

Power-Delay Profile

We continue statistical characterization of the wireless channel by putting t = 0 in (9.24)
to obtain

(9.36)

The function  describes the intensity (averaged over the fading fluctuations) of the
scattering process at propagation delay  for the WSSUS channel. Accordingly,  is
called the power-delay profile of the channel. In any event, this profile provides an estimate
of the average multipath power expressed as a function of the delay variable .

The power-delay profile may also be defined in terms of the scattering function S()
by averaging it over all potentially possible Doppler shifts. Specifically, setting t = 0 in
(9.31) and then using the first line of (9.36), we obtain

(9.37)

Figure 9.11 shows an example of the power-delay profile that depicts a typical plot of the
power spectral density versus excess delay;4 the excess delay is measured with respect to
the time delay for the shortest echo path. The “threshold level” K included in Figure 9.11
defines the power level below which the receiver fails to operate satisfactorily.

Figure 9.11 Example of a power-delay profile for a mobile radio channel. 
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9.4 Statistical Characterization of Wideband Wireless Channels 517

Central Moments of 

To characterize the power-delay profile of a WSSUS channel in statistical terms, we begin
with the moment of order zero; that is, the integrated power averaged over the delay
variable , as shown by

(9.38)

The average delay, normalized with respect to Pav, is defined in terms of the first-order
moment by the formula

(9.39)

Correspondingly, the second-order central moment, normalized with respect to Pav, is
defined by the root-mean-square (RMS) formula

(9.40)

The new parameter  is called the delay spread, which has acquired a special stature
among the parameters used to characterize the WSSUS channel. 

From Chapter 2 on the representation of signals in a linear environment, we recall that
the duration of a signal in the time domain is inversely related to the bandwidth of the
signal in the frequency domain. Building on this time–frequency relationship, we may
define the coherence bandwidth Bcoherence of a WSSUS channel as follows:

(9.41)

In words:

The coherence bandwidth of the WSSUS channel is that band of frequencies for 
which the frequency response of the channel is strongly correlated. 

This statement is intuitively satisfying.

Doppler Power Spectrum

Consider next the issue of relating Doppler effects to time variations of the channel. In
direct contrast to the power-delay profile, this time we set f = 0, which corresponds to the
transmission of a single tone (of some appropriate frequency) over the channel. Under this
condition, the spaced-frequency, spaced-time correlation function of the channel,
described in (9.29), reduces to . Hence, evaluating the Fourier transform of this
function with respect to the time variable t, we may write

(9.42)

The function  defines the power spectrum of the channel output expressed as a
function of the Doppler shift ; it is therefore called the Doppler power spectrum of the
channel. 
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518 Chapter 9 Signaling over Fading Channels

The Doppler-power spectrum of (9.42) may be interpreted in two insightful ways
(Molisch, 2011):

1. The Doppler spectrum describes the frequency dispersion of a wireless channel,
which results in the occurrence of transmission errors in narrowband mobile
wireless communication systems.

2. The Doppler spectrum provides a measure of temporal variability of the channel,
which, in mathematical terms, is described by the channel’s correlation function

 for .

As such, we may view the Doppler-power spectrum as another important statistical
characterization of WSSUS channels.

The Doppler power spectrum may also be defined in terms of the scattering function by
averaging it over all possible propagation delays, as shown by

(9.43)

Typically, the Doppler shift  assumes positive and negative values with almost equal
likelihood. The mean Doppler shift is therefore effectively zero. The square root of the
second moment of the Doppler spectrum is thus defined by

(9.44)

The parameter  provides a measure of the width of the Doppler spectrum; therefore, it is
called the Doppler spread of the channel. 

Another useful parameter that is often used in radio propagation measurements is the
fade rate of the channel. For a Rayleigh fading channel, the average fade rate is related to
the Doppler spread  by the empirical rule:

 crossings per second (9.45)

As the name implies, the fade rate provides a measure of the rapidity of the channel fading
phenomenon.

Some typical values encountered in a mobile radio environment are as follows:

• the delay spread  amounts to about 20 s;
• the Doppler spread  due to the motion of a vehicle may typically occupy the range

40–100 Hz, but sometimes may well exceed 100 Hz.

One other parameter directly related to the Doppler spread is the coherence time of the
channel. Here again, as with coherence bandwidth discussed previously, we may invoke
the inverse time–frequency relationship to say that the coherence time of a multipath
wireless channel is inversely proportional to the Doppler spread, as shown by

(9.46)
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9.4 Statistical Characterization of Wideband Wireless Channels 519

where  is the maximum Doppler shift due to motion of the mobile unit. In words:

The coherence time of the channel is that duration for which the time response 
of the channel is strongly correlated.

Here again, this statement is intuitively satisfying.

Classification of Multipath Channels

The particular form of fading experienced by a multipath channel depends on whether the
channel characterization is viewed in the frequency domain or the time domain:

1. When the channel is viewed in the frequency domain, the parameter of concern is
the channel’s coherence bandwidth Bcoherence, which is a measure of the
transmission bandwidth for which signal distortion across the channel becomes
noticeable. A multipath channel is said to be frequency selective if the coherence
bandwidth of the channel is small compared with the bandwidth of the transmitted
signal. In such a situation, the channel has a filtering effect, in that two sinusoidal
components with a frequency separation greater than the channel’s coherence
bandwidth are treated differently. If, however, the coherence bandwidth of the
channel is large compared with the transmitted signal bandwidth, the fading is said
to be frequency nonselective, or frequency flat.

2. When the channel is viewed in the time domain, the parameter of concern is the
coherence time coherence, which provides a measure of the transmitted signal
duration for which distortion across the channel becomes noticeable. The fading is
said to be time selective if the coherence time of the channel is small compared with
the duration of the received signal (i.e., the time for which the signal is in flight). For

max

Figure 9.12
Illustrating the four classes of multipath channels: 
c = coherence time, Bc = coherence bandwidth. 0

Bandwidth

  c Time duration

Time-flat

Flat-flat
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520 Chapter 9 Signaling over Fading Channels

digital transmission, the received signal’s duration is taken as the symbol duration
plus the channel’s delay spread. If, however, the channel’s coherence time is large
compared with the received signal duration, then the fading is said to be time
nonselective, or time flat, in the sense that the channel appears to the transmitted
signal as time invariant.

In light of this discussion, we may classify multipath channels as follows:

• Flat-flat channel, which is flat in both frequency and time.
• Frequency-flat channel, which is flat in frequency only.
• Time-flat channel, which is flat in time only.
• Completely non-flat channel, which is flat neither in frequency nor in time; such a

channel is also referred to as a doubly spread channel.

The classification of multipath channels, based on this approach, is shown in Figure 9.12.
The forbidden area, shown shaded in this figure, follows from the inverse relationship that
exists between bandwidth and time duration.

9.5 FIR Modeling of Doubly Spread Channels

In Section 9.4, statistical analysis of the doubly spread channel was carried out by focusing
on two complex low-pass entities, namely the impulse response  and the correspond-
ing transfer function . Therein, mathematical simplification was accomplished by
disposing of the midband frequency fc of the actual band-pass character of the doubly
spread channel. Despite this simplification, the analytic approach used in Section 9.4 is
highly demanding in mathematical terms. In this section, we will take an “approximate”
approach based on the use of a FIR filter to model the doubly spread channel.5 From an
engineering perspective. this new approach has a great deal of practical merit. 

To begin, we use the convolution integral to describe the input–output relationship of
the system, as shown in (9.20), reproduced here for convenience of presentation

(9.47)

where  is the complex low-pass input signal applied to the channel and  is the
resulting complex low-pass output signal. Although this integral can be formulated in
another equivalent way, the choice made in (9.47) befits modeling of a time-varying FIR
system, as we will see momentarily. Speaking of the input signal , we assume that its
Fourier transform satisfies the condition

(9.48)

where 2W denotes the original input band-pass signal’s bandwidth centered around the
midband frequency fc. With FIR filtering in mind, it is logical to expand the delayed input
signal  using the sampling theorem, discussed in Chapter 6. Specifically, we write

(9.49)
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9.5 FIR Modeling of Doubly Spread Channels 521

where Ts is the sampling period of the FIR filter chosen in accordance with the sampling
theorem as follows:

(9.50)

The sinc function in (9.49) is defined by

(9.51)

From the standpoint of the sampling theorem we could set 1 Ts = 2W, but the choice made
in (9.50) gives us more practical flexibility.

In (9.49) it is important to note that we have done the following:

• Dependence on the coordinate functions under the summation has been put on the
delay variable  in the sinc function.

• Dependence on the time-varying FIR coefficients has been put on time t.

This separation of variables is the key to the FIR modeling of a linear time-varying
system. Note also that the sinc functions under the summation in (9.49) are orthogonal but
not normalized.

Thus, substituting (9.49) into (9.47) and interchanging the order of integration and
summation, which is permitted as we are dealing with a linear system, we get

(9.52)

To simplify matters, we now introduce the complex tap-coefficients6 , defined in
terms of the complex impulse response as follows:

(9.53)

Accordingly, we may rewrite (9.52) in the much simplified summation form:

(9.54)

Examining (9.54) for insight, we may make our first observation:

The uniformly sampled functions  are generated as tap-inputs by 
passing the complex low-pass input signal  through a TDL filter whose taps 
are spaced T seconds apart.

Turning next to (9.53) for insight, refer to Figure 9.13, where this equation is sketched for
three different settings of the function ; the area shaded in the figure
refers to the complex impulse response  that is assumed to be causal and occupying
a finite duration. In light of the three different sketches shown in Figure 9.13, we may
make our second observation.
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522 Chapter 9 Signaling over Fading Channels

Assuming that the integral in (9.53) is dominated by the mainlobe of the sinc 
function, the complex time-varying tap-coefficient  is essentially zero for 
negative values of discrete time n and all positive values of n greater than .

In accordance with these two observations, we may approximate (9.54) as follows:

(9.55)

where K is the number of taps.
Equation (9.55) defines a complex FIR model for the representation of a complex low-pass

time-varying system characterized by the complex impulse response . Figure 9.14
depicts a block diagram representation of this model, based on (9.55).

Figure 9.13 Illustrating the way in which location of the sinc 
weighting function shows up for varying n.
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9.5 FIR Modeling of Doubly Spread Channels 523

Some Practical Matters

To model the doubly spread channel by means of a FIR filter in accordance with (9.55),
we need to know the sampling rate 1Ts and the number of taps K in this equation. To
satisfy these two practical requirements, we offer the following empirical points:

1. The sampling rate of the FIR filter, 1Ts, is much higher than the maximum Doppler
bandwidth of the channel, max; typically, we find that 1Ts is eight to sixteen times

max. Hence, knowing max, we may determine a desirable value of the sampling
rate 1Ts.

2. The number of taps K in (9.55) may be determined by truncating the power-delay
profile  of the channel. Specifically, given a measurement of this profile, a
suitable value of K is determined by choosing a threshold level below which the
receiver fails to operate satisfactorily, as illustrated in Figure 9.11.

Generation of the Tap-Coefficients

To generate the tap-coefficients , we may use the scheme shown in Figure 9.15 that
involves the following (Jeruchim et al., 2000):

1. A complex white Gaussian process of zero mean and unit variance is used as the
input.

2. A complex low-pass filter of transfer function  is chosen in such a way that it
produces the desired Doppler power spectrum  where we have used f in place
of the Doppler shift  for convenience of presentation. In other words, we may set

Figure 9.14 Complex FIR model of a complex low-pass time-varying channel.
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524 Chapter 9 Signaling over Fading Channels

(9.56)

where, in the second line,  denotes the power spectral density of the white
noise process, which is equal to unity by assumption.

3. The filter is designed in such a way that its output  has a normalized power of
unity.

4. The static gain, denoted by , accounts for different variances of the different
tap-coefficients.

EXAMPLE 3 Rayleigh Processes

For complex FIR modeling of a time-varying Rayleigh fading channel, we may use zero-
mean complex Gaussian processes to represent the time-varying tap-coefficients ,
which, in turn, means that the complex impulse response of the channel  is also a
zero-mean Gaussian process in the variable t.

Moreover, under the assumption of a WSSUS channel, the tap-coefficients  for
varying n will be uncorrelated. The power spectral density of each tap-coefficient is
specified by the Doppler spectrum. In particular, the variance  of the nth weight
function is approximately given by

(9.57)

where Ts is the sampling period of the FIR and  is a discrete version of the power-
delay profile, .

EXAMPLE 4 Rician–Jakes Doppler Spectrum Model

The Jakes model, discussed in Example 1, is well suited for describing the Doppler
spectrum for a dense-scattering environment, exemplified by an urban area. However, in a
rural environment, there is a high likelihood for the presence of one strong “direct line-of-
sight” path, for which the FIR-based Rician model is an appropriate candidate. In such an
environment, we may use the Rician–Jakes Doppler spectrum that has the following form
(Tranter et al., 2004): 

(9.58)

where  is the maximum magnitude of the Doppler shift. This partially empirical for-
mula, plotted in Figure 9.16, consists of two components: the FIR Jakes filter of Example 1,
and two delta functions at  representing a direct-line-of sight signal received.

Typically, the sequence defined by  decreases with n in an approximate
exponential manner, eventually reaching a neglibly small value at some time . This
exponential approximation of the power-delay profile has been validated experimentally
by many measurements; see Note 4. In any event, the number of taps in the FIR filter, K, is
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9.6 Comparison of Modulation Schemes: Effects of Flat Fading 525

approximately defined by the ratio . The point made here on the number of taps
K substantiates what has been made previously on Jakes model in Example 1 and in point
2 under Some Practical Matters in this section.

9.6 Comparison of Modulation Schemes: Effects of Flat Fading 

We bring this first part of the chapter to an end by presenting the effects of flat fading on
the behavior of different modulation schemes for wireless communications. 

In Chapter 7 we studied the subject of signaling over AWGN channels using different
modulation schemes and evaluated their performance under two different receiver condi-
tions: coherence and noncoherence. For the purpose of comparison, we have reproduced the
BER for a selected number of those modulation schemes in AWGN in Table 9.1.

Figure 9.16
Illustrating the Rician–Jakes 
Doppler spectrum of (9.58).
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Table 9.1 Formulas for the BER of coherent and noncoherent digital receivers

BER

Signaling scheme AWGN channel Flat Rayleigh fading channel

(a) Binary PSK, QPSK, MSK
     using coherent detection

(b) Binary FSK
      using coherent detection

(c) Binary DPSK

(d) Binary FSK
      using noncoherent detection

Eb: transmitted energy per bit; N0 2: power spectral density of channel noise;

0: mean value of the received energy per bit-to-noise spectral density ratio.
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526 Chapter 9 Signaling over Fading Channels

Table 9.1 also includes the exact formulas for the BER for a flat Rayleigh fading
channel, where the parameter

(9.59)

is the mean value of the received signal energy per bit-to-noise spectral density ratio. In
(9.59), the expectation �[2] is the mean value of the Rayleigh-distributed random
variable  characterizing the channel. The derivations of the fading-channel formulas
listed in the last column of Table 9.1 are addressed in Problems 9.1 and 9.2.

Comparing the formulas for a flat Rayleigh fading channel with the formulas for their
AWGN (i.e., nonfading) channel counterparts, we find that the Rayleigh fading process
results in a severe degradation in the noise performance of a wireless communication
receiver with the degradation measured in terms of decibels of additional mean SNR
spectral density ratio. In particular, the asymptotic decrease in the BER with  follows an
inverse law. This form of asymptotic behavior is dramatically different from the case of a
nonfading channel, for which the asymptotic decrease in the BER with  follows an
exponential law.

In graphical terms, Figure 9.17 plots the formulas under part a of Table 9.1 compared
with the BERs of binary PSK over the AWGN and Rayleigh fading channels. The figure
also includes corresponding plots for the Rician fading channel with different values of the
Rice factor K, discussed in Chapter 4. We see that as K increases from zero to infinity, the
behavior of the receiver varies all the way from the Rayleigh channel to the AWGN

Figure 9.17 Comparison of performance of coherently detected binary PSK over 
different fading channels.
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channel. The results plotted in Figure 9.17 for the Rician channel were obtained using
simulations (Haykin and Moher, 2005). From Figure 9.17 we see that, as matters stand, we
have a serious problem caused by channel fading. For example, at an SNR of 20 dB and
the presence of Rayleigh fading, the use of binary PSK results in a BER of about 310–2,
which is not good enough for the transmission of speech or digital data over the wireless
channel.

9.7 Diversity Techniques

Up to now, we have emphasized the multipath fading phenomenon as an inherent
characteristic of a wireless channel, which indeed it is. Given this physical reality, how,
then, do we make the communication process across the wireless channel into a reliable
operation? The answer to this fundamental question lies in the use of diversity, which may
be viewed as a form of redundancy in a spatial context. In particular, if several replicas of
the information-bearing signal can be transmitted simultaneously over independently
fading channels, then there is a good likelihood that at least one of the received signals will
not be severely degraded by channel fading. There are several methods for making such a
provision. In the context of the material covered in this book, we identify three approaches
to diversity:

1. Frequency diversity, in which the information-bearing signal is transmitted using
several carriers that are spaced sufficiently apart from each other to provide
independently fading versions of the signal. This may be accomplished by choosing
a frequency spacing equal to or larger than the coherence bandwidth of the channel.

2. Time diversity, in which the same information-bearing signal is transmitted in
different time slots, with the interval between successive time slots being equal to or
greater than the coherence time of the channel. We can still get some diversity if the
interval is less than the coherence time of the channel, but at the expense of
degraded performance. In any event, time diversity may be likened to the use of a
repetition code for error-control coding.

3. Space diversity, in which multiple transmit or receive antennas, or both, are used
with the spacing between adjacent antennas being chosen so as to ensure the
independence of possible fading events occurring in the channel. 

Among these three kinds of diversity, space diversity is the subject of interest in the
second part of this chapter. Depending on which end of the wireless link is equipped with
multiple antennas, we may identify three different forms of space diversity:

1. Receive diversity, which involves the use of a single transmit antenna and multiple
receive antennas. 

2. Transmit diversity, which involves the use of multiple transmit antennas and a single
receive antenna.

3. Diversity on both transmit and receive, which combines the use of multiple antennas
at both the transmitter and receiver. 

Receive diversity is the oldest one of the three, with the other two being of more recent
origin. In what follows, we will study these three different forms of diversity in this order.
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528 Chapter 9 Signaling over Fading Channels

9.8 “Space Diversity-on-Receive” Systems

In “space diversity on receive,” multiple receiving antennas are used with the spacing
between adjacent antennas being chosen so that their respective outputs are essentially
independent of each other. This requirement may be satisfied by spacing the adjacent
receiving antennas by as much as 10 to 20 radio wavelengths or less apart from each other.
Typically, an elemental spacing of several radio wavelengths is deemed to be adequate for
space diversity on receive. The much larger spacing is needed for elevated base stations,
for which the angle spread of the incoming radio waves is small; note that the spatial
coherence distance is inversely proportional to the angle spread. Through the use of
diversity on receive as described here, we create a corresponding set of fading channels
that are essentially independent. The issue then becomes that of combining the outputs of
these statistically independent fading channels in accordance with a criterion that will
provide improved receiver performance. In this section, we describe three different
diversity-combining systems that do share a common feature: they all involve the use of
linear receivers; hence the relative ease of their mathematical tractability.

Selection Combining

The block diagram of Figure 9.18 depicts a diversity-combining structure that consists of
two functional blocks: Nr linear receivers and a logic circuit. This diversity system is said
to be of a selection combining kind, in that given the Nr receiver outputs produced by a
common transmitted signal, the logic circuit selects the particular receiver output with the
largest SNR as the received signal. In conceptual terms, selection combining is the
simplest form of space-diversity-on-receive system.

To describe the benefit of selection combining in statistical terms, we assume that the
wireless communication channel is described by a frequency-flat, slowly fading Rayleigh
channel. The implications of this assumption are threefold:

1. The frequency-flat assumption means that all the frequency components constituting
the transmitted signal experience the same random attenuation and phase shift.

2. The slow-fading assumption means that fading remains essentially unchanged
during the transmission of each symbol.

3. The fading phenomenon is described by the Rayleigh distribution.

Let  denote the complex envelope of the modulated signal transmitted during the
symbol interval 0  t  T. Then, in light of the assumed channel, the complex envelope of
the received signal of the kth diversity branch is defined by

(9.60)

where, for the kth diversity branch, the fading is represented by the multiplicative term
 and the additive channel noise is denoted by . With the fading assumed

to be slowly varying relative to the symbol duration T, we should be able to estimate and then
remove the unknown phase shift k at each diversity branch with sufficient accuracy, in
which case (9.60) simplifies to

(9.61)

s̃ t 

x̃k t  k jk s̃ t exp w̃k t += 0 t T 
k 1 2  Nr  =

k jk exp w̃k t 

x̃k t  ks̃ t  w̃k t  0 t T 
k 1 2  Nr  =

+
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The signal component of  is  and the noise component is . The average
SNR at the output of the kth receiver is therefore

Ordinarily, the mean-square value of  is the same for all k. Accordingly, we may
express the (SNR)k as

 (9.62)

where E is the symbol energy and N02 is the noise spectral density. For binary data, E
equals the transmitted signal energy per bit Eb.

Let k denote the instantaneous SNR measured at the output of the kth receiver during
the transmission of a given symbol. Then, replacing the mean-square value �[|k|

2] by the
instantaneous value |k|

2 in (9.62), we may write

(9.63)

Under the assumption that the random amplitude k is Rayleigh distributed, the squared
amplitude  will be exponentially distributed7 (i.e., chi-squared with two degrees of
freedom, discussed in Appendix A). If we further assume that the average SNR over the
short-term fading is the same, namely av, for all the Nr diversity branches, then we may
express the probability density functions of the random variables  pertaining to the
individual branches as follows:

(9.64)

Figure 9.18 Block diagram of selection combiner, using Nr receive antennas. 
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For some SNR , the associated cumulative distributions of the individual branches are
described by

(9.65)

for k = 1, 2,, Nr. Since, by design, the Nr diversity branches are essentially statistically
independent, the probability that all the diversity branches have an SNR less than the
threshold  is the product of the individual probabilities that k <  for all k; thus, using
(9.64) in (9.65), we write

(9.66)

for k = 1, 2, , Nr; note that the probability in (9.66) decreases with increasing Nr.
The cumulative distribution function of (9.66) is the same as the cumulative

distribution function of the random variable  described by the sample value

(9.67)

which is less than the threshold  if, and only if, the individual SNRs  are all
less than . Indeed, the cumulative distribution function of the selection combiner (i.e., the
probability that all of the Nr diversity branches have an SNR less than ) is given by

(9.68)

By definition, the probability density function  is the derivative of the cumulative
distribution function  with respect to the argument sc. Hence, differentiating
(9.68) with respect to sc yields

(9.69)

For convenience of graphical presentation, we use the scaled probability density function
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9.8 “Space Diversity-on-Receive” Systems 531

where the sample value x of the normalized variable X is defined by

Figure 9.19 plots fX(x) versus x for varying number of receive-diversity branches Nr under
the assumption that the short-term SNRs for all the Nr branches share the common value
av. From this figure we make two observations:

1. As the number of diversity branches Nr is increased, the probability density function
fX(x) of the normalized random variable  progressively moves to the
right.

2. The probability density function fX(x) becomes more and more symmetrical and,
therefore, Gaussian as Nr is increased.

Stated in another way, a frequency-flat, slowly fading Rayleigh channel is modified through
the use of selection combining into a Gaussian channel provided that the number of diversity
channels Nr is sufficiently large. Realizing that a Gaussian channel is a digital communica-
tion theorist’s dream, we now see the practical benefit of using selection combining.

According to the theory described herein, the selection-combining procedure requires
that we monitor the receiver outputs in a continuous manner and, at each instant of time,
select the receiver with the strongest signal (i.e., the largest instantaneous SNR). From a
practical perspective, such a selective procedure is rather cumbersome. We may overcome

Figure 9.19 Normalized probability density function  
for a varying number Nr of receive antennas. 
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532 Chapter 9 Signaling over Fading Channels

this practical difficulty by adopting a scanning version of the selection-combining
procedure:

• Start the procedure by selecting the receiver with the strongest output signal.
• Maintain using the output of this particular receiver as the combiner’s output so long

as its instantaneous SNR does not drop below a prescribed threshold.
• As soon as the instantaneous SNR of the combiner falls below the threshold, select a

new receiver that offers the strongest output signal and continue the procedure.

This technique has a performance very similar to the nonscanning version of selective
diversity.

EXAMPLE 5 Outage Probability of Selection Combiner

The outage probability of a diversity combiner is defined as the percentage of time the
instantaneous output SNR of the combiner is below some prescribed level for a specified
number of branches. Using the cumulative distribution function of (9.68), Figure 9.20
plots the outage curves for the selection combiner with Nr as the running parameter. The
horizontal axis of the figure represents the instantaneous output SNR of the combiner
relative to 0 dB (i.e., the 50-percentile point for Nr = 1) and the vertical axis represents the
outage probability, expressed as a percentage. From the figure we observe the following: 

The fading depth introduced through the use of space diversity on receive 
diminishes rapidly with the increase in the number of diversity branches.       

Figure 9.20
Outage probability for 
selector combining for a 
varying number Nr of 
receive antennas. 

2

3

4

Nr =1

6

10

0 –8 –6 –4 –2 0 2 4 6 8 10

100

90

80

70

60

50

40

30

20

10

0

Normalized SNR relative to single-channel median (Nr = 1) (dB)

O
ut

ag
e 

pr
ob

ab
ili

ty
, 

pe
rc

en
t

Haykin_ch09_pp3.fm  Page 532  Friday, January 4, 2013  4:58 PM



9.8 “Space Diversity-on-Receive” Systems 533

Maximal-Ratio Combining

The selection-combining technique just described is relatively straightforward to
implement. However, from a performance point of view, it is not optimum, in that it
ignores the information available from all the diversity branches except for the particular
branch that produces the largest instantaneous power of its own demodulated signal.

This limitation of the selection combiner is mitigated by the maximal-ratio combiner,8

the composition of which is described by the block diagram of Figure 9.21 that consists of
Nr linear receivers followed by a linear combiner. Using the complex envelope of the
received signal at the kth diversity branch given in (9.60), the corresponding complex
envelope of the linear combiner output is defined by

(9.70)

where the ak are complex weighting parameters that characterize the linear combiner.
These parameters are changed from instant to instant in accordance with signal variations
in the Nr diversity branches over the short-term fading process. The requirement is to
design the linear combiner so as to maximize the output SNR of the combiner at each
instant of time. From (9.70), we note the following two points:

1. The complex envelope of the output signal equals the first expression

.

2. The complex envelope of the output noise equals the second expression .

Figure 9.21 Block diagram of maximal-ratio combiner using Nr receive antennas. 
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Assuming that the  are mutually independent for k = 1, 2, , Nr, the output SNR of
the linear combiner is therefore given by

(9.71)

where EN0 is the symbol energy-to-noise spectral density ratio.
Let c denote the instantaneous output SNR of the linear combiner. Then, using the two

terms

  and  

as the instantaneous values of the expectations in the numerator and denominator of
(9.71), respectively, we may write

(9.72)

The requirement is to maximize c with respect to the ak. This maximization may be
carried out by following the standard differentiation procedure, recognizing that the
weighting parameters ak are complex. However, we choose to follow a simpler procedure
based on the Schwarz inequality, which was discussed in Chapter 7.
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Let ak and bk denote any two complex numbers for k = 1, 2, , Nr. According to the
Schwarz inequality for complex parameters, we have

(9.73)

which holds with equality for , where c is some arbitrary complex constant and
the asterisk denotes complex conjugation.

Thus, applying the Schwarz inequality to the instantaneous output SNR of (9.72), with
ak left intact and bk set equal to , we obtain

Canceling common terms in the numerator and denominator, we readily obtain

(9.74)

Equation (9.74) proves that, in general,  cannot exceed , where  is as defined in
(9.63). The equality in (9.74) holds for

   (9.75)

where c is some arbitrary complex constant. 
Equation (9.75) defines the complex weighting parameters of the maximal-ratio

combiner. Based on this equation, we may state that the optimal weighting factor ak for the
kth diversity branch has a magnitude proportional to the signal amplitude k and a phase
that cancels the signal phase k to within some value that is identical for all the Nr diversity
branches. The phase alignment just described has an important implication: it permits the
fully coherent addition of the Nr receiver outputs by the linear combiner.

Equation (9.74) with the equality sign defines the instantaneous output SNR of the
maximal-ratio combiner, which is written as

(9.76)

According to (9.62), (EN0)  is the instantaneous output SNR of the kth diversity
branch. Hence, the maximal-ratio combiner produces an instantaneous output SNR that is
the sum of the instantaneous SNRs of the individual branches; that is,

(9.77)

akbk
k 1=

Nr


2

ak
2

bk
2

k 1=

Nr


k 1=

Nr



ak cbk
*=

k jk exp

c
E

N0
------

ak
2 k jk exp

2

k 1=

Nr


k 1=

Nr



ak
2

k 1=

Nr



--------------------------------------------------------------------

c
E
N0
------ k

2

k 1=

Nr



c k
k

 k

ak c k jk exp =

ck
 jk– exp = k 1 2  Nr  =

mrc
E
N0
------ k

2

k 1=

Nr

=

k
2

mrc k
k 1=

Nr

=

Haykin_ch09_pp3.fm  Page 535  Friday, January 4, 2013  4:58 PM



536 Chapter 9 Signaling over Fading Channels

The term “maximal-ratio combiner” has been coined to describe the combiner of Figure
9.21 that produces the optimum result given in (9.77). Indeed, we deduce from this result
that the instantaneous output SNR of the maximal-ratio combiner can be large even when
the SNRs of the individual branches are small. Since the instantaneous SNR produced by
the selection combiner is simply the largest among the Nr terms of (9.77), it follows that:

The selection combiner is clearly inferior in performance to the maximal-ratio 
combiner.

The maximal SNR mrc is the sample value of a random variable denoted by . According to
(9.76),  is equal to the sum of Nr exponentially distributed random variables for a
frequency-flat, slowly fading Rayleigh channel. From Appendix A, the probability density
function of such a sum is known to be chi-square with 2Nr degrees of freedom; that is,

(9.78)

Note that for Nr = 1, (9.69) and (9.78) assume the same value, which is to be expected.
Figure 9.22 plots the scaled probability density function, , versus

the normalized variable  for varying Nr. Based on this figure, we may make

Figure 9.22 Normalized probability density function  for a 
varying number of Nr receive antennas. 
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9.8 “Space Diversity-on-Receive” Systems 537

observations similar to those for the selection combiner, except for the fact that for any Nr
we find that the scaled probability density function for the maximal-ratio combiner is
radically different from its counterpart for the selection combiner.

EXAMPLE 6 Outage Probability for Maximal-Ratio Combiner

The cumulative distribution function for the maximal-ratio combiner is defined by

(9.79)

where the probability density function  is itself defined by (9.78). Using (9.79),
Figure 9.23 plots the outage probability for the maximal-ratio combiner with Nr as a running
parameter. Comparing this figure with that of Figure 9.20 for selection combining, we see
that the outage-probability curves for these two diversity techniques are superficially similar.
The diversity gain, defined as the EN0 saving at a given BER, provides a measure of the
effectiveness of a diversity technique on an outage-probability basis. 

Figure 9.23 Outage probability of maximal-ratio combiner for a varying number Nr of 
receiver antennas. 
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538 Chapter 9 Signaling over Fading Channels

Equal-Gain Combining

In a theoretical context, the maximal-ratio combiner is the optimum among linear diversity
combining techniques, optimum in the sense that it produces the largest possible value of
instantaneous output SNR. However, in practical terms, there are three important issues to
keep in mind:9

1. Significant instrumentation is needed to adjust the complex weighting parameters of
the maximal-ratio combiner to their exact values, in accordance with (9.75).

2. The additional improvement in output SNR gained by the maximal-ratio combiner
over the selection combiner is not that large, and it is quite likely that the additional
improvement in receiver performance is lost in not being able to achieve the exact
setting of the maximal-ratio combiner.

3. So long as a linear combiner uses the diversity branch with the strongest signal, then
other details of the combiner may result in a minor improvement in overall receiver
performance.

Issue 3 points to formulation of the so-called equal-gain combiner, in which all the
complex weighting parameters ak have their phase angles set opposite to those of their
respective multipath branches in accordance with (9.75). But, unlike the ak in the
maximal-ratio combiner, their magnitudes are set equal to some constant value, unity for
convenience of use.

9.9 “Space Diversity-on-Transmit” Systems

In the wireless communications literature, space diversity-on-receive techniques are
commonly referred to as orthogonal space–time block codes (Tarokh et al., 1999). This
terminology is justified on the following grounds:

1. The transmitted symbols form an orthogonal set.

2. The transmission of incoming data streams is carried out on a block-by-block basis.

3. Space and time constitute the coordinates of each transmitted block of symbols.

In a generic sense, Figure 9.24 presents the baseband diagram of a space–time block
encoder, which consists of two functional units: mapper and block encoder. The mapper
takes the incoming binary data stream {bk}, where bk = 1, and generates a new sequence
of blocks with each block made up of multiple symbols that are complex. For example, the
mapper may be in the form of an M-ary PSK or M-ary QAM message constellation, which
are illustrated for M = 16 in the signal-space diagrams of Figure 9.25. All the symbols in a
particular column of the transmission matrix are pulse-shaped (in accordance with the

Figure 9.24 Block diagram of orthogonal space–time block encoder. 
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9.9 “Space Diversity-on-Transmit” Systems 539

criteria described in Chapter 8) and then modulated into a form suitable for simultaneous
transmission over the channel by the transmit antennas. The pulse shaper and modulator
are not shown in Figure 9.24 as the basic issue of interest is that of baseband data
transmission with emphasis on the formulation of space–time block codes. The block
encoder converts each block of complex symbols produced by the mapper into an l-by-Nt
transmission matrix S, where l and Nt are respectively the temporal dimension and spatial
dimension of the transmission matrix. The individual elements of the transmission
matrix S are made up of linear combinations of  and , where the  are complex
symbols and the  are their complex conjugates. 

EXAMPLE 7 Quadriphase Shift Keying 

As a simple example, consider the map portrayed by the QPSK, M = 4. This map is
described in Table 9.2, where E is the transmitted signal energy per symbol.

The input dibits (pairs of binary bits) are Gray encoded, wherein only one bit is flipped
as we move from one symbol to the next. (Gray encoding was discussed in Section 7.6
under “Quadriphase Shift Keying”.) The mapped signal points lie on a circle of radius 
centered at the origin of the signal-space diagram. 

Figure 9.25 (a) Signal constellation of 16-PSK. (b) Signal constellation of 16-QAM. 
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Alamouti Code

Example 6 is illustrative of the Alamouti code, which is one of the first space–time block
codes involving the use of two transmit antennas and one signal receive antenna (Alamouti,
1998). Figure 9.26 shows a baseband block diagram of this highly popular spatial code. 

Let  and  denote the complex symbols produced by the code’s mapper, which are
to be transmitted over the multipath wireless channel by two transmit antennas. Signal
transmission over the channel proceeds as follows:

1. At some arbitrary time t, antenna 1 transmits  and simultaneously antenna 2
transmits .

2. At time t + T, where T is the symbol duration, signal transmission is switched to 
transmitted by antenna 1 and simultaneously  is transmitted by antenna 2.

The resulting two-by-two space–time block code is written in matrix form as follows:

(9.80)
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*
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*
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Figure 9.26 Block diagram of 
the transceiver (transmitter 
and receiver) for the Alamouti 
code. Note that t > t to allow 
for propagation delay. 
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y2 ỹ1 h1 

s1 

h1 

s1˜*

}

s2   

θh1 = r1ej  1θ

˜˜

Haykin_ch09_pp3.fm  Page 540  Friday, January 4, 2013  4:58 PM



9.9 “Space Diversity-on-Transmit” Systems 541

This transmission matrix is a complex-orthogonal matrix (quaternion) in that it satisfies
the condition for orthogonality in both the spatial and temporal senses. To demonstrate
this important property of the Alamouti, let 

   (9.81)

denote the Hermitian transpose of S, which involves both transposition and complex
conjugation. To demonstrate orthogonality in the spatial sense, we multiply the code
matrix S by its Hermitian transpose  on the right, obtaining

(9.82)

Since the right-hand side of (9.81) is real valued, it follows that the alternative matrix
product , viewed in the temporal sense, yields exactly the same result. That is,

(9.83)

where I is the two-by-two identity matrix. 
In light of (9.80) and (9.83), we may now summarize three important properties of the

Alamouti code:

 PROPERTY 1 Unitarity (Complex Orthogonality)

The Alamouti code is an orthogonal space–time block code, in that its transmission matrix
is a unitary matrix with the sum term  being merely a scaling factor.

As a consequence of this property, the Alamouti code achieves full diversity.

PROPERTY 2 Full-Rate Complex Code

The Alamouti code (with two transmit antennas) is the only complex space–time block
code with a code rate of unity in existence. 

Hence, for any signal constellation, full diversity of the code is achieved at the full
transmission rate.
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542 Chapter 9 Signaling over Fading Channels

PROPERTY 3 Linearity

The Alamouti code is linear in the transmitted symbols. 

We may therefore expand the transmission matrix S of the code as a linear combination of
the transmitted symbols and their complex conjugates, as shown by

(9.84)

where the four constituent matrices are themselves defined as follows:

In words, the Alamouti code is the only two-dimensional space–time code, the
transmission matrix of which can be decomposed into the form described in (9.84).

Receiver Considerations of the Alamouti Code
The discussion presented thus far has focused on the Alamouti code viewed from the
transmitter’s perspective. We turn next to the design of the receiver for decoding the code.

To this end, we assume that the channel is frequency-flat and slowly time varying, such

that the complex multiplicative distribution introduced by the channel at time t is essentially

the same as that at time t + T, where T is the symbol duration. As before, the multiplicative

distortion is denoted by  where we now have k = 1, 2, as indicated in Figure 9.25.

Thus, with the symbols  and  transmitted simultaneously at time t, the complex

received signal at some time , allowing for propagation delay, is described by

(9.85)

where  is the complex channel noise at time . Next, with the symbols  and 
transmitted simultaneously at time t + T, the corresponding complex signal received at
time  is

(9.86)

where  is the second complex channel noise at time . To be more precise, the
noise terms  and  are circularly-symmetric complex-valued uncorrelated Gaussian
random variables of zero mean and equal variance.

In the course of time from  to , the channel estimator in the receiver has

sufficient time to produce estimates of the multiplicative distortion represented by 

S s̃111 s̃1
*12 s̃221 s̃2

*22+ + +=

11
1 0

0 0
=

12
0 0

0 1
=

21
0 1

0 0
=

22
0 0

1– 0
=

ke
jk

s̃1 s̃2

t t

x̃1 1e
j1 s̃1 2e

j2 s̃2 w̃1+ +=

w̃1 t s̃2
*– s̃1

*

t T+

x̃2 1e
j1– s̃2

* 2e
j2 s̃1

* w̃2+ +=

w̃2 t T+
w̃1 w̃2

t ' t ' T+

ke
jk

Haykin_ch09_pp3.fm  Page 542  Friday, January 4, 2013  4:58 PM
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for k = 1, 2. Hereafter, we assume that these two estimates are accurate enough for them to

be treated as essentially exact; in other words, the receiver has knowledge of both 

and . Accordingly, we may formulate the combination of two variables,  in (9.85)

and the complex conjugate of  in (9.86), in matrix form as follows:

(9.87)

The nice thing about this equation is that the original complex signals s1 and s2 appear as
the vector of two unknowns. It is with this goal in mind that  and  were used for the
elements of the two-by-one received signal vector , in the manner shown on the right-
hand side of (9.87).

According to (9.87), the channel matrix of the transmit diversity in Figure 9.25 is
defined by

(9.88)

In a manner similar to the signal-transmission matrix , we find that the channel matrix H
is also a unitary matrix, as shown by

(9.89)

where, as before, I is the identity matrix and the sum term  is merely a scaling
factor. 

Using the definition of (9.88) for the channel matrix, we may rewrite (9.87) in the
compact matrix form

(9.90)
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544 Chapter 9 Signaling over Fading Channels

is the additive complex channel noise vector. Note that the column vector  in (9.91) is the
same as the first row vector in the matrix  of (9.80).

We have now reached a point where we have to address the fundamental issue in
designing the receiver:

How do we decode the Alamouti code, given the received signal vector ?

To this end, we introduce a new complex two-by-one vector , defined as the matrix
product of the received signal vector  and the Hermition transpose of the channel matrix
H normalized with respect to the reciprocal sum term ; that is,

(9.93)

Substituting (9.90) into (9.93) and then making use of the unitarity property of the channel
matrix described in (9.89), we obtain the mathematical basis for decoding of the Alamouti
code:

(9.94)

where  is a modified form of the complex channel noise , as shown by

(9.95)

Substituting (9.88) and (9.92) into (9.95), the expanded form of the complex noise vector
 is defined as follows:

(9.96)

Hence, we may go on to simply write

(9.97)

Examination of (9.97) leads us to make the following statement insofar as the receiver is
concerned:

The space–time channel is decoupled into a pair of scalar channels that are 
statistically independent of each other:

1. The complex symbol  at the output of the kth space–time channel is identical to
the complex symbol transmitted by the kth antenna for k = 1, 2; the decoupling
shown clearly in (9.97) is attributed to complex orthogonality of the Alamouti code.

2. Assuming that the original channel noise  is white Gaussian, then this
statistical characterization is maintained in the modified noise  appearing at
the output of the kth space–time channel for k = 1, 2; this maintenance is
attributed to the processing performed in the receiver.
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ỹ2

=

1
1

2 2
2+

------------------- 
 H†x̃=
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ṽ1

ṽ2

1
1

2 2
2+

-------------------
1e j1– w̃1 + 2ej2w̃2

*

2e j2– w̃1 – 1ej1w̃2
*

=
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This twofold statement hinges on the premise that the receiver has knowledge of the
channel matrix H.

Moreover, with two transmit antennas and one receive antenna, the Alamouti code
achieves the same level of diversity as a corresponding system with one transmit antenna
and two receive antennas. It is in this sense that a wireless communication system based
on the Alamouti code is said to enjoy a two-level diversity gain.

Maximum Likelihood Decoding

Figure 9.27 illustrates the signal-space diagram of an Alamouti-encoded system based on
the QPSK constellation. The complex Gaussian noise clouds centered on the four signal
points and with decreasing intensity illustrate the effects of complex noise term  on the
linear combiner output .

In effect, the picture portrayed in Figure 9.27 is the graphical representation of (9.94) over
two successive symbol transmissions at times t and t + T, repeated a large number of times.

Suppose that the two signal constellations in the top half of the signal-space diagram in
Figure 9.27 represent the pair of symbols transmitted at time t, for which we write

Figure 9.27 Signal-space diagram for Alamouti code, using the 
QPSK signal constellation. The signal points  and  and the 
corresponding linear normalized combiner outputs  and  are 
displayed in the top half of the figure.
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546 Chapter 9 Signaling over Fading Channels

Then, the remaining two signal constellations positioned in the right half of Figure 9.27
represent the other pair of symbols transmitted at t + T, for which we write

On this basis, we may now invoke the maximum likelihood decoding rule, discussed in
Chapter 7, to make the three-fold statement:

1. Compute the composite squared Euclidean distance metric 

produced by sending signal vectors  and , respectively. 

2. Do this computation for all four possible signal pairs in the QPSK constellation. 

3. Hence, the ML decoder selects the pair of signals for which the metric is the 
smallest. 

The metric’s component  in part 1 of this statement is illustrated in Figure 9.27.

9.10 “Multiple-Input, Multiple-Output” Systems: Basic 
Considerations

In Sections 9.8 and 9.9, we studied space-diversity wireless communication systems
employing either multiple receive or multiple transmit antennas to combat the multipath
fading problem. In effect, fading was treated as a source that degrades performance, neces-
sitating the use of space diversity on receive or transmit to mitigate it. In this section, we
discuss MIMO wireless communication, which distinguishes itself in the following ways:10

1. The fading phenomenon is viewed not as a nuisance but rather as an environmental
source of enrichment to be exploited.

2. Space diversity at both the transmit and receive ends of the wireless communication
link may provide the basis for a significant increase in channel capacity. 

3. Unlike conventional techniques, the increase in channel capacity is achieved by
increasing computational complexity while maintaining the primary communication
resources (i.e., total transmit power and channel bandwidth) fixed.

Coantenna Interference

Figure 9.28 shows the block diagram of a MIMO wireless link. The signals transmitted by
the Nt transmit antennas over the wireless channel are all chosen to lie inside a common
frequency band. Naturally, the transmitted signals are scattered differently by the channel.
Moreover, owing to multiple signal transmissions, the system experiences a spatial form
of signal-dependent interference, called coantenna interference (CAI). 

Figure 9.29 illustrates the effect of CAI for one, two, and eight simultaneous
transmissions and a single receive antenna (i.e., Nt = 1, 2, 8 and Nr = 1) using binary PSK;
the transmitted binary PSK signals used in the simulation resulting in this figure were
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9.10 “Multiple-Input, Multiple-Output” Systems: Basic Considerations 547

different but they all had the same average power and occupied the same bandwidth.
(Sellathurai and Haykin, 2008). Figure 9.29 clearly shows the difficulty that arises due to
CAI when the number of transmit antennas Nt is large. In particular, with eight
simultaneous signal transmissions, the eye pattern of the received signal is practically
closed. The challenge for the receiver is how to mitigate the CAI problem and thereby
make it possible to provide increased spectral efficiency.

In a theoretical context, the spectral efficiency of a communication system is intimately
linked to the channel capacity of the system. To proceed with evaluation of the channel
capacity of MIMO wireless communication, we begin by formulating a baseband channel
model for the system as described next.

Basic Baseband Channel Model

Consider a MIMO narrowband wireless communication system built around a flat-fading
channel, with Nt transmit antennas and Nr receive antennas. The antenna configuration is
hereafter referred to as the pair (Nt, Nr). For a statistical analysis of the MIMO system in
what follows, we use baseband representations of the transmitted and received signals as
well as the channel. In particular, we introduce the following notation:

• The spatial parameter

(9.98)

defines new degrees of freedom introduced into the wireless communication system
by using a MIMO channel with Nt transmit antennas and Nr receive antennas.

• The Nt-by-1 vector

(9.99)

Figure 9.28 Block diagram of MIMO wireless link with Nt transmit antennas and Nr 
receive antennas. 
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548 Chapter 9 Signaling over Fading Channels

Figure 9.29 Effect of coantenna interference on the eye 
diagram for one receive antenna and different numbers 
of transmit antennas. (a) Nt = 1, (b) Nt = 2, (c) Nt = 8. 
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denotes the complex signal vector transmitted by the Nt antennas at discrete time n.
The symbols constituting the vector  are assumed to have zero mean and
common variance . The total transmit power is fixed at the value

 (9.100)

For P to be maintained constant, the variance  (i.e., power radiated by each
transmit antenna) must be inversely proportional to Nt.

• For a flat-fading Rayleigh distributing channel, we may use  to denote the
sampled complex gain of the channel coupling transmit antenna k to receive antenna
i at discrete time n, where i = 1, 2, , Nr and k = 1, 2, , Nt. We may thus express
the Nr-by-Nt complex channel matrix as

(9.101)

• The system of equations

 (9.102)

defines the complex signal received at the ith antenna due to the transmitted symbol
 radiated by the kth antenna. The term  denotes the additive complex

channel noise perturbing . Let the Nr-by-1 vector

(9.103)

denote the complex received signal vector and the Nr-by-1 vector

(9.104)

denote the complex channel noise vector. We may then rewrite the system of
equations (9.102) in the compact matrix form

(9.105)

Equation (9.105) describes the basic complex channel model for MIMO wireless
communications, assuming the use of a flat-fading channel. The equation describes the
input–output behavior of the channel at discrete time n. To simplify the exposition,
hereafter we suppress the dependence on time n by simply writing

(9.106)
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550 Chapter 9 Signaling over Fading Channels

where it is understood that all four vector/matrix terms of the equation, s, H, w, and x, are
in actual fact dependent on the discrete time n. Figure 9.30 shows the basic channel model
of (9.106).

For mathematical tractability, we assume a Gaussian model made up of three elements:

1. Nt symbols, which constitute the transmitted signal vector  drawn from a white
complex Gaussian codebook; that is, the symbols  are iid complex
Gaussian random variables with zero mean and common variance . Hence, the
correlation matrix of the transmitted signal vector s is defined by

(9.107)

where  is the Nt-by-Nt identity matrix.

2. Nt  Nr elements of the channel matrix H, which are also drawn from an ensemble of
iid complex random variables with zero mean and unit variance, as shown by the
complex distribution

(9.108)

where 𝒩(...) denotes a real Gaussian distribution. On this basis, we find that the
amplitude component hik is Rayleigh distributed. It is in this sense that we
sometimes speak of the MIMO channel as a rich Rayleigh scattering environment.
By the same token, we also find that the squared amplitude component, namely
|hik|

2, is a chi-squared random variable with the mean

(9.109)

(The chi-squared distribution is discussed in Appendix A.)

3. Nr elements of the channel noise vector w, which are iid complex Gaussian random
variables with zero mean and common variance ; that is, the correlation matrix
of the noise vector w is given by

(9.110)

where  is the Nr-by-Nr identity matrix.

Figure 9.30 Depiction of the basic channel model of (9.106). 
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In light of (9.100) and the assumption that hik is a standard Gaussian random variable with
zero mean and unit variance, the average SNR at each receiver input of the MIMO channel
is given by

(9.111)

which is, for a prescribed noise variance , fixed once the total transmit power P is fixed.
Note also that, first, all the Nt transmitted signals occupy a common channel bandwidth
and, second, the average SNR  is independent of Nr.

The idealized Gaussian model just described of a MIMO wireless communication
system is applicable to indoor local area networks and other wireless environments, where
the extent of user-terminal mobilities is limited.11

9.11 MIMO Capacity for Channel Known at the Receiver

With the basic complex channel model of Figure 9.30 at our disposal, we are now ready to
focus attention on the primary issue of interest: the channel capacity of a MIMO wireless
link. In what follows, two special cases will be considered: the first case, entitled “ergodic
capacity,” assumes that the MIMO channel is weakly (wide-sense) stationary and, therefore,
ergodic. The second case, entitled “outage capacity,” considers a nonergodic MIMO channel
under the assumption of quasi-stationarity from one burst of data transmission to the next.

Ergodic Capacity

According to Shannon’s information capacity law discussed in Chapter 5, the capacity of a
real AWGN channel, subject to the constraint of a fixed transmit power P, is defined by

(9.112)

where B is the channel bandwidth and  is the noise variance measured over the
bandwidth B. Given a time-invariant channel, (9.112) defines the maximum data rate that
can be transmitted over the channel with an arbitrarily small probability of error being
incurred as a result of the transmission. With the channel used K times for the transmission
of K symbols in T seconds, the transmission capacity per unit time is K T times the
formula for C given in (9.112). Recognizing that K = 2BT in accordance with the sampling
theorem discussed in Chapter 6, we may express the information capacity of the AWGN
channel in the equivalent form

(9.113)

Note that one bit per second per hertz corresponds to one bit per transmission.
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552 Chapter 9 Signaling over Fading Channels

With wireless communications as the medium of interest, consider next the case of a
complex flat-fading channel with the receiver having perfect knowledge of the channel
state. The capacity of such a channel is given by

(9.114)

where the expectation is taken over the gain of the channel  and the channel is assumed
to be stationary and ergodic. In recognition of this assumption, C is commonly referred to
as the ergodic capacity of the flat-fading channel and the channel coding is applied across
fading intervals (i.e., over an “ergodic” interval of channel variation with time).

It is important to note that the scaling factor of 1 2 is missing from the capacity
formula of (9.114). The reason for this omission is that this equation refers to a complex
baseband channel, whereas (9.113) refers to a real channel. The fading channel covered by
(9.114) operates on a complex signal, namely a signal with in-phase and quadrature
components. Therefore, such a complex channel is equivalent to two real channels with
equal capacities and operating in parallel; hence the result presented in (9.114).

Equation (9.114) applies to the simple case of a single-input, single-output (SISO)
flat-fading channel. Generalizing this formula to the case of a multiple-input, multiple-
output MIMO flat-fading channel governed by the Gaussian model described in Figure
9.30, we find that the ergodic capacity of the MIMO channel is given by the following
formula:12

(9.115)

which is subject to the constraint

  

where P is the constant transmit power and  denotes the trace of the enclosed
matrix. The expectation in (9.115) is over the random channel matrix H, and the
superscript dagger notes Hermitian transposition; Rs and Rw are respectively the
correlation matrices of the transmitted signal vector s and channel noise vector w. A
detailed derivation of (9.115) is presented in Appendix E.

In general, it is difficult to evaluate (9.115) except for a Gaussian model. In particular,
substituting (9.107) and (9.110) into (9.115) and simplifying yields

(9.116)

Next, invoking the definition of the average SNR  introduced in (9.111), we may rewrite
(9.116) in the equivalent form

(9.117)
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Equation (9.117), defining the ergodic capacity of a MIMO flat-fading channel, involves
the determinant of an Nr-by-Nr sum matrix (inside the braces) followed by the logarithm to
base 2. It is for this reason that this equation is referred to as the log-det capacity formula
for a Gaussian MIMO channel.

As indicated in (9.117), the log-det capacity formula therein assumes that Nt  Nr for the
matrix product  to be of full rank. The alternative case, Nr  Nt makes the Nt-by-Nt
matrix product  to be of full rank, in which case the log-det capacity formula of the
MIMO link takes the form

(9.118)

where, as before, the expectation is taken over the channel matrix H.
Despite the apparent differences between (9.117) and (9.118), they are equivalent in

that either one of them applies to all {Nr, Nt} antenna configurations. The two formulas
differentiate themselves only when the full-rank issue is of concern.

Clearly, the capacity formula of (9.114), pertaining to a complex, flat-fading link with a
single antenna at both ends of the link, is a special case of the log-det capacity formula.
Specifically, for Nt = Nr = 1 (i.e., no spatial diversity), , and H = h (with
dependence on discrete-time n suppressed, (9.116) reduces to that of (9.114).

Another insightful result that follows from the log-det capacity formula is that if
Nt = Nr = N, then, as N approaches infinity, the capacity C defined in (9.117) grows
asymptotically (at least) linearly with N; that is,

 (9.119)

In words, the asymptotic formula of (9.119) may be stated as follows:

The ergodic capacity of a MIMO flat-fading wireless link with an equal number 
of transmit and receive antennas N grows roughly proportionately with N.

What this statement teaches us is that, by increasing computational complexity resulting
from the use of multiple antennas at both the transmit and receive ends of a wireless link,
we are able to increase the spectral efficiency of the link in a far greater manner than is
possible by conventional means (e.g., increasing the transmit SNR). The potential for this
very sizable increase in the spectral efficiency of a MIMO wireless communication system
is attributed to the key parameter

N = min{Nt, Nr} 

which defines the number of degrees of freedom provided by the system.

Two Other Special Cases of the Log-Det Formula: Capacities of 
Receive and Transmit Diversity Links

Naturally, the log-det capacity formula for the channel capacity of an Nt, Nr wireless link
includes the channel capacities of receive and transmit diversity links as special cases:
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554 Chapter 9 Signaling over Fading Channels

1. Diversity-on-receive channel. The log-det capacity formula (9.118) applies to this
case. Specifically, for Nt = 1, the channel matrix H reduces to a column vector and
with it (9.118) reduces to

(9.120)

Compared with the channel capacity of (9.114), for an SISO fading channel with
, the squared channel gain |h|2 is replaced by the sum of squared

magnitudes |hi|
2, i = 1, 2, , Nr. Equation (9.120) expresses the ergodic capacity

due to the linear combination of the receive-antenna outputs, which is designed to
maximize the information contained in the Nr received signals about the transmitted
signal. This is simply a restatement of the maximal-ratio combining principle
discussed in Section 9.8.

2. Diversity-on-transmit channel. The log-det capacity formula of (9.117) applies to
this second case. Specifically, for Nr = 1, the channel matrix H reduces to a row
vector, and with it (9.117) reduces to

(9.121)

where the matrix product HH† is replaced by the sum of squared magnitudes |hk|
2,

k = 1, 2, , Nt. Compared with case 1 on receive diversity, the capacity of the
diversity-on-transmit channel is reduced because the total transmit power is being
held constant, independent of the number of Nt transmit antennas. 

Outage Capacity

To realize the log-det capacity formula of (9.117), the MIMO channel must be described
by an ergodic process. In practice, however, the MIMO wireless channel is often
nonergodic and the requirement is to operate the channel under delay constraints. The
issue of interest is then summed up as follows:

How much information can be transmitted across a nonergodic channel, 
particularly if the channel code is long enough to see just one random 
channel matrix?

In the situation described here, the rate of reliable information transmission (i.e., the strict
Shannon-sense capacity) is zero, since for any positive rate there exists a nonzero
probability that the channel would not support such a rate.

To get around this serious difficulty, the notion of outage is introduced into
characterization of the MIMO link. (Outage was discussed previously in the context of
diversity on receive in Section 9.8.) Specifically, we offer the following definition: 

The outage probability of a MIMO link is defined as the probability for which 
the link is in a state of outage (i.e., failure) for data transmitted across the link at 
a certain rate R, measured in bits per second per hertz. 
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To proceed on this probabilistic basis, it is customary to operate the MIMO link by
transmitting data in the form of bursts or frames and invoke a quasi-stationary model
governed by four points:

1. The burst is long enough to accommodate the transmission of a large number of
symbols, which, in turn, permits the use of an idealized infinite-time horizon basic to
information theory.

2. Yet, the burst is short enough to treat the wireless link as quasi-stationary during
each burst; the slow variation is used to justify the assumption that the receiver has
perfect knowledge of the channel state. 

3. The channel matrix is permitted to change, from burst k to the next burst k + 1,
thereby accounting for statistical variations of the link.

4. Different realizations of the transmitted signal vector s are drawn from a white
Gaussian codebook; that is, the correlation matrix of s is defined by (9.107).

Points 1 and 4 pertain to signal transmission, whereas points 2 and 3 pertain to the MIMO
channel itself.

To proceed with the evaluation of outage probability under this model, we first note
that, in light of the log-det capacity formula (9.117), we may view the random variable

(9.122)

as the expression for a “sample realization” of the MIMO link. In other words, with the
random-channel matrix Hk varying from one burst to the next, Ck will itself vary in a
corresponding way. A consequence of this random behavior is that, occasionally, a sample
drawn from the cumulative distribution function of the MIMO link results in a value for Ck
that is inadequate to support reliable communication over the link. In this kind of situation
the link is said to be in an outage state. Correspondingly, for a given transmission strategy,
we define the outage probability at rate R as

(9.123)

Equivalently, we may write

(9.124)

On this basis, we may offer the following definition: 

The outage capacity of the MIMO link is the maximum bit rate that can be 
maintained across the link for all bursts of data transmissions (i.e., all possible 
channel states) for a prescribed outage probability. 

By the very nature of it, the study of outage capacity can only be conducted using Monte
Carlo simulation. 

Channel Known at the Transmitter

The log-det capacity formula of (9.117) is based on the premise that the transmitter has no
knowledge of the channel state. Knowledge of the channel state, however, can be made
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556 Chapter 9 Signaling over Fading Channels

available to the transmitter by first estimating the channel matrix H at the receiver and
then sending this estimate to the transmitter via a feedback channel. In such a scenario, the
capacity is optimized over the correlation matrix of the transmitted signal vector s, subject
to the power constraint; that is, the trace of this correlation matrix is less than or equal to
the constant transmit power P. Naturally, formulation of the log-det capacity formula of a
MIMO channel for which the channel is known in both the transmitter and receiver is
more challenging than when it is only known to the receiver. For details of this
formulation, the reader is referred to Appendix E.

9.12 Orthogonal Frequency Division Multiplexing

In Chapter 8 we introduced the DMT method as one discrete form of multichannel
modulation for signaling over band-limited channels. Orthogonal frequency division
multiplexing (OFDM)13 is another clearly related form of multifrequency modulation.

OFDM is particularly well suited for high data-rate transmission over delay-dispersive
channels. In its own way, OFDM solves the problem by following the engineering
paradigm of “divide and conquer.” Specifically, a large number of closely spaced
orthogonal subcarriers (tones) is used to support the transmission. Correspondingly, the
incoming data stream is divided into a number of low data-rate substreams, one for each
carrier, with the subchannels so formed operating in parallel. For the modulation process,
a modulation scheme such as QPSK is used. 

What we have just briefly described here is essentially the same as the procedure used
in DMT modulation. In other words, the underlying mathematical theory of DMT
described in Chapter 8 applies equally well to OFDM, except for the fact that the signal
constellation encoder does not include the use of loading for bit allocation. In addition,
two other changes have to be made in the implementation of OFDM:

1. In the transmitter, an upconverter is included after the digital-to-analog converter to
appropriately translate the transmitted frequency, so as to facilitate propogation of
the transmitted signal over the radio channel.

2. In the receiver, a downconverter is included before the analog-to-digital converter to
undo the frequency translation that was performed by the upconverter in the
transmitter.

Figure 9.31 shows the block diagram of an OFDM system, the components of which are
configured to accommodate the transmission of a binary data stream at 36 Mbit/s as an
illustrative example. Parts a and b of the figure depict the transmitter and receiver of the
system, respectively. Specifically, pertinent values of data carrier rates as well as sub-
carrier frequencies at the various functional blocks are included in part a of the figure
dealing with the transmitter. One last comment is in order: the front end of the transmitter
and the back end of the receiver are allocated to forward error-correction encoding and
decoding, respectively, for improved reliability of the system. (Error-control coding of the
forward error-correction variety is discussed in Chapter 10.)

The Peak-to-Average Power Ratio Problem

A compelling practical importance of OFDM to wireless communications is attributed to
the computational benefits brought about by the FFT algorithm that plays a key role in its
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implementation. However, OFDM suffers from the so-called PAPR problem. This
problem arises due to the statistical probabilities of a large number of independent
subchannels in the OFDM becoming superimposed on each other in some unknown
fashion, thereby resulting in high peaks. For a detailed account of the PAPR problem and
how to mitigate it, the reader is referred to Appendix G.

9.13 Spread Spectrum Signals

In previous sections of this chapter we described different methods for mitigating the
effect of multipath interference in signaling over fading channels. In this section of the
chapter, we describe another novel way of thinking about wireless communications, which
is based on a class of signals called spread spectrum signals.14

A signal is said to belong to this class of signals if it satisfies the following two
requirements:

1. Spreading. Given an information-bearing signal, spreading of the signal is
accomplished in the transmitter by means of an independent spreading signal, such
that the resulting spread spectrum signal occupies a bandwidth much larger than the
bandwidth of the original information-bearing signal: the larger the better.

2. Despreading. Given a noisy version of the transmitted spread spectrum signal,
despreading (i.e., recovering the original information-bearing signal) is achieved by
correlating the received signal with a synchronized replica of the spreading signal in
the receiver.

Figure 9.31 Block diagram of the typical implementation of an OFDM, illustrating the transmission 
of binary data at 36 Mbit/s. 
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558 Chapter 9 Signaling over Fading Channels

In effect, the information-bearing signal is spread (increased) in bandwidth before its
transmission over the channel, and the received signal at the channel output is despread
(i.e., decreased) in bandwidth by the same amount.

To explain the rationale of spread spectrum signals, consider, first, a scenario where
there are no interfering signals at the channel output whatsoever. In this idealized scenario,
an exact replica of the original information-bearing signal is reproduced at the receiver
output; this recovery follows from the combined action of spreading and despreading, in
that order. We may thus say that the receiver performance is transparent with respect to
the combined spreading–despreading process.

Consider, next, a practical scenario where an additive narrowband interference is
introduced at the receiver input. Since the interfering signal is introduced into the
communication system after transmission of the information-bearing signal, its bandwidth
is increased by the spreading signal in the receiver, with the result that its power spectral
density is correspondingly reduced. Typically, at its output end, the receiver includes a
filter whose bandwidth-occupancy matches that of the information-bearing signal.
Consequently, the average power of the interfering signal is reduced, and the output SNR
of the receiver is increased; hence, there is practical benefit in improved SNR to be gained
from using the spread spectrum technique when there is an interfering signal (e.g., due to
multipath) to deal with. Of course, this benefit is obtained at the expense of increased
channel bandwidth.

Classification of Spread Spectrum Signals

Depending on how the use of spread spectrum signals is carried out, we may classify them
as follows:

1. Direct Sequence-Spread Spectrum

One method of spreading the bandwidth of an information-bearing signal is to use
the so-called direct sequence-spread spectrum (DS-SS), wherein a pseudo-noise
(PN) sequence is employed as the spreading sequence (signal). The PN sequence is
a periodic binary sequence with noise-like properties, details of which are
presented in Appendix J. The baseband modulated signal, representative of the
DS-SS method, is obtained by multiplying the information-bearing signal by the
PN sequence, whereby each information bit is chopped into a number of small
time increments, called chips. The second stage of modulation is aimed at
conversion of the baseband DS-SS signal into a form suitable for transmission over
a wireless channel, which is accomplished by using M-ary PSK, discussed in
Chapter 7. The family of spread spectrum systems so formed is referred to simply
as DS/MPSK systems, a distinct characteristic of which is that spreading of the
transmission bandwidth takes place instantaneously. Moreover, the signal-
processing capability of these systems to combat the effect of interferers,
commonly referred to as jammers be they friendly or unfriendly, is a function of
the PN sequence length. Unfortunately, this capability is limited by physical
considerations of the PN-sequence generator.

2. Frequency Hop-Spread Spectrum

To overcome the physical limitations of DS/MPSK systems, we may resort to
alternative methods. One such method is to force the jammer to occupy a wider
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spectrum by randomly hopping the input data-modulated carrier from one frequency
to the next. In effect, the spectrum of the transmitter signal is spread sequentially
rather than instantaneously; the term sequentially refers to the pseudo-randomly
ordered sequence of frequency hops. This second type of spread spectrum in which
the carrier hops randomly from one frequency to another is called frequency hop-
spread spectrum. A commonly used modulation format used herein is that of M-ary
FSK, which was also discussed in Chapter 7. The combination of the two
modulation techniques, namely frequency hopping and M-ary FSK, is referred to
simply as FH/MFSK. Since frequency-hopping does not cover over the entire spread
spectrum instantaneously, we are led to consider the rate at which the hops occur. In
this context, we may go on to identify two basic kinds of frequency hopping, which
are the converse of each other, as summarized here:

• First, slow-frequency hopping, in which the symbol rate of the M-ary FSK signal,
denoted by Rs, is an integer multiple of the hop rate, denoted by Rh; that is, several
symbols of the input data sequence are transmitted for each frequency hop.

• Second, fast-frequency hopping, in which the hop rate Rh is an integer multiple of
the M-ary FSK symbol rate Rs; that is, the carrier frequency will change (i.e.,
hop) several times during the transmission of one input-data symbol.

The spread spectrum technique of the FH variety is particularly attractive for
military applications. But, compared with the alternative spread spectrum technique,
DS/MPSK, the commercial use of FH/MFSK is insignificant, which is especially so
in regard to fast frequency hopping. The limiting factor behind this statement is the
expense involved in the employment of frequency synthesizers, which are basic to
the implementation of FH/MFSK systems. Accordingly, the FH/MFSK will not be
considered further.

Processing Gain of the DS/BPSK

Before closing this section on spread spectrum signals, it is informative to expand on the
improvement in SNR gained at the receiver output, mentioned earlier on. To this end,
consider the simple case of the DS/BPSK, in which the binary PSK, representing the
second stage of modulation in the transmitter, is coherent; that is, the receiver is
synchronized with the transmitter in all of its features. In Problem 9.34, it is shown that the
processing gain of a spread spectrum signal compared to its unspread version is

(9.125)

where Tb is the bit duration and Tc is the chip duration. With PG expressed in decibels, in
Problem 9.34 it is also shown that 

10 log10 (SNR)O = 10 log10 (SNR)I + 10 log10 (PG) dB (9.126)

where (SNR)I and (SNR)O are the input SNR and output SNR, respectively. Furthermore,
recognizing that the ratio TbTc is equal to the number of chips contained in a single bit
duration, it follows that the processing gain realized by the use of DS/BPSK increases
with increasing length of a single period of the PN sequence, which was emphasized
previously.

PG
Tb

Tc
-----=
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560 Chapter 9 Signaling over Fading Channels

9.14 Code-Division Multiple Access

Modern wireless networks are commonly of a multiuser type, in that the multiple
communication links within the network are shared among multiple users. Specifically,
each individual user is permitted to share the available radio resources (i.e., time and
frequency) with other users in the network and do so in an independent manner.

Stated in another way, a multiple access technique permits the radio resources to be
shared among multiple users seeking to communicate with each other. In the context of
time and frequency domains, we recall from Chapter 1 that frequency-division multiple
access (FDMA) and time-division multiple access (TDMA) techniques allocate the radio
resources of a wireless channel through the use of disjointedness (i.e., orthogonality) in
frequency and time, respectively. On the other hand, the code-division multiple access
(CDMA) technique, building on spread spectrum signals and benefiting from their
attributes, provides an alternative to the traditional techniques of FDMA and TDMA; it
does so by not requiring the bandwidth allocation of FDMA nor the time synchronization
needed in TDMA. Rather, CDMA operates on the following principle:

The users of a common wireless channel are permitted access to the channel 
through the assignment of a spreading code to each individual user under the 
umbrella of spread spectrum modulation.

This statement is testimony to what we said in the first paragraph of Section 9.13, namely
that spread spectrum signals provide a novel way of thinking about wireless
communications.

To elaborate on the way in which CDMA distinguishes itself from FDMA and TDMA
in graphical terms, consider Figure 9.32. Parts a and b of the figure depict the ways in
which the radio resources are distributed in FDMA and TDMA, respectively. To be
specific:

• In FDMA, the channel bandwidth B is divided equally among a total number of K
users, with each user being allotted a subband of width B/K and having the whole
time resource T at its disposal.

• In TDMA, the time resource T is divided equally among the K users, with each user
having total access to the frequency resource, namely the total channel bandwidth B,
but for only T/K in each time frame.

In a way, we may therefore think of FDMA and TDMA as the dual of each other.
Turning next to Figure 9.32c, we see that CDMA operates in a manner entirely

different from both FDMA and TDMA. Graphically, we see that each CDMA user has full
access to the entire radio resources at every point in time from one frame to the next.
Nevertheless, for the full utilization of radio resources to be achievable, it is necessary that
the spreading codes assigned to all the K users form an orthogonal set. 

In other words, orthogonality is a common requirement to the FDMA, TDMA, and
CDMA, each in its own specific way. However, this requirement is easier to implement
practically in FDMA and TDMA than it is in CDMA.

In an ideal CDMA system, to satisfy the orthogonality requirement, the cross-
correlation between any two users of the system must be zero. Correspondingly, for this
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ideal condition to be satisfied, we require that the cross-correlation function between the
spreading sequences (codes) assigned to any two CDMA users of the system must be zero
for all cyclic shifts in time. Unfortunately, ordinary PN sequences do not satisfy the
orthogonality requirement because of their relatively poor cross-correlation properties. 

Accordingly, we have to look to alternative spreading codes to satisfy the orthogonality
requirements. Fortunately, such an endeavor is mathematically feasible, depending on
whether synchrony of the CDMA receiver to its transmitter is required or not. In what
follows, we describe the use of Walsh–Hadamard sequences for the synchronous case and
Gold sequences for the asynchronous case. 

Walsh–Hadamard Sequences

Consider the case of a CDMA system, for which synchronization among users of the
system is permissible. Under this condition, perfect orthogonality of two spreading
signals, cj(t) and ck(t), respectively assigned to users j and k for different time offsets,
namely

(9.127)

reduces to 

(9.128)

where the asterisk denotes complex conjugation. It turns out that, for the special case
described in (9.128), the orthogonality requirement can be satisfied exactly, and the
resulting sequences are known as the Walsh–Hadamard sequences (codes).15

Figure 9.32 Resource distribution in (a) FDMA, (b) TDMA, and (c) CDMA. This figure shows the 
essence of multiple access as in Figure 1.2 with a difference: Figure 9.32 is quantitative in its 
description of multiple-access techniques.
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562 Chapter 9 Signaling over Fading Channels

To construct a Walsh–Hadamard sequence, we begin with a 2  2 matrix, denoted by
H2, for which the inner product of its two rows (or two columns) is zero. For example, we
may choose the matrix 

(9.129)

the two rows of which are indeed orthogonal to each other. To go on and construct a
Walsh–Hadamard sequence of length 4 using H2, we construct the Kronecker product of
H2 with itself, as shown by 

H4 = H2  H2 (9.130)

To explain what we mean by the Kronecker product in a generic sense, let A = {ajk} and
B = (bjk} denote m  m and n  n matrices, respectively.16 Then, we may introduce the
following rule:

The Kronecker product of the two matrices A and B is made up of an mn  mn 
matrix, which is obtained from the matrix A by replacing its element ajk in 
matrix A with the scaled matrix ajk B.

EXAMPLE 8 Construction of Hadamard–Walsh H4 from H2 

For the example of (9.129) on matrix H2, applying the Kronecker product rule, we may
express the H4 of (9.130) as follows:

(9.131)

The four rows (and columns) of H4 defined in (9.131) are indeed orthogonal to each other.
Carrying on in this manner, we may go on to construct the Hadamard–Walsh sequences

H6, H8, and so on.

In practical terms, a synchronous CDMA system is achievable provided that a single
transmitter (e.g., the base station of a cellular network) transmits individual data streams
simultaneously, with each data stream being addressed to a specific CDMA user (e.g.,
mobile unit).

Gold Sequences

Whereas Walsh–Hadamard sequences are well suited for synchronous CDMA, Gold
sequences, on the other hand, are well suited for applications in asynchronous CDMA;

H2
+ 1 1+

+ 1 1–
=

H4

+ 1 H2 1+ H2

+ 1 H2 1– H2
=

+ 1 1+ 1+ 1+

+ 1 1– 1+ 1–

+ 1 1+ 1– 1–

+ 1 1– 1– 1+

=
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therein, time- and phase-shifts between individual user signals, measured with respect to
the base station in a cellular network, occur in a random manner; hence the adoption of
asynchrony.

Gold sequences constitute a special class of maximal-length sequences, the generation
of which is embodied in Gold’s theorem, stated as follows:17

Let g1(X) and g2(X) be a preferred pair of primitive polynomials of degree n 
whose corresponding linear feedback shift registers generate maximal-length 
sequences of period 2n – 1 and whose cross-correlation function has a 
magnitude less then or equal to 

(9.132)

or

(9.133)

Then, the linear feedback shift register corresponding to the product polynomial 
g1(X) g2(X) will generage 2n + 1 different sequences, with each sequence 
having a period of 2n = 1 and the cross-correlation between any pair of such 
sequences satisfying the preceding condition.

To understand Gold’s theorem, we need to define what we mean by a primitive
polynomial. Consider a polynomial g(X) defined over a binary field (i.e., a finite set of two
elements, 0 and 1, which is governed by the rules of binary arithmetic). The polynomial
g(X) is said to be an irreducible polynomial if it cannot be factored using any polynomials
from the binary field. An irreducible polynomial g(X) of degree m is said to be a primitive
polynomial if the smallest integer m for which the polynomial g(X) divides the factor
Xn + 1 is n = 2m – 1. The topic of primitive polynomials is discussed in Chapter 10 on
error-control coding.

EXAMPLE 9 Correlation Properties of Gold Codes

As an illustrative example, consider Gold sequences with period 27 – 1 = 127. To generate such
a sequence for n = 7 we need a preferred pair of PN sequences that satisfy (9.132) (n odd), as
shown by 

This requirement is satisfied by the Gold-sequence generator shown in Figure 9.33 that
involves the modulo-2 addition of these two sequences. According to Gold’s theorem,
there are a total of

sequences that satisfy (9.132). The cross-correlation between any pair of such sequences is
shown in Figure 9.34, which is indeed in full accord with Gold’s theorem. In particular,
the magnitude of the cross-correlation is less than or equal to 17.

2
n 1+  2

1 for n odd+

2
n 1+  2

1 for n even and n 0 mod 4+

2
n 1+  2

1 2
4

= 1 17=+ +

2
n

1 2
7

= 1 129=+ +
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564 Chapter 9 Signaling over Fading Channels

9.15 The RAKE Receiver and Multipath Diversity

A discussion of wireless communications using CDMA would be incomplete without a
description of the RAKE receiver.18 The RAKE receiver was originally developed in the
1950s as a diversity receiver designed expressly to equalize the effect of multipath. First,
and foremost, it is recognized that useful information about the transmitted signal is
contained in the multipath component of the received signal. Thus, taking the viewpoint

Figure 9.33 Generator for a Gold sequence of period 27 – 1 = 127.

Figure 9.34 Cross-correlation function R12 of a pair of Gold sequences based on the two PN 
sequences [7,4] and [7,6,5,4].
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9.15 The RAKE Receiver and Multipath Diversity 565

that multipath may be approximated as a linear combination of differently delayed echoes,
as shown in the maximal ratio combiner of Figure 9.21, the RAKE receiver seeks to
combat the effect of multipath by using a correlation method to detect the echo signals
individually and then adding them algebraically. In this way, intersymbol interference due
to multipath is dealt with by reinserting different delays into the detected echoes so that
they perform a constructive rather than destructive role. 

Figure 9.35 shows the basic idea behind the RAKE receiver. The receiver consists of a
number of correlators connected in parallel and operating in a synchronous fashion with
each other. Each correlator has two inputs: (1) a delayed version of the received signal and
(2) a replica of the PN sequence used as the spreading code to generate the spread
spectrum-modulated signal at the transmitter. In effect, the PN sequence acts as a
reference signal. Let the nominal bandwidth of the PN sequence be denoted as W = 1Tc,
where Tc is the chip duration. From the discussion on PN sequences presented in
Appendix J, we find that the autocorrelation function of a PN sequence has a single peak
of width 1W, and it disappears toward zero elsewhere inside one period of the PN
sequence (i.e., one symbol period). Thus, we need only make the bandwidth W of the PN
sequence sufficiently large to identify the significant echoes in the received signal. To be
sure that the correlator outputs all add constructively, two other operations are performed
in the receiver by the functional blocks labeled “phase and gain adjustors”:

1. An appropriate delay is introduced into each correlator output, so that the phase
angles of the correlator outputs are in agreement with each other.

2. The correlator outputs are weighted so that the correlators responding to strong
paths in the multipath environment have their contributions accentuated, while the
correlators not synchronizing with any significant path are correspondingly
suppressed.

Figure 9.35 Block diagram of the RAKE receiver for CDMA over multipath channels.
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566 Chapter 9 Signaling over Fading Channels

The weighting coefficients ak are computed in accordance with the maximal ratio
combining principle, discussed in Section 9.8. Specifically, we recall that the SNR of a
weighted sum, where each element of the sum consists of a signal plus additive noise of
fixed power, is maximized when the amplitude weighting is performed in proportion to the
pertinent signal strength. That is, the linear combiner output is

(9.134)

where zk(t) is the phase-compensated output of the kth correlator and M is the number of
correlators in the receiver. Provided that we use enough correlators in the receiver to span
a region of delays sufficiently wide to encompass all the significant echoes that are likely
to occur in the multipath environment, the output y(t) behaves essentially as though there
was a single propagation path between the transmitter and receiver rather than a series of
multiple paths spread in time.

To simplify the presentation, the receiver of Figure 9.35 assumes the use of binary PSK in
performing spread spectrum modulation at the transmitter. Thus, the final operation per-
formed in Figure 9.35 is that of integrating the linear combiner output y(t) over the bit dura-
tion Tb and then determining whether binary symbol 1 or 0 was transmitted in that bit interval.

The RAKE receiver derives its name from the fact that the bank of parallel correlators
has an appearance similar to the fingers of a rake; see Figure 9.36. Because spread
spectrum modulation is basic to the operation of CDMA wireless communications, it is
natural for the RAKE receiver to be central to the design of the receiver used in this type of
multiuser radio communication.

9.16 Summary and Discussion

In this chapter we discussed the topic of signaling over fading channels, which is at the
heart of wireless communications. There are three major sources of signal degradation in
wireless communications:

• co-channel interference,
• fading, and
• delay spread.

The latter two are by-products of the multipath phenomenon. A common characteristic of
these channel impairments is that they are all signal-dependent phenomena. As it is with
intersymbol interference that characterizes signaling over band-limited channels discussed
in Chapter 8, the degrading effects of interference and multipath in wireless
communications cannot be combated by simply increasing the transmitted signal, which is
what is done when noise is the only source of channel impairment as discussed in Chapter 7.

To combat the effects of multipath and interference, we require the use of specialized
techniques that are tailor-made for wireless communications. These specialized techniques
include space diversity, which occupied much of the material presented in this chapter.

Figure 9.36
Picture of a rake, symbolizing the bank of correlators.

y t  akzk t 
k 1=

M

=

. . .

Haykin_ch09_pp3.fm  Page 566  Friday, January 4, 2013  4:58 PM
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We discussed different forms of space diversity, the main idea behind which is that two
or more propagation paths connecting the receiver to the transmitter are better than a
single propagation path. In historical terms, the first form of space diversity used to
mitigate the multipath fading problem was that of receive diversity, involving a single
transmit antenna and multiple receive antennas. Under receive diversity, we discussed the
selection combiner, maximal-ratio combiner, and equal-gain combiner:

• The selection combiner is the simplest form of receive diversity. It operates on the
principle that it is possible to select, among Nr receive-diversity branches, a
particular branch with the largest output SNR; the branch so selected defines the
desired received signal. 

• The maximal-ratio combiner is more powerful than the selection combiner by virtue
of the fact that it exploits the full information content of all the Nr receive-diversity
branches about the transmitted signal of interest; it is characterized by a set of Nr
receive-complex weighting factors that are chosen to maximize the output SNR of
the combiner. 

• The equal-gain combiner is a simplified version of the maximal-ratio combiner.

We also discussed diversity-on-transmit techniques, which may be viewed as the dual of
their respective diversity-on-receive techniques. Much of the discussion here focused on
the Alamouti code, which is simple to design, yet powerful in performance, in that it
realizes a two-level diversity gain: in other terms of performance, the Alamouti code is
equivalent to a linear diversity-on-receive system with a single antenna and two receive
antennas.

By far, the most powerful form of space diversity is the use of multiple antennas at both
the transmit and receive ends of the wireless link. The resulting configuration is referred to
as a MIMO wireless communication system, which includes the receive diversity and
transmit diversity as special cases. The novel feature of the MIMO system is that, in a rich
scattering environment, it can provide a high spectral efficiency, which may be simply
explained as follows. The signals transmitted simultaneously by the transmit antennas
arrive at the input of each receive antenna in an uncorrelated manner due to the rich
scattering mechanism of the channel. The net result is a spectacular increase in the spectral
efficiency of the wireless link. Most importantly, the spectral efficiency increases roughly
linearly with the number of transmit or receive antennas, whichever is the smaller one of
the two. This important result assumes that the receiver has knowledge of the channel
state. The spectral efficiency of the MIMO system can be further enhanced by including a
feedback channel from the transmitter to the receiver, whereby the channel state is also
made available to the transmitter and with it the transmitter is enabled to exercise control
over the transmitted signal.

Multiple Access Considerations

An issue of paramount practical importance in wireless communications is that of multiple
access to the wireless channel, in the context of which the following two approaches are
considered to be the dominant ones:

1. Orthogonal frequency division multiple access (OFDMA), which is the multi-user
version of OFDM that was discussed in Section 9.12. In OFDMA multiple access is
accomplished through the assignment of subchannels (subcarriers) to individual users.
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568 Chapter 9 Signaling over Fading Channels

Naturally, OFDMA inherits the distinctive features of OFDM. In particular, OFDMA
is well suited for high data-rate transmissions over delay-dispersive channels, realized
by exploiting the principle of “divide and conquer.” Accordingly, OFDMA is
computationally efficient in using the FFT algorithm. Moreover, OFDMA lends itself
to the combined use of MIMO, hence the ability to improve spectral efficiency and
take advantage of channel flexibility. 

2. Code-division multiple access (CDMA), which distinguishes itself by exploiting the
underlying principle of spread spectrum signals, discussed in Section 9.13. To be
specific, through the combined process of spectrum spreading in the transmitter and
corresponding spectrum despreading in the receiver, a certain amount of processing
gain is obtained, hence the ability of CDMA users to occupy the same channel
bandwidth. Moreover, CDMA provides a flexible procedure for the allocation of
resources (i.e., PN codes) among a multiplicity of active users. Last but by no means
least, in using the RAKE, viewed as an adaptive TDL filter, CDMA is enabled to
match the receiver input to the channel output by adjusting tap delays as well as tap
weights, thereby enhancing receiver performance in the presence of multipath.

To conclude, OFDMA and CDMA provide two different approaches for the multiple
access of active users to wireless channels, each one of which builds on its own distinctive
features.

Problems

Effect of Flat Fading on the BER of Digital Communications Receivers

9.1 Derive the BER formulas listed in the right-hand side of Table 9.2 for the following signaling
schemes over flat fading channels:

a. Binary PSK using coherent detection

b. Binary FSK using coherent detection

c. Binary DPSK

d. Binary FSK using noncoherent detection

9.2 Using the formulas derived in Problem 9.1, plot the BER charts for the schemes described therein.

Selective Channels

9.3 Consider a time-selective channel, for which the modulated received signal is defined by

where m(t) is the message signal,  is the result of angle modulation; the amplitude  and
phase  are contributed by the nth path, where n = 1, 2, , N.

a. Using complex notation, show that the received signal is described as follows:

where

What is the formula for ?

x t  n t m t  2fct  t  n t + + cos
n 1=

N

=

 t  n t 
n t 

x̃ t  ̃ t s̃ t =

̃ t  ̃n t 
n 1=

N

=

s̃ t 
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b. Show that the delay-spread function of the multipath channel is described by

where  is the Dirac delta function in the -domain. Hence, justify the statement that the
channel described in this problem is a time-selective channel.

c. Let  and  denote the Fourier transforms of  and , respectively. What then is

the Fourier transform of ?

d. Using the result of part c, justify the statement that the multipath channel described herein can be
approximately frequency-flat. What is the condition that would satisfy this description?

9.4 In this problem, we consider a multipath channel embodying large-scale effects. Specifically, using
complex notation, the received signal at the channel output is described by

where  and  denote the amplitude and time delay associated with the lth path in the channel for
l = 1, 2, , L. Note that  is assumed to be constant for all l.

a. Show that the delay-spread function of the channel is described by

where  is the Dirac delta function expressed in the -domain.

b. This channel is said to be time-nonselective. Why?

c. The channel does exhibit a frequency-dependent behavior. To illustrate this behavior, consider
the following delay-spread function:

where  is the time delay produced by the second path in the channel. Plot the magnitude
(amplitude) response of the channel for the following specifications:

i.

ii.

iii.

where . Comment on your results.

9.5 Expanding on the multipath channel considered in Problem 9.4, a more interesting case is
characterized by the scenario in which the received signal at the channel output is described as follows:

where the amplitude  and time delay  for the lth path are both time dependent for 

l = 1, 2, , L. 

a. Show that the delay-spread function of the multipath channel described herein is given by

where  is the Dirac delta function in the -domain. This channel is said to exhibit both
large- and small-scale effects. Why?

b. The channel is also said to be both time selective and frequency selective. Why?
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c. To illustrate the point made under b, consider the following channel description:

where  and  are both Rayleigh processes. 

For selected ,  and , do the following:

i. At each time t = 0, compute the Fourier transform of .

ii. Hence, plot the magnitude spectrum of the channel, that is, , expressed as a
function of both time t and frequency f.

Comment on the results so obtained.

9.6 Consider a multipath channel where the delay-spread function is described by

where the scattering processes attributed to the time-varying amplitude  and fixed delay  are
uncorrelated for l = 1, 2, , L.

a. Determine the correlation function of the channel, namely .

b. With a Jakes model for the scattering process described in (9.12), find the corresponding formula
for the correlation function of the channel under part a of the problem.

c. Hence, justify the statement that the multipath channel described in this problem fits a WSSUS
model.

9.7 Revisit the Jakes model for a fast fading channel described in (9.12). Let the coherence time be
defined as that range of values  over which the correlation function defined in (9.12) is greater
than 0.5.

For some prescribed maximum Doppler shift , find the coherence time of the channel.

9.8 Consider a multipath channel for which the delay-spread function is given by

where the amplitude  is time varying but the time delay  is fixed. As in Problem 9.4, the
scattering processes are described by the Jakes model in (9.12). Determine the power-delay profile
of the channel, .

9.9 In real-life situations, the wireless channel is nonstationary due to the presence of moving objects of
different kinds and other physical elements that can significantly affect radio propagation. Naturally,
different types of wireless channels have different degrees of nonstationarity.

Even though many wireless communication channels are indeed highly nonstationary, the WSSUS
model described in Section 9.4 still provides a reasonably accurate account of the statistical
characteristics of the channel. Elaborate on this statement.

“Space Diversity-on-Receive” Systems

9.10 Following the material presented on Rayleigh fading in Chapter 4, derive the probability density
function of (9.64).

9.11 A receive-diversity system uses a selection combiner with two diversity paths. The outage occurs
when the instantaneous SNR  drops below 0.25av, where av is the average SNR. 

Determine the probability of outage experienced by the receiver.

h̃  t;  ̃1 t    ̃2 t  t 2– +=

̃1 t  ̃2 t 
̃1 t  ̃2 t  2

h̃  t; 
H̃ f t; 

h̃  t;  ̃l t   l– 
l 1=

L

=

̃l t  l

R
h̃
1 t1 2 t2; 

t

max

h̃  t;  ̃l t  t l– 
l 1=

L

=

̃l t  l

P
h̃
 

Haykin_ch09_pp3.fm  Page 570  Friday, January 4, 2013  4:58 PM



Problems 571

9.12 The average SNR in a selection combiner is 20 dB. Compute the probability that the instantaneous
SNR of the selection combiner drops below  = 10 dB for the following number of receive antennas:

a. Nr = 1

b. Nr = 2

c. Nr = 3

d. Nr = 4.

Comment on your results.

9.13 Repeat Problem 9.12 for  = 15 dB.

9.14 In Section 9.8 we derived the optimum values of (9.75) for complex weighting factors of the
maximal-ratio combiner using the Cauchy–Schwartz inequality. 

This problem addresses the same issue, but this time we use the standard maximization procedure.
To simplify matters, the number of diversity paths Nr is restricted to two, with the complex
weighting parameters denoted by a1 and a2. Let

The complex derivative with respect to ak is defined by

Applying this formula to the combiner’s output SNR c of (9.71), derive the optimum  in (9.75).

9.15 As discussed in Section 9.8, an equal-gain combiner is a special form of the maximal-ratio combiner
for which the weighting factors are all equal. For convenience of presentation, the weighting
parameters are set to unity. 

Assuming that the instantaneous SNR  is small compared with the average SNR , derive an
approximate formula for the probability density function of the random variable  represented by
the sample .

9.16 Compare the performances of the following linear “diversity-on-receive” techniques:

a. Selection combiner.

b. Maximal-ratio combiner.

c. Equal-gain combiner.

Base the comparison on signal-to-noise improvement, expressed in decibels for the following
number of diversity branches: Nr = 2, 3, 4, 5, 6.

9.17 Show that the maximum-likelihood decision rule for the maximal-ratio combiner may be formulated
in the following two equivalent forms:

a. If

then choose symbol si over sk.

b. If, by the same token, 

then choose symbol si over sk. Here, d2(y1,si) denotes the squared Euclidean distance between 
the signal points y1 and si.

9.18 It may be argued that, in a rather loose sense, transmit-diversity and receive-diversity antenna
configurations are the dual of each other, as illustrated in Figure P9.18. 
a. Taking a general viewpoint, justify the mathematical basis for this duality.
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572 Chapter 9 Signaling over Fading Channels

b. However, we may cite the example of frequency-division diplexing (FDD) for which, in a strict
sense, we find that the duality depicted in Figure P9.18 is violated. How is it possible for the
violation to arise in this example?

“Space Diversity-on-Transmit” Systems

9.19 Show that the two-by-two channel matrix in (9.88), defined in terms of the multiplicative fading

factors    and , is a unitary matrix, as shown by

9.20 Derive the formula for the average probability of symbol error incurred by the Alamouti code. 

9.21 Figure P9.22 shows the extension of orthogonal space–time codes to the Alamouti code, using two
antennas on both transmit and receive. The sequence of signal encoding and transmissions is
identical to that of the single-receiver case of Figure 9.18. Part a of the table below defines the
channels between the transmit and receive antennas. Part b of the table defines the outputs of the
receive antennas at times  and , where T is the symbol duration.  
a. Derive expressions for the received signals , and , including the respective additive

noise components expressed in terms of the transmitted symbols.

b. Derive expressions for the line of combined outputs in terms of the received signals.

c. Derive the maximum-likelihood decision rule for the estimates  and . 

9.22 This problem explores a new interpretation of the Alamouti code. Let
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where  and  are both real numbers. The complex entry  in the 2-by-2 Alamouti code is
represented by the 2-by-2 real orthogonal matrix

Likewise, the complex-conjugated entry  is represented by the 2-by-2 real orthogonal matrix

a. Show that the 2-by-2 complex Alamouti code S is equivalent to the 4-by-4 real transmission
matrix

Figure P9.22
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574 Chapter 9 Signaling over Fading Channels

b. Show that S4 is an orthogonal matrix.

c. What is the advantage of the complex code S over the real code S4?

9.23 For two transmit antennas and simple receive antenna, the Alamouti code is said to be the only
optimal space–time block. Using the log-det formula of (9.117), justify this statement.

9.24 Show that the channel capacity of the Alamouti code is equal to the sum of the channel capacities of
two SISO systems with each one of them operating at half the original bit rate.

MIMO Wireless Communications

9.25 Show that, at high SNRs, the capacity gain of a MIMO wireless communication system with the
channel state known to the receiver is N = min{Nt,Nr} bits per second per hertz for every 3 dB
increase in SNR.

9.26 To calculate the outage probability of MIMO systems, we use the complementary cumulative distri-
bution function of the random channel matrix H rather than the cumulative probability function itself. 

Explain this rationale for calculating the outage probability.

9.27 Equation (9.120) defines the formula for the channel capacity of diversity-on-receive channel.

In Section 9.8 we pointed out that the selection combiner is a special case of the maximal-ratio
combiner. Using (9.120), formulate an expression for the channel capacity of wireless diversity
using the selection combiner.

9.28 For the special case of a MIMO system having Nt = Nr = N, show that the ergodic capacity of the
system scales linearly, rather than logarithmically, with increasing SNR as N approaches infinity.

9.29 In this problem we continue with the solution to Problem 9.28, namely

            as 

where Nt = Nr = N and  is the average eigenvalue of the matrix produced . What is
the value of the constant?

a. Justify the asymptotic result given in (9.119); that is,

b. What conclusion can you draw from this asymptotic result?

9.30 Suppose that an additive, temporally stationary, Gaussian interference v(t) corrupts the basic
complex channel model of (9.105). The interference v(t) has zero mean and correlation matrix Rv.
Evaluate the effect of the interference v(t) on the ergodic capacity of the MIMO link.

9.31 Consider a MIMO link for which the channel may be considered to be essentially “constant for k
users of the channel.”

a. Starting with the basic channel model of (9.105), formulate the input–output relationship of this
link with the input being described by the Nr-by-k matrix

b. How is the log-det capacity formula of the link correspondingly modified?

9.32 In a MIMO channel, the ability to exploit space-division multiple-access techniques for spectrally
efficient wireless communications is determined by the rank of the complex channel matrix H. (The
rank of a matrix is defined by the number of independent columns in the matrix.) For a given (Nt, Nr)
antenna configuration, it is desirable that the rank of H equal the minimum one of Nt transmit and Nr
receive antennas, for it is only then that we are able to exploit the full potential of the MIMO antenna

C
av

2elog
------------- 
   N 

av HH† H†H=

C
N
---- constant

S s1 s2  sk   =

Haykin_ch09_pp3.fm  Page 574  Friday, January 4, 2013  4:58 PM



Notes 575

configuration. Under special conditions, however, the rank of the channel matrix H is reduced to
unity, in which case the scattering (fading) energy flow across the MIMO link is effectively confined
to a very narrow pipe, and with it, the channel capacity is severely degraded.

Under the special conditions just described, a physical phenomenon known as the keyhole channel or
pinhole channel is known to arise. Using a propagation layout of the MIMO link, describe how this
phenomenon can be explained.

OFDMA and CDMA

9.33 Parts a and b of Figure 9.31 show the block diagrams of the transmitter and receiver of an OFDM
system, formulated on the basis of digital signal processing. It is informative to construct an analog
interpretation of the OFDM system, which is the objective of this problem.

a. Construct the analog interpretations of parts a and b in Figure 9.31.

b. With this construction at hand, compare the advantages and disadvantages of the digital and
analog implementations of OFDM.

9.34 Figure P9.34 depicts the model of a DS/BPSK system, where the order of spectrum spreading and
BPSK in the actual system has been interchanged; this is feasible because both operations are linear.
For system analysis, we build on signal-space theoretic ideas of Chapter 7, using this model and
assuming the presence of a jammer at the receiver input. Thus, whereas signal-space representation of
the transmitted signal, x(t), is one-dimensional, that of the jammer, j(t), is two-dimensional.

a. Derive the processing gain formula of (9.125).

b. Next, ignoring the benefit gained from coherent detection, derive the SNR formula of (9.126).

Notes

1. Local propagation effects are discussed in Chapter 1 of the classic book by Jakes (1974). For a
comprehensive treatment of this subject, see the books by Parsons (2000) and Molisch (2011).

2. Bessel functions are discussed in Appendix C.

3. To be precise, we should use the terminology “autocorrelation” function rather then “correlation”
function as we did in Section 9.3. However, to be consistent with the literature, hereafter we use the
terminology “correlation function” for the sake of simplicity.

4. On the basis of many measurements, the power-delay profile may be approximated by the one-
sided exponential functions (Molisch, 2011):

For a more generic model, the power-delay profile is viewed as the sum of several one-sided
exponential functions representing multiple clusters of interacting objects, as shown by

Figure P9.34

∑
Data
signal

b (t)

Estimate
of b (t)

s (t) x (t) u (t)y (t)Binary PSK
modulator

Carrier Local
carrier

j (t)

× ×

c (t) c (t)

Transmitter

PN code
generator

Local
PN code
generator

ReceiverChannel

Coherent
detector

P
h̃
 

= exp  –  for  0

0= otherwise



Haykin_ch09_pp3.fm  Page 575  Friday, January 4, 2013  4:58 PM



576 Chapter 9 Signaling over Fading Channels

where Pi, , and  are respectively the power, delay, and delay spread of the ith cluster.

5. The approximate approach described in Section 9.5 follows Van Trees (1971).

6. The complex tap-coefficient  is also referred to as the tap-gain or tap-weight.

7. The chi-squared distribution with two degrees of freedom is described in Appendix A.

8. The term “maximal-ratio combiner” was coined in a classic paper on linear diversity combining
techniques by Brennan (1959).

9. The three-point exposition presented in this section on maximal-ratio combining follows the
chapter by Stein in Schwartz et al. (1966: 653–654).

10. The idea of MIMO for wireless communications was first described in the literature by Foschini
(1996). In the same year, Teletar (1996) derived the capacity of multi-antenna Gaussian channels in
a technical report.

11. As a result of experimental measurements, the model is known to be decidedly non-Gaussian
owing to the impulsive nature of human-made electromagnetic interference and natural noise.

12. Detailed derivation of the ergodic capacity in (9.115) is presented in Appendix E.

13. The idea of OFDM has a long history, dating back to Chang (1966). Then, Weinstein and Ebert
(1971) used the FFT algorithm and guard intervals for the first digital implementation of OFDM.
The first use of OFDM for mobile communications is credited to Cemini (1985).

In the meantime, OFDM has developed into an indispensable tool for broadband wireless
communications and digital audio broadcasting.

14. The literature on spread spectrum communications is enormous. For classic papers on spread
spectrum communications, see the following two:

• The paper by Scholtz (1982) describes the origins of spread spectrum communications.

• The paper by Pickholtz, et al. (1982) addresses the fundamentals of spread spectrum
communications.

15. The Walsh–Hadamard sequences (codes) are named in honor of two pioneering contributions:

• Joseph L. Walsh (1923) for finding a new set of orthogonal functions with entries .

• Jacques Hadamard (1893) for finding a new set of square matrices also with entries , which
had all their rows (and columns) orthogonal.

For more detailed treatments of these two papers, see Harmuth (1970), and Seberry and Yamada
(1992), respectively.

16. To be rigorous mathematically, we should speak of the matrices A and B to be over the Galois
field, GF(2). To explain, for any prime p, there exists a finite field of p elements, denoted by GF(P).
For any positive integer b, we may expand the finite field GF(p) to a field of pb elements, which is
called an extension field of GF(p) and denoted by GF(pb). Finite fields are also called Galois fields in
honor of their discoverer.

Thus, for the example of (9.129), we have a Galois field of p = 2 and thus write GF(2).
Correspondingly, for the H4 in (9.130) we have the Galois field GF(22) = GF(4)

17. The original papers on Gold sequences are Gold (1967, 1968). A detailed discussion of Gold
sequences is presented in Holmes (1982).

18. The classic paper on the RAKE receiver is due to Price and Green (1958). For a good treatment
of the RAKE receiver, more detailed than that presented in Section 9.15, see Chapter 5 in the book
by Haykin and Mohr (2005). For application of the RAKE receiver in CDMA, see the book by
Viterbi (1995).
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CHAPTER

10
Error-Control Coding 

10.1 Introduction

In the previous three chapters we studied the important issue of data transmission over
communication channels under three different channel-impairment scenarios: 

• In Chapter 7 the focus of attention was on the kind of channels where AWGN is the
main source of channel impairment. An example of this first scenario is a satellite-
communication channel. 

• In Chapter 8 the focus of attention was intersymbol interference as the main source
of channel impairment. An example of this second scenario is the telephone
channel. 

• Then, in Chapter 9, we focused on multipath as a source of channel impairment. An
example for this third scenario is the wireless channel. 

Although, indeed, these three scenarios are naturally quite different from each other, they
do share a common practical shortcoming: reliability. This is where the need for error-
control coding, the topic of this chapter, assumes paramount importance.

Given these physical realities, the task facing the designer of a digital communication
system is that of providing a cost-effective facility for transmitting information from one
end of the system at a rate and level of reliability and quality that are acceptable to a user
at the other end. 

From a communication theoretic perspective, the key system parameters available for
achieving these practical requirements are limited to two:

• transmitted signal power, and 
• channel bandwidth. 

These two parameters, together with the power spectral density of receiver noise,
determine the signal energy per bit-to-noise power spectral density ratio, EbN0. In
Chapter 7 we showed that this ratio uniquely determines the BER produced by a particular
modulation scheme operating over a Gaussian noise channel. Practical considerations
usually place a limit on the value that we can assign to EbN0. To be specific, in practice,
we often arrive at a modulation scheme and find that it is not possible to provide
acceptable data quality (i.e., low enough error performance). For a fixed EbN0, the only
practical option available for changing data quality from problematic to acceptable is to
use error-control coding, which is the focus of attention in this chapter. In simple terms,
by incorporating a fixed number of redundant bits into the structure of a codeword at the
transmitter, it is feasible to provide reliable communication over a noisy channel, provided
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578 Chapter 10 Error-Control Coding

that Shannon’s code theorem, discussed in Chapter 5, is satisfied. In effect, channel
bandwidth is traded off for reliable communication.

Another practical motivation for the use of coding is to reduce the required EbN0 for a
fixed BER. This reduction in EbN0 may, in turn, be exploited to reduce the required
transmitted power or reduce the hardware costs by requiring a smaller antenna size in the
case of radio communications.

10.2 Error Control Using Forward Error Correction

Error control for data integrity may be exercised by means of forward error correction
(FEC).1 Figure 10.1a shows the model of a digital communication system using such an
approach. The discrete source generates information in the form of binary symbols. The
channel encoder in the transmitter accepts message bits and adds redundancy according to
a prescribed rule, thereby producing an encoded data stream at a higher bit rate. The
channel decoder in the receiver exploits the redundancy to decide which message bits in
the original data stream, given a noisy version of the encoded data stream, were actually
transmitted. The combined goal of the channel encoder and decoder is to minimize the
effect of channel noise. That is, the number of errors between the channel encoder input
(derived from the source) and the channel decoder output (delivered to the user) is
minimized.

For a fixed modulation scheme, the addition of redundancy in the coded messages
implies the need for increased transmission bandwidth. Moreover, the use of error-control
coding adds complexity to the system. Thus, the design trade-offs in the use of error-control
coding to achieve acceptable error performance include considerations of bandwidth and
system complexity.

Figure 10.1 Simplified models of a digital communication system. (a) Coding and modulation 
performed separately. (b) Coding and modulation combined. 
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10.3 Discrete Memoryless Channels 579

There are many different error-correcting codes (with roots in diverse mathematical
disciplines) that we can use. Historically, these codes have been classified into block codes
and convolutional codes. The distinguishing feature for this particular classification is the
presence or absence of memory in the encoders for the two codes.

To generate an (n, k) block code, the channel encoder accepts information in successive
k-bit blocks; for each block, it adds n – k redundant bits that are algebraically related to
the k message bits, thereby producing an overall encoded block of n bits, where n > k. The
n-bit block is called a codeword, and n is called the block length of the code. The channel
encoder produces bits at the rate R0 = (nk)Rs, where Rs is the bit rate of the information
source. The dimensionless ratio r = kn is called the code rate, where 0 < r < 1. The bit
rate R0, coming out of the encoder, is called the channel data rate. Thus, the code rate is a
dimensionless ratio, whereas the data rate produced by the source and the channel data
rate produced by the encoder are both measured in bits per second.

In a convolutional code, the encoding operation may be viewed as the discrete-time
convolution of the input sequence with the impulse response of the encoder. The duration
of the impulse response equals the memory of the encoder. Accordingly, the encoder for a
convolutional code operates on the incoming message sequence, using a “sliding window”
equal in duration to its own memory. This, in turn, means that in a convolutional code,
unlike in a block code, the channel encoder accepts message bits as a continuous sequence
and thereby generates a continuous sequence of encoded bits at a higher rate.

In the model depicted in Figure 10.1a, the operations of channel coding and modulation
are performed separately in the transmitter; and likewise for the operations of detection
and decoding in the receiver. When, however, bandwidth efficiency is of major concern,
the most effective method of implementing forward error-control correction coding is to
combine it with modulation as a single function, as shown in Figure 10.1b. In this second
approach, coding is redefined as a process of imposing certain patterns on the transmitted
signal and the resulting code is called a trellis code.

Block codes, convolutional codes, and trellis codes represent the classical family of
codes that follow traditional approaches rooted in algebraic mathematics in one form or
another. In addition to these classical codes, we now have a “new” generation of coding
techniques exemplified by turbo codes and low-density parity-check (LDPC) codes. These
new codes are not only fundamentally different, but they have also already taken over the
legacy coding schemes very quickly in many practical systems. Simply put, turbo codes
and LDPC codes are structured in such a way that decoding can be split into a number of
manageable steps, thereby making it possible to construct powerful codes in a
computationally feasible manner, which is not attainable with the legacy codes. Turbo
codes and LDPC codes are discussed in the latter part of the chapter.

10.3 Discrete Memoryless Channels

Returning to the model of Figure 10.1a, the waveform channel is said to be memoryless if
in a given interval the detector output depends only on the signal transmitted in that
interval and not on any previous transmission. Under this condition, we may model the
combination of the modulator, the waveform channel, and the demodulator (detector) as a
discrete memoryless channel. Such a channel is completely described by the set of
transition probabilities denoted by p(j |i), where i denotes a modulator input symbol, j
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denotes a demodulator output symbol, and p(j |i) is the probability of receiving symbol j
given that symbol i was sent. (Discrete memoryless channels were described previously at
some length in Chapter 5 on information theory.)

The simplest discrete memoryless channel results from the use of binary input and
binary output symbols. When binary coding is used, the modulator has only the binary
symbols 0 and 1 as inputs. Likewise, the decoder has only binary inputs if binary
quantization of the demodulator output is used; that is, a hard decision is made on the
demodulator output as to which binary symbol was actually transmitted. In this situation,
we have a binary symmetric channel with a transition probability diagram as shown in
Figure 10.2. From Chapter 5, we recall that the binary symmetric channel, assuming a
channel noise modeled as AWGN, is completely described by the transition probability.
Hard-decision decoding takes advantage of the special algebraic structure that is built into
the design of channel codes; the decoding is therefore relatively easy to perform.

However, the use of hard decisions prior to decoding causes an irreversible loss of
valuable information in the receiver. To reduce this loss, soft-decision coding can be used.
This is achieved by including a multilevel quantizer at the demodulator output, as
illustrated in Figure 10.3a for the case of binary PSK signals. The input–output
characteristic of the quantizer is shown in Figure 10.3b. The modulator has only binary
symbols 0 and 1 as inputs, but the demodulator output now has an alphabet with Q
symbols. Assuming the use of the three-level quantizer described in Figure 10.3b, we have
Q = 8. Such a channel is called a binary input, Q-ary output discrete memoryless channel.
The corresponding channel transition probability diagram is shown in Figure 10.3c. The
form of this distribution, and consequently the decoder performance, depends on the
location of the representation levels of the quantizer, which, in turn, depends on the signal
level and noise variance. Accordingly, the demodulator must incorporate automatic gain
control if an effective multilevel quantizer is to be realized. Moreover, the use of soft
decisions complicates the implementation of the decoder. Nevertheless, soft-decision
decoding offers significant improvement in performance over hard-decision decoding by
taking a probabilistic rather than an algebraic approach. It is for this reason that soft-
decision decoders are also referred to as probabilistic decoders.

Channel Coding Theorem Revisited

In Chapter 5 on information theory we established the concept of channel capacity, which,
for a discrete memoryless channel, represents the maximum amount of information that

Figure 10.2 Transition probability diagram of binary symmetric channel. 
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10.3 Discrete Memoryless Channels 581

can be transmitted per channel use in a reliable manner. The channel coding theorem
states:

If a discrete memoryless channel has capacity C and a source generates 
information at a rate less than C, then there exists a coding technique such that 
the output of the source may be transmitted over the channel with an arbitrarily 
low probability of symbol error. 

For the special case of a binary symmetric channel, the theorem teaches us that if the code
rate r is less than the channel capacity C, then it is possible to find a code that achieves
error-free transmission over the channel. Conversely, it is not possible to find such a code
if the code rate r is greater than the channel capacity C. Thus, the channel coding theorem
specifies the channel capacity C as a fundamental limit on the rate at which the
transmission of reliable (error-free) messages can take place over a discrete memoryless
channel. The issue that matters here is not the SNR, so long as it is large enough, but how
the channel input is encoded.

The most unsatisfactory feature of the channel coding theorem, however, is its
nonconstructive nature. The theorem asserts the existence of good codes but does not tell
us how to find them. By good codes we mean families of channel codes that are capable of
providing reliable transmission of information (i.e., at arbitrarily small probability of
symbol error) over a noisy channel of interest at bit rates up to a maximum value less than
the capacity of that channel. The error-control coding techniques described in this chapter
provide different methods of designing good codes.

Figure 10.3 Binary input, Q-ary output discrete memoryless channel. (a) Receiver for binary PSK. 
(b) Transfer characteristic of a multilevel quantizer. (c) Channel transition probability diagram. Parts 
(b) and (c) are illustrated for eight levels of quantization. 
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582 Chapter 10 Error-Control Coding

Notation

Many of the codes described in this chapter are binary codes, for which the alphabet
consists only of binary symbols 0 and 1. In such a code, the encoding and decoding
functions involve the binary arithmetic operations of modulo-2 addition and multiplication
performed on codewords in the code.

Throughout this chapter, we use the ordinary plus sign (+) to denote modulo-2 addition.
The use of this terminology will not lead to confusion because the whole chapter relies on
binary arithmetic. In so doing, we avoid use of the special symbol as we did in previous
parts of the book. Thus, according to the notation used in this chapter, the rules for
modulo-2 addition are as follows:

Because 1 + 1 = 0, it follows that 1 = –1. Hence, in binary arithmetic, subtraction is the
same as addition. The rules for modulo-2 multiplication are as follows:

Division is trivial, in that we have

and division by 0 is not permitted. Modulo-2 addition is the EXCLUSIVE-OR operation
in logic and modulo-2 multiplication is the AND operation.

10.4 Linear Block Codes

By definition:

A code is said to be linear if any two codewords in the code can be added in 
modulo-2 arithmetic to produce a third codeword in the code. 

Consider, then, an (n,k) linear block code, in which k bits of the n code bits are always
identical to the message sequence to be transmitted. The (n – k) bits in the remaining
portion are computed from the message bits in accordance with a prescribed encoding rule
that determines the mathematical structure of the code. Accordingly, these (n – k) bits are
referred to as parity-check bits. Block codes in which the message bits are transmitted in
unaltered form are called systematic codes. For applications requiring both error detection
and error correction, the use of systematic block codes simplifies implementation of the
decoder.

Let m0, m1, , mk – 1 constitute a block of k arbitrary message bits. Thus, we have 2k

distinct message blocks. Let this sequence of message bits be applied to a linear block

0 0 0=+

1 0 1=+

0 1 1=+

1 1 0=+

0 0 0=
1 0 0=
0 1 0=
1 1 1=

1 1 1=
0 1 0=
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10.4 Linear Block Codes 583

encoder, producing an n-bit codeword whose elements are denoted by c0, c1, , cn – 1. Let
b0, b1, , bn – k – 1 denote the (n – k) parity-check bits in the codeword. For the code to
possess a systematic structure, a codeword is divided into two parts, one of which is
occupied by the message bits and the other by the parity-check bits. Clearly, we have the
option of sending the message bits of a codeword before the parity-check bits, or vice versa.
The former option is illustrated in Figure 10.4, and its use is assumed in the following.

According to the representation of Figure 10.4, the (n – k) leftmost bits of a codeword
are identical to the corresponding parity-check bits and the k rightmost bits of the
codeword are identical to the corresponding message bits. We may therefore write

(10.1)

The (n – k) parity-check bits are linear sums of the k message bits, as shown by the
generalized relation

(10.2)

where the coefficients are defined as follows:

(10.3)

The coefficients pij are chosen in such a way that the rows of the generator matrix are
linearly independent and the parity-check equations are unique. The pij used here should
not be confused with the p(j |i) introduced in Section 10.3.

The system of (10.1) and (10.2) defines the mathematical structure of the (n,k) linear
block code. This system of equations may be rewritten in a compact form using matrix
notation. To proceed with this reformulation, we respectively define the 1-by-k message
vector m, the 1-by-(n – k) parity-check vector b, and the 1-by-n code vector c as follows:

(10.4)

(10.5)

(10.6)

Note that all three vectors are row vectors. The use of row vectors is adopted in this
chapter for the sake of being consistent with the notation commonly used in the coding
literature. We may thus rewrite the set of simultaneous equations defining the parity
check-bits in the compact matrix form

b = mP (10.7)

Figure 10.4 Structure of systematic codeword. 

ci
bi, i 0 1  n k– 1– =

mi+k n– , i n k n k– 1  n 1– +–=






=

bi p0im0 p1im1  pk 1 i– mk 1–+ + +=

pij
1 if bi depends on mj

0 otherwise



=

m m0 m1  mk 1–   =

b b0 b1  bn k 1––   =

c c0 c1  cn 1–   =

b0, b1, . . ., bn – k – 1 m0, m1, . . ., mk – 1

Parity-check bits Message bits
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584 Chapter 10 Error-Control Coding

The P in (10.7) is the k-by-(n – k) coefficient matrix defined by

(10.8)

where the element pij is 0 or 1.
From the definitions given in (10.4)–(10.6), we see that c may be expressed as a

partitioned row vector in terms of the vectors m and b as follows:

(10.9)

Hence, substituting (10.7) into (10.9) and factoring out the common message vector m, we
get

(10.10)

where Ik is the k-by-k identity matrix:

(10.11)

Define the k-by-n generator matrix 

(10.12)

The generator matrix G of (10.12) is said to be in the canonical form, in that its k rows are
linearly independent; that is, it is not possible to express any row of the matrix G as a
linear combination of the remaining rows. Using the definition of the generator matrix G,
we may simplify (10.10) as

(10.13)

The full set of codewords, referred to simply as the code, is generated in accordance
with (10.13) by passing the message vector m range through the set of all 2k binary
k-tuples (1-by-k vectors). Moreover, the sum of any two codewords in the code is another
codeword. This basic property of linear block codes is called closure. To prove its validity,
consider a pair of code vectors ci and cj corresponding to a pair of message vectors mi and
mj, respectively. Using (10.13), we may express the sum of ci and cj as

        

The modulo-2 sum of mi and mj represents a new message vector. Correspondingly, the
modulo-2 sum of ci and cj represents a new code vector.

There is another way of expressing the relationship between the message bits and
parity-check bits of a linear block code. Let H denote an (n – k)-by-n matrix, defined as

P

p00 p01 ⋯ p0 n k 1––

p10 p11 ⋯ p1 n k 1––

⋮ ⋮ ⋮
pk 1– 0 pk 1 1– ⋯ pk 1– n k 1––

=

c b ⋮ m=

c m P ⋮ Ik=

Ik

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

=

G P ⋮ Ik=

c mG=

ci cj+ miG mjG+=

mi mj+ G=
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10.4 Linear Block Codes 585

(10.14)

where PT is an (n – k)-by-k matrix, representing the transpose of the coefficient matrix P,
and In – k is the (n – k)-by-(n – k) identity matrix. Accordingly, we may perform the
following multiplication of partitioned matrices:

where we have used the fact that multiplication of a rectangular matrix by an identity
matrix of compatible dimensions leaves the matrix unchanged. In modulo-2 arithmetic,
the matrix sum PT + PT is 0. We therefore have

(10.15)

Equivalently, we have GHT = 0, where 0 is a new null matrix. Postmultiplying both sides
of (10.13) by HT, the transpose of H, and then using (10.15), we get the inner product

(10.16)

The matrix H is called the parity-check matrix of the code and the equations specified by
(10.16) are called parity-check equations.

The generator equation (10.13) and the parity-check detector equation (10.16) are basic
to the description and operation of a linear block code. These two equations are depicted
in the form of block diagrams in Figure 10.5a and b, respectively.

Syndrome: Definition and Properties

The generator matrix G is used in the encoding operation at the transmitter. On the other
hand, the parity-check matrix H is used in the decoding operation at the receiver. In the
context of the latter operation, let r denote the 1-by-n received vector that results from

Figure 10.5 Block diagram representations of the generator 
equation (10.13) and the parity-check equation (10.16). 
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=
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586 Chapter 10 Error-Control Coding

sending the code vector c over a noisy binary channel. We express the vector r as the sum
of the original code vector c and a new vector e, as shown by

(10.17)

The vector e is called the error vector or error pattern. The ith element of e equals 0 if the
corresponding element of r is the same as that of c. On the other hand, the ith element of e
equals 1 if the corresponding element of r is different from that of c, in which case an
error is said to have occurred in the ith location. That is, for i = 1, 2,, n, we have

(10.18)

The receiver has the task of decoding the code vector c from the received vector r. The
algorithm commonly used to perform this decoding operation starts with the computation
of a 1-by-(n – k) vector called the error-syndrome vector or simply the syndrome.2 The
importance of the syndrome lies in the fact that it depends only upon the error pattern.

Given a 1-by-n received vector r, the corresponding syndrome is formally defined as

(10.19)

Accordingly, the syndrome has the following important properties.

PROPERTY 1 The syndrome depends only on the error pattern and not on the transmitted codeword.

To prove this property, we first use (10.17) and (10.19), and then (10.16) to write

(10.20)

Hence, the parity-check matrix H of a code permits us to compute the syndrome s, which
depends only upon the error pattern e.

To expand on Property 1, suppose that the error pattern e contains a pair of errors in
locations i and j caused by the additive channel noise, as shown by

Then, substituting this error pattern into (10.20) yields the syndrome

where hi and hj are respectively the ith and jth rows of the matrix HT. In words, we may
state the following corollary to Property 1:

For a linear block code, the syndrome s is equal to the sum of those rows of 
the transposed parity-check matrix HT where errors have occurred due to 
channel noise.

PROPERTY 2 All error patterns that differ by a codeword have the same syndrome.

For k message bits, there are 2k distinct code vectors denoted as ci, where i = 0, 1, , 2k – 1.
Correspondingly, for any error pattern e we define the 2k distinct vectors ei as follows

          for  i = 0, 1, , 2k – 1 (10.21)

r c e+=

ei
1 if an error has occurred in the ith location

0 otherwise



=

s rH
T

=

s c e+ HT
=

cH
T

eH
T

+=

eH
T

=

e 001i001j00 =

s hi hj+=

ei e ci+=
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10.4 Linear Block Codes 587

The set of vectors (ei, i = 0, 1, , 2k – 1) defined in (10.21) is called a coset of the code. In
other words, a coset has exactly 2k elements that differ at most by a code vector. Thus, an
(n,k) linear block code has 2n – k possible cosets. In any event, multiplying both sides of
(10.21) by the matrix HT and again using (10.16), we get

(10.22)

which is independent of the index i. Accordingly, we may say: 

Each coset of the code is characterized by a unique syndrome.

We may put Properties 1 and 2 in perspective by expanding (10.20). Specifically, with the
matrix H having the systematic form given in (10.14), where the matrix P is itself defined
by (10.8), we find from (10.20) that the (n – k) elements of the syndrome s are linear
combinations of the n elements of the error pattern e, as shown by

(10.23)

This set of (n – k) linear equations clearly shows that the syndrome contains information
about the error pattern and may, therefore, be used for error detection. However, it should
be noted that the set of equations (10.23) is underdetermined, in that we have more
unknowns than equations. Accordingly, there is no unique solution for the error pattern.
Rather, there are 2n error patterns that satisfy (10.23) and, therefore, result in the same
syndrome, in accordance with Property 2 and (10.22). In particular, with 2n – k possible
syndrome vectors, the information contained in the syndrome s about the error pattern e is
not enough for the decoder to compute the exact value of the transmitted code vector.
Nevertheless, knowledge of the syndrome s reduces the search for the true error pattern e
from 2n to 2n – k possibilities. Given these possibilities, the decoder has the task of making
the best selection from the cosets corresponding to s.

Minimum Distance Considerations

Consider a pair of code vectors c1 and c2 that have the same number of elements. The
Hamming distance, denoted by d(c1,c2), between such a pair of code vectors is defined as
the number of locations in which their respective elements differ.

The Hamming weight w(c) of a code vector c is defined as the number of nonzero
elements in the code vector. Equivalently, we may state that the Hamming weight of a
code vector is the distance between the code vector and the all-zero code vector. In a
corresponding way, we may introduce a new parameter called the minimum distance dmin,
for which we make the statement:

The minimum distance dmin of a linear block code is the smallest Hamming 
distance between any pair of codewords. 

eiH
T

eH
T

ciH
T

+=

eH
T

=

s0 e0 en k– p00 en k– 1+ p10
 en k– pk 1 0–+ + + +=

s1 e1 en k– p01 en k– 1+ p11
 en k– pk 1 1–+ + + +=

⋮
sn k– 1– en k– 1– en k– p0 n k– 1–

 en 1– p k 1 n– k– 1+ + + +=
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588 Chapter 10 Error-Control Coding

That is, the minimum distance is the same as the smallest Hamming weight of the difference
between any pair of code vectors. From the closure property of linear block codes, the sum
(or difference) of two code vectors is another code vector. Accordingly, we may also state: 

The minimum distance of a linear block code is the smallest Hamming weight 
of the nonzero code vectors in the code.

The minimum distance dmin is related to the structure of the parity-check matrix H of the
code in a fundamental way. From (10.16) we know that a linear block code is defined by
the set of all code vectors for which cHT = 0, where HT is the transpose of the parity-check
matrix H. Let the matrix H be expressed in terms of its columns as shown by

(10.24)

Then, for a code vector c to satisfy the condition cHT = 0, the vector c must have ones in
such positions that the corresponding rows of HT sum to the zero vector 0. However, by
definition, the number of ones in a code vector is the Hamming weight of the code vector.
Moreover, the smallest Hamming weight of the nonzero code vectors in a linear block
code equals the minimum distance of the code. Hence, we have another useful result stated
as follows: 

The minimum distance of a linear block code is defined by the minimum 
number of rows of the matrix HT whose sum is equal to the zero vector.

From this discussion, it is apparent that the minimum distance dmin of a linear block code
is an important parameter of the code. Specifically, dmin determines the error-correcting
capability of the code. Suppose an (n,k) linear block code is required to detect and correct
all error patterns over a binary symmetric channel, and whose Hamming weight is less
than or equal to t. That is, if a code vector ci in the code is transmitted and the received
vector is r = ci + e, we require that the decoder output  whenever the error pattern e
has a Hamming weight

 w(e)  t

We assume that the 2k code vectors in the code are transmitted with equal probability. The
best strategy for the decoder then is to pick the code vector closest to the received vector r;
that is, the one for which the Hamming distance d(ci,r) is the smallest. With such a
strategy, the decoder will be able to detect and correct all error patterns of Hamming weight
w(e), provided that the minimum distance of the code is equal to or greater than 2t + 1. We
may demonstrate the validity of this requirement by adopting a geometric interpretation of
the problem. In particular, the transmitted 1-by-n code vector and the 1-by-n received
vector are represented as points in an n-dimensional space. Suppose that we construct two
spheres, each of radius t, around the points that represent code vectors ci and cj under two
different conditions:

1. Let these two spheres be disjoint, as depicted in Figure 10.6a. For this condition to
be satisfied, we require that d(ci,cj)  2t + 1. If, then, the code vector ci is transmitted
and the Hamming distance d(ci,r)  t, it is clear that the decoder will pick ci, as it is
the code vector closest to the received vector r. 

2. If, on the other hand, the Hamming distance d(ci,cj)  2t, the two spheres around ci
and cj intersect, as depicted in Figure 10.6b. In this second situation, we see that if ci

H h1 h2  hn   =

ĉ ci=
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10.4 Linear Block Codes 589

is transmitted, there exists a received vector r such that the Hamming distance
d(ci,r)  t, yet r is as close to cj as it is to ci. Clearly, there is now the possibility of
the decoder picking the vector cj, which is wrong. 

We thus conclude the ideas presented thus far by saying:

An (n,k) linear block code has the power to correct all error patterns of weight t 
or less if, and only if, d(ci,cj) > 2t + 1, for all ci and cj.

By definition, however, the smallest distance between any pair of code vectors in a code is
the minimum distance dmin of the code. We may, therefore, go on to state: 

An (n,k) linear block code of minimum distance dmin can correct up to t errors 
if, and only if,

(10.25)

where  denotes the largest integer less than or equal to the enclosed 
quantity. 

The condition described in (10.25) is important because it gives the error-correcting
capability of a linear block code a quantitative meaning.

Syndrome Decoding

We are now ready to describe a syndrome-based decoding scheme for linear block codes.
Let  denote the 2k code vectors of an (n, k) linear block code. Let r denote
the received vector, which may have one of 2n possible values. The receiver has the task of
partitioning the 2n possible received vectors into 2k disjoint subsets  in
such a way that the ith subset Di corresponds to code vector ci for 1 < i < 2k. The received
vector r is decoded into ci if it is in the ith subset. For the decoding to be correct, r must be
in the subset that belongs to the code vector ci that was actually sent.

The 2k subsets described herein constitute a standard array of the linear block code. To
construct it, we exploit the linear structure of the code by proceeding as follows:

1. The 2k code vectors are placed in a row with the all-zero code vector c1 as the
leftmost element.

2. An error pattern e2 is picked and placed under c1, and a second row is formed by
adding e2 to each of the remaining code vectors in the first row; it is important that

Figure 10.6 (a) Hamming distance d(ci,cj)  2t + 1. (b) Hamming distance 
d(ci,cj)  2t. The received vector is denoted by r.

(a) (b)

ci cjr rci cj

t t t t

t
1
2
--- dmin 1– 

c1 c2  c2
k  

D1 D2  D2
k  

Haykin_ch10_pp3.fm  Page 589  Friday, January 4, 2013  5:03 PM



590 Chapter 10 Error-Control Coding

the error pattern chosen as the first element in a row has not previously appeared in
the standard array.

3. Step 2 is repeated until all the possible error patterns have been accounted for.

Figure 10.7 illustrates the structure of the standard array so constructed. The 2k columns of
this array represent the disjoint subsets . The 2n–k rows of the array
represent the cosets of the code, and their first elements  are called coset
leaders.

For a given channel, the probability of decoding error is minimized when the most
likely error patterns (i.e., those with the largest probability of occurrence) are chosen as
the coset leaders. In the case of a binary symmetric channel, the smaller we make the
Hamming weight of an error pattern, the more likely it is for an error to occur.
Accordingly, the standard array should be constructed with each coset leader having the
minimum Hamming weight in its coset.

We are now ready to describe a decoding procedure for linear block codes:

1. For the received vector r, compute the syndrome s = rHT.

2. Within the coset characterized by the syndrome s, identify the coset leader (i.e., the
error pattern with the largest probability of occurrence); call it e0.

3. Compute the code vector

c = r + e0 (10.26)

as the decoded version of the received vector r.

This procedure is called syndrome decoding.

EXAMPLE 1 Hamming Codes

For any positive integer m > 3, there exists a linear block code with the following
parameters:

code length n = 2m – 1

number of message bits k = 2m – m – 1

number of parity-check bits n – k = m

Such a linear block code for which the error-correcting capability t = 1 is called a
Hamming code.3 To be specific, consider the example of m = 3, yielding the (7, 4)
Hamming code with n = 7 and k = 4. The generator of this code is defined by

Figure 10.7 Standard array for an (n,k) block code. 

c1 = 0

e2

. . .

e3

ej

. . .

e2n – k

c2

c2 + e2

. . .

c2 + e3

c2 + ej

. . .

c2 + e2n – k

c3

c3 + e2

. . .

c3 + e3

c3 + ej

. . .

. . .

. . .

. . .

. . .

c3 + e2n – k

ci

ci + e2

. . .

ci + e3

ci + ej

. . .

. . .

. . .

. . .

. . .

ci + e2n – k

c2k

c2k + e2

. . .

c2k + e3

c2k + ej

. . .
c2k + e2n – k

D1 D2  D2
k  

e2  e2
n k– 
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10.4 Linear Block Codes 591

which conforms to the systematic structure of (10.12).
The corresponding parity-check matrix is given by

The operative property embodied in this equation is that the columns of the parity-check
matrix P consist of all the nonzero m-tuples, where m = 3.

With k = 4, there are 2k = 16 distinct message words, which are listed in Table 10.1. For
a given message word, the corresponding codeword is obtained by using (10.13). Thus, the
application of this equation results in the 16 codewords listed in Table 10.1.

In Table 10.1, we have also listed the Hamming weights of the individual codewords in
the (7,4) Hamming code. Since the smallest of the Hamming weights for the nonzero
codewords is 3, it follows that the minimum distance of the code is 3, which is what it
should be by definition. Indeed, all Hamming codes have the property that the minimum
distance dmin = 3, independent of the value assigned to the number of parity bits m.

To illustrate the relation between the minimum distance dmin and the structure of the
parity-check matrix H, consider the codeword 0110100. In matrix multiplication, defined

Table 10.1 Codewords of a (7,4) Hamming code

Message word Codeword
Weight of
codeword Message word Codeword

Weight of
codeword

0000

0001

0010

0011

0100

0101

0110

0111

0000000

1010001

1110010

0100011

0110100

1100101

1000110

0010111

0

3

4

3

3

4

3

4

1000

1001

1010

1011

1100

1101

1110

1111

1101000

0111001

0011010

1001011

1011100

0001101

0101110

1111111

3

4

3

3

4

3

4

7

G

1 1 0 ⋮ 1 0 0 0

0 1 1 ⋮ 0 1 0 0

1 1 1 ⋮ 0 0 1 0

1 0 1 ⋮ 0 0 0 1

P Ik

= {  {
 

H
1 0 0 ⋮ 1 0 1 1

0 1 0 ⋮ 1 1 1 0

0 0 1 ⋮ 0 1 1 1

=

In k– P
T {  {
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592 Chapter 10 Error-Control Coding

by (10.16), the nonzero elements of this codeword “sift” out the second, third, and fifth
columns of the matrix H, yielding

We may perform similar calculations for the remaining 14 nonzero codewords. We thus
find that the smallest number of columns in H that sums to zero is 3, reconfirming the
defining condition   dmin = 3.

An important property of binary Hamming codes is that they satisfy the condition of
(10.25) with the equality sign, assuming that t = 1. Thus, assuming single-error patterns,
we may formulate the error patterns listed in the right-hand column of Table 10.2. The
corresponding eight syndromes, listed in the left-hand column, are calculated in
accordance with (10.20). The zero syndrome signifies no transmission errors.

Suppose, for example, the code vector [1110010] is sent and the received vector is
[1100010] with an error in the third bit. Using (10.19), the syndrome is calculated to be

From Table 10.2 the corresponding coset leader (i.e., error pattern with the highest
probability of occurrence) is found to be [0010000], indicating correctly that the third bit
of the received vector is erroneous. Thus, adding this error pattern to the received vector,
in accordance with (10.26), yields the correct code vector actually sent.

Table 10.2 Decoding table for the (7,4) 
Hamming code defined in Table 10.1

Syndrome Error pattern

000
100
010
001
110
011
111
101

0000000
1000000
0100000
0010000
0001000
0000100
0000010
0000001

0

1

0

0

0

1

0

1

1

+ +
0

0

0

=

s 1100010 

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 1 1

1 0 1

=

0 0 1=
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10.5 Cyclic Codes

Cyclic codes form a subclass of linear block codes. Indeed, many of the important linear
block codes discovered to date are either cyclic codes or closely related to cyclic codes.
An advantage of cyclic codes over most other types of codes is that they are easy to
encode. Furthermore, cyclic codes possess a well-defined mathematical structure, which
has led to the development of very efficient decoding schemes for them.

A binary code is said to be a cyclic code if it exhibits two fundamental properties:

 PROPERTY 1 Linearity Property

The sum of any two codewords in the code is also a codeword.

PROPERTY 2 Cyclic Property

Any cyclic shift of a codeword in the code is also a codeword.

Property 1 restates the fact that a cyclic code is a linear block code (i.e., it can be described
as a parity-check code). To restate Property 2 in mathematical terms, let the n-tuple

 denote a codeword of an  linear block code. The code is a cyclic
code if the n-tuples

are all codewords in the code. 
To develop the algebraic properties of cyclic codes, we use the elements

 of a codeword to define the code polynomial

(10.27)

where X is an indeterminate. Naturally, for binary codes, the coefficients are 1s and 0s.
Each power of X in the polynomial  represents a one-bit shift in time. Hence,
multiplication of the polynomial  by X may be viewed as a shift to the right. The key
question is: How do we make such a shift cyclic? The answer to this question is addressed
next.

Let the code polynomial  in (10.27) be multiplied by Xi, yielding

Recognizing, for example, that  in modulo-2 addition, we may
manipulate the preceding equation into the following compact form:

(10.28)

where the polynomial q(X) is defined by

(10.29)

c0 c1  cn 1–   n k 

cn 1– c0  cn 2–   

cn 2– cn 1–  cn 3–   

⋮
c1 c2  cn 1– c0    

c0 c1  cn 1–  

c X  c0 c1X c2X
2  cn 1– X

n 1–
+ + + +=

c X 
c X 

c X 

X
i
c X  c0X

i
c1X

i 1+  cn i– 1– X
n 1–  cn 1– X

n i 1–+
+ + + + +=

cn i– cn i–+ 0=

X
i
c X  q X  X

n
1+  c

i 
X +=
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Haykin_ch10_pp3.fm  Page 593  Friday, January 4, 2013  5:03 PM



594 Chapter 10 Error-Control Coding

As for the polynomial  in (10.28), it is recognized as the code polynomial of the
codeword  obtained by applying i cyclic shifts to the
codeword . Moreover, from (10.28) we readily see that

 is the remainder that results from dividing  by . We may thus
formally state the cyclic property in polynomial notation as follows:

If c(X) is a code polynomial, then the polynomial

(10.30)

is also a code polynomial for any cyclic shift i; the term mod is the abbreviation 
for modulo.

The special form of polynomial multiplication described in (10.30) is referred to as
multiplication modulo . In effect, the multiplication is subject to the constraint

, the application of which restores the polynomial  to order  for all
. Note that, in modulo-2 arithmetic,  has the same value as .

Generator Polynomial

The polynomial  and its factors play a major role in the generation of cyclic codes.
Let g(X) be a polynomial of degree  that is a factor of ; as such, g(X) is the
polynomial of least degree in the code. In general, g(X) may be expanded as follows:

(10.31)

where the coefficient  is equal to 0 or 1 for . According to this
expansion, the polynomial g(X) has two terms with coefficient 1 separated by 
terms. The polynomial g(X) is called the generator polynomial of a cyclic code. A cyclic
code is uniquely determined by the generator polynomial g(X) in that each code
polynomial in the code can be expressed in the form of a polynomial product as follows:

(10.32)

where a(X) is a polynomial in X with degree . The c(X) so formed satisfies the
condition of (10.30) since g(X) is a factor of . 

Suppose we are given the generator polynomial g(X) and the requirement is to encode
the message sequence  into an  systematic cyclic code. That is,
the message bits are transmitted in unaltered form, as shown by the following structure for
a codeword (see Figure 10.4):

Let the message polynomial be defined by

(10.33)

and let

(10.34)
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10.5 Cyclic Codes 595

Then, according to (10.1), we want the code polynomial to be in the form

(10.35)

To this end, the use of (10.32) and (10.35) yields

Equivalently, invoking modulo-2 addition, we may also write

(10.36)

Equation (10.36) states that the polynomial b(X) is the remainder left over after dividing
 by g(X).

We may now summarize the steps involved in the encoding procedure for an (n,k)
cyclic code, assured of a systematic structure. Specifically, we proceed as follows:

Step 1: Premultiply the message polynomial m(X) by Xn–k.

Step 2: Divide  by the generator polynomial g(X), obtaining the remainder b(X).

Step 3: Add b(X) to Xn–km(X), obtaining the code polynomial c(X).

Parity-Check Polynomial

An (n,k) cyclic code is uniquely specified by its generator polynomial g(X) of order (n – k).
Such a code is also uniquely specified by another polynomial of degree k, which is called
the parity-check polynomial, defined by

(10.37)

where the coefficients hi are 0 or 1. The parity-check polynomial h(X) has a form similar
to the generator polynomial, in that there are two terms with coefficient 1, but separated by

 terms.
The generator polynomial g(X) is equivalent to the generator matrix G as a description

of the code. Correspondingly, the parity-check polynomial h(X) is an equivalent
representation of the parity-check matrix H. We thus find that the matrix relation HGT = 0
presented in (10.15) for linear block codes corresponds to the relationship

(10.38)

Accordingly, we may make the statement:

The generator polynomial g(X) and the parity-check polynomial h(X) are 
factors of the polynomial Xn + 1, as shown by

(10.39)

This statement provides the basis for selecting the generator or parity-check polynomial of
a cyclic code. In particular, if g(X) is a polynomial of degree (n – k) and it is also a factor
of Xn + 1, then g(X) is the generator polynomial of an (n,k) cyclic code. Equivalently, if
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596 Chapter 10 Error-Control Coding

h(X) is a polynomial of degree k and it is also a factor of Xn + 1, then h(X) is the parity-
check polynomial of an (n,k) cyclic code.

A final comment is in order. Any factor of Xn + 1 with degree (n – k) can be used as a
generator polynomial. The fact of the matter is that, for large values of n, the polynomial
Xn + 1 may have many factors of degree n – k. Some of these polynomial factors generate
good cyclic codes, whereas some of them generate bad cyclic codes. The issue of how to
select generator polynomials that produce good cyclic codes is very difficult to resolve.
Indeed, coding theorists have expended much effort in the search for good cyclic codes.

Generator and Parity-Check Matrices

Given the generator polynomial g(X) of an (n,k) cyclic code, we may construct the
generator matrix G of the code by noting that the k polynomials g(X), Xg(X), , Xk–1g(X)
span the code. Hence, the n-tuples corresponding to these polynomials may be used as
rows of the k-by-n generator matrix G.

However, the construction of the parity-check matrix H of the cyclic code from the
parity-check polynomial h(X) requires special attention, as described here. Multiplying
(10.39) by a(x) and then using (10.32), we obtain

(10.40)

The polynomials c(X) and h(X) are themselves defined by (10.27) and (10.37) respectively,
which means that their product on the left-hand side of (10.40) contains terms with powers
extending up to . On the other hand, the polynomial a(X) has degree  or less,
the implication of which is that the powers of  do not appear in the
polynomial on the right-hand side of (10.40). Thus, setting the coefficients of

 in the expansion of the product polynomial c(X)h(X) equal to zero, we
obtain the following set of  equations:

(10.41)

Comparing (10.41) with the corresponding relation (10.16), we may make the following
important observation:

The coefficients of the parity-check polynomial h(X) involved in the 
polynomial multiplication described in (10.41) are arranged in reversed order 
with respect to the coefficients of the parity-check matrix H involved in forming 
the inner product of vectors described in (10.16). 

This observation suggests that we define the reciprocal of the parity-check polynomial as
follows:

(10.42)
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10.5 Cyclic Codes 597

which is also a factor of . The n-tuples pertaining to the  polynomials
 may now be used in rows of the -by-n

parity-check matrix H.
In general, the generator matrix G and the parity-check matrix H constructed in the

manner described here are not in their systematic forms. They can be put into their
systematic forms by performing simple operations on their respective rows, as illustrated
in Example 1.

Encoding of Cyclic Codes

Earlier we showed that the encoding procedure for an (n,k) cyclic code in systematic form
involves three steps:

• multiplication of the message polynomial m(X) by Xn – k,
• division of Xn – km(X) by the generator polynomial g(X) to obtain the remainder

b(X), and 
• addition of b(X) to Xn – km(X) to form the desired code polynomial.

These three steps can be implemented by means of the encoder shown in Figure 10.8,
consisting of a linear feedback shift register with  stages.

The boxes in Figure 10.8 represent flip-flops, or unit-delay elements. The flip-flop is a
device that resides in one of two possible states denoted by 0 and 1. An external clock (not
shown in Figure 10.8) controls the operation of all the flip-flops. Every time the clock ticks,
the contents of the flip-flops (initially set to the state 0) are shifted out in the direction of the
arrows. In addition to the flip-flops, the encoder of Figure 10.8 includes a second set of logic
elements, namely adders, which compute the modulo-2 sums of their respective inputs.
Finally, the multipliers multiply their respective inputs by the associated coefficients. In
particular, if the coefficient , the multiplier is just a direct “connection.” If, on the
other hand, the coefficient , the multiplier is “no connection.” 

The operation of the encoder shown in Figure 10.8 proceeds as follows:

1. The gate is switched on. Hence, the k message bits are shifted into the channel. As
soon as the k message bits have entered the shift register, the resulting  bits in
the register form the parity-check bits. (Recall that the parity-check bits are the same
as the coefficients of the remainder b(X).)

X
n

1+ n k– 
X

k
h X

1–  X
k 1+

h X
1–   X

n 1–
h X

1–   n k– 

n k– 

gi 1=
gi 0=

n k– 

Figure 10.8 Encoder for an (n,k) cyclic code.
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598 Chapter 10 Error-Control Coding

2. The gate is switched off, thereby breaking the feedback connections.

3. The contents of the shift register are read out into the channel.

Calculation of the Syndrome

Suppose the codeword  is transmitted over a noisy channel, resulting in the
received word . From Section 10.3, we recall that the first step in the decoding
of a linear block code is to calculate the syndrome for the received word. If the syndrome is
zero, there are no transmission errors in the received word. If, on the other hand, the syndrome
is nonzero, the received word contains transmission errors that require correction.

In the case of a cyclic code in systematic form, the syndrome can be calculated easily.
Let the received vector be represented by a polynomial of degree  or less, as shown by

Let q(X) denote the quotient and s(X) denote the remainder, which are the results of
dividing r(X) by the generator polynomial g(X). We may therefore express r(X) as follows:

(10.43)

The remainder s(X) is a polynomial of degree  or less, which is the result of interest.
It is called the syndrome polynomial because its coefficients make up the -by-1
syndrome s.

Figure 10.9 shows a syndrome calculator that is identical to the encoder of Figure 10.8
except for the fact that the received bits are fed into the  stages of the feedback shift
register from the left. As soon as all the received bits have been shifted into the shift
register, its contents define the syndrome s.

The syndrome polynomial s(X) has the following useful properties that follow from the
definition given in (10.43).

 PROPERTY 1 The syndrome of a received word polynomial is also the syndrome of the corresponding
error polynomial.

Given that a cyclic code with polynomial c(X) is sent over a noisy channel, the received
word polynomial is defined by

where e(X) is the error polynomial. Equivalently, we may write

c0 c1  cn 1–   
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Figure 10.9
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10.5 Cyclic Codes 599

Hence, substituting (10.32) and (10.43) into the preceding equation, we get

(10.44)

where the quotient is . Equation (10.44) shows that s(X) is also the
syndrome of the error polynomial e(X). The implication of this property is that when the
syndrome polynomial s(X) is nonzero, the presence of transmission errors in the received
vector is detected.

PROPERTY 2 Let s(X) be the syndrome of a received word polynomial r(X). Then, the syndrome of
Xr(X), representing a cyclic shift of r(X), is Xs(X).

Applying a cyclic shift to both sides of (10.43), we get

(10.45)

from which we readily see that Xs(X) is the remainder of the division of Xr(X) by g(X).
Hence, the syndrome of Xr(X) is Xs(X) as stated. We may generalize this result by stating
that if s(X) is the syndrome of r(X), then  is the syndrome of .

PROPERTY 3 The syndrome polynomial s(X) is identical to the error polynomial e(X), assuming that the
errors are confined to the  parity-check bits of the received word polynomial r(X).

The assumption made here is another way of saying that the degree of the error
polynomial e(X) is less than or equal to . Since the generator polynomial g(X)
is of degree , by definition, it follows that (10.44) can only be satisfied if the
quotient u(X) is zero. In other words, the error polynomial e(X) and the syndrome
polynomial s(X) are one and the same. The implication of Property 3 is that, under the
aforementioned conditions, error correction can be accomplished simply by adding the
syndrome polynomial s(X) to the received vector r(X).

EXAMPLE 2 Hamming Codes Revisited 

To illustrate the issues relating to the polynomial representation of cyclic codes, we
consider the generation of a (7,4) cyclic code. With the block length n = 7, we start by
factorizing X7+ 1 into three irreducible polynomials:

By an “irreducible polynomial” we mean a polynomial that cannot be factored using only
polynomials with coefficients from the binary field. An irreducible polynomial of degree
m is said to be primitive if the smallest positive integer n for which the polynomial divides

. For the example at hand, the two polynomials  and
 are primitive. Let us take

as the generator polynomial, whose degree equals the number of parity-check bits. This
means that the parity-check polynomial is given by

whose degree equals the number of message bits .
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600 Chapter 10 Error-Control Coding

Next, we illustrate the procedure for the construction of a codeword by using this
generator polynomial to encode the message sequence 1001. The corresponding message
vector is given by

Hence, multiplying m(X) by , we get

The second step is to divide  by g(X), the details of which (for the example at
hand) are given below:

Note that in this long division we have treated subtraction the same as addition since we
are operating in modulo-2 arithmetic. We may thus write

That is, the quotient a(X) and remainder b(X) are as follows, respectively:

Hence, from (10.35) we find that the desired code vector is

The codeword is therefore 0111001. The four rightmost bits, 1001, are the specified
message bits. The three leftmost bits, 011, are the parity-check bits. The codeword thus
generated is exactly the same as the corresponding one shown in Table 10.1 for a (7,4)
Hamming code. 

We may generalize this result by stating that:

Any cyclic code generated by a primitive polynomial is a Hamming code of 
minimum distance 3.

We next show that the generator polynomial g(X) and the parity-check polynomial h(X)
uniquely specify the generator matrix G and the parity-check matrix H, respectively.

To construct the 4-by-7 generator matrix G, we start with four vectors represented by
g(X) and three cyclic-shifted versions of it, as shown by
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10.5 Cyclic Codes 601

The vectors g(X), Xg(X), X2g(X), and X3g(X) represent code polynomials in the (7,4)
Hamming code. If the coefficients of these polynomials are used as the elements of the
rows of a 4-by-7 matrix, we get the following generator matrix:

Clearly, the generator matrix  so constructed is not in systematic form. We can put it into
a systematic form by adding the first row to the third row, and adding the sum of the first
two rows to the fourth row. These manipulations result in the desired generator matrix:

which is exactly the same as that in Example 1.
We next show how to construct the 3-by-7 parity-check matrix H from the parity-check

polynomial h(X). To do this, we first take the reciprocal of h(X), namely X4h(X–1). For the
problem at hand, we form three vectors represented by X4h(X–1) and two shifted versions
of it, as shown by

Using the coefficients of these three vectors as the elements of the rows of the 3-by-7
parity-check matrix, we get

Here again we see that the matrix  is not in systematic form. To put it into a systematic
form, we add the third row to the first row to obtain

which is exactly the same as that of Example 1.
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602 Chapter 10 Error-Control Coding

Figure 10.10 shows the encoder for the (7,4) cyclic Hamming code generated by the
polynomial . To illustrate the operation of this encoder, consider the
message sequence (1001). The contents of the shift register are modified by the incoming
message bits as in Table 10.3. After four shifts, the contents of the shift register, and
therefore the parity-check bits, are (011). Accordingly, appending these parity-check bits
to the message bits (1001), we get the codeword (0111001); this result is exactly the same
as that determined earlier in Example 1.

Figure 10.11 shows the corresponding syndrome calculator for the (7,4) Hamming
code. Let the transmitted codeword be (0111001) and the received word be (0110001);
that is, the middle bit is in error. As the received bits are fed into the shift register, initially
set to zero, its contents are modified as in Table 10.4. At the end of the seventh shift, the
syndrome is identified from the contents of the shift register as 110. Since the syndrome is
nonzero, the received word is in error. Moreover, from Table 10.2, we see that the error
pattern corresponding to this syndrome is 0001000. This indicates that the error is in the
middle bit of the received words, which is indeed the case.  

Figure 10.10 Encoder for the (7,4) cyclic code generated by g(X) = 1 + X + X3.

Table 10.3 Contents of the shift register in the encoder 
of Figure 10.10 for message sequence (1001)

Shift Input bit Contents of shift register

000 (initial state)

1 1 110

2 0 011

3 0 111

4 1 011

Flip-flop Modulo-2
adder Parity

bits

Gate

Codeword

Message bits

g X  1 X X
3

+ +=

Figure 10.11
Syndrome 
calculator for the 
(7,4) cyclic code 
generated by the 
polynomial 
g(X) = 1 + X + X3.
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Flip-flop

Received
bits

Gate
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10.5 Cyclic Codes 603

EXAMPLE 3 Maximal-Length Codes

For any positive integer , there exists a maximal-length code4 with the following
parameters:

block length: n = 2m – 1

number of message bits: k = m

minimum distance:  

Maximal-length codes are generated by vectors of the form

(10.46)

where h(X) is any primitive polynomial of degree m. Earlier we stated that any cyclic code
generated by a primitive polynomial is a Hamming code of minimum distance 3 (see Exam-
ple 2). It follows, therefore, that maximal-length codes are the dual of Hamming codes.

The polynomial h(X) defines the feedback connections of the encoder. The generator pol-
ynomial g(X) defines one period of the maximal-length code, assuming that the encoder is in
the initial state 00  01. To illustrate this, consider the example of a (7,3) maximal-length
code, which is the dual of the (7,4) Hamming code described in Example 2. Thus, choosing

we find that the generator polynomial of the (7,3) maximal-length code is

Figure 10.12 shows the encoder for the (7,3) maximal-length code. The period of the code
is . Thus, assuming that the encoder is in the initial state 001, as indicated in Figure
10.12, we find the output sequence is described by

Table 10.4  Contents of the syndrome calculator
in Figure 10.11 for the received word (0110001)

Shift Input bit Contents of shift register

000 (initial state)

1 1 100

2 0 010

3 0 001

4 0 110

5 1 111

6 1 001

7 0 110

m 3

dmin 2
m 1–

=
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+
h X 

---------------=
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X
4
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n 7=

1 0 0 1 1 1 0 1 0 0

initial state g X  1 X X
2

X
4

+ + +=

           
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604 Chapter 10 Error-Control Coding

This result is readily validated by cycling through the encoder of Figure 10.12. 
Note that if we were to choose the other primitive polynomial 

for the (7,3) maximal-length code, we would simply get the “image” of the code described
above, and the output sequence would be “reversed” in time.

Reed–Solomon Codes

A study of cyclic codes for error control would be incomplete without a discussion of
Reed–Solomon codes,5 albeit briefly.

Unlike the cyclic codes considered in this section, Reed–Solomon codes are nonbinary
codes. A cyclic code is said to be nonbinary in that given the code vector

the coefficients  are not binary 0 or 1. Rather, the  are themselves made up of
sequences of 0s and 1s, with each sequence being of length k. A Reed–Solomon code is
therefore said to be a q-ary code, which means that the size of the alphabet used in
construction of the code is . To be specific, a Reed–Solomon (n,k) code is used to
encode m-bit symbols into blocks consisting of  symbols; that is, 
bits, where . Thus, the encoding algorithm expands a block of k symbols to n
symbols by adding  redundant symbols. When m is an integer power of 2, the m-bit
symbols are called bytes. A popular value of m is 8; indeed, 8-bit Reed–Solomon codes are
extremely powerful.

A t-error-correcting Reed–Solomon code has the following parameters:

block length

message size

parity-check size

minimum distance

The block length of the Reed–Solomon code is one less than the size of a code symbol,
and the minimum distance is one greater than the number of parity-check symbols. Reed–
Solomon codes make highly efficient use of redundancy; block lengths and symbol sizes

Figure 10.12 Encoder for the (7,3) maximal-length code; 
the initial state of the encoder is shown in the figure.
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10.6 Convolutional Codes 605

can be adjusted readily to accommodate a wide range of message sizes. Moreover, Reed–
Solomon codes provide a wide range of code rates that can be chosen to optimize
performance, and efficient techniques are available for their use in certain practical
applications. In particular, a distinctive feature of Reed–Solomon codes is their ability to
correct bursts of errors, hence their application in wireless communications to combat the
fading phenomenon.

10.6 Convolutional Codes

In block coding, the encoder accepts a k-bit message block and generates an n-bit
codeword, which contains n – k parity-check bits. Thus, codewords are produced on a
block-by-block basis. Clearly, provision must be made in the encoder to buffer an entire
message block before generating the associated codeword. There are applications,
however, where the message bits come in serially rather than in large blocks, in which
case the use of a buffer may be undesirable. In such situations, the use of convolutional
coding may be the preferred method. A convolutional coder generates redundant bits by
using modulo-2 convolutions; hence the name convolutional codes6.

The encoder of a binary convolutional code with rate 1n, measured in bits per symbol,
may be viewed as a finite-state machine that consists of an M-stage shift register with
prescribed connections to n modulo-2 adders and a multiplexer that serializes the outputs
of the adders. A sequence of message bits produces a coded output sequence of length
n(L + M) bits, where L is the length of the message sequence. The code rate is therefore
given by

     (10.47)

Typically, we have L  M, in which case the code rate is approximately defined by

     bitssymbol (10.48)

An important characteristic of a convolutional code is its constraint length, which we
define as follows:

The constraint length of a convolutional code, expressed in terms of message 
bits, is the number of shifts over which a single incoming message bit can 
influence the encoder output. 

In an encoder with an M-stage shift register, the memory of the encoder equals M message
bits. Correspondingly, the constraint length, denoted by , equals M + 1 shifts that are
required for a message bit to enter the shift register and finally come out. 

Figure 10.13 shows a convolutional encoder with the number of message bits n = 2 and
constraint length  = 3. In this example, the code rate of the encoder is 12. The encoder
operates on the incoming message sequence, one bit at a time, through a convolution
process; it is therefore said to be a nonsystematic code. 

r L
n L M+ 
----------------------=

1
n 1 M L+ 
----------------------------- bits/symbol=

r
1
n
---




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606 Chapter 10 Error-Control Coding

Each path connecting the output to the input of a convolutional encoder may be
characterized in terms of its impulse response, defined as follows:

The impulse response of a particular path in the convolutional encoder is the 
response of that path in the encoder to symbol 1 applied to its input, with each 
flip-flop in the encoder set initially to the zero state. 

Equivalently, we may characterize each path in terms of a generator polynomial, defined

as the unit-delay transform of the impulse response. To be specific, let the generator

sequence  denote the impulse response of the ith path, where the

coefficients  equal symbol 0 or 1. Correspondingly, the generator

polynomial of the ith path is defined by

(10.49)

where D denotes the unit-delay variable. The complete convolutional encoder is described

by the set of generator polynomials . 

EXAMPLE 4 Convolutional Encoder

Consider again the convolutional encoder of Figure 10.13, which has two paths numbered
1 and 2 for convenience of reference. The impulse response of path 1 (i.e., upper path) is
(1, 1, 1). Hence, the generator polynomial of this path is

g(1)(D) = 1 + D + D2

The impulse response of path 2 (i.e., lower path) is (1, 0, 1). The generator polynomial of
this second path is

g(2)(D) = 1 + D2 

For an incoming message sequence given by (10011), for example, we have the
polynomial representation

m(D) = 1 + D3 + D4

Figure 10.13
Constraint length-3, rate -1/2 
convolutional encoder. 
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10.6 Convolutional Codes 607

As with Fourier transformation, convolution in the time domain is transformed into
multiplication in the D-domain. Hence, the output polynomial of path 1 is given by

where it is noted that the sums D4 + D4 and D5 + D5 are both zero in accordance with the
rules of binary arithmetic. We therefore immediately deduce that the output sequence of
path 1 is (1111001). Similarly, the output polynomial of path 2 is given by

The output sequence of path 2 is therefore (1011111). Finally, multiplexing the two output
sequences of paths 1 and 2, we get the encoded sequence

c = (11, 10, 11, 11, 01, 01, 11)

Note that the message sequence of length L = 5 bits produces an encoded sequence of
length n(L +  – 1) = 14 bits. Note also that for the shift register to be restored to its initial
all-zero state, a terminating sequence of  – 1 = 2 zeros is appended to the last input bit of
the message sequence. The terminating sequence of  – 1 zeros is called the tail of the
message.

Code Tree, Trellis Graph, and State Graph

Traditionally, the structural properties of a convolutional encoder are portrayed in
graphical form by using any one of three equivalent graphs: code tree, trellis graph, and
state graph. 

Although, indeed, these three graphical representations of a convolutional encoder look
different, their compositions follow the same underlying rule:

A code branch produced by input bit 0 is drawn as a solid line, whereas a code 
branch produced by input bit 1 is a dashed line.

Hereafter, we refer to this convention as the graphical rule of a convolutional encoder. 
We will use the convolutional encoder of Figure 10.13 as a running example to

illustrate the insights that each one of these three diagrams provides.

Code Tree

We begin the graphical representation of a convolutional encoder with the code tree of
Figure 10.14. Each branch of the tree represents an input bit, with the corresponding pair
of output bits indicated on the branch. The convention used to distinguish the input bits 0
and 1 follows the graphical rule described above. Thus, a specific path in the tree is traced
from left to right in accordance with the message sequence. The corresponding coded bits
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608 Chapter 10 Error-Control Coding

on the branches of that path constitute the message sequence (10011) applied to the input
of the encoder of Figure 10.13. Following the procedure just described, we find that the
corresponding encoded sequence is (11, 10, 11, 11, 01), which agrees with the first five
pairs of bits in the encoded sequence {ci} that was derived in Example 4.

Figure 10.14 Code tree for the convolutional encoder of Figure 10.13. 
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10.6 Convolutional Codes 609

Trellis Graph

From Figure 10.14, we observe that the tree becomes repetitive after the first three
branches. Indeed, beyond the third branch, the two nodes labeled a are identical and so are
all the other node pairs that are identically labeled. We may establish this repetitive
property of the tree by examining the associated encoder of Figure 10.13. The encoder has
memory M =  – 1 = 2 message bits. We therefore find that, when the third message bit
enters the encoder, the first message bit is shifted out of the register. Consequently, after the
third branch, the message sequences (100 m3m4) and (000 m3m4) generate the same
code symbols, and the pair of nodes labeled a may be joined together. The same reasoning
applies to the other nodes in the code tree. Accordingly, we may collapse the code tree of
Figure 10.14 into the new form shown in Figure 10.15, which is called a trellis. It is so
called since a trellis is a treelike structure with re-emerging branches. The convention used
in Figure 10.15 to distinguish between input symbols 0 and 1 is as follows: 

A code branch in a trellis produced by input binary symbol 0 is drawn as a solid 
line, whereas a code branch produced by an input 1 is drawn as a dashed line. 

As before, each message sequence corresponds to a specific path through the trellis. For
example, we readily see from Figure 10.15 that the message sequence (10011) produces
the encoded output sequence (11, 10, 11, 11, 01), which agrees with our previous result.

The Notion of State

In conceptual terms, a trellis is more instructive than a tree. We say so because it brings out
explicitly the fact that the associated convolutional encoder is in actual fact a finite-state
machine. Basically, such a machine consists of a tapped shift register and, therefore, has a
finite state; hence the name of the machine. Thus, we may conveniently say the following:

The state of a rate 1/n convolutional encoder is determined by the smallest 
number of message bits stored in memory (i.e., the shift register).

For example, the convolutional encoder of Figure 10.13 has a shift register made up of two
memory cells. With the message bit stored in each memory cell being 0 or 1, it follows
that this encoder can assume any one of 22 = 4 possible states, as described in Table 10.5. 

Figure 10.15 Trellis for the convolutional encoder of Figure 10.13.


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610 Chapter 10 Error-Control Coding

In describing a convolutional encoder, the notion of state is important in the following
sense: 

Given the current message bit and the state of the encoder, the codeword 
produced at the output of the encoder is completely determined.

To illustrate this statement, consider the general case of a rate 1n convolutional encoder of
constraint length . Let the state of the encoder at time-unit j be denoted by 

The jth codeword cj is completely determined by the state S together with the current
message bit mj. 

Now that we understand the notion of state, the trellis graph of the simple convolutional
encoder of Figure 10.13 for  is presented in Figure 10.15. From this latter figure, we
now clearly see a unique characteristic of the trellis diagram:

The trellis depicts the evolution of the convolutional encoder’s state across time.

To be more specific, the first  time-steps correspond to the encoder’s departure
from the initial zero state and the last  time-steps correspond to the encoder’s
return to the initial zero state. Naturally, not all the states of the encoder can be reached in
these two particular portions of the trellis. However, in the central portion of the trellis, for
which time-unit j lies in the range , where L is the length of the incoming
message sequence, we do see that all the four possible states of the encoder are reachable.
Note also that the central portion of the trellis exhibits a fixed periodic structure, as
illustrated in Figure 10.16a. 

State Graph

The periodic structure characterizing the trellis leads us next to the state diagram of a
convolutional encoder. To be specific, consider a central portion of the trellis
corresponding to times j and j  1. We assume that for j 2 in the example of Figure
10.13, it is possible for the current state of the encoder to be a, b, c, or d. For convenience
of presentation, we have reproduced this portion of the trellis in Figure 10.16a. The left
nodes represent the four possible current states of the encoder, whereas the right nodes
represent the next states. Clearly, we may coalesce the left and right nodes. By so doing,
we obtain the state graph of the encoder, shown in Figure 10.16b. The nodes of the figure
represent the four possible states of the encoder a, b, c, and d, with each node having two
incoming branches and two outgoing branches, following the graphical rule described
previously.

Table 10.5 State table for the 
convolutional encoder of Figure 10.13

State Binary description

a
b
c
d

00
10
01
11


S mj 1– mj 2–  m j – 1+  =

 3=

 1– 2=
 1– 2=

 1 j L –
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10.6 Convolutional Codes 611

The binary label on each branch represents the encoder’s output as it moves from one
state to another. Suppose, for example, the current state of the encoder is (01), which is
represented by node c. The application of input symbol 1 to the encoder of Figure 10.13
results in the state (10) and the encoded output (00). Accordingly, with the help of this
state diagram, we may readily determine the output of the encoder of Figure 10.13 for any
incoming message sequence. We simply start at state a, the initial all-zero state, and walk
through the state graph in accordance with the message sequence. We follow a solid
branch if the input is bit 0 and a dashed branch if it is bit 1. As each branch is traversed, we
output the corresponding binary label on the branch. Consider, for example, the message
sequence (10011). For this input, we follow the path abcabd, and therefore output the
sequence (11, 10, 11, 11, 01), which agrees exactly with our previous result. Thus, the
input–output relation of a convolutional encoder is also completely described by its state
graph.

Recursive Systematic Convolutional Codes

The convolutional codes described thus far in this section have been feedforward
structures of the nonsystematic variety. There is another type of linear convolutional codes
that are the exact opposite, being recursive as well as systematic; they are called recursive
systematic convolutional (RSC) codes.

Figure 10.16 (a) A portion of the central part of the trellis for the encoder of 
Figure 10.13. (b) State graph of the convolutional encoder of Figure 10.13. 
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612 Chapter 10 Error-Control Coding

Figure 10.17 illustrates a simple example of an RSC code, two distinguishing features
of which stand out in the figure:

1. The code is systematic, in that the incoming message vector mj at time-unit j defines
the systematic part of the code vector cj at the output of the encoder.

2. The code is recursive by virtue of the fact that the other constituent of the code
vector, namely the parity-check vector bj, is related to the message vector mj by the
modulo-2 recursive equation

(10.50)

where bj–1 is the past value of bj stored in the memory of the encoder.

From an analytic point of view, in studying RSC codes, it is more convenient to work in
the transform D-domain than the time domain. By definition, we have

(10.51)

and therefore rewrite (10.50) in the equivalent form:

(10.52)

where the transfer function 1(1 + D) operates on mj to produce bj. With the code vector cj
consisting of the message vector mj followed by the parity-check vector bj, we may
express the code vector cj produced in response to the message vector mj as follows:

(10.53)

It follows, therefore, that the code generator for the RSC code of Figure 10.17 is given by
the matrix

(10.54)

Generalizing, we may now make the statement:

For recursive systematic convolutional codes, the transform-domain matrix 
G(D) is easier to use as the code generator than the corresponding time-domain 
matrix G whose entries contain sequences of infinite length.

Figure 10.17 Example of a recursive systematic convolutional (RSC) encoder. 
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10.7 Optimum Decoding of Convolutional Codes 613

The same statement applies equally well to the parity-check generator H(D) compared
with its time-domain counterpart H.

The rationale behind making convolutional codes recursive is to feed one or more of
the tap-outputs in the shift register back to the encoder input, which, in turn, makes the
internal state of the shift register depend on past outputs. This modification, compared
with a feedforward convolutional code, affects the behavior of error patterns in a profound
way, which is emphasized in the following statement:

A single error in the systematic bits of an RSC code produces an infinite 
number of parity-check errors due to the use of feedback in the encoder.

This property of recursive convolutional codes turns out to be one of the key factors
behind the outstanding performance achieved by the class of turbo codes, to be discussed
in Section 10.12. Therein, we shall see that feedback plays a key role not only in the
encoder of turbo codes but also the decoder. For reasons that will become apparent later,
further work on turbo codes will be deferred to Section 10.12.

10.7 Optimum Decoding of Convolutional Codes

In the meantime, we resume the discussion on convolutional codes whose encoders are of
the feedforward variety, aimed at the development of two different decoding algorithms,
each of which is optimum according to a criterion of its own.

The first algorithm is the maximum likelihood (ML) decoding algorithm; the decoder is
itself referred to as the maximum likelihood decoder (maximum likelihood estimation was
discussed in Chapter 3). A distinctive feature of this decoder is that it produces a codeword
as output, the conditional probability of which is always maximized on the assumption
that each codeword in the code is equiprobable. From Chapter 3 on probability theory, we
recall that the conditional probability density function of a random variable X given a
quantity  can be rethought as the likelihood function of  with that function being
dependent on X, given a parameter . We may therefore make the statement:

In the maximum likelihood decoding of a convolutional code, the metric to be 
maximized is the likelihood function of a codeword, expressed as a function of 
the noisy channel output.

The second algorithm is the maximum a posteriori (MAP) probability decoding algorithm;
the decoder is correspondingly referred to as a MAP decoder. In light of this second
algorithm’s name, we may make the statement:

In MAP decoding of a convolutional code, the metric to be maximized is the 
posterior of a codeword, expressed as the product of the likelihood function of a 
given bit and the a priori probability of that bit.

These two decoding algorithms, optimal in accordance with their own respective criteria,
are distinguished from each other as follows:

The ML decoding algorithm produces the most likely codeword as its output. 
On the other hand, the MAP decoding algorithm operates on the received 
sequence on a bit-by-bit basis to produce the most likely symbol as output.
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614 Chapter 10 Error-Control Coding

Stated in another way, we may say:

The ML decoder minimizes the probability of selecting the wrong codeword, 
whereas the MAP decoder minimizes the decoded BER.

Typically, the ML decoder is simpler to implement; hence its popular use in practice.
However, the MAP decoding algorithm is preferred over the ML decoding algorithm in
the following two situations:

1. The information bits are not equally likely.

2. Iterative decoding is used in the receiver, in which case the a priori probabilities of
the message bits change from one iteration to the next; such a situation arises in
turbo decoding, which is discussed in Section 10.12.

Applications of the Two Decoding Algorithms

The ML decoding algorithm is applied to convolutional codes in Section 10.8; in so doing,
we are, in effect, opting for a simple approach to decode convolutional codes. This simple
approach is also applicable to another class of codes, called trellis-coded modulation,
which is discussed in Section 10.15.

Then, in Section 10.9 we move on to study the MAP decoding algorithm; the length of
that section and the illustrative example in Section 10.10 are testimony to the complexity
of this second approach to decoding convolutional codes. Equipped with the MAP
algorithm and its modified forms, Section 10.12 and 10.13 discuss their application to
turbo codes. It is in the material covered in those two sections that we find the practical
benefits of feedback in decoding turbo codes.

10.8 Maximum Likelihood Decoding of Convolutional Codes

We begin the discussion of decoding convolutional codes by first describing the
underlying theory of maximum likelihood decoding. The description is best understood by
focusing on a trellis that represents each time step in the decoding process with a separate
state graph.

Let m denote a message vector and c denote the corresponding code vector applied by
the encoder to the input of a discrete memoryless channel. Let r denote the received
vector, which, in practice, will invariably differ from the transmitted code vector c due to
additive channel noise. Given the received vector r, the decoder is required to make an
estimate  of the message vector m. Since there is a one-to-one correspondence between
the message vector m and the code vector c, the decoder may equivalently produce an
estimate  of the code vector. We may then put 

 = m if and only if  = c

Otherwise, a decoding error is committed in the receiver. The decoding rule for choosing
the estimate , given the received vector r, is said to be optimum when the probability of
decoding error is minimized. In light of the material presented on signaling over AWGN
channel in Chapter 7, we may state:

m̂

ĉ

m̂ ĉ

ĉ
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10.8 Maximum Likelihood Decoding of Convolutional Codes 615

For equiprobable messages, the probability of decoding error is minimized if 
the estimate  is chosen to maximize the log-likelihood function. 

Let �(r |c) denote the conditional probability of receiving r, given that c was sent. The
log-likelihood function equals ln�(r |c), where ln denotes the natural logarithm. The
maximum likelihood decoder for decision making is described as follows:

Choose the estimate  for which the log-likelihood function ln�(r |c) 
is maximum.

Consider next the special case of a binary symmetric channel. In this case, both the
transmitted code vector c and the received vector r represent binary sequences of some
length N. Naturally, these two sequences may differ from each other in some locations
because of errors due to channel noise. Let ci and ri denote the ith elements of c and r,
respectively. We then have

Correspondingly, the log-likelihood function is

(10.55)

The term p(ri|ci) in (10.55) denotes a transition probability, which is defined by

(10.56)

Suppose also that the received vector r differs from the transmitted code vector c in
exactly d places in the codeword, By definition, the number d is the Hamming distance
between the vectors r and c. Hence, we may rewrite the log-likelihood function in (10.55)
as follows:

(10.57)

In general, the probability of an error occurring is low enough for us to assume p < 12. We
also recognize that  is a constant for all c. Accordingly, we may restate the
maximum-likelihood decoding rule for the binary symmetric channel as follows:

Choose the estimate  that minimizes the Hamming distance between the 
received vector r and the transmitted vector c.

That is, for the binary symmetric channel, the maximum-likelihood decoder for a
convolutional code reduces to a minimum distance decoder. In such a decoder, the
received vector r is compared with each possible transmitted code vector c, and the
particular one closest to r is chosen as the correct transmitted code vector. The term

ĉ

ĉ

� r c  p ri ci 
i 1=

N

=

�ln r c  pln ri ci 
i 1=
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=

p ri ci 
p, if ri ci

1 p,– if ri ci=






=

pln r c  d p N d–  1 p– ln+ln=

d
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616 Chapter 10 Error-Control Coding

“closest” is used in the sense of minimum number of differing binary symbols (i.e.,
Hamming distance) between the code and received vectors under investigation.

The Viterbi Algorithm

The equivalence between maximum likelihood decoding and minimum distance decoding
for the binary symmetric channel implies that we may decode a convolutional code by
choosing a path in the code tree whose coded sequence differs from the received sequence
in the fewest number of places. Since a code tree is equivalent to a trellis, we may equally
limit our choice to the possible paths in the trellis representation of the code. The reason
for preferring the trellis over the tree is that the number of nodes at each time instant does
not continue to grow as the number of incoming message bits increases; rather, it remains
constant at , where  is the constraint length of the code.

Consider, for example, the trellis diagram of Figure 10.15 for a convolutional code with
rate r = 12 and constraint length  = 3. We observe that, at time-unit j = 3, there are two
paths entering any of the four nodes in the trellis. Moreover, these two paths will be
identical onward from that point. Clearly, a minimum distance decoder may make a
decision at that point as to which of those two paths to retain, without any loss of
performance. A similar decision may be made at time-unit j = 4, and so on. This sequence
of decisions is exactly what the Viterbi algorithm7 does as it walks through the trellis. The
algorithm operates by computing a metric (i.e., discrepancy) for every possible path in the
trellis; hence the following statement: 

The metric for a particular path is defined as the Hamming distance between the 
coded sequence represented by that path and the received sequence. 

Thus, for each node (state) in the trellis of Figure 10.15 the algorithm compares the two
paths entering the node. The path with the lower metric is retained and the other path is
discarded. This computation is repeated for every time-unit j of the trellis in the range
M < j < L, where  is the encoder’s memory and L is the length of the
incoming message sequence. The paths that are retained by the algorithm are called
survivor or active paths. For a convolutional code of constraint length , for
example, no more than  survivors and their metrics will ever be stored. The
list of  paths computed in the manner just described is always guaranteed to
contain the maximum-likelihood choice.

A difficulty that may arise in the application of the Viterbi algorithm is the possibility
that when the paths entering a state are compared, their metrics are found to be identical.
In such a situation, we simply make the choice by flipping a fair coin (i.e., simply make a
random guess).

To sum up:

The Viterbi algorithm is a maximum-likelihood decoder, which is optimum for 
an AWGN channel as well as a binary symmetric channel.

The algorithm proceeds in a step-by-step fashion, as summarized in Table 10.6.

2 1– 



M  1–=

 3=
2 1– 4=

2 1–
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10.8 Maximum Likelihood Decoding of Convolutional Codes 617

EXAMPLE 5 Correct Decoding of Received All-Zero Sequence

Suppose that the encoder of Figure 10.13 generates an all-zero sequence that is sent over a
binary symmetric channel and that the received sequence is (0100010000 ). There are
two errors in the received sequence due to noise in the channel: one in the second bit and
the other in the sixth bit. We wish to show that this double-error pattern is correctable
through the application of the Viterbi decoding algorithm.

In Figure 10.18 we show the results of applying the algorithm for time-unit j = 1, 2, 3,
4, 5. We see that for j = 2 there are (for the first time) four paths, one for each of the four
states of the encoder. The figure also includes the metric of each path for each level in the
computation.

In the left side of Figure 10.18, for time-unit j = 3 we show the paths entering each of
the states, together with their individual metrics. In the right side of the figure we show the
four survivors that result from application of the algorithm for time-unit j = 3, 4, 5.
Examining the four survivors in the figure for j = 5, we see that the all-zero path has the
smallest metric and will remain the path of smallest metric from this point forward. This
clearly shows that the all-zero sequence is indeed the maximum likelihood choice of the
Viterbi decoding algorithm, which agrees exactly with the transmitted sequence.

Table 10.6 Summary of the Viterbi algorithm

The Viterbi algorithm is a maximum likelihood decoder, which is optimal for any
discrete memoryless channel. It proceeds in three basic steps. In computational terms,
the so-called add–compare–select (ACS) operation in Step 2 is at the heart of the
Viterbi algorithm.

Initialization
Set the all-zero state of the trellis to zero.

Computation Step 1: time-unit j
Start the computation at some time-unit j and determine the metric for the path that 
enters each state of the trellis. Hence, identify the survivor and store the metric for each 
one of the states.

Computation Step 2: time-unit j + 1
For the next time-unit j + 1, determine the metrics for all  paths that enter a state 
where  is the constraint length of the convolutional encoder; hence do the following:

a. Add the metrics entering the state to the metric of the survivor at the preceding
time-unit j;

b. Compare the metrics of all  paths entering the state;

c. Select the survivor with the largest metric, store it along with its metric, and
discard all other paths in the trellis.

Computation Step 3: continuation of the search to convergence
Repeat Step 2 for time-unit j < L + , where L is the length of the message sequence
and  is the length of the termination sequence. 

Stop the computation once the time-unit j = L +  is reached.

2 1–



2


L
L

L
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618 Chapter 10 Error-Control Coding

Figure 10.18
Illustrating steps in the Viterbi 
algorithm for Example 5. 
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10.8 Maximum Likelihood Decoding of Convolutional Codes 619

EXAMPLE 6 Incorrect Decoding of Received All-Zero Sequence

Suppose next that the received sequence is (1100010000 ), which contains three errors
compared with the transmitted all-zero sequence; two of the errors are adjacent to each
other and the third is some distance away.

In Figure 10.19, we show the results of applying the Viterbi decoding algorithm for
levels j = 1, 2, 3, 4. We see that in this second example on Viterbi decoding the correct
path has been eliminated by time-unit j = 3. Clearly, a triple-error pattern is uncorrectable
by the Viterbi algorithm when applied to a convolutional code of rate 12 and constraint
length . The exception to this algorithm is a triple-error pattern spread over a time
span longer than one constraint length, in which case it is likely to be correctable.

Figure 10.19
Illustrating breakdown 
of the Viterbi algorithm 
in Example 6. 
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620 Chapter 10 Error-Control Coding

What Have We Learned from Examples 5 and 6?

In Example 5 there were two errors in the received sequence, whereas in Example 6 there
were three errors, two of which were in adjacent symbols and the third one was some
distance away. In both examples the encoder used to generate the transmitted sequence
was the same. The difference between the two examples was attributed to the fact that the
number of errors in Example 6 was beyond the error-correcting capability of the
maximum likelihood decoding algorithm, which is the next topic for discussion. 

Free Distance of a Convolutional Code

The performance of a convolutional code depends not only on the decoding algorithm
used but also on the distance properties of the code. In this context, the most important
single measure of a convolutional code’s ability to combat errors due to channel noise is
the free distance of the code, denoted by dfree; it is defined as follows:

The free distance of a convolutional code is given by the minimum Hamming 
distance between any two codewords in the code. 

A convolutional code with free distance dfree can, therefore, correct t errors if, and only if,
dfree is greater than 2t.

The free distance can be obtained quite simply from the state graph of the convolutional
encoder. Consider, for example, Figure 10.16b, which shows the state graph of the encoder
of Figure 10.13. Any nonzero code sequence corresponds to a complete path beginning
and ending at the 00 state (i.e., node a). We thus find it useful to split this node in the
manner shown in the modified state graph of Figure 10.20, which may be viewed as a
signal-flow graph with a single input and single output. 

A signal-flow graph consists of nodes and directed branches; it operates by the
following set of rules:

1. A branch multiplies the signal at its input node by the transmittance characterizing
that branch.

2. A node with incoming branches sums the signals produced by all of those branches.

Figure 10.20 Modified state graph of convolutional encoder. 
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10.8 Maximum Likelihood Decoding of Convolutional Codes 621

3. The signal at a node is applied equally to all the branches outgoing from that node.

4. The transfer function of the graph is the ratio of the output signal to the input signal.

Returning to the signal-flow graph of Figure 10.20, the exponent of D on a branch in this
graph describes the Hamming weight of the encoder output corresponding to that branch;
the symbol D used here should not be confused with the unit-delay variable in Section
10.6 and the symbol L used herein should not be confused with the length of the message
sequence. The exponent of L is always equal to one, since the length of each branch is one.
Let T(D,L) denote the transfer function of the signal-flow graph, with D and L playing the
role of dummy variables. For the example of Figure 10.20, we may readily use rules 1, 2,
and 3 to obtain the following input-output relations:

(10.58)

where a0, b, c, d, and a1 denote the node signals of the graph. Solving the system of four
equations in (10.58) for the ratio a1a0, we obtain the transfer function 

(10.59)

Using the binomial expansion, we may equivalently express T(D,L) as follows:

Setting L = 1 in this formula, we thus get the distance transfer function expressed in the
form of a power series as follows:

(10.60)

Since the free distance is the minimum Hamming distance between any two codewords in
the code and the distance transfer function T(D,1) enumerates the number of codewords
that are a given distance apart, it follows that the exponent of the first term in the
expansion of T(D,1) in (10.60) defines the free distance. Thus, on the basis of this
equation, the convolutional code of Figure 10.13 has the free distance dfree = 5.

This result indicates that up to two errors in the received sequence are correctable, as
two or fewer transmission errors will cause the received sequence to be at most at a
Hamming distance of 2 from the transmitted sequence but at least at a Hamming distance
of 3 from any other code sequence in the code. In other words, in spite of the presence of
any pair of transmission errors, the received sequence remains closer to the transmitted
sequence than any other possible code sequence. However, this statement is no longer true
if there are three or more closely spaced transmission errors in the received sequence. The
observations made here reconfirm the results reported earlier in Examples 5 and 6.
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622 Chapter 10 Error-Control Coding

Asymptotic Coding Gain

The transfer function of the encoder’s state graph, modified in a manner similar to that
illustrated in Figure 10.20, may be used to evaluate a bound on the BER for a given
decoding scheme; details of this evaluation are, however, beyond the scope of our present
discussion.8 Here, we simply summarize the results for two special channels, namely the
binary symmetric channel and the binary-input AWGN channel, assuming the use of
binary PSK with coherent detection.

1. Binary symmetric channel. 

The binary symmetric channel may be modeled as an AWGN channel with binary
PSK as the modulation in the transmitter followed by hard-decision demodulation in
the receiver. The transition probability p of the binary symmetric channel is then
equal to the BER for the uncoded binary PSK system. From Chapter 7 we recall that
for large values of EbN0, denoting the ratio of signal energy per bit-to-noise power
spectral density, the BER for binary PSK without coding is dominated by the
exponential factor exp(–EbN0). On the other hand, the BER for the same
modulation scheme with convolutional coding is dominated by the exponential
factor , where r is the code rate and dfree is the free distance of
the convolutional code. Therefore, as a figure of merit for measuring the
improvement in error performance made by the use of coding with hard-decision
decoding, we may set aside the  to use the remaining exponent to define the
asymptotic coding gain (in decibels) as follows:

(10.61)

2. Binary-input AWGN channel. 

Consider next the case of a memoryless binary-input AWGN channel with no output
quantization (i.e., the output amplitude lies in the interval ). For this
channel, theory shows that for large values of EbN0 the BER for binary PSK with
convolutional coding is dominated by the exponential factor exp(–dfreerEbN0),
where the parameters are as previously defined. Accordingly, in this second case, we
find that the asymptotic coding gain is defined by

(10.62)

Comparing (10.61) and (10.62) for cases 1 and 2, respectively, we see that the asymptotic
coding gain for the binary-input AWGN channel is greater than that for the binary
symmetric channel by 3 dB. In other words, for large EbN0, the transmitter for a binary
symmetric channel must generate an additional 3 dB of signal energy (or power) over that
for a binary-input AWGN channel if we are to achieve the same error performance.
Clearly, there is an advantage to be gained by using an unquantized demodulator output in
place of making hard decisions. This improvement in performance, however, is attained at
the cost of increased decoder complexity due to the requirement for accepting analog
inputs.

It turns out that the asymptotic coding gain for a binary-input AWGN channel is
approximated to within about 0.25 dB by a binary input Q-ary output discrete memoryless
channel with the number of representation levels Q = 8. This means that, for practical
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10.9 Maximum a Posteriori Probability Decoding of Convolutional Codes 623

purposes, we may avoid the need for an analog decoder by using a soft-decision decoder
that performs finite output quantization (typically, Q = 8), and yet realize a performance
close to the optimum.

Practical Limitations of the Viterbi Algorithm

When the received sequence is very long, the storage requirement of the Viterbi algorithm
becomes too high, in which case some compromises must be made. The approach usually
taken in practice is to “truncate” the path memory of the decoder as follows:

A decoding window of length l is specified and the algorithm operates on a 
corresponding frame of the received sequence, always stopping after l steps. A 
decision is then made on the “best” path and the symbol associated with the first 
branch on that path is released to the user. The symbol associated with the last 
branch of the path is dropped. Next, the decoding window is moved forward 
one time interval. A decision on the next code frame is made, and the process 
is repeated.

Naturally, decoding decisions made in the way just described are no longer truly
maximum likelihood, but they can be made almost as good provided that the decoding
window is chosen long enough. Experience and analysis have shown that satisfactory
results are obtained if the decoding window length l is on the order of five times the
constraint length  of the convolutional code or more.

10.9 Maximum a Posteriori Probability Decoding of 
Convolutional Codes

Summarizing the discussion on convolutional decoding presented in Section 10.8, we may
say that, given a received vector r that is the noisy version of a convolutionally encoded
vector c, the Viterbi algorithm computes the code vector  for which the log-likelihood
function is maximum; for a binary symmetric channel, the code vector  minimizes the
Hamming distance between the received vector r and the transmitted vector c. For the
more general case of an AWGN channel, this result is equivalent to finding the vector 
that is the closest to the received vector r in Euclidean distance. Simply put then: given the
vector r, the Viterbi algorithm finds the most likely vector  that minimizes the
conditional probability , which is the sequence error or the word error rate.

In practice, however, we are often interested in the BER, defined as the conditional
probability , where mi is an estimate of the ith bit of message vector .
Recognizing the fact that the BER can indeed assume a value different from the sequence
error, we need a probabilistic decoding algorithm that minimizes the BER.

Bahl, Cocke, Jelinek, and Raviv (1974) are credited for deriving an algorithm that
maximizes the a posteriori probabilities of the states in the decoding model as well as the
transition probability from one state to another. In the course of time, this decoding
algorithm has become known as the BCJR algorithm in honor of its four inventors. The
BCJR algorithm is applicable to any linear code, be it of a block or convolutional kind.
However, as we may well expect, computational complexity of the BCJR algorithm is
greater than that of the Viterbi algorithm. But, when the message bits in the received
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624 Chapter 10 Error-Control Coding

vector r are equally likely, the Viterbi algorithm is preferred over the BCJR algorithm.
When, however, the message bits are not equally likely, then the BCJR algorithm provides
a better decoding performance than the Viterbi algorithm. Moreover, in iterative decoding
exemplified by turbo decoding (to be discussed in Section 10.12), the a priori probabilities
of the message bits may change from one iteration to the next; in such a scenario, the
BCJR algorithm provides the best performance. 

Henceforth, the two terminologies, BCJR algorithm and maximum a posteriori
probability (MAP) decoding algorithm, are used interchangeably.

The MAP Decoding Algorithm

The function of the MAP decoder is to compute the values of log-a-posteriori ratios, on
the basis of which estimates of the original message bits are computed in the receiver. In
what follows, we derive the MAP decoding algorithm for the case of rate = 1n
convolutional codes applied to a binary input–continuous output AWGN channel.9

Henceforth, in this section, we use the mapping of bits 0 and 1 as follows:

Thus, given a message sequence of block length L, we express the message vector m as
follows:

where

The individual elements in the message vector m are referred to as message bits. In any
event, the vector m is encoded into the codeword c, which, in turn, produces the noisy
received signal vector r at the channel output. Note, however, the elements of the vector r
can assume positive as well as negative values, which, in theory, can be infinitely large due
to the analog nature of the additive channel noise.

Before proceeding further, there are two natural logarithmic concepts, namely log-
likelihood ratios, that will occupy our attention in deriving the MAP decoding algorithm:

1. A priori L-values, denoted by La(mj), which define the natural logarithmic ratio of a
priori probabilities of message bits, mj = –1 and mj = +1, generated by a source at the
encoder input in the transmitter.

2. A posteriori L-values, denoted by Lp(mj), which define the log-likelihood ratio of
the conditional a posteriori probabilities of the message bits mj = –1 and mj = +1,
given the channel output at the decoder input in the receiver.

In what follows, we will focus on Lp(mj) first, deferring the discussion of La(mj) until later
in this section.

With the message mj = 1, there are two conditional probabilities to be considered:
�(mj = +1|r) and �(mj = –1|r). These two probabilities are called the a posteriori
probabilities (APPs). In terms of these two APPs, the log-a-posteriori L-value is defined
by

(10.63)
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Hereafter, for the sake of brevity, we refer to the Lp(mj) simply as the a posteriori L-value
of message bit mj at time-unit j. Having computed a set of Lp-values, the decoder makes a
hard decision by applying the two-part formula:

(10.64)

where L is the length of the message sequence; L must not be confused with the two
L-values, La(mj) and Lp(mj).

Given the received vector r, the conditional probability �(mj = +1|r) is expressed in
terms of the joint probability density function f(mj = +1, r) as follows:

where f(r) is the probability density function of the received vector r; this formula follows
from the definition of joint probability. 

Similarly, we may express the second conditional probability as follows:

Accordingly, using these two conditional properties and canceling the common term ,
we may reformulate the a posteriori L-values of (10.63) in the equivalent form

(10.65)

which sets the stage for deriving the MAP decoding algorithm.

Lattice-based Framework for the Derivation

With computational complexity being at a premium, we propose to exploit the lattice
structure of the convolutional code as the basis for deriving the MAP decoding algorithm.
To this end, let  denote the set of all state-pairs for which the states  and
sj +1 = s correspond to message bit mj = +1. We may then express the conditional
probability density function  in the expanded form:

(10.66)

where the symbol  stands for proportionality. In a similar way, we may reformulate the
other conditional probability density function as follows:

(10.67)

where  is the set of all state-pairs for which the state-pair  and sj + 1 = s
corresponds to the message bit . Hence, substituting (10.66) and (10.67) into
(10.65) and recognizing that the proportionality factor is common to both (10.66) and

m̂j
+1 if Lp mj  0

1– if Lp mj  0
j 0 1  L 1–  =







=

� mj +1 r= 
f mj +1 r= 

f r 
-------------------------------=

� mj 1– r= 

� mj 1 r–= 
f mj = 1– r 

f r 
-------------------------------=

f r 

Lp mj 
f mj = +1 r 

f mj = 1 r– 
---------------------------------- 

 ln=

j
+

sj s=

f mj = +1 r 

f mj = +1 r ∝ f(sj s= sj+1

s  s  j
+

 s r)=

∝

f mj = 1 r–  ∝ f(sj +1= sj

s  s  j
–

 1 r)–=

j
–

sj s=
mj 1–=
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626 Chapter 10 Error-Control Coding

(10.67), thereby canceling out, the a posteriori Lp-value of message bit mj at time-unit j
takes the following equivalent form:

(10.68)

Equation (10.68) provides the mathematical basis for forward–backward computation of
the MAP decoding algorithm. In this context, it is important to note the following point in
(10.68): 

Every branch in the trellis, connecting a state at time-unit j to a state at the next 
time-unit j + 1, is always in one of the two summation terms in (10.68).

Forward–Backward Recursions: Background Terminology 
and Assumptions

Our next task is to show how the pair of joint probability density functions in (10.68) can
be computed recursively, using forward and backward recursions.

With this important point in mind, we introduce some new and relevant terminology.
First, we express the received vector r as the triplet

r = (rt > j, rj, rt < j)

where the two new terms rt <  j and rt > j denote those portions of the received vector r that
appear before and after time-unit j, respectively. Moreover, we simplify the notation by
using  and s in place of  and sj + 1 = s, respectively, recognizing that the time-
unit j is implicitly contained in the Lp(mj).

In particular, the joint probability density function common to the numerator and
denominator in (10.68) is now rewritten as

(10.69)

Moreover, before proceeding further, we find it instructive to introduce two assumptions
that are basic to derivation of the MAP decoding algorithm:

1. Markovian Assumption

In a convolutional code represented by a trellis, the present state of the encoder 
depends only on two entities: the immediate past state and the input message bit.

Under this assumption, convolutional encoding of the message vector performed in
the transmitter is said to be a Markov chain.

2. Memoryless Assumption

The channel connecting the receiver to the transmitter is memoryless.

In other words, the channel has no knowledge of the past.

Lp mj 

f sj s sj+1 s r== 
s  s  j

+


f sj s sj+1 s r== 
s  s  j

–


-------------------------------------------------------------------------

 
 
 
 
 
 
 
 

ln=

s sj s=

f sj s sj 1+ s r= =  f s s rt j ,rj rt j  =
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10.9 Maximum a Posteriori Probability Decoding of Convolutional Codes 627

Resuming the discussion on the log a posteriori L-value, Lp(mj) in (10.68), we use the
definition of joint probability density function to express the right-hand side of (10.69) as
follows:

Focusing on the conditional probability density function on the right-hand side of this
equality, we invoke the Markovian assumption to recognize that the vector rt > j
representing the received vector r after time-unit j subsumes knowledge of the following
three entities:

• the state ,

• the vector rj at time-unit j, and

• the vector rj<t received before time-unit j.

Accordingly, we may simplify matters by writing

(10.70)

where s denotes the state .
Next, we again use the definition of joint probability density function to write

Focusing on the second conditional probability density function  and
invoking the Markovian assumption one more time, we recognize that the received vector rj
at time-unit j subsumes knowledge of the past vector rt < j. Hence, we may further simplify
matters by writing

(10.71)

where the states s = sj + 1 and  = sj.
Collecting the results obtained in (10.70) and (10.71), we are finally ready to express

the probability density function common to the numerator and denominator of (10.68) as
follows:

(10.72)

which provides the mathematical basis for recursive implementation of the MAP decoding
algorithm. 

Three New Algorithmic Metrics

To simplify the computational steps involved in deriving the algorithm, we now introduce
the following three algorithmic metrics:

(10.73)

(10.74)

(10.75)

Using these three metrics, we may finally express the probability density function
common to the numerator and denominator of (10.68) in the simplified form:

(10.76)

f s s rt j rj rt j     f rt j s s rj rt j   f s s rj rt j   =

s sj=

f rt j s s rj rt j    f rt j s =

sj 1+

f s s rj r
t j   f s rj s rt j   f s rt j =

f s rj s rt j 

f s rj s rt j  f s rj s =

s

f s s r   f rt j s f s rj s f s rt j =

j s  f s rt j =

j s s  f s rj s =

j 1+ s  f rt j s =

f s s r   j 1+ s j s s j s =
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628 Chapter 10 Error-Control Coding

in light of which, hereafter, the three metrics are referred to as follows:

forward metric

branch metric 

backward metric 

As the names would imply, the forward and backward metrics play key roles in the forward
and backward recursions of the MAP decoding algorithm, respectively. As for the branch
metric, its role is to couple these two recursions to work together in a harmonious manner. 

Forward Recursion

Updating the forward metric has the effect of moving from state  at time-unit j to state s
at time-unit j + 1; hence, we write

where j is the set of all the states at time-unit j. Using the definition of a joint probability
density function, we write

where, in the second line, we used the Markovian assumption for rj subsuming rt < j.
Hence, using the defining equations for the branch and forward metrics in (10.74) and
(10.73), respectively, we simplify matters by writing

(10.77)

For obvious reasons, (10.77) is called the forward recursion; this recursion is illustrated
graphically in Figure 10.21a.

Backward Recursion

To formulate the recursion for the backward metric, we move from state s at time-unit j +
1 back to state  at time-unit j. Adapting the use of (10.75) to the scenario just described,
we write

The portion of received vector denoted by rt > j – 1 may be equivalently expressed as
follows:

 

j s 
j s s 
j 1+ s 

s

j 1+ s  f s rt j 1+ =

f s s rt j 1+  
s  j
=

j 1+ s  f s rj s rt j f s rt j 
s  j
=

f s, rj s f s rt j 
s  j
=

j 1+ s  j s s j s 
s  j
=

s

j s  f rt j 1– s =

rt j 1– rt 1 j+=

rj rt j =
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Correspondingly, the backward metric  is reformulated as shown by

where j + 1 is the set of all states at time-unit j. Here again, using the definition of joint
probability density function, we write

To simplify matters, we note the following two points:

1. Under the memoryless assumption, the received vector rt>j at the channel output
depends only on the state in which the encoder was residing at j – 1, namely s. We
may, therefore, write

2. Invoking the definition of joint probability density function one more time, we have

Figure 10.21
Illustrating the 
computation of 
forward-metric and 
backward-metric 
recursions.

(a) (b)

j(s1́)α

j(s2́)α

j(s3́)α

Time-unit j

j(s1́, s)γ

j(s2́, s)γ

j(s3́, s)γ

j + 1(s)α

j(s´)β

j + 1(s3)β
j(s,́ s3)γ

j(s,́ s2)γ

j(s,́ s1)γ

j + 1(s2)β

j + 1(s1)β

Time-unit j

j s 

j s  f rj rt j s =

f s rj rt j s  
s j + 1
=

j s  f s r j rt j s 
s j+1
=

1
� s 
------------- f s s r j rt j  

s j+1
=

1
� s 
------------- f rt j s s r j f s s rj  

s j+1
=

f rt j s s r j  f rt j s =

j 1+ s =

f s s rj   f s rj s � s =

j s s � s =
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630 Chapter 10 Error-Control Coding

Accordingly, substituting the two results under points 1 and 2 into the formula for 
and canceling the common term  we get

(10.78)

For obvious reasons, (10.78) is called the backward recursion; this second recursion is
illustrated graphically in Figure 10.21b.

Initial Conditions for Forward and Backward Recursions

Typically, the encoder starts in the all-zero state, denoted by s0 = 0. Correspondingly, the
forward recursion of (10.77) begins operating at time-unit j = 0 under the following initial
condition:

(10.79)

which follows from the fact that the convolutional encoder starts in the all-zero state.
Thus, j + 1(s) is recursively computed forward in time at j = 0, 1, , K – 1, where the
overall length of the input data stream is

in which L and  denote the lengths of the message and termination sequences.
Similarly, the backward recursion of (10.78) begins at time-unit j = K under the

following initial condition:

(10.80)

Since the encoder ends in the all-zero state, we recursively compute  backward in
time at j = K – 1, K – 2, , 0.

Branch Metric Evaluation for the AWGN Channel

Thus far, we have accounted for all the issues important to the MAP decoder except for the
discrete-input, continuous-output AWGN channel, which naturally comes into play in
evaluating the branch metric: a necessary requirement. This issue was discussed in Example
10 in Chapter 5. For this evaluation, we first rewrite the defining equation (10.74) as follows:

which may be transformed into a more desirable form that involves the message bit mj and
the corresponding code vector cj, as shown by

(10.81)

j s 
� s 

j s  j s s j 1+ s 
s j+1
=

0 s  1 s 0=

0 s 0



=

K L L+=

L

K s  1 s 0=

0 s 0



=

j s 

j s s  f s rj s =

1
� s 
-------------f s s rj =

� s s 
� s 

------------------- 
  f s s rj  

� s s 
----------------------- 

 =

� s s f rj s s =

j s s  � mj f rj cj =
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Justification for this transformation may be explained as follows:

1. The transition from the state  to the new state  is attributed to the
message bit inputing the convolutional encoder at time-unit j; hence, we may
substitute the probability  for the conditional probability .

2. The state transition  may be viewed as another way of referring to the code
vector cj; hence, we may substitute the conditional probability  for

.

In (10.81), mj is the message bit at the encoder’s input and cj is the code vector defining
the encoded bits pertaining to the state transition  at time-unit j. When this state
transition is a valid one, the conditional probability density function f(rj | cj), defining the
input–output statistical behavior of the channel, assumes the following form:

(10.82)

where Es is transmitted energy per symbol, n is the number of bits in each codeword,
N02 is the power spectral density of the additive white Gaussian channel noise, and

 is the squared Euclidean distance between the transmitted vector cj at the
channel input and the received vector rj at the channel output at time-unit j. Thus,
substituting (10.82) into (10.81) yields

(10.83)

This equation holds if, and only if, the state transition  at time-unit j is a valid one;
otherwise, the state-transition probability  is zero, in which case the branch metric

 is also zero.

A priori L-value, La(mj )

At this point in the discussion, we are ready to revisit the a priori L-value La(mj),
introduced previously on page 624. Specifically, with the message bit mj taking the value
+1 or –1, we may follow the format of (10.63) to define the a priori L-value of mj as
follows:

(10.84)

where, in the second line, we used the following axiom from probability theory:

or, equivalently,

s sj= s sj 1+=

� mj  � s s 

s s 
� rj cj 

f rj s s 

s s

f rj cj 
Es

N0
----------  

 
 
  n Es

N0
------ rj cj–

2
– 
 exp=

rj cj–
2

j s s  � mj 
Es

N0
----------  

 
 
  n Es

N0
------ rj cj–

2
– 
 exp=

s s
p s s 

j s s 

La mj 
� mj = +1 
� mj = –1 
----------------------------ln=

� mj = +1 
1 � mj = +1 –
------------------------------------- 
 ln=

� mj = +1  � mj = –1 + 1=

� mj 1–=  1 � mj = +1 –=
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632 Chapter 10 Error-Control Coding

Solving the second line of (10.84) for �(mj = +1) in terms of the a priori L-value La(mj),
we get

Correspondingly,

This latter pair of equations for the two probabilities of mj = –1 and mj = +1 may be
combined into a single equation, as shown by

(10.85)

where . The important point to note in (10.85) is that the first term on the right-
hand side of the equation turns out to be independent of ; hence, this term may be
treated as a constant.

Turning next to the exponential term in (10.83), we may express the exponent of the
second term as follows:

(10.86)

where Es is the transmitted symbol energy, and the terms inside the parentheses are

(10.87)

           (10.88)

           (10.89)

The terms  and  denote the individual bits in the received vector rj and code vector cj
at time-unit j, and n denotes the number of bits in each of rj and cj. Note also that in
(10.88) the term  denotes the inner product of the vectors rj and cj. 

� mj +1=  1
1 La mj – exp+
-------------------------------------------=

� mj 1–= 
La mj – exp

1 La mj – exp+
-------------------------------------------=

� mj 
La mj  2– exp

1 La mj – exp+
------------------------------------------- 

  1
2
---mjLa mj  

 exp=

mj 1=
mj 1=

Es

N0
------ rj cj–

2
–

Es

N0
------ rjl cjl– 2

l 1=

n

–=

Es

N0
------ rjl

2
2rjlcjl– cjl

2
+ 

l 1=

n

–=

Es

N0
------ rj

2
2rj

T
cj– cj

2
+ –=

rj
2

rjl 2

l 1=

n

=

rj
T

cj rjlcjl
l 1=

n

=

cj
2

cjl 
2

l 1=

n

 n= =

rjl cjl

rj
T

cj
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In light of (10.87) to (10.89), we make three observations:

1. The term  depends only on the channel SNR and the squared
magnitude of the received vector rj.

2. The third product term  depends only on the channel SNR and the
squared magnitude of the transmitted code vector cj.

3. The remaining product term  is the only one that contains useful
information for detection in the receiver by virtue of the inner product  that
correlates the received vector r with the transmitted code vector c, as shown in (10.88).

In light of these observations and the observation made previously that the bracketed
fractional term in (10.85) does not depend on whether the symbol mj is +1 or –1, we may
simplify the formula for the transition metric  in (10.83) as follows:

(10.90)

where Lc denotes the channel reliability factor, defined by

(10.91)

As for the two multiplying factors Aj and Bj, they are respectively defined by

(10.92)

and

(10.93)

where, as before, n is the number of bits in each transmitted codeword.
Equations (10.90), (10.92), and (10.93) apply to the message bits of length L. However,

for the termination bits we have

(10.94)

for each valid state transition; the K in (10.94) denotes the combined length of the message
and termination bits. Accordingly, (10.90) for the termination bits simplifies to

(10.95)

Examining (10.92), we find that the factor Aj is independent of the algebraic sign of
message bit mj; it is therefore a constant. Moreover, from (10.76) and the follow-up
formulas of (10.77) and (10.78) for updating recursive computations of the forward and
backward metrics, we find that the joint probability density function  contains
the factors

Es N0  rj
2

Es N0  cj
2

2 Es N0 rj
T

cj
rj

T
cj

j s s 

j s s  AjBj
1
2
---mjLa mj  
  1

2
---Lc rj

T
cj  

  jexpexp 0 1  L 1–  = =

Lc

4Es

N0
---------=

Aj

1
2
--- La mj – exp

1 La mj – exp+
------------------------------------------- j 0 1  L 1–  = =

Bj

Es

N0
----------  

 
 
  n Es

N0
------ rj

2
n+ – jexp 0 1  L 1–  = =

� mj  1 and La mj   j L L 1  K 1– += = =

j s s  Bj 
1
2
---Lc rj

T
cj  

  jexp L L 1  K 1– += =

f s s r  

Aj and Bj
j 0=

K 1–


j 0=

L 1–


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With these factors being common to every term in the numerator and denominator of
(10.68), they both cancel out and may, therefore, be ignored. Thus, we may simplify
(10.90) and (10.95) into the following two-part formula:

(10.96)

One last comment is in order. When the original message bits are equally likely, we have

(10.97)

Under these two conditions, we have a simple expression for the transition metric for the
entire stream of bits, as shown by

(10.98)

The a Posteriori L-Value Finalized

With the forward and backward recursions as well as the branch metric that ties them
together all now at hand, we are equipped to finalize the formula for computing the a
posteriori L-value Lp(mj) defined way back in (10.68). Specifically, using (10.69) and
(10.76), we may now write

(10.99)

It is the a posterior L-value Lp(mj) defined in the last line of (10.99), which is delivered by
the MAP decoding algorithm given the received vector r.
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Summary of the MAP Algorithm

Starting with given AWGN channel values, namely EsN0 and received vector rj at time-unit j,
the computational flow diagram of Figure 10.22 provides a visual summary of the key
recursions involved in using the MAP decoding algorithm. Specifically, the functional blocks
pertaining to the forward metric , the backward metric , the branch metric

, and the a posteriori L-value  are all identified together with their respective
equation numbers.

Modifications of the MAP Decoding Algorithm

The MAP algorithm, credited to Bahl et al. (1974), is roughly three times as
computationally complex as the Viterbi algorithm. It was on account of this high
computational complexity that the MAP algorithm was largely ignored in the literature for
almost two decades. However, its pioneering application in turbo codes by Berrou et al.
(1993) re-ignited interest in the MAP algorithm, which, in turn, led to the formulation of
procedures for significant reductions in computational complexity. 

Specifically, we may mention the following two modifications of the MAP algorithm,
the first one being exact and the second one being approximate:

1. Log-MAP Algorithm

Examination of the forward and backward metrics of the MAP algorithm for
continuous-output AWGN channels reveals that they are sums of exponential terms,
one for each valid state transition in the trellis. This finding, in turn, leads to the idea
of simplifying the MAP computations by making use of the following identity
(Robertson et al., 1995):

(10.100)

j 1+ s  j s 
j s s  Lp mj 

e
x

e
y

+ ln max x y  1 e
x y––

+ ln+=

Figure 10.22 Computational flow diagram displaying the key recursions in the MAP algorithm. 

AWGN channel values: A priori message probability:

Compute branch metric

using (10.83)

Compute forward metric

using (10.77)

Compute backward metric

using (10.78)

Compute a posteriori L-value

using (10.99)

Es/N0; rj

j(s,́ s)γ

j s'βj + 1(s)α

ℙ(mj)

Lp(mj)
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where the computationally difficult operation ln(ex + ey) is replaced by the sum of
two simpler computations:

a. the max function, max(x,y), equals x or y, depending on which is larger;
b. the correction term, ln(1 + e–|x–y |), may be evaluated using a look-up table. 

The resulting algorithm, called the log-MAP algorithm, is considerably simpler in
implementation and provides greater numerical stability than the original MAP
algorithm. We say so because its formulation is based on two relatively simple
entities: a max function and a look-up table. Note, however, that in developing the
log-MAP algorithm, no approximations whatsoever are made.10 

2. Max-log-MAP Algorithm

We may simplify the computational complexity of the MAP decoding algorithm
even further by ignoring the correction term ln(1 + e–|x–y |) altogether. In effect, we
simply use the approximation

(10.101)

The correction term, ignored in this approximate formula, is bounded by

The approximate formula of (10.101) yields reasonably good results whenever the
condition

holds. The decoding algorithm that uses the max function max(x,y) in place of
ln(ex, ey) is called the max-log-MAP algorithm. In this simplified algorithm, the
max function plays a role similar to the ACS described previously in the Viterbi
algorithm; we therefore find that the forward recursion in the max-log-MAP
algorithm is equivalent to a forward Viterbi algorithm, and the backward recursion
in the max-log-MAP algorithm is equivalent to a Viterbi algorithm performed in the
backward direction. In other words, computational complexity of the max-log-MAP
algorithm is roughly twice that of the Viterbi algorithm, thereby providing a
significant improvement in computational terms over the original MAP decoding
algorithm. However, unlike the log-MAP algorithm, this improvement is attained at
the expense of some degradation in decoding performance.

Details of the Max-Log-MAP Algorithm

To develop a detailed mathematical description of the max-log-MAP algorithm, we have to
come up with simplified computations of the forward metric  and backward metric

, both of which play critical roles in computing the log-a-posteriori L-value  in
(10.99). To this end, we introduce three new definitions in the log-domain:

(10.102)

(10.103)

(10.104)

e
x

e
y

+ ln max x y 

0 1 e
x y––

+  2 lnln 0.693=

max x y  7

j 1+ s 
j s  L mj 

j
* s  j s  equivalently, j s ln j

* s  exp= =

j 1+
* s  j 1+ s  equivalently, j 1+ s ln j 1+

* s  exp= =

j
* s s  j s s  equivalently, j s s ln j

* s s  exp= =

Haykin_ch10_pp3.fm  Page 636  Friday, January 4, 2013  5:03 PM
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where the asterisk for all three metrics is intended to signify the use of natural logarithm
and must, therefore, not be confused with complex conjugation.

The motivation for these new definitions is to exploit the physical presence of exponen-
tials in the forward and backward metrics so as to facilitate applying the approximate for-
mula of (10.101). Thus, substituting the recursion of (10.104) into (10.77), we get

(10.105)

where  is a subset of . Hence, application of the approximate formula of (10.101)
yields 

(10.106)

Equation (10.106) indicates that, for each path in the trellis from the old state  at time-
unit j to the updated state s at time-unit j + 1, the max-log MAP algorithm adds the branch
metric  to the old value  to produce the updated value ; this update
is the “maximum” of all the  values of the previous paths terminating on the state

, that is, j = 1, 0, , . The process just described may be thought of as that
of selecting the one particular path viewed as the “survivor” with all the other paths in the
trellis reaching the state s being discarded. We may, therefore, view (10.106) as a
mathematical basis for describing the forward recursion in the max-log-MAP algorithm in
exactly the same way as the forward recursion in the Viterbi algorithm.

Proceeding in a manner similar to that for the forward recursion, we may write

(10.107)

whose approximate form is given by

(10.108)

Next, proceeding onto the branch metric, we may similarly write the two-part formula

(10.109)

where, for the message bits in the first line of the equation, the additive term 
accounts for a priori information.
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638 Chapter 10 Error-Control Coding

At long last, using (10.105), (10.107), and (10.109) in (10.99), we may finally express
the a posteriori L-value for the log-MAP algorithm as follows:

(10.110)

A couple of reminders:

•  is the set of all state pairs  and  that correspond to the original
message bit  at time-unit j.

•  is the set of all other state pairs  and  that correspond to the
original message bit  at time-unit j.

Correspondingly, the approximate form of the Lp(mj) in the max-log-MAP algorithm is
defined by

(10.111)

10.10 Illustrative Procedure for Map Decoding in the Log-Domain

In the preceding section we described three different algorithms for decoding a
convolutional code, as summarized here:

1. The BCJR algorithm, which distinguishes itself from the Viterbi algorithm in that it
performs MAP decoding on a bit-by-bit basis. However, a shortcoming of this
algorithm is its computational complexity, which, as mentioned previously, is
roughly three times that of the Viterbi algorithm for the same convolutional code.

2. The log-MAP-algorithm, which simplifies the BCJR algorithm by replacing the
computationally difficult logarithmic operation, namely , with the so-called
max function plus a look-up table for evaluating  in accordance with
(10.100). The attractive feature of this second algorithm is twofold:

• transformation of the BCJR algorithm into the log-MAP algorithm is exact;
• its computational complexity is twice that of the Viterbi algorithm, thereby pro-

viding a significant reduction in complexity compared to the BCJR algorithm.
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3. The max-log-MAP algorithm, which simplifies computational complexity even
further by doing away with the look-up table; this simplification may result in some
degradation in decoding performance depending on the application of interest.

In this section, we illustrate how the simpler of the latter two algorithms, namely the max-
log-MAP algorithm, is used to decode an RSC code by way of an example. 

EXAMPLE 7 Max-Log-MAP Decoding of Rate 3/8 Recursive Systematic Convolutional
Code over AWGN Channel

In this example, we revisit the simple RSC code discussed previously at the tail end of
Section 10.6 on convolutional codes.

For convenience of presentation, the two-state RSC encoder of Figure 10.17 is
reproduced in Figure 10.23a. The message vector applied to the encoder is denoted by

Figure 10.23 (a) Block diagram of rate-38, two-state recursive systematic convolutional (RSC) 
encoder. (b) Trellis graph of the encoder. 
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640 Chapter 10 Error-Control Coding

which produces the encoded output vector

Correspondingly, the received vector at the channel output is denoted by

The first three elements of the message vector m, namely , are message
bits. The last element, m3, is a termination bit. With the encoded output vector, c,
consisting of eight bits, it follows that the code rate .

Figure 10.23b shows the trellis diagram of the RSC encoder. The underlying points
covering the ways in which the branches of the trellis diagram have been labeled should be
carefully noted:

1. The encoder is initialized to the all-zero state and, on termination of the encoding
process, it returns to the all-zero state.

2. The encoder has a single memory unit; hence, there are only two states denoted by:                
 represented by bit 0 and  represented by bit 1.

3. Figure 10.24 illustrates the four different ways in which the state transitions take place:

where, in each case, the first bit on the right-hand side is an input bit and the
following two bits (shown separately) are encoded bits. Since the encoder is
systematic, it follows that the encoder input bit and the first encoded bit are exactly
the same. The remaining second encoded bit is determined by the modulo-2
recursion:

(10.112)

where the initializing bit b–1 is 0. The two-bit code is defined by

            

We may thus use the notation  to denote the branch labels. Hence,
following this notation and the state transitions described in Figure 10.23b, we may
identify the desired branch labels for the trellis diagram in terms of bits 0 and 1,
respectively. More specifically, using the mapping rule: levels –1 and 1 for bits 0
and 1, respectively, we get the branch labels actually described in Figure 10.23b. 

4. One last point is in order: owing to the use of feedback in the encoder, the lower
branch leaving each state does not necessarily correspond to a bit 1 (level +1) and
the upper branch does not necessarily correspond to a bit 0 (level –1).
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To continue the background material for the example, we need to bring in a mapper that
transforms the encoded signal into a form suitable for transmission over the AWGN channel.
To this end, consider the simple example of binary PSK as the mapper. We may then express
the SNR at the channel output (i.e., receiver input) as follows (see Problem 10.35):

(10.113)

Figure 10.24 Illustration of the operations involved in the four possible state transitions. 
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642 Chapter 10 Error-Control Coding

where Eb is the signal energy per message bit applied to the encoder input, and r is the code
rate of the convolutional encoder. Thus for the SNR = 12, that is –3.01 dB and r = 38, the
required EbN0 is 43.

In transmitting the coded vector c over the AWGN environment, it is assumed that the
received signal vector, normalized with respect to , is given by

The received vector r is included at the top of the trellis diagram in Figure 10.23b.
We are now fully prepared to proceed with decoding the received vector r using the

max-log-MAP algorithm described next, assuming the message bits are equally likely.

Computation of the Decoded Message Vector
To prepare the stage for this computation, we find it convenient to reproduce the following
equations, starting with the formula for the log-domain transition metrics:

(10.114)

Then for the log-domain forward metrics:

(10.115)

Next, for the log-domain backward metrics:

(10.116)

And finally for computation of the a posteriori L-values:

(10.117)

A Matlab code has been used to perform the computation, starting with the initial
conditions for the forward and backward metrics,  and , defined in (10.79)
and (10.80), respectively. The results of the computation are summarized as follows:

1. Log-domain transition metrics
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




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1
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1
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1
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







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2. Log-domain forward metrics

3. Log-domain backward metrics

Gamma 2 :   

2
* S0 S0  0.7=
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






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
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



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4. A posteriori L-values

(10.118)

5. Final decision

Decoded version of the original message vector

(10.119)

In binary form, we may equivalently write

Two Final Remarks on Example 7

1. In arriving at the decoded output of (10.119) we made use of the termination bit, .
Although  is not a message bit, the same procedure was used to calculate its a
posteriori L-value. Lin and Costello (2004) showed that this kind of calculation is a
necessary requirement in the iterative decoding of turbo codes. Specifically, with the
turbo decoder consisting of two stages, “soft-output” a posteriori L-values are
passed as a priori inputs to a second decoder.

2. In Example 7, we focused attention on the application of the max-log-MAP
algorithm to decode the rate-38 RSC code produced by the two-state encoder of
Figure 10.23a. The procedure described herein, embodying six steps, applies
equally well to the log-MAP algorithm with no approximations. In Problem 10.34 at
the end of the chapter, the objective is to show that the corresponding decoded
output is (+1, +1, –1), which is different from that of Example 7. Naturally, in
arriving at this new result, the calculations are somewhat more demanding but more
accurate in the final decision-making.

10.11 New Generation of Probabilistic Compound Codes

Traditionally, the design of good codes has been tackled by constructing codes with a great
deal of algebraic structure, for which there are feasible decoding schemes. Such an
approach is exemplified by the linear block codes, cyclic codes, and convolutional codes
discussed in preceding sections of this chapter. The difficulty with these traditional codes
is that, in an effort to approach the theoretical limit for Shannon’s channel capacity, we
need to increase the codeword length of a linear block code or the constraint length of a
convolutional code, which, in turn, causes the computational complexity of a maximum
likelihood or maximum a posteriori decoder to increase exponentially. Ultimately, we
reach a point where complexity of the decoder is so high that it becomes physically
impractical.

Ironically enough, in his 1948 paper, Shannon showed that the “average” performance
of a randomly chosen ensemble of codes results in an exponentially decreasing decoding

Lp m0  0.2–=

Lp m1  0.2=

Lp m2  0.8–= 





m̂ 1 1 1– – =

m̂ 0 1 0  =

m3
m3
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error with increasing block length. Unfortunately, as it was with his coding theorem,
Shannon did not provide guidance on how to construct randomly chosen codes.

The Turbo Revolution Followed by LDPC Rediscovery

Interest in the use of randomly chosen codes was essentially dormant for a long time until
the new idea of turbo coding was described by Berrou et al. (1993); that idea was based on
two design initiatives:

1. The design of a good code, the construction of which is characterized by random-
like properties.

2. The iterative design of a decoder that makes use of soft-output values by exploiting
the maximum a posteriori decoding algorithm due to Bahl et al. (1974).

By exploiting these two ideas, it was experimentally demonstrated that turbo coding can
approach the Shannon limit at a computational cost that would have been infeasible with
traditional algebraic codes. Therefore, it can be said that the invention of turbo coding
deserves to be ranked among the major technical achievements in the design of
communication systems in the 20th century.

What is also remarkable is the fact that the discovery of turbo coding and iterative
decoding flamed theoretical as well as practical interest in some prior work by Gallager
(1962, 1963) on LDPC codes. These codes also possess the information-processing power
to approach the Shannon limit in their own individual ways. The important point to note
here is the fact that both turbo codes and LDPC codes are capable of approaching the
Shannon limit at a similar level of computational complexity, provided that they both have
a sufficiently long codeword. Specifically, turbo codes require a long turbo interleaver,
whereas LDPC codes require a longer codeword at a given code rate (Hanzo, 2012).

We thus have two basic classes of probabilistic compound coding techniques: turbo
codes and LDPC codes, which complement each other in the following sense: 

Turbo encoders are simple to design but the decoding algorithm can be 
demanding. In contrast, LDPC encoders are relatively complex but they are 
simple to decode.

With these introductory remarks, the stage is set for the study of turbo codes in Section
10.12, followed by LDPC codes in Section 10.14.

10.12 Turbo Codes

Turbo Encoder

As mentioned in the preceding section, the use of a good code with random-like properties is
basic to turbo coding. In the first successful implementation of turbo codes11, Berrou et al.
achieved this design objective by using concatenated codes. The original idea of
concatenated codes was conceived by Forney (1966). To be more specific, concatenated
codes can be of two types: parallel or serial. The type of concatenated codes used by
Berrou et al. was of the parallel type, which is discussed in this section. Discussion of the
serial type of concatenated codes will be taken up in Section 10.16.
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646 Chapter 10 Error-Control Coding

Figure 10.25 depicts the most basic form of a turbo code generator that consists of two
constituent systematic encoders, which are concatenated by means of an interleaver.

The interleaver is an input–output mapping device that permutes the ordering of a
sequence of symbols from a fixed alphabet in a completely deterministic manner; that is, it
takes the symbols at the input and produces identical symbols at the output but in a different
temporal order. Turbo codes use a pseudo-random interleaver, which operates only on the
systematic (i.e., message) bits. (Interleavers are discussed in Appendix F.) The size of the
interleaver used in turbo codes is typically very large, on the order of several thousand bits. 

There are two reasons for the use of an interleaver in a turbo code:

1. The interleaver ties together errors that are easily made in one half of the turbo code
to errors that are exceptionally unlikely to occur in the other half; this is indeed one
reason why the turbo code performs better than a traditional code.

2. The interleaver provides robust performance with respect to mismatched decoding, a
problem that arises when the channel statistics are not known or have been
incorrectly specified.

Ordinarily, but not necessarily, the same code is used for both constituent encoders in
Figure 10.25. The constituent codes recommended for turbo codes are short constraint-
length RSC codes. The reason for making the convolutional codes recursive (i.e., feeding
one or more of the tap outputs in the shift register back to the input) is to make the internal
state of the shift register depend on past outputs. This affects the behavior of the error
patterns, with the result that a better performance of the overall coding strategy is attained.

EXAMPLE 8 Two-State Turbo Encoder

Figure 10.26 shows the block diagram of a specific turbo encoder using an identical pair of
two-state RSC constituent encoders. The generator matrix of each constituent encoder is
given by

  

The input sequence of bits has length , made up of three message bits and one
termination bit. (This RSC encoder was discussed previously in Section 10.9.) The input
vector is given by

Figure 10.25 Block diagram of turbo encoder of the parallel type. 
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10.12 Turbo Codes 647

The parity-check vector produced by the first constituent encoder is given by

Similarly, the parity-check vector produced by the second constituent encoder is given by

The transmitted code vector is therefore defined by

With the convolutional code being systematic, we thus have

As for the remaining two sub-vectors constituting the code vector c, they are defined by

and

The transmitted code vector c is therefore made up of 12 bits. However, recalling that the
termination bit  is not a message bit, it follows that the code rate of the turbo code
described in Figure 10.26 is

One last point is in order: with each RSC encoder having two states, the interleaver has a
two-by-two (row–column) structure. Note also that the interleaver in Figure 10.26 is
denoted by the symbol , which is a common usage; this practice is adopted throughout
the book.

In Figure 10.25, the input data stream is applied directly to encoder 1 and the pseudo-
randomly reordered version of the same data stream is applied to encoder 2. The
systematic bits (i.e., original message bits) and the two sets of parity-check bits generated

Figure 10.26 Two-state turbo encoder for Example 8.
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by the two encoders constitute the output of the turbo encoder. Although the constituent
codes are convolutional, in reality, turbo codes are block codes with the block size being
determined by the periodic size of the interleaver. Moreover, both RSC encoders in Figure
10.25 are linear. We may therefore describe turbo codes generally as linear block codes.

The block nature of the turbo code raises a practical issue: 

How do we know the beginning and the end of a codeword? 

The common practice is to initialize the encoder to the all-zero state and then encode the
data. After encoding a certain number of data bits, a number of tail bits are added so as to
make the encoder return to the all-zero state at the end of each block; thereafter, the cycle
is repeated. The termination approaches of turbo codes include the following:

• A simple approach is to terminate the first RSC code in the encoder and leave the
second one undetermined. A drawback of this approach is that the bits at the end of
the block due to the second RSC code are more vulnerable to noise than the other
bits. Experimental work has shown that turbo codes exhibit a leveling off in
performance as the SNR increases. This behavior is not like an error floor; rather, it
has the appearance of an error floor compared with the steep drop in error
performance at low SNR. The error floor is affected by a number of factors, the
dominant one of which is the choice of interleaver.

• A more refined approach is to terminate both constituent codes in the encoder in a
symmetric manner. Through the combined use of a good interleaver and dual
termination, the error floor can be reduced by an order of magnitude compared to
the simple termination approach.

In the original version of the turbo encoder described in Berrou et al. (1993), the parity-
check bits generated by the two encoders in Figure 10.25 were punctured prior to data
transmission over the channel to maintain the rate at 12. A punctured code is constructed
by deleting certain parity-check bits, thereby increasing the data rate; the message bits in
the puncturing process are of course unaffected. Basically, puncturing is the inverse of
extending a code. It should, however, be emphasized that the use of a puncture map is not
a necessary requirement for the generation of turbo codes.

As mentioned previously, the encoding scheme of Figure 10.25 is of the parallel
concatenation type, the novelty of which is twofold:

• the use of RSC codes and
• the insertion of a pseudo-random interleaver between the two encoders.

The net result of parallel concatenation is a turbo code that appears essentially random to
the channel by virtue of the pseudo-random interleaver, yet it possesses sufficient structure
for the decoding to be physically realizable. Coding theory asserts that a code chosen at
random is capable of approaching Shannon’s channel capacity, provided that the block
size is sufficiently large. This is indeed the reason behind the impressive performance of
turbo codes, as discussed next.

Performance of Turbo Codes

Figure 10.27 shows the error performance of a 12-rate turbo code with a large block size
for binary data transmission over an AWGN channel.12 The code uses an interleaver of
size 65,536 bits and a MAP decoder.
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For the purpose of comparison, Figure 10.27 also includes two other curves for the
same AWGN channel:

• uncoded transmission (i.e., code rate r = 1);
• Shannon’s theoretical limit for code rate 12, which follows from Figure 5.18b.

From Figure 10.27, we may draw two important conclusions:

1. Although the BER for the turbo-coded transmission is significantly higher than that
for uncoded transmission at low EbN0, the BER for the turbo-coded transmission
drops very rapidly once a critical value of EbN0 has been reached.

2. At a BER of 10–5, the turbo code is less than 0.5 dB from Shannon’s theoretical
limit.

Note, however, attaining this highly impressive performance requires that the size of the
interleaver or, equivalently, the block length of the turbo code be large. Also, the large
number of iterations needed to improve performance increases the decoder latency. This
drawback is due to the fact that the digital processing of information does not lend itself
readily to the application of feedback, which is a distinctive feature of the turbo decoder.

Extrinsic Information

Before proceeding to describe the operation of the turbo decoder, we find it desirable to
introduce the notion of extrinsic information. The most convenient representation for this
new concept is in terms of the log-likelihood ratio, in which case extrinsic information is
computed as the difference between two a posteriori L-values as depicted in Figure 10.28.
Formally, extrinsic information, generated by a decoding stage for a set of systematic
(message) bits, is defined as follows:

Figure 10.27 Noise performance of 12 rate, turbo code and uncoded transmission 
for AWGN channel; the figure also includes Shannon’s theoretical limit on channel 
capacity for code rate r = 12. 
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650 Chapter 10 Error-Control Coding

Extrinsic information is the difference between the log-likelihood ratio computed 
at the output of a decoding stage and the intrinsic information represented by the 
log-likelihood ratio applied to the input of that decoding stage. 

In effect, extrinsic information is the incremental information gained by exploiting the
dependencies that exist between a message bit of interest and incoming raw data bits
processed by the decoder. Extrinsic information plays a key role in the iterative decoding
process, as discussed next.

Turbo Decoder

Figure 10.29a shows the block diagram of the two-stage turbo decoder. Using a MAP
decoding algorithm discussed in Section 10.9, the decoder operates on noisy versions of
the systematic bits and the two sets of parity-check bits in two decoding stages to produce
an estimate of the original message bits. 

A distinctive feature of the turbo decoder that is immediately apparent from the block
diagram of Figure 10.29a is the use of feedback, manifesting itself in producing extrinsic
information from one decoder to the next in an iterative manner. In a way, this decoding
process is analogous to the feedback of exhaust gases experienced in a turbo-charged
engine; indeed, turbo codes derive their name from this analogy. In other words, the term
“turbo” in turbo codes has more to do with the decoding rather than the encoding process.

In operational terms, the turbo encoder in Figure 10.29a operates on noisy versions of
the following inputs, obtained by demultiplexing the channel output, , 

• systematic (i.e., message) bits, denoted by ;

• parity-check bits corresponding to encoder 1 in Figure 10.25, denoted by ;

• parity-check bits corresponding to encoder 2 in Figure 10.25, denoted by .

The net result of the decoding algorithm, given the received vector , is an estimate of the
original message vector, namely , which is delivered at the decoder output to the user. 

Another important point to note in the turbo decoder of Figure 10.29a is the way in
which the interleaver and de-interleaver are positioned inside the feedback loop. Bearing
in mind the fact that the definition of extrinsic information requires the use of intrinsic
information, we see that decoder 1 operates on three inputs:

• the noisy systematic (i.e., original message) bits,
• the noisy parity-check bits due to encoder 1, and
• de-interleaved extrinsic information computed by decoder 2.

Figure 10.28 Block diagram for illustrating the concept of extrinsic information. 
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In a complementary manner, decoder 2 operates on two inputs of its own:

• the noisy parity-check bits due to encoder 2 and
• the interleaved version of the extrinsic information computed by decoder 1.

For this iterative exchange of information between the two decoders inside the feedback
loop to continuously reinforce each other, the de-interleaver and interleaver would have to
separate the two decoders in the manner depicted in Figure 10.29a. Moreover, the
structure of the decoder in the receiver is configured to be consistent with the structure of
the encoder in the transmitter.

Mathematical Feedback Analysis

To put the two-state turbo decoding process just described on a mathematical basis, we
structure the flow of information around the feedback loop as depicted in Figure 10.29a.
For the sake of simplicity without loss of generality, we assume the use of a code rate

 parallel concatenated convolutional code without puncturing. At time-unit j, let

 denote the noisy vector of systematic bits,

Figure 10.29 (a) Block diagram of turbo decoder. (b) Extrinsic form of turbo decoder, where I stands 
for interleaver, D for deinterleaver, and BCJR for BCJR for BCJR algorithm for log-MAP decoding.
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652 Chapter 10 Error-Control Coding

 denote the noisy vector of parity-check bits produced by encoder 1, and

 denote the noisy vector of parity-check bits produced by encoder 2.

The notations described herein are consistent with those adopted in the encoder of Figure
10.25. Moreover, it is assumed that all three vectors, , , , are of
dimensionality K.

Proceeding with the analysis, decoder 1 in Figure 10.29b uses the BCJR decoding
algorithm to produce a “soft estimate” of symmetric bit mj by computing the a posteriori
L-values for decoder 1, namely

(10.120)

where  denotes the extrinsic information about the message vector m that is
computed by decoder 2. Note also that in (10.120) we have used the usual mapping: +1 for
bit 1 and –1 for bit 0. Assuming that the L message bits are statistically independent, the
overall extrinsic information computed by decoder 1 is given by the summation:

(10.121)

Accordingly, the extrinsic information about the message vector m computed by decoder 1
is given by the difference

(10.122)

where  is to be defined. 
Before proceeding to use (10.122) in the second decoding stage, the extrinsic

information  is reordered (i.e., de-interleaved) to compensate for the pseudo-random
interleaving introduced originally in the turbo encoder in the manner indicated in both
Figure 10.29b. In addition to , the input applied to decoder 2 also includes the vector
of noisy parity-check bits . Accordingly, by using the BCJR algorithm, decoder 2
produces a more refined soft estimate of the message vector m. Next, as indicated in Figure
10.29b, this refined estimate of the message vector is re-interleaved to compute the a
posteriori L-values for decoder 2, namely

(10.123)

where 

(10.124)

Accordingly, the extrinsic information  fed back to the input of decoder 1 is given by

(10.125)

and with it the feedback loop, embodying constituent decoders 1 and 2, is closed.
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As indicated in Figure 10.29b, the decoding process is initiated by setting the a
posteriori extrinsic L-value 

(10.126)

The decoding process is stopped when it reaches a point at which no further improvement
in performance is attainable. At this point, an estimate of the message vector m is
computed by hard-limiting the a priori L-value at the output of decoder 2, yielding 

(10.127)

To conclude the discussion on turbo decoding, two other points are noteworthy: 

1. Although the noisy vector of systematic bits  is applied only to decoder 1, its
influence on decoder 2 manifests itself indirectly through the a posteriori extrinsic
L-value, , computed by decoder 1.

2. Equations (10.122) and (10.125) assume that the a posteriori extrinsic L-values,
 and , passed between decoders 1 and 2, are statistically independent

of the message vector m. In reality, however, this condition applies only to the first
iteration of the decoding process. Thereafter, the extrinsic information becomes less
helpful in realizing successively more reliable estimates of the message vector m.

EXAMPLE 9 UMTS Codec Using Binary PSK Modulation13

In this example, we study the Universal Mobile Telecommunications Systems (UMTS)
standard’s codec. To simplify the study, binary PSK modulation is used for data transmission
over an AWGN channel. The basic RSC encoder of the UMTS turbo codes is as follows:

code-rate

constraint length  = 4

memory length m = 3

The UMTS Turbo Encoder

Figure 10.30a shows the block diagram of the UMTS turbo encoder, which consists of two
identical concatenated RSC encoders, operating in parallel with an interleaver separating
them. To be specific:

• Each encoder is made up of a linear feedback shift register (LFSR) whose number of
flip-flops m = 3; in each LFSR, therefore, we have a finite-state machine with 

2m = 23 = 8 states

• The encoding process is initialized by setting each LFSR to the all-zero state.

• To activate the encoding process, the two switches in Figure 10.30a are closed,
thereby applying the message vector m to the top RSC encoder and applying the
interleaved version of m, namely n, to the bottom RSC encoder. The length of m is
denoted by K.

• Each RSC constituent encoder produces a sequence of parity-check bits, the length
of which is K + m.

• Once the encoding process is completed, a set of m bits is appended to each block of
encoded bits, so as to force each LFSR back to the initial all-zero state. 

L̃2 mj  0 for j 0= =

m̂ L2 m  sgn=

r
0 

L̃1 m 

L̃1 m  L̃2 m 

r 1 3=


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Figure 10.30 Block diagram of UMTS codec. (a) Encoder, (b) Decoder. Notes: 1. The received 

vectors {r(0), z(1), r(1), z(2), r(2)} correspond to the transmitted vectors {c(0), t(0), c(1), t(2), c(2)}. 

2. The block labeled : interleaver. The block labeled : de-interleaver.
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10.12 Turbo Codes 655

From this description, it is apparent that the overall code-rate of the turbo code is lower
than the UMTS code-rate, namely 13, as shown by 

Note that if we set the memory length m = 0, the code rate roverall is increased again to 13.
On the basis of this description, each block of the multiplexed output of the turbo

encoder is composed as follows:

c(0) vector of systematic bits (i.e., message bits), followed by

c(1) and c(2) pair of vectors, representing the parity-check bits produced by the
top and bottom RSC encoders, respectively, then followed by 

t(1) and t(2) pair of vectors, representing encoder termination-tail bits for forcing
the top and bottom RSC constituent encoders back to all-zero state,
respectively.

In the UMTS standard, the block length of the turbo code lies in the range [40, 5114].

The UMTS Turbo Decoder

Figure 10.30b shows a block diagram of the UMTS decoder. Specifically, proceeding from

top to bottom on the right-hand side of the figure, we have five sequences of a posteriori L-

values computed in the receiver, namely Lp(c(0)), Lp(t(1)), Lp(c(1)), Lp(t(2)), and Lp(c(2));

these L-values correspond to the encoded sequences c(0), t(1), c(1), t(2), and c(2), respectively.

Considering, first, how decoder 1 operates in the receiver, we find from Figure 10.30b
that it receives two input sequences of L-values, the first one of which, namely the a
posteriori L-value Lp(c(1)), comes directly from the channel. The other input, the a priori
L-value denoted by La,1, is made up of three components:

1. The a posteriori L-value, Lp(c(0)), which accounts for the received systematic bits, c(0).

2. The reordered version of the extrinsic information produced by decoder 2, resulting
from the de-interleaver .

3. The a posteriori L-value, Lp(t(1)) attributed to the systematic vector of termination
bits, t(1), which is appended to the sum of components 1 and 2 to complete La,1.

In a corresponding but slightly different way, decoder 2 receives two input sequences of L-
values, the first one of which, namely the a posteriori L-value Lp(c(2)), comes directly from
the channel. The other input, a priori L-value La,2, is also made up of three components:

1. The reordered version of a posteriori L-value, Lp(c(0)) is due to the received vector
of systematic bits, c(0), where the reordering is produced by the interleaver to the left
of the de-interleaver .

2. The reordered version of extrinsic information is produced by decoder 1, where
the reordering is performed by the second interleaver, , to the right of the de-
interleaver .

3. The a posteriori L-value, Lp(t(2)) is attributed to the systematic vector of
termination bits, t(2); this time, however, Lp(t(2)) is removed before it is interleaved
and passed to decoder 2.

roverall
K

3K 4m+
---------------------=

 1–

 1–


 1–
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Simulation Results

In Figure 10.31, we have plotted the BER chart for the iterative decoding process, using
the turbo codec of Figure 10.30. The results were obtained for the case of 5000 systematic
bits, as follows:

• For a prescribed EbN0 ratio, the bit errors were averaged over 50 Monte Carlo runs.
• Each point in the BER chart was the result of 100 bits per point-count in the

decoding process.
• The computations were repeated for different values of EbN0.

The remarkable points to observe from Figure 10.31 are summarized here:

1. In the course of just four iterations, the BER of the UMTS decoder drops to 10–14 at
an SNR = 3 dB, which, for all practical purposes, is zero.

2. The steepness of the BER plot on iteration 4 is showing signs of the turbo cliff, but is
not there yet. Unfortunately, to get there would require a great deal more
computation.14 (The turbo cliff is illustrated in Figure 10.32 in the next section).

Rudimentary Comparison of Viterbi and MAP Algorithms

For a rather rudimentary but plausible approach, to address the issue of computational
complexity in a fair-minded way, consider a convolutional code that has m = 6 states and,
therefore, requires

26 = 64

ACS operations for Viterbi decoding. 
To match this computational complexity, using the turbo decoder of Figure 10.29b with

16 ACS operations, we need the following number of decoding iterations:

64
16
------ 4=

Figure 10.31
The bit error rate (BER) diagram 
for the UMTS-turbo decoder, 
using 5000 systematic bits and 
–3 dB SNR.
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Correspondingly, Figure 10.31 plots the BER chart for the turbo decoder for the sequences
of decoding iterations: 1, 2, 3, and 4. Of special interest is the BER chart for four
iterations, for which we find that the turbo decoder with BER  outperforms the
Viterbi decoder significantly for the same computational complexity, namely a total of 64
ACS operations.

10.13 EXIT Charts

In an idealized BER chart exemplified by that in Figure 10.32, we may identify three
distinct regions, described as follows:

a. Low BER region, for which the EbN0 ratio is correspondingly low.

b. Waterfall region, also referred to as the turbo cliff in the turbo coding literature,
which is characterized by a persistent reduction in BER over the span of a small
fraction of dB in SNR.

c. BER floor region, where a rather small improvement in decoding performance is
achieved for medium to large values of SNRs.

As informative as the BER chart of Figure 10.32 is, from a practical perspective it has a
serious drawback. Simply put, the BER chart lacks insight into the underlying dynamics
(i.e., convergence behavior) of iterative decoding algorithms, particularly around the
turbo-cliff region. Furthermore, since the BER occurs at low BERs, excessive simulation
runs are required.

The question is: how do we overcome this serious drawback of the BER chart? The
answer lies in using the extrinsic information chart, or EXIT chart for short, which was
formally introduced by ten Brink (2001).

The EXIT chart is insightful because it provides a graphical procedure for visualizing
the underlying dynamics of the turbo decoding process for a prescribed EbN0. Moreover,

10
14–

Figure 10.32 Idealized BER chart for turbo decoding.
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the procedure provides a tool for the design of turbo codes characterized by good
performance in the turbo-cliff region. In any event, development of the EXIT chart
exploits the idea of mutual information in Shannon’s information theory, which was
discussed previously in Chapter 5.

Development of the EXIT Chart

Consider a constituent decoder in the turbo decoder of Figure 10.29b, which is, for
convenience of presentation, labeled decoder 1; the other constituent decoder is labeled
decoder 2. Let I1(mj; La(mj)) denote the mutual information between a transmitted message
bit mj and the a priori L-value La(mj) for a prescribed EbN0. Correspondingly, let Lp(mj)
denote the a posteriori L-value of message bit mj and let I2(mj; Lp(mj)) denote the mutual
information between mj and Lp(mj) for the same EbN0. Then, with I2(mj; Lp(mj)) viewed as
a function f I1(mj; La(mj), we may express the extrinsic information transfer characteristic
of constituent decoder 1 for some operator T() and the prescribed EbN0 as follows:

I2(mj; Lp(mj)) = T(I1(mj; La(mj)) (10.128)

In the continuum, it is shown that both mutual informations, I1 and I2, lie within the range
[0,1]. Thus, a plot of I2(mj; Lp(mj)) versus I1(mj; La(mj)), depicted in Figure 10.33a, displays
graphically the extrinsic information transfer characteristic of the constituent decoder 1.

Since the two constituent decoders are similar and they are connected together
sequentially inside a closed feedback loop, it follows that the extrinsic information transfer
characteristic of constituent decoder 2 is the mirror image of the curve in Figure 10.33a
with respect to the straight line I1 = I2, as shown in Figure 10.33b. With this relationship in
mind, we may go on to put the transfer characteristic curves of the two constituent
decoders side by side, but keeping the same horizontal and vertical axes of Figure 10.33a.
We thus get the composite picture depicted in Figure 10.33c. In effect, this latter figure
represents the input–output extrinsic transfer characteristic of the two constituent decoders
working together in a turbo-decoding algorithm for the prescribed EbN0.

To elaborate on the practical utility of Figure 10.33a, suppose that the iterative turbo-
decoding algorithm begins with , representing the initial condition of constituent
decoder 1 for the first iteration in the decoding process. Then, in proceeding forward, we
keep the following two points in mind:

• First, the a posteriori L-value of constituent decoder 1 becomes the a priori L-value
of constituent decoder 2, and similarly when these two decoders are interchanged, as
we proceed from one iteration to the next.

• Second, the message bits m1, m2, m3, ... occur on consecutive iterations.

Hence, we will experience the following sequence of extrinsic information transfers
between the two constituent decoders from one message bit to the next one for some
prescribed EbN0:

Initial condition: = 0.

Iteration 1: message bit, m1

Decoder 1:  defines .

Decoder 2:  initiates  for iteration 2.

I1
1  0=

I1
1 

m1 

I1
1 

m1  I2
1 

m1 

I2
1 

m1  I1
2 

m2 
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Iteration 2: message bit, m2

Decoder 1:  defines .

Decoder 2:  initiates  for iteration 3.

Iteration 3: message bit, m3

Decoder 1:  defines .

Decoder 2:  initiates  for iteration 4.

 
Figure 10.33 (a) Extrinsic information transfer characteristic of decoder 1; (b) Extrinsic information 
transfer characteristic of decoder 2; (c) Input-output extrinsic transfer characteristic of the two 
constituent decoders working together; (d) EXIT chart, including the staircase (shown dashed) 
embracing the extrinsic information transfer characteristics of both constituent decoders.

I 2

BPSK modulation in an AWGN channel

I1

1

0.9

0.8

0.7

0.6

0.6

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

I 2

I1

1

0.9

0.8

0.7

0.6

0.6

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

I 2

I1

1

0.9

0.8

0.7

0.6

0.6

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

I 2

I1

1

0.9

0.8

0.7

0.6

0.6

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

(a) (b)

(c) (d)

I1
2 

m2  I2
2 

m2 

I2
2 

m2  I1
3 

m3 

I1
3 

m3  I2
3 

m3 

I2
3 

m3  I1
4 

m4 

Haykin_ch10_pp3.fm  Page 659  Tuesday, January 8, 2013  1:00 PM



660 Chapter 10 Error-Control Coding

Iteration 4: message bit, m4

Decoder 1:  defines .

Decoder 2:  initiates  for iteration 5.

and so on.

Proceeding in the way just described, we may construct the EXIT chart illustrated in Figure
10.33d, which embodies a trajectory that moves from one constituent decoder to the other in
the form of a staircase. Specifically, the extrinsic information transfer curve from constituent
decoder 1 to constituent decoder 2 proceeds in a horizontal manner and, by the same token,
the extrinsic information transfer curve from constituent decoder 2 to constituent decoder 1
proceeds in a vertical manner. Hereafter, construction of the sequence of extrinsic
information transfer curves from one constituent decoder to another is called the staircase-
shaped extrinsic information transfer trajectory between constituent decoders 1 and 2.

Examination of the EXIT chart depicted in Figure 10.33d prompts us to make the
following two observations:

a. Provided that the SNR at the channel output is sufficiently high, then the extrinsic
information transfer curve of constituent decoder 1 stays above the straight line
I1 = I2, while the corresponding extrinsic information transfer curve of constituent
decoder 2 stays below this line. It follows, therefore, that an open tunnel exists
between the extrinsic information transfer curves of the two constituent decoders.
Under this scenario, the turbo-decoding algorithm converges to a stable solution for
the prescribed EbN0. 

b. The estimates of extrinsic information in the turbo-decoding algorithm continually
become more reliable from one iteration to the next as the stable solution is
approached.

If, however, in contrast to the picture depicted in Figure 10.33d, no open tunnel exists
between the extrinsic information transfer curves of constituent decoders 1 and 2 when the
prescribed EbN0 is relatively low, then the turbo-decoding algorithm fails to converge
(i.e., the turbo-decoding algorithm is unstable). This behavior is illustrated in the EXIT
chart of Figure 10.34 where the SNR has been reduced compared to that in Figure 10.33.

Figure 10.34
EXIT chart demonstrating nonconvergent 
behavior of the turbo decoder when the EbN0 is 
reduced compared to that in Figure 10.33d.
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The stage is now set for us to introduce the following statement:

The EbN0 threshold of a turbo-decoding algorithm is that smallest value 
of EbN0for which an open tunnel exists in the EXIT chart. 

It is the graphical simplicity of this important statement that makes the EXIT chart such a
useful practical tool in the design of iterative decoding algorithms.

Moreover, if it turns out that the EXIT curves of the two constituent decoders do not
intersect before the (1, 1)-point of perfect convergence and the staircase-shaped decoding
trajectory also succeeds in reaching this critical point, then a vanishingly low BER is
expected (Hanzo, 2012).

Approximate Gaussian Model

For an approximate model needed to display the underlying dynamics of iterative
decoding algorithms, the first step is to assume that the a priori L-values for message bit
mj, namely La(mj), constitute independent Gaussian random variables. With mj = 1, the
La(mj) assumes a variance  and a mean value . Equivalently, we may express
the statistical dependence of La on mj as follows:

(10.129)

where na is the sample value of a zero-mean Gaussian random variable with variance .
The rationale for the approximate Gaussian model just described is motivated by the

following two points (Lin and Costello, 2003):

a. For an AWGN channel with soft (i.e., unquantized) output, the log-likelihood ratio,
L-value, denoted by La(mj|rj

(0)) of a transmitted message bit mj given the receiver
signal rj

(0), may be modeled as follows (see Problem 10.36):

(10.130)

where Lc = 4(EsN0) is the channel reliability factor defined in (10.91) and La(mj) is
the a priori L-value of message bit mj. The point to note here is that the product
terms Lcrj

(0) for varying j are independent Gaussian random variables with variance
2Lc and mean Lc.

b. Extensive Monte Carlo simulations of the a posteriori extrinsic L-values, Le(mj), for
a constituent decoder with large block length appear to support the Gaussian-model
assumption of (10.129); see Wiberg et al. (1999).

Accordingly, using the Gaussian approximation of (10.129), we may express the
conditional probability density function of the a priori L-value as follows: 

(10.131)

where  is a dummy variable, representing a sample value of La(mj). Note also that  is
continuous whereas, of course, mj is discrete. It follows that in formulating the mutual
information between the message bit mj = +1 and a priori L-value La(mj) we have a binary

a
2 a

2 2  mj

La mj 
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2
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input AWGN channel to deal with; such a channel was discussed previously in Example 5
of Chapter 5 on information theory. Building on the results of that example, we may
express the first desired mutual information, denoted by I1(mj; La), as follows:

(10.132)

where the summation accounts for the binary nature of the information bit mj and the
integral accounts for the continuous nature of La. Using (10.131) and (10.132) and
manipulating the results, we get (ten Brink, 2001):

(10.133)

which, as expected, depends solely on the variance . To emphasize this fact, let the new
function

(10.134)

with the following two limiting values:

and

In other words, we have
(10.135)

Moreover, increases monotonically with increasing , which means that if the
value of the mutual information  is given, then the corresponding value of  is
uniquely determined by the inverse formula:

(10.136)

and with it, the corresponding Gaussian random variable La(mj) defined in (10.129) is
obtained.

Referring back to (10.128), we note that for us to construct the EXIT chart we also need
to know the second mutual information between the message bit mj and the a posteriori
extrinsic L-value Lp(mj). To this end, we may build on the formula of (10.132) to write 

(10.137)

where, in a manner similar to the a priori mutual information , we also
have

(10.138)
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Accordingly, with the two mutual informations  and  at hand, we
may go on to compute the EXIT chart for an iterative decoding algorithm by merely
focusing on a single constituent decoder in the turbo decoding algorithm.

The next issue to be considered is how to perform this computation, which we now
address.

Histogram Method for Computing the EXIT Chart

For turbo codes having long interleavers, the approximate Gaussian model of (10.129) is
good enough for practical purposes. Hence, we may use this model to formulate the
traditional histogram method, described in ten Brink (2001) to compute the EXIT chart.
Specifically, (10.137) is used to compute the mutual information  for a
prescribed EbN0. To this end, Monte Carlo simulation (i.e., histogram measurements) is
used to compute the required probability density function, , on which no
Gaussian assumption can be imposed for obvious reasons. Computaton of this probability
density function is central to the EXIT chart, which may proceed in a step-by-step manner
for a prescribed EbN0, as follows:

Step 1: Apply the independent Gaussian random variable defined in (10.129) to constituent
decoder 1 in the turbo decoder. The corresponding value of the mutual information 
is obtained by choosing the variance  in accordance with (10.129).

Step 2: Using Monte Carlo simulation, compute the probability density function
. Hence, compute the second mutual information , and with it a certain

point for the extrinsic information transfer curve of constituent decoder 1 is determined.

Step 3: Continue Steps 1 and 2 until we have sufficient points to construct the extrinsic
information transfer curve of constituent decoder 1.

Step 4: Construct the extrinsic information transfer curve of constituent decoder 2 as the
mirror image of the curve for constituent decoder 1 computed in Step 3, respecting the
straight line I1 = I2.

Step 5: Construct the EXIT chart for the turbo decoder by combining the extrinsic
information transfer curves of constituent decoders 1 and 2.

Step 6: Starting with some prescribed initial condition, for example  for
message bit m1, construct the staircase information transfer trajectory between constituent
decoders 1 and 2.

A desirable feature of the histogram method for computing the EXIT chart is the fact that,
except for the approximate Gaussian model of (10.129), there are no other assumptions
needed for the computations involved in Steps 1 through 6. 

Averaging Method for Computing EXIT Charts

For another method to compute EXIT charts, we may use the so-called averaging method,
which represents an alternative approach to the histogram method.

As a reminder, the basic issue in computing an EXIT chart is to measure the mutual
information between the information bits, mj, at the turbo encoder input in the transmitter

I1 mj La;  I2 mj Lp; 

I2 mj Lp; 

fLp
 Lp mj  

I1 mj Lp; 
a

2

fLp
 Lp  I2 mj Lp; 

I1 m1  0=
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and the corresponding L-values produced at the output of the corresponding BCJR decoder
in the receiver. Due to the inherently nonlinear input–output characteristic of the BCJR
decoder, the underlying distribution of the L-values is not only unknown, but also highly
likely to be non-Gaussian as well, thereby complicating the measurement. To get around this
difficulty, we may invoke the ergodic theorem, which was discussed previously in Chapter 4
on stochastic processes. As explained therein, under certain conditions, it is feasible to
replace the operation of ensemble averaging (i.e., expectation) with time averaging. Thus, in
proceeding along this ergodic path, we have a new nonlinear transformation, where the time
average of a large set of L-value samples, available at the output of the BCJR decoder,
provides an estimate of the desired mutual information; moreover, it does so without
requiring knowledge of the original data (i.e., the mj). It is for this reason that the second
method of computing EXIT charts is called the averaging method.15

Just as the use of a single constituent decoder suffices for computing an EXIT chart in
the histogram method, the same decoding scenario applies equally well to the averaging
method. It is with this point in mind that the underlying scheme for the averaging method
is as depicted in Figure 10.35. Most importantly, this scheme is designed in such a way
that the following requirements are satisfied:

1. Implementations of channel estimation, carrier receiver, modulation, and
demodulation are all perfect.

2. The turbo decoder is perfectly synchronized with the turbo encoder.

3. The BCJR algorithm or exact equivalent (i.e., the log-MAP algorithm) is used to
optimize the turbo decoder. 

Moreover, the following analytic correspondences between the constituent encoder 1 at
the top of Figure 10.35 and the turbo decoder 2 at the bottom of the figure are carefully
noted: the code vectors c(0), c(1), and termination vector t(1) in the encoder map onto the a
posteriori L-values Lp(r(0)), Lp(r(1)), and Lp(z(1)) in the decoder, respectively.

It can therefore be justifiably argued that in light of these rigorous requirements, the
underlying algorithm for the averaging method is well designed and therefore trustworthy
in the following sense: in the course of computing the EXIT chart, the algorithm trusts
what the computed L-values actually say; that is, they do not under or over represent their
confidence in the message bits. This important characteristic of the averaging method is to
be contrasted against the histogram method. Indeed, it is for this reason that the histogram
method compares the L-values against the true values of the message bits, hence requiring
knowledge of them. 

In summary, we may say that trustworthy L-values are those L-values that satisfy the
consistency condition. A simple way of testing this condition is to do the following: use
the averaging and histogram methods to compute two respective sets of L-values. If, then,
both methods yield the same value for the mutual information, then the consistency
condition is satisfied (Maunder, 2012).

Procedure for Measuring the EXIT Chart
Referring back to the scheme of Figure 10.35, the demultiplexer outputs denoted by r(0),
r(1)and z(1) represent the L-values corresponding to the encoder outputs c(0), c(1) and t(1),
respectively. Thus, following the way in which the turbo decoder of Figure 10.33b was
described, the internally generated input applied to BCJR decoder 1 assumes exactly the
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same value as that produced in computing the BER. With the objective being that of
constructing an EXIT chart, we need to provide values for the mutual information that was
previously denoted by I1(mj; La), where mj is the jth message bit and La is the corresponding
a priori L-value. As indicated, the mutual information is the externally supplied input
applied to the block labeled L-value generator. We may therefore assign to I1(mj; La) any
values that we like. However, recognizing that 0  I1(mj; La)  a sensible choice of values
for I1(mj; La) would be the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Such a
choice provides inputs for eleven different experiments based on the averaging method. 

For each one of these inputs, the constituent decoder 1 produces a corresponding value
for the a posteriori extrinsic L-value, Lp, which is applied to the block labeled mutual-
information computer in Figure 10.35. The resulting output of this second computation is
the second desired mutual information, namely I2(mj; Le). At this point, a question that
begs itself is: how can this computation be performed in the absence of the message mj?

Figure 10.35 Schematic diagram for computing the EXIT chart for the UMTS-turbo code, based on 
the averaging method.
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666 Chapter 10 Error-Control Coding

The answer to this question is that, as pointed out previously, the averaging method is
designed to trust what the extrinsic L-values say; hence, the computation of I2(mj; Le) does
not require any knowledge of the message bit mj.

Computer-Oriented Experiments for EXIT Charts
The EXIT charts plotted in Figures 10.33 and 10.34 were computed in Matlab for the
UMTS codec using the averaging method discussed in Example 9 and 5000 message bits. 

In Figure 10.33, the computations were performed for the SNR: Eb/N0 = – 4 dB. In this
case, the tunnel is open, indicating that the UMTS decoder is convergent (stable).

In Figure 10.34, the computation was performed for a smaller SNR: Eb/N0 = – 6 dB. In
this case, the tunnel is closed, indicating that the UMTS decoder is nonconvergent.

These computer experiments confirm the practical importance of EXIT charts when the
issue of interest is that of evaluating the dynamic behavior of a turbo decoder.

10.14 Low-Density Parity-Check Codes

Turbo codes discussed in Section 10.12 and LDPC codes16 to be discussed in this section
belong to a broad family of error-control coding techniques, collectively called compound
probabilistic codes. The two most important advantages of LDPC codes over turbo codes are:

• absence of low-weight codewords and
• iterative decoding of lower complexity.

With regard to the issue of low-weight codewords, we usually find that a small number of
codewords in a turbo codeword are undesirably close to the given codeword. Owing to this
closeness in weights, once in a while the channel noise causes the transmitted codeword to
be mistaken for a nearby code. Indeed, it is this behavior that is responsible for the error
floor that was mentioned in Section 10.13. In contrast, LDPC codes can be easily
constructed so that they do not have such low-weight codewords and they can, therefore,
achieve vanishingly small BERs. (The error-floor problem in turbo codes can be alleviated
by careful design of the interleaver.)

Turning next to the issue of decoding complexity, we note that the computational
complexity of a turbo decoder is dominated by the MAP algorithm, which operates on the
trellis for representing the convolutional code used in the encoder. The number of
computations in each recursion of the MAP algorithm scales linearly with the number of
states in the trellis. Commonly used turbo codes employ trellises with 16 states or more. In
contrast, LDPC codes use a simple parity-check trellis that has just two states.
Consequently, the decoders for LDPC codes are significantly simpler to design than those
for turbo decoders. However, a practical objection to the use of LDPC codes is that, for
large block lengths, their encoding complexity is high compared with turbo codes.

It can be argued that LDPC codes and turbo codes complement each other, giving the
designer more flexibility in selecting the right code for extraordinary decoding performance.

Construction of LDPC Codes

LDPC codes are specified by a parity-check matrix denoted by A, which is purposely
chosen to be sparse; that is, the code consists mainly of 0s and a small number of 1s. In
particular, we speak of (n, tc, tr) LDPC codes, where n denotes the block length, tc denotes
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the weight (i.e., number of 1s) in each column of the matrix A, and tr denotes the weight of
each row with tr > tc. The rate of such an LDPC code is defined by

whose validity may be justified as follows. Let  denote the density of 1s in the parity-
check matrix A. Then, following the terminology introduced in Section 10.4, we may set

and

where (n – k) is the number of rows in A and n is the number of columns (i.e., the block
length). Therefore, dividing tc by tr, we get

(10.139)

By definition, the code rate of a block code is kn; hence, the result of (10.139) follows.
For this result to hold, however, the rows of A must be linearly independent.

The structure of LDPC codes is well portrayed by bipartite graphs, which were
introduced by Tanner (1981) and, therefore, are known as Tanner graphs.17 Figure 10.36
shows such a graph for the example code of n = 10, tc = 3, and tr = 5. The left-hand nodes in
the graph are variable (symbol) nodes, which correspond to elements of the codeword. The
right-hand nodes of the graph are check nodes, which correspond to the set of parity-check
constraints satisfied by codewords in the code. LDPC codes of the type exemplified by the
graph of Figure 10.36 are said to be regular, in that all the nodes of a similar kind have
exactly the same degree. In Figure 10.36, the degree of the variable nodes is tc = 3 and the
degree of the check nodes is tr = 5. As the block length n approaches infinity, each check node
is connected to a vanishingly small fraction of variable nodes; hence the term “low density.” 

Figure 10.36
Bipartite graph of the 
(10, 3, 5) LDPC code.
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The matrix A is constructed by putting 1s in A at random, subject to the regularity
constraints:

• each column of matrix A contains a small fixed number tc of 1s;
• each row of the matrix contains a small fixed number tr of 1s.

In practice, these regularity constraints are often violated slightly in order to avoid having
linearly dependent rows in the parity-check matrix A.

Unlike the linear block codes discussed in Section 10.4, the parity-check matrix A of
LDPC codes is not systematic (i.e., it does not have the parity-check bits appearing in
diagonal form); hence the use of a symbol different from that used in Section 10.4.
Nevertheless, for coding purposes, we may derive a generator matrix G for LDPC codes
by means of Gaussian elimination performed in modulo-2 arithmetic; this procedure is
illustrated later in Example 10. Following the terminology introduced in Section 10.4, the
1-by-n code vector c is first partitioned as shown by

where m is the k-by-1 message vector and b is the (n – k)-by-1 parity-check vector; see
(10.9). Correspondingly, the parity-check matrix A is partitioned as

(10.140)

where A1 is a square matrix of dimensions (n – k)  (n – k) and A2 is a rectangular matrix
of dimensions k  (n – k); transposition symbolized by the superscript T is used in the
partitioning of matrix A for convenience of presentation. Imposing a constraint on the
LDPC code similar to that of (10.16) we may write

or, equivalently,
(10.141)

Recall from (10.7) that the vectors m and b are related by

where P is the coefficient matrix. Hence, substituting this relation into (10.141), we readily
find that, after ignoring the common factor m for any nonzero message vector, the
coefficient matrix of LDPC codes satisfies the condition

(10.142)

This equation holds for all nonzero message vectors and, in particular, for m in the form
[0  0 1 0  0] that will isolate individual rows of the generator matrix.

Solving (10.142) for matrix P, we get

(10.143)

c b⋮m=

A
T

A1

⋯
A2

=

b⋮m

A1

⋯
A2

0=

bA1 mA2+ 0=

b mP=

PA1 A2+ 0=

P A2A1
1–

=
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where  is the inverse of matrix A1, which is naturally defined in modulo-2 arithmetic. 
Finally, building on (10.12), the generator matrix of LDPC codes is defined by

(10.144)

where Ik is the k-by-k identity matrix.
It is important to note that if we take the parity-check matrix A for some arbitrary

LDPC code and just pick (n – k) columns of A at random to form a square matrix A1, there
is no guarantee that A1 will be nonsingular (i.e., the inverse  will exist), even if the
rows of A are linearly independent. In fact, for a typical LDPC code with large block
length n, such a randomly selected A1 is highly unlikely to be nonsingular because it is
very likely that at least one row of A1 will be all 0s. Of course, when the rows of A are
linearly independent, there will be some set of (n – k) columns of A that will result in a
nonsingular A1, to be illustrated in Example 10. For some construction methods for LDPC
codes, the first (n – k) columns of A may be guaranteed to produce a nonsingular A1, or at
least do so with a high probability, but that is not true in general.

EXAMPLE 10 (10, 3, 5) LDPC Code

Consider the Tanner graph of Figure 10.34 pertaining to a (10, 3, 5) LDPC code. The
parity-check matrix of the code is defined by

which appears to be random, while maintaining the regularity constraints: tc = 3 and tr = 5.
Partitioning the matrix A in the manner just described, we write

A1
1–

G P ⋮ Ik=

A2A1
1– ⋮ Ik

=

A1
1–

A

1 1 0 1 0 1 0 0 1 0

0 1 1 0 1 0 1 1 0 0

1 0 0 0 1 1 0 0 1 1

0 1 1 1 0 1 1 0 0 0

1 0 1 0 1 0 0 1 0 1

0 0 0 1 0 0 1 1 1 1

A1
T

A2
T

= } }

A1

1 0 1 0 1 0

1 1 0 1 0 0

0 1 0 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

1 0 1 1 0 0

=

A2

0 1 0 1 0 1

0 1 0 0 1 1

1 0 1 0 0 1

0 0 1 0 1 1

=
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To derive the inverse of matrix A1, we first use (10.140) to write

where we have introduced the vector u to denote the matrix product mA2. By using
Gaussian elimination, modulo-2, the matrix A1 is transformed into lower diagonal form
(i.e., all the elements above the main diagonal are zero), as shown by

This transformation is achieved by the following modulo-2 additions performed on the
columns of square matrix A1:

• columns 1 and 2 are added to column 3;
• column 2 is added to column 4;
• columns 1 and 4 are added to column 5;
• columns 1, 2, and 5 are added to column 6.

Correspondingly, the vector u is transformed as shown by

Accordingly, premultiplying the transformed matrix A1 by the parity vector b, using
successive eliminations in modulo-2 arithmetic working backwards and putting the
solutions for the elements of the parity vector b in terms of the elements of the vector u in
matrix form, we get

b0 b1 b2 b3 b4 b5     

b

1 0 1 0 1 0

1 1 0 1 0 0

0 1 0 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

1 0 1 1 0 0

u0 u1 u2 u3 u4 u5     

u mA2=

=

A1

        

      

        

A1

1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

1 0 1 1 0 0

0 1 0 1 1 0

1 0 0 1 0 1



u u0 u1 u0 u1 u2 u1 u3 u0 u3 u4 u0 u1 u4 u5+ + ++ +++ +  

u0 u1 u2 u3 u4 u5     

u

0 0 1 0 1 1

1 0 1 0 0 1

1 1 1 0 0 0

1 1 0 0 1 0

0 1 0 0 1 1

1 1 1 1 0 1

b0 b1 b2 b3 b4 b5     

b

=

A1
1–

        

      

        
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The inverse of matrix A1 is therefore

Using the given value of A2 and the value of  just found, the matrix product 
is given by

Finally, using (10.144), the generator of the (10, 3, 5) LDPC code is defined by 

It is important to recognize that the LDPC code described in this example is intended only
for the purpose of illustrating the procedure involved in the generation of such a code. In
practice, the block length n is orders of magnitude larger than that considered in this
example. Moreover, in constructing the matrix A, we may constrain all pairs of columns to
have a matrix overlap (i.e., inner product of any two columns in matrix A) not to exceed
one; such a constraint, over and above the regularity constraints, is expected to improve
the performance of LDPC codes. Unfortunately, with a small block length as that
considered in this example, it is difficult to satisfy this additional requirement. 

Minimum Distance of LDPC Codes

In practice, the block length of an LDPC code is large, ranging from 103 to 106, which
means that the number of codewords in a particular code is correspondingly large.
Consequently, the algebraic analysis of LDPC codes is rather difficult. As such, it is much
more productive to perform a statistical analysis on an ensemble of LDPC codes. Such an
analysis permits us to make statistical statements about certain properties of member codes
in the ensemble. An LDPC code with these properties can be found with high probability by
a random selection from the ensemble, hence the inherent probabilistic structure of the code.

A1
1–

0 0 1 0 1 1

1 0 1 0 0 1

1 1 1 0 0 0

1 1 0 0 1 0

0 1 0 0 1 1

0 1 1 1 0 1

=

A1
1–

A2A1
1–

A2A1
1–

1 0 0 1 1 0

0 0 0 1 1 1

0 0 1 1 1 0

0 1 0 1 1 0

=

G

1 0 0 1 1 0 1 0 0 0

0 0 0 1 1 1 0 1 0 0

0 0 1 1 1 0 0 0 1 0

0 1 0 1 1 0 0 0 0 1

A2A1
1–

Ik

= }}
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Among these properties, the minimum distance of the member codes is of particular
interest. From Section 10.4, we recall that the minimum distance of a linear block code is
the smallest Hamming distance between any pair of code vectors in the code. In contrast,
we say:

Over an ensemble of LDPC codes, the minimum distance of a member code in 
the ensemble is naturally a random variable. 

Elsewhere,18 it is shown that as the block length n increases for fixed tc > 3 and tr > tc, the
probability distribution of the minimum distance can be overbounded by a function that
approaches a unit step function at a fixed fraction  of the block length n. Thus, for
large n, practically all the LDPC codes in the ensemble have a minimum distance of at
least n . Table 10.7 presents the rate and  of LDPC codes for different values of
the weight-pair (tc, tr). From this table we see that for tc = 3 and tr = 6, the code rate r
attains its highest value of 12 and the fraction  attains its smallest value; hence the
preferred choice of tc = 3 and tr = 6 in constructing the LDPC code.

Probabilistic Decoding of LDPC Codes

At the transmitter, a message vector m is encoded into a code vector c = mG, where G is
the generator matrix for a specified weight-pair (tc, tr) and, therefore, minimum distance
dmin. The vector c is transmitted over a noisy channel to produce the received vector

where e is the error vector due to channel noise; see (10.17). By construction, the matrix A
is the parity-check matrix of the LDPC code; that is, AGT = 0. Given the received vector r,
the bit-by-bit decoding problem is to find the most probable vector  that satisfies the
condition = 0 in accordance with the constraint imposed on matrix A in (10.140). 

In what follows, a bit refers to an element of the received vector r and a check refers to
a row of matrix A. Let 𝒥(i) denote the set of bits that participate in check i. Let 𝒥(j) denote
the set of checks in which bit j participates. A set of 𝒥(i) that excludes bit j is denoted by
𝒥(i)\j. Likewise, a set of 𝒥(j) that excludes check i is denoted by 𝒥(j)\i.

Table 10.7 The rate and fractional term of LDPC codes for 
varying weight-pairs*

tc tr Rate r  

5

4

3

4

3

3

6

5

4

6

5

6

0.167

0.2

0.25

0.333

0.4

0.5

0.255

0.210

0.122

0.129

0.044

0.023

tctr

tctr
tctr

tctr

r c e+=

ĉ
ĉAT

tctr
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The decoding algorithm has two alternating steps: a horizontal step and a vertical step,
which run along the rows and columns of matrix A, respectively. In the course of decoding,
two probabilistic quantities associated with nonzero elements of matrix A are alternately
updated. One quantity, denoted by , defines the probability that bit j is symbol x (i.e.,
symbol 0 or 1), given the information derived via checks performed in the horizontal step
except for check i. The second quantity, denoted by , defines the probability that check i
is satisfied given that bit j is fixed at the value x and the other bits have the probabilities

.
The LDPC decoding algorithm then proceeds as follows.19

Initialization
The variables  and  are set equal to the a priori probabilities  and  of

symbols 0 and 1, respectively, with  +  = 1 for all j.

Horizontal Step
In the horizontal step of the algorithm, we run through the checks i. To this end, define

For each weight-pair (i, j), compute

Hence, set

Vertical Step
In the vertical step of the algorithm, values of the probabilities    and  are updated
using the quantities computed in the horizontal step. In particular, for each bit j, compute

where the scaling factor ij is chosen so as to satisfy the condition

In the vertical step, we may also update the pseudo-posterior probabilities:

Pij
x

Qij
x

Pij where we have j 𝒥 i \j

Pij
0 

Pij
1 

pj
0 

pj
1 

pj
0 

pj
1 

Pij Pij
0 

Pij
1 

–=

Qij Pij 
j  𝒥 i \j
=

Qij
0  1

2
--- 1 Qij+ =

Qij
1  1

2
--- 1 Qij– =

Pij
0 

Pij
1 

Pij
0  ijpj

0  Qi j
0 

i  𝒥 i \j
=

Pij
1  ijpj

1  Qi j
1 

i  𝒥 i \j
=

Pij
0 

Pij
1 

+ 1 for all ij=

Pj
0  jpj

0 
Qij

0 

i 𝒥 j 
=
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1  jpj

1 
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where j is chosen so as to make

The quantities obtained in the vertical step are used to compute a tentative estimate . If
the condition = 0 is satisfied, the decoding algorithm is terminated. Otherwise, the
algorithm goes back to the horizontal step. If after some maximum number of iterations
(e.g., 100 or 200) there is no valid decoding, then a decoding failure is declared. The
decoding procedure described herein is a special case of the general low-complexity sum–
product algorithm.

Simply stated, the sum–product algorithm20 passes probabilistic quantities between the
check nodes and variable nodes of the Tanner graph. On account of the fact that each
parity-check constraint can be represented by a simple convolutional coder with one bit of
memory, we find that LDPC decoders are simpler to implement than turbo decoders, as
stated earlier on in the section. 

In terms of performance, however, we may say the following in light of experimental
results reported in the literature: 

Regular LDPC codes do not appear to come as close to Shannon’s limit as do 
their turbo code counterparts.

Irregular LDPC Codes

Thus far in this section, we have focused attention on regular LDPC codes, which
distinguish themselves in the following way: referring to the Tanner (bipartite) graph in
Figure 10.36, all variable nodes on the left-hand side of the graph have the same degree
and likewise for the check nodes on the right-hand side of the graph.

To go beyond the performance attainable with regular LDPC codes and thereby come
increasingly closer to the Shannon limit, we look to irregular LDPC codes, in the context
of which we introduce the following definition:

An LDPC code is said to be irregular if the variable nodes in the code’s Tanner 
graph have multiple degrees, and so do the check nodes in the graph.

To be specific, an irregular LDPC code distinguishes itself from its regular counterpart in
that its Tanner graph involves the following two degree distributions:

a. The degree distribution of the variable nodes in the Tanner graph of an irregular
LDPC code is described by:

(10.145)

where X denotes a node variable in the code’s Tanner graph,  denotes the fraction
of variable nodes with degree d in the graph, and dN denotes the maximum degree of
a variable node in the graph.

b. Correspondingly, the degree distribution of the check nodes in the irregular code’s
Tanner graph is described by 

(10.146)

Pj
0 

Pj
1 

+ 1 for all j=

ĉ
ĉAT

 X  d

d 1=

dN

= X
d 1–

d

 X  dX
d 1–

d 1=

dc

=
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10.15 Trellis-Coded Modulation 675

where X denotes the check node in the code’s Tanner graph, denotes the fraction
of check nodes with degree d in the graph, and dc denotes the maximum degree of a
check node in the graph.

The irregular LDPC code embodies the regular LDPC code as a special case. Specifically,
(10.145) and (10.146) simplify as follows for the variable and check nodes of a regular
LDPC code, respectively:

(10.147)

and 

(10.148)

By exploiting the two degree distributions of (10.145) and (10.146) for the variable and
check nodes, respectively, irregular LDPC codes are commonly constructed on the basis of
their Tanner graphs. Such an approach is exemplified by the irregular LDPC codes
reported in Richardson et al. (2001), and Richardson and Urbanke (2001).21

10.15 Trellis-Coded Modulation

In the different approaches to channel coding described up to this point in the chapter, the
one common feature that describes them all may be summarized as follows:

Encoding is performed separately from modulation in the transmitter, and 
likewise for decoding and detection in the receiver. 

Moreover, error control is provided by transmitting additional redundant bits in the code,
which has the effect of lowering the information bit rate per channel bandwidth. That is,
bandwidth efficiency is traded for increased power efficiency.

To attain a more effective utilization of available resources, namely bandwidth and
power, coding and modulation would have to be treated as a combined (single) entity. We
may deal with this new paradigm by invoking the statement

Coding is redefined as the process of imposing certain patterns on the 
modulated signal in the transmitter. 

Indeed, this definition includes the traditional idea of parity-check coding.
Trellis codes for band-limited channels result from the treatment of modulation and

coding as a combined entity rather than as two separate operations. The combination itself
is referred to as trellis-coded modulation (TCM).22 This form of signaling has three basic
requirements:

1. The number of signal points in the constellation used is larger than what is required for
the modulation format of interest with the same data rate; the additional signal points
allow redundancy for forward error-control coding without sacrificing bandwidth.

2. Convolutional coding is used to introduce a certain dependency between successive
signal points, such that only certain patterns or sequences of signal points are
permitted for transmission.

3. Soft-decision decoding is performed in the receiver, in which the permissible
sequence of signals is modeled as a trellis structure; hence the name trellis codes.

d

 X  X
N 1–

for d= 1 and dN N= =

 X  X
c 1–

for d 1 and dc c= ==

Haykin_ch10_pp3.fm  Page 675  Friday, January 4, 2013  5:03 PM



676 Chapter 10 Error-Control Coding

Requirement 3 is the result of using an enlarged signal constellation. By increasing the size
of the constellation, the probability of symbol error increases for a fixed SNR. Hence, with
hard-decision demodulation, we would face a performance loss before we begin. Performing
soft-decision decoding on the combined code and modulation trellis ameliorates this problem.

In an AWGN channel, we look to the following approach: 

Maximum likelihood decoding of trellis codes consists of finding that particular 
path through the trellis with minimum squared Euclidean distance to the 
received sequence. 

Thus, in the design of trellis codes, the emphasis is on maximizing the Euclidean distance
between code vectors (equivalently codewords) rather than maximizing the Hamming
distance of an error-correcting code. The reason for this approach is that, except for
conventional coding with binary PSK and QPSK, maximizing the Hamming distance is
not the same as maximizing the squared Euclidean distance. Accordingly, in what follows,
the Euclidean distance between code vectors is adopted as the distance measure of
interest. Moreover, while a more general treatment is possible, the discussion is (by
choice) confined to the case of two-dimensional constellations of signal points. The
implication of such a choice is to restrict the development of trellis codes to multilevel
amplitude andor phase modulation schemes such as M-ary PSK and M-ary QAM.

EXAMPLE 11 Two-level Partitioning of 8-PSK Constellation

The approach used to design this restricted type of trellis codes involves partitioning an
M-ary constellation of interest successively into 2, 4, 8,  subsets with size M2, M4,
M8, , and having progressively larger increasing minimum Euclidean distance
between their respective signal points. Such a design approach by set-partitioning
represents the key idea in the construction of efficient coded modulation techniques for
band-limited channels.

Figure 10.37 Partitioning of 8-PSK constellation, which shows that d0 < d1 < d2.
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10.15 Trellis-Coded Modulation 677

In Figure 10.37, we illustrate the partitioning procedure by considering a circular
constellation that corresponds to 8-PSK. The figure depicts the constellation itself and the
two and four subsets resulting from two levels of partitioning. These subsets share the
common property that the minimum Euclidean distances between their individual points
follow an increasing pattern, namely:

d0 < d1 < d2

EXAMPLE 12 Three-level Partitioning of QAM Constellation

For a different two-dimensional example, Figure 10.38 illustrates the partitioning of a
rectangular constellation corresponding to 16-QAM. Here again, we see that the subsets
have increasing within-subset Euclidean distances, as shown by

d0 < d1 < d2 < d3

Based on the subsets resulting from successive partitioning of a two-dimensional
constellation, illustrated in Examples 11 and 12, we may devise relatively simple, yet highly
effective coding schemes. Specifically, to send n bitssymbol with quadrature modulation
(i.e., one that has in-phase and quadrature components), we start with a two-dimensional
constellation of 2n+1 signal points appropriate for the modulation format of interest; a
circular grid is used for M-ary PSK and a rectangular one for M-ary QAM. In any event, the
constellation is partitioned into four or eight subsets. One or two incoming message bits per
symbol enter a rate-12 or rate-23 binary convolutional encoder, respectively; the resulting
two or three coded bits per symbol determine the selection of a particular subset. The
remaining uncoded messege bits determine which particular signal point from the selected

Figure 10.38 Partitioning of 16-QAM constellation, which shows that d0 < d1 < d2 < d3.
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678 Chapter 10 Error-Control Coding

subset is to be signaled over the AWGN channel. This class of trellis codes is known as
Ungerboeck codes in recognition of their originator.

Since the modulator has memory, we may use the Viterbi algorithm (discussed in
Section 10.8) to perform maximum likelihood sequence estimation at the receiver. Each
branch in the trellis of the Ungerboeck code corresponds to a subset rather than an
individual signal point. The first step in the detection is to determine the signal point
within each subset that is closest to the received signal point in the Euclidean sense. The
signal point so determined and its metric (i.e., the squared Euclidean distance between it
and the received point) may be used thereafter for the branch in question, and the Viterbi
algorithm may then proceed in the usual manner.

Ungerboeck Codes for 8-PSK

The scheme of Figure 10.39a depicts the simplest Ungerboeck 8-PSK code for the
transmission of 2 bits/symbol. The scheme uses a rate-12 convolutional encoder; the
corresponding trellis of the code is shown in Figure 10.39b, which has four states. Note
that the most significant bit of the incoming message sequence is left uncoded. Therefore,
each branch of the trellis may correspond to two different output values of the 8-PSK
modulator or, equivalently, to one of the four two-point subsets shown in Figure 10.37.
The trellis of Figure 10.39b also includes the minimum distance path.

The scheme of Figure 10.40a depicts another Ungerboeck 8-PSK code for transmitting
2 bits/sample; it is next in the level of increased complexity, compared to the scheme of
Figure 10.39a. This second scheme uses a rate-23 convolutional encoder. Therefore, the
corresponding trellis of the code has eight states, as shown in Figure 10.40b. In this latter
scheme, both bits of the incoming message sequence are encoded. Hence, each branch of
the trellis corresponds to a specific output value of the 8-PSK modulator. The trellis of
Figure 10.40b also includes the minimum distance path.

Figures 10.39b and 10.40b also include the pertinent encoder states. In Figure 10.39a,
the state of the encoder is defined by the contents of the two-stage shift register. On the
other hand, in Figure 10.40a, it is defined by the content of the single-stage (top) shift
register followed by that of the two-stage (bottom) shift register.

Asymptotic Coding Gain

Following the discussion in Section 10.8 on maximum likelihood decoding of
convolutional codes, we define the asymptotic coding gain of Ungerboeck codes as
follows:

(10.149)

where dfree is the free Euclidean distance of the code and dref is the minimum Euclidean
distance of an uncoded modulation scheme operating with the same signal energy per bit.
For example, by using the Ungerboeck 8-PSK code of Figure 10.39a, the signal
constellation has eight message points and we send two message bits per signal point.
Hence, uncoded transmission requires a signal constellation with four message points. We

Ga 10 log10

dfree
2

dref
2

----------
 
 
 

=
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10.15 Trellis-Coded Modulation 679

may therefore regard uncoded 4-PSK as the frame of reference for the Ungerboeck 8-PSK
code of Figure 10.39a.

The Ungerboeck 8-PSK code of Figure 10.39a achieves an asymptotic coding gain of 3
dB, which is calculated as follows:

1. Each branch of the trellis in Figure 10.39b corresponds to a subset of two antipodal
signal points. Hence, the free Euclidean distance dfree of the code can be no larger
than the Euclidean distance d2 between the antipodal signal points of such a subset.
We may therefore write

dfree = d2 = 2

where the distance d2 is defined in Figure 10.41a.

Figure 10.39 (a) Four-state Ungerboeck code for 8-PSK; the mapper follows Figure 10.37. 
(b) Trellis of the code.
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680 Chapter 10 Error-Control Coding

Figure 10.40 (a) Eight-state Ungerboeck code for 8-PSK; the mapper follows Figure 10.37. 
(b) Trellis of the code with only some of the branches shown. 
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10.16 Turbo Decoding of Serial Concatenated Codes 681

2. From Figure 10.41b, we see that the minimum Euclidean distance of an uncoded
QPSK, viewed as the frame of reference operating with the same signal energy per
bit, assumes the following value:

Hence, as previously stated, the use of (10.149) yields an asymptotic coding gain of

 10 log102 = 3 dB.

The asymptotic coding gain achievable with Ungerboeck codes increases with the number
of states in the convolutional encoder. Table 10.8 presents the asymptotic coding gain (in
dB) for Ungerboeck 8-PSK codes for increasing number of states, expressed with respect
to uncoded 4-PSK. Note that improvements on the order of 6 dB require codes with a very
large number of states. 

10.16 Turbo Decoding of Serial Concatenated Codes

In Section 10.12 we pointed out that there are two types of concatenated codes: parallel
and serial. The original turbo coding scheme involved a parallel concatenated code, since
the two encoders operate in parallel on the same set of message bits. We now turn our
attention in this section to a serial concatenation scheme as depicted in Figure 10.42,
comprised of an “outer” encoder whose output feeds an “inner” encoder. Whereas the
serial concatenation idea can be traced to as early as Shannon’s seminal work, the

Figure 10.41 Signal-space diagrams for calculation of asymptotic coding gain 
of Ungerboeck 8-PSK code: (a) definition of distance d2; (b) definition of 
reference distance dref. 

Table 10.8 Asymptotic coding gain of Ungerboeck 8-PSK codes, with 
respect to uncoded 4-PSK

Number of states 4 8 16 32 64 128 256 512

Coding gain (dB) 3 3.6 4.1 4.6 4.8 5 5.4 5.7
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682 Chapter 10 Error-Control Coding

connection with turbo coding occurred only after the parallel concatenated scheme of
Berrou et al. (see Section 10.12) gained widespread acclaim. The iterative decoding
algorithm for the serial concatenated scheme was first analyzed in detail by Benedetto and
coworkers (Benedetto and Montorsi, 1996; Benedetto et al., 1998); the algorithm follows
a similar logic to the parallel concatenated scheme, in the form of information exchange
between the two decoders as in Figure 10.43. This iterative information exchange is
observed to significantly improve the overall error-correction abilities of the decoder, just
as in the conventional turbo decoder. We shall review the basics of the iterative decoding
algorithm in what follows in order to emphasize the common points with the iterative
algorithm described in Section 10.12. 

The particular interest in the serial concatenated scheme, however, becomes apparent
once we recognize that the inner encoder–decoder pair need not be a conventional error-
correction code, but in fact may assume more general forms that are often encountered in
communication systems. A few examples may be highlighted as follows:

1. The inner encoder may in fact be a TCM stage, as studied in Section 10.15. The
iterative decoding algorithm connecting the trellis-coded demodulator with the outer
error-correction code leads to turbo TCM.23

2. The inner encoder may be the communication channel itself, which is of interest
when the channel induces ISI. The output symbols of the channel may then be
expressed as a convolution between the input symbol sequence and the channel
impulse response, and the decoder operation corresponds to channel equalization
(Chang and Hancock, 1966). Combining the equalizer with the outer channel
decoder gives rise to turbo equalization.24

Figure 10.42 Serial concatenated codes; as usual,  denotes an interleaver.

Figure 10.43 Iterative decoder structure.
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10.16 Turbo Decoding of Serial Concatenated Codes 683

3. In multi-user communication systems, the inner encoder may represent a single
user’s access point to a shared channel through, say, direct-sequence CDMA, in
which users sharing a channel are distinguished by an assigned repetition code. The
inner decoder is a multiuser detector, which aims to separate the multiple users into
distinct symbol streams; when combined with the outer decoder using information
exchange, a turbo CDMA system results.25

The above list is by no means exhaustive, but merely represents some of the more
commonly studied variants of iterative receiver design. We will focus here on the basic
iterative decoding scheme using an error-correction code for the inner encoder–decoder
pair, and then briefly illustrate its applications to turbo equalization.

Serial Turbo Codes

Consider first the case in which both encoders in the serial concatenation of Figure 10.42
implement forward error-correction coding. For efficiency reasons, we assume that the
outer encoder implements a systematic code, so that the codeword c it produces appears as
follows:

(10.150)

in which m contains the k message bits and b contains the n – k parity-check bits. By
choosing a recursive systematic encoder, the corresponding decoding operation can
exploit the BCJR algorithm discussed in Section 10.9.

The second, or “inner,” encoder is also based on a trellis code (although not necessarily
systematic) so that it, too, will admit an efficient decoder using the MAP decoding
algorithm. As illustrated in Figure 10.42, the inner encoder also integrates an interleaver,
denoted by , which permutes the order of the bits in the code vector c prior to the second
encoding operation. Without this interleaver, the serial concatenation of two trellis codes
would merely give a larger-dimension trellis code having limited error-correction
capabilities. The inclusion of the interleaver alters markedly the minimum distance
properties of the code, and constitutes an essential ingredient in obtaining a good error-
correction code.

Probabilistic Considerations

The output from the inner encoder is sent across the channel, which may be a binary
symmetric channel or an AWGN channel, to produce the received vector r. The simplest
way to decode the received signal is to cascade the corresponding inner and outer
decoders. A refined approach is to allow information exchange between the two decoders,
to trigger the turbo effect; this idea is illustrated in Figure 10.43, and the manner of
information exchange is developed in what follows.

To begin, the inner decoder aims to obtain the bitwise a posteriori probability ratios

(10.151)

As �(ci|r) is a marginal probability calculated from the conditional probability �(c |r), the
bit-wise a posteriori probability ratio may be developed into the new form

c b⋮m =



� ci +1 r= 
� ci 1– r= 
-------------------------------- i 1 2  n  =
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(10.152)

In the second line of (10.152), we used Bayes’ rule 

�(c |r) = �(r |c)�(c)�(r) 

to expose the likelihood function �(r |c) as well as the a priori probability function �(c);
the term �(r) is common to the numerator and denominator, and so cancels in the ratio.

We now make the assumption that the a priori probability  factors into the product
of its marginals; that is,

(10.153)

Strictly speaking, this is incorrect, since c contains both the message bits m and parity-
check bits b from the outer encoder, and we know that the message bits determine the
parity-check bits once the outer encoder is specified. The reason for invoking this
assumption is to facilitate decoding via the BCJR algorithm. In particular, inserting this
factorization of the a priori probability function into the a posteriori probability ratio, we
may continue our development as shown by 

(10.154)

� ci +1 r= 
� ci 1– r= 
--------------------------------

� c r 
c:ci +1=


� c r 
c:ci 1–=


------------------------------------=

=

� r c  � c 
c:ci +1=


� r c  � c 
c:ci 1–=


-------------------------------------------------- i 1 2  n  =

� c 

� c  � c1 � c2 � cn =

� ci +1 r= 
� ci 1– r= 
--------------------------------

� r c  � cj 
j 1=

n


c:ci +1=


� r c  � cj 
j 1=

n


c:ci 1–=


-------------------------------------------------------------=

=
� ci +1= 
� ci 1–= 

prior ratio

------------------------------

� r c  � cj 
j 1=
j i

n


c:ci +1=


� r c  � cj 
j 1=
j i

n


c:ci 1–=


extrinsic information ratio

------------------------------------------------------------------ i 1 2  n  =

    

          
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We obtained the second line in (10.154) by noting that each term in the numerator
contains the factor �(ci = +1) and, similarly, each term in the denominator contains the
factor �(ci = –1), hence the reason for the prior ratio factoring out of the expression. The
remaining term is the extrinsic information ratio for bit ci from the inner decoder.

To facilitate passing information to the outer decoder, we may interpret each extrinsic
information ratio from the inner decoder as the probability ratio of an auxiliary probability
mass function T(c) that fulfills two properties:

• The probability mass function T(c) factors into its bitwise marginal functions
according to

T(c) = T1(c1)T2(c2)  Tn (cn) (10.155)

• The bitwise marginal evaluations, each, sum to one, Ti(+1) + Ti(–1) = 1, and are
chosen such that their ratios match the extrinsic information ratios from the inner
decoder:

(10.156)

Now, we note that by natural taking logarithms, the log extrinsic ratio becomes

(10.157)

where Lp(ci) is the log posterior ratio and La(ci) is the log prior ratio.26

Next, we note that the outer decoder does not have the usual channel likelihood
evaluations available, but must instead take information from the inner decoder. While
many possibilities in this direction may be envisaged, a successful iterative decoding
algorithm results by replacing the a posteriori probability according to

(10.158)

in which  is the indicator function for the outer code, that is 

(10.159)

We may think of the function  as replacing the conventional channel likelihood
function �(r |c), since it vanishes whenever c is not a code vector, and T(c) = T1(c1) 
Tn(cn) as replacing the a priori probability on each bit, since it factors into the product of
its marginals. The conventional posterior probability ratio for the outer decoder is thus
replaced with

Ti ci +1= 
Ti ci 1–= 
----------------------------

� r c  � cj 
j 1=
j i

n


c:ci +1=


� r c  � cj 
j 1=
j i

n


c:ci 1–=


-------------------------------------------------------------- i 1 2  n  ==

Ti +1  Ti 1–  ln Lp ci  La ci –=

� c r   c T c 

 c 

 c 
1 if c is a code vector

0 otherwise



=

 c 
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(10.160)

In (10.160) the second line is obtained upon noting that each term in the numerator
(denominator) contains a factor Ti(ci = +1) (Ti(ci = –1)). This separates the “pseudo-prior”
ratio from the outer decoder’s extrinsic information ratio.

Now, to couple the information from the outer decoder back to the inner decoder, we
map the outer decoder’s extrinsic information values to a probability mass function
U(c) which, akin to T(c) introduced above, fulfills two properties:

1. The probability mass function U(c) factors into the product of its bitwise marginal
functions according to

U(c) = U1(c1) U2(c2)  Un(cn) (10.161)

2. The bitwise marginal evaluations each sum to one, Ui (+l) + Ui (–l) = 1, and are chosen
such that their ratios match the extrinsic information ratios for the outer decoder:

(10.162)

The marginal probability functions Ui(ci) then replace the a priori probability values �(ci)
in the inner decoder, and the procedure iterates, thus defining the turbo decoder. In this
fashion, we say the following: 

The turbo decoder for serially concatenated codes follows the same logic as for 
parallel concatenated codes, in that the extrinsic information values furnished 
from one decoder replace the a priori probability values required of the other.

� ci +1 r= 
� ci 1– r= 
--------------------------------

 c  Tj cj 
j 1=

n


c:ci +1=


 c  Tj cj 
j 1=

n


c:ci 1–=


-------------------------------------------------------=

Ti ci +1= 
Ti ci 1–= 

prior ratio

------------------------------=

 c  Tj cj 
j 1=
j i

n


c:ci +1=


 c  Tj cj 
j 1=
j i

n


c:ci 1–=


extrinsic information ratio

------------------------------------------------------------------ i 1 2  n  =

    

          

Ui ci +1= 
Ui ci 1–= 
-----------------------------

 c  Tj cj 
j 1=
j i

n


c:ci +1=


 c  Tj cj 
j 1=
j i

n


c:ci 1–=


--------------------------------------------------------- i 1 2  n  ==
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Turbo Equalization

In high-speed communication systems, further signal degradation can come from
multipath artifacts in wireless environments, or reflection artifacts due to impedance
mismatches in wireline systems. When such degradations have a temporal duration
commensurate with the symbol period, the signal impinging on the receiver at a given
sample instant is the composite influence of successive transmitted symbols, giving rise to
ISI. Its severity worsens as the symbol period diminishes relative to the “delay spread” of
the system, meaning that higher rate data systems must contend with ISI as a significant
channel distortion mechanism.

In such cases, the received symbol ri at sample instant i is a weighted combination of a
set of successive transmitted symbols, according to

(10.163)

Here, is the additive background noise, {si} is the transmitted symbol sequence
obtained by interleaving the bit sequence {ci} (and possibly followed by symbol mapping
if using TCM), and {h0, h1, ..., hL – 1} is the channel impulse response of length L.

If we consider a simple case in which each si is antipodal (si = 1) and k = 0, 1, 2, we
see that the noise-free channel outputs can be obtained through the trellis graph of Figure
10.44: The transitions are determined by whether the input symbol is si = +1 or si = –1,
while the noise-free outputs are drawn from a finite set comprised of sums and differences
of the channel impulse response coefficients. Thus, a convolutional channel which induces
ISI may itself be viewed as a trellis code, and the BCJR algorithm may be applied directly
to estimate the a posteriori probabilities of the transmitted symbols, and thus of the
codeword bits {ci}. The new result is that we have the traditional MAP equalizer.

A turbo equalizer results upon noting that the convolutional channel and its MAP
equalizer may be viewed as the inner encoder–decoder pair of a serial cascade scheme
albeit one dictated by the communication channel and thus beyond the designer’s control.
The outer encoder may again be chosen as a recursive systematic trellis code, whose
decoder is coupled with the MAP equalizer in precisely the same manner: the extrinsic
probabilities from one decoder are used in place of the a priori probabilities of the other,
resulting in an iterative decoding and equalization scheme.

Figure 10.44 Trellis graph for a three-tap channel model, with transition branches 
listing the noise-free channel outputs. Solid transitions occur when the channel 
input is si = +1; dashed transitions occur when si = –1.
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688 Chapter 10 Error-Control Coding

10.17 Summary and Discussion

In this rather long chapter we studied error-control coding techniques that have established
themselves as indispensable tools for reliable digital communication over noisy channels.
The effect of errors occurring during transmission is reduced by adding redundancy to the
data prior to transmission in a controlled manner. The redundancy is used to enable a
decoder in the receiver to detect and correct errors.

Regardless of how they are designed, error-control coding schemes rely on Shannon’s
1948 landmark paper, particularly the celebrated coding theorem, which asserts the
following statement:

Given the proper strategy for encoding the incoming message bits, unavoidable 
errors produced by a noisy channel can be corrected without having to sacrifice 
the rate of data transmission.

The coding theorem was discussed in Chapter 5 on information theory. Restating it here,
for the last time in the final chapter of the book, is intended to emphasize the importance
of the theorem, which will last forever.

In a historical context, error-control coding schemes may be divided into two broadly
defined families:

1. Legacy Codes

As the name would imply, the family of legacy codes embodies several kinds of
linear codes that originated in 1950 and, in the course of three decades or so,
broadened its scope in depth as well as breadth. A distinctive feature of legacy codes
is that of exploiting abstract algebraic structures built into their design in different
ways and increasing mathematical abstraction.

Specifically, legacy codes cover the following four schemes:

a. Linear block codes, the first kind of which were described independently by Golay
in 1949 and Hamming in 1950. Hamming codes are simple to construct and just as
easy to decode using a look-up table based on the notion of syndrome. It is because
of their computational simplicity and the ability to operate at high data rates, that
we find that Hamming codes are widely used in digital communications.

b. Cyclic codes, which form an importance subclass of linear block codes. Indeed,
many of the block codes used in practice are cyclic codes for two compelling
reasons:

• The use of linear feedback shift registers for encoding and syndrome
computation.

• The inherent algebraic structure used to develop various practical decoding
algorithms.

Examples of cyclic codes include Hamming codes for digital communications,
and most importantly, Reed–Solomon codes for combatting both random and
burst errors encountered in difficult environments such as deep-space
communications and compact discs.

c. Convolutional codes, which distinguish themselves from linear block codes in
the use of memory in the form of a finite-state shift register for implementing the
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encoder. For decoding convolutional codes, the Viterbi algorithm (based on
maximum likelihood decoding) is commonly used; this algorithm is designed to
minimize the symbol-error rate on a symbol-by-symbol basis.

d. Trellis coded modulation, which distinguishes itself from linear convolutional
codes in the combined use of encoding and modulation in a single entity. The
next result of so doing is the achievement of significant coding gains over
conventional uncoded multilevel modulation schemes without having to sacrifice
bandwidth efficiency in decoding.

2. Probabilistic Compound Codes

This second family of error-control coding schemes is exemplified by turbo codes
and LDPC codes, which, as different as they are from each other, share a common
property:

Random encoding of a linear block kind.

To be more specific, in their own individual ways, they are both revolutionary:

In practical terms, turbo codes and LDPC codes have made it possible to 
achieve coding gains on the order of 10 dB, thereby approaching the Shannon 
limit not attainable by the legacy codes.

Moreover, in some specialized cases, very long rate-1/2 irregular LPDC codes have
approached the Shannon limit to within 0.0045 dB for AWGN channels, which is
truly remarkable (Chung et al., 2001).

These impressive coding gains have been exploited to dramatically extend the range of
digital communication receivers, substantially increase the bit rates of digital
communication systems, or significantly decrease the transmitted signal energy per
symbol. The benefits have significant implications for the design of wireless
communications and deep-space communications, just to mention two important
applications of digital communications. Indeed, turbo codes have already been
standardized for use on both of these applications.

One last comment is in order: Turbo codes have not only impacted digital
communications in the different ways just described, but the turbo decoding paradigm has
also impacted applications outside the traditional scope of error-control coding. One such
example is that of turbo equalization, briefly described in Section 10.16. Indeed, we may
justifiably say the following as the last statement of the chapter:

The turbo-decoding paradigm, by virtue of its broadly defined scope of 
applications, stands out as one of the ground-breaking achievements in modern 
telecommunications.

Problems

Soft-Decision Coding

10.1 Consider a binary input Q-ary output discrete memoryless channel. The channel is said to be
symmetric if the channel transition probability p(j|i) satisfies the condition

p(j |0) = p(Q – 1 – j |1),        j = 0, 1, , Q – 1
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690 Chapter 10 Error-Control Coding

Suppose that the channel input bits 0 and 1 are equally likely. Show that the channel output symbols
are also equally likely; that is,

,        j = 0, 1, , Q – 1

10.2 Consider the quantized demodulator for binary PSK signals shown in Figure 10.3a. The quantizer is
a four-level quantizer, normalized as in Figure P10.2. Evaluate the transition probabilities of the
binary input–quarternary output discrete memoryless channel so characterized. Hence, show that it
is a symmetric channel. Assume that the transmitted signal energy per bit is Eb and the AWGN has
zero mean and power spectral density N02.

10.3 Consider a binary input AWGN channel, in which the bits 1 and 0 are equally likely. The bits are
transmitted over the channel by means of phase-shift keying. The code symbol energy is E and the
AWGN has zero mean and power spectral density N02. Show that the channel transition probability
is given by

,          

Linear Block Codes

10.4 Hamming codes are said to be perfect single-error correcting codes. Justify the fact that Hamming
codes are perfect.

10.5 Consider the following statement:

An (n, k) code is often said to be a good code.

Explain the conditions under which this statement is justified.

10.6 In a repetition code, a single message bit is encoded into a block of identical bits to produce an (n,
1). Considering the (5, 1) repetition code, evaluate the syndrome for:

a. All five possible single-error patterns.

b. All ten possible double-error patterns.

10.7 In a single-parity-check code, a single parity bit is appended to a block of k message bits (m0, m1,
, mk–1). The single parity bit b0 is chosen so that the codeword satisfies the even parity rule:

m0 + m1 +  + mk–1 + bk–1 = 0,            mod 2

For K = 3, set up the 2k possible codewords in the code defined by this rule.

p j  1
Q
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10.8 Compare the parity-check matrix of the (7,4) Hamming code considered in Example 1 with that of a
(4,1) repetition code.

10.9 Consider the (7,4) Hamming code of Example 1. The generator matrix G and the parity-check
matrix H of the code are described in that example. Show that these two matrices satisfy the
condition

HGT = 0

 10.10 a. For the (7,4) Hamming code described in Example 1, construct the eight codewords in 
Hamming’s dual code.

b. Find the minimum distance of the dual code determined in part a.

Linear Cyclic Codes

10.11 For an application that requires error detection only, we may use a nonsystematic code. In this
problem, we explore the generation of such a cyclic code. Let g(X) denote the generator polynomial,
and m(X) denote the message polynomial. We define the code polynomial c(X) simply as

c(X) = m(X)g(X)

Hence, for a given generator polynomial, we may readily determine the codewords in the code. To
illustrate this procedure, consider the generator polynomial for a (7,4) Hamming code:

g(X) = 1 + X + X3

Determine the 16 codewords in the code, and confirm the nonsystematic nature of the code.

10.12 The polynomial 1 + X7 has 1 + X + X3 and 1 + X2 + X3 as primitive factors. In Example 10.2, we
used 1 + X + X3 as the generator polynomial for a (7,4) Hamming code. In this problem, we consider
the adoption of 1 + X2 + X3 as the generator polynomial. This should lead to a (7,4) Hamming code
that is different from the code analyzed in Example 2. Develop the encoder and syndrome calculator
for the generator polynomial:

g(X) = 1 + X2 +X3

Compare your results with those in Example 2.

10.13 Consider the (7,4) Hamming code defined by the generator polynomial

g(X) = 1 + X + X3

The codeword 0111001 is sent over a noisy channel, producing the received word 0101001 that has
a single error. Determine the syndrome polynomial s(X) for this received word, and show that it is
identical to the error polynomial e(X).

10.14 The generator polynomial of a (15,11) Hamming code is defined by

g(X) = 1 + X + X4

Develop the encoder and syndrome calculator for this code, using a systematic form for the code.

10.15 Consider the (15,4) maximal-length code that is the dual of the (15,11) Hamming code of Problem
10.14. 

Find the generator polynomial g(X); hence, determine the output sequence assuming the initial state
0001. Confirm the validity of your result by cycling the initial state through the encoder.

10.16 Consider the (31,15) Reed–Solomon code.

a. How many bits are there in a symbol of the code?

b. What is the block length in bits?

c. What is the minimum distance of the code?

d.  How many symbols in error can the code correct? 
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692 Chapter 10 Error-Control Coding

Convolutional Codes

10.17 A convolutional encoder has a single-shift register with two states, (i.e., constraint length  = 3), three
modulo-2 adders, and an output multiplexer. The generator sequences of the encoder are as follows:

g(1) = (1, 0, 1)

g(2) = (1, 1, 0)

g(3) = (1, 1, 1)

Draw the block diagram of the encoder.

10.18 Consider the rate r = 12, constraint length  convolutional encoder of Figure P10.18. The
code is systematic. Find the encoder output produced by the message sequence 10111

10.19 Figure P10.19 shows the encoder for a rate r = 12, constraint length  = 4 convolutional code.
Determine the encoder output produced by the message sequence 10111.

10.20 Consider the encoder of Figure P10.20 for a rate r = 23, constraint length  = 2 convolutional code.
Determine the code sequence produced by the message sequence 10111.

10.21 Construct the code tree for the convolutional encoder of Figure P10.19. Trace the path through the
tree that corresponds to the message sequence 10111, and compare the encoder output with that
determined in Figure P10.19.

10.22 Construct the trellis graph for the encoder of Figure P10.19, assuming a message sequence of length
5. Trace the path through the trellis corresponding to the message sequence 10111 Compare the
resulting encoder output with that found in Problem 10.19.

10.23 Construct the state graph for the encoder of Figure P10.19. Starting with the all-zero state, trace the
path that corresponds to the message sequence 10111 and compare the resulting code sequence
with that determined in Problem 10.19.



Figure P10.18

Figure P10.19

 2=
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adder
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Flip-flop

Input
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10.24 Consider the encoder of Figure 10.13.

a. Construct the state graph for this encoder.

b. Starting from the all-zero state, trace the path that corresponds to the message sequence 10111
Compare the resulting sequence with that determined in Problem 10.19.

10.25 By viewing the minimum shift keying (MSK) scheme as a finite-state machine, construct the trellis
diagram for the MSK. (A description of the MSK is presented in Chapter 7).

10.26 Consider a rate-12, constraint length-7 convolutional code with free distance dfree = 10. Calculate
the asymptotic coding gain for the following two channels:

a. Binary symmetric channel.

b. Binary input AWGN channel.

10.27 The transform-domain generator matrix  of an RSC encoder includes ratios of polynomials in
the delay variable D, whereas, in the case of a nonrecursive convolutional encoder  is simply a
polynomial in D. Justify the  for these two cases.

10.28 Consider an eight-state RSC encoder, the generator matrix of which is given by

where D is the delay variable.

a. Construct the block diagram of this encoder.

b. Formulate the parity-check equation that embodies all the message as well as parity-check bits in
the time domain.

10.29 Describe the similarities and differences between traditional encoders and RSC encoders.

The Viterbi Algorithm

10.30 The trellis diagram of a rate-12, constraint length-3 convolutional code is shown in Figure P10.30.
The all-zero sequence is transmitted and the received sequence is 1000100000 Using the Viterbi
decoding algorithm, compute the decoded sequence.

10.31 In Section 10.8, we described the Viterbi algorithm for maximum likelihood decoding of a
convolutional code. Another application of the Viterbi algorithm is for maximum likelihood

Figure P10.20
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694 Chapter 10 Error-Control Coding

demodulation of a received sequence corrupted by ISI due to a dispersive channel. Figure P10.31
shows the trellis diagram for ISI, assuming a binary data sequence. The channel is discrete,
described by the finite impulse response (1, 0, 1). The received sequence is (1.0, –0.3, –0.7, ). Use
the Viterbi algorithm to determine the maximum likelihood decoded version of the sequence.

10.32 In dealing with channel equalization, a primary objective is to undo the convolution performed by a
linear communication channel on the source signal. This task is well suited for the Viterbi equalizer
functioning as a channel equalizer.

a. What is the underlying idea in the Viterbi algorithm that ties channel equalization and
convolutional decoding together?

b. Suppose that the channel has memory defined by 2l, where l is an integer. 

What is the required length of the window for the Viterbi equalizer? Justify your answers for both
parts a and b of the question.

The MAP Algorithm

10.33 Refer back to (10.92), where

,            j = 0, 1, 2, 

Verify that the factor Aj is a constant, regardless of whether the message bit mj is –1 or +1.

10.34 In Example 7, we used the max-log-MAP algorithm to decode the three message bits at the output of
the RSC encoder depicted in Figure 10.23. The computations were obtained using a Matlab code.
Parts a and b of the figure pertain to the block diagram of the encoder and its trellis, respectively. The
five computational steps described therein apply equally well to the log-MAP algorithm.

Figure P10.30
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a. Repeat Example 7, but this time develop a Matlab code for using the log-MAP algorithm to
compute the decoded binary output of the encoder in Figure 10.23a.

b. Confirm the decoded binary output produced in part a by performing the five tasks involved in
the log-MAP algorithm, doing all the computations in the traditional way.

c. Compare the decoded output product using the log-MAP algorithm with that reported in
Example 7.

Comment on your results.

10.35 Figure P10.35 depicts two processing stages involved in the MAP decoding algorithm. The first stage
is a convolutional encoder of rate, r = kn, producing the code vector c in response to the message
vector m. The second stage is a mapper, represented by binary PSK. The signal energy per message
bit at the encoder input is denoted by Eb; the noise spectral density of the AWGN channel is N02.

Let Es denote the signal energy per symbol transmitted by the binary PSK mapper. Show that the
SNR measured at the channel output is given by

10.36 Consider an AWGN channel with unquantized output, assuming the binary code maps  and
. Given a received signal rj

(0) at the channel output in response to a transmitted message bit
mj before decoding, the a posteriori L-value is defined by 

a. Show that

where Es is the transmitted signal energy per encoded symbol.

b. The channel reliability factor is defined by the following formula, assuming that both mj and rj
(0)

are normalized by the factor  by 

where EsN0 is the channel output SNR. Hence, show that 

where La(mj) is the a priori probability of message bit mj.

10.37 In this problem, we expand on Problem 10.36 by considering a binary fading wireless channel,
where the channel noise is additive, white, and Gaussian. As in Problem 10.36, start with the log-
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696 Chapter 10 Error-Control Coding

likelihood ratio of a transmitted message bit mj conditioned on the corresponding matching filtered
output rj at time-unit j:

Let a denote the fading amplitude, which distinguishes this problem from Problem 10.36.

a. Show that

where

and

is the modified channel reliability factor.

b. For statistically independent transmissions as in dual diversity, show that the log-likelihood ratio
takes the expanded form:

where  and  denote the channel reliability factors for the two simultaneous
transmissions of bit mj as in dual diversity. Given this result, comment on the benefit gained by
the use of diversity.

Turbo Codes

10.38 Let  and  be the code rates of RSC encoders 1 and 2 in the turbo encoder
of Figure 10.26. Find the code rate of the turbo code.

10.39 The feedback nature of the constituent codes in the turbo encoder of Figure 10.26 has the following
implication: a single bit error corresponds to an infinite sequence of channel errors. Illustrate this
using a message sequence consisting of symbol 1 followed by an infinite number of symbols 0.

10.40 Consider the following generator matrices for rate-12 turbo codes:

4-state encoder: 

8-state encoder: 

16-state encoder: 

a. Construct the block diagram for each one of these RSC encoders.

b. Set up the parity-check equation associated with each encoder.

10.41 Turbo decoding relies on the feedback of extrinsic information. The fundamental principle adhered
to in the turbo decoder is to avoid feeding a decoding state information that stems from the
constituent decoder itself. Explain the justification for this principle in conceptual terms.

10.42 Suppose a communication receiver consists of two components: a demodulator and a decoder. The
demodulator is based on a Markov model of the combined modulator and channel, and the decoder
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is based on a Markov model of a forward error-correction code. Discuss how the turbo principle may
be applied to construct a joint demodulator–decoder for this system.

10.43 Summarize the properties/attributes of turbo codes by expanding on the following six issues:

a. Structural composition of the turbo encoder and decoder.

b. Improvement in the speed of decoding attributed to the two constituent decoders at the expense
of increased computational complexity.

c. Similarity of turbo decoding to the use of feedback in nonlinear control theory.

d. Feeding extrinsic information from constituent decoder 1 to constituent decoder 2, back and forth,
thereby maintaining statistical independence between the bits from one iteration to the next.

e. Typical termination of the turbo decoding process after a relatively small number of iterations,
somewhere in the range of 10 to 20.

f. Relatively small degradation in decoding performance of the Max-log-MAP algorithm in the
order of 0.5 dB, compared with the MAP algorithm.

10.44 Present a comparative evaluation of convolutional codes and turbo codes in terms of the encoding
and decoding strategies as well as other matters that pertain to signaling over wireless
communications. Specifically, address the following issues in the comparative evaluation:

a. Encoding

b. Decoding

c. Fading wireless channels

d. Latency (i.e., delay incurred in transmission over the channel).

10.45 Referring back to the eight-state Ungerboeck 8-PSK of Figure 10.40, show that the asymptotic
coding gain of this code is 3.5; see Table 10.8.

LDPC Codes

10.46 The generator polynomial of the (7,8) cyclic maximal-length code is given by

g(X) = 1 + X + X2 + X4

Show that this code is an LDPC code by constructing its Tanner graph.

10.47 Consider the (7,4) cyclic Hamming code, whose generator polynomial is given by 

g(X) = 1 + X + X3 

Construct the Tanner graph of this code, demonstrating that it is another example of an LDPC code.

10.48 The expanded version of the cyclic Hamming code is obtained as follows. If H is parity-check matrix
of the cyclic Hamming code, then the parity-check matrix of its extended version is defined by

whereby the distance between every pair of codewords in the extended code is now even.

Construct the Tanner graph of the extended cyclic Hamming code (8, 4).
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10.49 In light of the linear cyclic codes considered in Problems 10.46 to 10.48, comment on the
relationship between this class of codes and LDPC codes.

10.50 In Note 20, we introduced the idea of rateless codes, emphasizing the relationship that exists between
the new class of codes and LDPC codes. Which features distinguish rateless codes from LDPC codes?

10.51 Develop a list comparing LDPC codes with turbo codes.

Notes

1. Feedforward error correction (FEC) relies on the controlled use of redundancy in the transmitted
codeword for both the detection and correction of errors incurred during the course of transmission
over a noisy channel. Irrespective of whether the decoding of the received codeword is successful, no
further processing is performed at the receiver. Accordingly, channel coding techniques suitable for
FEC require only a one-way link between the transmitter and receiver.

There is another approach known as automatic-repeat request (ARQ) for solving the error-control
problem. The underlying philosophy of ARQ is quite different from that of FEC. Specifically, ARQ
uses redundancy merely for the purpose of error detection. Upon the detection of an error in a
transmitted codeword, the receiver requests a repeat transmission of the corrupted codeword, which
necessitates the use of a return path (i.e., a feedback channel from the receiver to the transmitter).

For a comprehensive treatment of error-control coding, see Lin and Costello (2004) and Moon (2005).

2. In medicine, the term syndrome is used to describe a pattern of symptoms that aids in the
diagnosis of a disease. In coding, the error pattern plays the role of the disease and parity-check
failure that of a symptom. This use of syndrome was coined by Hagelbarger (1959).

3. The first error-correcting codes, known as Hamming codes, were invented by Hamming at about
the same time as the conception of information theory by Shannon; for details, see the classic paper
by Hamming (1950).
4. Maximal-length codes, also referred to as m-sequences, are discussed further in Appendix J; they
provide the basis for pseudo-noise (PN) sequences, which play a key role in the study of spread
spectrum signals in Chapter 9.

5. Reed–Solomon codes are so named in honor of their originators; see their classic paper (Reed
and Solomon, 1960).

The book edited by Wicker and Bhargava (1994) contains an introductory chapter on Reed–Solomon
codes; a historical overview of the codes written by Reed and Solomon themselves; and chapters on
the applications of Reed–Solomon codes to exploration of the solar system, the compact disc,
automatic repeat-request protocols, and spread-spectrum multiple-access communications.

In a historical context, Reed–Solomon codes are a subclass of the Bose–Chaudhuri and Hocquenghem
(BCH) codes that represent a large class of powerful random error-correcting cyclic codes. However, it
is important to recognize that the Reed–Solomon codes were discovered independently of the
pioneering works by Hocquenghem (1959) and Bose and Ray-Chaudhuri (1960).

For detailed mathematical treatments of binary BCH codes and nonbinary BCH codes with emphasis
on Reed–Solomon codes, see Chapters 6 and 7 of the book by Li and Costello (2004), respectively.
6. Convolutional codes were invented by Elias (1955) as an alternative to linear block codes. The
aim of that classic paper was to formulate a new class of codes with as much structure as practically
feasible without loss of performance in using them over binary symmetric and AWGN channels.

7. In a classic paper, Viterbi (1967) proposed a decoding algorithm for convolutional codes that has
become known as the Viterbi algorithm. The algorithm was recognized by Forney (1972, 1973) to be
a maximum likelihood decoder. Readable accounts of the Viterbi algorithm are presented in the book
by Lin and Costello (2004).
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The discussion presented in this chapter is confined to the classical Viterbi algorithm involving hard
decisions. For iterative decoding applications with soft outputs, Hagenauer and Hoeher (1989)
described the so-called soft-output Viterbi algorithm (SOVA). For detailed discussion of both
versions of the Viterbi algorithm, the reader is referred to Lin and Costello (2004).

8. For details of the evaluation of asymptotic coding gain for binary symmetric and binary-input
AWGN channels, see Lin and Costello (2004).

9. At first sight, derivation of the MAP decoding algorithm appears to be complicated. In reality,
however, the derivation is straight forward, given knowledge of probability theory. The derivation
presented herein follows the book by Lin and Costello (2004).

10. For detailed mathematical description of the log-MAP algorithm, the reader is referred to the
book (Lin and Costello, 2004).

11. Costello and Forney (2007) surveyed the evolution of coding on the road to channel capacity for
AWGN channels over the course of 50 years, going back to the classic paper of Claude Shannon
(1948). Proceeding in a stage-by-stage manner through the history of codes over band-limited
channels, they came to the paper written by Berrou, et al., (1993) on turbo codes, which was
presented at the IEEE International Communications Conference (ICC) in Geneva, Switzerland;
therein, the achievement of a performance near the Shannon limit with modest decoding complexity
was claimed by its three co-authors. Listening to this claim, the coding research community at the
conference were stunned, with comments being whispered to the effect: “It cannot be true; they must
have made a 3 dB error.” However, in the course of a year, the claims reported by Berrou were
confirmed by various laboratories. And, with it, the turbo revolution was launched.

12. The plots presented in Figure 10.26 follow those in the book by Frey (1998).

13. Example 9 is based on the Ph.D. thesis by Li (2011), with useful comments by Maunder (2012).

14. For the case when the interleaver’s length is high, as in the simulation results plotted in the BER
chart of Figure 10.31, finding the floor region can be extremely time consuming. Indeed, it is for this
reason that the number of iterations in Figure 10.31 was limited to four.

15. The averaging method emanated from the Ph.D. thesis of Land (2005); this method is also
described in Land et al. (2004). The first reference to the averaging method was made under “private
communication” in Hagenauer (2004).

16. The LDPC codes, introduced by Gallager (1960, 1963), were dormant for more than three
decades. Lack of interest in these codes in the 1960s and 1970s may well have been attributed to the
fact that the computers of those days were not powerful enough to cope with LDPC codes of long
block lengths. But, reflecting back over the 1980s, it is surprising to find that lack of interest in
LDPC codes by the coding community persisted for all those years except for a single paper: Tanner
(1981) proposed a graphical representation for studying the structure of Gallager’s LDPC codes (as
well as other codes) for the purpose of iterative decoding; such graphs are now called the Tanner
graphs. In any event, it was not until the introduction of turbo codes and iterative decoding by
Berrou et al. (1993) that interest in LDPC codes was rekindled. Two factors were responsible for this
rekindled interest (Hanzo, 2012):

• the protection of turbo codes by a patent and unwillingness of industry to pay royalties, and

• the rediscovery of LDPC codes by MacKay and Neal (1996; MacKay, 1999).

And with it, the LDPC rediscovery was launched.

17. In a historical context, Tanner’s classic paper was also forgotten for well over a decade, until its
rediscovery by Wiberg (1996) in his seminal thesis.

18. For a detailed treatment of the statement that the probability distribution of the minimum
distance of an LDPC code approaches a unit step function of the block length for certain values of
weight-pair (tc, tr), see Gallager (1962, 1963).
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19. The decoding algorithm of LDPC codes described in Section 10.14 follows MacKay and Neal
(1996, 1997).

20. The sum–product algorithm (SPA) is a computationally efficient, soft-in soft-out (SISO), iterative
deciding algorithm based on belief propagation. The notion of belief propagation was originally
described in Pearl (1988), wherein it was used to study statistical inference in Bayesian networks. For
a detailed exposition of SPA for the iterative decoding of LDPC codes, see MacKay (1999).

In a related context, a relationship exists between LDPC codes and a new class of erasure codes
known as rateless codes, pioneered by Luby (2002). An erasure code is said to be rateless if, ideally,
it satisfies two requirements:

• First, encoding symbols are generated in the transmitter from an incoming data stream in on-
line manner, such that their number is potentially limitless.

• Second, a decoder in the receiver recovers a replica of the data from an aggregate set of the
generated encoding symbols, which is only slightly longer than the original data stream.

Rateless codes are designed for channels without feedback and whose statistics are not known a
priori. One such channel is the Internet packet switching, where the probability of packet erasure is
unknown. In any event, rateless codes are basically low-density generator-matrix codes, which are
decoded using the SPA used to decode LDPC codes; hence the relationship between them. This
relationship is discussed in detail in Bonello, Chen, and Hanzo (2011).

21. In a historical context, the discovery of irregular LDPC codes was originally spearheaded by
Luby et al. (1997, 2001), resulting from the substantial efforts that were invested in the development
of LDPC codes after the onset of the turbo revolution.

In terms of performance attainable by irregular LDPC codes, Chung et al. (2001) were the first to
demonstrate that several very long rate-12 irregular LDPC codes for AWGN channels could be
designed to approach the Shannon limit within 0.0045 dB, which is truly remarkable. 

22. Trellis-coded modulation was invented by Ungerboeck (1982); its historical evolution is
described in Ungerboeck (1987). Table 10.8 is adapted from this latter paper.

Trellis-coded modulation may be viewed as a form of signal-space coding—a viewpoint discussed
at an introductory level in Chapter 14 of the book by Lee and Messerschmitt (1994). For an
extensive treatment of trellis-coded modulation, see the books by Schlegel (1997) and Lin and
Costello (2004: 875–880).

23. A concatenated coding scheme using trellis-coded modulation first appeared in Robertson
and Wörz (1998), appropriately dubbed Turbo TCM using a parallel concatenation scheme, and has
met with further refinements in Hanzo et al. (2003), Koca and Levy (2004), and Sun et al. (2004). 

The serial concatenation scheme can likewise apply, in which the outer encoder is still a recursive
systematic encoder, while the inner encoder implements an Ungerboeck code for modulating the
symbols to be sent over the communication channel. As the Ungerboeck code imposes a trellis
structure, the inner decoder may be implemented with the MAP algorithm to obtain the bitwise a
posteriori probabilities; the extrinsic information extraction from this inner decoder follows the
same steps as in Section 10.16, and the coupling of decoders as per Figure 10.43 carries over
immediately.

24. For turbo equalization and related issues, see Douillard et al. (1995); Supnithi et al. (2003); Jiang
et al. (2004); Kötter et al. (2004); Rad and Moon (2005); Lopes and Barry (2006); Regalia (2010).

25. For turbo CDMA, see the papers by Alexander et al. (1999) and Wang and Poor (1999). 

The topic of DS-CDMA was discussed in Chapter 9.

26. In formulating (10.157), we have introduced log posterior ratio and log prior ratio so as to
avoid confusion with the traditional log likelihood ratio, particularly so when the ratio of interest in
this section is not always between likelihood function evaluations.
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APPENDIX

A Advanced Probabilistic Models
In the study of digital communications presented in preceding chapters, the Gaussian,
Rayleigh, and Rician distributions featured in the formulation of probabilistic models in
varying degrees. In this appendix we describe three relatively advanced distributions:

• the chi distribution;
• the log-normal distribution;
• the Nakagami distribution.

The chi distribution is featured in the study of diversity-on-receive techniques in Chapter 9
on signaling across fading channels. Just as importantly, the log-normal distribution was
mentioned in passing in the context of shadowing in wireless communications, also in
Chapter 9. The Nakagami distribution is the most advanced of all the three:

• it includes the Rayleigh distribution as a special case;
• its shape is similar to the Rician distribution;
• it is flexible in its applicability.

A.1 The Chi-Square Distribution

A chi-square  distributed random variable is produced, for example, when a Gaussian
random variable is passed through a squaring device. Viewed in this manner, there are two
kinds of  distributions:

1. Central  distribution, which is produced when the Gaussian random variable has
zero mean.

2. Noncentral  distribution, which is produced when the Gaussian random variable
has a nonzero mean.

In this appendix, we will discuss only the central form of the distribution.
Consider, then, a standard Gaussian random variable X, which has zero mean and unit

variance, as shown by

(A.1)

Let the variable X be applied to a square-law device, producing a new random variable Y,
whose sample value is defined by

(A.2)

or, equivalently,

(A.3)

The cumulative distribution function of the random variable Y produced at the output of
the square-law device is therefore defined by

(A.4)
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Differentiating FY(y) with respect to y yields the probability density function (pdf):

(A.5)

Substituting (A.1) into (A.5), we get

(A.6)

The distribution described in (A.6) is called the chi-square  distribution with one
degree of freedom. 

The first two moments of Y are given by

�[Y] = 1

�[Y2] = 3

and its variance is
var[Y] = 2

Note, however, that these values are based on the standard Gaussian distribution with zero
mean and unit variance. For the general case of an ordinary Gaussian distribution with
zero mean and variance 2, the mean, mean-square value, and variance of the X2 random
variable Y are, respectively, as follows:

�[Y] = 2

�[Y2] = 34

var[Y] = 24

In its most general setting, derivation of the chi-square distribution follows from a set of
iid random variables denoted by , on the basis of which a new random variable
is defined as follows: 

(A.7)

On this basis, the pdf of the random variable Y is defined by

(A.8)
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where  is Euler’s gamma function, defined by (Abramowitz and Stegun, 1965)

(A.9)

As such, the random variable Y is said to have the chi-square distribution of order n.

When n = 1,  we get the special case described in (A.6); this special

case of the  distribution is also referred to as the one-sided exponential distribution.

Figure A.1 plots the  distribution for varying orders: n = 1, 2, 3, 4, 5.

A.2 The Log-Normal Distribution

To proceed next with the log-normal distribution, let X and Y be two random variables that
are related to each other through the logarithmic transformation

(A.10)

where ln is the natural logarithm. Conversely, we have

(A.11)

In light of this logarithmic transformation, the random variable X is said to be log-
normally distributed if the other random variable Y is normally (i.e., Gaussian) distributed.

Figure A.1 The chi-square distribution for varying order n.
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Assuming that the Gaussian-distributed Y has nonzero mean  and variance , then a
straightforward transformation based on (A.11) yields the log-normal distribution:

(A.12)

By the same token, a probability model based on the log-normal distribution of (A.12) is
called the log-normal model. 

Unlike the chi-square distribution, the log-normal distribution has two adjustable
parameters of its own, the nonzero mean  and variance , both of which are inherited
from the Gaussian distributed random variable Y. Note also that the mean and variance of
the log-normally distributed random variable X, represented by the sample value x in
(A.12), are respectively different from the exponential functions of  and .

As already noted, the log-normal distribution of (A.12) is derived via the logarithmic
transformation of a Gaussian-distribution. Recognizing that power plays a key role in the
study of communications, there is special merit in introducing a new random variable
related to X:

(A.13)

which is measured in decibels. Conversely, x is expressed in terms of z as follows:

(A.14)

Hence, using (A.14) in (A.13), we get

(A.15)

where the constant is

(A.16)

Equation (A.15) shows that both Y and Z are Gaussian distributed, differing by the scaling
factor c. 

Accordingly, the mean and variance of the Gaussian-distributed random variable Z are
respectively defined by

(A.17)

Equivalently, we may write

(A.18)

To visualize the log-normal distribution defined in (A.12), we propose to proceed as
follows:1

1. The mean  is maintained at the constant value, .

2. The standard deviation  (that is, the square root of the variance ) is assigned
three different values: .

With decibel as the logarithmic measure of interest, the new variable x in the log-normal
distribution of (A.12) is also measured in decibels. Thus, using the assigned values of 
and  under points (1) and (2) in (A.12), we get the plots displayed in Figure A.2.
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Examining Figure A.2, we make two observations that are of particular interest:

1. The log-normal distribution exhibits long tails for ; hence its
appropriateness as a model for the shadow-fading phenomenon in wireless
communications. From a practical perspective, a standard deviation lying in the
range  is typical for shadowing, in which case we see that the
distribution of Figure A.2 is quite asymmetric with a small “modal” value. In other
words,  is the mode or the most likely range of shadowing.

2. When the standard deviation  is reduced below this range, the log-normal
distribution tends to become more symmetric and, therefore, Gaussian, centered
roughly around .

Useful Properties of the Log-Normal Distribution

Over and above having the characteristic of long tails, the log-normal distribution has two
other useful properties:2

PROPERTY 1 The product (or quotient) of log-normal variables is log-normal.

This property follows from the fact that the exponents of the random variable Y or Z add
(or subtract). Since the exponents are Gaussian distributed, they remain Gaussian after the
addition (or subtraction); hence the validity of Property 1.

Z 6 dB

6 Z 8 dB 

6 Z 8 dB 
Z

x 1 dB=

Figure A.2 The log-normal distribution.
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As a corollary to this property, we may also state:

The amplitude and power of a log-normal random variable are both log-normal.

PROPERTY 2 The product of a large number of iid random variables is asymptotically log-normal.

This property is the counterpart of the central limit theorem, involving the addition of a
large number of iid random variables. The reason for this second property is rather
obvious for two reasons:

• First, the example of the random variables involved in forming the product add.
• Second, applying the central limit theorem to the addition of the example, the result

asymptotically converges to a Gaussian distribution; hence the validity of Property 2.

A.3 The Nakagami Distribution

As different as the distributions covered until this point are, namely the Rayleigh and
Rician distributions derived in Chapter 4, as well as the chi-square and log-normal
distributions derived in this appendix, all four of them share a common factor: 

They are derived from the Gaussian distribution through respective 
transformations.

In the last part of this appendix we describe another distribution, namely the Nakagami
distribution, which is different from all the others in the following sense:

Through the use of simulation, the Nakagami distribution can be fitted directly 
to real-life data.

Indeed, it is for this important reason (and a few others that will be discussed) that the
Nakagami distribution is commonly used as a model for wireless communications.

To be specific, a random variable X whose pdf is described by the equation

(A.19)

is said to have the Nakagami-m distribution. The random variable X is itself referred to as
a Nakagami-distributed random variable (Nakagami, 1960). 

The two parameters that characterize this distribution are defined as follows:

1. The parameter , which is the mean-square value of the random variable X; that is,

(A.20)

2. The second parameter, m, called the fading figure, is defined by the ratio:

(A.21)
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A.3 The Nakagami Distribution A7

Note the restriction that is placed on m for (A.21) to hold. Close examination of the
definitions embodied in (A.20) and (A.21) reveals that the statistical characterization of
the fading figure m involves two moments:

• the mean-square value of the random variable X in the numerator and
• the variance of the squared random variable X2 in the denominator.

It follows, therefore, that the fading figure m is dimensionless. 
For visualization, the Nakagami-m distribution is plotted in Figure A.3 for varying

values of m. Two observations from these plots are noteworthy:

1. For m = 1/2, the Nakagami-m distribution reduces to the Rayleigh distribution; in
other words: 

The Rayleigh distribution is a special case of the Nakagami distribution.

2. The Nakagami and Rician distributions have a similar shape. 

To elaborate on point 2, for m > 1 we find that the fading figure m can be computed from
the dimensionless Rice factor K (discussed in Chapter 4), as shown in (Stüber, 1996):

(A.22)

Figure A.3 The Nakagami-m distribution, presenting theoretical and simulation results for 
varying fading figure m.
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Conversely,

(A.23)

A cautionary note is in order, however. Although the Nakagami-m and Rician distributions
appear to have good agreement insofar as their shapes are concerned, they have different
slopes at the origin, x = 0; this difference has a significant impact on the achievable
diversity, with the advantage residing in the Nakagami distribution (Molisch, 2011).

From a practical perspective, the Nakagami-m distribution has the following attributes,
in accordance with (A.20) and (A.21):

The two parameters,  and m, lend themselves to computation from 
experimentally measured data in a relatively straightforward manner.

This succinct statement re-emphasizes the point we made at the beginning of this
subsection:

Through the use of simulation, real-life data can be fitted into the Nakagami 
distribution.

Figure A.4 A set of sample functions of log-normal distribution and its approximation 
with the Nakagami distribution as the fading figure m is increased.
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A.3 The Nakagami Distribution A9

Indeed, with this important point in mind, the plots presented in Figure A.3 actually
include points (denoted by crosses) that pertain to an arbitrarily selected wireless data.3

Figure A.4 provides further demonstration of the inherent flexibility of the Nakagami-
m distribution in approximating the log-normal distribution. It is clearly shown that the
approximation gets gradually better as the fading figure m is increased.

It is not surprising, therefore, to find that the Nakagami-m distribution outperforms the
Rayleigh and Rician distributions, particularly so in urban wireless communication
environments.4

Notes

1. The visualization procedure described herein for the log-normal distribution follows Cavers
(2000).

Two other procedures for visualizing the log-normal distribution are described in the literature, as
summarized here:

• In Proakis and Salehi (2008), the standard deviation  and the mean  are varied,
with both  and  measured in volts.

• In Goldstein (2005), a new random variable  defined as the ratio of transmit-to-receive
power, is used in place of x, and a new formula for the log-normal distribution is derived. In so
doing, the use of power measured in decibels plays a prominent role in a new formulation of
the log-normal distribution. However, this new formulation takes values for , which
raises a physically unacceptable scenario; specifically, for , the receive-power assumes a
value greater than the transmit-power.

• Fortunately, the probability of this unacceptable scenario arising is very small, provided that
the mean , expressed in decibels, is positive and large. It is thus claimed that the log-
normal model based on the random variable  captures the underlying physical model very
accurately when the mean  is very large compared to 0 dB.

2. The properties of the log-normal distribution described herein follow Cavers (2000).

3. The procedure used to compute the simulated points in the plots presented in Figure A.3 follows
Matthaiou and Laurenson (2007).

4. This note provides additional noteworthy material on the Nakagami-m distribution. In Turin et al.
(1972) and Suzuki (1977), it is demonstrated that the Nakagami-m distribution provides the best
statistical fit to measured data in urban wireless environments.

Two other papers of interest are Braun and Dersch (1991), in which a physical interpretation of the
Nakagami-m distribution is presented, and Abdi et al., (2000), in which the statistical characteristics
of the Nakagami and Rician distributions are summarized.

Moreover, there are three other papers on the Nakagami distribution that deserve attention. Given a
set of real-life fading-channel data, various papers have been published on how to estimate the
parameter m in the Nakagami model. In Zhang (2002), numerical results are presented to show that
none of the previously published results exceed the classical one by Greenwood and Durand (1960).
The correlated Rayleigh fading lends itself readily to simulate a fading channel by virtue of its
relationship to a complex Gaussian process. Unfortunately, this is not so with the Nakagami
distribution. In Zhang (2000), a decomposition technique is described for the efficient generation of
a correlated Nakagami fading channel.

In Zhang (2003), a generic correlated Nakagami-m model is described using a multiple joint
characteristic function, which allows for an arbitrary covariance matrix and distinct real fading
parameters.

Y 1= Y
Y Y



0  
 1





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APPENDIX

B Bounds on the Q-Function
Following Chapter 3, we define the Q-function as

(B.1)

which represents the area under the tail of the standard Gaussian distribution. In this
appendix, we derive some useful bounds on the Q-function for large positive values of x.

To this end, we change the variable of integration in (B.1) by setting

(B.2)

and then recast (B.1) in the form

(B.3)

For any real z, the value of  lies between the successive partial sums of the
power series:

Therefore, for x > 0 we find that, on using (n + 1) terms of this series, the Q-function lies
between the values taken by the integral

for even n and odd n. We now make another change in the integration variable by setting

(B.4)

and also use the definite integral

(B.5)

Doing so, we obtain the following asymptotic expansion for the Q-function, assuming that
x > 0:

(B.6)

For large positive values of x, the successive terms of the series on the right-hand side of
(B.6) decrease very rapidly. We thus deduce two simple bounds on the Q-function, one
lower and the other upper, as shown by

(B.7)
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---------- 1
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---t

2
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0

exp
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
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2– exp
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------------------------------ 1 1

x
2
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x
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1 3 5  2n 1– 

x
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------------------------------------------------+
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2– exp
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x
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-----– 
  Q x  x
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A12 Appendix B Bounds on the Q-Function

For large positive x, a second bound on the Q-function is obtained by simply ignoring the
multiplying factor 1/x in the upper bound of (B.7), in which case we write

(B.8)

Figure B.1 contains plots of the following quantities:

• tabulated values of the Q-function presented in Table 3.1;
• the lower and upper bounds of (B.7);
• the upper bound of (B.8).

Figure B.1 Lower and upper bounds on the Q-function.

Q x  1

2
---------- x

2

2
-----– 

 exp

210 3 4 5
x

10–6

10–7

10–4

10–5

10–4Q
 f

un
ct

io
n 10–3

10–2

100

101

102

Lower bound
Upper bound
Approximate upper bound
Q function

Haykin_app_B.fm  Page 12  Thursday, December 6, 2012  9:26 PM



A13

APPENDIX

C Bessel Functions

C.1 Series Solution of Bessel’s Equation

In a certain class of differential or difference equations encountered in many branches of
science and engineering, Bessel functions and their modified versions feature commonly
in their solutions, just as cosines and sines feature commonly in trigonometry. 

For example, in spectral analysis of analog frequency-modulated (FM) signals
(discussed briefly in Chapter 2), the analysis involves the use of Bessel functions of
infinite order; see Haykin (2001) for details of this analysis. For yet another example, in
studying the Jakes FIR model in Chapter 9 on signaling over fading channels, we found
that the Bessel functions of zero order featured in the autocorrelation function at the input
of the mobile receiver. Then, in Chapter 7 on signaling over AWGN channels, the
modified Bessel function of zero order featured in arriving at the nondata-aided recursive
algorithm for symbol timing in the receiver.

These motivating examples prompt us to devote this appendix to mathematical analysis
of Bessel functions and their modified versions. 

In its most basic form, Bessel’s equation of order n is written as

(C.1)

which is one of the most important of all variable-coefficient differential equations. For
each n, a solution of this equation is defined by the power series

(C.2)

The function Jn(x) is called a Bessel function of the first kind of order n. Equation (C.1)
has two coefficient functions to deal with: 1x and (x – n2x2). Hence, it has no finite
singular points except for the origin. It follows, therefore, that the series expansion of
(C.2) converges for all x  0. This equation may thus be used to numerically calculate
Jn(x) for n = 0, 1 , 2, Table C.1 gives values of Jn(x) for different order n and varying x. 

The function Jn(x) may also be expressed in the form of an integral as

(C.3)

or, equivalently,

(C.4)

x
2d

2
y

dx
2

-------- x
dy
dx
------ x

2
n

2
– y+ + 0=

Jn x  1– m 1 2 n 2m+

m! n m+ !
-------------------------------------------

m 0=



=

Jn x  1

--- x sin n– cos  d

0



=

Jn x  1
2
------ exp jx sin jn–  d

0



=
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C.2 Properties of the Bessel Function 

The Bessel function Jn(x) has the following properties:

1. (C.5)

To prove this relation, we replace  by ( – ) in (C.3). Then, noting that sin( – )
is equal to sin , we get

For integer values of n, we have

Therefore,

(C.6)

From (C.3), we also find that by replacing n with –n:

(C.7)

The desired result follows immediately from (C.6) and (C.7).

2. (C.8)

This relation is obtained by replacing x with –x in (C.3), and then using (C.6).

3. (C.9)

This recurrence formula is useful in constructing tables of Bessel coefficients; its
derivation follows from the power series of (C.2).

4.  For small values of x, we have

(C.10)

This relation is obtained simply by retaining the first term in the power series of
(C.2) and ignoring the higher order terms. Thus, when x is small, we have

Jn x  1– nJ n– x =

Jn x  1

--- x sin n n–+ cos d

0



=

1

--- n  (x  n ) n  x  n+sin sinsin+ +sincoscos  d

0



=
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------------- x sin n+ cos  d
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

=
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
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0


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Jn x  1– nJn x– =

Jn 1– x  Jn 1+ x +
2n
x

------Jn x =

Jn x  x
n

2
n
n!

----------

J0 x  1

J0 x  x
2
---
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      for n > 1 (C.11)

5. For large values of x, we have

(C.12)

This property shows that, for large values of x, the Bessel function Jn(x) behaves like
a sine wave with progressively decreasing amplitude.

6. With x real and fixed, Jn(x) approaches zero as the order n goes to infinity.

7. (C.13)

To prove this property, consider the sum  and use (C.4) for
Jn(x) to obtain

Interchanging the order of integration and summation:

(C.14)

We now invoke the following relation from Fourier transform theory:

(C.15)

where () is the delta function. Therefore, using (C.15) in (C.14) and then applying
the sifting property of the delta function, we get

which is the desired result.

8. (C.16)

To prove this property, we may proceed as follows. We observe that Jn(x) is real;
hence, multiplying (C.4) by its own complex conjugate and summing over all
possible values of n, we get

Jn x  0

Jn x  2
x
------ x 

4
---– n

2
------– 
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n –=


Jn x  jn exp

Jn x  jn exp

n –=




1

2
------ jn  jx  jn–sin exp  d

–



exp

n –=



=

Jn x  jn exp

n –=




1

2
------ d jx sin  jn  –  exp

n –=



exp
–



=

   1
2
------ jn    –   exp

n –=



=

Jn x  jn exp

n –=



 jx sin exp   –  d
–



=

jx sin exp=

Jn
2

x 
n –=



 1 for all x=

Jn
2

x 
n –=




1

2 2
-------------- jx  jn– jx  jn+sin–sin exp  d d

–




–




n –=



=

Haykin_app_C_pp2.fm  Page 15  Friday, December 7, 2012  10:14 AM



A16 Appendix C Bessel Functions

Interchanging the order of double integration and summation:

(C.17)

Using (C.15) in (C.17) and then applying the sifting property of the delta function,
we finally get

which is the desired result.

C.3 Modified Bessel Function 

Consider the modified Bessel equation:

(C.18)

With j2 = –1, we may rewrite this equation as

from which it is therefore evident that (C.18) is nothing but Bessel’s equation, namely
(C.1), rewritten with x replaced by jx. Thus, replacing x by jx in (C.2) and again noting that
–1 = j2, we get

Next we note that Jn(jx) multiplied by a constant will still be a solution of Bessel’s
equation. Accordingly, we multiply Jn(jx) by the constant j–n, obtaining

This new function is called the modified Bessel function of the first kind of order n,
denoted by In(x). We may thus formally express a solution of the modified Bessel equation
(C.18) as

(C.19)
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C.3 Modified Bessel Function A17

The modified Bessel function In(x) is a monotonically increasing real function of the
argument x  0 for all n, as shown in Figure C.1 for n = 0, 1.

The modified Bessel function In(x) is identical to the original Bessel function Jn(x)
except for an important difference: 

The terms in the series expansion of (C.19) are all positive, whereas they 
alternate in sign in the series expansion of (C.2). 

The relationship between Jn(x) and In(x) is analogous to the way in which the
trigonometric functions cos x and sin x are related to the hyperbolic functions cosh x and
sinh x, respectively.

An interesting property of the modified Bessel function In(x) is derived from (C.13).
Specifically by replacing x by jx and the angle  by  – 2 in this equation and then
invoking the definition of In(x) in the first line of (C.19), we obtain

(C.20)

From this relation it follows that

(C.21)

This integral formula for In(x) may, of course, also be derived from (C.4) by making the
appropriate changes.

When the argument x is small, we obtain the following asymptotic estimates directly
from the series representation of (C.19):

         for (C.22)

Figure C.1 Plots of modified Bessel functions of the first kind I0(x) and I1(x).
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and
         for n > 1 and  (C.23)

For large values of x we have the following asymptotic estimate for In(x), which is valid
for all integers n  0:

     for (C.24)

Note that this asymptotic behavior of In(x) is independent of the order n for large values of x.

Tables

In numerical terms, Table C.1 provides a limited set of values of the Bessel function J(x)
and modified Bessel function I(x). More extensive tables of these two functions are given
in Abramowitz and Stegun (1965).

Notes

1. Equation (C.1) is named after the German mathematician and astronomer Bessel. For detailed
treatments of the solution to this equation and related issues, see the books by Wylie and Barrett
(1982) and Watson (1966).

Table C.1 Values of Bessel functions and modified 
Bessel functions of the first kind

x J0(x) J1(x ) I0(x ) I1(x )

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00

1.0000
0.9900
0.9604
0.9120
0.8463
0.7652
0.6711
0.5669
0.4554
0.3400
0.2239
0.1104
0.0025
–0.0968
–0.1850
–0.2601
–0.3202
–0.3643
–0.3918
–0.4026
–0.3971

0.0000
0.0995
0.1960
0.2867
0.3688
0.4401
0.4983
0.5419
0.5699
0.5815
0.5767
0.5560
0.5202
0.4708
0.4097
0.3391
0.2613
0.1792
0.0955
0.0128
–0.0660

1.0000
1.0100
1.0404
1.0920
1.1665
1.2661
1.3937
1.5534
1.7500
1.9896
1.1796
2.6291
3.0493
3.5533
4.1573
4.8808
5.7472
6.7848
8.0277
9.5169
11.3019

0.0000
0.1005
0.2040
0.3137
0.4329
0.5652
0.7147
0.8861
1.0848
1.3172
1.5906
1.9141
2.2981
2.7554
3.3011
3.9534
4.7343
5.6701
6.7927
8.1404
9.7595

In x  0 x 0

In x  x exp

2x
----------------- x 
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APPENDIX

D Method of Lagrange Multipliers

D.1 Optimization Involving a Single Equality Constraint

Consider the minimization of a real-valued function f(w) that is a quadratic function of a
parameter vector w, subject to the constraint

(D.1)

where s is a prescribed vector and g is a complex constant; the superscript  denotes
Hermitian transposition. We may redefine the constraint by introducing a new function
c(w) that is linear in w, as shown by 

(D.2)

In general, the vectors w and s and the function c(w) are all complex. For example, in a
beamforming application, the vector w represents a set of complex weights applied to the
individual sensor outputs and s represents a steering vector whose elements are defined by
a prescribed “look” direction; the function f(w) to be minimized represents the mean-
square value of the overall beamformer output. In a harmonic retrieval application, for
another example, w represents the tap-weight vector of an FIR filter and s represents a
sinusoidal vector whose elements are determined by the angular frequency of a complex
sinusoid contained in the filter input; the function f(w) represents the mean-square value
of the filter output. In any event, assuming that the issue is one of minimization, we may
state the constrained optimization problem as follows:

Minimize a real-valued function f(w), subject to the constraint c(w) = 0 +j0 (D.3)

The method of Lagrange multipliers converts the problem of constrained minimization
just described into one of unconstrained minimization by the introduction of Lagrange
multipliers. First, we use the real function f(w) and the complex constraint function c(w)
to define a new real-valued function

(D.4)

where 1 and 2 are real Lagrange multipliers and

(D.5)

Now we define a complex Lagrange multiplier:

(D.6)

The Re[] and Im[] in (D.4) and (D.5) denote real and imaginary operators, respectively.
We may then rewrite (D.4) in the form

(D.7)

where the asterisk denotes complex conjugation.

w†s g=
†
 

c w  w†s g–=

0 j0+=

h w  f w  1Re c w   2Im c w  + +=

c w  Re c w   jIm c w  +=

 1 j2+=

h w  f w  Re *c w  +=
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A20 Appendix D Method of Lagrange Multipliers

Next, we minimize the function h(w) with respect to the vector w. To do this, we set the
conjugate derivative  equal to the null vector:

(D.8)

The system of simultaneous equations consisting of (D.8) and the original constraint given
in (D.2) defines the optimum solutions for the vector w and the Lagrange multiplier . We
call (D.8) the adjoint equation and (D.2) the primal equation (Dorny, 1975).

h w* 

f
w*
-----------


w*
----------- Re *c w   + 0=
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APPENDIX

E Information Capacity of MIMO Channels
The topic of multiple-input multiple-output (MIMO) links for wireless communications
was discussed in Chapter 9 on signaling over fading channels. To get a measure of the
transmission efficiency of MIMO links therein, we resorted to the notion of outage
capacity, which is naturally of practical interest. However, in light of its mathematical
sophistication, we deferred discussion of the information capacity of MIMO links rooted
in Shannon’s information theory to this appendix.

To be specific, in this appendix we discuss two different aspects of information
capacity: 

1. The channel state is known to the receiver but not the transmitter;

2. The channel state is known to both the receiver and the transmitter.

The discussion will proceed in this order.

E.1 Log-Det Capacity Formula of MIMO Channels

Consider a communication channel with multiple antennas.1 Let the Nt-by-1 vector s
denote the transmitted signal vector and the Nr-by-1 vector x denote the received signal
vector. These two vectors are related by the input–output relation of the channel: 

(E.1)

where H is the channel matrix of the link and w is the additive channel noise vector. The
vectors s, w, and x are realizations of the random vectors S, W, and X, respectively. 

In what follows in this appendix, the following assumptions are made:

1. The channel is stationary and ergodic.

2. The channel matrix H is made up of iid Gaussian elements.

3. The transmitted signal vector s has zero mean and correlation matrix Rs.

4. The additive channel noise vector w has zero mean and correlation matrix Rw.

5. Both s and w are governed by Gaussian distributions.

In this section, we also assume that the channel state H is known to the receiver but not the
transmitter. With both H and x unknown to the transmitter, the primary issue of interest is
to determine I(s;x,H), which denotes the mutual information between the transmitted
signal vector s and both the received signal vector x and the channel matrix H. Extending
the definition of mutual information introduced in Chapter 5 to the problem at hand, we
write

(E.2)

where 𝒮, 𝒳, and ℋ are the respective spaces pertaining to the random vectors S and X and
matrix H. 

x Hs w+=

I S X; H  fS X H  s x H  
fS X H s x H 

fX H x H 
------------------------------------
 
 
 

2
log ds dx dH

𝒮


𝒳


ℋ
=
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A22 Appendix E Information Capacity of MIMO Channels

Using the definition of a joint probability density function (pdf) as the product of a
conditional pdf and an ordinary pdf, we write

We may therefore rewrite (E.2) in the equivalent form

(E.3)

where the expectation is with respect to the channel matrix H and

is the conditional mutual information between the transmitted signal vector s and received
signal vector x, given the channel matrix H. However, by assumption, the channel state is
unknown to the transmitter. Therefore, it follows that, insofar as the receiver is concerned,
I(s;x|H) is a random vector; hence the expectation with respect to H in (E.3). The quantity
resulting from this expectation is therefore deterministic, defining the mutual information
jointly between the transmitted signal vector s and both the received signal vector x and
channel matrix H. The result so obtained is indeed consistent with what we know about
the notion of joint mutual information.

Next, applying the vector form of the first line in (5.81) to the mutual information
I(s;x|H), we have

(E.4)

where h(x |H) is the conditional differential entropy of the channel output x given H, and
h(x |s,H) is the conditional differential entropy of x, given both s and H. Both of these
entropies are random quantities, because they both depend on H.

To proceed further, we now invoke the assumed Gaussianity of both s and H, in which
case x also assumes a Gaussian description. Under these circumstances, we may use the
result of Problem 5.32 to express the entropy of the received signal x of dimension Nr,
given H, as

(E.5)

where Rx is the correlation matrix of x and det(Rx) is its determinant. Recognizing that the
transmitted signal vector s and channel noise vector w are independent of each other, we
find from (E.1) that the correlation matrix of the received signal vector x is given by

fS X H  s x H   fS X H s x H fH H =

I S X; H  fH H  fS X H s x H 
fS X H s x H 

fX H x H 
------------------------------------
 
 
 

ds dx
2

log

𝒮


𝒳
 dH

ℋ
=

�H fS X H s x H 
fS X H s x H 

fX H x H 
------------------------------------
 
 
 

ds dx
2

log

𝒮


𝒳
=

�H I s x; H  =

I s x; H  fS X H s x H 
fS X H s x H 

fX H x H 
------------------------------------
 
 
 

ds dx
2

log

𝒮


𝒳
=

I s x H;  h x H  h x s H –=

h x H  Nr Nr 2  det Rx  
2

log+
2

bitslog+=
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(E.6)

 denotes Hermitian transposition,

(E.7)

is the correlation matrix of the transmitted signal vector s, and

(E.8)

is the correlation matrix of the channel noise vector w. Hence, using (E.6) in (E.5), we get

(E.9)

where Nr is the number of elements in the receiving antenna. Next, we note that since the
vectors s and w are independent and the sum of w plus Hs equals x as indicated in (E.1),
then the conditional differential entropy of x, given both s and H, is simply equal to the
differential entropy of the additive channel noise vector w; that is, 

(E.10)

The entropy h(w) is given by (see Problem 5.32)

(E.11)

Thus, using (E.9), (E.10), and (E.11) in (E.4), we get

(E.12)

As remarked previously, the conditional mutual information I(s;x|H) is a random variable.
Hence, using (E.12) in (E.3), we finally formulate the ergodic capacity of the MIMO link
as the expectation

  bits/(sHz) (E.13)

which is subject to the constraint

 

Rx xx† =

� Hs w+  Hs w+ † =

� Hs w+  s†H† w†+  =

� Hss†H†  � ww†  � sw†  0= +=

H� ss† H† Rw+=

HRsH† Rw+=

where †

Rs � ss† =

Rw � ww† =

h x H  Nr Nr 2  det Rw HRsH†+  2log+
2

bitslog+=

h x s H  h w =

h w  Nr Nr 2  det Rw  
2

log+
2

bitslog+=

I s x H;  det Rw HRsH†+   det Rw  
2

log–
2

log=

det Rw HRsH†+  
det Rw  

-----------------------------------------------------
 
 
 

2
log=

C �H

det Rw HRsH†+  
det Rw  

-----------------------------------------------------
 
 
 

2
log=

max
Rs

tr Rs  P
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where P is constant transmit power and tr[.] denotes the trace operator, which extracts the
sum of the diagonal elements of the enclosed matrix.

Equation (E.13) is the desired log-det formula for the ergodic capacity of the MIMO
link. This formula is of general applicability, in that correlations among the elements of
the transmitted signal vector s and among those of the channel noise vector w are
permitted. However, the assumptions made in its derivation involve the Gaussianity of s,
H, and w.

E.2 MIMO Capacity for Channel Known at the Transmitter

The log-det formula of (E.13) for the ergodic capacity of a MIMO flat-fading channel
assumes that the channel state is only known at the receiver. What if the channel state is
also known perfectly at the transmitter? Then the channel state becomes known to the
entire system, which means that we may treat the channel matrix H as a constant. Hence,
unlike the partially known case treated in Section E.1, there is no longer the need for
invoking the expectation operator in formulating the log-det capacity. Rather, the problem
becomes one of constructing the optimal Rs (i.e., the correlation matrix of the transmitted
signal vector s) that maximizes the ergodic capacity. To simplify the construction
procedure, we consider a MIMO channel for which the number of elements in the
receiving antenna Nr and the number of elements in the transmitting antenna Nt have a
common value, denoted by N.

Accordingly, using the assumption of additive white Gaussian noise with variance 
in the log-det capacity formula of (E.13), we get

(E.14)

We can now formally postulate the optimization problem at hand as follows:

Maximize the ergodic capacity C of (E.14) with respect to the correlation 
matrix Rs, subject to two constraints, expressed as

1. Nonnegative definite Rs, which is a necessary requirement for a correlation
matrix.

2. Global power constraint

(E.15)

where P is the total transmit power.

To proceed with construction of the optimal Rs, we first use the determinant identity:

(E.16)

Application of this identity to (E.14) yields

(E.17)

w
2

C det IN
1

w
2

-------HRsH†+
 
 
 

 
 
 

2 bits/(sHz)log=

tr Rs  P=

det I AB+  det I BA+ =

C det IN
1

w
2

-------RsH†H+
 
 
 

 
 
 

2log= bits/(sHz)
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Diagonalizing the matrix product  by invoking the eigendecomposition of a
Hermitian matrix, we write

(E.18)

where  is a diagonal matrix made up of the eigenvalues of , and U is a unitary
matrix whose columns are the associated eigenvectors.2 We may therefore rewrite (E.18)
in the equivalent form

(E.19)

where by definition we have used the fact that the matrix product UU† is equal to the
identity matrix. Substituting (E.18) into (E.17), we get

(E.20)

Next, applying the determinant identity of (E.16) to the formula, we get

 (E.21)

where

(E.22)

Note that the transformed correlation matrix  is nonnegative definite. Since UU†  = I,
we also have

(E.23)

where, in the second line, we used the equality tr[AB] = tr[BA]. It follows, therefore, that
maximization of the ergodic capacity of (E.21) can be carried out equally well over the
transformed correlation matrix .

One other important point to note is that any nonnegative definite matrix A satisfies the
Hadamard inequality

 (E.24)

where the akk are the diagonal elements of matrix A. Hence, applying this inequality to the
determinent term in (E.21), we may write

(E.25)

H†H

U† H†H U =

 H†H

H†H UU†=

C log2 det IN
1

w
2

-------RsUU†+
 
 
 

 
 
 

=

C det IN
1

w
2

-------+ U†RsU
 
 
 

 
 
 

2log=

det IN
1

w
2

-------+ Rs
 
 
 

 
 
 

2  bits/(sHz)log=

Rs U†RsU=

Rs

tr Rs  tr U†RsU =

tr UU†Rs =

tr Rs =

Rs

det A  akk

k


det IN
1

w
2

-------Rs+
 
 
 

1
1

w
2

-------krs kk+
 
 
 

k 1=

N



Haykin_app_E_pp3.fm  Page 25  Tuesday, January 8, 2013  1:17 PM



A26 Appendix E Information Capacity of MIMO Channels

where k is the kth eigenvalue of the matrix product  and  is the kth diagonal
element of the transformed matrix . Equation (E.25) holds only when  is a diagonal
matrix, which is the very condition that maximizes the ergodic capacity C.

To proceed further, we now use (E.21) and (E.25) with the equality sign to express the
ergodic capacity as

 (E.26)

where only the second sum term is clearly adjustable through . We may therefore
reformulate the optimization problem at hand as follows:

Given the set of eigenvalues  pertaining to the matrix product , 

determine the optimal set of autocorrelations  that maximizes the 

summation

subject to the constraint

(E.27)

The global power constraint of (E.27) follows from (E.23) and the trace definition of a
trace:

(E.28)
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Water-Filling Interpretation of (E.26)

The solution to the reformulated optimization problem that was initiated after (E.14) may
be determined through the discrete spatial version of the water-filling procedure, which is
described in Chapter 5. Effectively, the solution to the water-filling problem says that, in a
multiple-channel scenario, we transmit more signal power in the better channels and less
signal power in the poorer channels. To be specific, imagine a vessel whose bottom is
defined by the set of N dimensionless discrete levels

and pour “water” into the vessel in an amount corresponding to the total transmit power P.
The power P is optimally divided among the N eigenmodes of the MIMO link in
accordance with their corresponding “water levels” in the vessel, as illustrated in Figure
E.1 for a MIMO link with N = 6. The “water-fill level,” denoted by the dimensionless
parameter  and indicated by the dashed line in the figure, is chosen to satisfy the
constraint of (E.27). On the basis of the spatially discrete water-filling picture portrayed in
Figure E.1, we may now finally postulate the optimal  to be

(E.29)

The superscript “+” applied to the right parenthesis in (E.29) signifies retaining only those
terms in the right-hand side of the equation that are positive (i.e., the terms that pertain to
those eigenmodes of the MIMO link for which the water levels lie below the constant ). 

Figure E.1 Water-filling interpretation of the optimization procedure. 
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We may thus finally state that if the channel matrix H is known to both the transmitter
and the receiver of a MIMO link with Nr = Nt = N, then the maximum value of the
capacity of the MIMO link is defined by

 (E.30)

where, as stated previously, the constant  is chosen to satisfy the global power constraint
of (E.27).

Notes

1. The first detailed derivation of the log-det capacity formula for a stationary MIMO channel was
presented by Telatar in an AT&T technical memorandum published in 1995 and republished as a
journal paper (Telatar, 1999).

2. Given a complex-valued matrix A, the eigendecomposition of A is defined by .
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APPENDIX

F Interleaving
Previous chapters of the book, going back to Chapter 5, have shown us how a digital
wireless communication system can be separated by function into source-coding and
channel-coding applications on the transmitting side and the corresponding inverse
functions on the receiving side. In Chapter 6, we also learned how analog signals can be
converted into a digital format. The motivation behind these techniques is to minimize the
amount of information that has to be transmitted over a wireless channel. Such
minimization has potential benefits in the allocation of two primary resources, namely
transmit power and channel bandwidth, available to wireless communications:

1. Reducing the amount of data that must be transmitted, which usually means that less
power has to be consumed; power consumption is always a serious concern for
mobile units that are typically battery operated.

2. Reducing the spectral (or radio-frequency) resources, which are required for
satisfactory performance; this reduction enables us to increase the number of users
who can share the same but limited channel bandwidth.

Moreover, insofar as channel coding is concerned, forward error-correction (FEC) coding,
discussed in Chapter 10, provides a powerful technique for transmitting information-
bearing data reliably from a source to a sink across the wireless channel.

However, to obtain the maximum benefit from FEC coding in wireless
communications, we require an additional technique known as interleaving.1 The need for
this new technique is justified on the grounds that, in light of the material presented in
Chapter 9, we know that wireless channels have memory due to multipath fading that
results from the arrival of signals at the receiver via multiple propagation paths of different
lengths. Of particular concern is fast fading, which arises out of reflections from objects in
the local vicinity of the transmitter, the receiver, or both. The term fast refers to the speed
of fluctuations in the received signal due to these reflections, relative to the speeds of other
propagation phenomena. Compared with transmit data rates, even fast fading can be
relatively slow. That is, fast fading can be approximately constant over a number of
transmission symbols, depending upon the data transmission speed and the mobile unit’s
velocity. Consequently, fast fading may be viewed as a time-correlated form of channel
impairment, the presence of which results in statistical dependence among continuous
(sets of) symbol transmissions. That is, instead of being isolated events, transmission
errors due to fast fading tend to occur in bursts.

Now, most FEC channel codes are designed to deal with a limited number of bit errors,
assumed to be randomly distributed and statistically independent from one bit to the next.
To be specific, in Section 10.8 on convolutional decoding, we indicated that the Viterbi
algorithm, as powerful as it is, will fail if there are dfree2 closely spaced bit errors in the
received signal, where dfree is the free distance of the convolutional code. Accordingly, in
the design of a reliable wireless communication system, we are confronted with two
conflicting phenomena: 

• a wireless channel that produces bursts of correlated bit errors;
• a convolutional decoder that cannot handle error bursts. 
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Interleaving is an indispensable technique for resolving these two conflicting phenomena.
First and foremost, however, it is important to note that for interleaving we do not need the
exact statistical characterization of the wireless channel. Rather, we only require
knowledge of the coherence time for fast fading, which is approximately given by (see
(9.46))

(F.1)

where  is the maximum Doppler shift. Consequently, we would expect an error burst
to occupy typically a time duration equal to . To deal with bad situations of this
kind in wireless communications, we do two things:

• An interleaver (i.e., a device that performs interleaving) is used to randomize the
order of encoded bits after the channel encoder in the transmitter.

• A de-interleaver (i.e., a device that performs de-interleaving) is used to undo the
randomization before the data reach the channel decoder in the receiver.

Interleaving has the net effect of breaking up any error bursts that may occur during the
course of data transmission over the wireless channel and spreading them over the
duration of operation of the interleaver. In so doing, the likelihood of a correctable
received sequence is significantly improved. In the transmitter, the interleaver is placed
after the channel encoder; in the receiver, the de-interleaver is placed before the channel
decoder.

Three types of interleaving are commonly used in practice, and are discussed next.

F.1 Block Interleaving

In basic terms, a classical block interleaver acts as a memory buffer, as shown in Figure
F.1. Data are written into this N L rectangular array from the channel encoder in column
fashion. Once the array is filled, it is read out in row fashion and its contents are sent to the
transmitter. At the receiver, the inverse operation is performed: the contents of the array in
the receiver are written row-wise with data; once the array is filled, it is read out column-
wise into the decoder. Note that the (N,L) interleaver and de-interleaver described herein
are both periodic with the fundamental period T = NL.

Suppose the correlation time or error-burst-length time corresponds to L received bits.
Then, at the receiver, we expect that the effect of an error burst would corrupt the
equivalent of one row of the de-interleaver block. However, since the de-interleaver block
is read columnwise, all of these “bad” bits would be separated by N – 1 “good” bits when
the burst is read into the decoder. If N is greater than the constraint length of the
convolutional code being employed, then the Viterbi decoder will correct all of the errors
in the error burst. 

In practice, owing to the frequency of error bursts and the presence of other errors
caused by channel noise, the interleaver should ideally be made as large as possible.
However, an interleaver introduces delay into the transmission of the message signal, in
that we must fill the N L array before it can be transmitted. This is an issue of particular
concern in real-time applications such as voice, because it limits the usable block size of
the interleaver and necessitates a compromise solution. 

coherence
0.3

2max
--------------

max
coherence
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EXAMPLE 1 Interleaving

Figure F.2a depicts an original sequence of encoded words, with each word consisting of
five symbols. Figure F.2b depicts the interleaved version of the encoded sequence, with
the symbols shown in reordered positions. An error burst occupying five symbols, caused
by channel impairment, is also shown alongside Figure F.2b. Note that the manner in
which the encoded symbols are reordered by the interleaver is the same from one word to
the next.

Figure F.1 Block interleaver structure. (a) Data “read in.” (b) Data “read out.”

Data
read in

columns

(a) (b)

Data
read out

rows

. . .

. . .

Figure F.2 Interleaving example. (a) Original sequence. (b) Interleaved sequence. (c) De-interleaved 
sequence.

Original
sequence
of
encoded
words

(a)

A1 A2 A3

A

A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5 E1 E2 E3

B C D E

E4 E5

(c)

A1 A2 A3

A

A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5 E1 E2

X X X

E3

B C D E

E4 E5

Interleaved
sequence
of
words

(b)

A1 C1 D1

1

B1 E1 A2 C2 D2 B2 E2

X XX

X

X

A3 C3 D3 B3 E3 A4 C4 D4 B4 E4 A5 C5 D5

2 3 4 5

B5 E5

De-interleaved
sequence
of
words
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On de-interleaving in the receiver, the scrambling of symbols is undone, yielding a
sequence that resembles the original sequence of encoded symbols, as shown in Figure
F.2c. This figure also includes the new positions of the transmission errors. The important
point to note here is that the error burst is dispersed as a result of de-interleaving.

This example teaches us the following: 

1. The burst of transmission errors is only acted upon by the de-interleaver.

2. Insofar as the encoded symbols that are received are error free, the de-interleaver
cancels the scrambling action of the interleaver.

F.2 Convolutional Interleaving

The block diagram of a convolutional interleaver/de-interleaver is shown in Figure F.3.
Defining the period

the interleaver is referred to as an (L  N) convolutional interleaver, which has properties
similar to those of the (L  N) block interleaver.

The sequence of encoded bits to be interleaved in the transmitter is arranged in blocks
of L bits. For each block, the encoded bits are sequentially shifted into and out of a bank of
N registers by means of two synchronized input and output commutators. The interleaver,
depicted in Figure F.3a, is structured as follows:

1. The zeroth shift register provides no storage; that is, the incoming encoded symbol
is transmitted immediately.

2. Each successive shift register provides a storage capacity of L symbols more than
the preceding shift register.

3. Each shift register is visited regularly on a periodic basis.

With each new encoded symbol, the commutators switch to a new shift register. The new
symbol is shifted into the register and the oldest symbol stored in that register is shifted
out. After finishing with the (N – 1)th shift register (i.e., the last register), the commutators
return to the zeroth shift register. Thus, the switching/shifting procedure is repeated
periodically on a regular basis. 

The de-interleaver in the receiver also uses N shift registers and a pair of input/output
commutators that are synchronized with those in the interleaver. Note, however, the shift
registers are stacked in the reverse order to those in the interleaver, as shown in Figure
F.3b. The net result is that the de-interleaver in the receiver performs the inverse operation
to interleaving in the transmitter, and so it should.

An advantage of convolutional over block interleaving is that in convolutional
interleaving the total end-to-end delay is L(N – 1) symbols and the memory requirement is
L(N – 1)2 in both the interleaver and de-interleaver, which are one-half of the
corresponding values in a block interleaver/de-interleaver for a similar level of
interleaving. 

The description of the convolutional interleaver/de-interleaver in Figure F.3b is
presented in terms of shift registers. The actual implementation of the system can also be

T LN=
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accomplished with a random access memory unit in place of shift registers. This
alternative implementation simply requires that access to the memory units be
appropriately controlled. 

F.3 Random Interleaving

In a random interleaver, a block of N input bits is written into the interleaver in the order
in which they are received, but they are read out in a random manner. Typically, the
permutation of the input bits is defined by a uniform distribution. Let (i) denote the
permuter location of the ith input bit, where i = 1, 2, , N. The set of integers denoted by

, defining the order in which the stored input bits are read out of the
interleaver, is generated according to the following two-step algorithm:

1. Choose an integer i1 from the uniformly distributed set 𝒜 ={1, 2, , N}, with the
probability of choosing i1 being p(i1) = 1N. The chosen integer i1 is set to be  (i).

Figure F.3 (a) Convolutional interleaver. (b) Convolutional de-interleaver.
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2. For k  1, choose an integer ik from the uniformly distributed set 

with the probability of choosing ik being p(ik) = 1(N – k + 1). The chosen integer ik
is set to be  (k). Note that the size of the set 𝒜 k is progressively reduced for k  1.
When k = N, we are left with a single integer iN, in which case iN is set to be  (N).

To be of practical use in communications, random interleavers are configured to be
pseudo-random, meaning that within a block of N input bits the permutation is random as
described above, but the permutation order is exactly the same from one block to the next.
Accordingly, pseudo-random interleavers are designed off-line; they are of particular
interest in the construction of turbo codes, discussed in Chapter 10.

Notes

1. Interleaving of both the block and convolutional types is discussed in some detail in Clark and
Cain (1981) and in lesser detail in Sklar (2001). For a treatment of interleaving viewed from the
perspective of turbo codes, see the book (Vucetic and Yuan, 2000).

𝒜k i 𝒜 i i1 i2  ik 1–   =
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APPENDIX

G The Peak-Power Reduction Problem 
in OFDM
In Section 9.11 we discussed the multicarrier transmission technique, namely orthogonal
frequency-division multiplexing (OFDM), which is of particular importance to wireless
communications due to the computational benefits offered by the fast Fourier transform
(FFT) algorithm. However, envelope variations are a frequently cited drawback of OFDM
because of the peak-power limited problem. This problem arises due to the statistical
possibility of a large number of independent subchannels in the OFDM becoming
constructively superimposed, thereby resulting in high peaks. In the literature, the
practical issue of envelope variations is described in terms of the peak-to-average power
ratio, commonly abbreviated as PAPR.1 

In this section, we discuss the PAPR problem in wireless communications and how it
can be reduced. 

G.1 PAPR Properties of OFDM Signals

Consider a single modulation interval, that is, a single symbol of OFDM, the duration of
which is denoted by Ts. In its most basic form, the transmitted OFDM signal is described by

(G.1)

where the term  denotes the frequency separation between any two adjacent
subchannels in the OFDM. By definition, the frequency separation  and symbol
duration Ts are related by the time–bandwidth product:

(G.2)

This condition is required to satisfy the orthogonality requirement among the N
subchannels of the OFDM.

Typically, the coefficients in OFDM, denoted by sn in (G.1) are taken from a fixed
modulation constellation, exemplified by M-ary phase-shift-keying (PSK) or M-ary
quadrature amplitude modulation (QAM) techniques, which were discussed in Chapter 7.
With s(t), in its baseband form, being a complex-valued signal with an amplitude and
phase that characterize it, we may express the time-averaged power of an individual
symbol of the OFDM signal in (G.1) as follows:

 (G.3)

s t  snexp j2nft  0 t Ts 
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N 1–
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P
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----- s t  2
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n 0=
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

=

=
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where the summation in the second line of the equation follows for Parseval’s theorem,
discussed in Chapter 2. With the OFDM coefficient sn being a random variable, which it is
in a wireless environment, it follows that the time-averaged power  is itself a random
variable. It follows therefore that the ensemble-averaged power of the OFDM signal is
given by the expectation

(G.4)

In an OFDM signal based on M-ary PSK, for example, we have  for all n. In this
special case, (G.4) yields

(G.5)

As pointed out previously, the metric of interest commonly used in the literature for
assessing the issue of statistical peak-power variations in the use of OFDM for wireless
communications is the peak-to-average power ratio (PAPR), for which we offer the
following definition:

 (G.6)

where, in words, the term in the numerator denotes the maximum value of the
instantaneous power (i.e., peak power) of the OFDM signal measured across the symbol
interval, , and the denominator denotes average power, hence PAPR. The
formula used in (G.6) refers to the baseband formulation of the PAPR problem.2 

Recognizing that PAPR is, in reality, a random variable distributed across each OFDM
symbol, a statistical interpretation of it is useful. To this end, we may express the
probability of the event that an OFDM symbol, denoted by s(t) as defined in (G.1),
exceeds the peak value  with probability  as follows:

(G.7)

To expand on this definition, we say that the PAPR is less than some prescribed value 
for  of the OFDM symbols, in which case we may refer to  as a
percentile PAPR.

G.2 Maximum PAPR in OFDM Using M-ary PSK

Consider an OFDM system based on M-ary PSK for its modulation scheme. For this
special application of OFDM, the PAPR is always less than or equal to N, where N is the
number of subchannels. To justify this statement, we first note that for M-ary PSK,

P

Pav � P =
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Hence, PAPR is lower banded as follows:

(G.8)

For the upper band on the PAPR under M-ary PSK, we may write:

(G.9)

We may therefore go on to say:

In an OFDM system using M-ary PSK for modulation, the PAPR is bounded as 
follows:

(G.10)

where N is the number of subchannels in the system.

EXAMPLE 1 PAPR for OFDM Using M-ary PSK

Consider the example of an OFDM system using M-ary PSK for which M = 8; that is, the
number of subchannels is

For such an OFDM system, the upper bound on the PAPR, expressed in decibels, can be as
high as the value

The possibility that the PAPR attains such an upper band is inversely proportional to ,
where N is the number of subchannels. It follows that, fortunately in practice, the
probability that the upper bound in (G.10) is attained is negligibly small when N is large
(Tellambura and Friese, 2006).

G.3 Clipping-Filtering: A Technique for PAPR Reduction

From the discussion just presented, we clearly see the need for reducing the PAPR for
commercial viability of OFDM in wireless communications.3
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Considering the nature of envelope variations in the OFDM signal s(t) (these are
responsible for the PAPR problem), an obvious approach for addressing this problem is to
do the following:

• First, clip s(t), such that its envelope is limited to a certain desired maximum value.
• Second, use a linear filter so as to reduce the distortion produced by the clipping.

A system configuration for this PAPR-reduction scheme may proceed as follows: the
OFDM modulator constitutes the first functional block of the system, followed by the
envelope-peak clipper, then a linear filter, and finally an up-converter for translating the
complex baseband signal into a real-valued RF signal ready for transmission over the
wireless channel.

For the clipping, we may consider two types of nonlinear devices: complex baseband
hard clipper and high-power transistor amplifier. Now, when a modulated signal is passed
through a nonlinear device, two forms of distortion arise, namely4

• amplitude modulation-to-phase modulation (AM/PM) conversion and
• amplitude modulation-to-amplitude modulation (AM/AM) conversion.

The above-mentioned nonlinear devices are of practical interest because the AM/PM
conversion can be eliminated almost completely through the use of a suitable pre-distorter.
However, the AM/PM conversion remains to be an issue of concern. Specifically, the
process of AM/AM conversion results in the production of two kinds of distortion:

• out-of-band (OOB) distortion and
• in-band (IB) distortion,

which are related; in any event, they both can be viewed as another source of noise. The IB
noise cannot be reduced by filtering and, therefore, results in a degradation of error
performance. The OOB noise can be reduced by the filter but also causes the “regrowth”
of some original peaks. To reduce the overall regrowth of signal peaks, we may repeat the
operation of clipping followed by filtering.

As mentioned previously, high peak values are extremely rare; in particular, a PAPR
greater than 14 dB is almost impossible. Consequently, in typical wireless applications, we
find that the use of clipping-filtering techniques can reduce the PAPR down to about 10 dB
and yet maintain OOB noise at acceptable levels.5

Notes

1. The discussion on the PAPR problem presented herein closely follows the chapter article in
Tellambura and Friese (2006). Another review paper of interest is Han and Lee (2005).

2. In the context of (G.6), strictly speaking, is the envelope but not the transmitted signal; as
such, (G.5) embodies the peak-to-mean envelope power ratio (PMEPR). Nevertheless, the PAPR is
the term commonly used in the literature.

3. In a way, this same statement also applies to the use of discrete multitone modulation (DMT) for
digital subscriber lines (DSLs) in baseband data transmission, which was discussed in Chapter 8.

4. The AM/PM and AM/PM conversions in power amplifiers are considered in Appendix H.

5. Further reduction in PAPR can be accomplished through the use of sophisticated modulation and
coding techniques; for a discussion of these and other PAPR-reduction techniques, see Tellambura
and Friese (2006). Unfortunately, there is no single “best” technique for solving the PAPR-reduction
problem.

s t  2
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APPENDIX

H Nonlinear Solid-State Power Amplifiers 
One of the most critical constraints imposed on the design of hand-held devices
(terminals) in mobile radio communications is that of limited battery power. These devices
are designed for the purpose of a certain battery life or time taken for recharging the
battery; the corresponding electronic circuitry must therefore respect the underlying power
budget. Moreover, a significant consumer of power in mobile radio is the transmit power
amplifier. Attention must therefore be paid to solid-state power amplifiers in mobile radio,
hence this appendix.

Another point to keep in mind is that power amplifiers are inherently nonlinear,
regardless of where they are used in the design of communication systems. In this context
we may classify nonlinearities into one of two types:

• low-pass or band-pass; 
• memoryless or with memory.

In this appendix, we focus attention on band-pass nonlinearities. 

H.1 Power Amplifier Nonlinearities

There are many amplifier designs, and they have been traditionally categorized in the
electronics literature as Class A, Class B, Class AB, Class C, Class D, and so on, typically
increasingly nonlinear. Although Class A is considered to be a linear amplifier, no
amplifier is truly linear; what linearity means in this context is that the operating point is
chosen such that the amplifier behaves linearly over the signal range. The drawback of the
Class A amplifier is that it is power inefficient. Typically, 25% or less of the input power is
actually converted to radio-frequency (RF) power; the power that is left is converted to
heat and, therefore, wasted. The remaining amplifier classes are designed to provide
increasingly improved power efficiency, but at the expense of making the amplifier
increasingly more nonlinear.

Figure H.1 shows the measured gain characteristic of a solid-state power amplifier at
two different frequencies: 1626 GHz and 1643 GHz. The curves show that the amplifier
gain is approximately constant; that is, the amplifier is linear over a wide range of inputs.
However, as the input level increases, the gain decreases, indicating that the amplifier is
saturating. It can also be seen that there is a significant difference in amplifier performance
at different frequencies. If this amplifier is operated at an average input level of –10 dBm
with an amplitude swing of dB, then the amplifier would be considered linear. If,
however, the input signal has an amplitude swing of dB, the amplifier would be
considered nonlinear. The fact that the gain is not constant over all input levels means that
the amplifier introduces amplitude distortion in the form of amplitude modulation (AM).
Since the amplitude distortion depends upon the input level, it is typically referred to as
AM-to-AM conversion.

An ideal amplifier does not affect the phase of an input signal, except possibly for a
constant phase rotation. Unfortunately, a practical amplifier behaves quite differently, as
illustrated in Figure H.2, which shows the phase characteristic of the same power amplifier

2
10
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considered in Figure H.1. The fact that the phase characteristic is not constant over all
input levels means that the amplifier introduces phase distortion in the form of phase
modulation (PM). Since the phase distortion depends upon the input level, this second
form of distortion is typically called AM-to-PM conversion.

Figure H.1 Gain characteristic of a solid-state amplifier at two 
different operating frequencies: 1626 MHz and 1643 MHz.

Figure H.2 Phase characteristic of a nonlinear amplifier at two 
different operating frequencies: 1626 MHz and 1643 MHz.
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An amplifier with “ideal” nonlinearity acts linearly up to a given point, whereafter it
sets a hard limit on the input signal. This can sometimes be achieved by placing
appropriate compensation around a nonideal amplifier. With this ideal nonlinearity, the
phase distortion is assumed to be zero. In reality, however, we have amplitude distortion as
well as phase distortion, as illustrated in Figure H.3. The operating point of the amplifier is
often specified as the input back-off, defined as the root-mean-square (rms) input signal
level Vin, rms relative to the saturation input level Vin, sat in decibels. That is, we define

(H.1)

Alternatively, the operating point can be expressed in terms of the output back-off, defined as

(H.2)

where  is the rms output signal and  is the saturation output level. In both
(H.1) and (H.2), the closeness to saturation determines the amount of distortion introduced
by the amplifier.

Figure H.3 Characterization of post-amplifier nonlinearity. 
(a) AM–AM conversion. (b) AM–PM conversion.
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Thus, the operating point of the amplifier can be expressed in terms of the input back-
off (IBO), defined as the input power measured relative to the saturation input level, both
in decibels. Alternatively, it is expressed in terms of the output back-off (OBO), defined as
the output power measured relative to the saturation output level, again both in decibels.

H.2 Nonlinear Modeling of Band-Pass Power Amplifiers

Consider a band-pass power amplifier, producing measurable output in response to band-
pass inputs. In practice, we typically find that characterization of the amplifier is achieved
by performing measurements on it, and then using the measurements to formulate an
empirically based model.

With this empirical approach to the nonlinear modeling of the power amplifier in mind,
let the hybrid modulated signal

(H.3)

be applied to the input of the amplifier, producing the output

(H.4)

where g() and () are nonlinear functions of their respective arguments. This input–
output relationship characterization of the amplifier is justifiable provided that the
bandwidth of the modulated signal x(t) is relatively small, compared with the bandwidth
of the power amplifier itself.

Equation (H.4) embodies the two basic conversion characteristics of the power
amplifier:

1. The AM-to-AM conversion, which is described by the nonlinear amplitude function
g(a(t)) that is an odd function of the original amplitude a(t).

2. The AM-to-PM, which is described by the nonlinear phase function  that is
an even function of a(t).

Thus, based on (H.4), we may construct the cascade nonlinear model of a band-pass
amplifier, as depicted in Figure H.4. Herein, note that the AM/PM converter precedes the
AM/AM converter, as it should be.

Using a well-known trigonometric nonlinearity, we may reformulate (H.4) in the
expanded form

(H.5)

Figure H.4 Cascade nonlinear model of a band-pass power amplifier, driven 
by a hybrid-modulated input signal.
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H.2 Nonlinear Modeling of Band-Pass Power Amplifiers A43

For the in-phase component of the power amplifier output we have

(H.6)

and for its quadrature component we have

(H.7)

Based on this second characterization of the power amplifier given in (H.7), we may
construct the quadrature nonlinear model of the amplifier, depicted in Figure H.5. With
the availability of such a model, the road is paved for Monte Carlo simulations to study the
nonlinear behavior of solid-state power amplifiers that are of the band-pass variety.2

Notes

1. A model described in (Saleh, 1981) is well-suited for studying the in-phase and quadrature
components of the output produced by a nonlinear power amplifier.

2. For detailed discussion of band-pass nonlinearity in power amplifiers, the reader is referred to the
book (Tranter et al. 2004).

Figure H.5 Quadrature nonlinear model of a band-pass power amplifier driven by a 
hybrid-modulated signal.
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APPENDIX

I Monte Carlo Integration
In a generic sense, Monte Carlo simulation1 is an invaluable experimental tool for tackling
difficult problems that are mathematically intractable; but the tool is imprecise in that it
provides statistical estimates. Nevertheless, provided that the Monte Carlo simulation is
conducted properly, valuable insight into a problem of interest is obtained, which would
be difficult otherwise.

In this appendix, we focus on Monte Carlo integration, which is a special form of
Monte Carlo simulation. Specifically, we address the difficult integration problem
encountered in Chapter 5 dealing with computation of the differential entropy h(Y), based
on the conditional probability density function of (5.102) in Chapter 5. 

To elaborate, we may say: 

Monte Carlo integration is a computational tool, which is used to integrate a 
given function defined over a prescribed area of interest that is not easy to 
sample in a random and uniform manner.

Let W denote the difficult area over which random sampling of the differential entropy
h(Y) is to be performed. To get around this difficulty, let V denote an area so configured
that it incudes the area W and is easy to randomly sample. Desirably, the selected area V
enclosed W as closely as possible for the simple reason that samples picked outside of W
are of no practical interest.

Suppose now we pick a total of N samples in the area V, randomly and uniformly. Then
according to Press, et al. (1998), the basic Monte Carlo integration theorem states that a
computed “estimate” of the integral defining the differential entropy h(Y) is given by 

(I.1)

where the average value (i.e., mean)

(I.2)

and the mean-square value

(I.3)

The yi in (I.2) and (I.3) is the ith sample of the random variable Y picked from the area V.
The “plus or minus” sign in the approximate formula of (I.1) should not be viewed as a
rigorous bound. Rather, it represents a “one standard-deviation error” that results from the
use of Monte Carlo integration.
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Clearly, the larger we make the number of samples N, the smaller this error will be,
resulting in a more accurate integration. However, this improvement is attained at the cost
of increased computational complexity.

Notes

1. Monte Carlo simulation derives its name from the city, Monte Carlo, Monaco, which is widely
known for its casino gambling: a “game of chance.”

The term “Monte Carlo” was introduced into the technical literature by von Neumann and Ulam
during World War II. Its adoption was intended as a codeword for the secret work that was going on
the time in Los Alamos, New Mexico, USA.

Haykin_app_I_pp2.fm  Page 46  Friday, December 7, 2012  10:29 AM



A47

APPENDIX

J Maximal-Length Sequences
Basically, maximal-length sequences, also referred to in the literature as m-sequences, are
linear cyclic codes, the generation of which is realized by using a linear feedback-shift
register (LFSR) as discussed in Chapter 10 on error-control coding; Figure J.1 is an
illustrative example of LFSR. However, from a practical perspective insofar as this book is
concerned, it is the pseudo-noise (PN) characteristic that befits their use in producing
spread-spectrum signals, an issue that was discussed in Section 9.13 of Chapter 9. In short,
a maximal-length sequence viewed as a “carrier” may be used to spread the spectrum of an
incoming message sequence in the transmitter and despread the received signal so as to
recover the original message signal at the receiver output.

It is therefore apropos that we begin the discussion of maximal-length sequences in this
appendix by discussion their basic properties, illustrated by the LFSR as the sequence
generator.

J.1 Properties of Maximal-Length Sequences

Maximal-length sequences1 have many of the properties possessed by a truly random
binary sequence. A random binary sequence is a sequence in which the presence of binary
symbol 1 or 0 is equally probable. Maximal-length sequences have the following
properties.

PROPERTY 1 Balance Property

In each period of a maximal-length sequence, the number of 1s is always one more than
the number of 0s.

PROPERTY 2 Run Property

Among the runs of 1s and of 0s in each period of a maximal-length sequence, one-half the
runs of each kind are of length one, one-fourth are of length two, one-eighth are of length
three, and so on as long as these fractions represent meaningful numbers of runs. 

Figure J.1 Maximal-length sequence generator for m = 3, where 
m is the number of flip-flops in the generator.

Flip-flop

1 2 Output
sequence

Clock

3
s3s2s1

Modulo-2
adder

s0
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By a “run” we mean a subsequence of identical symbols (1s and 0s) within one period of
the sequence. The length of this subsequence is the length of the run. For a maximal-
length sequence generated by a linear feedback shift register (LFSR) of length m, the total
number of runs is (N + 1)2, where N = 2m – 1.

PROPERTY 3 Correlation Property

The autocorrelation function of a maximal-length sequence is periodic and binary valued. 

As mentioned previously, the period of a maximum-length sequence is defined by

(J.1)

where m is the length of the LFSR. Let binary symbols 0 and 1 of the sequence be denoted
by the levels –1 and +1, respectively. Let c(t) denote the resulting waveform of the
maximal-length sequence, as illustrated in Figure J.2a for N = 7. Henceforth, the period of
the waveform c(t) is 

(J.2)

where Tc is the duration assigned to binary symbol 1 or 0 in the maximal-length sequence.
Let c(t) denote the maximal-length sequence, the autocorrelation function of which is
defined by 

(J.3)

where the lag  lies in the interval (–Tb2,Tb2). Applying this formula to c(t), we get

(J.4)

This result is plotted in Figure J.2b for the case of m = 3 or N = 7.
From Fourier transform theory, covered in Chapter 2, we know that periodicity in the

time domain is transformed into uniform sampling in the frequency domain. This interplay
between the time and frequency domains is borne out by the power spectral density of the
maximal-length wave c(t). Specifically, taking the Fourier transform of (J.4), we get the
sampled spectrum

(J.5)

which is plotted in Figure J.2c for m = 3 or N = 7. As N approaches infinity, Sc(f)
approaches a continuous function of frequency f.
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Figure J.2 (a) Waveform of maximal-length sequence for length m = 3 or period N = 7. 
(b) Autocorrelation function. (c) Power spectral density. All three parts refer to the 
output of the feedback shift register of Figure J.1.
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Comparing the results of Figure J.2c for a maximal-length sequence with the
corresponding results shown in Figure 4.12 of Chapter 4 on stochastic processes, for a
random corresponding binary sequence, we may make two observations:

1. For a period of the maximal-length sequence, the autocorrelation function Rc() is
somewhat similar to that of a random binary sequence.

2. The waveforms of both sequences have the same envelope, sinc2(fT), for their power
spectral densities. The fundamental difference between them is that whereas the
random binary sequence has a continuous spectral density characteristic, the
corresponding characteristic of a maximal-length sequence is discrete, consisting of
delta functions spaced (1NTc) Hz apart.

As the shift-register length m or, equivalently, the period N of the maximal-length
sequence is increased, the maximal-length sequence becomes increasingly similar to the
random binary sequence. Indeed, in the limit, the two sequences become identical when N
is made infinitely large. However, the price paid for making N large is an increasing
storage requirement, which imposes a practical limit on how large N can actually be made
in practical applications of spread spectrum modulation.

J.2 Choosing a Maximal-Length Sequence

Now that we understand the properties of a maximal-length sequence and the fact that we
can generate it using a linear feedback shift register, the key question that we need to
address is: 

How do we find the feedback logic for a desired period N? 

The answer to this question is to be found in the theory of error-control codes, which is
covered in Chapter 10. The task of finding the required feedback logic is made
particularly easy for us by virtue of the extensive tables of the necessary feedback
connections for varying shift-register lengths that have been compiled in the literature. In
Table J.1 we present the sets of maximal (feedback) taps pertaining to shift-register
lengths m = 2,3,...,8.2 Note that, as m increases, the number of alternative schemes

Table J.1 Maximal-length sequence of shift-register lengths 2–8

Shift-register 
length, m Feedback taps

2* [2,1]
3* [3,1]
4 [4,1]
5* [5,2], [5,4,3,2], [5,4,2,1]
6 [6,1], [6,5,2,1], [6,5,3,2]

7*
[7,1], [7,3], [7,3,2,1], [7,4,3,2], [7,6,4,2], [7,6,3,1], [7,6,5,2],
 [7,6,5,4,2,1], [7,5,4,3,2,1]

8
[8,4,3,2], [8,6,5,3], [8,6,5,2], [8,5,3,1], [8,6,5,1], [8,7,6,1],

 [8,7,6,5,2,1], [8,6,4,3,2,1]
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(codes) is enlarged. Also, for every set of feedback connections shown in this table, there
is an “image” set that generates an identical maximal-length code, reversed in time
sequence. Note also that the particular sets, identified with an asterisk in Table J.1,
correspond to Mersenne prime length sequences, for which the period N is a prime
number.

EXAMPLE 1 Maximal-Length Code Generation

Consider a maximal-length sequence requiring the use of a linear feedback-shift register
of length m = 5. For feedback taps, we select the set [5,2] from Table J.1. The
corresponding configuration of the code generator is shown in Figure J.3a. Assuming that
the initial state is 10000, the evolution of one period of the maximal-length sequence
generated by this scheme is shown in Table J.2, where we see that the generator returns to
the initial 10000 after 31 iterations; that is, the period is 31, which agrees with the value
obtained from (J.2).

Suppose, next, we select another set of feedback taps from Table J.1, namely [5,4,2,1].
The corresponding code generator is as shown in Figure J.3b. For the initial state 10000, we
now find that the evolution of the maximal-length sequence is as shown in Table J.3. Here
again, the generator returns to the initial state 10000 after 31 iterations, and so it should.
But the maximal-length sequence generated is different from that shown in Table J.2.

Clearly, the code generator of Figure J.3a has an advantage over that of Figure J.3b, as
it requires fewer feedback connections.

Figure J.3 Two different configurations of feedback shift register of length 
m = 5. (a) Feedback connections [5,2]. (b) Feedback connections [5,4,2,1].
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Table J.2 Evolution of the maximal-length sequence 
generated by the feedback-shift register of Figure J.3a

Feedback Symbol

State of shift register

Output symbol
1 0 0 0 0

0

1

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

0

0

1

1

0

1

0

0

1

0

0

0

0

1

0

1

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

0

0

1

1

0

1

0

0

1

0

0

0

0

1

1

0

1

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

0

0

1

1

0

1

0

0

1

0

0

0

0

0

1

0

1

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

0

0

1

1

0

1

0

0

1

0

0

0

0

0

1

0

1

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

0

0

1

1

0

1

0

0

1

0

0

0

0

0

1

0

1

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

0

0

1

1

0

1

0

0

1

0

0

0

0

0

1

0

1

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

0

0

1

1

0

1

0

0

1

Code generated: 0000101011101100011111001101001.
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Table J.3 Evolution of the maximal-length sequence generated 
by the feedback-shift register of Figure J.3b

Feedback symbol

State of Shift Register

Output symbol
1 0 0 0 0

1

0

1

0

1

0

0

1

0

0

0

1

0

1

1

1

1

1

0
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0
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1

1

0

0
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1
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0

0
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1

0

1

1

1

1

1
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1

1

0

0

1

1

1

0

0

0

0

1

1

1

0

1

0

1

0

0

1

0

0

0

1

0
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1

1

1

1

0

1

1

0
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1

1

0

0

0
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0

0

0

0
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1
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0
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1
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1

0

1

1

0
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1
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0

0

0
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0
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0

0

0
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0
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1
Code generated: 0000110101001000101111101100111.

Haykin_app_J_pp2.fm  Page 53  Friday, December 7, 2012  10:35 AM



A54 Appendix J Maximal-Length Sequences

Notes

1. For further details on maximal-length sequences, see Golomb (1964: 1–32), Simon, et al. (1985:
283–295), and Peterson and Weldon (1972). The last reference includes an extensive list of
polynomials for generating maximal-length sequences. For a tutorial paper on PN sequences, see
Sarwate and Pursley (1980).

2. Table J.1 is extracted from the book by Dixon (1984: 81–83), where feedback connections of
maximal-length sequences are tabulated for shift-register length m extending up to 89.
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APPENDIX

K Mathematical Tables

Table K.1 Trigonometric identities

j exp  j sincos=

cos
1
2
--- j  j– exp+exp =

sin
1
2j
----- j  j– exp–exp =

 2
cos+2sin 1=

 2
sin–2cos 2 cos=

2
cos

1
2
--- 1 2 cos+ =

2sin
1
2
--- 1 2 cos– =

2  cossin 2 sin=

  sin    sincoscossin=

  cos cos  sin sincos=

  tan  tantan
1  tantan
---------------------------------=

sin sin
1
2
---  –   + cos–cos =

cos cos
1
2
---  –   + cos+cos =

sin cos
1
2
---  – sin  + sin+ =
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Table K.2 Series expansions

Taylor series

     

     where

     

MacLaurin series

     

     where

     

Binomial series

     

Exponential series

     

Logarithmic series

     

Trigonometric series

     

     

     

     

     

     

f x  f a  f  a 
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2  f
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x 0=

=

1 x+ n 1 nx
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2!
--------------------x

2 + + + n 1=

xexp 1 x
1
2!
-----x

2 + + +=

1 x+ log x
1
2
---x

2
–

1
3
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3 –+=

xsin x
1
3!
-----x

3
–

1
5!
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5 –+=

xcos 1
1
2!
-----x

2
–

1
4!
-----x

4 –+=

xtan x
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3
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3 2
15
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sin x
1
6
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3 3
40
------x
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tan x
1
3
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3 1
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+–  x 1–=

sinc x 1
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Table K.3  Integrals

Indefinite integrals

     

     

     

     

     

     

     

     

Definite integrals

     

     

     

     

     

     

x ax sin  dx
1

a
2

----- ax  ax ax cos–sin =

x ax cos  dx
1

a
2

----- ax cos ax ax sin+ =

x ax exp  dx
1

a
2

----- ax  ax 1– exp=

x ax
2 exp  dx

1
2a
------ ax

2 exp=

ax exp bx  sin dx
1

a
2

b
2

+
----------------- ax  asin bx  b bx cos– exp=

ax exp bx cos  dx
1

a
2

b
2

+
----------------- ax  acos bx  b bx sin+ exp=

dx

a
2

b
2
x

2
+

-----------------------
1
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------ bx

a
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 1–
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2
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a
2

b
2
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b
2

-----
a

b
3
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a
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 1–
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x ax sin

b
2

x
2

+
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



2
--- ab–  a 0 b 0 exp=

ax cos
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2

x
2

+
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



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ax cos

b
2
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sinc x  dx
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Table K.4 Useful constants

Physical constants

Boltzmann’s constant k = 1.38  10–23 J/K

Planck’s constant h = 6.626  10–34 Js

Electron (fundamental charge) q = 1.602  10–19 C

Speed of light in vacuum c = 2.998  108 m/s

Standard (absolute) temperature T0 = 273 K

Thermal voltage VT = 0.026 V at room temperature

Thermal energy kT at standard 
temperature

kT0 = 3.77  10–21 J

1 Hz = 1 cycle/s; 1 cycle = 2 radians

1 W = 1 J/s

Mathematical constants

Base of natural logarithm e = 2.7182818

Logarithm of e to base 2 log2e = 1.442695

Logarithm of 2 to base e log2e = 0.693147

Logarithm of 2 to base 10 log102 = 0.30103

Pi  = 3.1415927

Table K.5 Recommended unit prefixes

Multiples and submultiples Prefixes Symbols

1012 tera T

109 giga G

106 mega M

103 kilo k

10–3 milli m

10–6 micro m

10–9 nano n

10–12 pico p
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Glossary

Conventions and Notations

1. The symbol | | means the absolute value or magnitude of the complex quantity contained
within.

2. The symbol arg( ) means the phase angle of the complex quantity contained within the
brackets.

3. The symbol Re[ ] means the “real part of” and Im[ ] means the “imaginary part of” the
complex quantity contained within the brackets.

4. The natural logarithm is denoted by ln. 

5. Logarithms to bases 2 and 10 are denoted by log2 and log10, respectively.

6. The use of an asterisk as superscript denotes complex conjugate; e.g., x* is the complex
conjugate of x.

7. The symbol  indicates a Fourier-transform pair, e.g., g(t) G( f ), where a lowercase
letter denotes the time function and a corresponding uppercase letter denotes the frequency
function.

8. The symbol F[ ] indicates the Fourier-transform operation on a time function enclosed within
the brackets, e.g., F[g(t)] = G( f ).

The symbol F–1[ ] indicates the inverse Fourier-transform operation of a frequency function
enclosed within the brackets, e.g., F–1[G(f)] = g(t).

9. The symbol denotes convolution, e.g.,

10. In Chapter 10 on error-control coding, the symbol  is used in the figures, but when it comes
to binary arithmetic, the modulo-2 addition is denoted by an ordinary plus sign throughout
that chapter; the same statement applies to Appendix J on maximal-length codes.

11. The use of subscript T0 indicates that the pertinent function , say, is a periodic function
of time t with period T0.

12. The use of a hat over a function indicates one of two things:

a. The Hilbert transform of a function; e.g., the function  is the Hilbert transform of
g(t).

b. The estimate of an unknown parameter, e.g., the quantity  is an estimate of the
unknown parameter , based on the observation vector x.

13. The impulse response of a linear time-invariant system is denoted by h(t), and its transfer
function is denoted by H(f); the two of them, h(t) and H(f), form a Fourier-transform pair. 

14. The use of a tilde over a function indicates the complex envelope of a narrowband signal;
e.g., the function  is the complex envelope of the narrowband signal g(t). The exception
to this convention is in Section 10.12, where, in the description of turbo decoding, the tilde in

⇌ ⇌

★

x t ★ t  x  h t –  d
–



=

gT0
t 

ĝ t 

̂ x 

g̃ t 
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, is used to signify extrinsic information and thereby distinguish it from log-likelihood
ratio.

15. The use of subscript + indicates the pre-envelope of a signal; e.g., the function g+(t) is the
pre-envelope of the signal g(t). We may thus write g+(t) = g(t) + , where  is the
Hilbert transform of g(t). The use of subscript – indicates that g– (t) = g(t) –  = g+*(t).

16. The use of subscripts I and Q indicates the in-phase and quadrature components of a
narrowband signal, a narrowband random process, or the impulse response of a narrowband
filter, with respect to the carrier cos(2fct).

17. For a low-pass message signal, the highest frequency component or message bandwidth is
denoted by W. The spectrum of this signal occupies the frequency interval –W  f  W and is
zero elsewhere. For a band-pass signal with carrier frequency fc, the spectrum occupies the
frequency intervals fc –W  f  fc + W and –fc – W  f  – fc + W, so 2W denotes the bandwidth
of the signal. The (low-pass) complex envelope of this band-pass signal has a spectrum that
occupies the frequency interval –W  f  W.

For a low-pass filter, the bandwidth is denoted by B. A common definition of filter
bandwidth is the frequency at which the magnitude response of the filter drops by 3 dB
below the zero-frequency value. For a band-pass filter with mid-band frequency fc the
bandwidth is denoted by 2B, centered on fc. The complex low-pass equivalent of this band-
pass filter has a bandwidth equal to B.

The transmission bandwidth of a communication channel, required to transmit a modulated
signal, is denoted by BT.

18. Random variables or random vectors are uppercase (e.g., X or X) and their sample values are
lowercase (e.g., x or x). The symbol �[ ] signifies the probability of an event enclosed within
the brackets; for example, �[X  x] signifies the probability that the occurence of random
variable X assumes a value equal to or less than the sample value x.

19. A vertical bar in an expression means “given that” or “conditional on”; e.g., fX(x |H0) is the
probability density function of the random variable X given that hypothesis H0 is true.

20. The symbol �[ ] means the expected value of the random variable enclosed within; the � acts
as an operator.

21. The symbol var[ ] means the variance of the random variable enclosed within.

22. The symbol cov[ ] means the covariance of the two random variables enclosed within.

23. The average probability of symbol error is denoted by Pe.

In the case of binary signaling techniques, p10 denotes the conditional probability of error
given that symbol 0 was transmitted, and p01 denotes the conditional probability of error
given that symbol 1 was transmitted. The a priori probabilities of symbols 0 and 1 are
denoted by p0 and p1, respectively.

24. The symbol 〈 〉 denotes the time average of the sample function enclosed within.

25. Boldface letter denotes a vector or matrix. The inverse of a square matrix R is denoted by R–

1. The transpose of a vector w is denoted by wT. The Hermitian transpose of a complex-
valued vector x is denoted by x†; Hermitian transposition involves both transposition and
complex conjugation.

26. The length of a vector x is denoted by || x ||. The Euclidean distance between the vectors xi
and xj is denoted by dij = || xi – xj ||.

L̃i mj 

jĝ t  ĝ t 
jĝ t 
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Conventions and Notations G3

27. The inner product of two real-valued vectors x and y is denoted by xTy; their outer product is
denoted by xyT. If the vectors x and y are complex valued, their inner product is x†y, and their
outer product is xy†.

28. In set theory, the symbols stand for the union and intersection, respectively, of two
random variables A and B, for example.

The symbol Ac stands for the complement of random variable A.

29. In stochastic processes theory, MXX(t1, t2) stands for the autocorrelation of a stochastic
process X(t) sampled at times t1 and t2 when no conditions are imposed on X(t). In the special
case of a weakly (wide-sense) stationary process X(t), the autocorrelation function is denoted
by RXX() for some time shift , and sometimes this symbol is simplified to RX(); the time
shift  is also referred to as delay. Similar notations are used for cross-correlation, namely
MXX(t1, t2) for a pair of generic stochastic processes X(t) and Y(t), and RXY() for the special
case of two weakly (wide-sense) processes.

30. In information theory, the symbol H(S) denotes the entropy of a discrete event S. For a
continuous random variable denoted by X, the symbol h(X) is used to denote its differential
entropy.

Given a pair of continuous random variables X and Y, their mutual information is denoted by
I(X; Y).

Channel capacity is denoted by C.

31. In error-control coding, the code rate is denoted by r. 

The syndrome in decoding of linear block codes is denoted by S. 
In convolutional codes, the symbol  is used to denote the log-likelihood ratio of
the message vector mj given the received vector rj at time-step j.
For MAP (maximum a posteriori) decoding, the following symbols are used:

• The L-value denotes a log-likelihood ratio of two conditional probabilities, the
numerator pertaining to binary symbol 1 and the denominator pertaining to binary
symbol 0.

• La(mj) denotes the a priori L-value at time-step j of the decoding algorithm for message

bit mj. 

• Lp(mj) denotes the a posteriori L-value at time-step j of the decoding algorithm for

message bit mj.

• Lc denotes the transmission reliability factor.

• The symbols  denote the forward metric for state S at time-

step j, the transition metric for going from state  to s at time-step j, and the backward

metric for state  at time-step j +1, respectively. 

32. Lastly and rather importantly: to avoid confusion in the use of italics throughout the book, d
is used to denote a differential and j is used to denote the square root of –1. 

and 

L mj rj 

j s  j s s  and j 1+ s 
s

s
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G4 Glossary

Functions

Abbreviations

ADC analog-to-digital converter
ADM adaptive delta modulation
ADPCM adaptive differential pulse-code modulation
ADSL asymmetric digital subscriber line
AM amplitude modulation
APP a posteriori probability
ASK amplitude-shift keying

1. Rectangular functions:

2. Unit-step function:

3. Signum function:

4. (Dirac) delta function: (t) = 0,      

or, equivalently,

5. Sinc function:

6. Sine integral:

7. Q-function:

8. Binomial coefficient:

9. Bessel function of the first 
kind of order n:

10. Modified Bessel function of 
the first kind of zero order:

rect t 
1,

1
2
--- t

1
2
--- –

0, t
1
2
---









=

u t  1, t 0
0, t 0




=

t sgn
1, t 0
0, t 0=

1,– t 0





=

t 0

 t  dt
–



 1=

g t  t t0–  dt
–



 g t0 =

sinc x  x sin
x

-------------------=

Si u  xsin
x

----------dx
0

u

=

Q u  1


------- 1

2
---t

2
– 
 exp dt

0



=

n

k 
  n!

n k– !k!
-----------------------=

Jn x  1
2
------ jx sin jn– exp  d

–



=

I0 x  1
2
------ x cos exp  d

–



=

Haykin_glossary.fm  Page 4  Wednesday, January 2, 2013  3:27 PM



Abbreviations G5

AWGN additive white Gaussian noise
BCJR Bahl, Cocke, Jelinek, and Raviv (algorithm)
BER bit error rate (chart)
BPF band-pass filter
BSC binary symmetric channel
cdf cumulative distribution function
CDM code-division multiplexing
CDMA code-division multiple access
codec coder/decoder
CPFSK continuous-phase frequency-shift keying
CW continuous wave
DAC digital-to-analog converter
dB decibel
dBW decibel referenced to 1 W
dBmW decibel reference to 1 mW
DC direct current
DEM demodulator
DFT discrete Fourier transform
DM delta modulation
DMT discrete multitone
DPCM differential pulse-code modulation
DPSK differential phase-shift keying
DSB-SC double sideband-suppressed carrier
DS/BPSK direct sequence/binary phase-shift keying (for spread spectrum signals)
DSL digital subscriber line
DTV digital television
exp exponential, e.g., ex is written as exp(x); both are used interchangeably
FFT fast Fourier transform (algorithm)
FIR finite-duration impulse-response (filter)
FM frequency modulation
FSK frequency-shift keying
GMSK Gaussian filtered MSK
Hz hertz
IDFT inverse discrete Fourier transform
IF intermediate frequency
IFFT inverse fast Fourier transform (algorithm)
IIR infinite-duration impulse response (filter)
I/O input/output
ISI intersymbol interference
LDM linear delta modulation
LFSR linear finite-shift register
LMS least-mean-square (algorithm) 
ln natural logarithm
log2 logarithm to base 2
log10 logarithm to base 10
LPC linear predictive coding (model)
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G6 Glossary

LPF low-pass filter
MAP maximum a posteriori (probability)
ML maximum likelihood
mmse minimum mean-square error
modem modulator–demodulator
ms millisecond
s microsecond
nm nanometer
NRZ nonreturn-to-zero
OFDM orthogonal frequency-division multiplexing
OFDMA orthogonal frequency-division multiple access
OOK on–off keying
PAM pulse-amplitude modulation
PAPR peak-to-average power ratio
PCM pulse-code modulation
pdf probability distribution function
PG processing gain
PSK phase-shift keying
QAM quadrature amplitude modulation
QPSK quadriphase-shift keying
RC raised cosine (spectrum)
RF radio frequency
rms root mean-square
RS Reed–Solomon (code)
RSC recursive systematic convolutional (code)
RZ return-to-zero
s second
SIR signal-to-interference ratio
SNR signal-to-noise ratio
SRRC square-root raised cosine (spectrum)
TCM trellis-coded modulation
TDL tapped-delay line (filter)
TV television
UHF ultrahigh frequency
UMTS Universal Mobile Telecommunication System
V volt
W watt

characteristic function of random variable X with sample value x

interleaver

de-interleaver

x 
X


 1–
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A
Adaptive DM, 308
Adaptive equalization

decision-feedback equalization, 
473–474

equalizer operation, 472–473
introduction, 469–470
LMS (least-mean-square) 

algorithm, 470–472
Additive noise, parameter estimation, 
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receiver considerations, 542–545
space diversity-on-transmit 

receive systems, fading 
channels, 540–541

Aliasing, 272–273
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bound on the autocorrelation 
function property, 151

cross-correlation functions, 
155–157

mean-square value property, 151
normalization property, 152
overview, 149–157
physical significance of, 152–155
properties of, 151–152
quadrature-modulated processes, 

156–157
random binary wave, 154–155
sinusoidal wave with random 

phase, 152
symmetry property, 151

Autocovariance function, weakly 
stationary stochastic processing, 
149–157

AWGN channel signaling
BER comparison of signaling 

schemes, 415–418
capacity, band-limited channels, 

477–478
introduction, 323–324
noncoherent orthogonal 

modulation, 404–410

AWGN channel signaling, coherent 
detection. See also DPSK 
(differential phase-shift keying); 
FSK (frequency-shift keying); 
PSK (phase-shift keying).

correlation receiver, 341–342
matched filter receiver, 342–343
maximum likelihood decoding, 

337–341
AWGN channel signaling, detecting 

signals of unknown phase
equivalent forms of the quadratic 

receiver, 402–404
introduction, 400
optimum quadratic receiver, 

400–402
AWGN channel signaling, geometric 

representation of signals
2B1Q code, 331–332
Gram-Schmidt orthogonalization, 

329–331
introduction, 324–328
Schwarz inequality, 328–329

AWGN channel signaling, optimum 
receivers

correlation receiver, 341–342
matched filter receiver, 342–343
maximum likelihood decoding, 

337–341
AWGN channel signaling, probability 

of error
bit versus symbol error 

probabilities, 351–352
four message points, 348–349
introduction, 344–346
invariance of the probability to 

translation, 346–347
pairwise error probability, 

349–351
rotational invariance, 346
translation of signal constellation, 

347–348
AWGN channel synchronization

algorithmic approach, 419
introduction, 418–419

AWGN channel synchronization, 
recursive maximum likelihood 
estimation

algorithmic synchronization, 
423–424

convergence considerations, 
430–431

introduction, 419–420
likelihood functions, 420–423
recursive estimation of group 

delay, 424–430
AWGN channels, capacity of binary-

input, 244–248
AWGN channels, converting to 

vector
introduction, 332–333
likelihood function, 336–337
statistical characteristics, 

correlator output, 333–336

B
Band-limited channels

AWGN channel capacity, 
477–478

broadband backbone data 
network, over multiple 
baseband channels, 474–475

constrained optimization problem, 
484–487

distortionless baseband data 
transmission, 450–454

DSL (digital subscriber lines), 
475–477

error rates due to channel noise in 
matched-filter receivers, 
446–447

ideal Nyquist pulse, 450–454
intersymbol interference, 447–449
introduction, 445–446
post-processing techniques, 

463–469
RC (raised cosine) spectrum, 

454–458
signal design for zero ISI, 450
water-filling solution, 484–487
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Band-limited channels, adaptive 
equalization

decision-feedback equalization, 
473–474

equalizer operation, 472–473
introduction, 469–470
LMS (least-mean-square) 

algorithm, 470–472
Band-limited channels, eye patterns

for binary systems, 467–469
introduction, 463–464
for M-ary transmissions, 466
peak distortion for intersymbol 

interference, 465–466
for quaternary systems, 467–469
timing features, 464

Band-limited channels, FIR modeling
RC pulse, 456–458
SRRC pulse, 461–463

Band-limited channels, partitioning 
continuous-time channels. See 
also DMT system.

geometric SNR, 481–482
introduction, 478–481
loading the DMT system, 

482–484
Band-limited channels, SRRC 

spectrum
introduction, 458–460
pulse shaping compared to RC 

spectrum, 461
Band-pass signals

amplifiers, nonlinear modeling, 
A42–A43

canonical representation, 49–52
combining with systems. See 

Band-pass systems, combining 
with signals.

complex envelopes, 47–49
Band-pass systems, combining with 

signals
frequency-domain procedure, 

56–58
introduction, 54
simulating communication 

systems, 58
time-domain procedure, 54–56

Band-pass systems, complex low-
pass representations, 52–53

Bayesian inference, hypothesis 
testing

binary, 130–132

composite, 132–133
introduction, 126–129

Bayesian inference, introduction, 
119–122

Bayesian inference, parameter 
estimation

in additive noise, 124–125
introduction, 122–124

BER comparison of signaling 
schemes, 415–418

Bernoulli random variable, 101–105, 
211–212

Bessel functions, A13–A18
Binary hypothesis testing, 130–132
Binary symmetric channels

channel capacity, 231–232
channel-coding theorem, 234–235
discrete memoryless channels, 

225
Binary-input AWGN channel, 

capacity of, 244–248
Bipolar RZ signaling, 311
Block interleaving, A30–A32
Bound on the autocorrelation 

function property, 151
Boundedness of the distribution, 98
Bounds on the Q-function, A11–A12
Broadband backbone data network, 

signaling over multiple 
baseband channels, 474–475

C
CAI (coantenna interference), 

546–547
Channel capacity. See also MIMO 

(multiple input, multiple output) 
capacity.

AWGN band-limited channels, 
477–478

AWGN binary input channels, 
244–248

binary symmetric channels, 
231–232

information capacity law, 
292–294

introduction, 230–231
NEXT-dominated channel, 

252–253
Channel-coding theorem

binary symmetric channels, 
234–235

introduction, 232–234
repetition code, 235–236

Characteristic function, 112–113
Chi-square distribution, A1–A3
Clipping-filtering, A37–A38
Coantenna interference (CAI), 

546–547
Code division multiple access, fading 

channels
Gold codes, correlation properties, 

563–564
Gold sequences, 562–563
introduction, 560–561
Walsh-Hadamard sequences, 

561–562
Coding, history of, 1–2
Coherent detection of AWGN 

channel signaling
correlation receiver, 341–342
matched filter receiver, 342–343
maximum likelihood decoding, 

337–341
Coherent detection of binary FSK

error probability, 378–380
generation and detection, 377–378
power spectra, 380–382

Coherent detection of FSK
bandwidth efficiency, M-ary FSK 

signals, 396–397
introduction, 375–377
M-ary FSK, introduction, 

395–397
M-ary FSK versus M-ary PSK, 

398–399
minimum shift keying, 382–383
phase trellis, 383–384
power spectra, M-ary FSK signals, 

396
Coherent detection of FSK, MSK

error probability, 390–391
Gaussian filtering, 392–395
generation and detection, 389–390
power spectra, 391–392
signal-space diagram, 384–388
waveforms, 388–389

Coherent detection of optimum 
AWGN receivers. See also FSK 
(frequency-shift keying) 
coherent detection; PSK (phase-
shift keying) coherent detection.

correlation receiver, 341–342
matched filter receiver, 342–343
maximum likelihood decoding, 

337–341
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Colored noise channels, information 
capacity

capacity of NEXT-dominated 
channel, 252–253

introduction, 248–252
Communication process

digital communication, 9–11
introduction, 2–4
multiple-access techniques, 4–5
networks, 6–9

Composite hypothesis testing, 
132–133

Compound probabilistic codes, 
introduction, 644–645

Compound probabilistic codes, 
LDPC codes

(10, 3, 5) codes, 669–671
introduction, 646–669
irregular codes, 674–675
minimum distance, 671–672
probabilistic decoding, 672–674

Constrained optimization problem, 
484–487

Convolutional codes. See Error-
control coding for convolutional 
codes.

Convolutional interleaving, A32–A33
Cosine transformation of a random 

variable, 109–112
Cross-correlation functions, 

autocorrelation function, 
155–157

Cross-spectral densities property, 
weakly stationary stochastic 
processing, 172–174

Cyclic codes, error-control coding
calculating the syndrome, 

598–599
cyclic property, 593
encoding, 597–598
generator matrices, 596–597
generator polynomials, 594–595
hamming codes, 599–603
introduction, 593–594
linearity property, 593
maximal-length codes, 603–604
parity-check matrices, 596–597
parity-check polynomials, 

595–596
properties, 593
Reed-Solomon codes, 604–605

D
Decision-feedback equalization, 

473–474
Delta modulation (DM). See DM 

(delta modulation).
DFT (discrete Fourier transform). See 

also IDFT (inverse discrete 
Fourier transform).

binary sequence for energy 
calculation, 19–21

Dirac delta function, 28–33
interpreting, 70–72
introduction, 16–19
linear time-invariant systems, 

37–41
pairs, 24
periodic signals, 34–36
theorems, 23
time functions, 24
unit Gaussian pulse, 21–22

DFT (discrete Fourier transform), 
DMT systems

description, 489–491
DFT-based DMT systems, 

492–493
DMT-based DSL, practical 

applications, 493–494
frequency-domain channel 

descriptions, 491–492
introduction, 487–489

DFT (discrete Fourier transform), 
numerical computation

computing the IDFT, 77–78
FFT algorithms, 72–77
interpretation of DFT and IDFT, 

70–72
introduction, 69–70

DFT-based DMT systems, 492–493
Differential entropy

mutual information, 237–240
uniform distribution, 238–240

Differential phase-shift keying 
(DPSK). See DPSK (differential 
phase-shift keying).

Differential pulse-code modulation 
(DPCM). See DPCM 
(differential pulse-code 
modulation).

Digital communication introduction, 
9–11

Digital subscriber lines (DSL). See 
DSL (digital subscriber lines).

Dirac delta function, 28–33
Discrete Fourier transform (DFT). 

See DFT (discrete Fourier 
transform).

Discrete memoryless channels
binary symmetric channel, 225
introduction, 223–225

Discrete memoryless channels, error-
control coding

channel coding theorem, 580–581
introduction, 579–580
notation, 582

Discrete multicarrier transmission 
(DMT). See DMT (discrete 
multicarrier transmission).

Distortionless baseband data 
transmission, 450–454

Distribution functions, Bernoulli 
random variable, 101–105

DM (delta modulation)
adaptive DM, 308
introduction, 305
quantization errors, 307–308
receiver, 307
transmitter, 305–307

DMT (discrete multicarrier 
transmission) system, DFT

description, 489–491
DFT-based DMT systems, 

492–493
DMT-based DSL, practical 

applications, 493–494
frequency-domain channel 

descriptions, 491–492
introduction, 487–489

DMT (discrete multicarrier 
transmission) system, loading, 
482–484

DPCM (differential pulse-code 
modulation)

DPCM receiver, 303
DPCM transmitter, 303
introduction, 301–303
processing gain, 304

DPSK (differential phase-shift 
keying). See also PSK (phase-
shift keying), introduction.

error probability, 412–413
generating DPSK signals, 413
illustration, 412
introduction, 411–412
optimum receiver, 413–415
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DSB-SC modulation, 60–61
DSL (digital subscriber lines)

band-limited channels, 475–477
DMT-based, practical 

applications, 493–494
E
Entropy

Bernoulli random variable, 
211–212

differential, 237–240
of extended source, 213–214
extension of a discrete 

memoryless source, 212–213
introduction, 207–209
properties of, 209–211
relative, 238–239

Envelopes
band-pass signals, complex 

envelopes, 47–49
low-pass signals, 47
narrowband noise, 191–193
pre-envelopes, 45–47

Equal gain combining, 538
Ergodic processes, weakly stationary 

stochastic processing, 157–158
Error rates in band-limited channels 

due to channel noise in matched-
filter receivers, 446–447

Error-control coding. See also 
Compound probabilistic codes.

forward error correction, 578–579
introduction, 577–578
LDPC codes. See LDPC (low-

density parity-check) codes.
Error-control coding, exit charts

approximate Gaussian model, 
661–663

developing, 658–661
histogram computation method, 

663–666
introduction, 657–658
measuring, 664–666

Error-control coding, turbo coding
extrinsic information, 649–650
introduction, 645–646
mathematical feedback analysis, 

651–653
performance, 648–649
serial concatenated codes, 

681–687
turbo decoder, 650–651
two-state encoder, 646–648

UMTS turbo decoder, 653–657
UMTS with binary PSK 

modulation, 653–657
Error-control coding for 

convolutional codes
code tree, 607–608
convolutional encoder, 606–607
introduction, 605–606
optimum decoding, 613–614
recursive systematic, 611–613
state diagrams, 609–611
trellis graph, 609. See also 

Trellis-coded modulation.
Error-control coding for 

convolutional codes, maximum 
a posteriori probability decoding

algorithmic metrics, 627–628
AWGN channel, branch metric 

evaluation, 630–634
BCJR algorithm, 623–624, 638
forward-backward recursions, 

626–630
introduction, 623–624
lattice-based framework for the 

derivation, 625–626
log-MAP algorithm, 636–638
MAP decoding algorithm, 

624–625, 635–638
max-log-MAP algorithm, 

636–638, 639–644
a posteriori L-value, finalizing, 

634
Error-control coding for 

convolutional codes, maximum 
a posteriori probability max-
decoding, 636–638

Error-control coding for 
convolutional codes, maximum 
likelihood decoding

asymptotic coding gain, 622–623
correct decoding of received all-

zero sequences, 617–618
free distance, 620–621
incorrect decoding of received all-

zero sequences, 619
introduction, 614–616
Viterbi algorithm, 616–617, 623

Error-control coding for cyclic codes
calculating the syndrome, 

598–599
cyclic property, 593
encoding, 597–598
generator matrices, 596–597

generator polynomials, 594–595
hamming codes, 599–603
introduction, 593–594
linearity property, 593
maximal-length codes, 603–604
parity-check matrices, 596–597
parity-check polynomials, 

595–596
properties, 593
Reed-Solomon codes, 604–605

Error-control coding for discrete 
memoryless channels

channel coding theorem, 580–581
introduction, 579–580
notation, 582

Error-control coding for linear coding 
blocks

hamming codes, 590–592
introduction, 582–585
minimum distance considerations, 

587–589
syndrome decoding, 589–590
syndrome definition and 

properties, 585–587
Exit charts

approximate Gaussian model, 
661–663

developing, 658–661
histogram computation method, 

663–666
introduction, 657–658
measuring, 664–666

Expectation
introduction, 105–106
linearity, 107–108
statistical independence, 108

Exponential distribution, 110–111
Eye patterns

for binary systems, 467–469
introduction, 463–464
for M-ary transmissions, 466
peak distortion for intersymbol 

interference, 465–466
for quaternary systems, 467–469
timing features, 464

F
Fading channels

comparison of modulation 
schemes, 525–527

diversity techniques, 525
effects of flat fading, 525–527
introduction, 501–502
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propagation effects, 502–505
RAKE receiver and multipath 

diversity, 564–566
Fading channels, code division 

multiple access
Gold codes, correlation properties, 

563–564
Gold sequences, 562–563
introduction, 560–561
Walsh-Hadamard sequences, 

561–562
Fading channels, FIR modeling of 

doubly spread channels
generating tap coefficients, 

523–524
introduction, 520–523
practical matters, 523
Rayleigh processes, 524
Rician-Jakes doppler spectrum 

model, 524–525
Fading channels, Jakes model

illustrative generation of fading 
processes, 510–511

implemented as a FIR filter, 
509–511

introduction, 506–509
Fading channels, MIMO capacity

channel known at the transmitter, 
555–556

ergodic capacity, 551–553
log-det formula capacity, 

553–554
outage capacity, 554–555

Fading channels, MIMO systems
basic baseband channel model, 

547–551
CAI (coantenna interference), 

546–547
introduction, 546

Fading channels, OFDM
introduction, 556
PAPR problem, 556–557

Fading channels, space diversity-on-
receive systems

equal gain combining, 538
introduction, 528
maximum-ratio combining, 

533–537
outage probability for maximal-

ratio combiner, 537
outage probability of selection 

combiner, 532
selection combining, 528–532

Fading channels, space diversity-on-
transmit receive systems

Alamouti code, 540–541
full-rate complex code, 541
introduction, 538–539
linearity, 542–546
maximum likelihood decoding, 

545–546
QPSK (quadriphase-shift keying), 

539
receiver considerations, Alamouti 

code, 542–545
unitarity (complex orthogonality), 

541
Fading channels, spread spectrum 

signals
classification of spread spectrum 

signals, 557–558
introduction, 557–558
processing gain of the DS/BPSK, 

559
Fading channels, statistical 

characterization of wideband 
wireless channels

classification of multipath 
channels, 519–520

Doppler power spectrum, 
517–519

introduction, 511–512
multipath correlation function of 

the channel, 512
power-delay profile, 516–517
scattering function of the channel, 

514–516
spaced-frequency, spaced-time 

correlation function of the 
channel, 514

uncorrelated scattering, 513
wide-sense stationarity, 512–513

FFT (fast Fourier transform) 
algorithms, 72–77

Filtering two jointly weakly 
stationary processes, 174

FIR (finite-duration impulse 
response) modeling, 
introduction, 456–458

FIR (finite-duration impulse 
response) modeling of doubly 
spread fading channels

generating tap coefficients, 
523–524

introduction, 520–523
practical matters, 523

Rayleigh processes, 524
Rician-Jakes doppler spectrum 

model, 524–525
Fourier series, 13–16
Fourier transform. See DFT (discrete 

Fourier transform); IDFT 
(inverse discrete Fourier 
transform).

Frequency-domain
description, 56–58, 268–271
relation to time-domain, 25–28

FSK (frequency-shift keying). See 
also AWGN channel signaling.

introduction, 375–377
noncoherent detection of binary 

FSK, 410–411
FSK (frequency-shift keying) 

coherent detection. See also 
PSK (phase-shift keying), 
introduction.

bandwidth efficiency, M-ary FSK 
signals, 396–397

M-ary FSK, introduction, 
395–397

M-ary FSK versus M-ary PSK, 
398–399

minimum shift keying, 382–383
phase trellis, 383–384
power spectra, M-ary FSK signals, 

396
FSK (frequency-shift keying) 

coherent detection, binary FSK
error probability, 378–380
generation and detection, 377–378
power spectra, 380–382

FSK (frequency-shift keying) 
coherent detection, MSK

error probability, 390–391
Gaussian filtering, 392–395
generation and detection, 389–390
power spectra, 391–392
signal-space diagram, 384–388
waveforms, 388–389

Full-rate complex code, 541
G
Gaussian distribution

introduction, 113
jointly Gaussian random 

variables, 116
linear function of a Gaussian 

random variable, 114
mean, 114
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Gaussian distribution (cont.)
random variables, 239–240
standard distribution, table of, 117
sum of independent Gaussian 

random variables, 114
variance, 114

Gaussian process
independence, 179
introduction, 176–177
linear filtering, 177–178
multivariate distribution, 178
stationarity, 179

Geometric representation of AWGN 
channel signals

2B1Q code, 331–332
Gram-Schmidt orthogonalization, 

329–331
introduction, 324–328
Schwarz inequality, 328–329

Gold codes, correlation properties, 
563–564

Gold sequences, 562–563
Gram-Schmidt orthogonalization, 

329–331
Group delays, 66–69
H
Hilbert transform

introduction, 42–44
low-pass signals, 44–45

Huffman coding, lossless data 
compression, 219–220

Huffman tree, lossless data 
compression, 220–221

Hypothesis testing
binary, 130–132
composite, 132–133
introduction, 126–129

I
Ideal band-pass filtered white noise, 

189–190
Ideal low-pass filtered white noise, 

181–182
Ideal Nyquist pulse, band-limited 

channels, 450–454
IDFT (inverse discrete Fourier 

transform). See also DFT.
computing, 77–78
interpreting, 70–72

Information capacity, colored noise 
channels

capacity of NEXT-dominated 
channel, 252–253

introduction, 248–252
Information capacity law

capacity of binary-input AWGN 
channels, 244–248

implications of, 244–248
introduction, 240–243
PCM noise, 292–294
sphere packing, 243–244

Information theory, history of, 1–2
Integrals, table of, A57
Interleaving

block, A30–A32
convolutional, A32–A33
introduction, A29–A30
random, A33–A34

Intersymbol interference, band-
limited channels, 447–449

Inverse discrete Fourier transform 
(IDFT). See IDFT (inverse 
discrete Fourier transform).

J
Jakes model, fading channels

illustrative generation of fading 
processes, 510–511

implemented as a FIR filter, 
509–511

introduction, 506–509
Jointly Gaussian random variables, 

116
K
Kraft inequality, lossless data 

compression, 217–219
L
Lagrange multipliers, A19–A20
LDPC (low-density parity-check) 

codes
(10, 3, 5) codes, 669–671
history of, 645
introduction, 646–669
irregular codes, 674–675
minimum distance, 671–672
probabilistic decoding, 672–674

Least-mean-square (LMS) algorithm, 
470–472

Lempel-Ziv coding, lossless data 
compression, 221–223

Line codes
bipolar RZ signaling, 311
introduction, 309–310
Manchester code, 311
polar NRZ signaling, 311
split phase, 311

unipolar NRZ signaling, 311
unipolar RZ signaling, 311

Linear coding blocks, error-control 
coding

hamming codes, 590–592
introduction, 582–585
minimum distance considerations, 

587–589
syndrome decoding, 589–590
syndrome definition and 

properties, 585–587
Linear function of a Gaussian random 

variable, 114
Linear modulation theory

DSB-SC modulation, 60–61
introduction, 58–60
SSD modulation, 64–66
summary of modulation methods, 

66
VSB modulation, 61–64

Linear time-invariant filter, 
transmitting weakly stationary 
stochastic processing, 158–160

Linear time-invariant systems, 37–41
Linearity, expectation, 107–108
LMS (least-mean-square) algorithm, 

470–472
Log-normal distribution, A3–A6
Lossless data compression algorithms

Huffman coding, 219–220
Huffman tree, 220–221
introduction, 215–216
Kraft inequality, 217–219
Lempel-Ziv coding, 221–223
prefix coding, 216–217

Low-density parity-check (LDPC). 
See LDPC (low-density parity-
check).

Low-pass signals
envelopes, 47
Hilbert transform, 44–45

M
Manchester code, 311
MAP (maximum a posteriori 

probability) decoding algorithm, 
624–625, 635–638

Mathematical tables
integrals, A57
series expansions, A56
trigonometric identities, A55
unit prefixes, A58
useful constants, A58
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Maximal-length sequences
choosing, A50–A54
code generation, A51–A54
correlation property, A48–A50
introduction, A47
properties of, A47–A50

Maximum likelihood decoding, 
545–546

Maximum-ratio combining, 533–537
Mean functions, weakly stationary 

stochastic processing, 149–157
Mean-square value property

autocorrelation function, 151
weakly stationary stochastic 

processing, 164
Method of Lagrange multipliers, 

A19–A20
MIMO (multiple input, multiple 

output) capacity, fading channels
channel known at the transmitter, 

555–556, A24–A28
ergodic capacity, 551–553
log-det formula capacity, 

553–554, A21–A24
outage capacity, 554–555

Mixing random processes with 
sinusoidal, weakly stationary 
stochastic processing, 167–169

Monotonicity of the distribution, 99
Monte Carlo integration, A45–A46
m-sequences. See Maximal-length 

sequences.
MSK (minimum shift keying), FSK 

coherent detection
error probability, 390–391
Gaussian filtering, 392–395
generation and detection, 389–390
power spectra, 391–392
signal-space diagram, 384–388
waveforms, 388–389

Mutual information
continuous random ensembles, 

237–240
differential entropy, 237–240
expansion, 228–229
introduction, 226–227
nonnegativity, 228
symmetry, 227–228

N
Nakagami distribution, A6–A9
Narrowband noise

envelope, 191–193

ideal band-pass filtered white 
noise, 189–190

introduction, 183–189
phase components, 191–193
plus sine wave, 193–195
Rayleigh distribution, 192–193
Rician distribution, 194–195

Networks, introduction, 6–9
NEXT-dominated channel, capacity 

of, 252–253
Noise. See also Narrowband noise; 

White noise.
definition, 179
shot, 180
thermal, 180

Noise, PCM
error threshold, 291–292
information capacity law, 

292–294
introduction, 290–291

Noncoherent detection, binary FSK, 
410–411

Noncoherent orthogonal modulation, 
AWGN channel signaling, 
404–410

Nonlinear solid-state power 
amplifiers, A39–A43

Nonnegativeness property, weakly 
stationary stochastic processing, 
164

Nonnegativity function, 99
Normalization function, 99–100
Normalization property

autocorrelation function, 152
weakly stationary stochastic 

processing, 165
O
OFDM (orthogonal frequency 

division multiplexing), PAPR 
problem

clipping-filtering, PAPR 
reduction, A37–A38

fading channels, 556–557
introduction, A35
maximum PAPR using M-ary 

PSK, A36–A37
properties of OFDM signals, 

A35–A36
Outage probability

for maximal-ratio combiner, 537
of selection combiner, 532

P
PAM (pulse-amplitude modulation), 

274–277
PAPR (peak-to-average power ratio) 

problem
clipping-filtering, PAPR 

reduction, A37–A38
fading channels, 556–557
introduction, A35
maximum PAPR using M-ary 

PSK, A36–A37
properties of OFDM signals, 

A35–A36
Parameter estimation

in additive noise, 124–125
introduction, 122–124

Partitioning continuous-time 
channels

geometric SNR, 481–482
introduction, 478–481
loading the DMT system, 

482–484
PCM (pulse-code modulation)

encoding the transmitter, 288
introduction, 285–286
inverse operations in the receiver, 

288–289
quantization of the transmitter, 

286–288
regeneration along the transmitter 

path, 288–290
PCM (pulse-code modulation), noise 

considerations
error threshold, 291–292
information capacity law, 

292–294
introduction, 290–291

Periodic signals, Fourier transform, 
34–36

Phase components, narrowband 
noise, 191–193

Phase delays, 66–69
Phase-shift keying (PSK). See PSK 

(phase-shift keying).
Poisson process, weakly stationary 

stochastic processing, 174–176
Polar NRZ signaling, 311
Prediction-error filtering, redundancy 

reduction
discrete time structure for 

predictions, 296–299
introduction, 294–295
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Prediction-error filtering, redundancy 
reduction (cont.)

linear adaptive prediction, 
300–301

theoretical considerations, 
295–296

Pre-envelopes, 45–47
Prefix coding, lossless data 

compression, 216–217
Probabilistic compound codes. See 

Compound probabilistic codes.
Probabilistic model, 90–97
Probability theory

characteristic function, 112–113
introduction, 87–90
probabilistic model, 90–97
random variables, 97–98
set theory, 88–90

Probability theory, central limit 
theorem

introduction, 118
sum of uniformly distributed 

random variables, 118–119
Probability theory, distribution 

functions
Bernoulli random variable, 

101–105
boundedness of the distribution, 

98
introduction, 98
monotonicity of the distribution, 

99
nonnegativity, 99
normalization, 99–100
uniform distribution, 100–101

Probability theory, expectation
introduction, 105–106
linearity, 107–108
statistical independence, 108

Probability theory, Gaussian 
distribution

introduction, 113
jointly Gaussian random 

variables, 116
linear function of a Gaussian 

random variable, 114
mean, 114
standard distribution, table of, 117
sum of independent Gaussian 

random variables, 114
variance, 114

Probability theory, second-order 
statistical averages

cosine transformation of a random 
variable, 109–112

exponential distribution, 110–111
introduction, 108–109

Processing gain, DPCM, 304
Properties, weakly stationary 

stochastic processing
cross-spectral densities, 172–174
filtering two jointly weakly 

stationary processes, 174
introduction, 160–161, 170–172
mean-square value of stationary 

process, 164
mixing random processes with 

sinusoidal, 167–169
nonnegativeness, 164
normalization, 165
random binary wave, 166–167
sinusoidal wave with random 

phase, 165–166
sum of two processes, 173
symmetry, 164
Wiener-Khintchine theorem, 

169–170
zero correlation among frequency 

components, 162–163
zero-frequency value, 164

PSK (phase-shift keying), 
introduction, 352. See also 
AWGN channel signaling; 
DPSK (differential phase-shift 
keying); FSK (frequency-shift 
keying).

PSK (phase-shift keying), M-ary 
QAM

average probability of error, 
373–375

introduction, 370–371
for M = 4, 371–373
QAM square constellations, 371
square constellations, 371

PSK (phase-shift keying) coherent 
detection

binary phase-shift keying, 
352–357

error probability, binary PSK, 
354–356

introduction, 352
M-ary PSK, introduction, 

367–370

M-ary PSK versus M-ary FSK, 
398–399

PSK (phase-shift keying) coherent 
detection, power spectra

binary PSK, 356–357
M-ary PSK, 367–370

PSK (phase-shift keying) coherent 
detection, QPSK

error probability, 362–364
introduction, 357–359
offset QPSK, 365–367
power spectra, 364–365
signal-space diagrams, 358–359
waveforms, 359–365

PSK (phase-shift keying) coherent 
detection, signal-space diagrams

binary PSK, 353–354
QPSK signals, 358–359

Pulse-amplitude modulation (PAM), 
274–277

Pulse-code modulation (PCM). See 
PCM (pulse-code modulation).

Q
QAM (quadrature amplitude 

modulation)
average probability of error, 

373–375
introduction, 370–371
M-ary QAM for M = 4, 371–373
square constellations, 371

Q-function, bounds on, A11–A12
QPSK (quadriphase-shift keying), 

PSK coherent detection
error probability, 362–364
introduction, 357–359
offset QPSK, 365–367
power spectra, 364–365
signal-space diagrams, 358–359
waveforms, 359–365

QPSK (quadriphase-shift keying), 
space diversity-on-transmit 
receive systems, 539

Quadrature-modulated processes, 
autocorrelation function, 
156–157

Quantization
errors, delta modulation, 307–308
introduction, 278–279
noise, 279–281
scalar quantizers, optimality, 

282–285
sinusoidal modulating signal, 

281–282
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R
Raised cosine (RC). See RC (raised 

cosine).
RAKE receiver and multipath 

diversity, 564–566
Random binary wave property

autocorrelation function, 154–155
weakly stationary stochastic 

processing, 166–167
Random interleaving, A33–A34
Random processes, mixing with 

sinusoidal, 167–169
Random variables

Bernoulli, 101–105
cosine transformation, 109–112
probability theory, 97–98

Random variables, Gaussian
jointly Gaussian, 116
linear function of, 114
sum of independent, 114

Rate distortion theory
Gaussian sources, 255–256
introduction, 253–255

Rayleigh distribution, 192–193
Rayleigh processes, 524
RC (raised cosine) pulse, FIR 

modeling, 456–458
RC (raised cosine) spectrum

band-limited channels, 454–458
compared to SRRC spectrum, 461

Redundancy reduction, prediction-
error filtering

discrete time structure for 
predictions, 296–299

introduction, 294–295
linear adaptive prediction, 

300–301
theoretical considerations, 

295–296
Relative entropy, 238–239
Repetition code, 235–236
Rician distribution, 194–195
Rician-Jakes doppler spectrum 

model, 524–525
S
Sampling theory

aliasing, 272–273
frequency-domain description, 

268–271
introduction, 268
sampling theorem, 271
sampling voice signals, 273

Scalar quantizers, optimality, 
282–285

Schwarz inequality, 328–329
Second-order statistical averages

cosine transformation of a random 
variable, 109–112

exponential distribution, 110–111
introduction, 108–109

Selection combining, 528–532
Series expansions, table of, A56
Set theory, 88–90
Shot noise, 180
Signal design for zero ISI, band-

limited channels, 450
Simulating communication systems, 

58
Sinc function, 30–33
Sine wave, plus narrowband noise, 

193–195
Single sideband (SSB) modulation, 

64–66
Sinusoidal processes, mixing with 

random, 167–169
Sinusoidal wave

correlation with white noise, 
182–183

with random phase, 165–166
Sinusoidal wave with random phase

autocorrelation function, 152
weakly stationary stochastic 

processing, 165–166
Source-coding theorem, 214–215
Space diversity-on-receive systems, 

fading channels
equal gain combining, 538
introduction, 528
maximum-ratio combining, 

533–537
outage probability for maximal-

ratio combiner, 537
outage probability of selection 

combiner, 532
selection combining, 528–532

Space diversity-on-transmit receive 
systems, fading channels

Alamouti code, 540–541
full-rate complex code, 541
introduction, 538–539
linearity, 542–546
maximum likelihood decoding, 

545–546
QPSK (quadriphase-shift keying), 

539

receiver considerations, Alamouti 
code, 542–545

unitarity (complex orthogonality), 
541

Sphere packing, 243–244
Split phase line codes, 311
SSB (single sideband) modulation, 

64–66
Statistical independence, expectation, 

108
Stochastic processing

introduction, 145
mathematical definition, 145–147
strictly stationary, 147–149. See 

also Weakly stationary 
stochastic processing.

Strictly stationary stochastic 
processing, 147–149. See also 
Weakly stationary stochastic 
processing.

Sum of independent Gaussian 
random variables, 114

Sum of two processes, weakly 
stationary stochastic processing, 
173

Symmetry property
autocorrelation function, 151
weakly stationary stochastic 

processing, 164
Synchronization of AWGN channels

algorithmic approach, 419
introduction, 418–419

Synchronization of AWGN channels, 
recursive maximum likelihood 
estimation

algorithmic synchronization, 
423–424

convergence considerations, 
430–431

introduction, 419–420
likelihood functions, 420–423
recursive estimation of group 

delay, 424–430
T
Tables. See Mathematical tables.
TDL (tapped-delay-line) filter. See 

FIR (finite-duration impulse 
response) modeling.

(10, 3, 5) LDPC codes, 669–671
Thermal noise, 180
Time functions, Fourier transform, 24
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relation to frequency-domain, 

25–28
Trellis-coded modulation

asymptotic coding gain, 678–681
introduction, 675–676
three-level partitioning, QAM 

constellation, 677–681
two-level partitioning, 8-PSK 

constellation, 676–677
Ungerboeck 8-PSK code, 678

Trigonometric identities, table of, 
A55

Turbo coding, error-control coding
extrinsic information, 649–650
introduction, 645–646
mathematical feedback analysis, 

651–653
performance, 648–649
serial concatenated codes, 

681–687
turbo decoder, 650–651
two-state encoder, 646–648
UMTS turbo decoder, 653–657
UMTS with binary PSK 

modulation, 653–657
2B1Q code, 331–332
U
UMTS (Universal Mobile 

Telecommunications Systems), 
651–657

Ungerboeck 8-PSK code, 678
Uniform distribution, 100–101
Unipolar NRZ signaling, 311
Unipolar RZ signaling, 311
Unit Gaussian pulse, 21–22
Unit prefixes, table of, A58
Unitarity (complex orthogonality), 

541
V
Variance, Gaussian distribution, 114
VSB (vestigial sideband) modulation, 

61–64
W
Walsh-Hadamard sequences, 

561–562
Water-filling solution, 484–487, 

A27–A28
Weakly stationary stochastic 

processing. See also Strictly 
stationary stochastic processing.

autocovariance function, 149–157
ergodic processes, 157–158
introduction, 147–149
mean functions, 149–157
Poisson process, 174–176
transmission through a linear 

time-invariant filter, 158–160
Weakly stationary stochastic 

processing, autocorrelation 
function

bound on the autocorrelation 
function property, 151

cross-correlation functions, 
155–157

mean-square value property, 151
normalization property, 152
overview, 149–157
physical significance of, 152–155
properties of, 151–152
quadrature-modulated processes, 

156–157
random binary wave, 154–155
sinusoidal wave with random 

phase, 152
symmetry property, 151

Weakly stationary stochastic 
processing, Gaussian process, 
176–179

independence, 179
introduction, 176–177
linear filtering, 177–178
multivariate distribution, 178
stationarity, 179

Weakly stationary stochastic 
processing, power spectral 
density

introduction, 160–161
physical significance of, 162
Wiener-Khintchine relations, 

162–163
Weakly stationary stochastic 

processing, power spectral 
density properties

cross-spectral densities, 172–174
filtering two jointly weakly 

stationary processes, 174
introduction, 160–161, 170–172
mean-square value of stationary 

process, 164
mixing random processes with 

sinusoidal, 167–169
nonnegativeness, 164
normalization, 165

random binary wave, 166–167
sinusoidal wave with random 

phase, 165–166
sum of two processes, 173
symmetry, 164
Wiener-Khintchine theorem, 

169–170
zero correlation among frequency 

components, 162–163
zero-frequency value, 164

White noise
correlation with sinusoidal wave, 

182–183
ideal band-pass filtered, 189–190
ideal low-pass filtered, 181–182
introduction, 180–181

Wiener-Khintchine theorem, 
162–163, 169–170

Wireless communication
history of, 2
sinc function, 30–33

Z
Zero correlation among frequency 

components, 162–163
Zero ISI, signal design for, 450
Zero- frequency value property, 164
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