TP n°2: Analyse des filtres numériques par la TZ (sous Python)

Rappel : Soit H(z) la transformée en z d'un filtre numérique donné dont la décomposition sous forme fraction rationnelle est donnée par :

$$H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_N z^{-N}}{1 + a_1 z^{-1} + \dots + a_M z^{-M}}$$

Grâce à la seule connaissance du vecteur b et du vecteur a, on peut analyser tout filtre et :

- Déterminer les pôles et les zéros du filtre (et étudier sa stabilité)
- Déterminer la réponde impulsionnelle ou indicielle
- Déterminer la réponse fréquentielle et le retard de groupe (dérivée de la phase), etc.

Quelques fonctions utiles

s =scipy.signal.lfilter(b, a, e): filtre numériquement les données stockées dans le vecteur e avec le filtre décrit à la fois par le vecteur e (coefficients du numérateur de e) et le vecteur e (coefficients du dénominateur de e) pour une entrée e. Si e0 e1, e1 a seront divisés par e0.

z,p,k = scipy.signal.tf2zpk(*b*, *a*) retourne les zéros, les pôles et le gain du filtre dont les coefficients du numérateur (respectivement dénominateur) sont donnés par b (respectivement a)

f, H = scipy.signal.freqz(b, a, N, fe): retourne N valeurs du gain complexe (Réponse fréquentielle TFD) du filtre numérique échantillonné à la fréquence fe (Hertz), décrit par b et a. Ces valeurs sont stockées dans Het calculées pour N fréquences mises dans f. Les fréquences sont equi-espacées sur l'intervalle [0,fe/2].

f, Tau = $scipy.signal.group_delay((b,a),N, fe)$ retourne le retard de groupe (dérivée de la phase) du filtre numérique décrit par b et a. La réponse impulsionnelle est calculée en N fréquences mises dans f.

zplane(b,a): permet de tracer les pôles et les zéros dans le plan complexe. scatter (real (p), imag (p)) scatter (real (z), imag (z))

I. Analyse d'un filtre RII

Soit le filtre h(n) décrit par l'équation aux différences suivantes : y(n)=1.2 y(n-1)-0.516 y(n-2)+0.079 x(n)+2*0.079 x(n-1)+0.079 x(n-2)

- La première étape consiste à déterminer les vecteurs a et b. On calcule H(z) (coefficients en z^{-1}) et on trouve : Numérateur : $b = \begin{bmatrix} 0.079 & 2*0.079 & 0.079 \end{bmatrix}$ et Dénominateur : $a = \begin{bmatrix} 1 & -1.2 & 0.516 \end{bmatrix}$
- Puis, par programme on peut : déterminer et tracer la réponse impulsionnelle, la réponse fréquentielle (module et phase), le retard de groupe, les pôles et les zéros, étudier la stabilité, la nature du filtre, etc.

```
import numpy as np; import scipy.signal as sp; import matplotlib.pyplot as plt
from plot_zplane import zplane
b = np.array([0.079, 2*0.079, 0.079]); a = np.array([1, -1.2, 0.516]); z,p,k=zplane(b,a)
delta = np.zeros(32);delta[0] = 1; h=sp.lfilter(b,a,delta) ;
Echellon = np.ones(32); h_ind=sp.lfilter(b,a,Echellon)
plt.figure(2);plt.subplot(211);plt.stem(h,use_line_collection=True)
plt.title('Réponse impulsionnelle'); plt.grid(True);plt.ylabel('Amplitude')
plt.subplot(212);plt.stem(h_ind,use_line_collection=True)
plt.title('Réponse Indicielle'); plt.grid(True); plt.ylabel('Amplitude'); plt.show()
L = 256; fe=1; f, H= sp.freqz(b,a,L); f, Tau = sp.group_delay((b,a),f); f=f*0.5*fe/np.pi;
plt.figure(3);plt.subplot(311); plt.plot(f, np.abs(H))
plt.title('Module du Filtre'); plt.grid(True); plt.xlabel('Fréquence
(Hz)');plt.ylabel('Amplitude')
plt.subplot(312);plt.plot(f, np.angle(H))
plt.title('Phase du Filtre'); plt.grid(True); plt.xlabel('Fréquence (Hz)');
plt.ylabel('Amplitude')
plt.subplot(313);plt.plot(f, Tau)
plt.title('Retard de groupe du Filtre'); plt.grid(True); plt.xlabel('Fréquence (Hz)');
plt.ylabel('Amplitude'); plt.show()
```

- 1. Calculer les pôles et zéros de ce filtre (à préparer), correspondent-ils à ceux de la figure 1?
- 2. A partir du tracé des pôles et des zéros, esquisser l'allurede h(n) et H(f) en justifiant vos réponses (à préparer). Confirmer avec les figures 2 et 4.
- 3. Etudier la stabilité du filtre (à partir du tracé des pôles et de h(n)). Quel est le rôle de ce filtre?
- 4. Quelle valeur de *b* faut-il changer pour faire de ce filtre un passe-haut?
- 5. Modifier les valeurs de *a* pour avoir une réponse impulsionnelle divergente. Le filtre obtenu est-il stable?
- 6. Comparer les figures 5 et 6. Quel lien les relie?
- 7. Quel retard de groupe souhaite-t-on avoir dans la bande passante du filtre?
- 8. Rétablir les valeurs par défaut et rajouter les lignes suivantes

```
from tkinter import Tk
from tkinter.filedialog import askopenfilename
from scipy.io.wavfile import read as wavread
from scipy.io.wavfile import write as wavwrite
import winsound
root = Tk(); filename = askopenfilename(); root.destroy()
fe, x=wavread(filename);
Te=1.0/fe; N=len(x); t=np.arange(0.0, N*Te, Te)
y=sp.lfilter(b,a,x);
plt.figure(4); plt.subplot(211);plt.plot(t,x,label="Signal Original")
plt.subplot(212);plt.plot(t,y,label="Signal Filtré");plt.xlabel('Temps (s)')
plt.title('Signal Audio Filtré');
plt.show()
winsound.PlaySound(filename, winsound.SND_FILENAME)
zz=np.int8(y)
wavwrite("z.wav", fe, zz)
winsound.PlaySound("z.wav", winsound.SND_FILENAME)
```

- 9. Comparer les deux signaux en utilisant le zoom et commenter.
- 10. Prendre une petite portion du signal et observer sa TF avant et après filtrage en commentant.
- 11. Créer un signal composé de la somme de 2 sinusoïdes de fréquences 0.1 et 0.4 puis observer le signal avant et après filtrage.

II. Analyse d'un filtre RIF

On considère la récurrence suivante : y(n)=0.5 x(n)-0.5 x(n-1)

- 1. Déterminer h(n), les pôles et zéros et esquisser H(f). En déduire le rôle de H(f), puis calculer le retard de groupe (en préparation).
- 2. Vérifier ces réponses par matlab.
- 3. Que peut-on dire sur la stabilité, la nature et le retard de groupe de ce filtre?
- 4. Si l'on remplace l'un des coefficients 0.5 par 1, que devient le retard de groupe?
- 5. Quelle serait la sortie d'un tel filtre si l'entrée était constante?
- 6. Rétablir les valeurs par défauts et rajouter les lignes concernant le fichier audio puis commenter.
- 7. Prendre la même portion du signal et observer sa TF avant et après filtrage en commentant.
- 8. Créer un signal composé de la somme de 2 sinusoïdes de fréquences 0.1 et 0.4 puis observer le signal avant et après filtrage.
- 9. Refaire le même travail pour y(n)= $\frac{1}{5}\sum_{i=0}^{4}x(n-i)$

III. Autres manipulations

- 1. Tester une cellule passe-tout.
- 2. Tester d'autres filtres vus en TD et comparer avec les résultats théoriques obtenus.