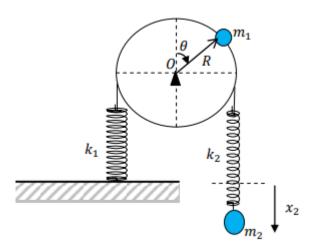
Durée : 1h

$\begin{array}{c} \textbf{Interrogation} \ N^o \ \mathbf{2} \\ \textbf{Sujet} \ \mathbf{B} \end{array}$

Exercice (Système libre à deux degrés de liberté)



Un disque de masse négligeable et de rayon R peut tourner dans le plan vertical autour d'un axe fixe, perpendiculaire à ce plan et passant par son centre O. Une masse ponctuelle m_1 est soudée au disque sur sa circonférence. Le disque est relié à un bâti fixe par l'intermédiaire d'un ressort de constante de raideur k_1 et à une masse ponctuelle m_2 par l'intermédiaire d'un ressort de constante k_2 comme indiqué sur la figure. On écarte légèrement le système de sa position d'équilibre. On désigne par $x_1(t) = R\theta(t)$ et $x_2(t)$ les déplacements respectifs de m_2 et de m_2 par rapport à leur position d'équilibre. A

l'équilibre $x_1 = x_2 = 0$ On note l'accélération de la pesanteur

- a)- Déterminer l'énergie potentielle U du système. En utilisant les conditions d'équilibre pour la masse m_1 et la masse m_2 , montrer que U est de la forme $U = \frac{1}{2}(k_1 + k_2 \frac{m_1 g}{R})x_1^2 + \frac{1}{2}k_2x_2^2 k_2x_1x_2$
- b)- Déterminer le Lagrangien L du système.
- c)- En déduire les équations du mouvement de m_1 et de m_2 On prendra $m_1 = 4m_2 = 4m$ et $k_1 = 4k_2 = 4k$ et les écrire dans le cas où $\frac{g}{R} = \frac{k}{m}$ et on posant $\omega_0^2 = \frac{k}{m}$
- d)- Calculer les pulsations propres du système en fonction de ω_0
- e)- Calculer les rapports d'amplitude dans chaque mode. En déduire les expressions des solutions générales $x_1(t)$ et $x_2(t)$
- f)- On applique une force $F = F_0 cos(\omega t)$ sur la masse m_2 dans le sens de sa vibration. Réécrire, dans ce cas, les équations de mouvement en fonction de ω_0 .
- g)- Trouver les expressions des solutions x_1etx_2 .

Solution - sujet B

a)- L'énergie potentielle: (1)

Un pendule inversé + une masse-ressort suspendu $U = -\frac{1}{2}m_1gR\theta^2 + \frac{1}{2}k_1(R\theta)^2 + \frac{1}{2}k_2(x_2 - R\theta)^2$ avec $x_1 = R\theta$ et après developpement on trouve

$$U = -\frac{1}{2}m_1x_1^2/R + \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2x^2 - k_2x_1x_2 = \frac{1}{2}(k_1 + k_2 - m_1g/R)x_1^2 + \frac{1}{2}k_2x^2 - k_2x_1x_2$$

b)- Le Lagrangien: (1)

Le Lagrangien devient après les substitutions: $m_1=4m_2=4m$ et $k_1=4k_2=4k$ et $\frac{g}{R}=\frac{k}{m}$

$$L = 4m\dot{x_1}^2 + \frac{1}{2}m\dot{x_2}^2 - \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2 + kx_1x_2$$

c)- Les équations de mouvement: (1)

Les pulsations propres se calculent pour un système libre non amorti. Les équations de mouvement s'écrivent dans ce cas:

Secrivent dans ce cas:
$$\begin{cases} 4m\ddot{x}_1 + kx_1 - kx_2 = 0 \\ m\ddot{x}_2 + kx_2 - kx_1 = 0 \end{cases} \qquad 4x_1 + \omega_0^2 x_1 - \omega_0^2 x_2 = 0$$

d)- Les pulsations propres: (1.5)

on proposons des solutions sinusoidales ndu type: $x_1 = A\cos(\omega t + \phi)$ $x_2 = B\cos(\omega t + \phi)$

On aboutit au système:

$$\begin{cases} (\omega_0^2 - 4\omega^2)A - \omega_0^2 B = 0\\ (\omega_0^2 - \omega^2)B - \omega_0^2 A = 0 \end{cases}$$

L'équation aux valeurs propres: $(\omega_0^2 - 4\omega^2)(\omega_0^2 - \omega^2) - \omega_0^4 = \omega^2(4\omega^2 - 5\omega_0^2) = 0$ qui a pour solutions $\omega_1 = 0 \text{ et } \omega_2 = \sqrt{\frac{5}{4}}\omega_0$

e)- Les rapports d'amplitude: (1)

La solution générale sécrit de la façon suivante:

$$x_1 = A_1 cos(\omega_1 t + \phi_1) + A_2 cos(\omega_2 t + \phi_2)$$
 $x_2 = B_1 cos(\omega_1 t + \phi_1) + B_2 cos(\omega_2 t + \phi_2)$

Pour le premier mode: $x_1 = A_1 cos(\omega_1 t + \phi)$ $x_2 = B_1 cos(\omega_1 t + \phi)$

Le système obtenu

$$\begin{cases} (\omega_0^2 - 4\omega_1^2)A_1 - \omega_0^2 B_1 = 0\\ (\omega_0^2 - \omega_1^2)B_1 - \omega_0^2 A_1 = 0 \end{cases}$$

de la première équation on obtient $\mu_1=B_1/A_1=\frac{(\omega_0^2-4\omega_1^2)}{\omega_0^2}=1-(\frac{\omega_1}{\omega_0})^2=1$ car $\omega_1=0$ de même pour le deuxième mode on obtient $\mu_2=B_2/A_2=1-(\frac{\omega_2}{\omega_0})^2=1-4\times 5/4=-4$

d'ou la solution générale devient :

$$x_1 = A_1 cos(\phi_1) + A_2 cos(\omega_2 t + \phi_2)$$
 $x_2 = A_1 cos(\phi_1) - 4A_2 cos(\omega_2 t + \phi_2)$

f)- Les équations de mouvement opur le régime forcé: (1)

La force s'exerce sur la masse m_2 qui effectue une translation donc:

$$\begin{cases} 4m\ddot{x_1} + kx_1 - kx_2 = 0 \\ m\ddot{x_2} + kx_2 - kx_1 = F \end{cases} \qquad 4x_1 + \omega_0^2 x_1 - \omega_0^2 x_2 = 0 \\ x_2 + \omega_0^2 x_2 - \omega_0^2 x_1 = F/m \end{cases}$$

g)- Les solutions x_1 et x_2 : (1)

la solution du régime permanent du système focé est de la forme : $x_1 = A\cos(\omega t + \phi_1) = Ae^{i(\omega t + \phi_1)}$ et $x_2 = B\cos(\omega t + \phi_2) = Be^{i(\omega t + \phi_2)}$ ou ω est la pulsation d'excitation de la force. si on remplace dans les équations de mouvement on trouve:

$$\begin{cases} (\omega_0^2 - 4\omega^2)x_1 - \omega_0^2 x_2 = 0\\ -\omega_0^2 x_1 + (\omega_0^2 - \omega^2)x_2 = F/n \end{cases}$$

 $\begin{cases} (\omega_0^2-4\omega^2)x_1-\omega_0^2x_2=0\\ -\omega_0^2x_1+(\omega_0^2-\omega^2)x_2=F/m \end{cases}$ On utilisant la méthode eds déterminant de Kramer: $x_1=\omega_0^2F/m\omega^2(4\omega^2-5\omega_0^2)$

$$x_2 = (\omega_0^2 - 4\omega^2)F/(m\omega^2(4\omega^2 - 5\omega_0^2))$$