Moments d'inertie

Description	Figure	Moment(s) d'inertie
Masse ponctuelle m à une distance r de l'axe de rotation.		$I = mr^2$
Deux masses ponctuelles, M et m , avec une masse réduite μ et séparées d'une distance, x .		$I = \frac{Mm}{M+m}x^2 = \mu x^2$
Barre de longueur <i>L</i> et de masse <i>m</i> (Axe de rotation à l'extrémité de la barre)		$I_{\rm end} = \frac{mL^2}{3}$
Barre de longueur L et de masse m		$I_{ m center} = rac{mL^2}{12}$
Cerceau de rayon r et de masse m		$I_z = mr^2$ $I_x = I_y = \frac{mr^2}{2}$
Disque de faible épaisseur, de rayon r et de masse m	x y	$I_z = \frac{mr^2}{2}$ $I_x = I_y = \frac{mr^2}{4}$
Cylindre creux avec des bases ouvertes, de rayon <i>r</i> et de masse <i>m</i>		$I = mr^2$
Cylindre solide de rayon r , hauteur h et de masse m		$I_z = \frac{mr^2}{2}$ $I_x = I_y = \frac{1}{12}m\left(3r^2 + h^2\right)$

Tétraèdre de côté s et de masse m		$I_{solid} = \frac{3ms^2}{7}$ $I_{hollow} = \frac{4ms^2}{7}$
Sphère (surfacique) de rayon <i>r</i> et de masse <i>m</i>	y y	$I = \frac{2mr^2}{3}$
Sphère de rayon <i>r</i> et de masse <i>m</i>	x y	$I = \frac{2mr^2}{5}$
Cône circulaire droit avec un rayon r , hauteur h et masse m		$I_z = \frac{3}{10}mr^2$ $I_x = I_y = \frac{3}{5}m\left(\frac{r^2}{4} + h^2\right)$
Plaque rectangulaire de hauteur <i>h</i> et de largeur <i>w</i> et de masse <i>m</i> (Axe de rotation à l'extrémité de la plaque)		$I_e = \frac{mh^2}{3} + \frac{mw^2}{12}$
Plaque rectangulaire de hauteur <i>h</i> et de largeur <i>w</i> et de masse <i>m</i>		$I_c = \frac{m(h^2 + w^2)}{12}$
Solide cubique de hauteur h , largeur w , et de profondeur d , et de masse m		$I_{h} = \frac{1}{12} m \left(w^{2} + d^{2} \right)$ $I_{w} = \frac{1}{12} m \left(h^{2} + d^{2} \right)$ $I_{d} = \frac{1}{12} m \left(h^{2} + w^{2} \right)$