EFFECT OF THE SINTERING TEMPERATURE ON THE DIELECTRIC CHARACTERISTICS OF CERAMICS Ca(Ti_{1-x}Li_x)O_{3-3x}F_{3x}

A. MEZROUA¹ and L. TAIBI-BENZIADA²

¹ U.E.R. de Chimie Appliquée, E.M.P., B.P. 17, Bordj-El-Bahri, Algiers, ALGERIA

² Laboratoire des Sciences des Matériaux, Institut de Chimie, U.S.T.H.B., B.P. 32 El-Alia, 16111 Bab-Ezzouar, Algiers, ALGERIA

Ceramics materials ABO₃ with perovskite structure are very attractive due to their applications in many devices as capacitors, piezoelectric actuators, pyroelectic infrared detectors, electro-optical modulators, FRAMs... Barium titanate (BaTiO₃) and strontium titanate (SrTiO₃) have been intensively investigated worldwide whereas the studies on calcium titanate (CaTiO₃) remain still limited. In a previous work we have investigated the system (1-x) CaTiO₃ – xCaF₂ – xLiF at 950°C and a new solid solution was obtained in the range $0 \le x < 0.40$. The subject of this paper is to examine the effect of the sintering temperature on the dielectric characteristics of ceramics with general composition Ca(Ti_{1-x}Li_x)O_{3-3x}F_{3x}. Indeed, the sintering temperature is one of the most important parameters which affect significantly the densification mechanism as well as the microstructure and the electrical properties of ceramics.

Mixtures of (1-x) mol. % CaTiO₃, x mol. % CaF₂ and x mol. % LiF are dry-ground, compacted to pellets and then air-fired at different temperatures. Dielectric measurements are performed from room temperature up to 500°C at two frequencies: 100Hz, 1 kHz. The curves giving the temperature dependence of the permittivity ($\hat{\epsilon}_r$) and the dielectic losses (tan δ) show several phenomena which could be ascribed to polymorphic transformations. Both $\hat{\epsilon}_r$ and tan δ are strongly dependent on the sintering temperature and the measurement frequency. The optimal sintering temperature is found to be of 950 °C for a holding time of 4hours.

VIII^{èmes} Journées Maghrébines des Sciences des Matériaux (JMSM'2002), BIZERTE, Tunisie, 20-25 Mars, 2002.