STRUCTURAL PROPERTIES AND PHASE TRANSITIONS IN Ca_{1-x}Sr_x(Ti_{1-x}Li_x)O_{3-3x}F_{3x} CERAMICS

H. CHERFOUH, Z. LADJEROUD, L. BENZIADA-TAIBI

Laboratoire de Métallurgie Structurale, Institut de Chimie, U.S.T.H.B., B.P. 32, El-Alia, Bab-Ezzouar 16111, Algiers, Algeria

Perovskite oxides ABO_3 have numerous properties and are attractive materials for several applications. Derived $BaTiO_3$ or $SrTiO_3$ compounds have stimulated many investigations. On the contrary, only few studies are known on derived $CaTiO_3$ materials. Calcium titanate undergoes two phase transitions:

Orthorhombic
$$\xleftarrow{1398K}$$
 Tetragonal $\xleftarrow{1523K}$ Cubic
Pbnm I4/mcm Pm3m

The aim of this work is to determine the effect of the fluorides SrF_2 and LiF on the properties of CaTiO₃. Various compositions (1-x) CaTiO₃ + x SrF_2 + x LiF are prepared and heated at 1223 K for 4 hours. X-ray diffraction (XRD) analysis are carried out to control the purity and to identify the different phases. A new solid solution with general formula $Ca_{1-x}Sr_x(Ti_1-Li_x)O_{3-3x}F_{3x}$ occurs in the range $0 \le x \le 0.3$. The XRD patterns show each sample to have an orthorhombic symmetry at room temperature.

The ceramic microstructure is systematically characterized by a scanning electron microscopy observation performed on fractured samples. The grain average sizes are about $1 - 1.5 \mu m$. DSC measurements are performed from 303 K up to 873 K. Three phase transitions are observed for each sample. As example, these thermal phenomena appear respectively at $T_1 = 552 \text{ K}$, $T_2 = 683 \text{ K}$ and $T_3 = 823 \text{ K}$ for ceramic $Ca_{0.95}Sr_{0.05}(Ti_{0.95}Li_{0.05})O_{2.85}F_{0.15}$.

These new oxifluorides may be promising materials in the fabrication of numerous microelectronic devices.

3^{ème} Colloque National sur l'Elaboration et la Caractérisation des Matériaux (ELACAM'2001), BISKRA, Algérie, 10-11 Avril 2001.