CRYSTALLOGRAPHIC STUDY AND PHASE TRANSITIONS OF Sr(Ti, Li)(O, F)₃ OXIFLUORIDES

H. KERMOUN, H. CHERFOUH, L. BENZIADA-TAIBI

Laboratoire de Métallurgie Structurale, Institut de Chimie, U.S.T.H.B., B.P. 32, El-Alia, Bab-Ezzouar 16111, Algiers, Algeria

ABO₃ perovskites have various properties and are attractive for electronic devices. Among these materials, BaTiO₃ is the best-known example which has been intensively studied worldwide while the studies on SrTiO₃ are limited. The solid solution Ba_{1-x}Sr_xTiO₃ is of particular interest for the development of small size integrated circuit memories. In a previous work, we have investigated the system SrTiO₃ – SrF₂ – LiF and several oxifluorides with general formula Sr(Ti_{1-x}Li_x)O_{3-3x}F_{3x} were obtained. The purpose of this study is to determine the lattice parameters and the phase transitions of these new compounds.

Various mixtures [(1-x) SrTiO₃ + x SrF₂ + x LiF] are prepared and then heated at 1223 K in air atmosphere for 2 hours. The purity and the symmetry of the obtained samples are checked by X-ray diffraction. A new solid solution occurs in the $0 \le x \le 0.40$ starting composition range. The powder patterns of pure SrTiO₃ and Sr(Ti_{1-x}Li_x)O_{3-3x}F_{3x} are very different one from others. The oxifluoride phases are isostructural and crystallize with a complex perovskite structure isomorphous to NaNbO₃ whereas the strontium titanate is cubic. The unit cell parameters are determined at room temperature and refined using least squares refinement.

Taking into account the lattice symmetry, it is not excluded that the Sr(Ti_{1-x}Li_x)O_{3-3x}F_{3x} compounds undergo several phase transitions like NaNbO₃. To make clear this hypothesis, Differential Scanning Calorimetry (DSC) analyses are performed on powder samples from 300 to 873 K. In any case, three phenomena, which could be attributed to structural changes, are observed on the DSC curves. These phase transitions appear respectively at 530 K \leq T₁ \leq 560 K, 640 K \leq T₂ \leq 680 K and 710 K \leq T₃ \leq 850 K. These new oxifluorides are more interesting than conventional dielectrics for many practical applications.

2^{ème} Colloque Franco - Libanais sur les Sciences des Matériaux (CSM2) BEYROUTH, Liban, 25 -26 Mai, 2000