DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF $0.95 \text{ BaTiO}_3 - 0.05 \text{ CaF}_2 - 0.05 \text{ LiF FERROELECTRIC CERAMICS}$

L. BENZIADA – TAÏBI

Laboratoire de Métallurgie Structurale, Institut de Chimie, U.S.T.H.B., ALGERIA.

In the race to produce better computer memories with higher and higher densities, ferroelectric materials offer unique advantages: small size, non-volatile memory, high speed, low power supply... Most of the area in modern memory chips is take up by capacitors. The purpose of this study is to prepare $BaTiO_3$ derived ceramics with high dielectric constants which could be used for making cheaper multilayer capacitors.

Fine BaTiO₃ powder is added with 5 mol. % (CaF₂ – LiF) and wet-ground. Cold-pressed pellets are then prepared from this mixture and air-fired at 800, 900, 1000 or 1100 °C for 2, 4 or 8 hours. The X-ray diffraction patterns of the ceramics show a tetragonal or a cubic symmetry. The dielectric properties are investigated from 100 to 450 K in the frequency range $10^2 - 4 \ 10^7$ Hz. Electromechanical resonance experiments are performed on polarized ceramics. The thermal evolution of ε'_r shows a diffuse phase transition and a decrease of T_C. Dielectric constants as high as 5000 are obtained. The dielectric dispersion is small for frequencies lower than 10^7 Hz and becomes more significant beyond 10^7 Hz. The value of T_C is independent of frequency. This behaviour is in agreement with non relaxor-ferroelectric.

^{6&}lt;sup>th</sup> Conference & Exhibition of the European Ceramic Society (ECerS 1999), Brighton Conference Centre, London, UK, June 20 – 24, 1999