LOW TEMPERATURE CRYSTAL GROWTH AND CERAMIC SINTERING OF BaTiO3 - TYPE OXYFLUORIDES

J. RAVEZ¹, J. P. CHAMINADE¹, T. SEKIYA¹, L. BENZIADA², C. HOUTTEMANE¹ and M. POUCHARD¹

¹ Laboratoire de Chimie du Solide du C.N.R.S., Université de Bordeaux I, 33405 TALENCE, France.

² Laboratoire de Cristallographie Appliquée, Institut de Chimie, U.S.T.H.B., BAB-EZZOUAR 16111, Alger, Algérie.

The interest of LiF as additive to BaTiO₃ has been pointed out for sintering dielectric oxyfluoride ceramics at low temperature ($t_{sint.}$ = 930°C). The understanding of the corresponding sintering process leads us to characterize ceramics and single crystals prepared at t < 1000°C. Ceramic grains and crystals have a composition Ba(Ti_{1-x} Li_x)O_{3-3x} F_{3x}.

The whole composition of the ceramics (grain and grain boundaries) is compared to that of crystals. This study performed on many samples allows to prove the existence of a grain boundary phase, with low melting temperature, facilitating the grain coalescence. The diffuse character of the phase transition and the grain composition gradient induce a large maximum of the ceramic permittivity at T_C , result of great interest for dielectric capacitors.

The Sixth International Meeting on Ferroelectricity (IMF6), KOBE, Japan, August 12 - 16, 1985