MICROSTRUCTURES AND DIELECTRIC PROPERTIES OF SrTiO₃ BASED CERAMICS SINTERED AT LOW TEMPERATURE

L. TAÏBI-BENZIADA *, H. KERMOUN

Laboratory of Materials Sciences, Faculty of Chemistry, U.S.T.H.B., P.O. Box 32 El-Alia, 16111 Bab-Ezzouar, Algiers, ALGERIA (Fax: 213 21 24 73 11)

The perovskites ABO₃ have various properties that make them attractive in the fabrication of a lot of electronic devices. Among these materials, BaTiO₃ is the best-known example which has been intensively studied worldwide. In comparison with barium titanate, the studies on SrTiO₃ are limited. The solid solution $(Ba_{1-x}Sr_x)TiO_3$ is of particular interest for the development of Ferroelectric Random Access Memories (FRAMs). The purpose of this work is the investigations of the microstructures and dielectric properties of SrTiO₃ based ceramics sintered at low temperature thanks to the fluorides MF₂ (M = Ca , Sr or Ba) and LiF.

Cold-pressed pellets are prepared from the mixture $SrTiO_3-1MF_2-4LiF$ (M = Ca , Sr or Ba) then air-fired at 950 °C for 2 hours. The samples thus obtained are investigated by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Dielectric measurements are performed from -150 °C up to 200 °C in the frequency range 20-10⁵ Hz.

Each ceramic is a perovskite single phase and the relative density reaches 95% for all the ceramics. The addition of 3 mol % of the eutectic composition $1MF_2$ -4LiF to SrTiO₃ lowers the sintering temperature of pure strontium titanate from 1400 °C to 950 °C and induces a strong modification in the SrTiO₃ cubic phase : superlattice reflections are detected with an orthorhombic symmetry. The dielectric permittivity shows no maximum in the temperature range investigated.

6th International Conference on Electric Charges in Non-Conductive Materials (CSC'6), TOURS, France, 3 - 7 July 2006.