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Chapter 1

The Homography: Computation and

Applications

1.1 Introduction

The concept of homography plays a fundamental role in computer vision and image

processing, providing a mathematical framework to model transformations between

two-dimensional planes. Homography enables various powerful applications, from

aligning images in panoramic stitching to correcting distortions and mapping per-

spectives. A homography is a 3×3 matrix that maps points from one plane to another,

preserving straight lines, and it has many applications in computer vision.

We begin by briefly giving some applications of homography in computer vision.

In the following, we explore the mathematical formulation of 2D transformations,

introducing homogeneous coordinates and affine transformations. These concepts

help to understand homography. Key properties of homographies are discussed,

along with techniques to calculate them efficiently. The chapter ends with a practical

example that illustrates the calculation and usefulness of homography in image

stitching. It allows creating a panoramic image from several images taken by a

rotating camera.
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1.2 Applications of Homography

1.2.1 Perspective Correction

Homographies can correct perspective distortions, making objects in an image appear

as if viewed from a frontal angle. For example, if we capture an image of a rectangular

object at an angle, such as the book shown on the left in Figure 1.1, applying a

homography can ”undo” the perspective effect and restore its rectangular appearance.

In this case, the transformation is applied only to the region bounded by the four red

corners.

Fig. 1.1 Locating the region bounded by four red points and warping it into a rectangular region.

1.2.2 Object Tracking

Homography is widely used in tracking objects across frames in a video. Since it

captures the relationship between planes, it can be used to estimate the motion of flat

surfaces or objects. For example, tracking a logo on a soccer field across multiple

frames relies on homographies to account for camera motion and field distortion [3].

As is well known, the fundamental matrix defines the relationship between a point

in one image and the corresponding epipolar line in another image, whereas the

homography establishes a one-to-one correspondence between points in two images.
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This distinction is used by the authors in [3] to minimize the error in player location

estimation when using multiple cameras. By employing homography, tracking is

performed more reliably and stably compared to methods based on the fundamental

matrix [3].

1.2.3 Augmented Reality (AR)

Homography help anchor virtual objects onto surfaces in real-world scenes by map-

ping a flat image onto a plane. This allows for convincing overlays in AR, where

virtual objects appear to interact realistically with real-world surfaces. Figure 1.2

shows two examples of mapping flat image onto a plane [2].

Fig. 1.2 Mapping flat image onto a plane [2].

1.2.4 Camera Calibration and Stereo Vision

In stereo vision systems, homography is used to align images from two cameras.

By calculating homographies, we can rectify stereo images, making it easier to

extract depth information and produce disparity maps, which are essential for 3D

reconstruction and depth perception (see figures 1.3, 1.4, 1.5).
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Fig. 1.3 The initial stereo images.

Fig. 1.4 The rectified stereo images. Note that for each point in the left image, its match belongs

to the horizontal epipolar line (indicated with blue line).

1.2.5 Image Rectification, Alignment and Stitching

When two images of a scene are taken from slightly different viewpoints, homography

can rectify the images, making them appear as if taken from the same viewpoint.

This is especially useful in stereo vision and for improving image analysis accuracy.
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Fig. 1.5 The computed depths using the rectified images based on the horizontal disparity of

matched points .

We assume that we take a set of images of the scene from the same point of

view by rotating the camera slightly (see Figure 1.6). Following this rotation of

the camera, the fields of view of the captured images overlap. The objective is

to create a panoramic image from this set of images. By finding the homography

matrix indicating the mapping from one plane to another, the points of one image

can be mapped to the corresponding points of another, allowing the creation of the

panoramic image (see figure 1.7).

1.3 Mathematical writing of 2𝑫 transformation of images.

Different image transformations can be represented using matrices. The transforma-

tion of a pixel 𝑝1 (𝑥1, 𝑦1) to a new pixel 𝑝2 (𝑥2, 𝑦2) can be expressed using 2 × 2

matrix:
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Fig. 1.6 Three successive images of my desk.

Fig. 1.7 The panoramic image made from the three images.


𝑥2

𝑦2

 =

𝑒11 𝑒12

𝑒21 𝑒22



𝑥1

𝑦1

 (1.1)

For example, scaling, rotation, horizontal skew, and vertical skew transformations

correspond to the matrices 𝑇𝑠 , 𝑇𝑟 , 𝑇ℎ𝑘 , 𝑇𝑣𝑘 , respectively, as defined by the following

equations. Here, 𝜃 is the rotation angle, 𝑚𝑥 , 𝑚𝑦 denotes the scale factors.

𝑇𝑠 =


𝑒11 0

0 𝑒22

 , 𝑇𝑟 =


𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

 , 𝑇ℎ𝑘 =


1 𝑚𝑥

0 1

 , 𝑇𝑣𝑘 =


1 0

𝑚𝑦 1

 (1.2)

Figure 1.8 shows examples of such transformations.
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Fig. 1.8 From left to right: Origin image, application of scale, rotation, horizontal and vertical

skew transformations.

These 2D transformations have some properties, we can cite:

- The origin is mapped to the origin,

- Lines are mapped to lines,

- Parallel lines remain parallel,

- The 2D transformation is closed under composition. This means that the composi-

tion of two transformations, the result is still a transformation of the same type (e.g.,

a 2D transformation). Example, if we perform a rotation followed by a translation,

this is identical to the case where we perform a 2D transformation such that the

corresponding matrix is equal to the multiplication of the two 2D transformation

matrices.

1.3.1 Homogeneous coordinates

It is not possible, using a 2𝑥2 matrix, to describe a 2D translation which is also a 2D

transformation. To remedy this limitation, representing the 2D transformation with

an additional dimension is a solution.

To do this, homogeneous coordinates are used where a 2D point 𝑝(𝑥, 𝑦) is

represented by a 3D point 𝑝(𝑥, 𝑦̃, 𝑧) where the third coordinate is fictitious such that:

𝑥 =
𝑥

𝑧
, 𝑦 =

𝑦̃

𝑧
(1.3)

.

In the geometric illustration shown in Figure 1.9, all points on the line (𝐿) are

equivalent to one another. Each point 𝑝(𝑥, 𝑦̃, 𝑧) on (𝐿), except the origin, can be
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mapped to 𝑝(𝑥, 𝑦) by dividing its coordinates of by a scaling factor 𝑧 (see figure 1.9).

This implies that the homogeneous points 𝑝(𝑥, 𝑦̃, 𝑧) and 𝑝′ (𝜆𝑥, 𝜆𝑦̃, 𝜆𝑧) correspond

to the same point in the Cartesian coordinate system 𝑂𝑥𝑦.

𝑝 =


𝑥

𝑦

1


=


𝑥𝑧

𝑦𝑧

𝑧


=


𝑥

𝑦̃

𝑧


= 𝑝 (1.4)

Fig. 1.9 Homogeneous coordinate of the point 𝑝.

Using homogeneous coordinates, we can easily write the different 2D trans-

formation, as example, equations 1.5 and 1.6 describe the scaling and translation

transformations.

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 :


𝑥

𝑦̃

𝑧


=


𝑠𝑥 0 0

0 𝑠𝑦 0

0 0 1



𝑥

𝑦

𝑧


(1.5)
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𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 :


𝑥

𝑦̃

𝑧


=


1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1



𝑥

𝑦

𝑧


(1.6)

Remark:

To combine multiple transformations (e.g., rotation, scaling, and translation) into a

single transformation, the individual transformations can be multiplied to obtain a

(3 × 3) transformation matrix.

1.3.2 Affine transformation

We define an affine space as a geometric structure consisting of points and vec-

tors, where vectors describe displacements between points, but no single point is

distinguished as the origin.

To model transformations and geometric relationships in computer vision we need

to use affine transformation which is a function that maps an object from an affine

space to an other and which preserve structures. Indeed, an affine transformation

preserves lines or distance ratios but changes the orientation, size or position of the

object [33].

The set of affine transformation is composed of various operations. Translations

which modify object position in the image. Homothetic Transformations composed

of the contraction and dilatation of an object, both scaling operations. The transvec-

tion (shear mapping) which modify position of an object. Rotation which allows to

rotate an object according to it’s axis. And a whole set of transformation produced

by combining all of the previous [33].

Any transformation affine is written as described by equation 1.7.


𝑥2

𝑦2

𝑧2


=


𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1



𝑥1

𝑦1

𝑧1


(1.7)
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Affine transformation have some properties, some ones are:

• Origin does not necessarily maps to the origin,

• Lines map to lines,

• Parallel lines remain parallel,

• Closed under composition.

1.4 Homography

1.4.1 Definition

Homography is the transformation matrix that maps one plane to another through a

point of projection, as described by equation 1.8. Figure 1.10 shows an example of

homography applied to an image.

𝑝2 =


𝑥2

𝑦2

𝑧2


=


ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33



𝑥1

𝑦1

𝑧1


= 𝐻𝑝1 (1.8)

Fig. 1.10 Applying an homography to the image in the left.
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1.4.2 Properties of Homography

Homography can only be defined up to scale. Suppose that 𝑝2 = 𝐻𝑝1 as illustrated

by figure 1.11. Then by elementary properties of matrix multiplication, we have:

(𝑘𝐻)𝑝1 = 𝐻 (𝑘 𝑝1) = 𝐻𝑝′1 = 𝑝2.

so when 𝑘 ≠ 0, 𝐻𝑝1 and (𝑘𝐻)𝑝1 represent the same point.

Fig. 1.11 Example of Homography producing infinite points using the same transformation matrix.

If we fix ℎ33 or we set to 1 the root of the sum of square of all parameters of 𝐻,

then 8 parameters are needed to estimate the matrix H.

Some properties are verified for Homography, we can cite:

- Origin does not necessarily maps to the origin,

- Lines map to lines,

- Parallel lines does not necessarily remain parallel,

- Closed under composition.
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1.4.3 Computing Homography

Hypothesis:

Images are acquired from the same view point or the scene points should lie on a

same plane, or the scene is really far away (scene is a plane at infinity).

In order to find the Homography that map one image to another, we can use

the pairs of matched SIFT descriptors (𝑝𝑠 (𝑥𝑠 , 𝑦𝑠), 𝑝𝑑 (𝑥𝑑 , 𝑦𝑑)) in both images (see

figure 1.12).

Each pair of matched points (𝑝𝑠 (𝑥𝑠 , 𝑦𝑠), 𝑝𝑑 (𝑥𝑑 , 𝑦𝑑)) allow to write the expression

given by equation 1.9 and give us two linear equations (1.10, 1.11).


𝑥𝑑

𝑦𝑑

1


≡


𝑥𝑑

𝑦̃𝑑

𝑧𝑑


=


ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33



𝑥𝑠

𝑦𝑠

1


(1.9)

Fig. 1.12 SIFT key points of two images (source and destination).

As we need to determine 8 parameters, 4 pairs of matched points are sufficient to

compute the homography.

𝑥𝑑 =
(ℎ11𝑥𝑠 + ℎ12𝑦𝑠 + ℎ13)
(ℎ31𝑥𝑠 + ℎ32𝑦𝑠 + ℎ33)

(1.10)

𝑦𝑑 =
(ℎ21𝑥𝑠 + ℎ22𝑦𝑠 + ℎ23)
(ℎ31𝑥𝑠 + ℎ32𝑦𝑠 + ℎ33)

(1.11)
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We can write these equations as follow:

ℎ31𝑥𝑠 .𝑥𝑑 + ℎ32𝑦𝑠 .𝑥𝑑 + ℎ33𝑥𝑑 − ℎ11𝑥𝑠 − ℎ12𝑦𝑠 − ℎ13 = 0 (1.12)

ℎ31𝑥𝑠 .𝑦𝑑 + ℎ32𝑦𝑠 .𝑦𝑑 + ℎ33𝑦𝑑 − ℎ21𝑥𝑠 − ℎ22𝑦𝑠 − ℎ23 = 0 (1.13)

Using 4 pairs of matched points, we obtain the following system where (𝑥𝑠𝑖 , 𝑦𝑠𝑖),

(𝑥𝑑𝑖 , 𝑦𝑑𝑖) are the coordinates of the pair of matched points:

©­­­­­­­­­­­­­­­­­­­«

𝑥𝑠1 𝑦𝑠1 1 0 0 0 −𝑥𝑠1𝑥𝑑1 −𝑥𝑑1𝑦𝑠1 −𝑥𝑑
0 0 0 𝑥𝑠1 𝑦𝑠1 1 −𝑥𝑠1𝑦𝑑1 −𝑦𝑠1𝑦𝑑1 −𝑦𝑑1

𝑥𝑠2 𝑦𝑠2 1 0 0 0 −𝑥𝑠2𝑥𝑑2 −𝑥𝑑2𝑦𝑠2 −𝑥𝑑
0 0 0 𝑥𝑠2 𝑦𝑠2 1 −𝑥𝑠2𝑦𝑑2 −𝑦𝑠2𝑦𝑑2 −𝑦𝑑1

𝑥𝑠3 𝑦𝑠3 1 0 0 0 −𝑥𝑠3𝑥𝑑3 −𝑥𝑑3𝑦𝑠3 −𝑥𝑑
0 0 0 𝑥𝑠3 𝑦𝑠3 1 −𝑥𝑠3𝑦𝑑3 −𝑦𝑠3𝑦𝑑3 −𝑦𝑑1

𝑥𝑠4 𝑦𝑠4 1 0 0 0 −𝑥𝑠4𝑥𝑑4 −𝑥𝑑4𝑦𝑠4 −𝑥𝑑
0 0 0 𝑥𝑠4 𝑦𝑠4 1 −𝑥𝑠4𝑦𝑑4 −𝑦𝑠4𝑦𝑑4 −𝑦𝑑1

ª®®®®®®®®®®®®®®®®®®®¬



ℎ11

ℎ12

ℎ13

ℎ21

ℎ22

ℎ23

ℎ31

ℎ32

ℎ33



=



0

0

0

0

0

0

0

0

0



(1.14)

The form of the equation 1.14 is 𝐴ℎ = 0 with the constraint | |ℎ| |2 = 1. The

solution may be obtained solving the problem 𝑀𝑖𝑛ℎ ( | |𝐴ℎ| |2) such that | |ℎ| |2 = 1.

The solution consists to choose the eigen vector h with smallest value of 𝜆 of 𝐴𝑇 𝐴

which minimize the loss function 𝐿 = | |ℎ𝑇 𝐴𝑇 𝐴ℎ| |2 [6].

1.4.4 Dealing with outliers

The used four pair of matched key points may present one or more wrong matches.

In order to robustly compute transformation in presence of these wrong matches, we

apply RanSAC algorithm.

RANSAC Algorithm [4]
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1- Randomly choose S samples. Typically, S is the minimum samples to fit a

model.

2- Fit the model to the randomly chosen samples.

3- Count the number M of data points (inliers) that fit the model within a measure

of error.

4- Repeat actions (1, 2, 3) N times.

5- Choose a model that has the largest number M of inliers.

In practice, if we assume that we have 𝑚 − 4 pairs of matched pairs of key points,

for each four pairs of matched key points, we compute the homography and for all

𝑚 − 4 pairs of matched points (𝑝𝑖 , 𝑝′𝑖) we compute the sum of errors |𝐻 (𝑝𝑖) − 𝑝′
𝑖
|.

At the end, we select the best basis of used four pairs of matched key points.

1.4.5 Examples of Homography computing

Example 1

Using homography, we can map a selected region using four points from one

image into a destination image whose width and length are known. At the left of

Figure 1.13, we select a region by clicking on four points (shown with red color).

The destination image is a rectangular region. The homography is computed such

that each red point will correspond to a corner of the destination region. The next

step is to perform a warping and the obtained result is shown at the right side of the

same figure.

Using OpenCV and Python, these two steps are coded as follow:

𝑡 𝑓 𝑜𝑟𝑚, 𝑚𝑎𝑠𝑘 = 𝑐𝑣2. 𝑓 𝑖𝑛𝑑𝐻𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦(𝑃𝑡𝑠𝑆𝑜𝑢𝑟𝑐𝑒, 𝑃𝑡𝑠𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

where mask is an array of same length as input points, indicates inliers (which points

were actually used in the best computation of the homography tform).

𝐼𝑚𝑎𝑔𝑒𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑣2.𝑤𝑎𝑟 𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒(𝐼𝑚𝑎𝑔𝑒𝑆𝑜𝑢𝑟𝑐𝑒, 𝑡 𝑓 𝑜𝑟𝑚, (𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡))
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warpPerspective: applies a perspective transformation to an image. ImageSource is

the source image (left in figure 1.13).

[b]

Fig. 1.13 Locating a first region and warping it into a rectangular region.

Fig. 1.14 Locating a second region and warping it into a rectangular region.

Example 2

The second example allows to map an image source into an area made up of four

points selected on the destination image by the user.
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Fig. 1.15 Locating a first region and warping it into a rectangular region.

1.4.6 Images stitching using Homography

The process of image stitching is performed as follow:

- First, two images are taken by rotating a camera at the same position (see figure

1.16.

- The next step is to locate key points in the two images. Figure 1.17 shows the SIFT

points located and matched.

- Compute the homography which allow to coincide the SIFT key points of the

second image with the matched ones in the first image.

- Apply the homography and warp the second image in order to obtain this ovelapping

of matched key points as shown by figure 1.18.

- Concatenate the warped image with the reference image (first one) as shown by

figure 1.19.

1.5 Conclusion

In this chapter, we presented the fundamentals of homography and its applications

in computer vision. The main result of this section is that, to map one plane to

another, we need at least four pairs of matched points. This allows us to calculate the



1.5 Conclusion 17

Fig. 1.16 Two images taking at USTHB University campus by rotating a camera.

homography matrix, enabling the transformation of the first plane to align with the

second.

In practical applications, matched points are often derived from features like

SIFT. To account for possible mismatches, we apply the RANSAC algorithm, which

selects the best homography based on the optimal set of four matched points.

We will see in the following chapters that homography is also useful for many

other problems, such as fundamental matrix computation and image rectification for

depth map computation. The next chapter is devoted to camera calibration and its

applications.
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Fig. 1.17 Locating and matching SIFT points.

Fig. 1.18 Warping the second image.
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Fig. 1.19 Result of images stitching
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