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Chapter 1

Camera Calibration and its Applications

1.1 Introduction

Camera calibration is a foundational step in computer vision and image processing
that ensures accurate mapping between the three-dimensional world and its two-
dimensional representation. By estimating the internal and external parameters of a
camera, calibration enables precise reconstruction of spatial relationships, measure-
ment of real-world dimensions, and correction of lens distortions. This process plays
a critical role in a variety of applications that require high accuracy and reliability
in geometric understanding and need some skills in geometry and algebra in order
to find accurately the mathematical model corresponding to the image formation.

There are many applications where the camera need to be calibrated in order to
get the 3D information. We can cite:

- 3D Reconstruction: Accurate calibration is crucial for reconstructing 3D models
of objects and scenes from multiple images, enabling applications in archaeology,
architecture, and virtual reality. Figure 1.1 illustrates a stereoscopic system where
two images, acquired by two calibrated cameras, allow for scene reconstruction.

- Robotics: Robots rely on calibrated cameras for navigation, object detection,
and interaction within their environments. Camera calibration ensures precise lo-

calization and manipulation. Figure 1.2 shows a robot equipped with a stereoscopic



2 1 Camera Calibration and its Applications

system that can navigate a scene with obstacles using a map computed from 3D
scene information provided by the embedded cameras.

- Augmented Reality (AR): By aligning virtual objects with the real world,
camera calibration improves the realism and accuracy of AR experiences.

- Autonomous Vehicles: In self-driving cars, calibration ensures that cameras
capture accurate spatial data for tasks like lane detection, object tracking, and depth
estimation.

- Photogrammetry: For mapping and surveying, calibrated cameras provide
precise measurements, enabling the creation of detailed maps and terrain models.

- Medical Imaging: In fields like endoscopy and surgery, calibration ensures
accurate spatial measurements and alignment with preoperative data.

Starting from two or more images of 3D scene acquired scene by a camera, we
can recover the three dimensional structure only if the internal and external camera
parameters are known. The internal parameters are:

- Focal length: f

- Position of impact of optical axis (Ox, Oy)

- Dimensions of the pixel (mm) ex, ey.

and external parameters are :

- The position and Orientation of the camera coordinate frame relatively to the world
coordinate frame (OXYZ).

In this chapter, we study the following elements:

- The linear camera model for image formation,
- The camera calibration, extracting intrinsic and extrinsic matrices,
- The simple stereo,

- The depth computation.
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Fig. 1.2 A Pioneer 3DX, embedded with a stereoscopic system.

1.2 Linear camera model for image formation

1.2.1 Integrating Internal Parameters into the Image Formation Model

It is easy to choose a world coordinate frame, denoted as (W)fwfwzw), attached to
an object in the scene. This allows for determining the coordinates of any 3D point
of the object with respect to that coordinate system. Figure 1.3 shows an example of
a selected point Py, with coordinates (0, 2, 3).

We assume that the camera coordinate frame (C XCYCZC) is fixed such that the

plane defined by the two axes (CX,, CY,.) is parallel to the image plane, and (CZ,)
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P(X;Yy)

Image plane

Fig. 1.3 Forward imaging model: 3D to 2D. The three-dimensional point P (xy, Yy, Zw) iS pro-

jected through the projection center C onto the two-dimensional point p; (x;, y;).

coincide with optical axis (see Figure 1.4). If the coordinates of the point P, =
P(xc, ye, z¢) With respect to camera coordinate frame (CX.Y,.Z.), are known (see
Figure 1.4), then the coordinates of its projection p;(x;,y;) onto the image plane
may be computed using geometric properties.

First, we give the expression of points p;, Pc, Pw using the homogeneous coor-

dinates.
X Xe Xw
ﬁi: _)Ti 9ﬁC: y~(; ’ﬁw: y:u (11)
Zi Ze Zw

If we apply Thales’s Theorem on triangles of figure 1.4, we obtain:

Xi _Xe Yi _JYe

—=—, (1.2)
f Zc f Zc
Therefore, we obtain:
X=Xy = fx 2 (1.3)
Zc Zc

If we assume that ey, ey, are the pixel densities (pixels/mm) in £ and J directions
(see Figure 1.5), the coordinates of the pixel are (x;, y;) where:

Xz el X fx L (1.4)

c
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Fig. 1.4 Geometric modeling of image formation.

yi=ey Xfxz—c (1.5)
C

Let (O, Oy) be the coordinates of the principle point O with respect to the top

left corner of image plane (see figure 1.5). We can the write:

xizexxfx)&+0x (1.6)
Zc
Ye

yl_eyxfxz—+0y (1.7)

Image
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4

Fig. 1.5 Integrating the impact point coordinates into the x;, y; mathematical expression.

Let fx = ex X f, fy = ey X f be the focal lengths in pixels in £ and J directions.

We can then write the non linear equations for perspective projection:

xizfxx;c—%ox,yi:fyxz—woy (1.8)

c
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The intrinsic parameters of the camera are: fx, fy, Oy, Oy.
The Homogeneous coordinates of a 2D point p;(x;, y;) is a 3D point (X}, y;, Z;)

such that

Xi= Vi = (1.9)

From figure 1.6, each point belonging to (L) has the Homogeneous coordinates

of the 2D point p(x;, ;).

Xi ZiXi X;
p=\yi| = |Gyi| = |Vi| =P (1.10)
1 Zi Z

P{(Xi-¥i,Zi)

Vi~
Fig. 1.6 Homogeneous coordinates of the point p;.

Rewriting the equations of perspective projection using the homogeneous coor-

dinates of (x;, y;), we obtain:
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X
Xi Sxxe +2.0x fx 0050 ‘
Ye
PiE|yi| E fyyc+ZCOy =10 fy Oy 0 (L.11)
Z
1 Ze 00 10 1C

The matrix including internal parameters is called intrinsic matrix M;,, and is

given by:
fx 0 Oy
Mint = |0 fy, O, (1.12)
0 0 1

It is then possible to compute the coordinates (in pixels) of the image point p; if
the intrinsic matrix has been estimated a priori and the 3D coordinates (x¢, y¢, Z¢)
of the point Pc are known. However, the coordinates of the point P(x., ye, Z¢)
is unknown with respect to the camera coordinate frame (C XCYCZC), because the
position of the projection center C (Pinhole) is unknown with respect to the world
coordinate frame (W)fwfwzw) (see figure 1.4). Consequently, we need to write the
coordinate of Py (known with respect to world coordinate frame) with respect to

camera coordinate frame. We study in the next subsection, how we can do this task.

1.2.2 Integrating external parameters in image formation model

As seen previously, to get the the coordinate of Pc (whose coordinates are known
with respect to world coordinate frame) with respect to camera coordinate frame, we
need to estimate the following external parameters:

- The vector C_)W which indicates the position of C with respect to the world coordinate
frame (see figure 1.4).

- The orientation of the camera (with respect to the world coordinate frame) defined
by the rotation matrix R:

- ri1, 12,13 is the direction of X, in the world coordinate frame,
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- 121,12, 123 is the direction of y. in the world coordinate frame,

- 31,3, 133 is the direction of Z. in the world coordinate frame.

i oriz ri
R=\ray rpn ri (1.13)

31 32 133

Fig. 1.7 Geometric relationship between C, P and W.

From Figure 1.7, we can write the expression of P/, with coordinates x, y, z with

respect to the world coordinates frame using the following equation:

P, =RP.=R(P, - Cyp) = RPy—RCy = RPy +1 (1.14)

where: t = —RC,,

i ri2 ri3| (Xw Ix

’

Po=\ra rn raa| |yw| t |ty (1.15)
r31 r32 33| | Zw Iz

We can write this last equation as follow:
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X i ori2 ri3 x| | Xw

~ a1 Iy 13t

== P (1.16)
z r31 r3 133 Iz |Zw
1 0 0 0 1 1

This expression including the matrix of rotation and translation parameters, is

called the external matrix of calibration, we write the previous equation as follow:

P.=M.,P, (1.17)

Projection matrix Pr is then computed as follow:

pi = M P = MintMextPTw = PP~w (1.18)

Pr = MiniMex: (1.19)

We have now expressed the 2D coordinates of the image point p;(x;, y;) using
the projective matrix and the three coordinates of the corresponding 3D point P.
The values of x;, y; can only be estimated once the internal and external parameters
of the camera, which define the projection matrix, are determined. The method used

to perform this task is presented in the following section

1.3 Camera calibration

Camera calibration means the estimation of the projection matrix Pr. For this, we

need to operate as follow:

e Capture an image of an object with known geometry.
* Identify the correspondence between 3D scene points Py (x.,, yi,, z%,) and their
image points.

* For each pair of corresponding points (scene-image) we get two equations:
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Xw

Xi| [(Pru Priz Pri3z Priy

Yuw

Yi| = |Pra1 Prap Proz Prog

1 Pr3; Pr3p Priz Pry

We obtain then:

_ Priixy + Prioyy + Pri3zy + Prig

Zw

(1.20)

_ Praixy + Prooyy + Pro3zy + Prog

- )
Pr31xw +Pr32yw +Pr33zw +Pr34

;=
Pr31xw +Pl’32yw +Pr33zw +Pr34

(1.21)

We can write these equations for n pairs of points and obtain a system of equations

noted A.Pr = 0, as follow:

xhybZLl 100 00 —xpx) —xiy),
00 00xLylzl1—yxl —yyl
2y 210 0 00 —xox? —x2)2

0 0 00x2y2 221 —yx2 —yay?

xpywze 1 0.0 0 0 —=x,x; —x,y)

0 0 0 0xy"z% 1 —yuxih —yny?

—x12),

1
—ViZy
X272

2
—Y2Zy

_anZ)

—)’nZZ

Pr12
Pr13
Pria
Pr21
Pr22
Pr23
Prog
Pr31
Pr32

Pr33

Prn

Pray

O © O © © © © © © o o o

(1.22)

The projection matrix Pr is defined only up to a scale because Pr and k.Pr produce

the same homogeneous coordinates. Scaling Pr implies simultaneously the scaling

of the world and camera which not change the image.
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Xw

Prip Pria Priz Priy
y - -

Pryy Pryy Proz Proyg Y =Pr.py= k-Pr-pw (1.23)
Zw

Pr3; Pr3p Priz Pry

In order to determine the projection matrix P, we have two choices:
- Set the scale so that Pr34 = 1,
- Set the scale so that ||Pr||> = 1
We search the eigenvector p with smallest value A of the matrix AT A which

minimize the loss function L(p, 1) = ATA — Ap.

1.4 Simple Stereo System

A simple stereo is characterized by the planarity of the two image planes of the two
cameras (left and right) as shown by figures 1.8, 1.9.
In this case, we can compute the 3D coordinates (x, y, z) of the scene point if the

cameras are calibrated as follow:

For the left camera:

X=feX 400y = fyx 2 +0, (1.24)
Z Z

x—>b
X = fx = +0x,yr=fy><§+0y (1.25)

We assume that the parameters fx, f,, O, O, b are known, b is the distance between
the two centers of projection of the two cameras.

Using the expressions of x;, y; and x,, y,-, we can write the following expressions:

X =Xxfx +20x,2y1 = ¥ fy + 20, (1.26)

IXr =(x—b)fx+10x,ZYr=yfy+ZOy (127)
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Fig. 1.8 Example of simple stereo device: Fujifilm FinePix REAL 3D W3

o (X,y,Z)

I-iorizontal baseline b

Fig. 1.9 Geometric Modeling of a simple stereo

bfx
z= ik (1.28)
X] — Xy
Applying some transformations, we get:
-0 -0
x=p L TTx  pp MY (1.29)
X] — Xy X — Xy

We call the disparity: d = (x; — x,-). Note that the depth z is inversely proportional

to the disparity and the disparity d is proportional to the baseline b.
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1.4.1 Computing depth map from images of simple stereo

Figure 1.10 shows two images taken with a simple stereo and constitute a sample
from the Middlebury dataset [7]. From the equations of y; and y,, the images of
scene point lie on the same horizontal line.

For each point, we search in the same horizontal line the best match using template
matching technique. We can use as similarity measure: Minimum Sum of Absolute
Differences (SAD) , Minimum Sum of Squared Differences (SSD) or Maximum

Normalized Cross-Correlation (NCC).

Fig. 1.10 Two images of Middlebury dataset and the depth map (ground truth).

Figure 1.11 shows some results of depth computation using SSD measure, and a

window of size 21 for template matching,
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Fig. 1.11 Depth computation two images of Middlebury dataset. (Top) The left and right image,

(Bottom) The ground truth and the computed depth.

1.5 Method of Zhengyou Zhang for Camera Calibration [8]

Zhengyou Zhang in [8] proposed a flexible new technique for camera calibration
with the modeling of radial lens distortion. The basic principle of this method is
to orient the camera towards a planar pattern and acquire at least two images from
different orientations. Either the camera or the planar pattern can be freely moved.
There is no need to measure the motion of the camera. The proposed procedure
consists of a closed-form solution, followed by a nonlinear refinement based on the
maximum likelihood criterion [8].

This method is implemented in OpenCV. Figure 1.12 shows a sample of pattern
in our tests. Note that the distance between two corners is considered equal to 1 unit
and the z—coordinates is equal to zero of all points of the pattern. Consequently,
from the top to bottom, from left to right, the coordinates of corners are equal to:
(0,0,0),...(0,m - 1,0),

(1,0,0),....,(1,m — 1,0),
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(n-1,0,0),.....,(n—1,m—1,0).
where n is the number of corners located on the column, and m is the number of
corners located on the row.

The calibration matrix estimated for the used camera is:

2.193¢ + 03 0.00 3.94e + 02
Min: = 0.00 1.184e +03 1.27¢ +02 (1.30)
0.00 0.00 0.00

This method estimates also the translation and rotation vectors for each camera.

Fig. 1.12 Images of the pattern and for each image, corners are located as the link between black

and white squares. For this pattern, n = 6 and m = 9.



16 1 Camera Calibration and its Applications

1.6 Conclusion

Camera calibration for computer vision, provides the relationship between the three-
dimensional real world and its two-dimensional image representation.

In this chapter we presented in the first the practical applications of camera cali-
bration in depth estimation and 3D reconstruction. By leveraging calibrated cameras,
tasks such as obstacle navigation in robotics and augmented reality rendering become
achievable. In the next we explored the fundamental concepts of image formation
based on the integration of internal and external parameters. We detailed how to
calibrate a camera based on the internal and external matrices. We saw also that
the depth map may be obtained using a simple stereo where two cameras are used
such that the two image planes are in the same plane. At the end of this chapter,
we introduced Zhengyou Zhang’s method for camera calibration, which remains a
robust and efficient approach widely adopted in modern computer vision systems.
The next chapter, we study how can we obtain the 3D structure using uncalibrated

cameras.
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1.7 A Quiz Exercises

A Quiz
Select (one or many) correct answer for the following questions:

1- Camera calibration means :

* Calculate the intrinsic and extrinsic parameters of the camera
* Calculate the intrinsic parameters
* Find the transformation 2D j-; 3D

* Calculate the orientation of the camera with respect to the world coordinates.

2- In the camera calibration process :

* We need to know the 3D coordinates of scene points with respect to the camera
frame.

* We need to know the 3D coordinates of scene points with respect to the world
frame.

* The coordinates of image points are sufficient.

* We need to know in addition to the 3D coordinates of scene points with respect

to the camera frame, the coordinates of their projection on the image plane.

3- In the camera calibration process :

* We need to know the orientation and relative position of the camera coordinate
frame with respect to the world coordinate frame.

* We need to know the orientation and relative position of the world coordinate
frame with respect to the camera coordinate frame.

¢ We need to know only the orientation of the world coordinate frame with respect
to the camera coordinate frame.

e There is no need to know anything.
4- The internal parameters of the camera are:

* The pixel densities (pixels/mm): m, my,.

* The coordinates of the principle point (O, O,).
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* The focal length and pixel densities (pixels/mm): m, m,.
* The focal length and pixel densities (pixels/mm): my, m, and the coordinates of
the principle point (O, O,)

e- fx, fy and the coordinates of the principle point (O, O,).

5- In the writing of calibration camera equations, homogeneous coordinates are

used in order to:

¢ Get a linear system of equations.

* Be able to express linearly the orientation and relative position of the world
coordinate frame with respect to the camera coordinates frame.

* Be able to express linearly the orientation and relative position of the camera

coordinate frame with respect to the world coordinates frame.
6- What does mean the following equation:

¢ The scene point P.(x., Y¢,Zc) is written with respect to the world coordinate
frame.

e The scene point Py, (X, Yy, Zw) is written with respect to the camera coordinate
frame.

» This is a writing of the coordinate of P,, with respect to the camera coordinate
frame using the rotation (r;;) and translation (z, ¢y, ;).

It gives the position of the camera with respect to the world coordinate frame.
7- What does mean the following equation:

* The image point (u,v) is written with respect to the camera coordinate frame.

* The image point (u,v) is written using the intrinsic calibration matrix and the
coordinates of the scene point with respect to the camera coordinate frame.

* The image point (u,v) is written using the extrinsic calibration matrix and the
coordinates of the scene point with respect to the camera coordinate frame.

e It gives the image formation model.
8- The projection matrix P is calculated using:

¢ The addition of the intrinsic and extrinsic matrices.
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* The product of the intrinsic and extrinsic matrices,

* Only with the image points.
9- To calibrate a camera:

*  We need at least the 3D coordinates of 8 scene points and their images.
*  We need no more than the 3D coordinates of 4 scene points and their images.

*  We need at least the 3D coordinates of 6 scene points and their images.
10- Camera calibration needs:

* Known non planar 3D coordinates of scene points with a static camera.
¢ Planar 3D coordinates of scene points with dynamic camera.
e Known non planar 3D coordinates of scene points with a dynamic camera.

* Planar 3D coordinates of scene points with static camera.
11- A stereo system of vision is composed by:

* Two cameras such that the image planes are planar.
* Two cameras such that their image planes are not planar.

* Two cameras.
12- A simple stereo system is composed by:

e Two cameras such that the image planes are planar.
* Two cameras such that their image planes are not planar.

* A moving camera along the image plane.
13- In case of simple stereo system, for depth computation:

¢ We need to know the calibration matrix.
» The disparity is sufficient.

*  We need to know the stereo correspondence of image points.

Exercise 1
Capture a pair of images with a camera that has undergone a horizontal translation
by a known distance b. After calibrating the camera to obtain its intrinsic parame-

ters, calculate the 3D coordinates of points in the scene by identifying corresponding
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pairs using SIFT.

Exercise 2
We have pairs of images taken by a camera with axial translation movement. The
images are given by the middlebury dataset: https://vision.middlebury.edu/stereo/data/

Calculate the disparity map for a pairs of images using a matching algorithm.
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