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Chapter 1

Uncalibrated stereo cameras

1.1 Introduction

Uncalibrated stereo vision is valuable in computer vision because it enables 3D

scene reconstruction without requiring prior knowledge of the camera’s intrinsic or

extrinsic parameters. This flexibility makes it practical for real-world applications

where pre-calibrating cameras is difficult or infeasible. Uncalibrated stereo vision

offers several advantages, including:

• Saving time and effort and money in case where pre-calibration is impractical

or unnecessary, therefore there is no need to use equipment designed calibration

patterns for calibration.

• Suitable for dynamic environments where cameras are moved, and calibration

cannot be performed beforehand.

• Insuring scalability for systems with multiple cameras, uncalibrated setups avoid

the logistical challenges of calibrating every camera.

• Estimating projective or affine transformations without knowing the exact camera

parameters for Structure-from-Motion (SfM).

• Getting 3𝐷 reconstruction using uncalibrated cameras is valuable especially for

monitoring large areas with pan-tilt-zoom cameras by mobile robot or drones that

change position constantly.

1



2 1 Uncalibrated stereo cameras

In this chapter we study how can we estimate 3D structure of a static scene from

two different views without camera calibration. We study how to use the epipolar

geometry in order to perform the stereo matching of key points. This is done by

estimating the fundamental matrix and finding the correspondences and computing

the depth map.

1.2 Epipolar Geometry of an uncalibrated stereo

We studied in the previous chapter how to calibrate a camera and therefore we

can estimate the intrinsic parameters. We suppose than the position and orientation

(extrinsic parameters) of the camera with respect to an external frame coordinates

are unknown. Our aim is to reconstruct the 3D structure using two or more images

taken by a camera at different view points. To do this, we need to extract keypoints

from these images and to compute the stereo correspondences.

Figure 1.1 illustrates such case where two images taken by a camera at different

view points in indoor scene. In order to match key points located into the two images,

we need to constraint the search space of the matches from 2𝐷 to 1𝐷 (image plane

to line). To do this, we will use the epipolar constraint.

1.2.1 Epipolar Geometry: Definitions

The epipoles are defined as the image point of pinhole of one camera as viewed by

the other camera. In the figure 1.2, 𝑒𝑙 , image of 𝑂𝑟 and 𝑒𝑟 , image of 𝑂𝑙 , are the two

epipoles, they are unique for a given stereo pair.

The Epipolar plane is the plane associated to a scene point P: is formed by

projection centers 𝑂𝑙 and 𝑂𝑟 , epipoles 𝑒𝑙 and 𝑒𝑟 and scene point 𝑃. Every scene

point 𝑃 lies on a unique epipolar plane.
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Fig. 1.1 Two images acquired of indoor scene.

Fig. 1.2 The epipolar plane in green color.𝑂𝑙 , 𝑂𝑟 are the projection centers, 𝑒𝑙 , 𝑒𝑟 are the epipoles

and 𝑃𝑙 , 𝑃𝑟 are images of the point 𝑃.

1.2.2 Epipolar constraint

We note
−−−→
𝑂𝑙 𝑝𝑙 the vector with coordinates (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙) with respect to the left camera

coordinate frame. Let −→𝑛 be the vector normal to the epipolar plane (see figure 1.3).

We can write using the vector product :
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−→𝑛 =
−→
𝑡 × −−−→

𝑂𝑙 𝑝𝑙 (1.1)

where −→
𝑡 is the translation vector from 𝑂𝑙 to 𝑂𝑟 .

Applying the epipolar constraint we obtain:

−−−→
𝑂𝑙 𝑝𝑙 .

−→𝑛 =
−−−→
𝑂𝑙 𝑝𝑙 .(−→𝑡 × −−−→

𝑂𝑙 𝑝𝑙) (1.2)

As the angle between
−−−→
𝑂𝑙 𝑝𝑙 and (−→𝑛 ) is equal to Π/2, then the dot product

−−−→
𝑂𝑙 𝑝𝑙 .

−→𝑛

is equal to zero.

Fig. 1.3 The epipolar constraint.

We note (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧) the coordinates of the vector of −→𝑡 , the position of the right

camera in the left camera frame, Writing the expression (−→𝑡 ×−−−→
𝑂𝑙 𝑝𝑙) in matrix form,

we obtain:


𝑡𝑥

𝑡𝑦

𝑡𝑧


×


𝑥𝑙

𝑦𝑙

𝑧𝑙


=


𝑡𝑦𝑧𝑙 − 𝑡𝑧𝑦𝑙
𝑡𝑧𝑥𝑙 − 𝑡𝑥𝑧𝑙
𝑡𝑥𝑦𝑙 − 𝑡𝑦𝑥𝑙


(1.3)

we obtain then for
−−−→
𝑂𝑙 𝑝𝑙 .(−→𝑡 × −−−→

𝑂𝑙 𝑝𝑙):

[
𝑥𝑙 𝑦𝑙 𝑧𝑙

] 
𝑡𝑦𝑧𝑙 − 𝑡𝑧𝑦𝑙
𝑡𝑧𝑥𝑙 − 𝑡𝑥𝑧𝑙
𝑡𝑥𝑦𝑙 − 𝑡𝑦𝑥𝑙


= 0 (1.4)

We can write this equation as follow:
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[
𝑥𝑙 𝑦𝑙 𝑧𝑙

] 
0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 − 𝑡𝑥
−𝑡𝑦 𝑡𝑥 0



𝑥𝑙

𝑦𝑙

𝑧𝑙


= 0 (1.5)

[
𝑥𝑙 𝑦𝑙 𝑧𝑙

]
𝑇


𝑥𝑙

𝑦𝑙

𝑧𝑙


= 0 (1.6)

We note 𝑅3×3: the orientation of the left camera in the right camera’s frame.


𝑥𝑙

𝑦𝑙

𝑧𝑙


=


𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33



𝑥𝑟

𝑦𝑟

𝑧𝑟


+


𝑡𝑥

𝑡𝑦

𝑡𝑧


(1.7)

Combining these two last equations, we obtain:

[
𝑥𝑙 𝑦𝑙 𝑧𝑙

]
𝑇 (


𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33



𝑥𝑟

𝑦𝑟

𝑧𝑟


+


𝑡𝑥

𝑡𝑦

𝑡𝑧


) = 0 (1.8)

[
𝑥𝑙 𝑦𝑙 𝑧𝑙

]
𝑇


𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33



𝑥𝑟

𝑦𝑟

𝑧𝑟


+
[
𝑥𝑙 𝑦𝑙 𝑧𝑙

]
𝑇


𝑡𝑥

𝑡𝑦

𝑡𝑧


= 0 (1.9)

As: [
𝑥𝑙 𝑦𝑙 𝑧𝑙

]
𝑇


𝑡𝑥

𝑡𝑦

𝑡𝑧


= 0 (1.10)

then:

[
𝑥𝑙 𝑦𝑙 𝑧𝑙

]
𝑇𝑅


𝑥𝑟

𝑦𝑟

𝑧𝑟


= 0 (1.11)
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We define the essential matrix 𝐸 = 𝑇𝑅 [9], which relates the 3D coordinates of

the point 𝑃 with respect to the right and left coordinate frames. We can then express

the epipolar constraint, which describes the relationship between the left and right

image points using the essential matrix. This matrix encodes the relative rotation

and translation between the two cameras, up to a scale factor.

𝑝𝑙𝐸𝑝𝑟 (1.12)

where

𝐸 =


𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33


(1.13)

1.3 The Fundamental Matrix 𝑭

We study in this section how to compute the fundamental matrix 𝐹 which encapsu-

lates both intrinsic and extrinsic parameters. The fundamental matrix is then used in

uncalibrated stereo systems where intrinsic parameters are unknown, .

1.3.1 Decomposition of the Essential matrix 𝑬

It is possible to decompose 𝑅 and 𝑇 from 𝐸 using SVD Decomposition.

To find 𝐸 , we write:

𝑝𝑇𝑙 𝐸𝑝𝑟 = 0 (1.14)

where 𝑝𝑙 , 𝑝𝑟 are assumed to correspond to the same 3D point.

Using the equations of perspective projection of each camera, we can write:

𝑧𝑙


𝑢𝑙

𝑣𝑙

1


=


𝑧𝑙𝑢𝑙

𝑧𝑙𝑣𝑙

𝑧𝑙



𝑓 𝑙𝑥𝑥𝑙 + 𝑧𝑙𝑂𝑙

𝑥

𝑓 𝑙𝑦𝑦𝑙 + 𝑧𝑙𝑂𝑙
𝑦

𝑧𝑙


=


𝑓 𝑙𝑥 0 𝑂𝑙

𝑥

0 𝑓 𝑙𝑦 𝑂𝑙
𝑦

0 0 1



𝑥𝑙

𝑦𝑙

𝑧𝑙


(1.15)



1.3 The Fundamental Matrix 𝐹 7

The matrix 𝐾𝑙 of calibration of the left camera is assumed known:

𝐾𝑙 =


𝑓 𝑙𝑥 0 𝑂𝑙

𝑥

0 𝑓 𝑙𝑦 𝑂𝑙
𝑦

0 0 1


(1.16)

We can then write:

𝑧𝑙


𝑢𝑙

𝑣𝑙

1


= 𝐾𝑙 𝑝𝑙 (1.17)

If we multiply the two members of the equation (1.17) by the term 𝐾−1
𝑙

, we obtain:

𝐾−1
𝑙 𝑧𝑙


𝑢𝑙

𝑣𝑙

1


= 𝐾−1

𝑙 𝐾𝑙 𝑝𝑙 (1.18)

We obtain then:

𝑝𝑙 = 𝐾
−1
𝑙 𝑧𝑙


𝑢𝑙

𝑣𝑙

1


(1.19)

If we take the transpose of the two members we obtain:

𝑝𝑇𝑙 =

[
𝑢𝑙 𝑣𝑙 1

]
𝑧𝑙 (𝐾−1

𝑙 )𝑇 (1.20)

In the other side, we have for the right camera:

𝑧𝑟


𝑢𝑟

𝑣𝑟

1


=


𝑓 𝑟𝑥 0 𝑂𝑟

𝑥

0 𝑓 𝑟𝑦 𝑂𝑟
𝑦

0 0 1



𝑥𝑟

𝑦𝑟

𝑧𝑟


(1.21)

If we multiply the two members of the previous equations by 𝐾−1
𝑟 , where 𝐾𝑟 is the

matrix calibration of the right camera, we obtain:
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𝑝𝑟 = 𝐾−1
𝑟 𝑧𝑟


𝑢𝑟

𝑣𝑟

1


(1.22)

We replace 𝑝𝑟 and 𝑝𝑇
𝑙

in the equation𝑝𝑇
𝑙
𝐸𝑝𝑟 = 0 by their expressions we obtain:

[
𝑢𝑙 𝑣𝑙 1

]
𝑧𝑙 (𝐾−1

𝑙 )𝑇


𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33


𝐾−1
𝑟 𝑧𝑟


𝑢𝑟

𝑣𝑟

1


= 0 (1.23)

As 𝑧𝑙 , 𝑧𝑟 are non zero, we obtain:

𝑝𝑇𝑙 𝐹𝑝𝑟 = 0 (1.24)

where:

𝐹 = (𝐾−1
𝑙 )𝑇


𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33


𝐾−1
𝑟 (1.25)

The 𝐹 is called Fundamental matrix [10]. Once 𝐹 is computed, we can retrieve

the matrix 𝐸 as follow:

𝐹 = (𝐾−1
𝑙 )𝑇𝐸𝐾−1

𝑟 (1.26)

(𝐾𝑙)𝑇𝐹𝐾𝑟 = 𝐸 (1.27)

1.3.2 Estimation of the Fundamental Matrix

The first step is to find a set of corresponding features (at least 8) in left and right

images (using SIFT for example). Figure 1.4 shows some matched keypoints.

For each stereo correspondence (𝑖), write the epipolar constraint:

[
𝑢𝑖
𝑙
𝑣𝑖
𝑙

1
] 
𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33



𝑢𝑖𝑟

𝑣𝑖𝑟

1


= 0 (1.28)
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Fig. 1.4 The pairs of images and the matched key points in the two images.

We obtain for all stereo correspondences the linear system:
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𝑢1
𝑙
𝑢1
𝑟 𝑢

1
𝑙
𝑣1
𝑟 𝑢1

𝑙
𝑢1
𝑟 𝑣

1
𝑙
𝑣1
𝑟 𝑣

1
𝑙
𝑣1
𝑙
𝑢1
𝑟 𝑣1

𝑟 1

𝑢2
𝑙
𝑢2
𝑟 𝑢

2
𝑙
𝑣2
𝑟 𝑢2

𝑙
𝑢2
𝑟 𝑣

2
𝑙
𝑣2
𝑟 𝑣

2
𝑙
𝑣2
𝑙
𝑢2
𝑟 𝑣2

𝑟 1

−− −− −− −− −− −− −− −− −−

𝑢𝑖
𝑙
𝑢𝑖𝑟 𝑢𝑖

𝑙
𝑣𝑖𝑟 𝑢𝑖

𝑙
𝑢𝑖𝑟 𝑣

𝑖
𝑙
𝑣𝑖𝑟 𝑣

𝑖
𝑙
𝑣𝑖
𝑙
𝑢𝑖𝑟 𝑣𝑖𝑟 1

−− −− −− −− −− −− −− −− −−

𝑢𝑛
𝑙
𝑢𝑛𝑟 𝑢

𝑛
𝑙
𝑣𝑛𝑟 𝑢𝑛

𝑙
𝑢𝑛𝑟 𝑣

𝑛
𝑙
𝑣𝑛𝑟 𝑣

𝑛
𝑙
𝑣𝑛
𝑙
𝑢𝑛𝑟 𝑣𝑛𝑟 1

ª®®®®®®®®®®®®®¬
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𝑓11

𝑓12

𝑓13

− − −

𝑓31

𝑓32

𝑓33

ª®®®®®®®®®®®®®®®®¬

= 0 (1.29)

Then we have the expression 𝐴𝐹 = 0, where 𝐹 is the fundamental matrix, 𝐴 is the

matrix composed by elements related to the coordinates of matched image points.

Note that the fundamental matrix 𝐹 and 𝑘𝐹 describe the same epipolar geometry,

then 𝐹 is defined only up to scale. In order to find the eight parameters, we can set

| |𝐹 | |2 = 1.

This is the same problem like solving Projection matrix during camera calibration,

or Homography matrix for image stitching. Then, we compute the matrix 𝐹 which

verify:

min
𝐹

| |𝐴𝐹 | |2, 𝑤𝑖𝑡ℎ | |𝐹 | |2 = 1 (1.30)

The next step is the computation of the Essential matrix 𝐸 , where: 𝐸 = 𝐾𝑇
𝑙
𝐹𝐾𝑟 ,

then we extract the rotation matrix 𝑅 and translation vector 𝑡𝑥 from 𝐸 using SVD

Decomposition (𝐸 = 𝑅𝑇).

1.4 Finding Stereo Correspondences Using Epipolar Constraint

Epipolar line is the intersection of image plane and epipolar plane. At each scene

point, there are two corresponding epipolar line, one each on the two image planes

(see figure 1.5). Given one point on the left image, the corresponding point on the

right image must lie on the epipolar line. The search space of correspondences is

then reduced to one dimensional space.

How to compute the epipolar line?
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Fig. 1.5 The epipolar line defined as the intersection of the plane (𝑂𝑙 𝑝𝑙𝑂𝑟 ) and the right image

plane.

Given the Fundamental matrix 𝐹 and point 𝑝𝑙 (𝑢𝑙 , 𝑣𝑙) on left image. The matched

point 𝑝𝑟 (𝑢𝑟 , 𝑣𝑟 ) belong to the epipolar line located in the right image.

We give in follow, how to express this line using the fundamental matrix and the

2D coordinates of the left point.

If we expand the equation:

[
𝑢𝑙 𝑣𝑙 1

] 
𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33



𝑢𝑟

𝑣𝑟

1


= 0 (1.31)

we obtain then:

[
𝑢𝑙 𝑓11 + 𝑣𝑙 𝑓21 + 𝑓31 𝑢𝑙 𝑓12 + 𝑣𝑙 𝑓22 + 𝑓32 𝑢𝑙 𝑓13 + 𝑣𝑙 𝑓23 + 𝑓33

] 
𝑢𝑟

𝑣𝑟

1


= 0 (1.32)
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𝑢𝑟 (𝑢𝑙 𝑓11 + 𝑣𝑙 𝑓21 + 𝑓31) + 𝑣𝑟 (𝑢𝑙 𝑓12 + 𝑣𝑙 𝑓22 + 𝑓32) + (𝑢𝑙 𝑓13 + 𝑣𝑙 𝑓23 + 𝑓33) = 0 (1.33)

This equation may be written as follow:

𝑣𝑟 = 𝑎𝑢𝑟 + 𝑏 where the parameters 𝑎, 𝑏 are function of the matrix 𝐹 and 𝑢𝑙 , 𝑣𝑙.

1.5 Computing Depth with Unknown External Parameters

We assume that the two cameras are calibrated and then the two internal matrices

are available. We can write the expressions of the two dimensional coordinates of

image points on the two image planes as follow:


𝑢𝑙

𝑣𝑙

1


=


𝑓 𝑙𝑥 0 𝑂𝑙

𝑥 0

0 𝑓 𝑙𝑦 𝑂𝑙
𝑦 0

0 0 1 0





𝑥𝑙

𝑦𝑙

𝑧𝑙

1


(1.34)


𝑢𝑟

𝑣𝑟

1


=


𝑓 𝑟𝑥 0 𝑂𝑟

𝑥 0

0 𝑓 𝑟𝑦 𝑂𝑟
𝑦 0

0 0 1 0





𝑥𝑟

𝑦𝑟

𝑧𝑟

1


(1.35)

where (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙), (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) are the coordinates of the point 𝑃 with respect to

the left and right 3D camera coordinates.


𝑥𝑙

𝑦𝑙

𝑧𝑙


=



𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

0 0 0 1





𝑥𝑟

𝑦𝑟

𝑧𝑟

1


(1.36)

If we replace (𝑥𝑟 , 𝑦𝑙 , 𝑧𝑙 , 1) in the equation giving the (𝑢𝑙 , 𝑣𝑙), we obtain the:
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
𝑢𝑙

𝑣𝑙

1


=


𝑓 𝑙𝑥 0 𝑂𝑙

𝑥 0

0 𝑓 𝑙𝑦 𝑂𝑙
𝑦 0

0 0 1 0





𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

0 0 0 1





𝑥𝑟

𝑦𝑟

𝑧𝑟

1


(1.37)

For the right camera, we have:


𝑢𝑟

𝑣𝑟

1


=


𝑓 𝑟𝑥 0 𝑂𝑟

𝑥 0

0 𝑓 𝑟𝑦 𝑂𝑟
𝑦 0

0 0 1 0





𝑥𝑟

𝑦𝑟

𝑧𝑟

1


(1.38)

We will write these two last equation as follow:


𝑢𝑙

𝑣𝑙

1


=


𝑝11 𝑝12 𝑝13 𝑝14

𝑝21 𝑝22 𝑝23 𝑝24

𝑝31 𝑝32 𝑝33 𝑝34





𝑥𝑙

𝑦𝑙

𝑧𝑙

1


(1.39)


𝑢𝑟

𝑣𝑟

1


=


𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34





𝑥𝑟

𝑦𝑟

𝑧𝑟

1


(1.40)

Applying the cross product for the left camera we obtain:


𝑢𝑙

𝑣𝑙

1


×


𝑢𝑙

𝑣𝑙

1


= 0 (1.41)


𝑢𝑙

𝑣𝑙

1


×



𝑃𝑙1𝑝𝑟

𝑝𝑙2𝑝𝑟

𝑝𝑙3𝑝𝑟

𝑝𝑙4𝑝𝑟


= 0 (1.42)
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where 𝑃𝑙𝑖 is the 𝑖𝑡ℎ line of the matrix 𝑃 and 𝑝𝑟 = (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 1)𝑇 . This is equivalent

to the following expression:


𝑣𝑙 𝑝𝑙3𝑝𝑟 − 𝑝𝑙2𝑝𝑟
𝑢𝑙 𝑝𝑙3𝑝𝑟 − 𝑝𝑙1𝑝𝑟
𝑢𝑙 𝑝𝑙2𝑝𝑟 − 𝑝𝑙2𝑝𝑟


= 0 (1.43)


𝑣𝑙 𝑝𝑙3 − 𝑝𝑙2
𝑢𝑙 𝑝𝑙3 − 𝑝𝑙1
𝑢𝑙 𝑝𝑙2 − 𝑝𝑙2


𝑝𝑟 = 0 (1.44)

Applying the cross product for the right camera we obtain the similar results:


𝑣𝑙𝑚𝑙3 − 𝑚𝑙2

𝑢𝑙𝑚𝑙3 − 𝑚𝑙1

𝑢𝑙𝑚𝑙2 − 𝑚𝑙2


𝑝𝑟 = 0 (1.45)

If we rearrange the terms of the two last equations, we obtain:



𝑢𝑟𝑚31 − 𝑚11 𝑢𝑟𝑚32 − 𝑚12 𝑢𝑟𝑚33 − 𝑚13

𝑣𝑟𝑚31 − 𝑚21 𝑣𝑟𝑚32 − 𝑚22 𝑣𝑟𝑚33 − 𝑚23

𝑢𝑙 𝑝31 − 𝑝11 𝑢𝑙 𝑝32 − 𝑝12 𝑢𝑙 𝑝33 − 𝑝13

𝑣𝑟 𝑝31 − 𝑝21 𝑣𝑟 𝑝32 − 𝑝22 𝑣𝑟 𝑝33 − 𝑝23




𝑥𝑟

𝑦𝑟

𝑧𝑟


=



𝑚34 − 𝑚14

𝑚34 − 𝑚24

𝑝34 − 𝑝14

𝑝34 − 𝑝24


(1.46)

We have: 𝐴𝑝 = 𝑏 where 𝐴, 𝑏 are known. The solution to this problem give the

3D unknown coordinates (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ).
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1.6 Examples

1.6.1 Example 1

Applying the following pseudo code onto the images of figure 1.6, we obtain the

results shown in figure 1.7.

Fig. 1.6 The stereo pair of images.

• 1. Read left and right images,

• 2. Find the keypoints and descriptors with SIFT,

• 3. Match the SIFT descriptors using the KNN technique,

• 4. Select only inlier points,

• 5. Find epipolar lines corresponding to points in right image (second image) and

drawing its lines on left image,

• 6. Find epipolar lines corresponding to points in left image (first image) and

drawing its lines on right image.
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Fig. 1.7 The located epipolar lines in both images.

1.6.2 Example 2: Computation of the Fundamental Matrix

We apply for a second stereo images pair (see figure 1.8) the same steps described

in the pseudo algorithm of the example 1. In addition, the good matched serve to

compute the fundamental matrix. Once this matrix is computed, we select from the

pair of matched points those giving the best matrix. The epipolar lines are draw and

illustrated by figure 1.9.

1.6.3 Example 3: Depth Map Computation after Images Rectification

using the Fundamental Matrix

In order to compute a depth map of the scene corresponding to the images stereo of

Figure 1.8, we extract first SIFT features as illustrated by figure 1.10 (for one image).

The features are used to compute the fundamental matrix, then the two images are
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Fig. 1.8 The second stereo images.

Fig. 1.9 The located epipolar lines in both images.
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rectified such that their epipolar lines became horizontal as shown by figure 1.11. At

the end, we get a simple stereo system and the depth map is computed as explained

in the chapter 3 and shown by figure 1.12.

Fig. 1.10 The set of SIFT features located on one image.

1.7 Conclusion

In this chapter we provided a comprehensive framework for understanding how

uncalibrated stereo systems can achieve effective 3D scene reconstruction through

epipolar geometry.

We explored the fundamental concepts that enable 3D reconstruction from an

uncalibrated stereo system, focusing on the role of epipolar geometry.
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Fig. 1.11 The located epipolar lines in both images after images rectification.

Fig. 1.12 The computed depth map.
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The fundamental matrix was introduced as a key tool in encoding this geometric

relationship, allowing us to map points in one image to corresponding epipolar lines

in the other, regardless of the cameras’ intrinsic parameters.

Using the epipolar constraint, we then addressed the challenge of finding stereo

correspondences, highlighting how the constraint simplifies the search for matching

points by reducing it from a 2D to a 1D problem.

We discussed also methods for computing depth information in scenarios where

external parameters are unknown.
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