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Chapter 1

Structure from Motion

1.1 Introduction

Reconstructing 3D structures from 2D images is a fundamental problem in computer

vision, known as Structure from motion (SfM) is useful for many applications. We

can enumerate Object Recognition, Robotics, Computer Graphics, Image Retrieval,

Geo-Localization, Archaeology and Sports.

This process aims to recover the three-dimensional shape of a scene and the

motion of the camera from a sequence of 2D projections. The challenge of SfM lies

in its inherent ambiguity and the need to infer depth and spatial relationships from

limited visual information. This chapter delves into the problem of Structure from

Motion, with a specific focus on orthographic projection, a simplified yet powerful

model for SfM.

We begin by introducing the problem of Structure from Motion, providing an

overview of its significance, challenges, and applications. Unlike perspective SfM,

orthographic SfM assumes a simplified imaging model that eliminates perspective

effects, making it particularly useful in scenarios where the field of view is narrow

or when computational efficiency is critical.

Next, we explore the mathematical expression of orthographic projection, detail-

ing how 3D points in the scene are projected onto a 2D image plane under this model.

By formalizing this relationship, we establish the foundation for algorithms that can
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2 1 Structure from Motion

estimate both the 3D structure of the scene and the motion of the camera from a

series of orthographic projections.

Finally, we investigate Orthographic Structure from Motion (SfM) methods, dis-

cussing how this approach enables the recovery of 3D structure and motion pa-

rameters from 2D observations. By leveraging the mathematical properties of or-

thographic projection, these methods achieve robust and efficient reconstruction,

particularly in controlled environments.

1.2 Problem of Structure from Motion

We suppose that we have a sequence video frames and features points such as corners,

SIFT points are detected on each frame (see figure 1.1). Also, we suppose that these

features are tracked using known techniques: Template matching, Optical Flow (we

know the correspondence between features of acquired images).

In order to reconstruct the 3D scene from a set of acquired images, we will

assume, for simplification of the model and time consuming reduction, that images

are acquired following the orthographic model of projection.

1.2.1 Structure from Motion Assuming Orthographic Projection

Firstly, we define the orthographic projection as representing three-dimensional ob-

jects in two dimensions. The Orthographic projection is a form of parallel projection

in which all the projection lines are orthogonal to the projection plane, resulting in

every plane of the scene appearing in affine transformation on the viewing surface

(see figure 1.1).

Let (𝑢 𝑓 , 𝑝 , 𝑣 𝑓 , 𝑝 a set of corresponding image points (2D) , where 𝑓 is the frame

number and 𝑝 refers to the image point on that frame.

Advantages of orthographic camera for structure from motion:

- Simplifies the mathematical equations involved in the reconstruction process.
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Fig. 1.1 Key points located on one image (from video sequence images).

Fig. 1.2 Orthographic projection of 3D points into a video sequence images.

- The ray of projection of a 3𝐷 point is perpendicular onto the image plane, this

simplifies the triangulation process.

- Objects maintain their relative sizes regardless of their distance from the camera.
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- It involves simpler mathematical operations, this implies faster computation times.

- It preserves the parallelism of lines and planar structures in the scene.

The limitations:

- It leads to inaccuracies in depth estimation.

- It is difficult to determine the absolute scale of the reconstructed scene without

additional constraints or information.

- It leads to distortions and inaccuracies in the reconstructed 3D for scenes with

irregular shapes or curved surfaces (non planar).

The main objective is to find the scene points (3D) assuming orthographic camera

(see figure 1.2).

1.2.1.1 Mathematical Expression of Orthographic projection

From figure 1.3, we can write using the scalar product and the vector (𝑥𝑐 = 𝑂𝑃) and

the unit vectors 𝑖 and 𝑗 of the 2D coordinates frame:

𝑢 = 𝑖.𝑥𝑐 = 𝑖𝑇𝑥𝑐, 𝑣 = 𝑗 .𝑥𝑐 = 𝑗𝑇𝑥𝑐 (1.1)

Using the world coordinates, we rewrite in the previous equation 𝑥𝑐 using the

vectors 𝐶𝑤 and 𝑥𝑤 (see figure 1.3):

Fig. 1.3 Expression of orthographic projection using the world coordinate frame.
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𝑢 = 𝑖.𝑥𝑐 = 𝑖𝑇𝑥𝑐 = 𝑖𝑇 (𝑥𝑤−𝐶𝑤) = 𝑖𝑇 (𝑃−𝐶), 𝑣 = 𝑗 .𝑥𝑐 = 𝑗𝑇𝑥𝑐 = 𝑗𝑇 (𝑥𝑤−𝐶𝑤) = 𝑗𝑇 (𝑃−𝐶)

(1.2)

1.2.1.2 Computation of the Structure

Let (𝑢 𝑓 , 𝑝 , 𝑣 𝑓 , 𝑝 a set of corresponding image points (2D) , where 𝑓 is the frame

number and 𝑝 refers to the image point on that frame.

The main objective is to find the scene points (3𝐷) assuming orthographic camera.

Camera positions (𝐶 𝑓 ) and orientations (𝑖 𝑓 , 𝑗 𝑓 ) are unknown (see figure 1.4).

For each image point 𝑃𝑘 in camera frame 𝑓 we have:

Fig. 1.4 Orthographic projection for SfM.

𝑢𝑘 = 𝑖𝑇𝑓 (𝑃𝑘 − 𝐶 𝑓 ), 𝑣𝑘 = 𝑗𝑇𝑓 (𝑃𝑘 − 𝐶 𝑓 ) (1.3)

We can remove 𝐶 𝑓 from equations to simplify 𝑆𝐹𝑀 problem. To do this, we assume

that the origin of the world at centroid 𝑃 of scene points 𝑃𝑘 (see figure 1.5).

𝑃 =
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑃 𝑓 ,𝑘 (1.4)

The centroid 𝑝 of image points in frame f is given by:
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Fig. 1.5 Orthographic projection for SfM.

𝑢 𝑓 =
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑢 𝑓 ,𝑘 , 𝑣 𝑓 =
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑣 𝑓 ,𝑘 (1.5)

𝑢 𝑓 =
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑖𝑇𝑓 (𝑃𝑘 − 𝐶 𝑓 ), 𝑣 𝑓 =
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑗𝑇𝑓 (𝑃𝑘 − 𝐶 𝑓 ) (1.6)

𝑢 𝑓 = 𝑖𝑇𝑓
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑃𝑘 −
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑖𝑇𝑓𝐶 𝑓 , 𝑣 𝑓 = 𝑗𝑇𝑓
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑃𝑘 −
1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑗𝑇𝑓 𝐶 𝑓 (1.7)

𝑢 𝑓 = − 1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑖𝑇𝑓𝐶 𝑓 , 𝑣 𝑓 = − 1
𝑁

𝑘=𝑁∑︁
𝑘=1

𝑗𝑇𝑓 𝐶 𝑓 (1.8)

The centroid (𝑢 𝑓 , 𝑣 𝑓 ) of feature points is not a function of the locations of scene

points. Then if we shift the origin to the centroid, image points coordinates w.r.t.

(𝑢 𝑓 , 𝑣 𝑓 ) will be:

𝑢 𝑓 ,𝑘 = 𝑢 𝑓 ,𝑘 − 𝑢 𝑓 , 𝑣 𝑓 ,𝑘 = 𝑣 𝑓 ,𝑘 − 𝑣 𝑓 (1.9)

𝑢 𝑓 ,𝑘 = 𝑖𝑇𝑓 ,𝑘 (𝑃𝑘 − 𝐶 𝑓 ) + 𝑖𝑇𝑓 ,𝑘𝐶 𝑓 = 𝑖𝑇𝑓 ,𝑘𝑃𝑘 , 𝑣 𝑓 ,𝑘 = 𝑗𝑇𝑓 ,𝑘 (𝑃𝑘 − 𝐶 𝑓 ) + 𝑗𝑇𝑓 ,𝑘𝐶 𝑓 = 𝑗𝑇𝑓 ,𝑘𝑃𝑘

(1.10)

We can see that we have the image coordinates without the camera center in the

expression. Only the camera orientation (𝑖𝑇
𝑓
, 𝑗𝑇

𝑓
) and scene point are present (𝐶 𝑓

removed).

We define the observation matrix 𝑊 = 𝑀𝑆 where:
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𝑢11 𝑢12 𝑢13 − − −− 𝑢1𝑛

𝑢21 𝑢22 𝑢23 − − −− 𝑢2𝑛

− − − − − − − − − − − − − − −

𝑢𝐹1 𝑢𝐹2 𝑢𝐹3 − − −− 𝑢𝐹𝑛

𝑣11 𝑣12 𝑣13 − − −− 𝑣1𝑛

𝑣21 𝑣22 𝑣23 − − −− 𝑣2𝑛

− − − − − − − − − − − − − − −

𝑣𝐹1 𝑣𝐹2 𝑣𝐹3 − − −− 𝑣𝐹𝑛



=



𝑖𝑇1

𝑖𝑇2

− − −

𝑖𝑇
𝐹

𝑗𝑇1

𝑗𝑇2

− − −

𝑗𝑇
𝐹



[
𝑃1 𝑃2 𝑃3 −− 𝑃𝑛

]
(1.11)

The vector structure 𝑆 is composed by (3 × 𝑛) elements where 3 refers to the

coordinates 𝑥, 𝑦, 𝑧. The vector motion 𝑀 is composed by (2𝐹 × 3) elements, where

2F refers to the 2 unit vectors (𝑖, 𝑗) for the 𝐹 frames. The matrix 𝑊 is composed by

(2𝐹 × 𝑛) elements which represent the known 𝑛 centroid-substracted feature points

for the 𝐹 frames.

1.2.1.3 Computation of 𝑴 and 𝑺 from 𝑾

Carlo Tomasi and Takeo Kanade, proposed in 1992 in their paper a new method:

Shape and motion from image streams under orthography: a factorization method.

The rank of the matrix W is equal to 3.

Rank(W)=Rank(MS) ≤ Rank(M) ≤ min(2F, 3)

Rank(W)=Rank(MS) ≤ Rank(S) ≤ min(n, 3)

Rank(W)=Rank(MS) ≤ min(2F, 3, n)

Rank(W) ≤ 3

For any matrix 𝐴 there exists a factorization

𝐴𝑀×𝑁 = 𝑈𝑀×𝑀
∑︁

𝑉𝑇
𝑁×𝑁 (1.12)

where 𝑈 and 𝑉 are orthonormal and
∑

is orthogonal of dimensions 𝑀 × 𝑁 , 𝑀

here is equal to 2𝐹.
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∑︁
=



𝜎1 0 0 0 0 0 −− 0

0 𝜎2 0 0 0 0 −− 0

0 0 𝜎3 0 0 0 −− 0

0 0 0 𝜎4 0 0 −− 0

− − − − − − − −

0 0 0 0 0 0 −− 𝜎𝑛

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(1.13)

𝜎1 ≥ 𝜎2 ≥ 𝜎3.... ≥ 𝜎𝑛 are singular values. As the rank of 𝐴 is equal to 3, the

𝜎𝑖 , 𝑖 = 4..𝑛 are equal to zero. We can write then the previous equation as follow:

𝑊 =



𝑈1 𝑈2





𝜎1 0 0 0 0 0 −− 0

0 𝜎2 0 0 0 0 −− 0

0 0 𝜎3 0 0 0 −− 0

0 0 0 0 0 0 −− 0

− − − − − − − −

0 0 0 0 0 0 −− 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





𝑉𝑇
1

𝑉𝑇
2



(1.14)

𝑈1 is with 3 columns and 𝑈2 with 2𝐹 − 3 columns. Since 𝑅𝑎𝑛𝑘 (𝑊) ≤ 3,

𝑅𝑎𝑛𝑘 (∑) ≤ 3, then sub-matrices 𝑈2 and 𝑉𝑇
2 do not contribute to 𝑊 .

We have then: 𝑊 = 𝑈1
∑

1 𝑉
𝑇
1 , where the dimensions of𝑈1 is 2𝐹 × 3, of

∑
1 is the

3 × 3 and of 𝑉𝑇
1 is 3 × 𝑁 .

For any matrix Q, the following expression is valid:

𝑊 = 𝑀𝑆 = (𝑈1 (
∑

1)1/2𝑄) (𝑄−1 (∑1)1/2𝑉𝑇
1 )



1.2 Problem of Structure from Motion 9

𝑖𝑇1

𝑖𝑇2

−

𝑖𝑇
𝐹

𝑗𝑇1

𝑗𝑇2

−

𝑗𝑇
𝐹



= 𝑈1 (
∑︁

1
)1/2𝑄 =



𝑖𝑇1 𝑄

𝑖𝑇2 𝑄

−

𝑖𝑇
𝐹
𝑄

𝑗𝑇1 𝑄

𝑗𝑇2 𝑄

−

𝑗𝑇
𝐹
𝑄



(1.15)

Knowing the following orthonormality constraints for the frame 𝑓 :

𝑖𝑇
𝑓
𝑖𝑇
𝐹
= 1, 𝑖𝑇

𝑓
𝑖𝑇
𝐹
= 1, 𝑖𝑇

𝑓
𝑗𝑇
𝐹
= 0.

Then, for one frame we get three equations, where 𝑄 is unknown: 𝑖𝑇
𝑓
𝑄𝑄𝑇 𝑖𝑇

𝐹
= 1,

𝑖𝑇
𝑓
𝑄𝑄𝑇 𝑖𝑇

𝐹
= 1, 𝑖𝑇

𝑓
𝑄𝑄𝑇 𝑗𝑇

𝐹
= 0.

We get then 3𝐹 quadratic equations with 𝑄 is 3 × 3 matrix, 9 variables.

𝑄 can be solved with 3 or more images (𝐹 >= 3) using Newton’s method.

Figures 1.6, 1.7 show an example of structure from motion (Tomasi 1992, Duke

University, USA).

Algorithm

Summary: Orthographic SFM

1- Detect and track feature points

2- Create the centroid subtracted matrix W of corresponding feature points

3- Compute 𝑆𝑉𝐷 of 𝑊 end enforce rank constraint. 𝑊 = 𝑈
∑
𝑉𝑇 = 𝑈1

∑
1 𝑉

𝑇
1 4-

Set 𝑀 = 𝑈1 (
∑

1)1/2𝑄 and 𝑆 = 𝑄−1 (∑1)1/2𝑉𝑇
1

5- Find Q by enforcing the orthornormality constraint

Figures 1.8, 1.9, 1.10 show the images taken by Marc Pollefeys and Luc Van Gool

[12] and the computed motion and the reconstructed scene.

Figures 1.11, 1.12 show the images of outdoor scene and the computed recon-

structed scene [11].
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Fig. 1.6 Three images of a scene.

Fig. 1.7 The reconstructed scene.

Fig. 1.8 Some images of a scene.

1.3 Other works related to Structure from Motion

In the state of the art, we note that there are two kind of methods: Sequential methods

and Factorization methods [36].
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Fig. 1.9 The computed motion of the camera.

Fig. 1.10 The reconstructed scene.

Fig. 1.11 The used images [11].

1.3.1 Sequential algorithms

Sequential algorithms are the most popular. They work by incorporating successive

views one at a time. As each view is registered, a partial reconstruction is extended

by computing the positions of all 3D points that are visible in two or more views

using triangulation. A suitable initialization is typically obtained by decomposing
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Fig. 1.12 The reconstructed scene.

the fundamental matrix relating the first two views of the sequence. There exist

several strategies for registering successive views:

- Epipolar constraints. One possibility is to exploit the two-view epipolar geoemtry

that relates each view to its predecessor. For example, where camera intrinsic pa-

rameters are known, essential matrices can be used. Essential matrices are estimated

linearly using eight or more point correspondences and decomposed to give relative

camera orientation and the direction of camera translation. The magnitude of the

translation can be fixed using the image in the new view of a single known 3D point,

i.e. a point that has already been reconstructed from its image in earlier views.

- Resection. An alternative is to determine the pose of each additional view using

already reconstructed 3D points. Six or more 3D to 2D correspondences allow linear

solution for the 12 elements of a projection matrix.

- Merging partial reconstructions. Another alternative is to merge partial recon-

structions using corresponding 3D points. Typically, two or three view reconstruc-

tions are obtained using adjacent image pairs or triplets; then they are merged using
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corresponding 3D points.

These sequential registration schemes have some important limitations. In the

context of interactive modelling systems, one disadvantage is that a large number of

corresponding points must be defined in each view. For uncalibrated reconstruction,

commercial photogrammetry software (such as ImageModeler5) usually requires

a minimum of 7 correspondences per view (and more are recommended for better

accuracy). Since corresponding points must usually be visible in three or more views,

this means substantial overlap is required. For long sequences of views (e.g. along a

city street), this requirement can be prohibitive. Another complication is that there

exist various kinds of degenerate structure and motion configuration for which the

standard algorithms will fail. For example: (i) camera rotation in the absence of

translation, (ii) planar scenes, (iii) a 3D point lying on a line passing through the

optical centres of the cameras in which it is visible. In practice, it may be hard to

avoid these kinds of degeneracy, especially if views are obtained without careful (or

even expert) planning.

1.3.2 Factorization methods

Unlike sequential methods, batch methods work by computing camera pose and

scene geometry using all image measurements simultaneously. One advantage is

that reconstruction errors can be distributed meaningfully across all measurements;

thus, gross errors associated with sequence closure can be avoided.

One family of batch structure from motion algorithms are called factorization

methods. Fast and robust linear methods based on direct SVD factorization of the

image point measurements have been developed for a variety of simplified linear

(affine) camera models, e.g. orthographic (Tomasi and Kanade [37]). These methods

generally are not applicable to real-world scenes because real camera lenses are too

wide-angle to be approximated as linear. Indeed, the inherent distortion that occurs
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in images captured by wide-angle lenses, which cannot be accurately modeled using

simple linear transformations. Then it’s necessary to use more complex, non-linear

models (e.g., radial or tangential distortion models) to correct the distortion and

accurately map the real-world scene to the image

More recently, a number of researchers have described factorization-like algo-

rithms for perspective cameras too. These methods are iterative and there is no

guarantee that they will converge to the optimal solution [38] [39]. that there exist

degenerate structure and motion configurations for which they will fail, they are not

applicable to sparse modelling problems.

1.4 Bundle adjustment

From image features uij , structure from motion gives an initial estimate of projection

matrices Pi and 3D points Xj . Usually it will be necessary to refine this estimate

using iterative non-linear optimisation to minimize an appropriate cost function.

This is bundle adjustment [41][40]. Bundle adjustment works by minimizing a cost

function that is related to a weighted sum of squared reprojection errors. Usually

Gauss Newton iteration is used (with an appropriate step control policy) for rapid

convergence. This section provides a brief review of established bundle adjustment

theory.

13.9.1 Problem definition

The goal of bundle adjustment is to determine an optimal estimate of a set of

parameters 𝜃, given a set of noisy observations. Most bundle parameters cannot be

observed directly, e.g. projection matrices, 3D point coordinates. Instead, they allow

us to make predictions of quantities that can, e.g. the measured pixel coordinates

of imaged 3D points. Let the set of predictions be z𝜃 and the set of corresponding

observations be z. Then residual prediction error 𝛿z is given by: 𝛿𝑧 = 𝑧−𝑧(𝜃) (13.24)

In general, the observation vector z may be partitioned into a set of statistically inde-
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pendent measurements z1 . . . zN with associated predictions 𝑧1(𝜃)...𝑧𝑁 (𝜃). Bundle

adjustment proceeds by minimizing an appropriate cost function. For a maximum

likelihood parameter estimate, the cost function should reflect the likelihood of the

residual 𝛿z. Under the assumption of Gaussian-distributed measurement noise, the

appropriate cost function is a sum of squared errors, which is the negative sum of

log likelihoods:

caption FIG 517: Triangulation illustration. Given projection matrices, a 3D point

X can be computed from its measured pixel positions (u1, u2, . . .) in two or more

views (C1, C2, . . .). Ideally, X should lie at the intersection of the backprojected rays

(solid lines). However, because of measurement noise, these rays will not generally

intersect. Hence X should be chosen so as to minimize the sum of squared errors

between measured and predicted pixel positions (ui and uip).

Fig. 1.13 .

Figure 5 18: Sequential registration illustration. Views 1 to 7 are registered one

at a time by computing the essential matrices E12, E23, etc. relating each one to

its predecessor. The essential matrix can be decomposed to give relative orientation

and the direction of translation and 3D to 2D correspondences are used to determine

the magnitude of the translation. As each new view is incorporated, the partial

reconstruction is extended by reconstructing all 3D points that are visible in two or

more views.

From the paper [35]:
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Fig. 1.14 .

This paper shows for the first time that is possible to reconstruct the position of

rigid objects and to jointly recover affine camera calibration solely from a set of

object detections in a video sequence. In practice, this work can be considered as the

extension of Tomasi and Kanade factorization method using objects. Instead of using

points to form a rank constrained measurement matrix, we can form a matrix with

similar rank properties using 2D object detection proposals. In detail, we first fit an

ellipse onto the image plane at each bounding box as given by the object detector. The

collection of all the ellipses in the dual space is used to create a measurement matrix

that gives a specific rank constraint. This matrix can be factorised and metrically

upgraded in order to provide the affine camera matrices and the 3D position of

the objects as an ellipsoid. Moreover, we recover the full 3D quadric thus giving

additional information about object occupancy and 3D pose. Finally, we also show

that 2D points measurements can be seamlessly included in the framework to reduce

the number of objects required. This last aspect unifies the classical point-based

Tomasi and Kanade approach with objects in a unique framework. Experiments with

synthetic and real data show the feasibility of our approach for the affine camera

case.

From another paper, CVPR 2012,[34].

Structure from motion (SFM) aims at jointly recovering the structure of a scene

as a collection of 3D points and estimating the camera poses from a number of input

images. In this paper we generalize this concept: not only do we want to recover
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Fig. 1.15 Given multiple views with a set of objects detected in every image, the proposed fac-

torization approach can simultaneously recover the affine camera calibration and the 3D quadrics

describing the location and pose of the objects in the scene [35].

3D points, but also recognize and estimate the location of high level semantic

scene components such as regions and objects in 3D. As a key ingredient for this

joint inference problem, we seek to model various types of interactions between

scene components. Such interactions help regularize our solution and obtain more

accurate results than solving these problems in isolation. Experiments on public

datasets demonstrate that: 1) our framework estimates camera poses more robustly

than SFM algorithms that use points only; 2) our framework is capable of accurately

estimating pose and location of objects, regions, and points in the 3D scene; 3)

our framework recognizes objects and regions more accurately than state-of-the-art

single image recognition methods.

.

1.5 Conclusion

In this chapter, we explored the foundational principles of Structure from Motion

(SfM) for recovering 3D structure and camera motion from 2D image sequences. First
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Fig. 1.16 The goal is to recognize semantic elements (e.g. cups, bottles, desk, wall, etc), localize

them in 3D, and estimate camera pose from a number of semi-calibrated images. We propose to

achieve this goal by modeling interactions among 3D points, regions, and objects [34].

we highlighted the importance of (SfM) in applications such as robotics, augmented

reality, and scene reconstruction.

We then examined the problem of Structure from Motion , identifying the key

objectives and constraints in reconstructing 3D scenes from 2D projections. We

selected the appropriate projection model (orthographic) to simplify computations

and reduces computational complexity while retaining sufficient accuracy for many

practical applications. This makes orthographic SfM a powerful tool for controlled

environments.
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