
Slimane LARABI

Computer Vision

From Bidimensional Images to Three

Dimensional Scene

January 02, 2025

Springer Nature





Chapter 1

Object Recognition from Visual Appearance

Abstract The objective of chapter is to study object recognition of 3D objects from

their visual appearance in 2D images. This is referred as appearance matching. There

are two basic approaches for objects representation: Shape: the explicit representation

of the 3D geometry of the object. Appearance: depends on the pose, illumination. An

image set is then obtained represented the appearance of the object. The reduction

of the dimensionality is necessary in order to achieve the matching. Using PCA,

we lower dimensional subspace in which we can represent the original image set by

simply projecting the image set. We end up for each object , a compact parametric

representation of the object. We terminate with a pipeline for appearance matching.

1.1 Introduction

The objective of chapter is to study object recognition of 3D objects from their

visual appearance in 2D images. This is referred as appearance matching. We begin

this chapter by introducing the concepts and motivations behind appearance-based

analysis. Following this, we examine the relationship between shape and appearance,

highlighting their respective contributions to visual understanding and recognition

tasks. The process of Learning Appearance is then explored, focusing on how ap-

pearance features can be captured and encoded effectively.
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2 1 Object Recognition from Visual Appearance

An image set is then obtained represented the appearance of the object. The

reduction of the dimensionality is necessary in order to achieve the matching. Using

PCA, we lower dimensional subspace in which we can represent the original image

set by simply projecting the image set.

Building on these foundational concepts, the chapter discusses Parametric Ap-

pearance Representation, which encapsulates appearance information using math-

ematical models, facilitating efficient and robust analysis. Finally, we address Ap-

pearance Matching, a process crucial for tasks such as object recognition, image

retrieval, and alignment, where learned appearance models are utilized to compare

and identify visual data.

1.2 Object recognition based on Shape Representation

The 3D representation learning approaches presented so far are based on voxel

occupancy. We can cite [20, 18, 19, 21]. Authors are also payed attention on point

clouds [24], [22] and explicit shape parametrization [23].

Figure 1.1 shows three explicit representations, such as triangle meshes are ex-

ceedingly popular in the graphics community, Voxel useful in computer graphics (see

figures 1.1, 1.2) are defined on fixed regular grids making them exceptionally well

suited for learning applications, in particular convolutional approaches[13]. Point

clouds are also commonly used to describe the shape of 3D objects [25].

Many approaches have been proposed: Planes, spheres, complex splines, super

quadric (see figure 1.3).

The superquadric shape have been considered as an extension of spherical or

ellipsoidal particles and used for modeling of spheres, ellipsoids, cylinder like and

box(dice) like particles just varying shape parameters [15].

The function 𝑓 (𝑥) uses five parameters to describe super quadric, and is given by

the equation 1.1.
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Fig. 1.1 Left: the original 3D shape. Middle: the voxelized 3D shape. Right: the octree represen-

tation with normal sampled at the finest leaf octants [13].

Fig. 1.2 Common representations of 3D shape.[14]

𝑓 (x) = ( | 𝑥
𝑎
|𝑛2 + | 𝑦

𝑏
|𝑛2 )𝑛1/𝑛2 + | 𝑧

𝑐
|𝑛1 − 1 = 0 (1.1)

where x = (𝑥, 𝑦, 𝑧)𝑇 .

Fig. 1.3 Four examples of superquadric particle shape composed by the five shape parameters

(𝑎, 𝑏, 𝑐, 𝑛1, 𝑛2 ) [15].
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For representation based on shape description using geometrical functions, the

3𝐷 Shape matching requires:

• Creating the database of object shapes (offline) Recognition (online),

• Computationally expensive for large databases, require hardware (scanners).

To overcame these constraints, new representation have been proposed, based on

learning appearance.

1.3 Object Recognition Based on Learning Appearance

1.3.1 Basic Principle

When we see an object for the first time, we need to see it from different points of

views so as it will be possible to recognize it if we see it again.

The first step of object recognition based on their appearance is to acquire a

dataset of images of each object, associate them a useful representation and store all

information.

For this step, some factors are important because they characterize the set of

acquired images and define their visual appearance. We can cite (see figures 1.4,

1.5):

• Intrinsic factors: shape, reflectance,,

• Extrinsic factors: pose, illumination) .

Fig. 1.4 Factors such as shape, reflectance, pose, illumination define the visual appearance.
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Fig. 1.5 Importance of the object pose for the recognition by visual appearance.

We need then to capture images under all poses and lighting directions as indicated

by figure 1.6. We collect then a set of images (database) , segmented and without

occlusion. Figure 1.7 shows examples of such datasets built by S.K.Nayar et al. [17].

Fig. 1.6 Procedure of image model capture.

The second step is to develop an algorithm to retrieve the identity of the object

from a new query image using the stored data.
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Fig. 1.7 Two examples of datasets of objects [17] .

To perform recognition, we many approaches are possible.

1.3.2 Object Recognition using Template Matching

A naive solution is to apply template matching to compare a query template with

all image models of the dataset using one of the known similarity measures: SAD

(Sum Absolute Distances), or SSD (Sum Squared Differences) or NCC (Normalized

Cross Correlation).

However, this technic is not a practical given the number of images that we need

to deal with, in addition, it is then very expensive and time consuming.

In addition, for a given object image set, there is a similarity between two consec-

utive images and high redundancy between images as depicted by figure 1.9. We can

exploit this redundancy between images to reduce the dimensionality of the image

set in order to achieve a compact appearance representation that makes matching

efficient.
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Fig. 1.8 Template matching technic; (Left) the query image, (Right) the dataset of image models.

Fig. 1.9 Redundancy between images of the dataset of object image models.

1.3.3 Dimensionality reductions using Principal Component Analysis

(PCA)

We want to transform the images into different space where matching one image

with another is more efficient. We assume that image est represented by a vector

(concatenated rows).

We can construct an N-dimensional space. Each one of the dimensions space

represents the brightness at corresponding pixel.

The 𝑁 pixels are represented using 𝑁 vectors units. The image is simply a point

in that space.

We treat 𝑖1, 𝑖2, .., 𝑖𝑁 as an orthonormal basis. Example: 𝑖3 = (0, 0, 1, 0, . . . ., 0)

The Correlation in image space (SSD), is computed as the sum of squared dif-

ference between pixels (𝑝, 𝑞) of two images (model 𝐼1 and query 𝐼2) as given by
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equation 1.2 (see figure 1.10). For example, the distance SSD between two elements:

(123, 0, 0), (120, 20, 0), the distance 𝑆𝑆𝐷 = (123 − 120)2 + (20 − 0)2 = 409.

𝑆𝑆𝐷 =
∑︁
𝑝

∑︁
𝑞

(𝐼1 (𝑝, 𝑞) − 𝐼2 (𝑝, 𝑞))2 (1.2)

Fig. 1.10 SSD computation between query and model image.

The basic principle of dimensionality reduction may be explained by the the

example of a distribution of 3D points that lie on a 2D plane as depicted by figure

1.11. It is redundant to represent each point with 3 coordinates (see figure ). If we use

a new coordinates system (e1, e2) that lies on the plane, each point can represented

with just 2 coordinates.

We consider𝑀 images, each one is represented in the 𝑁 dimensional space, where

is the number of pixels of the image (see figure 1.12). The appearance distribution

provides insights into whether there is a correlation between images. In this context,

the distribution of feature points is highly structured and often lies within a low-

dimensional subspace.

In order to express the feature point distribution in a lower dimension space

(𝑘 < 𝑁) and the calculate the new basis (𝑒1, . . . , 𝑒𝑘), we perform the following

steps:

- step 1: Subtracting the mean
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Fig. 1.11 Reduction the representation of points from 3D to 2D.

Fig. 1.12 Object Image set where there is a redundancy between successive images).

Given M images ( 𝑓 ′1 , 𝑓
′
2 , . . . , 𝑓

′
𝑀
) of an object, the Mean Image is:

𝑐 =
1
𝑀

𝑀∑︁
𝑚=1

𝑓 ′𝑚 (1.3)

Step 2: Subtract the mean from the object image set so as to move the origin of

the new basis to the centroid of the distribution.

𝑓𝑚 = 𝑓 ′𝑚 − 𝑐

- Step 3: The first Principal component (𝑒1) corresponds to the direction of

maximum variance in the image set.

𝑉 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2 (1.4)

Knowing 𝑒1, the image is represented by projecting it onto the principal com-

ponent 𝑒1. Image is then represented by a single number 𝑝, where 𝑝 = 𝑒1. 𝑓 (dot

product) (see figure 1.13).
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Step 3: The second principal component 𝑒2 is the direction of the second maximum

variance in the image set such that: (𝑒1 ⊥ 𝑒2). Image is the represented by a two

numbers 𝑝1, 𝑝2. 𝑝𝑇 = (𝑝1𝑝2)𝑇 = (𝑒1𝑒2)𝑇 𝑓

Fig. 1.13 New basis.

Step 4: The 𝑘 𝑡ℎ principal component 𝑒𝑘 is the direction of the 𝑘 𝑡ℎ maximum

variance in the image set such that: 𝑒1 ⊥ 𝑒2 ⊥ 𝑒3.... ⊥ 𝑒𝑘 . Image is represented by

a 𝑘 numbers 𝑝1, 𝑝2, .., 𝑝𝑘 (in 𝑘 ≤ 𝑁 dimensions): The forward projection is written

as follow:

𝑝𝑇 = (𝑝1𝑝2...𝑝𝑘)𝑇 = (𝑒1𝑒2𝑒3...𝑒𝑘)𝑇 𝑓 (1.5)

The Back projection is given by:

𝑓 =

𝑘∑︁
𝑖=1

𝑝𝑖𝑒𝑖 (1.6)

(𝑒1, 𝑒2, . . . , 𝑒𝑘) is referred to as Linear Subspace.

1.3.4 Finding Principal Components

Given the Mean-Subtracted Image Set ( 𝑓1, 𝑓2, ..., 𝑓𝑀 ), 𝑓𝑖 is (𝑁 × 1 vector.

Find the orthogonal basis (𝑒1, 𝑒2, . . . , 𝑒𝑘) where 𝑒𝑖 is (𝑁 × 1 vector.

Such that, : for each 𝑚 = 1..𝑘 , we have:
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𝑓𝑚 =
1
𝑛

𝐾∑︁
𝑖=1

𝑝𝑚𝑖 𝑒𝑖 (1.7)

where : 𝑝𝑚
𝑖

= 𝑒𝑇
𝑖
𝑓𝑚 is the projection of the image 𝑓 along the 𝑖𝑡ℎ principal

component.

In order to compute the first principal component, we search 𝑒 that maximizes

Variance of the 𝑓 .𝑒:

𝑉𝑎𝑟 ( 𝑓 .𝑒) = 𝐸 (𝑒𝑇 𝑓 𝑓 𝑇𝑒) (1.8)

For this, we need to maximizes 𝐸 (𝑒𝑇 𝑓 𝑓 𝑇𝑒) such that 𝑒𝑇𝑒 = 1. We note :𝑅 = 𝑓 𝑓 𝑇 ,

this is equivalent to maximize the objective function 𝐿 (𝑒, 𝜆) such that:

𝐿 (𝑒, 𝜆) = 𝑒𝑇𝑅𝑒 − 𝜆(𝑒𝑇𝑒 − 1) (1.9)

Taking derivatives of 𝐿 (𝑒, 𝜆) with respect to 𝑒 and equating to zero: 𝑅𝑒 − 𝜆𝑒 = 0,

then 𝑅𝑒 = 𝜆𝑒: The first principal Component is the eigenvector corresponding to the

maximum eigenvalue.

The algorithm

- Data Matrix: 𝐹 = [ 𝑓1, 𝑓2, .., 𝑓𝑀 ]

Covariance Matrix 𝑅 = 𝐹𝐹𝑇

𝑋𝑖 = 𝑋 𝑗 = 𝑓 𝑒

𝐶𝑜𝑣(𝑋𝑖 , 𝑋 𝑗 ) = 𝐸 [(𝑋𝑖 − 𝐸 (𝑋𝑖)) (𝑋 𝑗 − 𝐸 (𝑋 𝑗 ))]

Solve EigenValue problem:

Eigenvalues: (𝜆1, 𝜆2, . . . , 𝜆𝑘)

Eigenvectors: (𝑒1, 𝑒2, . . . , 𝑒𝑘)

1.3.5 Parametric Appearance Representation

From an object image set, we get K Eigenvectors (see example below)
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Fig. 1.14 (Left) Initial dataset, (Right) The new basis defined by 𝐾 eigen vectors.

How many principal components (𝐾) are sufficient? If we want to capture 95%

of variations in the data set, we examine the cumulative explained variance ratio.

Each eigenvalue corresponds to a principal component and represents the amount

of variance captured by that component. We normalize the eigenvalues to compute

the explained variance ratio for each component as follow:

Explained Variance Ratio=(Eigenvalue of Component / (Sum of All Eigenvalues

Explained Variance Ratio)

After this, we compute Cumulative Explained Variance as the sum of the explained

variance ratios sequentially of the first K components:

At the end, we select 𝐾 such that the cumulative explained variance is at least

95% as shown by figure 1.15.

1.3.6 Appearance Matching

Algorithm 1: Dataset representation

Given M learning images 𝐼 (𝑞)1 , 𝐼
(𝑞)
2 , . . . , 𝐼

(𝑞) )
𝑀

for each object 𝑞(= 1..𝑄) of 𝑄 train-

ing objects

1- Normalize all images to remove brightness variations: 𝐼
′ (𝑞)
𝑚 =

𝐼
′ (𝑞)
𝑚

| |𝐼
′ (𝑞)
𝑚 | |

2- Convert image 𝐼
′ (𝑞)
𝑚 to a vector 𝑓

′ (𝑞)
𝑚
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Fig. 1.15 Computation of the Cumulative Explained Variance.

3- Compute the mean vector 𝑐𝑞 of each object 𝑞.

4-Subtract the mean feature vector 𝑐𝑞 for object 𝑞

𝑓
(𝑞)
𝑚 = 𝑓

′ (𝑞)
𝑚 − 𝑐𝑞 5- Construct the data matrix and covariance matrix:

𝐹𝑞 = | 𝑓 (𝑞)1 𝑓
(𝑞)

2 𝑓
(𝑞)

3 .. 𝑓
(𝑞)
𝑀

|

𝑅𝑞 = 𝐹𝑞𝐹𝑞
𝑇 6- Compute the 𝐾 eigenvectors

𝑒
(𝑞)
1 , 𝑒

(𝑞)
2 , 𝑒

(𝑞)
3 , ..., 𝑒

(𝑞)
𝐾

of 𝑅 (𝑞) 7- Project feature vector to eigenvectors for object 𝑞:

𝑝
(𝑞)
𝑚 = [𝑒 (𝑞)1 , 𝑒

(𝑞)
2 , 𝑒

(𝑞)
3 , ..., 𝑒

(𝑞)
𝐾

]𝑇 × 𝑓
(𝑞)
𝑚

Algorithm 2: Object recognition

Given input image (𝐼) for object recognition

1- Normalize the image to remove brightness variations: 𝐼 ′ = 𝐼/| |𝐼 | |

2- Convert image 𝐼 ′ to a vector 𝑓 ′

For each object 𝑞 in the database, perform steps 3 − 6:

3- Compute the mean vector 𝑐 (𝑞) of each object.

4-Subtract the mean feature vector 𝑐 (𝑞) for object 𝑞: 𝑓𝑞 = 𝑓 ′ − 𝑐 (𝑞)

5- Project feature vector to eigenspace for object 𝑞:

𝑝
(𝑞)
𝑚 = [𝑒 (𝑞)1 , 𝑒

(𝑞)
2 , 𝑒

(𝑞)
3 , ..., 𝑒

(𝑞)
𝐾

]𝑇 × 𝑓 (𝑞)

6- In the eigenspace of object q find the closest point to projected point, compute the
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distance 𝑑 (𝑞) .

7- Find the object for which 𝑑 (𝑞) is minimum.

1.4 Example of face recognition

Figure 1.16 shows sample faces of the dataset.

Fig. 1.16 A sample of images of the dataset of faces.

Figure 1.17 illustrates the explained variance ratio. The the first 16 eigenfaces are

presented by figure 1.18.

The test on out-of-sample image of existing class, we obtain the result depicted

by figure 1.19.
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Fig. 1.17 The explained variance ratio.

The test on out-of-sample image of new class, we obtain the result depicted by

figure 1.20.

Using the first 16 eigen vectors, the reconstructed face corresponding to the face

illustrated by figure (left) is presented at the right of the same figure 1.21.

1.5 Conclusion

In this chapter, we presented the fundamental aspects of object recognition from

visual appearance. We examined the two primary paradigms of object recognition:

shape representation and learning-based appearance recognition.

The shape-based approach highlighted the utility of geometric features in identi-

fying objects, providing a robust framework for applications where structural consis-

tency is key. On the other hand, the learning-based appearance methods showcased

the adaptability and effectiveness of modern techniques that leverage statistical and

machine learning tools.

For object recognition, we explained the requirement of dimensionality reduction

using Principal Component Analysis (PCA) for efficient data representation. High-
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Fig. 1.18 The the first 16 Eigenfaces.

dimensional data can be transformed into a compact yet descriptive form and are

used to retrieve query images.

The end of this chapter is devoted for illustrating how to retrieve a query image

of face using a dataset of faces.
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Fig. 1.19 Result (right) of recognition of the query face (left).

Fig. 1.20 Result (right) of recognition of the query face (left) of a new class.
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Fig. 1.21 Result (right) of recognition of the query face (left) of a new class.
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