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Abstract—In the last years, there has been an increasing
interest in research on visual positioning and localization. Several
datasets have been published recently. However, little attention
has been paid to architectural aspects of scenes that have the
advantage of being not influenced by scenery changes.
Based on depth videos recorded using depth sensor, we propose
in this paper a new dataset composed by descriptors of 2D maps
associated to computed 3D structures. We show also how to
interrogate the dataset using a set of depth frames acquired in
visited places. Conducted experiments show the accuracy of the
obtained 2D maps and feasibility of the proposed framework.

Index Terms—Scene descriptor, 2D map, Visual positioning,
Depth videos, Place recognition

I. INTRODUCTION

The RGBD datasets proposed for visual positioning may
be classified into two main classes. The first for unsorted list
of images intended to evaluate methods that aim to recognize
previously visited places [1], [2]. While the second class,
includes images of 3D models, which is reserved to assess
systems that estimate the 6 degrees of freedom (6DOF) pose
of a camera [3][4]. However, all these datasets are mainly
aimed at the assessment of visual localization systems on
the basis of features extracted from scene images. While the
scene architecture has been neglected despite offering a stable
overall description of scene which is not influenced by decor
changes.

Our objective through this paper is to suggest a framework
for the building of an architecture-based scenes descriptors
dataset for visual place recognition. To build this dataset,
depth videos are acquired by moving Microsoft Kinect sensor
in different indoor and outdoor scenes. For each scene, the
associated 3D model is computed and the corresponding 2D
map is derived and described defining the scene descriptor.

The rest of the paper is organized as follow. In section II,
we highlight the different types of visual positioning datasets.
The details related to dataset building and scene description
are given in III. Section V is devoted to conducted experiments
and evaluation. We conclude the paper with some perspectives
in VI.

II. RELATED WORKS

There is plenty of informations about the environment and
numerous types of data that could be extracted (set of frames,
3D reconstructed models, colored points cloud. . . ) in order to
be used in localization process.
We can summarize the proposed methods of localization
according to the fixed goals on two main classes:

• The first class defines the problem of localization as
problem that captures the visual ability of humans and
robots to recognize visited places. It can be cast to
image retrieval strategy which matches query image with
database images and cast the position of query image
to the pose of retrieved image [19][7]. So the principal
processed information of this class is images.

• The second class includes methods that aim to retrieve 6
DoF position of camera using 3D models that constitute
the principal processed data [4][11].

Due to this significant difference between the two classes of
visual positioning methods, two different categories of datasets
have been published in order to reach the targeted goals using
the appropriate information to each class of systems. We can
summarizes these datasets on:

- Datasets containing unsorted list of images: often furnish
query images acquired under different conditions compared
to the database images. They can be used to study the effect
of changing conditions on results of visually positioning [6]
[9] [10] [16] [27] [15] [13]. This type of dataset is more
appropriate to the first class of methods. As examples, we
can cite: (1) The Pittsburgh dataset [36] including 254k
perspective images from approximately 10.6k panoramas of
Google Street View (which leads to a rather large distance
between the panoramas locations)[16]. (2) The San Francisco
Landmark dataset in [35] was created to encourage the
research in landmark recognition with mobile devices. It
contains 1.7 million images of buildings in San Francisco.
It also includes 803 images taken with a variety of different
cameras dedicated for evaluation. The generation process
utilizes vehicle-mounted cameras with wide-angle lenses to
capture spherical panoramic images. For all visible buildings
in each panorama, a set of overlapping perspective images is
generated. (3) INRIA Holidays Dataset contains 1491 images.



composed of 500 sets of similar images. Each image set
contains 1 query, a total of 500 query images [13].

- Spatially consistent datasets: composed of 3D models
and ground truth poses [12] [21] [22] [23]. They do not
consider big changes between query and database images due
to relying on feature matching for ground truth generation. As
examples we can cite: (1) The Cambridge Landmarks dataset
[12] is large scale outdoor visual relocalization dataset, it
contains 12K images with full 6 DoF camera poses and visual
reconstruction of the scene. (2) The Rome and Dubrovnik
datasets in [8] contain 3D reconstructed models of some of the
most notable landmarks in Rome and Dubrovnik. The Rome
dataset has 3D models for 69 different sites generated from
images taken by distinct cameras. The Dubrovnik dataset has
only one 3D model for one landmark. (3) The first RGB-D
dataset for Simultaneous localization and mapping (SLAM)
benchmarking was proposed in [17] in which both the RGB-D
data produced by a Kinect and the ground truth camera poses
estimated by motion capture system was recorded. After that
authors have extended the benchmarking of the visual SLAM
in[18] [20] by exploring more tests on two different scenes
with different trajectories.

Historically, this kind of datasets were restricted to:
- Large-scale indoor : covering multiple rooms or even whole
buildings; as proposed dataset in [24] that contains 6 DOF
poses for large scale indoor localization and query photographs
captured by mobile phones at different time than the reference
3D map.

- Semantic scene understanding: like in [25] where authors
have proposed a dataset including five large-scale indoor areas
from three different buildings showing diverse properties in
architectural style and appearance.

Through this paper, we seek to propose a new dataset con-
taining scene descriptors calculated using 2D maps (represent-
ing architecture of scenes) in order to give access to explore
these architectural features in visual positioning process [34].

Note that none of the state of the art datasets can be used to
evaluate localization systems based on coarse information of
scenes because both first and second class of visual positioning
datasets contain extracted features from images which don’t
describe global information of scenes.

So our contribution is to propose a suitable dataset from
depth videos for the localization systems based on global
information of scenes.

III. DATA AQUISITION AND 3D STRUCTURE COMPUTATION

A. Data acquisition

In order to get high quality of RGBD data we have chosen
”kinect V2” to construct our dataset [5]. The videos was
acquired by moving a kinect attached to cart in whole scenes
intended for dataset, so that each scene will be fully covered
in its corresponding video. We note that for scenes of small
dimensions and simple structure we have simply surrounded
the kinect so that scenes will be completely covered like it
is shown through figure 1 (Top); whereas concerning scenes

Fig. 1. Cumulation of local transformations in case of (Top) scenes of small
dimensions and simple structure (Bottom) scenes of large dimensions and
complex structure

of large dimensions and complex structure we have applied
rotational and translational movements on the kinect to cover
all details of the scenes see figure 1 (Bottom).

We have also acquired query depth videos in order to
compute query descriptors that cover parts of scenes for
evaluation. We notice that we have considered scenes with
different geometric areas (Rectangle, Square, T, L and N
shapes) with different dimensions (small (10m2), medium
(30m2) and large scenes (55m2)). A simplified plan of the
working environment is presented in figure 2 for a better
explanation.

B. 3D structure computation

The recorded depth video of a given scene is used to
compute the 3D structure. Key frames are selected and their
plans are identified and aligned using alignment algorithm
to construct a complete 3D map of the scene. Figure 3
summarizes the process of 3D structure computation.

The acquired depth video was cut into set of frames to which
[34]:
- The pre-processing step has been applied: that includes:
(1) Key-frame selection within a fixed distance interval, this
reduces execution time and minimizes data storage space. (2)
Smoothing selected frames using median filter.
- The construction of polygons by grouping planar regions
belonging to the same plane in each key frame has been
applied by: (1) Extracting all planar regions considered as
rectangular areas in depth image. (2) Clustering planar regions
into distinct polygons grouping regions belonging to the same
plane.

The extraction process starts by considering the whole depth
image which is splitted into several rectangular regions using
the quad tree algorithm recursively [37]. Then the smoothness
[28] and flatness [29] tests were verified for each region. The
split ends when the region is too small.
The smoothness test is assured by calculating the depth change
indication (DCI) map [28] used to spot the big variations



Fig. 2. An example of used indoor working area

Fig. 3. The 3D structure computation steps

of depth in the depth image. So when a pixel hasn’t a big
diference of depth with its neighbors, the region including it
is considered as smooth otherwise it will be splitted.

The resulting polygons of selected key frames were aligned
to construct a whole map of scene: Using a registration
algorithm [38] which will be used to calculate the geometric
transformation that links two successive frames (local trans-
formation). As the coordinate system of the first key frame
(defined by the first camera pose) is considered to be the global
coordinate system of the scene. The global transformation of a
frame is defined as the product of all previous transformations
like it is shown in figure 1.
So the calculated transformation is written as matrix includ-
ing the rotation and the translation. The obtained geometric
transformation is used to transform frame polygons and merge
all polygons belonging to the same plane; in order to get a
complete map representing the scene. Figure 4 illustrates a
3D map constructed from a set of selected depth frames. As
the RGB images show, the processed scene is of low light to
affirm that the proposed system is precise, even in the case of
low light scenes.

IV. 2D MAP COMPUTATION AND DESCRIPTION

A. The 2D map computation

The ground was located using the geometrical method
proposed in [31] and the perpendicular polygons with large

Fig. 4. (Left) Some RGB and depth frames, (Right) Computed 3D structure

areas were identified as walls. The calculation of polygon’s
area has been done in 2D space rather then 3D space (to
simplify calculation) by projecting vertices of each polygon
on its normal plane and thus we eliminated one coordinate
from them, while keeping the same polygon’s areas. More
explanations are given in [33]. In figure 5 (Top) the 3D map
of the scene of figure 4 is shown after walls detection as lateral
polygons colored with blue. 2D map representing boundaries
of scene area are defined as the projection of walls on the
ground (see figure 5). The additional contours around corners,
due to noise, are removed by considering intersection points
as limits of each segment. We highlight another benefit of
selection step which consist on reduction of alignment errors
(which increase with the increase in the number of aligned
frames) like it is illustrated by figure 5.

B. The 2D map Description

The resulted 2D maps are described based on the geometry
of the boundaries using proposed method in [34].
The descriptor Ds is defined as: DS = {{Pi(αi, li), i =
1..n}, Location}, Where:
- {Pi, i = 1..n} is set of located corners in the counter
anticlockwise direction.
- Si is a line segment delimited by the successive corners
(Pi, Pi+1).
- n represents the number of considered corners.
- Each corner Pi is described with αi (the angle between



Fig. 5. From Top to bottom: The computed 3D map and associated 2D map,
Maps computed with selected frames (left) and using all video frames (right)

Fig. 6. 2D map calculated for a indoor scene

Si, Si−1) and li ( length of segment Si).
- Location as its name suggests, it denotes the identification
of scene.

The corresponding descriptor to the shown 2D map in
figure 6 is:
DS = {{P0(270, 4), P1(90, 3.8), P2(90, 17), P3(90, 3.8),
P4(90, 8), P5(270, 0)}, Sceneexample}. As it is shown the
segment S5 is not demarcated by two corners so the value of
its length l5 is set to zero because it is insignificant.

Algorithm 1 recapitulates the dataset scene descriptor com-
putation.

Data: Depth video
Result: Dataset descriptor
while !end(Depth video) do

Planar regions extraction from current frame fi;
Clustering each group of planar regions belonging

to the same plan into polygon in fi;
Align fi with 3D model constructed with previous

frames;
end
2D map computation;
Dataset descriptor calculation;

Algorithm 1: Dataset scene descriptor computation algo-
rithm

Fig. 7. For each scene, from top to bottom: Some of RGB images, their
associated depth images, the computed 3D structure and 2D maps

V. EXPERIMENTS AND EVALUATION

A. Building the dataset

1) Data acquisition: As explained in section IV the 2D map
computation process passes through several stages, starting by
frames selection of a recorded depth video, reconstruction of
3D structure and the associated 2D maps. Figure 7 illustrates
the 3D structures and the 2D maps obtained for some indoor
scenes.

To study the exactness of 2D map computation, we com-
pared the relative lengths and angles with the known values
of the ground truth data. Graph of figure 8 shows the average



Fig. 8. Average relative error and standard deviation for computed lengths
and angles

error and the standard deviation for relative length and angles
for a sample of used scenes. The obtained results confirm that
the computed 2D maps are accurate and constitute a useful
feature to represent the area delimiting the observed scenes.

2) Dataset components: Once the 2D map of each
scene is computed, it is described using the geometrical
method given in [34]. The descriptor associated to each
2D map of given 3D scene is characterized by the low
storage required. For example, considering the example
of the 2D map shown by figure 9 (αi for angles and Li

for dimensions of segments lines) , the descriptor is written as:

DS = {{P0(90.8, 1.55), P1(268.9, 0.44), P2(96.2, 2.2),
P3(88.9, 2.87), P4(89.8, 3.98), P5(92.2, 2.51)}, Scene5}.

Each element of our dataset is composed by:
- Identifier of the scene.
- The associated descriptor.
- A set of frames (RGB) and (Depth) chosen for future
improvement of the descriptor.

B. From the Query to the associated recognition of visited
scene

A visually impaired equipped with a head mounted depth
sensor when is visiting a given place whose descriptor is
inserted in the dataset, can interrogate the place recognition
system giving only some depth frames of part of the scene. The
same method used for 2D map computation of the complete
scene is used to compute the partial 2D map associated to
subset of acquired depth frames.

Fig. 9. Attributes of the corners of the computed 2D map model

Fig. 10. 2D map model without processing of the obtained contour segments
(first row), queries 2D maps (second and third rows)

The next step is then to find the best score by matching the
partial descriptor of visited place with complete descriptors of
all scenes models. Figue10, illustrates four 2D maps models
and two 2D map queries associated to depth frames taken at
differents position in each scene.

VI. CONCLUSION AND FUTUR WORKS

We presented in this paper a framework for construction of
visual place recognition dataset using depth sensor on the basis
of the proposed 2D map computation method. We can then
progressively build a dataset of a given region by visiting its
different places and acquiring depth frames covering all their
areas. Their 3D structures and 2D maps are then computed
and used to calculate scenes descriptors. We also gave how
to interrogate this dataset by collecting some depth frames of
visited place.
With the release of this dataset, we expect the appearance of
more localization systems based on the architectural aspects
of scenes, that have the advantage of being invariant to the
frequent changes of scenery brought in daily life caused by the
modification of objects present in scenes. Because the 2D map
used for scene description is independent of scenery changes,
but needs to be improved in order to avoid ambiguity in the



matching of descriptors (query-models). We plan to add to the
2D map descriptor all informations related to doors, windows,
stairs and perhaps some indices on the walls inferred from
RGB images.
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Kimmo and Chen, Xin and Bach, Jeff and Pollefeys, Marc and others:
City-scale landmark identification on mobile devices in CVPR 2011,
pp.737-744.

[15] Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place
recognition by view synthesis. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1808-1817, (2015)

[16] Torii, A., Sivic, J., Pajdla, T., Okutomi, M.: Visual place recognition
with repetitive structures. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 883-890, (2013).

[17] Sturm, Jürgen and Magnenat, Stéphane and Engelhard, Nikolas and
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