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a b s t r a c t

In this paper, we propose a novel part-based approach for two dimensional (2-D) shape
description and recognition. According to this method, first the polygonal approximation
is employed to represent the outline shape by an ordered sequence of parts. Then
using the Least squares model, each part is associated with a cubic polynomial curve.
The obtained curves are normalized that are invariant to scaling, rotation and translation.
Finally, based on shape similarity of resulting curves, a shape similarity between an input
shape and its reference model is defined. A two-step matching algorithm is proposed.
Experiments using several benchmark databases are performed and the obtained retrieval
results demonstrate that the proposed approach is effective as compared to other
matching techniques.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Shape recognition is a very important application area in
computer vision and in multimedia processing particularly.
But building a shape retrieval process requires two impor-
tant components: a shape representation and a matching
algorithm. A good shape matching should be invariant to
affine transformations such as translation, scaling and
rotation. Based on the silhouette of objects, various descrip-
tors and matching algorithms have been proposed during
the past decades [1]. The proposed methods are based on
statistical approaches which use global features extracted
from the shape like moments [2,3] and Fourier descriptors
[4,5], local structural features such as segments and arcs
[6,7] and part decomposition [8]. There are also hybrid
approaches that combine both local and global shape
features such as rolling penetrate descriptor [9,10].

Since the global shape features have some limitations
in shape representation and poor performance in match-
ing shapes partially occluded, we propose in this paper
two new approaches: these are part-based representation
and matching method. The part-based silhouette repre-
sentation we use is built only on curves. Boundary shape is
decomposed into different parts with associated least
squares curves. The shape matching task is divided into
two steps: the first step consists in reducing the search
space by using global features such as invariant moments
of order two. The second one is based on the similarity
between normalized curves.

The rest of this paper is organized as follows. In Section 2,
a brief review of shape representation and matching meth-
ods is presented. In Section 3, details on the proposed
approach of shape representation are described. The asso-
ciated shape matching process based on the defined simi-
larity measure is presented in Section 4. Section 5 presents
the evaluation of the approach and a comparative study
with some existing methods of the state of the art. Finally,
Section 6 gives some conclusions and concludes the paper.
2. Related work

Numerous techniques and algorithms have been pro-
posed in the literature to represent objects based on their
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silhouettes. There are mainly two-kinds of methods:
surface-based and contour-based methods. In general,
surface-based methods extract features from the whole
shape region. Some methods in this kind are Zernike
moments [11,12] and Legendre moments [13,14] which
have demonstrated to achieve excellent performance but
these methods are not suitable for object recognition in
the presence of occlusion. Generic Fourier descriptor [15]
is another well known shape descriptor which uses the
property of Fourier transform and allows multi-resolution
analysis. The authors in [16] proposed another way to
describe shapes using the PCA- based methods. On the
other hand, the contour-based methods explore boundary
shape information. They are more complicated and requir-
ing sophisticated implementations but they are more
suitable than global methods for recognizing partially
visible objects. In this category we find chain codes which
consist of line segments that must lie on a fixed grid with a
fixed set of possible orientations [17], polygonal approx-
imation [18,19] and skeleton approach. In polygonal
approximation approach, a shape is decomposed into line
segments. The polygon vertices are used as primitives and
then some features are extracted for each primitive. The
median axis transformation or skeleton is introduced by
Blum in [20]. It consists to reduce regions to curves that
follow the global shape of an object. Later Sebastian et al.
[21] used this descriptor for shape recognition. Petrakis
and Milios [22] propose to represent shapes as a collection
of segments between two consecutive inflexion points.
The obtained segments are considered at different levels of
shape resolution.

The goal of the above references is to approximate a
shape as a polygon and then the shape is represented by a
set of line segments. This description work well for man-
made objects but it is not suitable for natural objects [1].

Mokhtarian et al. [23] proposed the Curvature Scale
Space (CSS) descriptor, which is based on the maxima of
the curvature zero-crossing boundaries to represent
shapes. CSS representation is invariant under the affine
transformations but it is sensitive to occlusion and convex
shapes [24]. Recently Fotopoulou and Economou [25]
proposed a multi-scale descriptor, which is based on the
sequence of angles formed by the boundary points and
then computed at different scales. Triangle area represen-
tation (TAR) [26] is another type of multi-scale descriptors
based on the signed areas of triangles formed by boundary
points at different scales. Other techniques consist of
approximate the shape contour by differential-Turning
Angle Scale Space function (d-TASS) [27,28], B-splines
[29,30] and height functions [31,32]. The height function
for one sample point is defined by distances of all the
other sample points to its tangent line. The obtained
height functions are then smoothed to represent and
recognize 2D objects silhouettes.

Shape context (SC) [33] is a method for finding corre-
sponding between point sets. Based on the inner distance,
SC is extended to Inner-Distance Shape Context (IDSC) [34].
SC and IDSC have the ability to extract very discriminative
features for a shape and to deal with the inexact corre-
spondence problem in shape matching. However, they
are sensitive to different shape poses and deformations.
Recently, the authors in [35] presented a novel shape
representation based on the local phase quantization.
It transforms the descriptors obtained by the inner distance
shape context, shape context and height functions into a
matrix descriptor using the local phase quantization
descriptor. The extracted matrix descriptors are then com-
pared with the Jeffry distance. Later Hu et al. [36] proposed
a novel contour-based hand shape recognition method
called Coherent Distance Shape Contexts (CDSC), which is
based on shape context and Inner-distance shape context.
This descriptor is robust to hand poses and can be used in
both hand shape and palmprint recognitions. Another
interesting technique for two-dimensional shape matching,
called contour flexibility is developed by Xu et al. [37] in
which the deformable potential at each point of boundary is
represented.

Shapes can also be modeled using part-based repre-
sentation which has played an important role in object
recognition. Organizing shape representations in terms of
parts allows one to separate the representation of the
shape of each individual part from the representation of
the spatial relationships between the parts. This, in turn,
leads to a more robust representation of shape. In [38]
shapes are decomposed into different rectangles. The
locations of the rectangles and their dimensions are
selected by using a dynamic programming. The authors
in [39] propose the use of the curvature zero-crossing
points from a smoothed contour to get the parts, called
tokens. The orientations and the maximum curvatures of
the obtained parts are taken into account to represent
shapes and matching. The method is not invariant to
rotation because of the token orientation [40]. Using a
dynamic programming, Latecki et al. [41] propose a
method for partial shape matching, where local tangents
to silhouettes are used for shape description. In [42] Cui
et al. propose the use of the integral of absolute curvature
as shape descriptor. For matching parts of occurring
curves, they use the normalized cross correlation. The
method is invariant to rotation, scale and translation. Daliri
and Torre [46] proposed a representation for shape-based
recognition based on the extraction of the perceptually
relevant fragments. According to this approach, each shape
is transformed into a symbolic representation, using a
predefined dictionary for the contour fragments, which is
mapped to an invariant high-dimensional space that is
used for recognition.

In this paper, we explore a different approach to object
recognition which is based on the analysis of the boundary
of the shape using normalized curves. The proposed
approach combines the advantages of polygonal approxi-
mation that are suitable for shape partitioning as its vertices
correspond to high curvature points of the shape boundary
and the least squares model that is particularly suitable for
minimizing quadratic errors. The representation of the two-
dimensional curve normalization for shape-based retrieval
is proposed instead of line segments because segments are
useful for man-made objects but they are not suitable if a
shape consists of a curved boundary. The proposed
approach involves three major steps: first, the extraction
of the meaningful parts constituting the boundary shape,
secondly, the modeling of the extracted part using the



N. Laiche et al. / Signal Processing: Image Communication 29 (2014) 556–571558
least squares approximation, and finally the descriptor
matching step.

The main contributions of this paper are the following:
(1)
 Detection of significant boundary parts. In partitioning
a shape boundary, we have used the concave points
extracted from the boundary using the vertices of its
polygonal approximation. These points are those
where two adjoining parts meet.
(2)
 The possibility of exploring the least squares model to
shape representation and recognition. Each part is
associated with its cubic least squares curve. A shape
is then presented as a set of normalized boundary
curves vector.
(3)
 Exploiting the proposed matching algorithm for con-
tour parts (normalized least squares curves) similarity
to establish full shape similarity. This is achieved by
identifying the similar curves between two shapes.
(4)
 The ability of the proposed approach for curve simi-
larity to match shapes under occlusions.
3. Shape modeling

In this section, we propose the steps allowing the
representation of the shape using the polygonal approx-
imation and the least squares model.

3.1. Extraction of contour parts

High curvature points are effective features for shape
representation, reflecting the concave and convex parts of
a shape. The proposed decomposition process is based on
concave points of shapes which can be estimated by
curvature. Selecting concave points as the decomposition
points allows the extracting of the meaningful parts of
shapes. Fig. 1 illustrates an example of shape partition for a
shape dog.

Concave points are located on the boundary using the
polygonal approximation [44]. The concave polygon vertices
are used as boundaries between parts. The whole algorithm
for the decomposition can be summarized as follows:
–
 Detect the high curvature points which are defined as
the vertices of the polygon with specified parameter.
Fig. 1. Shape partition into parts.
–
 Select the concave vertices of the polygon and then
discard the redundant ones that are in the consecutive
points.
–
 Associate concavity measurement at each concave
vertex as the ratio r=d where r is the distance from
the concave vertex to associated chord of length d.
–
 Finally, select only the concave vertices of high degree
of concavity from the remaining points in order to
decompose the boundary into meaningful parts, which
are defined as boundary curves between each pair of
the concave vertices.

3.2. Least Squares curve modeling

In the following, it is assumed that the shape boundary
of an object is represented by a set of ordered parts. The
least squares model is used to modelize each part by a
cubic polynomial curve. All the curves are given relatively
to the minimum area rectangle MAR including the shape
(see Fig. 2).

The MAR associated to a shape is defined as the
smallest rectangle minimizing the area between it and
the convex hull enclosing the shape [45]. For each shape, a
unique convex hull is associated. In the same way, the
MAR is unique for each shape. Changing the orientation of
a shape will change also the orientation of the MAR, but its
dimensions remain unchanged.

Any cubic least squares curve yields a set of critical
points extracted from the discrete curve. These points are
considered as approximation points. To select them and to
ensure that the chosen points can provide a best approx-
imation, a simple strategy is implemented:
–
 Input boundary shape and the corresponding parts set
fPig.
–
 Compute the length of each part Pi and define the
shortest one as distance threshold Dth.
–
 If part length Li is between Dth and 2Dth then the part is
approximated by 1 equally spaced points taken from
the part.
–
 For part length between 2Dth and 6Dth, the approxima-
tion points are 3 spaced.
–
 If the length Li is greatest than 6Dth, then the part is
represented by 4 equally spaced points.

After the selection of the approximation points, the
least squares model is used to model each part Pi by a
cubic polynomial curve PiðxÞ. The curve is defined by

PiðxÞ ¼ ∑
3

k ¼ 0
bkx

k; ð1Þ

where bk; k¼ 0;1;2;3 are the polynomial factors.
The goal is to specify the polynomial factors bk; k

¼ 0;1;2;3 in such a way that minimizing the distance
between the boundary part of shape and its least squared
curve representation

Gðb0; b1; b2; b3Þ ¼MinPi ∑
m

j ¼ 1
jPiðx0jÞ�y0jj2

( )
; ð2Þ



Fig. 2. The minimum rectangle MR including the shape.

Fig. 3. (a) Shape decomposition into parts and (b) Visualization of the new decomposition points.
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The points ðx0j; y0jÞ, j¼1, 2,…,m denote the m approximation
points of the elementary curve Pi of the boundary contour
used for the least squares curve PiðxÞ.

The coordinates ðb0; b1; b2; b3Þ can be obtained using
partial derivatives equations and the Householder factor-
ization algorithm for the matrix arising from the applica-
tion of the least squares model. From Eqs. (1) and (2), the
following system can be written as:

∇G¼ 03

∂G
∂b0

¼ 0
∂G
∂b1

¼ 0
∂G
∂b2

¼ 0
∂G
∂b3

¼ 0

8>>>>>><
>>>>>>:

ð3Þ

The solution for the parameters ðb0;b1; b2; b3Þ is then given
in matrix form as A¼DT D B,

where A and B are of size 4� 1 containing the given data
and the polynomial factors respectively: ai ¼∑m

j ¼ 1y
0
jx

0i
j ,

i¼ 0;1;2;3: The m� 4 matrix D contains the powers of xi'
as shown below

D¼

1 x00 x020 x030
1 x01 x021 x031
: : : :

: : : :

: : : :

1 x0m x02m x03m

0
BBBBBBBBB@

1
CCCCCCCCCA
; B¼

b0
b1
b2
b3

0
BBBB@

1
CCCCA; A¼

∑
m

j ¼ 1
y0j

∑
m

j ¼ 1
y0jxj'

∑
m

j ¼ 1
y0jx

02
j

∑
m

j ¼ 1
y0jx

03
j

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
In the practical modeling application, we have to deal with
the parts that have many points with the same abscissa, as
shown in Fig. 3(a). For these parts, the least squares model
will get fail. To address this problem, new decomposition
points will be located to segment these parts. An example of
this case is shown in Fig. 3(b). The red circles illustrate the
new decomposition points on the parts in question. In Fig. 3
(a), the blue points illustrate the concave vertices which are
used to decompose the original boundary shape into parts

3.3. Curves normalization

Translation invariance is used as the first stage of normal-
ization. Invariance to rotation is ensured using the MAR. The
MAR of shapes are adjusted such as the length of the
rectangle coincides with the Y-axis of the image and its
width with the X-axis. To achieve invariance to scale change
for the curves, we carry-out a transformation on the
obtained least squares curves. Let Pi¼fX1 ¼ ðx1; Piðx1ÞÞ;
:::::::;Xn ¼ ðxn; PiðxnÞÞg be n curve points obtained through
the least squares approximation of the part Pi, where PiðxÞ
represents the cubic least squares curve associated to the
part Pi. The transformation is defined by mapping each point
Xi to X0

i ¼ ðxi=Max; PiðxiÞ=MaxÞ for i¼ 1;2; :::::::;n. Max repre-
sents the maximal distance from the centroid to the boun-
dary shape.

4. Shape matching

Matching between query shapes and models is
achieved by comparing their features. The features in our
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approach are related to the second order of geometric
moments and the normalized curves.

4.1. First search

Due to the size of the database of normalized curves, for a
given query shape, we first reduce the search space. Then a
detailed measure of match is computed only on the corre-
sponding shapes. The pþq order normalized moments of
order up to 2 are taken into account for reducing the search
space

Mpq ¼
1

M00
∑
x
∑
y
ðx�xGÞpðy�yGÞqf ðx; yÞ ð4Þ

where the area of a shape is M00, ðxG; yGÞ is the shape0s
centroid and f ðx; yÞ is the mass distribution of the object.

Based on this, the followed procedure is performed:
given two global parameters I1 and I2, a threshold ε is set
so that all models satisfying I1rε and I2rε are discarded.

The two parameters are defined such as

I1 ¼
L0
L

� � M20
M0

20

� �
if : L!L0

L
L0

� �
M0

20
M20

� �
otherwise

8><
>: ; ð5Þ

I2 ¼
L0
L

� � M02
M0

02

� �
if : L!L0

L
L0

� �
M0

02
M02

� �
otherwise

8><
>: ; ð6Þ

where L (resp. L0) represents the arc length of the query
shape (resp. model shape).
Class 1 

Class 2 

Class 3 

Class 4 

Class 5 

Class 6 

Class 7 

Class 8 

Fig. 4. ETH-80 database. Each row s
ðM02;M20Þand ðM0
20;M

0
20Þare the moments of order 2 of

the query and the model shape respectively.
Then we define the similarity measure between the

query and the selected models shapes, represented by
their normalized curves.
4.2. Shape similarity

In the sequel, the process of shapes matching using
their least squares curves representation is addressed. Two
shapes are considered similar if they share similar curves
according to an appropriate similarity measure.
4.2.1. Shape similarity of curves
Two normalized curves P and P0 of a query shape Q and

a reference shape M respectively are considered similar if
the similarity measure defined below is under a threshold,
otherwise they are different.

Let fa1; a2; :::::::; ang and fb1;b2; ::::::::; bn0 g be the ordered
points of the least squares curves constituting the curves P
and P' respectively. The similarity between the two curves
is defined as follows:
�

how
For each point ai of P, we compute min
bj AP0

jjai�bjjj,where

jj:jj is a norm defined on the point set of the curve such
as the L2 norm.
�
 Then we compute the distance from the curve P to the
curve P0 as the average of all the minimum distances
s one category of object.
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are computed previously

DP;P0 ¼ 1
length ðpÞ ∑

n

i ¼ 1
min
bj AP0

ai�bj ;jj
���� ð7Þ

where length ðPÞ represents the length of curve P.

�
 In the same way, we compute

DP0 ;P ¼
1

length ðP0Þ ∑
n0

i ¼ 1
min
aj AP

bi�aj ;jj
���� ð8Þ

with length ðP0Þis the length of curve P0.
The matching between the two normalized curves P
and P0 is valid when the values of the two distances DP;P0
le 1
pes decomposition and their description.
and DP0 ;P are lower than the same threshold. This threshold
is determined experimentally after several tests.

4.2.2. Computing shape similarity
Let Q ¼ tðP1; :::::::; PrÞ be a given query shape and let

M¼ tðP0
1; :::::::; P

0
sÞ a model shape where ðPiÞi ¼ 1;:::;r and

ðP0
iÞi ¼ 1;:::;s represent the normalized curves corresponding,

respectively, to query Q and model M. The similarity score
between the two given shapes is defined by the number of
similar curves as follows:
�
 The curves P1; :::; Pr are compared to the curves P0
1; :::; P

0
s

according to their order using the measure similarity
defined by the Eqs. (7) and (8).
�
 Count the number of similar curves.
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�
 Compute the first score V1 as the ratio

V1 ¼
N

minðr; sÞ ; ð9Þ

where N represents the number of similar curves
between Q and M.
�
 Wemake a circular permutation on the index of the curves
of the shape which has more curves, then we repeat the
previous steps.
�
 After ðmaxðr; sÞ�1Þ permutations, the score SðQ ;MÞ
between the query shape and the model shape is
defined by

SðQ ;MÞ ¼MaxðV ; ::::::::::;VMax ðr;sÞÞ; ð10Þ
1

Queries Retrieved   Shapes

100% 100% 85% 

     100% 81% 81% 

     94% 80% 70% 

70% 63% 63 % 

65%      62% 61% 

77%       72% 61% 

100% 100%   100% 

86%     70%   68%      5

78%        68%       62%      

100% 100% 100% 

Fig. 5. Matching scores for
where V1;V2; :::::::; and VMax ðr;sÞ are the different scores
computed at each step of comparison between the two
sets of curves corresponding to Q and M:
5. Experimental results

In this section, we present some of our experimental
results through several examples. Our approach is tested on
standard shape matching databases used in a number of
shape retrieval systems: the ETH-80, Kimia-99, Kimia-216 and
MPEG-7 databases.
75% 75% 62% 62% 

81% 71% 66% 63% 

62% 52% 47%       47% 

60% 54% 54% 54% 

60%     57% 54% 52% 

60% 55% 55% 50% 

81% 81% 100% 77% 

8%       54%     52%      50% 

 61%       53%     51% 46% 

91% 85% 85% 78% 

some results.
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5.1. ETH-80 database

The ETH-80 database contains eight classes of objects
with ten objects per class [46]. Fig. 4 displays different
shapes for each class. Each object is represented by some
views spaced evenly over the upper viewing hemi-
sphere. The shapes of the database are selected such
that are significant in order to enable unambiguous
evaluation.
80% 69% 69% 

69%     69%     65%    

       71%       71%      71%    

     75% 72% 72% 

62% 58% 57% 

82% 76% 64% 

57% 53% 53% 

Fig. 6. Some example queries are shown in the left column

Fig. 7. Partial que
The choice of the threshold values has an impact on
the performance of the proposed retrieval approach. After
several experiments, the combination of the values: ε¼ 0:9
for the first search and 0.15 for shape similarity of curves
shows the best retrieval results.

5.1.1. Least squared curves
Table 1 presents two examples of shapes description

and their associated least squares curves. Column 1
59% 59% 57% 55% 

 65%      65%     65% 65% 

    57%       57%       57%      50% 

72% 71% 71% 69% 

57% 54% 52% 50% 

47% 47% 35% 35% 

50% 50% 42% 41% 

with the most similar retrieved shapes for each one.

ry shapes.



   34%    34%   34% 
 33% 

47% 47% 47% 44% 

        29%          22%      21%     21% 

        25%          25%       25%   25% 

      40%       40%       40%  20% 

25% 25% 25% 25% 

        14%          12%        10%  10% 

Fig. 8. The most similar shapes retrieved for each of the partial test queries.

Table 2
Recognition rates for some approaches for each category of object.

Approaches Apple Car Cow Cup Dog Horse Pear Tomato Average

Robust Symbolic representation [43] 82.53 98.41 92.04 98.9 86.31 90.91 90.03 73.14 89.03
Cont greedy [46] 77.07 99.51 86.83 96.10 81.95 84.63 90.73 70.24 86.40
PCA masks [46] 88.29 100 75.12 96.10 72.20 77.80 99.51 67.80 83.41
PCA gray [46] 88.9 97.07 62.44 96.10 66.34 77.32 99.76 76.59 82.99
Leg [47] 95 65 65 85 85 95 95 65 81
HU [47] 85 65 65 65 65 85 75 65 71
Proposed approach 97.5 99.37 91.87 100 80.93 89.37 100 95 94.25

Table 3
Recognition rates for some different approaches.

Algorithm Recognition rate (%)

Decision tree [43] 93.02
Robust symbolic representation [43] 89.03
Kernel-edit-distance [48] 91.33
Height functions [32] 88.72
IDSCþDP [36] 88.11
Fragment-based 86.40
approach [43]
SC greedy [46] 86.40
PCA masks [46] 83.41
Legendre [47] 81
Proposed approach 94.25
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presents the partitioning shape and the second one
gives the obtained least squares curves.
5.1.2. Matching results
The experiments for shapes matching using the

ETH-80 database can be grouped into three series.
Fig. 5 shows some qualitative results on the perfor-
mance of the proposed approach from the first series
of tests. The left column represents the query shape.
For each query, the top most similar shapes are
depicted in every row. This figure shows that in most
cases, the retrieved results belong to the same
query class.



Fig. 9. Kimia-99 database.

Table 4
Retrieval results on the Kimia-99 database for some techniques in the literature.

Approaches 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Total

Shape index [49] 43 51 58 52 52 49 51 47 45 44 492
ECCobj2D. s [49] 84 68 65 67 56 57 51 50 41 31 570
ECCobj2D. h [49] 87 74 66 64 49 52 45 38 33 33 541
HC [50] 96 84 78 77 78 65 68 58 60 48 712
Proposed approach 97 86 87 75 76 70 55 59 46 44 695
ECCobj2D [49] 94 85 81 73 81 73 64 59 56 35 701
Bernier and Landry [51] 97 94 92 85 74 73 65 54 43 36 713
Shape context [26] 97 91 88 85 84 77 75 66 56 37 756
Gen. model [52] 99 97 99 98 96 96 94 83 75 48 885
Shock edit [21] 99 99 99 98 98 97 96 95 93 82 956
IDSC [27] 99 99 99 98 98 97 97 98 94 79 958
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The second series of tests are conducted to evaluate
the performance of our system to scale change and
rotation. For this purpose, we select some shapes
randomly from the ETH-80 database. The selected
shapes are scaled and rotated. Fig. 6 lists the retrieval
results.
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As can be seen in Fig. 6, the proposed approach possesses
the important property of affine transformations.

Finally, in order to test the ability of the proposed
approach to deal with the partial occluded shapes, some
Fig. 10. Kimia-21
tests are performed with shapes partially occluded. These
partial shapes, each consist of a portion of one database
shape (see Fig. 7(a)). The seven shapes illustrated in Fig.7
(b) are used as test queries.
6 database.
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For each query, the four most matched shapes retrieved
by the proposed approach are shown in Fig. 8.

It can be observed from Fig. 8 that for different degrees
of occlusion our algorithm can classify correctly most of
Fig. 11. Retrieval rates per class obtained by the proposed algorithm for
the Kimia-216 database.

Fig. 12. Some examples fro
the shape queries on occlusion. This is due to the use of the
perceptual parts constituting the shape boundary. For the
last two queries: the occluded apple is identified as a cup
with a maximum score of similarity of 25% and the last one
which is an occluded pear is classified as an apple with a
maximum score of 14%. The mismatches are mainly due to
the similarity between the parts constituting the shapes
after occlusion. Our shape approach uses curves, so it is
possible for different shapes to have some similar curves.
m MPEG-7 database.

Table 5
Performance results using the precision at 10 measures.

Algorithm Retrieval rate

CS 0.36
Fourier 0.37
MI 0.40
MS Fractal 0.62
SSD 0.72
SSDþGF 0.85
Proposed approach 0.64



Table 6
Performance results using the precision at 40 measures
for MPEG-7.

Algorithm Retrieval rate

CS [54] 0.31
Fourier [54] 0.30
MI [54] 0.38
MS Fractal [54] 0.54
SSD [54] 0.61
SC [55] 86.8
IDSC [55] 85.4
DDGM [55] 80.03
Planar graph cuts [55] 85
Triangle area [55] 87.23
Shape-tree [55] 87.7
ASC [55] 88.3
Layered graph [55] 88.75
Contour flexibility [55] 89.31
AIR [55] 93.67
Proposed approach 50.76

Fig. 13. Some retrieval rates per class for the MPEG-7 shape database.
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5.1.3. Comparative study
In order to demonstrate the performance of our

approach, a comparative study with some previous algo-
rithms has been performed. The adopted test mode is the
leave-one-object-out cross-validation. In each category,
every shape is given as a query to the system. Recognition
is considered successful if the correct category is assigned
[43]. The final recognition rate is achieved by averaging
over all test objects.

In Table 2, the average retrieval rates over the whole
ETH-80 database for the proposed approach and some
different methods are presented in the column “Average”.
The details of the recognition rates for each class are
indicated in columns 2–9. From the experimentation
summarized in this table, we observe that the largest
recognition rate of 100% has been achieved for the classes
cup and pear. For the shape classes apple, car and tomato
the recognition rates are greater than 95%. This is due to
the rough proposed description based on curves. On the
other hand, as the proposed approach describes explicitly
the significant parts constituting the outline shapes, it is
possible for different shapes to have some similar curves
and also the performance may decrease if the shape
classes have some similarities as shown for the classes
cow, dog and horse.

Table 3 below lists the recognition rate of our approach
and some others algorithms reported for the ETH-80
database [46]. The proposed approach achieves a 94, 25%
recognition rate; it is among the best proposed methods
applied to this database and cited in [32,43].

5.2. Kimia-99 database

The Kimia-99 database consists of 99 shapes, grouped
in 9 classes with 11 shapes in each class [21], as shown in
Fig. 9. In this database, there are some visual transforma-
tions: occlusions, deformation and missing parts. In the
experiment, each shape is used as a query and the first ten
best matches, excluding the query, are retrieved.

The correct matches for each ranking position, over all 99
shapes are counted. A comparison of performances between
some different approaches cited in [49] is shown in Table 4,
summarizing the number of top 1–10 closest matches.

As shown in Table 4, our approach performs well
relatively to recent methods [49,50]. Although the perfor-
mance of our approach is lower than that of methods
[21,27,26,51,52], our approach is simple and gives a rough
description of shapes by taking into account only the
boundary information.

5.3. Kimia-216 database

Kimia-216 provided by Sebastian et al. [21] consists of
216 shapes, grouped in 18 classes with 12 shapes in each
class as shown in Fig. 10. In order to study the retrieval
performance, all the 216 shapes have been considered as
query shapes and the top 12 retrievals are recorded. The
value 12 is chosen, as there are 12 shapes per class.
Retrieval rate of 73.95% is achieved.

The retrieval rate per class is reported in Fig. 11.
As can be shown from Fig. 11, the proposed approach
has the largest capability to retrieve relevant shapes of
100% for the classes Fork, Fountain and Glass. This result
shows the ability of the proposed approach to retrieve
shapes partially occluded, once most of the shapes in this
database are partially occluded.

5.4. MPEG-7 database

The MPEG-7 database consists of 1400 shapes, grouped
in 70 classes with 20 shapes in each class [53]. Fig. 12
shows some examples of these shapes. The performance of
the proposed retrieval approach is compared with other
methods in the literature: Contour Saliences Descriptor (CS),
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Fourier, Moment Invariants (MI), Multi-scale Fractal
Dimension, Shape Saliences (SSD) and shape saliences
descriptor with global features. The comparative study is
evaluated using the retrieval rate at 10 measures. Each
shape is used as a query and the number of similar shapes
which belong to the same class is counted in the top 10
matches.

Table 5 lists the reported results of these different
approaches, cited in [54], on this database.

The second measure of accuracy used in our experi-
mental evaluation is the normalized bull0s-eye measure:
each shape is used as a query and the number of similar
shapes which belong to the same class are counted in the
top 40 matches. This measure is used only for retrieval
performance using the MPEG-7 database. Table 6 sum-
marizes some results cited in [54,55].

We observe that the best descriptor is given by the AIR
descriptor which combines different shape similarities [55].
Shape retrieval using MPEG-7 database is not a simple task,
as there is a high similarity between shapes from different
Fig. 14. Top 10 retrieval results for selected shape queries with mismat
classes and visually dissimilarity in the same classe. Note that
the methods cited in [55] are contexts-based approaches and
the proposed approach provides a different way of repre-
senting shapes based only on the curves constituting their
boundaries.

Fig. 13 shows some retrieval rates per classe counting in
top 10. Fig. 13(a) shows that the highest rate of 100% has
been achieved for the classes Glass and Teddy. For the
shape classes Face, Fork, Carriage, Fountain, Children,
Truck, Horseshoe, Rat, Car and Hcircle the retrieval rate
is greatest than 92.5%. On the other hand Fig. 13(b) shows
some shape classes which have low rate.

This is due to that some shapes are visually similar to
shapes of other classes. Furthermore, there are some
shapes that are visually dissimilar from other shapes of
their own class. As the proposed approach is based on
different parts constituting the shape boundary, the per-
formance may degrade if there is major similarity between
shapes as can be seen by the examples illustrated below
(see Fig. 14).
ches: (a) and (b) Deer shapes, (c) Jar shape and (d) Horse shape.
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Fig. 14 shows the top 10 retrieval results for Deer, Jar
and Horse. It presents also the mismatches within top 10.
The retrieved mismatches are enclosed by rectangular
boxes. The shapes inside the box do not belong to the
query class. The mismatches are due that our approach
deals with the different curves constituing the shape
boundary.

Regarding the application, this is not a bad result, since
the shapes share some similar parts effectively, however
considering that the performance evaluation considers
only the shapes belonging to the same class as the shape
query, the retrieval rate is penalized.
6. Conclusion

The goal of this paper is the description of two-
dimensional objects based on the analysis of their bound-
aries. For this purpose, first the polygonal approximation is
used in order to decompose the outline shape into a
sequence of parts, second, the least squares model is applied
to approximate each part by a polynomial curve. Finally the
representation is transformed into invariant feature. The
transformation is done by using distances from the shape0s
centroid to boundary. Based on the proposed shape similar-
ity of normalized curves, our approach allows us to compute
similarity measure between shapes. The experimental
results on popular 2D shape matching benchmark databases
show that the proposed approach is effective for shape
matching and retrieval.

The obtained results have demonstrated invariance of
our approach to some affine transformations such as
rotation and scaling changes.

The use of an explicit description of different parts
constituting the shape boundary enables our approach to
overcome the partial occlusion.

Although the performance of the proposed approach is
not the best one, it may be one of the most straightforward
and feasible methods.
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