
After online publication, subscribers (personal/institutional) to this journal will have
access to the complete article via the DOI using the URL:

If you would like to know when your article has been published online, take advantage
of our free alert service. For registration and further information, go to:

.

Due to the electronic nature of the procedure, the manuscript and the original figures
will only be returned to you on special request. When you return your corrections,
please inform us, if you would like to have these documents returned.

Dear Author

Here are the proofs of your article.

• You can submit your corrections online, via e-mail or by fax.

• For online submission please insert your corrections in the online correction form.

Always indicate the line number to which the correction refers.

• You can also insert your corrections in the proof PDF and email the annotated PDF.

• For fax submission, please ensure that your corrections are clearly legible. Use a fine

black pen and write the correction in the margin, not too close to the edge of the page.

• Remember to note the journal title, article number, and your name when sending your

response via e-mail or fax.

• Check the metadata sheet to make sure that the header information, especially author

names and the corresponding affiliations are correctly shown.

• Check the questions that may have arisen during copy editing and insert your

answers/corrections.

• Check that the text is complete and that all figures, tables and their legends are included.

Also check the accuracy of special characters, equations, and electronic supplementary

material if applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious

consequences. Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally

introduced forms that follow the journal’s style.

• Substantial changes in content, e.g., new results, corrected values, title and authorship are

not allowed without the approval of the responsible editor. In such a case, please contact

the Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

• Your article will be published Online First approximately one week after receipt of your

corrected proofs. This is the official first publication citable with the DOI. Further

changes are, therefore, not possible.

• The printed version will follow in a forthcoming issue.

Please note

http://www.link.springer.com

http://dx.doi.org/10.1007/s11042-017-4998-x

http://dx.doi.org/10.1007/s11042-017-4998-x


AUTHOR'S PROOF

Metadata of the article that will be visualized in OnlineFirst

Article Title Shape retrieval through normalized B-splines curves

Article Sub-Title

Article Copyright
Year

Springer Science+Business Media, LLC 2017
(This will be the copyright line in the final PDF)

Journal Name Multimedia Tools and Applications

Corresponding
Author

Family Name Laiche
Particle
Given Name Nacéra
Suffix
Division Computer Science Department
Organization University of Science and Technology, Houari

Boumediene (USTHB)
Address Algiers, Algeria
e-mail nlaiche@usthb.dz

Author

Family Name Larabi
Particle
Given Name Slimane
Suffix
Division Computer Science Department
Organization University of Science and Technology, Houari

Boumediene (USTHB)
Address Algiers, Algeria
e-mail slarabi@usthb.dz

Schedule

Received 25 September 2016

Revised 2 May 2017
Accepted 3 July 2017

Abstract This paper proposes a new technique for 2D shape modeling and retrieval based
only on curves defined from shape boundary. Firstly, a shape representation
system is build based on the decomposition of the outline into its constituent parts
and their geometric description. The process decomposition is done using high
curvature points located along the boundary. These obtained parts are then
described by parametric curves using the B-spline approximation and normalized
in order to eliminate scaling transformation. Finally, the resulting curves allow
matching of shapes and retrieving that is robust to rotation, scale change and
deformation. Experiments conducted on a variety of shape databases including
Kimia-99, Kimia-216, MPEG-7 and our database created from a selection of
ETH-80 shape database, illustrate the performance of the proposed approach

_____________________________________________________________________________________

Please note: Images will appear in color online but will be printed in black and white._____________________________________________________________________________________



AUTHOR'S PROOF

when compared with existing algorithms in literature. Obtained results are
presented and discussed.

Keywords
(separated by '-')

Outline shape - Contour matching - Curvature points - B-spline
approximation - Similarity measure - Shape retrieval

Foot note
information



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

1
2
3

4Shape retrieval through normalized B-splines curves

5 Q1Nacéra Laiche1 & Slimane Larabi1

6Received: 25 September 2016 /Revised: 2 May 2017 /Accepted: 3 July 2017
7# Springer Science+Business Media, LLC 2017

8

9Abstract This paper proposes a new technique for 2D shape modeling and retrieval based
10only on curves defined from shape boundary. Firstly, a shape representation system is build
11based on the decomposition of the outline into its constituent parts and their geometric
12description. The process decomposition is done using high curvature points located along
13the boundary. These obtained parts are then described by parametric curves using the B-spline
14approximation and normalized in order to eliminate scaling transformation. Finally, the
15resulting curves allow matching of shapes and retrieving that is robust to rotation, scale change
16and deformation. Experiments conducted on a variety of shape databases including Kimia-99,
17Kimia-216, MPEG-7 and our database created from a selection of ETH-80 shape database,
18illustrate the performance of the proposed approach when compared with existing algorithms
19in literature. Obtained results are presented and discussed.

20Keywords Outline shape . Contourmatching . Curvature points . B-spline approximation .

21Similaritymeasure . Shape retrieval
22

231 Introduction

24One of the most important tasks in computer vision is measuring the similarity between two
25objects. Objects have various information such as color, shape and texture. Among these
26features, shape is the most widely used because it provides the main geometrical information
27that represents an object [17]. In the field of two-dimensional shape representation, there are
28two main categories: contour approaches and region approaches. Region-based methods rely
29on global features extracted from the shape such as geometric invariants [41], moment analysis
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30[47]. Since region-based methods don’t take into account details, they are robust to noise, little
31occlusion or deformation. Contour-based methods generally describe a shape by boundary
32information. Among them, we find Chain codes [30], curvature scale space [33]. Splines [10,
3324] and polygons approximation [31] are also another type of boundary-shape methods which
34have been used for object representation. The B-splines curves possess very attractive proper-
35ties such as smoothness, continuity and invariance to affine transformations. However there are
36few works have used the B-splines representation in a two-dimensional image analysis [34].
37Therefore, this paper introduces a new boundary-based shape representation and descrip-
38tion based on B-splines curves. The key idea is to exploit the geometric information embedded
39in shape boundary by analysing the shape boundary with the B-splines curve representation.
40For this, we propose first to extract the discriminative parts of the outline. Then the B-splines
41representation is applied to modelize each part by parametric curve. This approach is an
42extension to the approach previously presented [23] but we will present more robust tech-
43niques and more test results including a match example of measuring the similarity between
44shapes based on curve to curve matching. The proposed approach is invariant to geometric
45transformations and allows more robustness to occluded shapes and noise. Also we show that
46by using our proposed approach correct recognition is possible under partial occlusion and
47deformation.
48The rest of this paper is organized as follows. The next Section presents a review of some
49related work on existing shape representation methods. Details on the proposed approach are
50described in Section 3. Experimental results are presented in Section 4. Section 5 concludes the
51paper.

522 Related work

53Shape representation and matching is a current and difficult task in content-based image
54retrieval. A variety of algorithms have been proposed in the literature for 2D shape analysis
55and most of them can be classified into two categories: region-based methods and contour-
56based methods. Region- based methods extract features from the whole shape region without
57details as segments and dominant points.Therefore, they are easy to compute and robust to
58noise and shape distortions. Common region-based methods use moments to represent shapes
59such as Zernike moments [32] and Legendre moments [47] which have been demonstrated to
60achieve excellent performance. The major limitation is that the descriptors are sensitive to local
61changes and are not robust against occlusions. Region-based methods also include generic
62Fourier descriptor [50] and multi-scale Fourier-based description [12].
63On the other hand, contour-based methods describe a shape by its outline information.
64These methods are more complicated, requiring sophisticated implementations but more
65suitable than global methods for recognizing partially visible objects. Different techniques
66are proposed such as spectral descriptors which include wavelet descriptors [13, 14, 22]. A
67curvature scale space (CSS) method is proposed in [33] which is based on finding the maxima
68of curvature zero-crossing points of boundaries curves at different scales to represent shapes.
69CSS has shown robustness under the similarity transformations. Scaling, orientation changes,
70translation and even noise can be easily handled by the representation and its associated
71matching algorithm but it is sensitive to occlusion. Multi-scale convexity concavity (MCC)
72representation [1] is another interesting multi-scale descriptor for shape representation and
73matching. The method is based on the relative displacement of a boundary point with respect
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74to its position in the precedent scale. Shape matching is achieved using dynamic programming.
75Authors in [2] proposed the use of the areas triangles formed by the boundary points at
76different scales. The representation is robust under geometric transformations and modest
77occlusions.
78The medial axis transform or skeleton is a set of idealised lines which aims to give the part
79structure of the shape in a graph structure [37]. This description is used by Sebastian et al. for
80shape matching [42]. In their proposed approach a shock graph is created based on the medial
81axis segments and used for matching. Recently, a new similarity is learned through graph
82transduction by X. Bai et al. [6]. Wang et al. [45] proposed the use of height function (HF) for
83shape representation and matching. In their method, the boundary is given by a set of sample
84point. A height function is defined for each sample point using the distances of all the other
85points to its tangent line.
86In [35], the shape context descriptor (SC) is developed to represent a shape by a set of
87reference points. A shape context at a reference point finds the correspondences between point
88sets. Corresponding points on two similar shapes have similar shape contexts. Ling et al. [29]
89extended the SC descriptor with the inner distance to propose a new descriptor called inner
90distance shape context (IDSC). The shape matching and comparison is achieved using
91dynamic programming. Later, Nanni et al. [36] exploit the local phase quantization descriptor
92to transform the descriptors obtained by the inner distance shape context, shape context and
93height functions into a matrix descriptor. The comparison between the extracted matrix
94descriptors is done with the Jeffrey distance. Based on SC and IDSC, Hu et al. [18] present
95a new descriptor called Coherent Distance Shape Contexts (CDSC) which can well deal with
96both hand shape and palm print recognitions. Recently, a distinct multiscale shape context
97(MSC) descriptor is considered by Li et al. [28] for deformable shape representation and
98retrieval. MSC is based on multiscale context, local features and soft assignment.
99Based on both local and global shape features, a rich invariant shape descriptor is proposed
100in [48] for shape representation, matching and retrieval, the representation uses three types of
101invariants to extract shape characteristics from different aspects. The matching is achieved
102using the dynamic programming algorithm.
103A major problem in object recognition is the variability in the appearance of an object due
104to different viewpoints or articulations of parts. So, organizing shape representations in terms
105of parts allows one to separate the representation of the shape of each individual part from the
106representation of the spatial relationships between the parts. This, in turn, leads to a more
107robust representation of shape. Latecki and Lakamper used the correspondence of visual parts
108for shape contours as a cognitively motivated shape similarity measure [25]. In their approach,
109a discrete curve evolution method is used as a filter for shape comparison that is a base for
110shape decomposition into visual parts. In [4], informative patches in images are derived from
111the training examples and are used as fragments. Then some features are extracted from each
112fragment and used to estimate the similarity between shapes.
113Other techniques consist of approximate the shape contour by a polygon [7] and B-splines
114[10, 23]. A polygonal approximation of shape contours is considered for shape representation
115in [7]. In this approach, contours are divided into equal segments and all segments are used as
116local features for shape matching. Daliri and Torre [11] proposed a representation for shape-
117representation based on the extraction of the perceptually relevant fragments. According to this
118approach, each shape is transformed into a symbolic representation, using a predefined
119dictionary for contour fragments which is mapped to an invariant high-dimensional space
120used for recognition.
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121The B-splines curves are widely used for curve representation of the object boundaries [10, 16,
12220, 38, 49] because they possess very attractive properties such as smoothness, continuity, affine
123invariance and local controllability. Although these methods are based on either the calculation of
124sum error of the corner points [38], the discrete re-sampled points on the B-spline curve [49], or a
125re-construction of B-splines with a fix number of control points [20]. These methods are noise
126sensitive and do not employ the property of continuous curve description of the B-splines.
127In the above references, the B-splines are used to extract features from boundary or to curve
128representation. There are very few methods have been devoted to B-splines for curve matching
129and recognition [34].
130In this paper, a method for shape representation and matching based on normalized B-
131splines curves and perceptual feature points located along the shape boundary is developed. In
132our algorithm for 2D object representation, we propose to combine the advantages of B-splines
133that are continuous curve representation and the geometric properties of a contour. The
134matching of two shapes consists to establish the optimal correspondences of normalized
135curves by using Chebyshev distance.
136Our main contributions are following: Firstly, boundary shape of an object is decomposed
137into discriminative parts in order to understand and to give a rough description of the shapes.
138The decomposition process is based on perceptual feature points, which are estimated by
139curvature. Or when dealing with noisy shapes, the location of high curvature points can be
140difficult. So in order to locate significant points and to reduce false ones, we extend our work
141initially proposed in [23] by adding Gaussian filter that lead to better location then better results.
142Secondly, cubic B-splines curves are used to modelize the obtained parts and then normalized in
143order to eliminate scale change. Normalization is based on global features. Thirdly, an efficient
144matching technique that takes into account the orientation of curves is proposed which gives
145more accurate and offers more elasticity than that reported in our previous work [23]. Finally,
146several experiments are performed to evaluate the performance of the proposed approach for
147shape recognition using the different kind and commonly used databases.

1483 Shape description

149The main idea is to use polynomial pieces to describe the parts of outline shape. The advantages
150are obvious: this representation is rich, compact and local in the sense that a change of a control
151point in the original curve does not affect the representation entirely. The proposed algorithm
152for shape representation is done in three steps: first, the method preprocessing is used to smooth
153noisy points from the boundary shape, second, shape decomposition. Third, the obtained parts
154are modeled using the B-splines representation and their curvature points.

1553.1 Preprocessing step

156– Noise cancellation

157To improve the quality of the image for an efficient description and then best matching, a
158preprocessing method is applied which consists of noise cancellation. Various techniques have
159been proposed in the literature for noise cancellation like mean filter, Gaussian filter, Median
160filter, etc. In this paper, Gaussian filter is used in such a way that the representation be less
161sensitive to noise (see Fig.1).
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f x; yð Þ ¼ e−
x2þy2ð Þ
2σ2 ð1Þ

163164

165– Shape orientation

166In order to ensure the invariance to shape rotation, the minimum rectangle enclosing the
167shape is used [15] as shown in Fig. 2. And then the description is computed relatively to this
168rectangle after its rotation so as the length coincides with rows and the width with columns.
169The rotation is done via the transformation:

x ¼ x:cos θð Þ−y:sin θð Þ; y ¼ x:sin θð Þ−y:cos θð Þ ð2Þ
170171where the shape rotation θ is the rectangle’s angle of inclination.

1723.2 Part decomposition step

173Outline decomposition into parts can be started by taking into account some features of
174boundaries which exert a crucial role in attracting the attention of an observer. Exam-
175ples of such features are the high curvature points. These points give important clues
176for shape representation and analysis, because they can be used as local geometric
177measurement. The proposed algorithm for shape decomposition is based on the concave
178points. These points will be used as junction points and can be estimated by curvature.
179There are various techniques for estimating higher curvature points along the shape
180boundary. In the present work, the high curvature points are detected by using the Chetverikov’s
181algorithm [9] which needs a pair of parameters: (d , α), where d represents the distance

Fig. 1Q3 Original shape and its smoothed shape

Fig. 2 The minimum rectangle MR encompassing shape
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182between points in the shape boundary and α quantifies the curvature. In the following we will
183give the full algorithm that might decompose a shape into its different constituent parts:

184– The first step consists of locating the high curvature points along the smoothed contour by
185using Chetverikov algorithm, Then we detect and localize the concave points.
186– In the second step, we set a Euclidian distance δ as a critical threshold in order to eliminate
187the redundant concave points. The points separated by δ are deleted.
188– Finally, the last step consists in selecting the most significant concave points. The
189curvature points obtained from the previous step are not all interesting points; we
190eliminate unwanted ones which correspond to those of low degree. Only curvature
191points with high degree of concavity are kept. There are several methods of
192approximating concavity degree. In our approach, the degree of each point is
193estimated as the ratio d/l where d is the distance from the concave point to
194associated chord of length l (see Fig. 3). Estimate the degree of concavity of each
195selected point.

196Figure 4 shows some higher curvature points of some shapes.
197After these different steps, we obtain the shape represented by a set of concave points.
198These points are used to split outline shape into a collection of curves Ci that can be combined
199to yield the shape as illustrated by Fig. 5.

2003.3 Parts modeling

201The description of the shape is the set of descriptions of its different parts by using
202the B-splines curves. B-splines representation is compact, robust to noise and has
203local controllability. The B-splines model is used to approximate each part Ci by a
204parameterized cubic B-spline curve without loss of information. This approximation is
205done such as the polynomial functions are associated to connected curves. The degree
206three is chosen instead of a higher degree because it has local differential geometry
207properties.
208The B-spline approximation can be determined yielding some control points Pi = (xi, yi);
209i = 0 to n extracted from the discrete curve. The parametric B-spline curve C(t) of order p is
210defined by:

C tð Þ ¼ ∑
n

i¼0
Ni;p tð ÞPi: ð3Þ

211212

Fig. 3 Concavity and convexity
degree
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F 213Where Ni , p(t) are the splines basis functions of orderpdefined over a knot vector U = {u0,

214u1, ..…, un + p + 1} [40]. The knot vector Uconsists of non decreasing real valued knots and
215mostly its first and last knot are repeated with multiplicity equal to order pas follows:

u0 ¼ ⋯ ¼ up ¼ 0; unþ1 ¼ ⋯ ¼ unþpþ1 ¼ 1:

216217218In practice, it is extremely difficult to specify an initial B-spline curve with a suitable number
219of control points distributed appropriately so as to yield a satisfactory approximating curve.
220Different solutions are proposed and the most of them use an iterative process for adjusting the
221number of control points and the knots in order to obtain a best approximation of the shape [44].
222Based on square distance minimization, their approach makes an initial active B-spline curve
223which converges towards the target curve. Later, Yang et al. present an algorithm for adjusting
224the control points for B-spline approximation which is driven by the Pottmann et al.’s

Fig. 4 High curvature points extraction using Chetverikov algorithm (red points represent the convex points and
the blue one represent the concave points) for (a) d = 9 pixels ,α = 156°. (b) with d = 14 pixels ,α = 154°

Fig. 5 Splitting of some outline shape using concave points in pink
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225optimization approach [46]. Recently, Chen et al. proposed a new approach for the B-spline
226curve approximation which is tangent to a target curve at a set of selected positions, called
227tangent points. These points are located using heuristic method [8]. In our case, the solution
228proposed for adjusting the control points of the B-spline curve is different from the conventional
229ones in curvature point’s selection. The control points are located at high curvature points on the
230outline shape. More specifically, more of these points are selected as convex points.
231In fact, when the control points are located as convexity points on the outline shape, it has a
232greatest impact on the description accuracy of the curve approximation (descriptor) and then
233on the matching process. The number of these points differs from a part to another. It depends
234of the geometry and the length of each curve and it is equal or higher than 4. The knot points
235which are defined as the junction between curve pieces are given by a linear combination of
236the located control points. In the experimental section, we will present some examples of the
237B-splines representation when the convex points are not considered.
238Figure 6 illustrates high curvature points and resulting parts of the shape of a car from ETH-
23980 database [27], in addition a detailed description of the control points set Nis given when the
240resulting parts are different.
241The resulting B-splines functions are continuous in x and y and can accurately measure the
242similarity measure between two shapes.

2433.4 Normalization

244In order to make the proposed approach robust with respect to deformations and invariant to
245geometric transformations, we propose the following normalization methods.

246– Invariance to translation

247Invariance to translation is used as the first step of normalization. The obtained curves are
248translated so that the centroid of the shape is mapped to (0, 0) (see Fig. 7) by using the
249transformation below:

x
0 ¼ x−xg; y

0 ¼ y−yg ð4Þ 250251

NstnioplortnoCsevruC

1C (57.291,-191,849),(52.770,-198.405),(48.082,207.726),(44.669,-240.334), 

(65.053,-242.101),(81.860,248.691), (94.864,-245.691), (98,477,-252,896) 

8 

3C (346.840,260.031),(325.512,252.011),(373.404,267.020),(404.640,237,228), 

(368.231,-197.119),(330.888,-197.355),(313.013,-195.574),(313.044,-

186.829), 

 (296.964,-188.505), (278.970,197.692) 

10 

7C (174.017,184.869), (151.531,-179.752),  (127.970,-178.976), 

 (105.019,177.859) 

4 

a b

Fig. 6 Illustration of control points. a Example shape. b Corresponding curves of outline shape and their control
points. Bottom: Example of some curves with their N control points
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252Where (x', y') denotes the normalized curve point corresponding to the curve point (x, y) of
253shape and (xg, yg) are the spatial coordinates of the shape’s centroid (Fig. 7). The shape’s
254centroid Cg = (xg, yg) is given by:

xg ¼ M10=M 00; yg ¼ M01=M 00 ð5Þ
255256where M00, M10 and M01 are the first geometric moments of the shape defined as:

Mpq ¼ ∑
x
∑
y
xpyq f x; yð Þ ð6Þ

257258with f(x, y) is the mass distribution of the object, f(x, y) = 1 or 0.

259– Invariance to scale change

260The description of curves presented above changes when the outline shape is resized. To
261ensure the invariance to scale change without losing any information on the original curve, we
262carry out normalization by converting each B-spline curve as follow:

pi xi; yið Þ→ xi=DMax; yi=DMaxð Þ: ð7Þ
263264265Where pi(xi, yi) is a point of the B-spline curve and DMax =max {d(Cg, pi)} represents the
266maximal distance from the centroid to the boundary curve (see Fig. 8).
267This transformation allows us to bring back the different B-spline curves approximating the
268original boundary curve at different scales to the same neighborhood. Therefore the proposed
269transformation will give the same descriptor as illustrated by Fig. 9.

Fig. 7 Curves translation

Fig. 8 Maximal distance
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270Figure 9 shows that the different B-splines curves at different scales are closely superposed.

2714 Matching process

272In this section, we propose an effective matching strategy to compute the similarity between
273two shapes based on their descriptors. For a query shape and an arbitrary model shape in the
274database, we can use our proposed shape representation approach, described in the previous
275section to extract their descriptor vector (the normalized B-splines curves). Then the similarity
276value between their descriptors is computed by the proposed matching process. Our matching
277process consists of two stages: global matching based on the first order of geometric moments
278and curve sequence matching. The details will be explained in the following subsections.

2794.1 Global matching

280Given an input (reference) shape with n curves, the search in a database of M shapes will
281require O(nn'M) comparisons, where n' is the average number of curves for each shape in the
282database. For speeding up the search while minimizing the risk of skipping good candidates,
283we narrow the search space. Global features are very important in this task since they are
284usually easy to extract and manipulate such as the normalized object centroid that will be used

Fig. 9 a Approximated boundary curve of butterfly-4 at 50%, 80% and 100% before normalization, b After
normalization, c Boundary curve of deer-7 at 50% and 100% before scaling normalization, d After normalization
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285in the next. In this stage, we provide the global matching without defining the B-splines
286curves. We deal only about a global matching.
287Shape centroid is a widely used feature to represent global information of the image. It has
288the properties of rotation, scale change and translation invariance. It can be computed as a
289mean value of coordinates of all the boundary points, so it allows us to analyze shape by using
290its outline only:

∑
N

i¼1
xi=N ; ∑

N

i¼1
yi=N

� �
ð8Þ

291292where N is the number of boundary points.
293Shape centroid is often used for normalization. It is also used to construct shape descriptors
294see [21, 51]. In the present work, we consider the distance between the shapes’ centroids to

295narrow the space research. For this a similarity measureD Cg;Cm
g

� �
between a pair of centroids

296Cg and Cm
g is defined. This measure is given as the normalized Euclidean distance in order to

297find correct responses even in deformations or occlusions. This normalization allows us tomake
298our global matching insensible to shape’s centroid positions when the shape is altered by some

299local deformations or articulations. Let Cg = (xg, yg), Cm
g ¼ xmg ; y

m
g

� �
be the centroids of query

300and shape model, the similarity measure D Cg;Cm
g

� �
is defined by the following equation:

D Cg;Cm
g

� �
¼ xg

DMax
−

xmg
Dm

Max

� �2

þ yg
DMax

−
ymg
Dm

Max

� �2
" #1=2

ð9Þ

301302where DMax (resp. Dm
Max) be the maximal distances from the centroid of query (resp. model) to

303the boundary curve.

304Shapes for which D Cg;Cm
g

� �
is larger than a fixed threshold TD are discarded, where TD is

305fixed experimentally after various tests.

3064.2 Curve sequence matching

307Based on the results of the first global matching, this stage provides the local matching. As the
308basic idea of our proposed representation is that an object is identified by its various curves, the
309matching between a query and model shapes requires the similarity between of their all
310normalized curves.

311– Curve similarity measure

312To achieve curve matching, a similarity measure S (Ci,Cj) between two normalized curves
313Ci and Cj of two shapes Q and M respectively is defined using the Chebyshev distance. This
314similarity is given as the greatest of their differences along their points.
315Let {(x1, y1), .…, (xn, yn)} =Ci and {(x'1, y'1), .…, (x'm, y'm)} =Cj be the sets of two curve
316points to match, the similarity measure is described as follows:

317– We first check if the curves to match are oriented along the (oy) axis. If it is the case, the
318curve matching is done according to the (ox) axis: for each yi, the distance |xi − x'i| is
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319computed, where (xi, yi) ∈Ci and (x'i, yi) ∈Cj. Then the maximum value of this distance
320will be considered as the matching cost between the two curves.
321– Otherwise, we apply the Chebyshev distance along the second coordinates which that
322consists to compute max|yi − y'i|.

323This similarity measure illustrates the absolute magnitude of the differences between
324coordinates of the two curves. So, a valid match between two normalized curves is considered
325if their matching cost is less than a given threshold TC, otherwise they are different.

326– Shape similarity score

327Let S1 , . … … , Sp be the database of shapes and let Q be the query shape. Shape
328similarity between Q and an arbitrary shape Si in the database is performed by comparing
329their corresponding descriptors. As the proposed shape descriptor is given as an ordered
330sequence of normalized curves, the descriptor vectors could be of different sizes. Therefore,
331the matching of two shape descriptors requires to define an effective matching strategy to
332compute the similarity between descriptor vectors such as for each curve of Si, we establish the
333best correspondence with the curve of Q. On the other hand, this strategy must take into
334account curves’ order of each shape. In order to make this possible without losing the notion of
335sequence and allowing elasticity in the shape matching, circular permutations are applied on
336the descriptor vector having the higher dimension. Then the matching between the two
337descriptors is achieved for each permutation. Finally, the similarity score of the two shapes
338Q and Si is computed based on these similarity values.
339Let Q and S be two shapes with nq and nm normalized B-splines curves respectively. We
340suppose that nq ≤ nm, the shape similarity score can now be described while respecting the
341following steps:

3421st Step: − The nq curves of Q are compared with the nq first curves of S according to their

343order; the obtained result is represented by the vector V0 whose constituents vi;i0
344represent the result of the comparison:

V0¼t v1;10 ; v2;20 ;……; vk;k0 ; ::………; vnq;nq0

� �
; 1≤k≤nq:

345346

347Where vi;i0 ¼ S Ci;Cm
i

� �
.

348– Based on the curve similarity measure defined bellow, a noted vectorW0

349is associated for the vectorV0. The components of this vector are 0 or 1: 1
350if vii0 is a valid match and 0 otherwise.

3512nd Step: The process of the first step is repeated with each permutation on the descriptor
352vector of S until matching all curves of Q. As we have (nm − 1) permutations, we
353obtain (nm − 1) vectors. The obtained results for the ith permutation will be
354represented by the noted vector Vi given by the form:

Vi ¼
t v1;iþ1

i ; v2;iþ2
i ; :………; vnq;ri

� �
if : nq≺nj:

t v1;iþ1
i ; v2;iþ2

i ; :………; vnq;si

� �
if : nq ¼ nj:

8<
: ð10Þ

355356
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357Such that the parameters r and s satisfy the following:

1≤r≤nj−1 and r≠nq; 1≤s≤nq−1 and s≠nq:

358359
360The vector Wi associated to Vi, with components 0 or 1, is determined such as:

wi ¼ 0 if vk;li ≻TC

1 if vk;li ≤TC

�
: ð11Þ

361362where TC is a threshold determined experimentally.

3633rd Step: According to the vectors Wi, we can compute our shape similarity score between
364the query and a model shape. It is defined by the ratio:

Simscore Q; Sð Þ ¼ w=nq: ð12Þ

365366where wrepresents the maximal number of occurrence of the value 1 in the vectors
367Wi. It corresponds to the number of matched (similar) curves between Q and S, nq
368isn the minimum number of curves of (Q, S).

Fig. 10 Two butterfly shapes and their corresponding B_splines curves at the bottom
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369Therefore, to have the list of retrieval shapes, the similarity score between the query shape
370and each reference shape is computed and the matching results are ranked according to the
371order of their scores.
372In Fig. 11, we illustrate some examples of curve similarity of two samples from the category
373butterfly Q4[52]: butterfly-12 and butterfly-20. Figure 10 shows these two examples of shapes
374and their corresponding B-splines representation.
375Figure 11 illustrates how the curve to curve matching is achieved at some selected
376permutations. Best matched pairs of curves are presented at the bottom of each case.
377For example in the first case (see Fig. 11a), the curves of the two butterflies are compared in
378the same order. By applying the proposed curve matching algorithm, only the pair (C1,C'1) is
379considered as the best possible correspondence.
380At the 5th permutation, the best pairs of matched curves, given by our system are (C3,C'7),
381(C1,C'5), (C2,C'6), (C4,C'1), (C5,C'2) and (C7,C'4). We can see that in most cases, the curve
382matching results are achieved correctly.

At zero permutation: 11 ', CC

At the 1st permutation: 54 ',CC

a

b

Fig. 11 Results of B-splines curves matching at some permutations
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3835 Experimental evaluation

384In this section, a series of some experiments are reported in order to evaluate the efficiency of
385the proposed approach for shape modeling and retrieval. All the experiments were conducted
386using benchmark shape databases: ETH-80, Kimia-99, Kimia-216 and set B of the MPEG-7.

3875.1 ETH-80 database

388We used the shapes database of Leibe and B.Schiele [27], where each object is represented by
389some views spaced evenly over the upper viewing hemisphere. These shapes are selected to
390have significant between class-differences. They are divided into 14 classes of objects
391consisting of horses, cows, apples, dogs, tomatoes, cups, pears, etc.. A sample of these shapes
392is illustrated by Table 1.

At the 2nd permutation: No matched curves found by our matching system.

At the 5th permutation: 73 ', CC , 51 ', CC , 62 ', CC , 14 ', CC , 25 ', CC and 47 ', CC .

c

d

Fig. 11 (continued)

Multimed Tools Appl

JrnlID 11042_ArtID 4998_Proof# 1 - 11/07/2017



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

393Normalized curves for all models are constructed and stored in the model database in an off-
394line stage. Tests are conducted on objects of different shapes with different rotations and sizes.
395The proposed method is experimentally evaluated to assess its effectiveness, scalability and
396ability to handle occluded and partial queries. It is performed giving variety kinds of experiments:

3975.1.1 Deformation and shape’s centroid position

398For an experimental illustration that the centroid position and the proposed normalized
399measure cope well with shape deformations, we show some experimental results for selected
400examples. We consider the shapes horse, dog and cow which are geometrically distorted.
401Some of the sample shape distortions are illustrated by red circles as shown in Fig. 12.
402In this study, our experimental procedure consists of creating different random deforma-
403tions for each shape. Then computing the matching cost of the original and deformed shapes,
404using both the proposed measure defined in Eq.(9) and the Euclidian distance. The results of
405some examples of these experiments are presented at the bottom of each shape (see Fig. 13).
406Finally, we compute the average matching cost for each class.
407A summary of the obtained average matching cost values over a selection of shapes of
408ETH-80 database, illustrated by Fig. 12, is given in Table 2. Observing the resulting matching
409cost values, we conclude that the proposed normalized measure based on the shape centroid
410deals well when deformations occur.
411Equivalently, we examine the measure’s performance in case of different shapes but of
412different shape classes. In order to achieve this experiment, we have selected some shapes as

t1:1 Table 1 Some shapes of the database with rotation and scaling

Class 1

Class 2

Class 3

Class 4

The original shape The deformed and the occluded shapes of the primary shapes

Fig. 12 Samples of shapes from the ETH-80 database with their deformed and occluded shapes
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413horse, dog, including their random deformations, cow and car. The matching cost between
414different pairs of shapes is estimated by the proposed measure and the Euclidean distance.
415Some matching examples are depicted in Fig. 14. The resulting matching values of these
416experiments show also that the proposed normalized distance based on shape’s centroid seems
417to be quite efficient in the problem of shape similarity retrieval under deformations or
418occlusions. Another interesting observation made from the results shown in Fig. 14 is that,

0.02963 0.02990 0.05215 0.10353 0.27430

6.24921 6.26744 3.26826 4.41268 68.06866

0.17388 0.21661 0.15759      0.15666 

6.201579 7.94137 18.76309 25.9940

0.01932 0.13701

3.26929 3.50489

Fig. 13 Examples of boundaries of different shapes of the same shape class. For each class, the first row represents
the deformed shapes, the second one illustrates the superimposed B-spline curves of the deformed shapes with the
original shape with their centroids and the results presented at the bottom of each class represent the matching cost
values (the first row corresponds to the proposed normalized measure and the second one to the Euclidean distance)
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419for a given pair of shapes of different types of objects but in the same class as for car and horse
420examples, the matching cost value remains very low compared to the rest examples as
421illustrated for example by the pair of shapes: (cow, dog) or (car, horse). This indicates that
422the measure proposed here can be used to classify shapes into different shape classes.

4235.1.2 Matching results

424The first series of tests were conducted to evaluate the performance of our method to scale
425change and orientation. Some examples of shape retrieval and their matching scores are
426illustrated in Table 3. Results are depicted in every row in a decreasing order of similarity
427with the query. For each shape query, we can see that the method gives satisfying results as the
428selected shapes (best matches) belong to the same class.

t2:1 Table 2 Average matching cost values for different shapes of the same class

t2:2 Methods Shape class

t2:3 Horse Dog Cow

t2:4 Proposed measure 0.097902 0.176185 0.078165
t2:5 Euclidean distance 17.65325 14.72500 3.59889

0.415358 0.494594 0.262182 0.466362 0.405308

26.462262 35.870679 23.217662 38.485616 57.771089

0.082127 0.073018 0.142013 0.322094

3.362078 16.532366 8.928150 161.824782

Fig. 14 Matching costs values for different pair of shapes of different shape classes using the proposed
normalized measure and the Euclidean distance respectively
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429We also studied the robustness of our approach to find the most similar to query shape
430knowing that there isn’t shapes of the same class in the database, as we can see by the last three
431examples of Table 3. For the human query, there is no similar shape found by our system, we
432obtain the query shape as a collection of its different curves. Towards these results, we can
433conclude that the proposed representation is more discriminating, also, a higher resistance.
434In the second experiment, we evaluate the performance of the proposed approach to recognize
435occluded objects which is a difficult task in computer vision. Several shapes obtained as
436superimposing two shapes or more from the database are used as shape queries. Table 4 shows
437that for different degree of occlusion (50% for the three first queries and 90% for the fourth, fifth
438and sixth query) our proposed algorithm can classify correctly occluded shape. We considered
439that retrieved shape is correct if it is similar to at least one of the shapes composing the query.

t3:1 Table 3 Matching scores for some results

100% 50%

100% 81%
62%

100% 70% 70%

90% 90%
63%

83% 66%

25%

40% 7% 5%

5% 4%
40%

25%
10% 6%

None

Query shape First match Second match Third match

88%
82% 76%

100% 50%
33%

50%
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t4:1 Table 4 The three most similar shapes retrieved for occluded shapes and partial test queries

32% 25% 20%

40%
20%

20%

21% 18% 15%

26%
23%

20%

75% 50% 50%

None

23%
22%

20%

40% 33% 33%

40% 33% 33%

Query shape Most similar Second similar Third similar

50% 50% 40%

16% 12% 11%

12% 8%
7%

48%
34%

28%

17% 5% 5%

Multimed Tools Appl

JrnlID 11042_ArtID 4998_Proof# 1 - 11/07/2017



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

440As our approach for shape matching and retrieval is based only on curves approximating
441the constituent parts of the shape. We propose to study if can we retrieve the shape using only a
442part of its outline. So to achieve this experiment, we performed some tests with incomplete
443shapes. Some examples are illustrated in Table 4 which shows the best retrieval results for the
444partial queries with different degree of occlusion. From the obtained results, we can assert that
445our approach may recognize objects giving only a part of the outline shape as a query.
446On the other hand, from the retrieval results presented in Table 4, one can see some
447recognition trials that are considered as failures. The irrelevant retrieved shapes are
448enclosed by rectangular boxes. The mismatches are mainly due to the property of the
449proposed descriptor (normalized curves). Since the proposed approach is based on the
450different parts constituting the shape boundary and not the part relationships, it is possible
451for different shapes to share some similar parts. For example, the two last partial apples
452queries appear to be similar to tomato class shapes and cup. Observing the obtained
453results, this is not a negative aspect in favor of the proposed application, once our
454proposed descriptor deals only with the different parts constituting the boundary. However
455considering that the retrieval rates takes into account only the shapes belonging to the
456same class as the query shape, the performance is penalized.

Fig. 15 Retrieval rates on ETH-80 database

Fig. 16 Graphical representation of the control points (the middle row) and the associated B-splines curves at the
bottom
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4575.1.3 Retrieval result

458The ETH-80 database contains 80 shapes from eight classes with ten objects per class. To test
459the recognition rate, the leave-one-object-out method [45] is used. In comparison to previous
460results reported for the ETH-80 2D object database [27], our algorithm achieves 90,22%

Fig. 17 Representation of the B-splines curves with the proposed approach. a and c Represent the six first parts
of the outline shape of the butterfly-20. b and d Represent their B-splines curves respectively
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461recognition rate for all shapes of our database. It is among the best proposed methods applied
462to this database and cited in [13, 45] as illustrated by Fig. 15.

4635.2 MPEG-7 database

464Thewell- known andwidely usedMPEG-7CE-shape 1-Part B database [26] is used in our work to
465test the performance of the proposed approach. The total number of images in the database is 1400
466consisting of 70 different classes of objects. Each class contains 20 shapes. In MPEG-7 database,
467there are many shapes where the inter-class object similarity is more than the intra-class object
468similarity. The retrieval rate is measured by the Bull’s-eye test [29, 45]: Each shape in the database
469is matched with all other shapes and the top forty best matched shapes according to the proposed
470matching process are retrieved. Among the forty best matched, the number of similar shapes which
471belong to the same class of the query are counted. Then the retrieval rate for the whole database is
472reported as a percentage of the maximal possible number of correct retrievals i.e. 28,000.

4735.2.1 B-splines curves

474– Control points

475As presented in section 3.3, the choice of the control points has a closely impact on the
476accuracy of the curves. Figure 16 illustrates some examples of B-splines curves for the 6th part

Query Top ten results 

Fig. 18 Retrieval results on five test queries shown in column 1

Fig. 19 Retrieval rates for all classes from MPEG-7 database
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477of the butterfly-20 shape. These curves are presented with control points located using the
478proposed representation and when are chosen randomly. The red labels associated to control
479points chosen randomly and the blue ones represent the selected control points given by our
480proposed representation.
481It can be seen from the Fig. 16 that the proposed technique for the selection of the control
482points gives a good accuracy of the B-spline curve.

483– B-splines curves

484Figure 17 shows some examples of B-splines representation for parts extracted from the
485butterfly-20 shape.

4865.2.2 Shape matching result

487In this section, some examples of shape retrieval with the proposed approach are illustrated in
488Fig. 18. The queries are on the left column and in the second one, the best ten matches from the
4891400 images of the database are listed. The obtained results show the invariance of affine
490transformations and deformations.
491Details of retrieval results for all classes of shapes from the MPEG-7 database are reported
492in Fig. 19. In the same figure we have reported the results obtained with both MCC [1] and
493CSS [33] approaches.
494From the obtained results, we can observe that the most of classes can get very good
495retrieval results. The reason that the performs is low than 30% for some classes is that the

Query Methods 

TSDIZ 

BAS 

Ou 

r 

approach 

Fig. 20 Retrieval results for object bat-4. Comparative study for TSDIZ, BAS and the proposed approach

SSD+

GF 

Our 

method 

0 

0.4 

SSD+

GF 

Our 

method 

0.2 

0.6 

SSD+

GF 

Our 

method

0.1 

0.9 

Fig. 21 Retrieval results on three queries (1st column) of two methods. Column 3–12 show the ten most similar
shapes and column 13 gives the recognition rate over the top ten retrieved results
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496description is based only on curves defined from shape, so some curves can be shared between
497shapes of different classes that are visually similar.

4985.2.3 Comparative study

499To further illustrate the performance of the proposed approach, a comparison with three
500algorithms: tensor scale descriptor with influence zones TSDIZ [3], beam angle statistic
501BAS [5] and the proposed method, is done. The shape bat-4 from MPEG-7 is selected as
502the query shape and the top ten retrieval results for the three algorithms are illustrated by the
503Fig. 20: first row, shape descriptor [3], followed by shape descriptor [5] and our approach. The
504shapes with a red line are the irrelevant retrieval results. It can see from the presented visual
505shape retrieval that there are only four similar shapes in the top ten retrieval results of BAS [5].
506For TSDIZ [3] and our approach, the top ten results are exact.
507To show the power of our boundary-based shape descriptor to preserve the geometric
508characteristics of shapes, we compare the retrieval results for three shapes selected from three
509different classes, based on SSD + GF descriptor [39] and our approach. We select the same
510queries as those cited in [39] and report the top ten retrieved shapes which are ranked by the
511proposed similarity measure. The obtained results are illustrated in Fig. 21.

Fig. 22 Comparison of the results of different approaches on the MPEG-7 (Bull’s eye) test

t5:1 Table 5 Retrieval results on the Kimia-99 database for the proposed approach compared to other methods in the
literatureQ5

t5:2 Approaches 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Total

t5:3 Shape index [13] 43 51 58 52 52 49 51 47 45 44 492
t5:4 ECCobj2D. h [19] 87 74 66 64 49 52 45 38 33 33 541
t5:5 HC [13] 96 84 78 77 78 65 68 58 60 48 712
t5:6 ECCobj2D [19] 94 85 81 73 81 73 64 59 56 35 701
t5:7 Bernier and Landry [13] 97 94 92 85 74 73 65 54 43 36 713
t5:8 Shape context [35] 97 91 88 85 84 77 75 66 56 37 756
t5:9 Gen.model [13] 99 97 99 98 96 96 94 83 75 48 885
t5:10 Proposed approach 98 99 98 97 97 95 94 92 88 66 924
t5:11 Shock edit [13] 99 99 99 98 98 97 96 95 93 82 956
t5:12 IDSC + DP [29] 99 99 99 98 98 97 97 98 94 79 958
t5:13 IMC [48] 99 99 99 99 98 97 95 94 90 83 953
t5:14 HF [45] 99 99 99 99 98 99 99 96 9 5 88 971
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512The last column reports the rate of the retrieval result. From Fig. 21, we can see that the
513shape representation proposed here outperforms the method SSD + GF [39] and gives higher
514scores. The obtained results prove the efficacy and the competitiveness of our approach. This
515is due to the curve description based on the high curvature points which take into account the
516geometric description of the discriminate parts constituting the outline shape.
517A summary of the obtained shape retrieval results on MPEG-7 database is reported in
518Fig. 22, using the bulls-eye score. In addition, a comparison with some known algorithms in
519the literature is made.
520It shows from the Fig. 22 that the proposed approach performs competitively to SSD,
521TSDIZ, SSD + GF, SC, CSS and BAS algorithms in the literature and outperforms CS,
522MS-Fractal, MI, Fourier. The particularity of our work is that the geometric model
523proposed here gives a rough description about the shape as we can see by the examples
524of Fig. 21. It captures geometric information of the shape’s boundary. Another observation
525is that the use of curves as match primitive preserves the geometry of the shape TSDIZ and
526allows robust retrieval against affine transformations and deformations as shown by the
527examples of Fig. 18.

5285.3 Kimia-99 database

529The proposed approach is also experimented with Kimia-99 database [42] which contains 99
530shapes classified into 9 classes with 11 shapes in each class. Each shape of the whole database
531is selected as a query shape and then matched to the rest shapes. The ten most similar,
532excluding the query, are returned and only the correct results (results of the same class as a
533query) are counted. The details of this experiment are shown in Table 5 where the total number
534of top 1 to 10 closet matches are presented and compared to some relevant works in the
535literature. The reported results demonstrate that the proposed approach achieves satisfactory
536performance.

t6:1 Table 6 Retrieval rates per class for Kimia-99 database

Class

Retrieval
Rate

0.96 0.88 1 0.92 0.95 0.88 0.89 1 0.9

Fig. 23 Performance results on Kimia-99
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537Table 5 shows also the ability of the proposed description to deal well with occluded
538shapes, articulated and shapes with deformations of parts, once most of the shapes of this
539database are under different levels of deformations, occlusion and articulation. Details of the
540obtained results for each classe of Kimia-99 database are presented in Table 6.
541Figure 23 reports the retrieval performance of our approach and the corresponding retrievals
542for the above algorithms, including the methods IMC [48] and SSL + HMM [43]. As can be
543seen our approach has comparable results relatively to some well known algorithms. Fig. 23
544shows also that the algorithms [13, 29, 48] present 0.03% better performance than our
545approach and HF [45] gives the best value.

5465.4 Kimia-216 database

547Kimia-216 database [42] is another widely used benchmark database for evaluating shape
548retrieval. It consists of 18 shape classes with 12 shapes in each class. In the experiment, each
549shape is considered as a query and the retrieval performance is evaluated using two measures
550of accuracy: the bull’s eyes score which counts the number of correct matches in the top 11
551matches, excluding the query shape, and the precision at 10 measures. In Table 7, the number
552of correct matches in each rank is summarized and compared to other methods. Note that the
553maximum number of correct retrievals in each case is 216. Figurw 24 shows the average
554retrieval rates for each class. The overall retrieval rate for the proposed approach using the first
555measure is 0.89. Considering the precision at 10 measures, a retrieval rate of 0.90 is achieved.
556These results demonstrate the effectiveness of the proposed approach.
557Figure 25 shows the reported results of our approach and many recent approaches on
558this database. Our approach performs comparably to the best known methods SSD + GF
559[39] and Bas [5].

t7:1 Table 7 Retrieval results on Kimia-216 database

t7:2 Approaches 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th Total

t7:3 Shape context [35] 214 209 205 197 191 178 161 144 131 101 78 1809
t7:4 CPDH + EMD [48] 214 215 209 204 200 193 187 180 168 146 114 2030
t7:5 IMC [48] 216 216 214 210 207 207 201 194 188 182 163 1991
t7:6 Proposed approach 215 214 212 211 207 205 195 190 184 174 153 2160

Fig. 24 Retrieval rate for all classes from Kimia-216
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5606 Conclusion

561In this paper, we have presented firstly a method for shape description based on cubic
562normalized curves. Outline shape is decomposed into a set of curves using points of high
563curvature. A cubic B-spline curve is then used for curve representation instead of a higher
564degree because it has a local control property and is less wiggly. The choice of the control
565points for curve approximation has been discussed and presented. Normalizing curve descrip-
566tion using the shape’s centroid guaranties the invariance of the description to scale change and
567invariance to rotation is ensured by the use of the minimum rectangle encompassing the shape.
568Similarity measure between two shapes is proposed using Chebyshev distance. Experimen-
569tal results on various databases of shapes show that the proposed descriptor is effective and has
570good retrieval accuracy. Using cubic curves as the description primitive has growing interest in
571preserving geometric properties of the shape. Consequently, the proposed approach has the
572ability to retrieve shapes even if we use them with occlusion or using only parts of them.
573
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