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Fast binary shape categorization
Insaf Setitra and Slimane Larabi

Computer Science Department, USTHB University, Algiers, Algeria

ABSTRACT
A novel approach for object categorization suitable for video surveillance is proposed. We
describe shapes only using radius and arclength of their curvatures, which allow
differentiating between objects that appear in the monitored area. We conducted
experiments on classes such as pedestrians, cars, cyclists, and animals (horse, cow, dog, and
cat). Our approach achieves a reasonable accuracy (95.66%) on Kimia dataset, surpasses the
accuracy of the state-of-the-art methods (93.75%) on CDnet videos, and allows handling
cases of object merge and split usually present in foreground masks issued from background
subtraction of videos.
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Introduction

Object classification is still a challenging problem for
scene understanding [1,2] and video surveillance [3].
In addition to image preprocessing, object detection,
and feature extraction, it is a key element of the
image classification process [4].

While recent approaches [5–8] for object detection/
recognition in complex scenes have achieved success-
ful results, binary shape matching and retrieval remains
a key step in many applications [9]. Examples of such
applications include sign language recognition [10]
and head direction estimation [11]. One of the
reasons shape matching is widely used in many appli-
cations is that it is fast and does not require prior
knowledge of the shape. Furthermore, its speed
makes it suitable for real-time applications [12,13].

In this work, we intend to identify specific kinds of
objects, such as pedestrians, cars, cyclists, and
animals (horse, cow, dog, etc.), present in monitored
scenes. Our aim is to provide a fast object categoriz-
ation method for real-time applications. The proposed
approach is developed for binary shape analysis, which
is applied to classify binary shapes issued from back-
ground subtraction.

A binary shape is described by its local features (key-
points) extracted using a convolution of the shape with
a Gaussian filter and performing a difference of Gaus-
sian as in [14]. Consequently, high curvatures are main-
tained until high values of standard deviation (σ) of the
used Gaussian are reached and small curvatures disap-
pear as σ increases. Once curvatures are detected, they
are described by the scale at which they are detected
and their arclength. Matching algorithms compare
the corresponding keypoints by minimizing the
radius and arclength distances. The processing time is

reduced as we describe the shape only with some key-
points instead of describing all the contour points.

The rest of this paper is organized as follows. In
Section 2, we describe several state-of-the-art
approaches for shape description and matching. We
reveal the advantages and disadvantages of each
method and describe the importance our work with
respect to these methods. In Sections 3 and 4, we
describe the computation steps of our descriptor and
the proposed matching algorithm. Section 5 presents
the analysis of our approach applied to a branch of
commonly used datasets for shape matching and
retrieval and to a collection of shapes representing
the possible objects that may be present in the moni-
tored areas. Finally, we present the discussion and
conclusion.

Related works

While recent approaches [8] for object detection/rec-
ognition in complex scenes have achieved successful
results, binary shape matching and retrieval remain a
key step in many applications, including shape retrieval
[15], sign language recognition [16], and body direction
estimation [17]. The speed of binary shape matching
makes it suitable for real-time applications.

Shape context (SC) [18] is a local shape description
in which parts of shapes are divided into landmark
points and represented by a coarse histogram of their
relative normalized coordinates in the polar system.
The descriptor is robust to scale, translation, and
rotation. However, its descriptive power decreases for
articulated shapes. The inner distance shape context
(IDSC) [19], defined as the length of the shortest path
between landmark points within the shape silhouette,
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was proposed to improve the original SC. Its improve-
ment originates from the fact that the Euclidean dis-
tance used in SC is replaced by the inner distance,
which is robust to articulations. Although this method
improved the original SC method, a drawback
remains in both methods—i.e. the choice of the
number of landmark points. A small number would
lead to a poor representation of the shape, whereas a
large number would increase the complexity of the
method.

In [20], the Hilbert curve (HC) was used to scan the
object image, producing a 1D feature vector of the
shape called the shape feature vector (SFV). A
wavelet transform is used to represent the image
feature across different scales, which makes the
feature vector scale-invariant. However, for the same
shape, several sizes of the feature can be computed
as curves can be of different levels. The choice of the
best size of SFV is hence application-dependent.

In [21], a shape salience detector and a descriptor
called tensor scale descriptor with influence zones
(TSDIZ) were proposed. The TSDIZ captures zones of
curvature in the shape by dividing the contour of the
object into segments. For each segment, the
influence on the curvature is computed using the
tensor-scale-based approach initially proposed for
grey-level images. While the computation of the
descriptor is reduced owing to the use of Euclidean dis-
tance transform, construction of the graph connectivity
of the contour points remains the most time-consum-
ing task in the method.

In [22], simple shape features such as the ratio of
perimeter and area were used for shape retrieval. The
authors enhanced their shape classification by includ-
ing crowdsourcing in their application. However, in
real applications, crowdsourcing is not always available
to enhance and/or validate matching and retrieval.

J. Wang et al. defined, for each contour point, a
height function (HF) based on distances of the other
sample points to its tangent line [23]. The HF provided
a discriminating power with low descriptor compu-
tation complexity, and proved to be robust against
noise, scale change, and deformations. Although it is
simple with low complexity of descriptor computation,
the matching and retrieval step remains complex and
the accuracy depends highly on the contour length.
In their experiments, each contour point was rep-
resented by a 20-dimensional vector. When the data-
base contains many shapes with a large number of
contour points, the processing time is accordingly high.

Another curvature-based descriptor was presented
in [24]. Saliency is used to extract meaningful points
across the shape. Salient points are characterized as
having high curvature values along the shape
contour; however, the detection of noisy contours is
difficult. The points are described by their relative
angular position using the shape centroid.

Elhoseiny et al. [3] presented an experimental study
on geometric and appearance features for outdoor
video surveillance systems and studied the classifi-
cation performance under Principal Component Analy-
sis PCA and entropy-based feature selection.

In [25], description of shapes was based on the
detection of curvatures by partitioning the shape into
parts using a polygonal approximation. Each curvature
was modeled by a cubic polynomial normalized curve.
The approach is robust to affine transformation;
however, it is parametric, which makes the choice of
curvature threshold and length important for shape
description. Moreover, when applied to partial match-
ing, only sufficient curvatures can categorize a shape.

A learning-based shape descriptor was presented in
[26]. Each shape was represented by its bag of contour
fragments where fragments were represented by
shape context histogram. A bag of contour fragments
was constructed by mixing unsupervised and super-
vised learning for both features clustering and
representation.

S. Bouagar and S. Larabi described a shape by a set
of corner points using the inner angle, the distance
associated with the two neighbors of a corner point,
and the relative length of a segment around the
corner point to the whole contour length [27]. Match-
ing is based on time warping and the authors aimed
to perform full and partial matching. Full matching is
applied when both query and model shapes are
observed entirely whereas partial matching can be
used in many scenarios where the query shape is
either occluded or highly distorted. In this case, a part
of the shape is submitted as a query and shapes that
contain the submitted part are returned. As accuracy
is based on the shapes returned from the same class,
the submitted part must be common to all shapes of
the same class; otherwise, the accuracy is affected.

In [28], a new skeleton-based algorithm for 2D and
3D shape retrieval was presented. The skeleton descrip-
tion of a shape is enriched by drawing circles for 2D
shapes and spheres for 3D shapes inside a shape.
While skeleton representation is enhanced using the
method, issues related to skeleton-based approaches
are still observed: A skeleton is sensitive to the defor-
mation of the boundary of an object because slight
variation or noise in the boundary often generates
redundant branches, which may seriously disturb the
topology of the skeleton [29].

Our method seeks to provide detection and descrip-
tion of salient contour points along the shape without
the need for analysis of each contour point separately,
but only based on the global shape. In contrast to [24],
our method applies a Gaussian convolution to the orig-
inal shape and the difference of Gaussian is used to
detect the local maxima over neighboring scales.
High curvatures of the shape are maintained even
when the standard deviation in the Gaussian filter
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during the convolution is augmented. This provides
information about the radius of the curvature. Based
on this principle, many computations are avoided.
Once curvatures are detected, they are described
only by their arclength, which preserves the spatial
information of curvatures, and their radius. Although
only arclength and radius are used, this description
provides insight into the shape and can discriminate
shapes with sufficient differences, and is thus suitable
for real-time applications.

Shape descriptor

The key idea of our descriptor is to search across pos-
ition and scale for salient curvatures of the shape.
Various classical measures of curvature exist, such as
the ratio between the region’s area and that of its
convex hull, or the fraction of the region’s boundary
that lies on the boundary of the convex hull[30]. Our
measure is based on the convolution of the global
shape independently of its area, boundary, and
convex hull. To detect curvatures in a shape, we use
the scale space as defined in [14]. When a shape has
large curvatures, it is more likely to detect its curvatures
in small scales, whereas when the shape has small cur-
vatures, they disappear at early scales.

Candidate interest points detection

Scales are described by Gaussian kernels as the only
possible scale-space kernel under various reasonable
assumptions is the Gaussian function [14].

The scale space of an image I(x,y) is defined as a
function, L(x,y,s), produced from the convolution of a
variable-scale Gaussian, G(x,y,s), with the input
image, I(x,y). When the Gaussian parameter σ is small,
only small curvatures are removed. With further scale

space, i.e. with a larger Gaussian parameter σ, the
larger curvatures are smoothed. To detect curvatures
of different levels, we apply the difference of Gaussian
between two consecutive scales as in [14]. The differ-
ence of Gaussian images, D(x,y,s), can be computed
from the difference of two nearby scales separated
by a constant multiplicative factor k. As the Gaussian
images can be computed in advance, D(x,y,s) is com-
puted as the difference between L(x,y,ks) and
L(x,y,s). Figure 1 shows an original image convolved
using a set of Gaussian kernels separated by a constant
k = ��

2
√

.

Non-maxima suppression

As many points are redundant in different scales, we
apply non-maxima suppression to retain only the
effective interest points.

Let Di , Di+1, Di+2 be three differences of Gaussian
images at 3 different scales.

Local maxima within a scale are computed on the
neighborhood of Di+1, which is the center of the
current 3−tuples of convoluted images (Di , Di+1, Di+2).
More precisely, each pixel p(x,y) in Di+1 is compared
with its 8 neighbors. If p is either minimum or
maximum, it is considered a potential maximum of
the inner scale and its coordinates are stored. Conse-
quently, to perform suppression between scales, p is
compared with its 18 neighbors in Di and Di+2. The
18 neighbors are 9 pixels of the 3× 3 window in Di

centered at (x,y) and 9 pixels of the 3× 3 window in
Di+2 centered at (x,y).

Further refinement is performed by suppressing
from each convoluted image Di+1 potential maxima,
which are less than an input threshold (a measure of
stability) to eliminate weak edges. The process
applied to Di+1 is also applied to all the remaining

Figure 1. Convolution of an image with two consecutive Gaussians and their difference using (s1,s2) = ( 1�
2

√ ,1) (a), (22,22
��
2

√
)(b).

Note that the boundaries in white are the result of the difference between the left-side Gaussian images.
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differences of Gaussian images where maximum sup-
pression is possible. The maximum suppression for a
difference of Gaussian image Di is possible if Di is not
the first or last difference of Gaussian image (i.e. Di

has 2 neighbors Di−1 and Di+1).
Maxima detected are defined by an index, row coor-

dinate r, column coordinate c, and radius rad, which is
computed based on the scale shown in Figure 2.

Contour point assignment

When the original image is convolved, the detected
maxima points are either outside the shape or inside
it. To shift curvature points to contour locations, we
compute the contour of the shape and select the
nearest contour point to the maxima point. The index
of each chosen contour point (arclength) is normalized,
and a keypoint is finally represented by the normalized
arclength, coordinates, and radius of the correspond-
ing maxima point. The descriptor of a shape is finally

represented by a set of keypoints (Xi , radi , posi , X̃i) as
(see Figure 3)

. X: the contour index (arclength) of the keypoint;

. rad: the radius of the keypoint;

. pos: the coordinates of the keypoint;

. X̃ : the normalized contour index (normalized
arclength) of the keypoint.

If we consider a graphical representation (signature)
of this shape descriptor, x−axis and y−axis are,
respectively, the normalized arclength and radius of
the keypoints. Each peak in the signature corresponds
to high curvature (concavity or convexity). The graphs
of matched shapes will have similar graphs after shift
operations as shown in Figure 4 where signatures
present some differences, which will be overcome in
the matching step.

Algorithm

For a query image, we summarize the steps followed
for descriptor computation in the algorithm 1.

Invariance of the descriptor to affine
transformations

Figures 5–9 show the robustness of the descriptor
against affine transformations.

In Figure 5, first, the keypoints shown before the
contour point assignment are approximated to their
nearest contour point.

Some transformations are applied to the original
image. After applying a reflection either around the x-
axis or the y-axis , the keypoints are detected at the
same relative positions, i.e. curvatures around the
head, legs, and tail of the dog are detected in a
manner similar to that of the original image (see
Figure 6). For rescale, many keypoints are lost;

Figure 2. Illustration of non-maxima suppression. When the central pixel p is greater than its 8 neighbors in Di+1 and its (9+ 9)
neighbors in Di and Di+2, it is chosen as the maximum. When p is greater than the 16 neighbors in Di and Di+2, and less than the
central pixels of Di and Di+2, it is not chosen as the maximum.

Figure 3. Descriptor example; the descriptor is a set of 3 key-
points, each represented by a circle (the green circle in the
figure) and its center (the big red dot). Each keypoint is
approximated to its nearest contour point where the shape
has 19 contour points. The table shows the three keypoints
of the descriptor.
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however, the remaining keypoints are still detected at a
similar position (see Figure 7). For a rotation of 20o,
fewer points are lost, and the remaining points are
detected at the same positions as in the original
image (see Figure 8). Finally, for translation either on
the x-axis or the y-axis, curvatures are all detected at
the same positions (see Figure 9). However, the key-
points detected before the contour point assignment
in the distorted images are more similar to the original
images than those detected after the contour point
assignment. This is because a slight change in the
initial position of the keypoint can assign the keypoints
to a further contour point than that assigned in the
original image.

Shape matching

Basic principle

In Figure 4, each peak in the signature corresponds to a
high curvature (concavity or convexity). The first peak
of the first shape (Figure 4(a)) stands further from the
first peak of the two remaining shapes (Figure 4(b, c))
with respect to their arclength. This makes the distance
between signatures irrelevant. To overcome this issue,
we perform a shift over the peaks in the signature of
the query image. As our descriptor contains only a
few keypoints, shifting through all the keypoints of
the query and computing similarity with the model
remains suitable for real-time applications.

Figure 4. Example of detected keypoints of three dog shapes represented by red circles with their corresponding signatures. (Top)
detected keypoints, (bottom) their corresponding signatures.
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Similarity of two descriptors and algorithm

Let Dq and Dm be the descriptors of the query and
model image, respectively. A similarity measure
S(Dq,Dm) between Dq and Dm is computed as follows:
First, the initial distance S(Dq,Dm) is initialized to +1. A
matching betweenDq and Dm starting from the first key-
point of Dq is performed and the current distance is initi-
alized to 0. In this matching, if the arclength between
two keypoints from Dq and Dm, is less than a predefined
arclength threshold, the radius between these two key-
points is computed. If the difference is under a pre-
defined radius threshold, this match is accepted, and
the distance is added to S(Dq,Dm). In the opposite
case, i.e. either the arclength or the radius distance is
above the corresponding threshold, a high distance is
added to S(Dq,Dm). This process is repeated for all key-
points of Dq and Dm. The distance produced by this
first matching is stored as the best matching and the
initial distance is updated to the current one. A circular
shift is applied to Dq and a second matching starting
from the second keypoint of Dq is performed similarly.
The distance is again compared with the initial distance,
and the latter is updated to the smallest distance. The
same process is performed for all keypoints of Dq, and
the best matching is determined after all circular shifts
are performed and the final distance will be equal to
the updated initial distance.

The complete matching algorithm is described in
algorithm 2.

Matching mirror images

A mirror image is an image that has been reflected
through a symmetry line. To match mirror images, we

perform, for the same query image, a normal and an
inverse matching. In normal matching, the keypoints
of the query are matched to the keypoints of the
model following a clockwise direction. In inverse
matching, only the keypoints of the model follow a
clockwise path. The keypoints of the query are
matched in a counter-clockwise direction. This is
undertaken instead of computing a new descriptor
for the mirror image because our descriptor produces
the keypoints at the same relative position for both
an image and its mirror version. Matching that yields
the minimum distance between normal and inverse is
chosen as the optimal match.

Experimental results

Roadmap and parameters setting

In this experimental section, we focus on two main
experiments. Subsection (Subsection 5.2) is dedicated
to individual matching where we present matching of
a few shapes from ETH-80 and describe how our algor-
ithm is able to choose the best matching among
different shifts of the starting point.

The second subsection (Subsection 5.3) focuses on
categorization and retrieval. In this subsection, 80
shapes of ETH-80 are classified using our descriptor
and our matching algorithm and are compared with
SC and IDSC. Categorization is performed using the
K-nearest neighbors (KNN) approach. In this exper-
iment, only radius and arclength are used to describe
keypoints. Our method is applied to the Kimia99
dataset [31].

Our algorithm is implemented in MATLAB 2014a
and we use the code provided in [32] for (SC),

Figure 5. Located keypoints for an image of a dog. (a) detected
keypoints of the original image before contour point assign-
ment, (b) detected keypoints of the original image after
contour point assignment.

Figure 7. Robustness of the algorithm against rescale, (a)
detected keypoints for the image of a dog rescaled by its
half size before contour point assignment, (b) detected key-
points of (a) after contour point assignment.

Figure 6. Robustness of the algorithm against reflection. (a) detected keypoints for the image of a dog reflected around the x-axis
before contour point assignment, (b) detected keypoints of (a) after contour point assignment, (c) detected keypoints for the image
of a dog reflected around the y-axis before contour point assignment, (d) detected keypoints of (c) after contour point assignment.
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(IDSC), and (HF). The parameters are as follows:
X̃threshold = 0.02; radthreshold = 3; highDistance = 20; For
the arclength threshold, 0.02 was equivalent to an
interval between 10 and 20 pixels. High distance
value (highDistance), was chosen as a high radius
value, which can be observed during convolution.
Gaussian convolution is performed on the interval
[2,16] with a step size of

��
2

√
and the experiment

revealed that it was not useful to convolve the image
outside this interval. A similar observation was made
in [14].

Shape matching experiment

Matching with different circular shifts
The circular shift considers different starting points to
match shapes with minimal distance. The starting

point is important in that it allows standardization of
the choice of the first keypoint. Moreover, at each iter-
ation of our algorithm, we consider each keypoint of
the shape as a potential optimal starting point and sub-
sequently apply the circular shift process.

In this experiment, we choose the same shapes as in
Figure 4). Let D1 and D2 be the descriptors of the two
shapes. D1 and D2 are represented by their arclength
X, normalized arclength X̃ , and radius rad. The
number of keypoints is equal to 31 for D1 and is
equal to 39 for D2 as shown in Tables 1 and 2. The appli-
cation of a circular shift will result in 31 matches. In
each match, the starting point is one of the 31 key-
points of D1. Note that the circular shift is performed
only on the first shape, i.e. the query shape. Each
match provides a distance. The best match is the one
that minimizes the distance. Table 3 show the results
of matching when considering each keypoint of D1 as
a starting point.

In Figure 12, we present 3 matches among 31 poss-
ible matches. These three matches are shown in Table 1
at the 1st , 2nd , and 5th lines in the left side of the table.
The three matches provide, respectively, the distances
461.49, 657.33, and 1008.92 and 46, 51, and 60 pairs of
matched keypoints. The best match is given by the first
matching as it provides the minimum distance and is
shown in Figure 12(a). In Figure 12(c), we show the
worst matching case. Although some keypoints
were matched incorrectly, many keypoints remain

Figure 8. Robustness of the algorithm against rotation. (a)
detected keypoints for the image of a dog rotated with an
angle of 20o before contour point assignment, (b) detected
keypoints of (a) after contour point assignment.
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unmatched. Therefore, the final distance between the
two shapes remains high. The algorithm is capable of
differentiating shapes that are different, even though
it can make some incorrect individual matches.

Matching when view angle changes
In this experiment, we show the matching of two other
shapes. The second shape has a similar part to the first
one on the left side, and a relatively different part on
the right side. In their matching (see Figure 13), 14
matches were detected 14 is the number of lines in
the figure. The best match was detected at the 30th cir-
cular shift, i.e. the 30th keypoint of the first descriptor
was matched to the 1st keypoint of the second descrip-
tor. This matching provided a minimum distance of
612.70. From the figure, we can observe that many key-
points were matched correctly. Good matches in the
head and the back feet of the two shapes are explained
by the normalized arclength. However, for the same
reason, the remaining points in the front feet and the
neck of the first and second shapes are erroneously
matched. Another circular shift can resolve this match-
ing; however, it can produce errors for the remaining
good matches.

Matching of mirror shapes
In this experiment, we show how the best (and worst)
matching is chosen between the normal and inverse

matching using two shapes. In Figure 10, the first
matched keypoint of the first shape is matched to the
first keypoint of the second shape. The second keypoint,
which is the counter-clockwise neighboring keypoint of
the first keypoint in the first shape, is matched to the
clockwise neighboring keypoint of the first keypoint in
the second shape. The direction of matching is consist-
ently followed for the two shapes, i.e. the keypoints of
the first shape follow a counter-clockwise direction
whereas the keypoints of the second shape follow a
clockwise direction. The minimum distance is equal to
729.76 with 15 matched keypoints (the number of
images in Figure 10). In Figure 11, we show matching
of the same shapes with normal matching, i.e. the key-
points in the first shape follow the same clockwise direc-
tion as the keypoints in the second shape. The number of
matching keypoints is 15 (the same as inversematching);
however, the final distance in this case is equal to 740.04.
Thus, inverse matching is chosen as the best matching.

In Figure 14, the number of matching points for
normal matching (Figure 14(a)) is 12 and the best dis-
tance is 613.53. For inverse matching, n is 11 and
652.34. This distance is larger than that of normal
matching and the number of keypoints is smaller,
although, visually, inverse matching is the best

Figure 9. Robustness of the algorithm against translation. (a) detected keypoints for the image of a dog translated with 50 pixels in
the horizontal axis, before contour point assignment, (b) detected keypoints of (a) after contour point assignment. (c) detected
keypoints for the image of a dog translated with 50 pixels in the vertical axis, before contour point assignment, (d) detected key-
points of (c) after contour point assignment.

Table 1. Descriptor D1.
X Xnorm rad X Xnorm rad

1 0 2.83 306 0.54 4.76
7 0.01 2.83 339 0.60 4.00
17 0.03 3.36 347 0.61 2.83
19 0.03 13.45 374 0.66 8.00
31 0.05 2.83 389 0.69 16.00
64 0.11 11.31 398 0.70 6.73
75 0.13 13.45 407 0.72 4.00
79 0.14 22.63 460 0.81 2.83
132 0.23 22.63 472 0.83 8.00
164 0.29 5.66 473 0.84 2.83
182 0.32 4.76 479 0.85 4.76
185 0.33 3.36 484 0.85 6.73
222 0.39 6.73 486 0.86 8.00
234 0.41 2.83 540 0.95 2.83
236 0.42 2.83 557 0.98 4.00
285 0.50 4.76

Table 2. Descriptor D2.
X Xnorm rad X Xnorm rad

1 0.00 4.00 365 0.62 4.76
24 0.04 2.83 368 0.63 5.66
28 0.05 2.83 370 0.63 8.00
40 0.07 8.00 377 0.64 9.51
51 0.09 2.83 379 0.65 2.83
77 0.13 11.31 391 0.67 11.31
88 0.15 13.45 398 0.68 11.31
92 0.16 22.63 398 0.68 13.45
144 0.24 22.63 409 0.70 5.66
172 0.29 4.76 412 0.70 6.73
177 0.30 4.00 441 0.75 2.83
185 0.32 4.76 459 0.78 2.83
187 0.32 4.00 477 0.82 3.36
224 0.38 6.73 479 0.82 9.51
235 0.40 2.83 483 0.83 5.66
276 0.47 4.76 538 0.92 3.36
303 0.52 5.66 557 0.95 2.83
343 0.59 4.76 563 0.96 16.00
345 0.59 2.83 567 0.97 2.83
350 0.60 4.00
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matching. As the algorithm lies on the final distance,
which is computed based only on the arclength and
radius of the keypoints, the algorithm shows the
failure of matching in this example.

Matching of video frames
In this experiment, we match pairs of consecutive
frames. We aim to exploit the strengths and weak-
nesses of our descriptor when it is applied to real
videos. The pair matching can be extended to object
tracking. While the experiment was applied to a
branch of videos obtained from the CDnet dataset
[33], we only show a few examples of matching and
compare it with (IDSC) and (HF). In Figure 15, we
show the matching of several moving objects in
three consecutive frames. Each pair of frames is
mounted in an image with yellow lines representing
the best match. For (IDSC) (first row), the three
objects were correctly matched. In the last frame of
(IDSC), although the object (pedestrian) was fragmen-
ted into two components (body and feel), the matching
was correct. For (HF) matching (see Figure 16), the
objects were correctly matched even after split;
however, an object in the last frame was incorrectly
matched. In the case of our descriptor, all the objects
were correctly matched, and the positions are main-
tained. In Figure 17, we show how our descriptor
could detect which parts of the objects are split
(merge). As our descriptor is local and does not rely
on the whole contour of the shape, it is suitable for
fragmented objects, which are omnipresent in masks
issued from background subtraction and used in
video analysis.

Figure 10. Step-by-step inverse matching of two shapes from ETH-80. From left to right and from top to bottom: step 1 involves
matching of the first keypoint (top left), step 2 involves matching of the second keypoint (top second left), and so on, until step 15,
which involves matching of the last keypoint (bottom right).

Table 3. All possible matches of D2 within the circular shift of
D1. path is a n× 4 matrix where n is the number of matches of
the keypoints in D1 to the keypoints of D2. Note that n is
different from the number of keypoints either in D1 and D2,
because n can be higher when no matches are detected
between some keypoints from both descriptors. The first
column of path is the arclength X of D1 and the second
column is the keypoint arclength X from D2 that best
matches the descriptor of D1. The third column is the
minimal distance between D1 and D2 and the fourth column
of path is the minimal distance between the radius of D1 and
the radius of D2.
Path Distance Path Distance

46× 4 461.49 57× 4 899.81
51× 4 657.33 60× 4 1011.34
51× 4 654.30 61× 4 1047.90
53× 4 733.66 61× 4 1048.76
60× 4 1008.93 59× 4 974.05
56× 4 863.16 58× 4 934.85
58× 4 938.41 57× 4 895.28
60× 4 1015.07 58× 4 931.29
56× 4 861.00 61× 4 1047.59
57× 4 896.87 61× 4 1047.59
57× 4 896.23 60× 4 1008.20
58× 4 938.04 63× 4 1126.73
58× 4 934.29 63× 4 1124.04
59× 4 972.61 57× 4 895.75
58× 4 932.61 54× 4 766.73
60× 4 1017.59
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Shape categorization experimentation

Experiment on ETH-80
In this part, we apply our matching algorithm to classify
more objects of ETH-80 dataset (a dataset comprised of
10 objects of each of the 8 classes). Categorization of
objects is performed and our method is compared
with the (SC) and (IDSC) methods. First, the similarity
between shapes is computed using our method for
each shape (query) in the dataset, distances are
ranked, and the label of the best match is assigned to
the query. Shapes from the same category are
grouped, resulting in four categories (fruit (apple,
pear, tomato), car, animal (cow, dog, horse), and cup).
We show the details of the accuracy achieved with con-
fusion matrices for each method in Tables 4. Our two
main observations are as follows: the first observation
is that the accuracy is variable for each category and
for some categories, the accuracy of (IDSC) is higher
than that of the two other methods, and in other
cases, our method shows the best accuracy. The

second observation is that our method shows compar-
able results to those of (IDSC) and (SC) and can differ-
entiate animal, car, and fruit categories.

Experiment on articulated dataset
In this experiment, we apply our algorithm to the
articulated dataset [19]. The dataset contains 40

Figure 11. Step-by-step normal matching of two shapes from ETH-80. From left to right and from top to bottom: step 1 involves
matching of the first keypoint (top left), step 2 involves matching of the second keypoint (top second left), and so on, until step 15,
which involves matching of the last keypoint (bottom right).

Figure 12. Matching of D1 to D2 using three different circular shifts, (a) matching using the first keypoint of D1 as a starting point,
(b) matching using the second keypoint of D1 as a starting point, (c) matching using the fifth keypoint of D1 as a starting point.

Figure 13. Matching of two shapes from ETH-80. The numbers
refer to the keypoint indexes of both shapes.

10 I. SETITRA AND S. LARABI



images from 8 different classes. Each object has 5
images articulated to different degrees. We compare
our method with hierarchical projective invariant con-
texts, which use hierarchical characteristic number
context (HCNC) [34], (SC), (IDSC), and (HF). The results
of these methods are obtained from [34]. We follow
the experimental protocol described therein, i.e. each
image in the dataset (5 objects of 8 classes, which
result in 40 images) is used as a query and the result
is summarized as the number of the top 4 closest
matches in the same class. Hence, the best possible
result for each query is 40. The results of other
methods are directly obtained from [34]. Although
our method has a poor description of shape (only
arclength and radius), it performs better than SC, and
in some cases, surpasses HF (top 4).

Experiment on Kimia99 dataset
The Kimia99 database [31] consists of 99 images from 9
categories with 11 objects per class. In this experiment,

similar to [28], we apply a leave-one-out cross-validation
to these datasets. In this protocol, the first shape is
removed from the dataset and used as a query for the
remaining shapes. The number of shapes returned
from the same class among the 22 returned shapes is
divided by 22 (22 being twice the number of objects
per class). This ratio is computed for all the remaining
shapes of the dataset. Themean of all such ratios is com-
puted as the overall recognition score and is presented
in 18. The results are obtained from [28]. For this dataset,
our descriptor provides acceptable results as compared
with those of the recent state-of-the-art methods. This
experiment enhances our observation; even when
using small information about a shape, when shapes
are sufficiently differentiable, our descriptor can cor-
rectly categorize them.

Experiment on MPEG-7 dataset
Experiments conducted on MPEG-7 dataset [35] are
presented in Table 6 and in Figure 19. We adopt the

Figure 14. Normal and inverse matching of a pair of shapes from ETH-80, (a) Normal matching with the distance =613.53 and the
number of matched keypoints =11, (b) Inverse matching with the distance =652.34 and the number of matched keypoints =12.

Figure 16. Matching of shapes in three consecutive frames
using (HF). From top to bottom frames at time t, t+1, t+2,
respectively.

Figure 15. Matching of shapes in three consecutive frames
using (IDSC). From top to bottom frames at time t, t+1, t+2,
respectively.
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same protocol as that described in 5.3.3. Each keypoint
in this experiment is represented by one of the two
descriptors (IDSC) and (HF). In (IDSC), each contour
point is represented by a 96−dimensional vector (8 dis-
tance scales and 12 angle scales), and in HF, each
contour point is represented by a 20-dimensional
vector (smoothing interval of HF computation). In the
figure, colors represent different class accuracies:

. We present the class accuracy of our method in blue
when it is less than that of the other method ((HF) or
(IDSC)), and present the difference (superiority of (HF)
or (IDSC) method) in red. For example, for the class
bell (4th class from the left of the figures), the accuracy
when our method is combined with (HF) and (IDSC) is,
respectively, approximately 80% and 95%, whereas it
is approximately 98% for both (HF) and (IDSC).

. We present the class accuracy of (HF) and (IDSC) in
yellow when it is less than the accuracy of our
method, and present the difference (superiority of
our method) in green. For example, for the class

spring (4th class from the right of the figures), the
accuracy when our method is combined with (HF)
and (IDSC) is approximately 100% in both cases,
whereas for (HF) and (IDSC), it is approximately
55% and 50%, respectively.

When each contour point of a shape is described by
any of these descriptors, high processing time is
required for the retrieval from large datasets. Our
method retains only the keypoints that sufficiently
describe the shape. Although a significant amount of
information is lost, our descriptor still maintains its rela-
tive performance in this complex dataset while drasti-
cally reducing processing time. Our method even
surpasses (HF) and (IDSC) for some classes.

Experiment on CDnet videos
In this section, we present our results obtained for the
categorization of objects from the CDnet dataset [33].

Figure 17. Matching of shapes in three consecutive frames
using our descriptor. From left to right frames at time t, t+1,
t+2, respectively.

Table 4. Confusion matrix for grouped categories for our method, IDSC, and SC.
Fruit Car Animal Cup

Apple 89.5−92−75 6.5−7−25 0−0−0 4−1−0
Car 40−54−56.5 32.5−32.5−43.5 19−9.5−0 8.5−4−0
Cow 0−0−2 10−4−1 90−96−93 0−0−4
Cup 50.55−60−6.5 5−6−0 0−0−58 44.5−34−35.5
Dog 0.5−0.5−1.5 1−0−0 98.5−99.5−94.5 0−0−0
Horse 0−0−2 0−0−1 100−100−93 0−0−4
Pear 80−88.5−80.5 10−10−19.5 1.5−1.5−0 8.5−0−0
Tomato 92−94.5−84 5−5−16 0−0−0 3−0.5−0

Table 5. Retrieval result on the articulated dataset computed
with HCNC, SC, IDSC, and HF.
Method Top 1 Top 2 Top 3 Top 4

HCNC 40/40 38/40 29/40 22/40
SC 20/40 10/40 11/40 5/40
IDSC 40/40 34/40 35/40 27/40
HF 38/40 35/40 28/40 19/40
Our 28/40 24/40 17/40 22/40

Figure 18. Recognition scores of our method for Kimia99 com-
pared with those of 2D/3D shape fill ratio (2D/3D SFR), skel-
eton method, TSDIZ, Hilbert curve, SFR, curve normalization,
shape saliency descriptor (SSD), and HF.

12 I. SETITRA AND S. LARABI



The dataset contains binary shapes of moving objects
that represent a foreground mask. In this experiment,
we use a KNN algorithm to classify objects into four
classes, namely, human, car, bike, and boat. We
expect these classes to be the most frequently
detected classes in any video surveillance video. In

Figure 20, we show some of these objects. The
objects are obtained from different videos with
different poses and orientations. Table 7 shows the
confusion matrix for our approach compared with
those of (IDSC) and (HF). The overall accuracy is
93.75%, 93.43%, and 92.24% for our approach, (IDSC),

Table 6. Overall retrieval rates when our approach is combined with HF (Our+HF) and IDSC (Our+IDSC) and a comparison with
them.
Method HF IDSC Our+HF Our+IDSC

Accuracy 83.33 77.00 65.78 57.21
Processing time (seconds) 5.8636× e4 9.4334× e4 2.2207× e3 4.5406× e3

Processing time (hours:minutes:seconds) 16:17:16 26:45:34 00:37:00 01:15:40

Figure 19. Class retrieval rates for MPEG-7 dataset (top) Results of retrieval using our descriptor combined with HF, (bottom) Results
of retrieval using our descriptor combined with IDSC.
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and (HF) respectively. While a small amount of infor-
mation is used in our descriptor (radius and arclength),
our descriptor surpasses (IDSC) and (HF) in shape
categorization.

Discussion

Through experiments, we presented how our descrip-
tor combined with our matching algorithm can
match similar shapes. We also described cases where
our matching fails. When two shapes have the key-
points at the same position and with the same radius,
they are matched although they do not appear
similar. However, in practice, shapes with the same cur-
vatures at the same positions are more visually similar
than shapes with curvatures at different positions. Our
descriptor is suitable to distinguish shapes when curva-
tures are at different positions. Hence, our descriptor
can differentiate between a dog and a horse as the cur-
vature at the head of the horse is further than the cur-
vature at its back as compared with that for a dog. As
our detector shown in Subsection 3.1 has good repeat-
ability, curvatures are detected similarly. For shapes
where curvatures are positioned at the same positions,
a solution can be to add another verification parameter
for the keypoints such as their distance from the center.
The second is to add information to the keypoint itself.
For example in [30], the keypoint was represented by
coarse bi-dimensional histograms representing the
local density of the contour pixels at the given

distances from the curvature circle and angular pos-
itions around it and by SC in [18]. In our case, we
combine our descriptor with (IDSC) and (HF). Our
method achieved a reasonable accuracy (95.66%) on
the Kimia dataset, surpassed the accuracy of the
state-of-the-art methods (93.75%) on CDnet videos,
and allows handling cases of object merge and split
usually present in foreground masks issued from back-
ground subtraction of videos.

Conclusion

In this paper, we proposed a new method for shape
description and matching based on curvatures over
scales. A shape descriptor is represented by the scale
at which the curvatures were detected and their
arclength. The matching algorithm is also suitable for
mirror shapes as it applies normal and inverse match-
ing to obtain the best orientation of the shape.
Although our method is very simple, it can differentiate
shapes and is suitable for object categorization for real-
time applications. The obtained results demonstrate
that the proposed method is suitable for many appli-
cations, especially for monitoring scenes where the
present objects are from a restricted number of
classes such as human, car, animal, and bike classes.
The shape matching algorithm may be extended to
object tracking. Indeed, as our descriptor is local, and
does not rely on the whole contour of the shape, it is
suitable for fragmented objects, which are omnipre-
sent in masks issued from background subtraction
and used in video analysis.
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