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The aim of this work is to provide a semantic scene synthesis from a single depth
image. This is used in assistive aid systems for visually impaired and blind people that
allows them to understand their surroundings by the touch sense. The fact that blind
people use touch to recognize objects and rely on listening to replace sight, motivated
us to propose this work.

First, the acquired depth image is segmented and each segment is classified in the
context of assistive systems using a deep learning network.

Second, inspired by the Braille system and the Japanese writing system Kanji, the
obtained classes are coded with semantic labels. The scene is then synthesized using
these labels and the extracted geometric features.

Our system is able to predict more than 17 classes only by understanding the provided
illustrative labels. For the remaining objects, their geometric features are transmitted.
The labels and the geometric features are mapped on a synthesis area to be sensed
by the touch sense.

Experiments are conducted on noisy and incomplete data including acquired depth
images of indoor scenes and public datasets. The obtained results are reported and
discussed.
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scene understanding is done in two stages: the classification of various objects captured by the
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Comment 6: The authors should consider making the data and code openly available on
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methods that use RGB images. Significant space is taken up describing the encoding system
that a user would receive, yet there is no evaluation of this system.

Response 1: The results are now compared to the presented works in the related work
section.

Comment 2: Plot axis should be labeled. Also, there are too many training trajectory plots.
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consideration; the new results have at most 2 trajectory plots.

Comment 3: Some information is unnecessary considering this is a Computer Visual journal
and takes up too much space. For instance, the distinction between "online mode" and "offline
mode" for the classification module, the scaling as a preparation step for the CNN, the general
SOTA results of deep learning architectures (in the beginning of section 3.2), the statement
that "we took a pretrained model using data from the ImageNet challenge and then, we
investigated the fine-tuning technique before applying transfer learning” (saying a pretrained
model is fine-tuned is enough).
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Comment 4: The abstract does not explain or summarize the paper. I would consider writing a
longer abstract where the motivation, contributions and pipeline components are each touched
upon. It is also not clear from the abstract that the system is meant to aid visually impaired

users.

Response 4: The abstract has been updated as you suggested.

Comment 5: It is stated that an i5 processor is used. If this is to be included, then the entire
name should be used.

Response 5: After that, we executed our proposed system on a laptop having Intel Core i5-
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Comment 6: This sentence is unclear: "The DBSCAN is robust to noise, during clustering the
noise is detected and classified as noise (fig. 9 third bottom image).”

Response 6: The sentence has been reformulated: Furthermore, the DBSCAN is robust to
noise: during the clustering, the outliers are detected and neglected and thus, the clustering
process is not affected by them.

Comment 7: The notation for figures is not consistent. "Figure", "Fig." and "fig." are all used.

Response 7: We opted for “Figure” for the entire paper.

Comment 8: It is not stated which layers are removed from the VGG-16 architecture.

Response 8: In the revised paper we considered a new model architecture, we did not
remove any layers.

Comment 9: In Fig. 14, the plots are on the same column, yet the caption references the "right"
and "left" plots.

Response g: The plots have different colors and the results have been placed side by side.

Comment 10: Some orthographic or grammatical errors.

Response 10: The paper has been thoroughly proof read and revised. A sincere effort has
been made to handle all expression problems and grammatical errors.
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General comment: Thank the authors for the submission of the manuscript entitled
"Semantic scene synthesis: Application to assistive systems". Presentation of the research work
is precise and work is well defined. The 'abstract’ and 'introduction’ is well written. The state-of-
the-art is discussed in the article and well connected with the overall situation and context.

Comment 1: It would be much better if the authors give separate 'motivation’ and ‘objective’
for the work. That would give more understandability of the model.

Response 1: We have separated the 'motivation’ and 'objective' for the work (section 2.3).

Comment 2: The authors have used DCGD algorithm, some description should be needed
about the DCGD algorithm.

Response 2: We have added a subsection (section 3.1) for the DCGD algorithm.

Comment 3: The authors have used data from RMRC challenge and GDIS dataset. Some
snapshot or instances of the datasets could be given for better understanding.

Response 3: We have added some instances for both dataset (Figure 10).

Comment 4: More public datasets and deep learning techniques could be given to test the
performance of this model.

Response 4: We have taken this in consideration, we replaced the CNN-based model with
PointNet, a point cloud based model.




Comment 5: For segmentation the authors have used K-means, mean-shift, fuzzy-clustering
and DBSCAN clustering algorithms. A short description of these algorithms can be given for
better understanding.

Response 5: We have added a short description for each algorithm:

“K-means, mean-shift and fuzzy-clustering are centroid based algorithms: the first divides
the input samples into K separate groups with equal variance while minimizing a given
criterion. The mean-shift algorithm separates the input samples into blobs with smooth
density. As for the fuzzy-clustering which is based on fuzzy-logic, it assigns for each sample a
probability corresponding to each cluster. More the probability is high the more the sample is
near to the cluster. One of the disadvantages of these algorithms is the fact that they require
the number of clusters as input which is unknown when dealing with real-world data. On the
other hand, the DBSCAN algorithm seeks to separate the samples into high density clusters
with low density areas. In addition, it is a non-parametric algorithm, the number of clusters
does not have to be defined beforehand. Furthermore, the DBSCAN is robust to noise: during
the clustering, the outliers are detected and neglected and thus, the clustering

process is not affected by them.”

Comment 6: Authors don't show the experimental setting, such as batch size, epoch, learning
rate, training time and running environment in details and precise manner.

Response 6: We have taken in consideration this comment for this new version. We
mentioned the input size; as for the training setting, we mentioned that is the same with the
original paper.

Comment 7: The authors could have given a separate section named 'Future Scope' for this
work.

Response 7: We have added the ‘Future Scope’ section (section 7).
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1 Introduction

In order to accomplish daily tasks, people involve their five senses, namely
sight, hearing, taste, smell and touch. Being deprived of one of these senses
will complicate the process of a given task; it will reduce human autonomy,
independence and even privacy; the visually impaired find difficulties in their
daily life.

With the limitations of the classical aid systems such as white canes, guide
dogs and personal assistants; and with the evolution of technology, many com-
mercial and noncommercial aid systems were proposed in the last decades.
Generally, these latter rely on image processing, artificial intelligence tech-
niques and external sensors in order to offer help for the visually impaired and
blind people to improve their independence in many applications.

To transmit instructions, scene description or any other generated output,
most of the assistive systems use audio-based or vibration-based output de-
vices. It turns out that these latter hold hearing and are not too informative.
Hence, the necessity of providing a semantic labeling for scene understanding
that can be exploited by the touch sense.

In this work, we propose a framework for semantic scene synthesis. From
the depth image, the 3D scene is down-scaled and semantically mapped into a
synthesis area using the computed labels and the extracted geometric features
of the input point cloud. Two main modules are proposed: the classification
module and the semantic labeling module. The first module is based on a deep
learning architecture to classify depth image segments into seven semantic
classes. The semantic labeling is inspired from Braille and Kanji systems. This
latter is mapped into a touch-based synthesis area that can be used for many
applications such as in assistive systems for visually impaired and blind people.

The remaining sections are structured as follows: in section 2, we present
related works to objects classification, scenes understanding and semantic la-
beling for assistive systems. An overview of the proposed system is presented
in section 3. In sections 4 and 5, we describe our approaches for the classifi-
cation and the semantic labeling module respectively. Conducted experiments
are reported and discussed in section 6. Finally, we conclude with the future
works (section 7) and a conclusion (section 8).

2 Related Works

Visually impaired aid systems consist of a set of techniques whose goal is to
enhance the visually impaired life in different activities. These systems can be
traditional like white canes, guide dogs or personal assistants; sophisticated by
involving advanced technologies and computer science techniques [1] or hybrid
[2][3][4]. The sophisticated systems process the received data from the real-
world using sensors and transform it into instructions and signs that can be
understood by the visually impaired people. They use depth or RGB sensors,
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image processing techniques, computer vision and machine learning. In this
work, we focus on scene understanding and semantic labeling.

2.1 Scene understanding and object recognition

Object recognition in complex scenes is still a challenging problem. In the
recent work [39], they recognized objects based on alignment of convex hulls
of the detected segments in a depth image. Each computed convex hull was
then compared with convex hulls of target 3D object models or their parts.
This alignment is performed using the Convex Template Instance descriptor.
In visually impaired assistive systems, detecting objects is important in most
applications. Knowing their nature will provide the ability to deduct additional
information such as scene understanding, auto positioning and creating free
space by moving some kinds of objects like chairs. In [5], using a depth cam-
era, they proposed a wearable system based on a linear classifier to classify the
point cloud features into: chairs, tables, stair-up, stair-down and walls. The ob-
tained class is coded and mapped into a braille display. In [6], they proposed
a system that uses Visual Odometry, Region-growing and Euclidean cluster
extraction, and depth data to determine if the horizontal planes are a valid
step of a staircase. In [7], they implemented scene understanding using deep
learning techniques. The scene is captured using an RGB-D camera and the
results are displayed using an earphone and a smartphone that serves as a hap-
tic device. They adapted FuseNet [8] and GoogleLeNe [9] to provide semantic
segmentation and orientation instructions respectively. The semantic segmen-
tation model was designed to predict 40 different classes; however, these latter
are transmitted using an audio device. The authors in [10], segmented the
input point cloud based on the cascaded decision tree using RGB-D images.
The system only classifies a given segment, whether it is the ground, a wall or
a table (a horizontal plane that is not the ground). As in [11], they proposed
a lightweight CNN architecture that is able to be executed on smartphones
for traveling assistive systems. They adopted PeleeNet for object detection to
cover 80 different classes using the RGB images as input.

2.2 Semantic labeling

In [12], they proposed a navigation system based on RGB image processing.
The system transmits the generated scene and the navigation instructions on
the Senseg TM device. They used the electrostatic signs to generate codes and
to form textural instructions for the visually impaired and blind people. They
also used colors to encode additional visual feedback for the sighted and with
low vision people.

Authors in [5], encoded the considered object classes using the first charac-
ter of the class’s name: o, ¢, t and the space character to represent obstacles,
chairs, tables and free spaces respectively. They used a braille device to trans-
mit the occupancy grid to the user and to deliver the object’s label in the
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Braille system. These codes are simple to understand, but it can be ambigu-
ous while covering a large set of objects, especially with objects having the
same first character.

In our previous work [13], we proposed a semantic labeling for scene un-
derstanding since after understanding the scenes’ components, a human-being
can accomplish other tasks such as navigating. We mapped the detected planes
into cylinders having a specific height and radius. These latter are mapped into
a trapezoid area at a specific location. By touching this area, the user can lo-
cate objects from the free space that allows him to have an idea about their
characteristics, namely their heights and their areas. The proposed semantic
labeling does not reveal the object’s nature, it only gives an impression about
the given object.

2.3 Motivations and Objectives

The state of the art systems present many limitations:

- In indoor navigation, for example, they provide only a global description of
the captured scenes (free space and obstacles without describing their nature).
In some proposed systems when objects are detected, they usually use an RGB
camera as an additional input sensor [14]. In other works, they provide ob-
stacle classification, but by considering only a few classes such as classifying
the scene components into the floor, objects that are parallel to the floor and
objects that are perpendicular to floor without considering other features such
as the object’s height and its occupied area.

- The system’s output is usually transmitted by an audio device. This latter
suffers from some limitations as explained in [13] and in [15] works.

- The proposed semantic labelings are less informative and can generate am-
biguity and do not consider some geometric features that can be helpful [5].
- The actual aid systems are vibration-based or audio-based. For the visually
impaired, the hearing replaces the sight in different tasks such as detecting
some events, thus, the importance of releasing it.

- The visually impaired use the touch for learning geometries, recognizing ob-
jects and human faces; and even for reading.

As a consequence, our objective through this work, is to propose an end-
to-end assistive system that uses only the depth image as an input and it
generates labels on a tangible area. This system provides a scene description
designed specially for the visually impaired: it allows them to locate objects
and to recognize the geometry of the captured scene. The tangible area is
used as an output device to replace the traditional output device and thus the
hearing is released and the labeling is more informative.

3 System overview

Our proposed system (Figure 1) takes a single depth frame captured by a
head-mounted depth camera as an input. After detecting the ground using
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the DCGD (Depth-Cut based Ground Detection) algorithm [13], the occupied
space is extracted and segmented. Each computed segment is then fed to the
deep network to perform object classification. The feature extraction module
computes geometric features for each segment such as the object’s height. After
that, the provided class and features are used to generate semantic labels.
Finally, the captured scene is synthesized based on the features and labels
computed previously. The system can be adapted to use an RGB camera as
the input sensor; however, one more step that consists of estimating the depth
image will be required. In the visually impaired assistive systems, knowing
the distance away from objects and the geometry of the captured scene are
important.

3.1 Ground detection

The DCGD algorithm [13] consists of computing a set of depth cuts from
a given depth image. For a given depth z;, the selection on each column of
the depth image pixels having z = z; will define the images of 3D points
at distance z;. These 3D points define a parallel plane (I1;) to image plane
cutting the 3D scene (Figure 2). The selected pixels on each column having
the minimal value of the y — component define the image of intersection (G;)
of the plane (II;) with the 3D scene. From the initial distance zo to the final
distance (maximal authorized) z, for each step 6z, the curve G;,i = 0,n is
computed at z = zg + % X 0z, such that zy = 29 + n x dz. The second step
consists of removing pixels from (G;) that corresponds to objects. Each cut
is divided into sub-cuts labeled either ”concave” or ”convex”. The ”convex”
parts represent objects on the floor. The ground is then detected by iteratively
removing the convex of the current cut to keep only concave parts which will,
at the end of the process, represent the ground.
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Fig. 2 (Left)The 3D points at a given depth with minimal y—coordinate (case where
zz—plane is parallel to the ground) (colored in green).(Right) The obtained curve (G;)
for two cutting planes.

3.2 Point cloud segmentation

In this work, we are interested in detecting and representing coarse informa-
tion, i.e. large segments that represent salient objects. Detecting and trans-
mitting coarse information in visually impaired assistive systems is important,
knowing the scene architecture and how objects are arranged can be useful
to accomplish many daily tasks such as scene understanding and navigation.
Accordingly, in order to segment the obtained point cloud into coarse seg-
ments, clustering algorithms can be used for irregular object segmentation as
mentioned in [27]. K-means [28] [29], mean-shift [30], fuzzy-clustering [31] and
DBSCAN [32][33][34] clustering algorithms are widely used for point cloud
segmentation.

K-means, mean-shift and fuzzy-clustering are centroid based algorithms:
the first divides the input samples into K separate groups with equal variance
while minimizing a given criterion. The mean-shift algorithm separates the
input samples into blobs with smooth density. As for the fuzzy-clustering which
is based on fuzzy-logic, it assigns for each sample a probability corresponding
to each cluster. More the probability is high the more the sample is near to
the cluster. One of the disadvantages of these algorithms is the fact that they
require the number of clusters as input which is unknown when dealing with
real-world data. On the other hand, the DBSCAN algorithm seeks to separate
the samples into high density clusters with low density areas. In addition, it
is a non-parametric algorithm, the number of clusters does not have to be
defined beforehand. Furthermore, the DBSCAN is robust to noise: during the
clustering, the outliers are detected and neglected and thus, the clustering
process is not affected by them.

In case of point cloud coarse segmentation, the DBSCAN is more suitable as
shown by Figure 3. To reduce the temporal complexity, we applied a downsam-
pling on the input point cloud. A pass-through filter can be applied for noise
removal; its parameters are fixed according to the characteristics of the depth
camera. In our case, we only considered points with a depth between 800mm
and 4000mm apart. After the segmentation step, each segment is injected into
the classification module and the feature extraction and classification module.
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.

Fig. 3 From left to right:(Top) color image, depth image and occupied space’s point cloud.
(Bottom): K-means, Mean-shift and DBSCAN (the black points represent the detected
noise).

In the next two sections, we will present in detail the main system com-
ponents, namely the point cloud classification module, that is responsible for
computing the geometric features and finding the point cloud nature using a
deep neural network. Then, the semantic labeling module that is responsible
for designing and synthesizing the scene using the objects classes that may
serve as an output interface for assistive systems.

4 Point cloud Classification in the context of assistive systems

Our aim is to provide object classification in the context of assistive systems.
In order to cover a significant number of classes in a simple way, we consider
salient objects (large and medium objects) and regroup them into 7 seman-
tic classes that include 16 object classes, namely chairs, beds, sofas, benches,
stools, tables, desks, night-stands, dressers, wardrobes, shelves, bathtubs, toi-
lets, windows, doors and stairs. These classes do not only contain semantic
meaning, but the objects belonging to the same class have also a similar geo-
metric shape while preserving some characteristics. The first class represents
objects that we sit on, it includes chairs, stools, beds, sofas and benches. The
second class represents objects that we put something on, it includes tables,
night-stands and desks. The third class represents objects that we put, hide or
arrange something in, it includes dressers, wardrobes and shelves. As for the
fourth, the fifth and sixth classes, they represent bathtubs and toilets; windows
and doors respectively. The last class represents stairs and since the stairs can
be dangerous for the visually impaired and blind people, making the differ-
ence between the stairs leading to upstairs and stairs leading to downstairs is
important.

In addition, this module includes 3 different sub-modules. The first sub-
module computes the point cloud semantic class based on classifying its global
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features computed using a deep neural network. The second sub-module com-
putes the point cloud geometric features. As for the last sub-module, it com-
bines the output of these sub-modules in order to provide the final classes and
provide them for the semantic labeling module.

4.1 Semantic classification

We call the semantic classification/classes, the classification/classes provided
by the deep neural network in order to distinguish between this later and the
final classification that is mapped on the scene synthesis.

Deep learning architectures showed considerable improvement in many
fields, especially with RGB data after introducing the Convolutional Neu-
ral Networks, CNNs. Current works investigate the 3D object classification
using volumetric data [18][16][19] or point cloud [20][21][22][23] as the input.
The advantage of using point clouds based networks instead of CNNs based
or volumetric based networks is the fact that point clouds are irregular, most
of the time sparse and permutable.

Note that, in this work, we are not designing a novel architecture. How-
ever, using our approach of merging the objects classes that are geometrically
similar and have the same function increased the accuracy with 5% on the test
set. The obtained results are reported, compared and discussed in the experi-
ments section. To classify a given point cloud, we trained the PointNet network
[23], a state of the art architecture. PointNet is a deep multi-layer perceptron
network that is designed for 3D raw data. It is invariant to permutation and
transformation due to the use of max pooling, a symmetric activation function,
and T-net that ensures pose normalization. It is also robust to small noise and
incomplete data (with a small portion), but it is not able to capture fine local
patterns. This limitation will not highly affect our system since we only con-
sider salient objects (for the time being). Although several architectures have
been proposed over time such as [20] [21], PointNet is still used in different
systems that involve point clouds [44] [43].

4.2 Geometric features extraction

In addition to the discussed object classification, we extract from the computed
convex hull geometric features, namely object’s height and its occupied area
as explained in [13]. This is done in the online mode, the offline mode is
not needed for this classification. After the segmentation process, extracting
geometric features and the classification is computed in parallel with the object
classification. This object description is useful for the visually impaired and
blind people, it helps them to have an impression about their surroundings.
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4.3 Point cloud classification

We combined these two classification methods, i.e. the classification using deep
learning and the classification using the geometric features to provide rich
information. For each object, we provide its semantic class, its height class
and its occupied area class. When the deep learning model predicts the object
class with low probability, only the second classification is maintained. In this
way, we are sure to provide an accurate description even if the deep learning
model fails to predict the right semantic class.

In addition, combining these classes allows the distinction between objects
belonging to the same semantic class. Chairs, beds, sofas and benches are
objects that we sit on; however, they are different in their forms and occupied
area: beds are generally a large object (3rd class regarding the occupied area),
chairs have small surface (1st class regarding the occupied area) and benches
and sofas are medium objects (2nd class regarding the occupied area). Dressers,
night-stands and shelves are all objects that we arrange something in; however,
they have different heights and occupied areas: dressers are represented by the
3rd class regarding the height, night-stands are represented by the 2nd class,
but shelves are usually medium objects and night-stands are usually small.

5 Object semantic labeling and scene synthesis

In this section, we first introduce our proposed semantic labeling that repre-
sents the class of each detected object. Then, we describe how the perceived 3D
scene is synthesized into a specific area while taking into account the located
ground, the semantic label and extracted features of each 3D object.

5.1 Semantic labeling

In our previous work [13], we proposed our first semantic labeling: each hori-
zontal plane in the scene was represented as cylinders with an associated height
and radius that allow representing the occupied area and the height of the as-
sociated object respectively. This allows the user to have an impression about
his surroundings: free space, small objects, medium objects, large objects and
their heights, but it does not provide the object’s shape nor its nature: if it is
a chair, a table, etc.

In this work, we propose an improved semantic labeling which takes into
consideration the nature of the objects. It is inspired by the Braille system
and Kanji (the Japanese writing system)(Figure 4). An alphabet in the Braille
system is represented by a cell that is provided with raised dots. Each cell
contains at most six raised dots. Kanji is a Japanese writing system that is
inspired by logographic Chinese characters. Some Kanji letters that represent
some objects are driven from nature, i.e. these objects’ shape in real-world;
it’s the case for 'mountain’ as shown in Figure 4 (right) first line.
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Fig. 5 Our proposed semantic labeling from the first class to the last class, respectively
(From top to down). We first drew the selected objects in the real-world (Left) and then,
we derived shapes recursively until we obtained the current semantic labeling (From left to
right).

In order to draw our illustrative semantic labeling, we designed cells with at
most 25 raised dots. The cell’s shape can be revised depending on the precision
of the synthesis area: if the synthesis area is rich in pins, we can design cells
with more raised dots. We suggest to use cells such that the shape can be
touched only by a single finger to avoid ambiguity.

On the other hand, the illustrative labeling is derived from the object’s
shape in the real-world. For each semantic class, we chose the object that is
the most close to the class’ meaning: we chose a chair, a table, a dresser, a
bathtub, a window and a door to represent the proposed classes in section 4
respectively as shown in Figure 5. To ensure the user’s safety, we provide two
different labels for the stairs leading to upstairs and stairs leading to downstairs
as shown in Figure 6. In this way, by touch, the user will understand if he is
about to climb the stairs or about to go downstairs.

The described labeling is used alongside with the first labeling to enrich
the scene description. The reason we combined the two labels instead of cre-
ating an illustrative label for each object, is to reduce the number of possible
illustrative labels since it can be deducted from its height and its occupied
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Fig. 6 The proposed semantic labeling for stairs. Stairs leading to upstairs and leading to
downstairs, their chosen labels, their positioning on the synthesis area.

area as explained in section 4.3. Note that although the labels are inspired by
Braille and Kanji systems, understanding and memorizing these labels do not
require the user to be comfortable with them.

5.2 Scene synthesis

After detecting the ground and classifying the computed segments, the system
provides the ground pixels and a set of segments. Each segment is associated
with its label and its extracted geometric features. These latter will be used
for scene synthesis.

The area of the scene synthesis has a trapezoid shape that corresponds to
the scaled view field of the camera. This area is covered by a dense number of
pins that represent the raised dots in the Braille system. The pin is set up to 5
different levels: The level zero is used to represent the holes on the ground. The
level 1 represents the ground or the neutral element in some applications. The
height of the illustrative labels that are mapped in the center of the convex
hull; is set to the computed level (i.e. level 2, 3 or level 4) and the height of
the remaining area of the convex hulls associated with the segment is set to
level 2.

The parameters of the depth camera are used to map the view field into
an area of scene synthesis (see Figure 7). Knowing that the ratio between the
small and great basis of the trapezoid representing the camera’s view field is
equal to 5 (for L = 400cm), the scaled area of scene synthesis verifies the same
ratio as indicated by Figure 7)(right).

Let b(2p, Yp, 2p) be the barycenter of the box encompassing the object. The
position of b’ (uy, vy ), the mapping of b on the synthesis area is calculated
from the geometric relationship between the scene and the synthesis area as
indicated by Figure 7. The values of wy is equal to d’ x x/d and vy is equal
to d’ x (2 —1)/d where d’' is the small basis of the synthesis area. The values
of I, L for the Kinect sensor are 80cm and 400cm.

Now, let by (z,y), b2 (x,y), .., bp(z,y) be the points defining the box encom-
passing the object. The mapped points b} (u,v), b5 (u,v), .., b, (u,v) are located
on the area. All pins inside the area defined by the points b;,7 = 1..n are set to
level 2. The pins associated to the label of the object are set to their associated
level 3, 4 or 5 at the barycenter as indicated by Figure 8 (Left).

The area’s input may receive the 3D raw data or labels. In Figure 8 (Mid-
dle), the point cloud of the captured scene is directly mapped on the area. The
same point could be mapped into the synthesis area using different heights of
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Fig. 7 (Left) The depth camera’s view field. (Right) The area of scene synthesis where
semantic labels are generated.
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Fig. 8 (Left) The convex hull and the positioning of the label (here for a table) on the area.
Note that the pins of the label in red are of level 3 (corresponding to the height of the table
in the scene). The pins of the convex area in blue are of level 2. The remaining pins in the
synthesis area (in green) are set to level 1 corresponding to the ground. (Middle) Mapping
the 3D point cloud into the synthesis area. (Right) Scene synthesis from raw data (point
cloud) using pins without semantic labeling.

pins (see Figure 8 (Right)). For more visibility, we assigned the grey color, the
green color, the red yellow color and the red color to represent objects with
level 2 (ground), 3, 4 and 5 respectively.

6 Experiments
6.1 Experimental environment and dataset

In order to perform the training, we ran our models on a GPU provided by the
Google Colaboratory platform. After that, we executed our proposed system
on a laptop having Intel Core i5 — 7200U CPU (2.50GHz x 4) and 4GB as
processor and RAM respectively.

As to train our model, we extracted our 16 selected classes from Model-
Net40 [19] (Figure 9), a public dataset which consists of 40 classes of CAD
models. Note that we excluded doors and windows since they are represented
by holes and in the real-world can be confused with noise or walls where they
are closed. ModelNet40 originally includes 12311 models among which 2468
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Fig. 9 Dataset samples. (TOP) Modelnet40[19]. (Down) GDIS[41]: the red color represents
the detected ground.

are used for testing. Our constructed dataset includes 5560 models among 988
which are used for testing.

In addition, we used GDIS dataset (Ground Detection for Indoor Scenes)
[41], our local dataset, for additional experiments. GDIS dataset was initially
constructed for the ground detection task, but we considered it for point cloud
classification and the validation of the entire system (from the ground detection
to the semantic labeling).

6.2 Point cloud segmentation and feature extraction

Since we consider irregular segments and not planes, we computed the height
as the height of the 90th percentile of the points’ y — coordinate. We chose the
90th percentile instead of the 100th to avoid potential outliers. To evaluate
this step, we took the measurements of some objects in the real-world and then
compare it with the obtained geometric features. This is done by computing the
Mean Absolute Error (MAE) between the objects’ height and the computed
one. The obtained results showed a slight mean difference that does not exceed
30mm.

6.3 Semantic classification

Since PointNet is 3D raw data based, the CAD models are sampled into point
clouds of 2048 points and normalized into a unit sphere. Regarding the ex-
perimental settings, we applied the same configurations as in [23]. As for data
preprocessing, we, on-the-fly, applied random rotations around the yaw axis
and jittered the points position as described in [23]. PointNet achieved the
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Fig. 10 (Left) PointNet loss function. (Right) PointNet accuracy. Training PointNet with
14 classes; the model starts to converge from epochs 50 and reach 96.19% and 91.67% on
train-set and test-set respectively.

state-of-the-art with 89.2% accuracy in their original paper. In this work, we
trained our model on a sub-set of 14 (after excluding doors and windows)
classes from ModelNet40. The model started to converge from the 50th pe-
chos and reached 91.67% accuracy on the test-set after 262 epochs (Figure
10).

However, as shown by the confusion matrix (see Figure 11), there is a high
confusion between wardrobe and the classes bookshelf and dresser (about 20%
and 10% respectively), between table and desk (about 16%), stool and chairs
(about 15%). There is also a small confusion between the sofa and the classes
bench and chair. These confusions are due to the geometric resemblance be-
tween them. This leads us to consider combining classes for the semantic clas-
sification as explained earlier in section 4. As the previous model, this model
started to converge after the 50th epoch. The accuracy has been improved by
5% to reach 96.35% on the test-set after only 226 epochs (Figure 12). Thus,
the described confusions have been eliminated (see Figure 13). The confusion
matrix (see Figure 13 (Left)) shows that the confusion between the different
classes does not exceed 7% unless for stairs that 15% of them were confused as
chairs. To visualize this latter, we plot the three worst classification for each
class (Figure 14): the instances have similar geometry with the predicted class
with a certain probability. However, the confusion stills small and the system
predicts accurately with high recall and precision (see Figure 13 (Right)).

The model was trained using 3D CAD models; on real-world data, the
model predicts the right class when the input is noisy and slightly incomplete
(see Figure 15); however, it fails otherwise. As shown in Figure 16 (column
2), the system has predicted incorrectly the class of the table that was poorly
segmented (we only used background removal to simulate the cropped data).
To overcome this problem, we only consider the predicted class with high
probability (higher than 0.85).

Compared with the results of object classification based aid systems pre-
sented previously (Table 1), in the system [5] , authors didn’t mention the
accuracy of their proposed depth-based classification algorithm. As for the
system [7], authors adapted FuseNet for RGB-D semantic segmentation that
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Fig. 11 Confusion matrix: there is high confusion between wardrobe and the classes book-
shelf and dresser (about 20% and 10% respectively), between table and desk (about 16%),
stool and chairs (about 15%); and small confusion between the sofa and the classes bench
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Fig. 12 (Left) PointNet loss function. (Right) PointNet accuracy. Training PointNet with
6 classes; the model starts to converge from epochs 50 and reach 98.26% and 96.35% on

train-set and test-set respectively.

has 76.27% as accuracy. Compared to the third system wang2014segment, our
model surpasses its accuracy and with a larger set of classes.

Table 1 Comparison with the classification module of the presented state of the art systems.

Input Nb Classes Classifier Accuracy (%)
Wang et al.[5] | Depth image 5 Depth-based classifier[5] -
Lin et al.[7] RGB-D 70 FuseNet|[8] -
Wang et al.[10] RGB-D 4 Cascaded Decision Tree 71.45
Ours Point cloud 14 PointNet[23] 91.67
Ours Point cloud 6 PointNet[23] 96.35
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Fig. 14 Worst 3 classification results. P and L stand for Predicted and Label respectively.
There is a geometric resemblance of the input instance with the objects of the predicted
class.

6.4 Tests on GDIS dataset [41]

For more experiments using the entire system on real-world data, we show and
discuss the output of each module for 4 images taken from a video sequence
from our GDIS dataset [41] (Figure 17). After the ground detection (Figure
17 third row), we applied the DBSCAN clustering algorithm to break the
occupied space into coarse segments (Figure 17 fourth row). After that, we
compute for each segment its geometric features and its class. The Pointnet
network has classified well the chair except for the last frame (Figure 17 last
row, last column), it was classified as a table with a low probability (0.53), so
the class was not mapped, only the convex hull was mapped. The model failed
to predict the right class because the chair’s point cloud was segmented into
sub segments and this is due to the noisy nature of the Microsoft Kinect V1.
If the class is not predicted, we set all the pins that represent the segment to
the segment’s level, rather than mapping the class to that level.
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Fig. 15 From left to right: the captured scene (chair, chair, chair), its associated depth
image (the system input), the resulting segment. The system has predicted: chair, chair,
chair.

‘ , l
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Fig. 16 From top to down: the captured scene (table, table, dresser), its associated depth

image (the system input), the resulting segment. The system has predicted: table, chair and
dresser.

7 Future Scope

In discussion section, we have mentioned two points that can be improved in
the future respectively:

1. A second step can be added in the future for fine segmentation. In this step,
objects that are arranged on a given coarse segment can be detected using
coarse to fine segmentation. These latter, can be mapped on the synthesis
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Fig. 17 (From Top) The RGB image, the depth image, the output of the ground detection
algorithm, the segmentation using DBSCAN and the semantic labeling mapped on the
synthesis area.

area only by commands from the user to avoid ambiguity while exploring
the scene. In other terms, mapping coarse and fine information at the same
time is time consuming and ambiguous such as mapping the table and the
objects that are on it. We can imagine this scenario: the user is searching
for a cup. After providing the global description, the user can locate the
table on the synthesis area. After that, by long clicking on the table’s label,
we can at this time map on the whole surface of the area only the table
and what’s on it. At this step, by touching the new area’s configuration,
the user can have an idea about what is on the table and can search for
his desired item.

A solution that we will consider in the future, is that the proposed model
will be extended to work for a succession of frames and thus, the cropped
objects can be completed by the alignment process and thus the prediction
can be corrected.
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On the other hand, we aim to cover other object classes. We also aim
to provide a detailed semantic labeling, in a clear way, to include not only
salient objects like tables, but also other small objects. This can be done by
hierarchical classification by considering the classification of the salient objects.
For example, to classify objects that are on the table the system will consider
that the object is on the table.

8 Conclusion

In this paper, we proposed three main contributions:

-An object classification approach suitable for the visually impaired and blind
people. It is based on deep learning networks implemented to classify the cap-
tured objects using a depth camera. Although we are using a state of the art
neural network, we show that grouping object classes that have the same us-
age improves the system accuracy by 5%. This classification is combined with
our previous approach [13] in order to extend the number of possible classes
and to provide additional information. Using only a depth camera as an input
sensor reduces the computational complexity and the system’s cost in terms
of the required hardware.

-A semantic labeling that is similar to the Braille and Kanji systems, can be
mapped into a synthesis area. The proposed classification approach and its
adequate semantic labeling will allow the user to have a clear idea about his
surroundings and thus, he can perform several tasks alone.

-An end-to-end assistive system for the visually impaired and blind people.
This system describes the captured scene architecture and provides geomet-
ric features and the nature of the detected obstacles mapped as touch-based
semantic labels. This latter will help the user to understand his surroundings
and thus, he can accomplish a set of tasks alone.

The proposed system fails to predict the semantic class of some point clouds
due to the nature of real-world data that is incomplete and cropped. Different
cropped objects can be similar to some cropped objects belonging to different
classes. As current solution, the model ignores the predicted class if this latter
has been predicted with a small probability.
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