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Abstract

Audio descriptions present a tool that helps blind audience members assist theater performances by conveying visual infor-
mation, such as actors’ gestures. However, its high production process cost and effort limit its availability. To address this, we
propose a computer vision based system for automated actor gestures recognition, using the state-of-the-art spatio-temporal
graph convolution networks (ST-GCNs) for skeleton-based action recognition via transfer learning technique. Hence, we
evaluated the transferability of three pre-trained ST-GCNs: the first proposed spatio-temporal graph convolution network
(ST-GCN), convolution network of two-stream adaptive graphs (2s-AGCN), and the multi-scale disentangled unified graph
convolution network (MS-G3D). We used NTU-RGBD action benchmark as the source domain and collected a novel dataset:
TS-RGBD, to serve as the target domain. We then proposed two configurations to accommodate the diversity between the
source and target domains. Results showed that ST-GCNs exhibit positive transferability enhancing the models’ recognition

performance in theatre contexts, promoting automated system for gesture accessibility in theaters.

Keywords Human action recognition - Transfer learning - Graph convolution network - Skeleton data

1 Introduction

Numerous computer vision based aid systems have been
developed to assist people with visual impairments in their
daily tasks, including scene understanding [1-5], visual
positioning [6-8], navigating and avoiding obstacles [9,
10], understanding actions of their surroundings [11]...etc.
Despite these advancements, there is a dearth of systems
designed for entertainment accessibility. Theaters, in partic-
ular, remain inaccessible to people with visual disabilities
due to the multiple visual elements, such us actors’ gestures,
that are crucial for the proper understanding of the ongo-
ing scenes. Very few theaters provide audio descriptions due
to its complex production process which requires a team of
professionals to go through the scripts and provide verbal
descriptions. This results in high costs that small theaters can-
not afford limiting accessibility in these venues. Therefore,
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this research aims to enhance and automate gesture accessi-
bility in theaters using computer vision based human action
recognition methods.

Human action recognition, a rapidly advancing field
within computer vision, has found applications in various
domains such as surveillance [12, 13], healthcare [14, 15],
sports [16], and human-computer interaction [17]. However,
deploying these models in real-life scenarios, like theatres,
presents challenges due to the disparity between training
data and new environments. Existing models may struggle to
accurately recognize and classify actors’ gestures in theaters,
necessitating specialized frameworks tailored for theatrical
scenes.

In this research, we present a comprehensive framework
for recognizing human actions in theatrical scenes using
computer vision and deep learning models. Our framework
leverages input data, specifically actors actions, captured by
depth sensor which provides three types of data: RGB, depth,
and skeleton data. In this study, we focus on utilizing skeleton
data, representing 3D positions of human body joints. (Fig.
1). One widely-used deep learning model for skeleton-based
Human Action Recognition (HAR) is the Spatio-Temporal
Graph Convolution Network (ST-GCN), known for its suc-
cess in challenging benchmarks such as NTU-RGBD [18,
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Fig.1 Skeleton representation
provided by the depth sensor.
Red points represent different
human body key joints captured
by the sensor

oy d
19]. Our goal is to explore the applicability of ST-GCN and
similar models for action recognition in theatre scenes by
employing transfer learning technique to enhance their per-
formance. To accomplish this, we curate a new dataset of
human action sequences specifically recorded in a theatre
environment: TS-RGBD dataset'.

Through this research, we investigate and analyze the trans-
ferability of ST-GCNS for skeleton-based HAR in the context
of theatre actions-a topic that has not been previously
explored in existing literature.

The paper is structured as follows: In Sect. 2, we com-
mence with an extensive review of the skeleton-based human
action recognition approach utilizing ST-GCNs. This review
encompasses in-depth explanations of three ST-GCN vari-
ants [20-22] providing a comprehensive understanding of
their functionalities. Subsequently, we delve into the con-
cept of transfer learning, offering a precise definition and
discussing its relevance to our research. Moving forward to
Sect. 3, we elucidate the objectives pursued in this study and
provide a well-founded justification for the choices made
during the course of our research. Section 4 entails a detailed
description of theater human action dataset we have col-
lected: TS-RGBD, and we introduce our proposed method
for human action recognition. Lastly, in Sect. 5, we present
the experimental setup conducted to evaluate the effective-
ness of our approach, along with an in-depth discussion of
the results obtained. Finally, Sect. 6, summarizes the key
findings and the contributions of our research.

2 Related works

Human action recognition (HAR) is a complex research field
that finds application in numerous domains. In the past years,
various techniques were developed, with the majority rely-

ing on computer vision approaches with video sequences
captured by camera sensors. One of the most frequently used
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sensors in HAR systems today is the Microsoft Kinect. It cap-
tures both RGB and depth information, providing a richer
representation of the scene than traditional RGB cameras.
The depth information can be used to extract features, such
as joint positions and orientations, which helps boost the per-
formance of the action recognition system. The Microsoft
Kinect sensor generates three types of data: RGB images,
depth maps that gather the distances of different scene objects
from the viewpoint, and Skeleton data that is represented by
a set of 3D positions of different human body key joints.
Several approaches were proposed based on each modality:
depth approach by extracting features from depth maps and
exploring different points [23, 24], skeleton approach that
involves the skeleton representation of human body move-
ment where the positions and orientations of the joints are
used to describe the human poses and actions [25, 26],
and hybrid approach that extract features by combining the
two types of data [27]. In this work, we focus on skeleton
based approach due to its several advantages over the other
modalities such as robustness to view-point and illumina-
tion changes, and its compact representation resulting in a
reduced computation cost.

The initial deep learning skeleton-based HAR systems
employ traditional deep learning models like Convolu-
tion Neural Networks(CNN) and Recurrent Neural Net-
works(RNN). To make use of CNNs, researchers convert
sequences of skeleton data into pseudo-images in order to
have a Euclidean representation, which is then fed to the CNN
[28, 29]. RNN-based methods, on the other hand, also need
a transformation by representing each joint by a sequence
of coordinate vectors [30, 31]. In fact, skeleton data are
embedded as graph-structured data where the joints are the
nodes and the bones are the edges linking different joints.
Recently, Deep learning methods have been generalized to
treat graph-based problems using Graph Neural Network
(GNN) to capture both local and global structural information
[32]. Several variants of GNN were proposed with different
architectures that offer a range of ways to handle informa-
tion propagation and aggregation on the graph. One popular
GNN is the Graph Convolution Network (GCN)[33] which
uses a spectral convolution operator to aggregate informa-
tion from a node’s neighbors in the graph. GCNs have been
shown to be effective for skeleton-based human action recog-
nition. In [20], Yan et al. proposed a novel model for skeleton
based action recognition: Spatio-Temporal GCN (ST-GCN).
It can capture spatial patterns from joints distributions as
well as their temporal dynamics. Following the same con-
cept, numerous ST-GCN variants were emerged within the
past few years [21, 22, 34, 35] that achieved significant per-
formance on different benchmarks.
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Fig.2 Spatio-temporal skeleton representation where black lines refer
to spatial edges and red lines refer to temporal edges

t1

2.1 Skeleton-based human action recognition with
spatio-temporal graph convolution networks

GCN-based methods showed better ability to capture actions’
patterns than CNN-based and RNN-based methods because
of the non-Euclidian nature of skeleton representation. Also,
it represents a simpler method by eliminating the pre-step of
manual data transformation as needed for CNN and RNN.
Recently, variant ST-GCNs [21, 22, 34] were proposed fol-
lowing the framework introduced in [20] that can learn both
spatial and temporal patterns from the skeleton sequences by
extracting features from spatial edges that express connectiv-
ity between human joints, and temporal edges that connect
the same joints across time steps (Fig. 2).

2.1.1 Graph-based representation of action skeleton
sequence

ST-GCN models take, as input, a spatio-temporal represen-
tation of the skeleton action sequence defined by a set of
undirected graphs {G1,...,G,} where G; is the skeleton
graph having spatial edges of each frame, and 7 is the num-
ber of frames of the input sequence. The skeleton graph is
represented as G = {V, E} where V = {vy, ..., v,} is the
set of nodes referring to the human body joints. m is the
total number of nodes where each has a set of features X.
E is the set of edges connecting different joints including
spatial edges that are bones representing natural connections

ST-GCNs

Action
Classification

Running

Class Score

Fig.3 Spatio-temporal Graph Convolution Network architecture [20]:
multiple Spatio-temporal Convolution layers stacked to extract features
followed by a SoftMax classifier to predict the action label

between the joints in the human body, and temporal edges
connecting the joints of two adjacent frames. The graph is
denoted by an adjacency matrix A € {0, 1} of m x m dimen-
sion, and A; ; = 1 if v; and v; are adjacent and A; ; = 0
otherwise.

2.1.2 Graph convolution network

The goal of GCN is to learn a new set of features of a given
input graph with features X, by capturing information from
both the node’s own features and the features of its neighbors.
GCN falls under the category of message-passing neural net-
works. It can be designed by stacking multiple layers on top
of each other, where the output of one layer serves as the
input of the next one. The layer-wise update rule applied to
features X at time ¢ can be defined as follows:

X4 = o(D2(A+ DD2X'W)

(A+1) represents the addition of self-loops to add the current
node’s features. D is the diagonal degree matrix of (A + 1),
W is the network weights and o is the activation function.

2.1.3 ST-GCN

The concept of GCN in the skeleton-based human action
recognition was first introduced by Yan et al. [20]. They
presented the graph convolution method on spatio-temporal
representation of skeleton sequences. This model uses mul-
tiple layers (ST-GCN blocks), that calculate spatial and
temporal convolutions simultaneously (Fig. 3). Mathemat-
ically, ST-GCN can be defined as follows:

XH-I — ZAXIWI
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Fig. 4 The two-stream AGCN design [21]: B-stream and J-stream are the Adaptive Graph Convolution Neural Networks for joints and bones

respectively

A refers to the normalized form of the adjacency matrix A:

A=D2AD?. Then, a global pooling and softMax func-
tion are used to recognize the action of the resulting tensor.

2.1.4 Two-stream adaptive graph convolution network
(2s-AGCN)

Shi et al. [21] introduced a new variant of ST-GCN: Two-
stream adaptive graph convolution networks. In contrast to
the first ST-GCN where the topology of the graph is fixed
and set manually, 2s-AGCN learns the human graph topol-
ogy adaptively during the training process to increase the
flexibility of the model in representing skeleton sequences.
Moreover, a two-stream framework is used to capture both
first-order information: the joint dependencies, and second-
order information: the directions and the length of bones
(Fig. 4), in order to boost the performance. It showed a
notable improvement in the recognition accuracy on bench-
mark datasets, and it surpasses the first proposed ST-GCN.
The layer-wise update rule of the 2s-AGCN can be defined
as:

XH =3 "X'W(A+B+C)

A is the normal adjacency matrix, B is the learnt adjacency
matrix during the training and C is the node similarity matrix.
A, l§, and C are the normalized form of A, B and C respec-
tively.

2.1.5 MS-G3D

Multi-scale spatio-temporal GCN is another variant of GCNs
for skeleton based action recognition task [36, 37]. It is
based on a feature aggregation from long-range neighbor
nodes using higher polynomials of the graph adjacency
matrix. However, this aggregation with adjacency powering
can make it ineffective to capture long-range joint depen-
dencies because of the weighting bias problem where the
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aggregated feature will be dominated by signals from local
body parts. Liu et al. [22] proposed a disentangled and
unifying GCN framework to encounter this problem. They
introduced a disentangled multi-scale aggregator that obtains
direct information from farther nodes and removes redundant
dependencies between node features, using a k-adjacency
matrix as:

1, ifd(vi,vj)zk
[Arlij =41,
0, otherwise

ifi =

where A = A + I, k is the number of scales to aggre-
gate, and d(v;, v;) returns the shortest distance in number
of hops between v; and v;. Moreover, this model uses a uni-
fied spatial-temporal graph convolution operator to facilitate
direct information flow across space and time. The combi-
nation of these two methods results in a powerful feature
extraction across both spatial and temporal dimensions. It
significantly outperforms the state-of-the-art methods.

2.2 Transfer learning

Transfer learning is a deep learning strategy that has been suc-
cessfully applied to a wide range of applications. It consists
of taking past learnt knowledge, in a specific context: source
domain, and reusing it to solve a new problem in a related
context: target domain. Usually, deep learning models are
trained from a random weights initialization, for a specific
task using a large number of training data labels. If the task
changes, the model must be retrained from scratch. In transfer
learning, the retraining is applied using a previously-trained
network’s weights, rather than retraining from scratch. This
technique can be especially useful when there are limited
training data labels of the new task, as the pre-trained model
can help to enhance the performance with fewer samples.
Additionally, transfer learning can help to speed up the train-
ing process and reduce the computational resources needed
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for training a new model from scratch. There are two ways
of applying transfer learning:

e Fixed-weights transfer using the pre-trained model’s
weights as fixed features, where all the weights of dif-
ferent layers, except the last one, are frozen.

e Fine-tuned transfer using the pre-trained model’s weights
as the starting point, where all network’s weights can
change during the retraining.

With the recent explosion in the number of HAR applica-
tions and the success achieved by transfer learning technique,
many researchers have been investigating transfer learning
for HAR task [38—40]. However, most of the proposed works
were based on RGB images using Euclidean Neural Net-
works. For instance, in [38], CNN and LSTM (Long Short
Term Memory) were used to develop an HAR framework
based on the transfer learning technique using RGB images.
To our knowledge, no works have been interested in exploring
transfer learning for 3D skeleton-based HAR. Additionally,
there has been little insight into the transferability of GNNs
and not much research exit that investigates transfer learning
for GNNs. Although, in [41], the effectiveness of transfer
learning with GNNss has been demonstrated and the experi-
ments on real-world datasets showed that the transfer is most
effective when the source and target graphs are similar.
The main contributions of this work are:

e We thoroughly investigate and analyze the transferabil-
ity of three widely-used variants of ST-GCN for the
skeleton-based HAR to new environments that are dif-
ferent from the training environment for real-life applica-
tions. Specifically, we examine ST-GCN [20], 2s-AGCN
[21], and MS-G3D [22]. Through our experiments, we
observe positive transfer effects as all the models demon-
strate improved performance compared to the baseline
approach without transfer learning.

e We present a novel dataset comprising of 3D skeleton
sequences of human actions recorded within a theatre
scene environment, utilizing depth sensor. This dataset
serves as the foundation for developing the first-ever the-
atre Human Action Recognition (HAR) framework.

e Weintroduce a framework that enhances the performance
of transfer learning methods by effectively address-
ing the differences between the target domain (our
dataset) and the source domain (NTU-RGBD dataset[18,
19]: a benchmark for human action recognition). This
framework leads to significant recognition performance
improvements.

3 Problem positioning

As previously mentioned, we aim to leverage the power of
computer vision to contribute to the development of accessi-
ble theater performances by providing a HAR system that
recognizes the gestures of actors during a play that will
be communicated to the BVI audience. To achieve this, we
investigate the transferability of ST-GCNs and utilize the 3D
skeleton representation of human gestures provided by the
Microsoft Kinect sensor as input to the recognition system
(as shown in Fig. 5).

We choose to employ the skeleton approach with ST-GCN
models using transfer learning due to the following reasons:

e The first choice is justified by the fact that skeleton
approach has achieved considerable success over the
other approaches due to its several advantages:

— It is robust to occlusion: it uses only the joint posi-
tions, which can be estimated even when some body
parts are occluded.

— It is invariant to appearance changes: the skeleton-
based approach is invariant to changes in clothing,
illumination conditions, and camera viewpoint, due
to the use of joint positions only which are relatively
stable under these changes.

— It is computationally efficient: the compact skeleton
representation of the human body helps reduce the
computation time which is crucial in the case of real-
time applications.

In addition, the skeleton representation provides better
both spatial and temporal information with the strong
intra-frame and inter-frame correlations between the
joints allowing the recognition algorithms to capture
more expressive and significant features. The skeleton
data can be acquired using different techniques, each has
its advantages and disadvantages. In Table 1, we list these
techniques and provide a comparison between them after
analysing their characteristics in the context of theatre.
According to Table 1, the Kinect sensor is the most suit-
able device for the theatre HAR system, which provides
rich information and does not affect the actors’ perfor-
mance. The limitation of distance can be encountered by
placing it in a near position to the stage.

e The second choice is justified by the fact that the GCN-
based approach provides the ability to model and learn
joint dependencies across space-time implicitly, unlike
RNN-based and CNN-based approaches where a data
transformation step is necessary to represent skeletons as
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Fig.5 The proposed system to
recognize actions of theater
actors during a performance: the
actor’s gesture is captured via a
depth sensor resulting in a
sequence of skeleton
representation. Then, the
skeleton data is fed to a
framework that exploits
transferred ST-GCN models to
recognize the performed action
and provides, as output, the
action label to be communicated
to the blind audience members

Table 1 Comparison between
the skeleton data generation
techniques in the context of
theatres

@ﬁ%%%%%

Theater HAR Framework

Transferred state-of-the-art ST-GCN model
on theater human action dataset (TS-RGBD)

|

action's
label

Technique

Advantages

Disadvantages

Motion capture technologies
using sensing devices.

Collecting the skeleton data
using Pose Estimation
method[42] with RGB
images.

Using Microsot Kinect sensor.

It provides very precise
annotations of skeleton data.

It is simple to implement using
only an RGB camera. Not
expensive.

It captures both RGB and depth
information. This
combination allows it to
produce very accurate joints
estimation.

Not expensive.

It is hard to implement because
the actors will have to wear
sensing devices which are
expensive and can hamper the
actors’ performance on the
stage.

Its precision can be affected by
several factors such as
illumination variation,
clothing colors, and complex
backgrounds.

It is impossible to control these
factors in a theatre
environment.

It does not provide the depth
information which can
significantly boost the
performance of the HAR
system.

It is limited by the distance: It
cannot capture depth
information from a large
distance.

2D or 3D Euclidean grids to be fed into the model (RNN
or CNN). In addition, GCN has outperformed CNN and
RNN in many recent studies on HAR. Most recent HAR
research works follow the framework introduced by Yan els with new users can decrease its performance if the
et al.[20] using the spatio-temporal modeling of skeleton action patterns of the new user are different from those in
data. the training data. In our case, actions’ patterns in theatre

e We use transfer learning despite the success achieved
by the ST-GCN models on challenging human action
benchmarks, because the use of one of the trained mod-
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scene environment can be different from the patterns of
the existing human action benchmarks. A typical solu-
tion is to collect a new dataset containing theatre human
action samples and train the model from scratch. This
task is not feasible due to the following reasons:

— Deep learning models require large amount of train-
ing samples to learn intricate patterns and generalize
well to new domains, which makes the task of
manually collecting a new dataset very hard and time-
consuming especially in the case of theatre actions. It
is not convenient to get access to theatres and collect
a large number of samples that can take several days
to accomplish.

— The training of a deep learning model is time-
consuming and requires high computation energy
which in turn contributes to carbon emissions. This
energy demand has seen immense growth in recent
years and deep learning may become a significant
contributor to climate change if this trend continues.
As a result, the excitement over Deep learning suc-
cess has shifted to warning and many recent studies
showed interest in the environmental impact of deep
learning, encouraging research into energy-efficient
approaches by taking simple steps to reduce carbon
emissions [43, 44].

Transfer learning technique on ST-GCNs presents a
potential solution to encounter these problems. It helps
tackling the problem of limited training data labels and
it can also significantly reduce training time leading to
decrease the energy and the carbon emissions. Thus, we
adopt the transfer learning technique, not only because
of the training data scarcity problem, but also to pro-
mote responsible computing and to avoid the cost of
training models for extensive periods on specialized
hardware accelerators. In addition, while conventional
deep learning models, such as CNNs, have demonstrated
remarkable transferability, research analyzing transfer
learning technique within the graph-based field and their
ability to transfer learnt knowledge with GNNs is limited.
Furthermore, to our knowledge there are currently no
studies examining transfer learning via spatio-temporal
GCNes for skeleton-based human action recognition.

4 The proposed method
4.1 Our theatre human actions dataset
We collected a new dataset that contains skeleton action

sequences at the auditorium of our university where two
depth sensors were positioned at the same height and in two

Side view

Fig. 6 The setup deployed while collecting the dataset and the place-
ment of the two cameras: one camera from the front view and a second
camera from the side view

different view angles (front view and side view) resulting in
a variety of the obtained data (Fig. 6).

Each action was performed by 3 individuals with differ-

ent speed. We collected a total of 388 sequences from both
viewpoint over 36 action classes, with a rate of 25 frames per
second and an average of 170 frames per sequence.
We collected action classes that are common in theatre scenes
including solo actions such as walking, sitting down, jump-
ing, throwing, falling down, and two-person interactions such
as hugging, kicking a person, shaking hands, high five. We
also focused on capturing actions that are hard to discern
from auditory cues only, and require visual interpretation,
which impacts on the blind audience’s proper understanding
of the ongoing scene. Moreover, our study investigates the
integration of ST-GCNs in new environments, particularly
theaters, through transfer learning, thus, we concentrated on
collecting actions from a theatrical environment rather than
introducing new action classes distinct from those in NTU
dataset. This approach evaluates how different environments
affect the performance of pre-trained models.

A detailed description of number of samples per action
class is presented in Table 2. Some samples from our dataset
are illustrated in Fig. 7.

The provided skeleton information consists of 3D posi-
tions of 20 body key joints for each tracked human body.
The configuration of the 20 joints is illustrated in Fig. 8.

4.2 Transfer learning

Limited research has been conducted on the transferability of
GCNs despite the growing interest in them. The present study
aims to explore the transferability of spatio-temporal GCNs
for recognizing human action based on skeletons. However,
the performance achieved by transfer learning relies on the
choice of the pre-trained model and the source domain. This
task remains difficult due to the diversity of state-of-the-art
architectures. Thus, we selected three of ST-GCN common
models (defined in section 2): the first proposed ST-GCN
[20], the two-stream adaptive GCN [21], and the multi-
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Table 2 Number of samples per action class

Action class Number of Action class Number of Action class Number of
samples samples samples

Standing up 14 Bowing 6 Sitting down 12
Drinking 14 Eating 10 Dropping something 9
Picking up 14 Throwing something 16 Clapping

something
Reading 9 Writing 11 Tearing up paper 12
Putting on a jacket 6 Taking off a jacket 8 Putting on shoes 6
Taking off on shoes 12 A person walking 7 Handwaving 7
Touch head 12 Phone call 12 Jumpping 20
Kicking something 22 Cheking time on a 12 Wipe face 10

or someone wristwatch
Salute 10 Putting palms together 20 Falling down 13
Fan self 16 Pushing a person 8 Punch/slap a person 14
Two persons 4 Giving something to 8 Shaking hands 6

hugging someone
High five 8 Two persons walking 8 Two persons 8

towards each other walking apart from
each other

Fig.7 Different skeleton
samples from our TS-RGBD
dataset

Throwing

scale disentangled unified GCN [22], because they showed
a significant performance and are open source and their pre-
trained models are available. Furthermore, according to [45],
the choice of the source domain can be made based on its size
and its similarity with the target domain. Since we are focus-
ing on a skeleton-based approach, the NTU-RGBD dataset

@ Springer

Writing

Phone call

P

Eating Taking off a jacket

represents a leading option due to its popularity and data
diversity. In addition, its structure is quite similar to our col-
lected dataset since both were captured using depth sensors
and both contain indoor actions.

Figure 9 illustrates different inputs and parameters of our
transfer learning investigation.
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: Spine shoulder
: Spine

: Hip center

: Shoulder right
: Shoulder left

: Elbow right

: Elbow left

9: Wrist right

10: Wrist left

11: Hand right
12: Hand left

13: Hip right

14: Hip left

15: Knee right
16: Knee left

17: Ankle right
18: Ankle left
19: Foot right
20: Foot left

0 I N Ut AW -

Fig.8 Configuration of skeleton joints captured by Kinect v1

4.2.1 Source domain: NTU-RGBD dataset

It represents one of the most challenging and largest bench-
marks due to the diversity of its data. It was captured
using Kinect v2 which provides RGB, Depth, and skele-
ton sequences. The provided skeleton data consists of 25
human body joints (Fig. 10). NTU60-RGBD [18] was first
introduced containing 60 indoor human action classes and
a total of 56880 samples performed by 40 subjects with
80 different camera setups. Then, the extended version
NTU120-RGBD [19] was introduced which contains addi-
tional 57.367 sequences of 60 extra indoor action classes
with a total of 113.945 samples over 120 classes captured
from 32 different camera setups and 106 subjects. The action
classes are divided into three categories: daily actions (e.g.
walking, reading, phone call ...etc), medical conditions
(e.g. sneezing/coughing, staggering, falling down .. .etc),
and two-person interactions (e.g. pushing, punching, hug-
ging .. .etc).

Architecture:
ST-GCNs

Source Domain

Fig. 10 Skeleton joints
provided by Kinect v2

Kinect v2 SDK

The authors of this dataset proposed two protocols for
recognition evaluation: xview protocol and xsub protocol:

The xview protocol it focuses on cross-view action
recognition. Its goal is to train a model on one set of
viewpoints and evaluate its performance on a different
set of viewpoints. Hence, the dataset is divided into two
parts: i) training set that contains samples captured from
one set of camera viewpoints, and ii) testing set that con-
tains samples from a different set of camera viewpoints.
The xsub protocol it focuses on cross-subject recogni-
tion where the objective is to train a model on a specific
set of subjects and evaluate its performance on unseen
subjects. The training set includes sequences of certain
subjects, while the testing set consists of sequences of
different subjects.

The three models: ST-GCN, 2s-AGCN, and MS-G3D
achieved good results on this benchmark as shown in Table
3. Their high obtained performances on both protocols (xsub
and xview) demonstrate their ability to achieve robust and
generalized human action recognition across different sub-
jects and camera viewpoints.

4.2.2 Diversity and similarity between source and target
domains

Our dataset, was captured using depth sensor: Kinect v1,
which provides 3D positions of 20 body joints. Unlike the

Target Domain

= Human Actions

= NTU-RGBD dataset
= Skeleton sequences
= Captured by Kinect V2

pre-trained = Theatre Human Actions
models

= Our dataset
é = Skeleton sequences

= Captured by Kinect V1

Fig. 9 Our transfer learning investigation parameters: The chosen
architectures of the ST-GCN models (blue circle) : ST-GCN, 2S-AGCN,
and MS-G3D. They are trained on a source domain (green rectangle):
Human action skeleton sequences of NTU-RGBD captured by Kinect

v2. Then, they are transferred to a target domain (red rectangle): Theatre
human skeleton sequences of our dataset that are captured by Kinect v1
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Table 3 The obtained accuracies by the selected ST-GCN models on
NTU60-RGBD following the two evaluation protocols: xsub and xview

NTU60-RGBD

xsub Xview
ST-GCN [20] 81.5% 88.3%
2s-AGCN [21] 88.5% 95.1%
MS-G3D [22] 91.5% 96.6 %

The bold texts highlight the highest accuracies among the results

Kinect v2

Kinect v1

21: Neck
23: Hand tip left
25: Thumb left

22: Hand tip right
24: Thumb right

Fig. 11 The five additional joints captured by Kinect v2

NTU-RGBD dataset, it was captured using Kinect v2 which
provides 3D positions of 25 joints. The additional five joints
are: neck, hand tip right, hand tip left, thumb right and thumb
left, as shown in Fig. 11.

Since these joints are not distant from the joints: head,
hand right, hand left, hand right and hand left respectively,
and the links between them do not represent body bones,
we duplicated the positions of their neighboring joints in
order to transform our dataset to 25 joints dataset and add
the positions of the five missing joints (as shown in Fig.
12). This transformation allows us to save the same graph
structure used in the training of the pre-trained models.

In addition, after we examined both datasets, it was evident
that the actions in our dataset were executed at a slower pace
when compared to the NTU action sequences. The average
number of frames per sequence in our dataset is around 170
frames, while the average in NTU sequences is around 95
frames. Hence, we propose a framework for transfer learning
application in section 5.2.4 to adapt the models to the new
temporal correlations.
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}lcad
Neck

,Hand left
9% .

25 53 Hand tip left
Thumb™"
left

Hand tip right 22 .24
P Tght 22 Thumb
right

Neck (x,y,z) = Head (x,y,2)

Hand tip right (x,y,z) = Hand right (x,y,z)
Hand tip left (x,y,z) = Hand left (x,y,z)
Thumb right (x,y,z) = Hand right (x,y,z)
Thumb left (x,y,z) = Hand left (x,y,2)

Fig. 12 The transformation of 20 joints skeleton to 25 joints skeleton

5 Validation and discussion
5.1 Training

We first trained the selected models on our dataset in order
to calculate the performance of transfer learning and be able
to compare it with the baseline. We utilized the identical
architectures and parameters used while their training on
NTU-RGBD:

e ST-GCN is comprised of 9 layers of ST-GCN units (spa-
tial temporal graph convolution operators) followed by a
global pooling to get a feature vector for each sequence
and feed it to a SoftMax classifier [20]. We use the
stochastic gradient descent: Adam optimizer, for the
learning process of the model with a learning rate of 0.1
which is decayed by 0.1 after every 20 epochs.

e 25-AGCN is composed of two adaptive graph convolu-
tion networks: J-stream and B-stream representing the
networks of joints and bones, respectively (as shown in
section 2.1.1). Each network has a total of 9 blocks fol-
lowed by a global average pooling layer to pool feature
maps of different sequences to the same size and feed it
to a SoftMax layer. Then, the scores of the SoftMax clas-
sifiers of both J-stream and B-stream are fused to predict
the action label [21]. The learning rate is fixed at 0.1
and decayed by 0.1 every 20 epochs starting from epoch
number 30.

e MS-G3D contains a stack of 3 spatial-temporal graph
convolutional (STGC) blocks followed by a global aver-
age pooling layer and a SoftMax classifier. Each STGC
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Table 4 The obtained

. Accuracy
accuracies by the ST-GCN
models after training on our ST-GCN 34.48%
dataset 25-AGCN 39.66%
MS-G3D 41.38%
Table 5 Recognition Accuracy.
performance of pre-trained
ST-GCN, 2s-AGCN, and ST-GCN 50.01%
MS-G3D h
S-G3D on theater data 26-AGCN 55.73%
MS-G3D 60.96 %

The bold text highlight the high-
est accuracies among the results

block is composed of two types of pathways to simulta-
neously capture long-range spatial and temporal depen-
dencies using multi-scale convolutional layers, as well
as regional spatial-temporal joint correlations by per-
forming disentangled multi-scale convolutions. Then, the
outputs from all pathways are aggregated as the STGC
block output [22]. The learning rate is initiated at 0.5 and
it is divided by 10 after every 30 epochs starting from
epoch number 10.

Since the max number of frames in each action sequence in
our dataset is 300 frames, all the samples with less than 300
frames are padded by replaying the sequences until they reach
300 frames. Then, we apply normalization and translation on
the samples following [21, 46].

All the experiments in this research were repeated numer-
ous times in order to ensure the validity of our findings, and
the performance averages are reported.

The obtained results, illustrated in Table 4, show a low
performance on our dataset which was expected due to: (1)
the training data scarcity problem that prevents the models
from capturing sufficient spatial and temporal patterns from
the new dataset, (2) the low precision of the provided joint
positions by Kinect vl compared to Kinect v2.

5.2 Pre-trained models’ evaluation on our dataset

Before we proceed with transfer learning, we test the pre-
trained models on our dataset to compare their performance
with the training data and the new data gathered in theater
environment. We loaded the models’ weights and applied
the same data pre-processing steps presented in the training
phase. We obtained the following outcomes:

‘We observe that the obtained accuracies on theater scenar-
ios (Table 5) are relatively low compared to the accuracies
obtained by the models on training data (presented in Table
3). This demonstrates the fact that the models struggle to
accurately classify the new data due to its divergence with
training data.

“Transfer
No transfer Asymptotic
Performance

Performance

lJumps(an

Training time

Fig. 13 Illustration of the jumpstart and the asymptotic
performance[41]: The blue curve represents the baseline without
transfer learning and the purple curve refers to the transferred model
from a source domain

5.3 Transfer learning

In this section, we present our study of the effectiveness of
transfer learning technique with the selected ST-GCNs using
two frameworks: configurationl and configuration?.
Configurationl represents the implementation of the fixed-
weights transfer defined in section 2.2. Next, in order to
adapt the pre-trained models to the target domain’s tempo-
ral correlations, we propose a framework: configuration2,
that combines the two transfer learning approaches: fixed-
weights and fine-tuned transfer. The results are reported and
discussed.

5.3.1 Evaluation metrics

In order to evaluate the performance of the transfer learning
technique, the jumpstart and asymptotic metrics, introduced
by Taylor and Stone[47], were employed to assess the trans-
ferability of the pre-trained models performance. Jumpstart
is defined as the difference between a model’s initial perfor-
mance in a target task and its initial performance after being
transferred from a source task. Asymptotic performance, on
the other hand, measures the improvement in the final perfor-
mance achieved in the target task through transfer learning,
compared to the performance achieved by the baseline (as
shown in Fig. 13).

5.3.2 Configuration1

As afirst attempt, we implemented the fixed-weights transfer
approach due to the similarity between the graph struc-
ture of both source and target domains after applying the
data pre-processing method detailed in section 4.2.2. This
graph-structure similarity results in a similarity of the spa-
tial patterns that can be captured by the models from both
datasets. Therefore, we saved the same architectures and
parameters of the pre-trained models listed in section 5.1. We
loaded the weights of the pre-trained models while keeping
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Fig. 14 An illustration of the

Transferred Model Architecture

framework of configurationl on
the models showing the trainable

Frozen weights Trainable weights

and the frozen blocks, as well as
the added fully-connected layer
with X representing the output
feature tensor and 36 referring
to the number of labels in the A
target domain

Theatre action
skeleton sequence

—>

Spatial and Temporal
Graph Convolution Blocks

Fully-connected
layer + SoftMax

(X, 36)

Theatre
> action
classification

Global Average Pooling

Table 6 The performances (final achieved accuracy, jumpstart, and the
asymptotic performance) obtained by the ST-GCN models after imple-
menting transfer learning following configurationl

Final achieved Jumpstart Asymptotic

performance performance
ST-GCN 0.67 0.10 0.33
2s-AGCN 0.68 0.12 0.29
MS-G3D 0.82 0.17 0.41

the same input layer and setting all spatio-temporal convolu-
tion blocks to non-trainable in order to preserve the weights
learned from the source domain. Then, we modified the out-
putlayer of the models by adding a new fully-connected layer
to match the 36 action classes present in our dataset (as shown
in Fig. 14). Since all the models’ layers are frozen and we are
training only the fully-connected layer, we avoid to update
the weights with large learning rates to prevent overfitting.
Thus, we reduced the learning rate for each model by ten
times with a decay of 0.1 after every 10 epochs for a stable
training. Finally, we initiated the retraining process on our
dataset.

5.3.3 Discussion1

Table 6 illustrates the calculated metrics and the final
achieved performances after applying the transfer learning
on each of the three models. From these results and the charts
in Fig. 15, we observe that the three models obtained signif-
icant jumpstarts and asymptotic performances which prove
their ability to transfer past knowledge and demonstrate that
spatio-temporal graph neural networks can leverage strong
properties in the source task for effective transfer, even with
a less precise target dataset. The MS-G3D achieved the best
transfer and converged faster compared to the other mod-
els, according to the charts (Fig. 15), which indicates that
its architecture allows it to learn powerful transferable spa-
tial and temporal patterns from the source domain resulting in

@ Springer

the best transferability. On the other hand, ST-GCN achieved
lower performance while training compared to 2s-AGCN as
indicated in Table 6 , although, it achieved better asymptotic
performance. This shows that ST-GCN benefits better than
2s-AGCN from sharing knowledge from the source domain
and that its output classifier could adapt better to the target
domain. In addition, the training time has been significantly
reduced by the fact that all the models achieved their best
accuracies before epoch number 100 compared to their base-
lines where they took more than 200 epochs. Furthermore,
saving time results in the reduction of energy and carbon foot-
prints of the models when training on a new large dataset.

5.3.4 Configuration2

In order to adapt the transfer learning technique to the tempo-
ral diversity between source and target domains introduced
in Sect.4.2.2, we proceeded with fine-tuning the tempo-
ral convolution blocks of each model by enabling them to
be trainable so as to enhance the models’ ability to learn
more temporal features from the target domain. Therefore,
we propose a framework that combines the two approaches
of transfer learning by applying the fixed-weights approach
with the spatial convolution blocks and fine-tuning the tem-
poral convolution blocks (as shown in Fig. 16). We first load
the weights of the pre-trained models, then, we freeze the
weights of the spatial graph convolution layers of each model.
We also change the output layers to match the number of
labels in our dataset (36 labels), same as in configurationl.
We preserve the same parameters of the last experiments
except for the learning rate. A low learning rate in this case
is crucial as we are retraining a larger number of weights
(temporal convolution blocks) on our dataset which is typi-
cally very small. This can lead to an overfitting if we apply
large weight updates. To overcome the overfitting, we lower
the learning rates by 0.01 with a decay of 0.1 every 10 epochs.
Finally, we lunch the retraining of the temporal convolution
blocks as well as the output layer.
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Fig. 15 The charts illustrate the accuracy progressions of different transferred models after applying configurationl and their baselines without

transfer learning

Fig. 16 An illustration of the

Transferred Model Architecture

configuration2 on the models
showing the trainable blocks:
temporal graph convolution
layers + fully-connected layer,
and the frozen blocks: spatial
convolution layers

Theatre action
skeleton sequence

(%

Y

Convolution layers

Trainable weights
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Spatial Graph
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(X, 36)
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Temporal Graph

Global Average Pooling
|

5.3.5 Discussion2

From Table 7, the charts in Fig. 17, and the bar charts in
Fig. 18, we notice an improvement in the asymptotic per-
formances obtained by all three models while the jumpstart
values remain quite similar compared to the previous con-
figuration. This indicates that the models were capable of
acquiring new temporal properties from the target domain. It

also demonstrates the vital role of selecting the right transfer
learning approach for enhanced performance. The under-
standing of the similarity and diversity among the source and
target domains is a key clue to determining which is the most
suitable transfer learning approach to implement for better
recognition performance. Although, we distinguish that the
learning process of this second configuration takes more time
to converge. As we can see from the charts in Fig. 17, during
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Table 7 The performances (final achieved accuracy, jumpstart, and the
asymptotic performance) obtained by the ST-GCN models after imple-
menting transfer learning following configuration2

Final achieved Jumpstart Asymptotic

performance performance
ST-GCN 0.75 0.09 0.41
2s-AGCN  0.73 0.11 0.35
MS-G3D 0.88 0.19 0.47

the first epochs, the green curves (configuration2) of the three
models are under orange curves (configurationl). This is due
to the training process of temporal graph convolution layers
as they are learning new temporal patterns from the target
domain which results in a decreased training time compared
to configurationl where we only trained the fully-connected
layer.

In summary, configuration2 significantly enhanced the
recognition performance of the models. Furthermore, from
the obtained accuracy (Table 7) and confusion matrices (Fig.
19), MS-G3D showed highest recognition performance rep-
resenting a potential model for integration in theaters for
actor gestures recognition.

8 STGCN
B 25-AGCN

® \s-G3D

configuration1 configuration2

Jumpstart

oz ® sTGCN

8 25-AGCN

0.15
! ® MS-G3D

0.1

0.05

Configuration1

Configuration2

Fig. 18 Bar charts to compare the achieved jumpstart values and the
asymptotic performances after applying configurationl and configura-
tion2

07 - 0.7 1
06 - 0.6 1
05 1 051
04 1
04 4
03 4
031
0.2 1
021 = ST-GCN Baseline - 2s5-AGCN Baseline
~— Configurationl 0.1 1 ~ TL configurationl
011 = (Configuration2 = TL configuration2
00 1 L] T ] T T T L3 T
0 50 100 150 200 0 25 50 s 100 125 150 175
- MS-G3D Baseline
0.8 1 ——— Configurationl
- (Configuration2
06 1
04 1
0.2 1
001~ r ; : r
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Fig. 17 For a clear comparison between the results obtained by configuration! and configuration2, these charts illustrate the accuracy progressions
of different transferred models of both configuration as well as their baselines
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Fig. 19 Confusion matrices of the three models after transfer learning with configuration2

We also distinguish from the obtained confusion matrices
in Fig. 19, that MS-G3D could surpass some misclassifica-
tions made by ST-GCN and 2s-AGCN with actions that have
similar sequences of motions causing confusions such us the
action picking up something with the action bowing. Other
confusions were noticed with actions of type human-object
interaction where objects are involved, such as eating and
writing where both of them have similar hand motions which
prevented the models from accurately classifying them.
Tackling the limitation of object information exclusion in
the skeleton-based approach could significantly enhance
the recognition of human-object interactions, improving the
overall effectiveness of the system. For future work, we pro-
pose merging object detection models with ST-GCNs and
other methods to cover complex actions involving objects,
thus provide a better theater experience for visually impaired
and blind people.

6 Conclusion

In this work, we introduced a Human Action Recognition
(HAR) framework to recognize actor gestures in theatre per-
formances, utilizing transfer learning technique. This frame-
work addresses the limited availability of audio descriptions
by presenting an automated solution that provides informa-
tion about actor gestures to the BVI audience, enabling them
to enjoy theatre performances.

To support our framework, we collected a new dataset
of theatre human actions using a Kinect sensor in a theatre
setting. We then employed three spatio-temporal graph con-
volution networks (ST-GCN, 2s-AGCN, and MS-G3D) for
the recognition task, utilizing transfer learning to not only
achieve better performance but also to avoid the need for
training from scratch, which demands a large number of
samples, significant computational resources, and is time-
consuming.
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This study represents the first to investigate transfer learn-
ing on ST-GCN models for skeleton-based human action
recognition. The findings demonstrated the capability of
these models to transfer previous knowledge, as well as
learned spatial and temporal patterns from a source domain to
new tasks. Through our experiments, we adapted the transfer
learning process on the target domain based on its divergence
from the source domain. The improvements we achieved
validate the effectiveness of our proposed framework and
highlight the importance of selecting appropriate transfer
learning configurations based on the diversity and similar-
ity between the source and target domains.

Ultimately, our efforts have significantly improved the
recognition performance of pre-trained models in the targeted
theatre environment, thereby promoting their integration
within theatres to enhance accessibility.
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