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Abstract
In recent years, image captioning and segmentation have gained prominence in computer vision, finding applications in various
fields, from autonomous driving to content analysis. While several solutions have been devised to enhance user experiences in
navigating their environments, there remains a need for applications that provide detailed textual descriptions of scenes. Most
existing models primarily focus on specific tasks, limiting their versatility in different scenarios. In this paper, we propose
an innovative approach aimed at enhancing the comprehension of surroundings through image captioning. Our research
distinctively offers textual descriptions for each segment within an image, including spatial orientations (e.g., left, right,
front). This level of granularity ensures that anyone using our system can capture and comprehend every piece of information
present in the image. We further extend the applicability of our solution by training and applying our methodology to theatre
dataset. Our results demonstrate improved efficiency compared to state-of-the-art methods, coupled with the provision of
more detailed descriptions for each segment within the input image.

Keywords Image captioning · Egocentric scene description · Dense captioning · Segmentation · RGB-D images

1 Introduction

With remarkable advancements in deep learning technolo-
gies, numerous applications have emerged to assist individu-
als facing various challenges in their lives. These applications
range from tools designed to aid in navigation and obsta-
cle detection [1, 2] to those identifying currency bills, and
objects, and providing reading assistance or online support
[3, 4].

While these applications offer valuable assistance in daily
life, they primarily focus on addressing physical challenges
and navigating environments. However, there is still a need
for solutions that provide detailed information about the
nature and appearance of obstacles. Additionally, there is a
notable gap in addressing entertainment-related needs, par-
ticularly in enabling access to and understanding of theater
scenes for individuals with specific challenges.

This work draws inspiration from MindsEye Radio [5],
a platform that offers audio translations of visual events,
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videos, and news throughout the day. It serves as a valuable
resource for individuals with various visual disabilities, pro-
viding timely access to information. Their oral descriptions
are detailed, from describing shapes and colors to actions and
movements.

The proposed solution aims to generate descriptive cap-
tions for RGB-D images from the newly developed TS-
RGBD dataset, focusing on Theatre Scenes. The solution
involves three main steps: Panoptic Segmentation, Segment
Captioning, and Determining Regions’ Direction.

Initially, the RGB image undergoes panoptic segmenta-
tion, which identifies and delineates different regions within
the image. Each pixel is assigned a unique identifier and a
class code, comprehensively representing all regions, includ-
ing the background and non-salient objects. From these
segments, bounding boxes are extracted for further pro-
cessing. Following segmentation, the solution employs a
modified dense captioning architecture to generate textual
descriptions for each identified segment. Thismodel includes
a feature extractor, a multi-scale region of interest alignment,
an intermediate fully connected layer, and anLSTMlanguage
network. The dense captioning architecture is adapted to
focus strictly on panoptic segments, ensuring detailed scene
understanding without redundancies or omissions.
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The final component involves using depth information
from the RGB-D images to determine the spatial relationship
of each segment with the user. By calculating the centroid of
each segment and transforming it into real-world coordinates,
the model determines the direction (left, right, front) based
on computed angles from the point cloud. This integration
of visual and spatial information results in comprehensive
captions that enhance the understanding of Theatre Scenes.

To evaluate the effectiveness of our solution, we apply it
to RGB-D images from our newly developed dataset, TS-
RGBD [6]. This dataset includes RGB images and depth
maps collected using the Microsoft Kinect sensor, introduc-
ing a novel application for image captioning in the context
of theater scenes.

The key novelty of our research lies in developing an
intelligent image captioning system that generates detailed,
egocentric descriptions for each image segment using RGB-
D data, facilitated by our newly introduced TS-RGBD
dataset, specifically designed for theater scenes.

This paper is organized into the following sections. In the
next section, we outline the context in which the research
was conducted. In section 3 we present existing literature on
the research problem and its limits. In Sect. 4, we present
the solution proposed in this study along with an exploration
of various models and the developed algorithm during our
research. Section5 is devoted to experiments and results. We
provide a detailed account of the research implementation,
encompassing the training of models and a thorough anal-
ysis of the obtained results. In the final section, we present
a summary of key findings, limitations, and suggestions for
future research.

2 Context

Visual information is vital for understanding the world
around us, yet individuals who are blind or visually impaired
face significant challenges in accessing and comprehending
visual content. Image captioning technology offers a promis-
ing solution by generating verbal descriptions of images.
However, existing approaches have limitations, such as scal-
ability and variability in quality.

In this study, we aim to address these challenges by devel-
oping an improved image captioning system tailored for
blind and visually impaired users. Our research focuses on
enhancing accessibility, usability, and scalability to empower
individualswith visual impairments to understandvisual con-
tent better. Through our work, we seek to contribute to the
advancement of inclusive technology and equal access to
information for all individuals.

Firstly, we explore segment captioning, a novel technique
that generates descriptions for specific regions within an

image, providing more detailed and contextually relevant
information, without drowning the users in dense captions.

Secondly, we investigate egocentric captioning, which
focuses on describing the user’s perspective within a scene,
offering a more personalized and immersive experience for
blind and visually impaired individuals.

Lastly, we introduce a novel RGBD dataset of theatre
scenes, specifically curated to facilitate the development and
evaluation of image captioning systems for individuals with
visual impairments. This dataset provides rich visual and
depth information, enabling researchers to train and test algo-
rithms in realistic and diverse environments.

Through these contributions, we strive to advance the
field of image captioning for accessibility and promote equal
access to visual information for all individuals.

3 Related works

Image captioning serves as a bridge between computer vision
and natural language processing, wherein an intelligent sys-
tem takes an image as input and generates a corresponding
text description that accurately portrays the content depicted
in the image. Image captioning models can output one sen-
tence for a given image, a paragraph, or multiple captions of
each region of interest.

Single-sentence captioningmodels canbe classified accord-
ing to their architectures; image analyzing models, attention
mechanisms and transformers, CNN-LSTM networks, or
even GANs [7]. These solutions, whether they rely on trans-
formers and attention mechanisms [8–12], encoder-decoder
architectures [13], or scene graphs as presented in [14], in
which learning is supervised, or relying on beam search anal-
ysis or gated recurrent units (GRU) units, in which learning is
unsupervised [15, 16], or even forweakly supervised learning
[17, 18], generate one single sentence for each input image.
Such models are trained on RGB image datasets [19, 20].

One sentence is insufficient to describe an image’s
semantic and contextual content. This motivated researchers
to improve single-sentence image captioning to output a
describing paragraph for an input image. Solutions for para-
graph captioning are based on single-sentence captioning to
generate a set of sentences that will be combined to form a
coherent paragraph [7]. Such models are built upon recur-
rent network or encoder-decoder architectures [21–24], and
encoder with attention [25]. One suggested method [26]
generates paragraphs describing the positional relationships
between objects. However, these relationships are vague,
emphasizing actions between objects or regions of interest
(such as; holding, beingheld,walkingon, etc.). The sentences
lack specific details about the described region of interest in
the image, giving only a general description of shape or color,
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and fail to specify the positions of these objects relative to
the user.

Dense captioning is the task of textually describing mul-
tiple detected regions of interest within an input image by
generally starting with the task of objects or regions of inter-
est detection [27]. One of the most relevant works is the
DenseCap model proposed in [28]. It uses a Region Pro-
posal Network (RPN) to detect k regions of interest within
an image, then each region will be given a caption by the
Long Short-Term Memory (LSTM) language network. The
DenseCap model was trained on RGB images of the Visual
Genome dataset [29], a set of MS-COCO [30], and Flickr
indoor or outdoor images.

There are gaps and limitations within the cited literature.
We will next shed light on the primary limitations of the
existing research, providing critical insights that pave the
way for the novel contributions and advancements put forth
in our study.

Regarding Image Captions, models that generate one sen-
tence to describe an input image tend to focus on mobile
objects, and salient regions, and completely ignore any back-
ground information and static objects, which makes the
sentence less informative about what is present in the scene.
Background description is important as well when it comes
to enriching the extracted information from the image.

While paragraph captions providemore information about
an input image than sentence captions, paragraph generation
models often focus on objects on movement, and rely on
background to only name the environment.

While dense captioning provides detailed captions for
each region of interest in an input image, it introduces chal-
lenges when it comes to the practical use of the framework.
Specifically, when generating captions for multiple regions
k in an image, the presence of overlapping bounding boxes
can lead to redundancy and duplication of information.

Providing k as an input would select regions among gener-
ated ones randomly and will not eliminate unwanted regions.

Regarding Datasets, our solution focuses on applying
image captioning techniques to RGB-D images. Although
these images are not available inmainstream computer vision
datasets that typically include generic images or scans, we
aim to adapt and tailor the image captioning approach to
cater specifically to the unique context of segment captioning.
In addition, available datasets focus on annotating bounding
boxes and segmentswith labels rather than phrases,making it
impossible to apply dense captioning on panoptic segments.

Furthermore, it’s worth noting that the majority of avail-
able datasets primarily consist of RGB images, and a sig-
nificant portion of image captioning models are exclusively
trained on RGB images. This limitation poses a challenge
for our specific requirements, as we aim to work with RGB-
D data and point cloud information, which offers a richer

and more comprehensive understanding of the visual envi-
ronment.

Our solution will be applied to our newly collected and
annotated dataset “TS-RGBD”: a dataset of RGB-D images
with sentences for each panoptic segment in Theatre Scenes
[6].

To summarize, notable limitations persist in the current
state of image captioning research. Existing image caption-
ingmodels,whether generating single sentences, paragraphs,
or multiple region-specific captions, face several limitations.
Single-sentence models often neglect background and static
objects, focusing only on salient andmobile objects, thus pro-
viding incomplete scene descriptions. Paragraph captioning
improves information content but still emphasizes moving
objects and offers only general background descriptions.
Dense captioning, which aims to describe multiple regions,
suffers from redundancy and information duplication due to
overlapping bounding boxes. Furthermore, current models
and datasets predominantly use RGB images, lacking depth
information and often providing only labels for segments
instead of detailed phrases, making them unsuitable for our
aim of using RGB-D data to capture a richer visual context.

Based on this analysis, our workmakes the following con-
tributions:

– We propose a novel approach to image captioning known
as segment captioning.

– Our generated captions are egocentric, providing direc-
tional information for each region regarding the user.
Captions combine textual descriptions with egocentric
positions.

– Our solution is applied to RGB-D images from our
TS-RGBD dataset, pioneering a new captioning field:
Theatre Scenes.

4 Model

Our goal is to design an architecture that is capable of gen-
erating captions for each segment present in the image, and
then enrich those captions with the directions.

Our solution (see Fig. 1) consists of three main steps: (i)
Panoptic Segmentation, (ii) Segment Captioning, (iii) Deter-
mining Regions Direction.

The RGB image serves as the input to the panoptic seg-
mentation module. This module analyses the image and
generates segmentation results, from which we would get
bounding boxes that delineate different regions within the
image. The segment captioning module takes the generated
bounding boxes as input, as well as the image, and generates
descriptive captions for each region. These captions provide
detailed descriptions of the identified segments. Addition-
ally, our solution incorporates the computation of directions
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Fig. 1 General solution
architecture

that uses the depth map and the boxes as input. We process
the depth information from each bounding box to determine
the spatial relationship with the user. The output captions
from the segment captioning module are combined with the
results from the directions computation. This combination
results in comprehensive captions that encompass both the
detailed segment descriptions and the contextual information
derived from the depth map.

4.1 Model architecture

4.1.1 Segmentation

Our goal is first to generate a descriptive caption for each
region present in the image. Instance segmentation pro-
vides segments identifying and delineating individual objects
within an image with precise boundaries, so it eliminates
background and is only interested in salient objects. Semantic
Segmentation labels each pixel in an image with its corre-
sponding class, and so multiple objects or regions belong to
the same segment.

Both instance segmentation and semantic segmentation
are not suitable solutions for our problem. Therefore, we
have opted for panoptic segmentation, where each pixel is
assigned a specific identifier unique to each instance, and a
code corresponding to its class. With panoptic segmentation,
we have as output every region on the image, be it salient,
background, or non-salient objects. Regions are not divided
into a set of objects but represented as a whole by segments.
Figure2 illustrates the distinctions among instance, seman-
tic, and panoptic segmentation applied to a single image. In
the case of instance segmentation, only a limited number
of objects were successfully detected. Moving to semantic
segmentation, both individuals are filled in pink, both plants
are marked in green, and both pots are highlighted in pur-
ple, resulting in the grouping of identical objects into unified
regions with the same identifiers.

However, the desired outcome is achieved with panoptic
segmentation.Here, each region is distinctly highlightedwith
a unique color, ensuring independence from similar objects
and assigning a unique identifier to each segment. Then for
each region, a bounding boxwas extracted as shown in Fig. 3.

4.1.2 Segment captioning

To generate textual descriptions for each segment, we pro-
posed a modified DenseCap architecture. The Densecap
model consists of these following parts [28] illustrated in
Fig. 4:

– The Feature Extractor: a pre-trained model for fea-
tures extraction (VGG-16, Resnet-50, FPN with Resnet-
50...etc), which extracts features map from an input
image.

– RPN: a region proposal network that would detect mul-
tiple regions of interest per image, it returns bounding
boxes and scores for each, hence the word "Dense".

– RoI Align: "Region of Interest Alignment" to get features
of each bounding box detected by the RPN from the fea-
tures map of the input image.

– Intermediate Layer: that transforms each region features
extracted by the RoI Align into a vector of a dimension
D.

– Language Network (LSTM): that takes feature vectors as
input and generates a sentence for each.

Modified DenseCap Architecture
We aim to strictly describe panoptic segments, prioritiz-

ing scene understanding over decomposing each object or
regrouping regions, which aligns with common sense. To
achieve that, we had to modify DenseCap architecture to
limit the descriptions to panoptic segments. TheRPNandRoI
Align serve as the localization layer for the DenseCapmodel.
We adapted this layer by splitting it into distinct components,
where the RPN was eliminated and the RoI alignment was
replaced by a multi-scale alignment. To get descriptions for
regions of interest, we feed the model with the image along
with the ground truth bounding boxes of panoptic segments,
as illustrated in Fig. 5. By removing the RPN layer, themodel
is relieved from the task of detectingmultiple regions of inter-
est (k regions), thereby helping to prevent redundancies or
omissions.

Our model architecture is now composed of a Fea-
ture Extractor, RoI Multi-Scale Align, Intermediary Layer
(Recognition Network), and the LSTM captionner. Each
component will be detailed in the following.
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Fig. 2 From left to right:
instance, semantic and panoptic
segmentation using Detectron2
[31]

Fig. 3 A bounding box from a panoptic segment

a. Feature Extractor
Aconvolutional neural network that is designed to capture

hierarchical patterns and important features from the input
images. These layers utilize filters to convolve over the input
image, detecting edges, textures, and other relevant informa-
tion. In our proposed solution, we experimented with two
feature extractors: first with VGG-16, followed by ResNet-
50.

VGG-16 [32] is aCNNarchitecture for classification,with
13 layers of 3× 3 convolutions interspersed with 5 layers of
2×2maxpooling. Thefinal fully connected layer is removed,
to get only featuremaps and discard classification results that
are not needed in this context. So for an input image of shape
3 × h × w, we get an output of c × h′ × w′ where c = 512
is the number of feature maps, w′ = w

16 and h′ = h
16 , Fig. 6

shows an illustration.
Resnet-50 [33] on the other hand is a CNN more suitable

for object detection tasks. It employs residual learning, using
shortcut connections to skip layers during training, which
helps mitigate the vanishing gradient problem. The network
consists of convolutional layers, batch normalization, and
identity blocks. An identity block comprises two 3×3 convo-
lutional layers with batch normalization and rectified linear

unit ReLU activation functions, the fully connected layer is
removed to keep only the feature maps, Fig. 7.

Feature Extraction Head 1
Initially, we proposed a model that would take as input an

image with bounding boxes of ground truth segments. Pixels
that belong to the box but that are outside of the segment
would be turned to black to cancel them when training the
VGG-16 feature extractor as illustrated in Fig. 8. Pixels that
are canceled do not affect the context when extracting feature
maps, so passing such data through a features extractor is
equivalent to extracting features of a segment.

To determine if a pixel belongs to the polygonal envelope
defined by the panoptic segment, we used a linear problem-
solving approach. Specifically, we examined whether a given
point could be expressed as a convex combination of points
derived from the panoptic segmentation. In ourmethodology,
all pixels sharing the same identifier in the panoptic segmen-
tation were considered to form a set of points, which we
subsequently used to test the convex hull with points from
the segment bounding box. Each pixel from the bounding
box, if it belongs in the polygonal envelope, it would be
kept, if not, it would be put to 0. Pixels put to 0 are canceled
in the CNN features extractor. The feature extractor used in
this head is the VGG-16 model. Each box would be passed
through VGG-16, to extract its map of features, as illustrated
in Fig. 9.

When applyingVGG-16 to small images of variable sizes,
we observed that the resulting feature maps varied in size.
We needed to skip layers as these maps became exceedingly
small after pooling. Moreover, the presence of multiple fea-
ture maps imposed a significant burden onmemory, resulting
in slower execution times. This circumstance prompted us to
explore passing the entire image through the feature extractor
at once, rather than dividing it into smaller frames or panop-
tic segments. This led to the introduction of the second head
of feature extraction.

Feature Extraction Head 2
Using VGG-16 on smaller boxes extracted from the entire

image results in using VGG-16 on variable sizes images. The
model encountered challenges reaching the last layer consis-
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Fig. 4 DenseCap model
architecture [28]

Fig. 5 The modified DenseCap
model architecture. The
localization layer was
eliminated to feed the model
with the bounding boxes
extracted from panoptic
segments beforehand

Fig. 6 The VGG-16
architecture stripped of the fully
connected layer

Fig. 7 The Resnet-50
architecture, without the fully
connected layer

Fig. 8 Elimination of pixels that
do not belong to the segment
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Fig. 9 Illustration for the
detailed architecture of the first
feature extractor head

Fig. 10 Illustration for the
architecture of the second head:
a modified version of DenseCap

tently due to pooling operations reducing the size excessively.
The process was also considerably slow due to computing
the convex hull for each segment. Consequently, we opted to
implement the feature extractor on the entire image, address-
ing both the size variation issue and improving computational
efficiency. Figure10 presents the architecture of the proposed
solution with the second head.

VGG-16 ismore suitable for straightforward image classi-
fication so features were extracted using a pertained Feature
Pyramid Network (FPN) with Resnet-50 backbone to get
multi-scale feature maps for each image.

FPNwith aResNet-50 backbone is a neural network archi-
tecture designed for object detection tasks. It leverages the
hierarchical feature maps generated by the ResNet-50 back-
bone at different stages to create a feature pyramid. This pyra-
mid allows the model to capture multi-scale representations
of the input image. FPN contributes to improve accuracy of
models by integrating high-level semantic information with
detailed spatial features. It generates 4 maps with 256 fea-
tures of the whole image. The output would have the size
4× 256. Because we still need feature maps for each bound-
ing box, a region of interest alignment was needed for the
extraction of maps for each box from the output of the FPN,
and to do so, we used RoI Multi-Scale Alignment.

b. RoI Multi-Scale Alignment
To retrieve the bounding boxes from the feature maps of

images, we used the multi-scale region of interest alignment
that infers the scale of the pooling via the heuristics specified
in [34] using the following equation:

k = �k0 + log2(
√

wbhb/224)�

Where k is the level of the feature pyramid, k0 is the tar-
get level into which the segment bounding box should be
mapped, which is equal to 4 in our case (FPNwith the output

of 4 feature maps). wb and hb are the width and height of the
box, and 244 is the canonical ImageNet pre-training size.

Each segment bounding box of size wb × hb is projected
onto the 4 grids of convolutional features, and the equation is
used to infer the scale and get features of size wb’ ×hb’ for
each segment as illustrated in Fig. 11. This process ensures
that spatial information is preserved and contributes to the
module’s effectiveness in tasks like object detection and seg-
mentation.

c. Intermediate Layer
The intermediate layer is a fully connected layer that trans-

forms nb × c× w′
b × w′

b features into a vector of d features,
where nb is the number of boxes, c is the number of extracted
featuremaps, and d is the length of the output vector. The fea-
tures from each region are flattened into a vector and passed
through two fully connected layers, each using rectified lin-
ear units and regularized using Dropout. It helps to represent
each region as a compact vector of d = 4096 features, instead
of a multidimensional matrix.

d. LSTM Network for Captioning
TheDenseCapLSTMmodel [28] for captioningwas used,

with one recurrent layer that takes as input the nb ×d vectors
and outputs nb sentences, where nb is the number of boxes
per image and d is the size of the features vector output by
the intermediate layer.

The model takes a sequence of feature vectors from the
intermediary layer, ground truth sentences, and a list of
potential tokens as input. In the preprocessing step, ground
truth sentences are encoded with a special START token
(< bos >) at the beginning and an END token (< eos >)
at the end. Each word from the vocabulary is converted
into a corresponding token code. This encoding mechanism
ensures that the model generates sentences with proper sen-
tence boundaries, contributing to the coherent structure of the
output. These tokens are passed through an embedding layer
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Fig. 11 Illustration for the region of interest multi-scale alignment and
how it returns feature maps for each bounding box from the FPN result-
ing feature map of the image. The arrows indicate the movement or
transformation of points from the RoI space to the feature map space,

accounting for any scaling, translation, or rotation necessary to align
the RoI with the feature map. Bilinear interpolation is used to interpo-
late the feature values at these transformed points on the feature map,
ensuring accurate feature extraction from the RoI

of size equal to the size of our dataset vocabulary including
the START and END tokens.

For each sentence of size N , the LSTMnetwork is fedwith
a sequence of tokens t1, t2, ..., tN+2 of size N + 2 where
t1 becomes the START token and tN+2 is the END token.
The LSTM computes hidden states ht using the following
recurrence formula where ot is the output gate, ct is the cell
state, and � is the Hadamard product.

ht = ot � tanh(ct )

Outputs are passed through a linear layer with the ReLU
activation function to generate the sequence of tokens for
each generated sentence.

4.1.3 Loss function, training, and optimization

During training our ground truth consists of segment boxes
and textual descriptions.

Since the model does not predict boxes but gets coor-
dinates as inputs, the only new data to be predicted are
sentences for each box. To evaluate the model, we used the
cross-entropy loss function at every time step of the language
model.

For the cross-entropy loss computation, we need the pre-
dicted sentences and the target sentences as inputs. This
criterion computes the cross entropy loss between input
tokens and targets. It computes the loss using this formula:

loss(input, target) = −log

(
einput[target]
∑

j e
input[ j]

)

We train the full model end-to-end in a single step of opti-
mization. We initialize the CNN with weights pre-trained on
Visual Genome and our dataset, we used Adam Optimizer,
torch Grad Scaler, and a learning rate of 0.001. Training is
done on data with a batch size of 4 with 100 epochs.

4.2 Determining region positional relationship with
user

Our solution includes determining the direction in which the
user can face each described region in the given images.
Incorporating depth information is crucial because relying
solely on the 2D image, where pixels of (xi , yi ) coordinates
depict the projections of real-world points onto the image
plane, leads to inaccuracies in directional analysis. Our pro-
posed solution uses depth information from images captured
using the Microsoft Kinect v1 sensor for RGB images and
depth maps. Its focal length value f is a built-in value.

Before delving into the steps we followed to retrieve
orientations, it is important to establish the mathematical
framework. We provide a brief description of the coordinate
system. The world coordinates frame (OXY Z) is defined as
follows:

• The origin O (located on the image plane center) coin-
cides with the impact point of the optical axis with the
image plane.

• The X axis represents the horizontal dimension.
• The Y axis represents the vertical dimension.
• The Z axis represents the depth dimension and coincides
with the optical axis.

The image coordinates frame (O ′uv) is defined as follows:

• The point O ′ is the top left pixel.
• The horizontal line represents the u axis.
• The vertical line represents the v axis.

In the following, each point p(x, y, z) from the real world
is projected as pi (ui , vi ) onto the image plane.

To get directions, we compute the x-coordinate of the cen-
troid P of a region of interest and infer the angle θ ( see
Fig. 12).
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Fig. 12 (OXY Z)is the world
coordinates frame. P(x, y, z) is
the centroid of the bounding box
of a region of interest

Our proposed solution follows the steps below:

1. Calculate the centroid P(x, y, z) of the pixels of each
region, by taking the mean values of the coordinates
(ui , vi ) and depth values from the bounding boxes pix-
els. The number of pixels per box is n = wb × hb, where
wb and hb are the width and height of the bounding box,
respectively;

2. Transform the values of the centroids to point-cloud coor-
dinates using the built-in focal length parameter f , which
determines the field of view and the camera’s magnifica-
tion. Since the origin of the real-world coordinates is at
the center of the image, and the pixel coordinates have
their origin at the top left corner, a translation operator cx
is required as well (see Fig. 13). The cx value is obtained
after calibrating the camera to get the camera’s intrin-
sic parameters. The transformation of the x-coordinate
to point-cloud coordinate follows the equation:

xw = (x − cx ) × z

f
(1)

3. Use the spherical coordinates system to compute the
angle that the orthogonal projection of the region’s cen-
troid into the (OXZ) plane forms with the (X) axis:

θ = arctan(
z

xw

) (2)

the given result is the angle θ ∈ [−π
2 , π

2 ], as shown in
Fig. 14;

4. Use θ to determine to which field each region belongs,
as illustrated in Fig. 15.

Finally, we would have three sets of segments with cap-
tions for each field: Right, Left, and Front with 30◦ of upfront
focus.

5 Experiments and results

5.1 Working environment and used datasets

On amachinewithAMDRyzen 5700X 8Core 3,4GHzCPU,
16 Go RAM, 2060 RTX Nvidia 8Go GPU, and Windows 11
as the operating system, trainingwas performed onGPUwith
version 3.9.7 of PyTorch Libraries.

The PyTorch version of DenseCap provided in GitHub
[35] served as a foundational framework for both our solu-
tions.

We used our newly developed dataset of RGB-D The-
atre scenes, the TS-RGBD dataset, that we collected using
MicrosoftKinect v1 [36],with 120 images of size (640, 480),
a total of 1183 sentences, 109 different words.

We annotated our data manually using the “LabelMe”
open-access framework [37]. We had to manually draw
polygonal envelopes for each region, and to replace labels
with phrases. For each image, it generated JSONfiles that we
preprocessed to build datasets with a dictionary for tokens,
and bounding boxes for each polygonal envelope. Figure16
shows a summary.

5.2 Data preprocessing

We split data into two sets, 50% for training and 50% for
validation, with random data distribution.
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Fig. 13 Translation of the
coordinates frame from O ′ to O
origin

Fig. 14 To compute the correct angle θ we built the point cloud, then
we used the spherical coordinates to get the tangent of the angle formed
by an object’s centroid and the (X) axis

TheMicrosoft Kinect v1was used to capture depth values,
resulting in depth maps that exhibit non-smooth characteris-
tics. These maps may contain multiple 0 values and 4000

values (millimeters) that are considered noise, which can
potentially affect the accuracy of mean, maximum, and min-
imum values derived from them.

To eliminate this problem, the mean filter was applied to
depth maps to smooth such values. As for sentence coding,
we used a token < unk > to represent words that appear
less than 2 times. All sentences with more than 10 words
were eliminated. Each word is coded by an integer, and each
sentence starts with token < bos > and ends with token
< eos >.

5.3 Panoptic segmentation

As for panoptic segmentation, numerous recent models are
available within the open-access community.

We were unable to use the most recent real-time panoptic
segmentation model proposed in [38] due to compatibility
issues with our working environment and the lack of support
for our platform. We used OneFormer [39], a recent model
that gave the best qualitative results for our dataset; Fig. 17.
It relies mainly on transformer architecture without resorting
to RPN models.

Fig. 15 Fields of vision of
humans, 30◦ focus upfront, 45◦
for left and 45◦ for the right
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Fig. 16 Example of collected
and annotated data. Polygonal
envelopes were defined by
manually drawing points that
contour a region of interest
(green points) in the above
image. The image below is the
corresponding depth frame

Fig. 17 Examples of panoptic
segmentation on theatre images
using the OneFromer Model

When testing the whole framework, we don’t use ground
truth boxes, so for a segmented image, we would get the
boundingboxes of each segment by creating for each segment
a binary image where segment pixels are equal to one. Since
segments are inferred by a model, there could be some other
pixels outside of a segmentwith the same id, sowe contoured
all white regions and took the largest one among them. For
the largest contoured area, we extract the bounding box.

5.4 Region captioning results

We conducted experiments on our proposed architectures
with different parameters and hyperparameters.

In the following section, we will showcase and analyze
the various results we have achieved in our study.
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Table 1 Results on different
metrics, for our models, the
higher the better. Head-1 is the
feature extractor with VGG-16.
Head-2 is the FPN with
Resnet-50 backbone. Head-2
gave better results

Metrics BLEU@1 BLEU@2 BLEU@3 BLEU@4 ROUGE CIDEr

Training from Scratch

Head-1 0.03 0.01 0.012 0.001 0.09 0.015

Head-2 0.17 0.11 0.09 0.07 0.22 0.23

Transfer learning

Head-2 0.22 0.14 0.11 0.08 0.56 0.25

Fine tuning

Head-2 0.39 0.34 0.31 0.29 3.25 0.47

The bold values indicate the better results

5.4.1 Parameters and evaluation metrics

The training was conducted on different instances of our
dataset. First, we considered sentences no longer than 15
words, then sentences with a maximum length of 10 words.
The latter gave better results. For each sentence length, we
considered tokens that appeared at least 2 times and those
with at least one appearance. The first gave better results.
Evaluation metrics for the language are BLEU, ROUGE, and
CIDEr where for each, the higher the value the better.

5.5 Training

Training on our dataset led to an important overfitting due
to the lack of data. The LSTM model could generate accu-
rate captions but would also add unnecessary tokens to each
phrase due to overfitting.

Although the loss curves of both models (head 1 and head
2) were decreased, the evaluation curves stabilised after sev-
eral epochs. The Table 1 shows results obtained from both
heads on our images after 100 epochs.

The quantitative results showed that the feature extractor
plays an important role in the accuracy of captions. When
using a feature extractor on the region only, it slows the pro-
cess and decreases accuracy. In addition, the FPN feature
extractor gives better results than the VGG-16. Due to the
evident problem of overfitting, we decided to explore trans-
fer learning as a potential solution.

After considering the advantages of the second head, we
opted for a pre-trained Feature Pyramid Network (FPN) with
a pre-trained ResNet-50 backbone. We selectively blocked
back-propagation to ensure the desired updates, allowing
only the intermediary layer and the LSTM to be updated.
Results are shown in Table 1. Figure18 shows the obtained
loss curve and Fig. 19 the accuracy using the BLEU metric.

Although the accuracy of the results improved noticeably,
the overall shape of the learning curve remained unchanged.
Both training approaches yielded stabilised results, indicat-
ing that the LSTM is stuck in a repetitive loop and failing
to converge. The oscillating shape of the evaluation curve

Fig. 18 Loss curves from training our model: orange is the loss curve
of training from scratch, blue is the loss curve of the transfer learning

Fig. 19 BLEU metric curves form training our model: orange is the
BLEU results curve of training from scratch, and light blue is for transfer
learning

confirms that. These results led to our training phase’s final
step, Fine Tuning.

Before developing our solution, we had already trained
DenseCap on our data. So we retrieved the weights obtained
from the training, and we fed our model with FPN, Resnet-
50 Backbone, Intermediary Layer, and LSTM weights as
starting points. After only 10 epochs, the LSTM converged
successfully and the accuracy reached the results shown in
Table 1.

Figure20 shows how 10 epochs were enough to get a
smaller loss value with a better shape of the loss curve. Fig-
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Fig. 20 Loss curves from training our model: blue is the loss curve of
the transfer learning, orange is the loss curve of the fine-tuning after
only 10 epochs

Fig. 21 BLEU metric curves from training our model: blue is the loss
curve of the transfer learning, orange is the loss curve of the fine-tuning
after only 10 epochs

Fig. 22 ROUGEmetric curves form training our model: blue is the loss
curve of the transfer learning, orange is the loss curve of the fine-tuning
after only 10 epochs

ures21, 22 and 23 show how the accuracy using the BLEU,
ROUGE, and CIDEr metrics when fine-tuning gave largely
better results.

Figure24 shows how the accuracy is increasing while
keeping a smooth and steady shape without oscillations.

Fig. 23 CIDEr metric curves form training our model: blue is the loss
curve of the transfer learning, orange is the loss curve of the fine-tuning
after only 10 epochs

Fig. 24 Curves of ROUGE and CIDEr results after only 10 epochs for
fine-tuning

5.6 Comparative study

Table 2 shows the average test run time for the DenseCap
model and our Segment Captioning model on our environ-
ment.

The reduction in processing time can be attributed to the
removal of the Localization Layer, which incorporates an
RPN (Region Proposal Network). Instead of spending time
to find boxes with high scores, our model takes the coordi-
nates of bounding boxes as input. Additionally, our Features
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Table 2 Execution time
comparison between DenseCap
and our model. Our segment
captioning model shows better
execution time

Model RPN (ms) CNN (ms) LSTM (ms) Total per image (ms)

DenseCap 36 55 4 95

Ours – 48 2 50

The bold values indicate the better results

Table 3 Execution time
comparison between DenseCap
and our model when eliminating
unnecessary regions

Model Inference (ms) Box align (ms) Total per Image (ms)

DenseCap 95 135 225

Ours 50 – 50

The bold values indicate the better results

Table 4 Results of our final framework in terms of execution time and
accuracy

Captioning Directions

Time BLEU Time Acc

50 ms 0.332 1e-5 ms 99%

Extractor has become marginally faster as a result of reduc-
ing the number of regions that require computing the RoI
Align.

To study the performance of our model and DenseCap
model when used as captioners for our whole framework,
we had to remove boxes proposed by DenseCap and keep
only the regions that align with segments. In order to remove
unwanted boxes from the results of DenseCap and retain
only those that align with the regions provided by panoptic
segmentation, we calculate the intersection over union scores
for each region and select the best matching boxes based on
these scores.

The Table 3 shows the execution time for the general
region captioning.

In conclusion, our model is better when it comes to
Region/Segment Captioning as it decreases the execution
time T .

T (Seg) + T (Ours) << T (Seg) + T (DenseCap)

+ T (Box Align)

5.7 Final captions

By running the previously detailed directions computation,
we assign to each region a direction. Objects on the ground
and in the background are kept apart. The object with the
maximum cy value (y coordinate of its centroid) is the object
on the ground. The object with the maximum depth value
zmean (the mean value of its overall depth) is the object in
the background. For our annotated data with 1183 regions,
the Table 4 summarises the achieved results.

Qualitative results are shown in the Figs. 25, 26 and 27.
The Generated captions are satisfactory regarding the accu-
racy achieved on different metrics. Even in images with less
lighting showing the effectiveness of the model. Egocentric
descriptions are correct because they are based on the com-
putation of a real-world angle using depth values that were
captured using the Kinect in millimeters. Even if some direc-
tions would seem false when looking only at the RGB image,
they are correct compared to ground truth. This is due to per-
spectives that change after capturing a 3D world scene into
a 2D image, hence the need of the depth maps.

5.7.1 Discussion

From qualitative, quantitative results and training curves:

• The framework answered the problem of egocentric
scene description;

• Due to the small size of our dataset, the overfitting is
still present and it is noticed when changing slightly the
coordinates of bounding boxes, hence including more
or fewer pixels for a region to be described, the LSTM
captioner performance drops;

• From results given by Head 1 and Head 2, we deduce
that information from pixels surrounding a bounding box
is important for more contextual meaning since Head 1
eliminates pixels outside of the polygonal envelope gave
worse results;

• The directions computation performance is satisfying
compared to ground truth;

• The execution time of the whole framework is satisfac-
tory.

Although our model has shown promising results on the
small validation set, indicating its effectiveness, it is still
presents weaknesses as we present below:

1. Due to the overfitting of the captioning model, this solu-
tion cannot be applied to new images;

2. Due to the overfitting of the captioning model, if an input
bounding box of a region is less accurate than the ground
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Fig. 25 First example from our
theatre scenes RGBD dataset.
Image (a) represents the results
from the captioning model.
Image (b) is the corresponding.
Image (c) is the point-cloud.
Image (d) shows the final
egocentric captions

Fig. 26 Second example from
our theatre scenes RGBD
dataset. Image (a) represents the
results from the captioning
model. Image (b) is the
corresponding. Image (c) is the
point-cloud. Image (d) shows
the final egocentric captions
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Fig. 27 Third example from our
theatre scenes RGBD dataset.
Image (a) represents the results
from the captioning model.
Image (b) is the corresponding.
Image (c) is the point-cloud.
Image (d) shows the final
egocentric captions

truth bounding box, or shifted, then the accuracy of the
model drops;

3. Our solution depends on panoptic segmentation, if the
segmentation model gives bad results it would mislead
the captioning model;

4. Our solution depends on panoptic segmentation, if the
used model is slow it would slow up the execution;

5. The directions calculation depends on the camera param-
eters when computing the point cloud;

However, this research encourages us to continuewith data
annotation and consider collecting additional data with more
diverse and sophisticated materials, that involve real actors
and disguises, which can further enhance the performance of
our model.

The accuracy of generated phrases and their correct
semantics motivates us to refine our annotations for future
work, incorporating more theatre-specific language such as
using terms like "prince" instead of "man" and including
female characters as "princesses" for example, along with
other theatrical elements and settings.

We also plan on retraining a fast segmentation model to
keep up with the real-time execution and enriching captions

with textual descriptions of actions by applying the methods
proposed in [40] since they rely on depth as well.

Furthermore, we aim to extend our work to video pro-
cessing, as our framework has demonstrated good execution
time, achieving 24 frames per second.

Finally, the solution will be presented to actual users with
visual disabilities for a better evaluation.

6 Conclusion

In this article, we have provided a comprehensive review
of the recent advancements in AI technologies for visual
scene understanding. Through an extensive analysis of the
literature, we have examined the state-of-the-art techniques
and methodologies employed in various domains, including
image captioning, image segmentation, and scene under-
standing.

Furthermore, we have discussed the challenges and limi-
tations that still exist in visual scene understanding. Despite
significant advancements, issues such as handling occlu-
sions, robustness to diverse environmental conditions, and
generalization to unseen scenarios remain areas of active
research.
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In our study, we addressed the challenge of developing
a framework that answers the problem of enhancing scene
understanding by providing textual descriptions of regions
of interest within an image. Our objective was to gener-
ate captions that not only describe the visual attributes of
these regions but also incorporate their relative positionswith
respect to the user.

We applied our solution to our new TS-RGBD dataset, a
dataset of RGB-D images of theatre scenes, which is consid-
ered a novel field of application for image captioning.

Our solution proved to be more effective compared to
other image captioning models, in terms of the number of
captions per image and the execution time.

The egocentric descriptions were successfully processed
by fast and simple algorithms, independent ofmachine learn-
ing methods. Those algorithms used the depth information
from the depth maps to improve the accuracy of the descrip-
tions.

For future work, we will improve the quality of image
ground truth captions by making themmore theatre-specific,
and augment our TS-RGBD dataset by collecting and anno-
tating additional data.

Our solution will be presented to blind and visually
impaired users for a better evaluation of the generated cap-
tions.
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