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Abstract

The aim of this thesis is to provide a scene semantic labeling using RGB-D images

for human-scene interaction. We focus on scene semantic labeling for scene under-

standing. The system takes in consideration the scene geometry, the objects in the

scene, their nature, their positions in the scene and the relationship between them.

In this thesis, two main contributions are made. First, a touch-based 3D interface

that generates 3D scene labels, is designed. The 3D labels rely on 3D shape recogni-

tion and geometric features computing. Second, an end-to-end scene understanding

system for human-scene interaction is developed. The system produces 3D labels on

the designed 3D interface. The proposition of these latter is motivated by the limit-

ations of current systems for human-scene interaction especially assistive systems.

The pipeline of our main system is: first, the acquired depth image is segmented and

each segment is classified using geometric features and/or a deep learning network

for semantic classification. Second, inspired by the Braille system and the Japanese

writing system Kanji, the obtained classes are coded with semantic labels. The 3D

interface is then generated using these labels and the extracted geometric features.

Our final system is able to predict more than 17 classes only by understanding the

provided illustrative labels. For the remaining objects, their geometric features are

transmitted.

Each system’s component is validated using public and local datasets. The obtained

results are reported, discussed and compared to the state-of-the-art works.
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Résumé

Le but de cette thèse est de fournir un étiquetage sémantique de scène utilisant

des images RGB-D pour l’interaction Homme-Scène. Nous nous concentrons sur le

codage sémantique de la scène pour la compréhension de la scène. Le système doit

prendre en considération la géométrie de la scène, les objets de la scène, leur nature,

leurs positions dans la scène et la relation entre eux.

Dans cette thèse, deux contributions principales sont proposées et motivées par les

limites des systèmes actuels pour l’interaction Homme-Scène en particulier les sys-

tèmes d’assistance. La première, est une interface 3D tactile qui génère des codes

3D des objets de la scène, est conçue. Les codes 3D reposent sur la reconnaissance

de formes 3D et le calcul de leurs caractéristiques géométriques. La seconde, est

le développement d’un système de compréhension des scènes de bout en bout pour

une interaction Homme-Scène. Le système produit des codes 3D sémantiques sur

l’interface conçue.

Le pipeline de notre système principal est composé des étapes suivantes: (1) L’image

de profondeurs acquise est segmentée et chaque segment est classifié en utilisant des

caractéristiques géométriques et/ou un réseau d’apprentissage profond. (2) Inspirées

du système braille et du système d’écriture japonais Kanji, les classes obtenues sont

converties en des codes sémantiques. (3) L’interface 3D est ensuite générée à l’aide

de ces codes et des caractéristiques géométriques extraites. Notre système final est

capable de prédire plus de 17 classes seulement en comprenant les codes fournis.

Pour les autres objets, leurs caractéristiques géométriques sont transmises.
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Chaque composant du système est validé à l’aide des datasets publics et de notre

Laboratoire. Les résultats obtenus sont rapportés, discutés et comparés à des travaux

de l’état de l’art.

Mots clés- Interaction homme-scène; Étiquetage sémantique de la scène; Interface

3D; Compréhension de la scène; Reconnaissance de forme 3D; Systèmes d’assistance;

Apprentissage profond.
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Chapter 1

Introduction

To accomplish daily tasks, humans are in daily interaction with their surroundings.

They interact by actions or/and by contact. For instance, we sit on chairs, we eat on

tables, we walk on the ground. Some of the actions are easy to accomplish like lying

on the bed; some others are more or less difficult and they require an intermediate

device or systems like the traffic lights to trace the route or a navigation software

to navigate in an unfamiliar places. While obvious, it is important to state that in

order to accomplish a given task, humans perceive the scene, understand it and then

act accordingly. We call these actions and contacts: Human-Scene Interaction.

To enhance the daily life, many systems for human-scene interaction have been pro-

posed. These systems process the captured scene in order to understand it (identify

the captured objects, their geometry and locations and the relationship between

them) and to generate the required output like orientation cues. Generally, these

systems rely on image processing, artificial intelligence and external sensors to under-

stand a given scene and generate the output. The nature of outputs and the feedback

interface have a great importance . In fact, delivering information or instructions

is crucial, they have to be clear, concise, simple to understand and without needing

high concentration and efforts. In addition, the system interface has to be simple to

use.

To transmit instructions, scene description or any generated output, most of systems
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for Human-Scene interaction use audio-based or vibration-based interface. In many

systems, an audio device is used to transmit information and instructions. It’s true

that this latter enhances the life quality, but sometimes it prevents the hearing sense

to do its usual tasks like detecting instant sound events that can make the user

life in danger. An alternative is to use interface based on vibration. It releases the

hearing sense from this task, however, it is less informative and can provide a modest

number of possible instructions. Furthermore, in order to reduce the amount of the

transmitted output, the applications that rely on scene interactions provide, whether

local navigation information like the presence of an obstacle straight from the user,

short instructions to follow or semantic information for grasping objects. However,

we believe that with a good scene semantic labeling transmitted by an interface that

is exploitable by touch, a better human-scene interaction reached.

1.1 The goal

Through this thesis, our goal is to propose a scene semantic labeling for a better

Human-Scene interaction. We are, more precisely, interested in proposing an aid

system for the visually impaired for a better interaction with the scene. The system

transmits the output through a 3D interface that allows to have a clear idea on the

captured scene. The semantic labeling takes into consideration the free space, the

type of objects, their locations and properties. Such coding should also make it

easier for the visually impaired and the blind people to understand the content of

the scene and also allows them to navigate. In addition, it should be exploitable by

the touch, the sense that the visually impaired rely on to recognize objects, in order

to release hearing that can be used to detect unsafe instant events.

The touch sense for the visually impaired and blind people, is often used to recognize

people, obstacles, objects, and many other stuffs. It simply plays the role of sight.

Since long time ago, the blind children have used the touch sense to learn and study
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Figure 1.1: Blind children use touch to learn. By touch, they study animals, their
shape and their size. SOURCE: Copyright Tyne and Wear Archives and Museums
[3].

different subjects in different fields such as science, geography, history, etc. as shown

in Figure 1.1.

1.2 Challenges

Our main challenge is to design labels that semantically represent each selected object

class. We can see the names of the objects as the ideal labels; however, transmitting

the name of every detected object so that can be understandable by touch is crucial

and can be ambiguous. Another possibility is to use the first characters as labels, but

this latter does not represent the object semantically and can be ambiguous when

two classes starts with the same characters. In addition, the labels have to be clear,

concise and easy to understand to ensure a good understanding of the scene.

Another challenge is to understand the scene, associate to each object a 3D label and

map the 3D scene into a designed device. Exploiting this device by touch provides

an interface for Human-Scene interaction. The mapping (scene-device) has to take

into consideration the geometry of the scene, the objects present in the scene, their

nature, their positioning in the scene and the relationship between them.
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Finally, designing and implementing an end-to-end scene semantic labeling system

for a human-scene interaction using only a depth image or a point cloud instead of an

RGB-D data as the system input makes the task more challenging. Furthermore, it

reduces the computation time and the system cost in terms of the required hardware.

1.3 Overview of our system

In this thesis, we propose a 3D interface for scene semantic labeling, Figure 1.2.

From the depth image, the 3D scene is processed and semantically mapped into

the 3D interface using the computed labels and the extracted geometric features

of the input point cloud. Three main modules are proposed: the ground detection

module, the classification module and the scene semantic labeling module. The

first module detects the ground and extract the occupied space which represents

the objects appearing in the scene. The second module is based on computing

geometric features and on a deep learning architecture to classify the objects into

nine geometric features and seven semantic classes respectively. The scene semantic

labeling is inspired from Braille and Kanji systems. This latter is mapped into a

touch-based device that can be used for many applications such as indoor navigation

and searching and grasping objects.

1.4 Summary of contributions

Our main contributions are:

– A 3D interface for human-scene interaction that can be used as an output

interface in many applications that are devoted for interacting with the scene. For

this purpose, our subcontributions are:

• Two objects classification approaches which are suitable for many applications,
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Figure 1.2: Scene semantic labeling system for human-scene interaction.

especially for the visually impaired and blind people. The first approach is

based on computing geometric features. The second approach is based on deep

neural networks to classify objects into semantic classes. Although we will

be using a state-of-the-art neural network, we will show that grouping object

classes that have the same usage improves the system accuracy by 5%.

• A scene semantic labeling that is similar to the Braille and Kanji systems, can

be mapped on the 3D interface. The proposed scene semantic labeling will

provide for users the scene geometry and its content in a simple yet effective

way.

• The conception and the design of a device which serves as our 3D interface.

Furthermore, it can be used as an output device in many visually impaired

assistive systems and for many applications. It is designed to be exploitable



Introduction 6

by the touch sense in order to provide concise and informative labels while

releasing hearing.

– An end-to-end semantic labeling system for human-scene interaction

that describes the captured scene and provides geometric features and the nature of

the detected obstacles mapped as the touch-based semantic labels. The system takes

only a depth image as input to reduce the computational complexity and the system’s

cost in terms of the required hardware. For this purpose, we also contributed by:

• Depth Cut based Ground Detection (DCGD) algorithm, an efficient algorithm

for ground detection. It is based on computing a set of depth cuts from the

given depth image. The ground is then detected by removing pixels that cor-

respond to objects after dividing each cut into sub-cuts. The validation has

shown that our results exceed the state-of-the-art results.

1.5 Outline of the dissertation

The remaining chapters are structured as follows:

– Chapter 2 is devoted to review and analyze systems with Human-Scene interac-

tion and their different components. In this chapter, we first present current works

in many fields such as indoor navigation, semantic labeling and object avoidance. It

allows us to draw their architecture and thus design ours.

– Chapter 3 introduces the different steps of point clouds processing since one of

our challenge was to only use depth images. It first formulates point cloud and then,

point cloud filtering, point cloud descriptors, point cloud segmentation and 3D shape

recognition are presented respectively.

– Chapter 4 describes our proposed 3D interface. It first introduces the design of

our proposed device and its first prototype that is especially designed for a better

Human-Scene interaction. Then, it shows how this latter can be used for as an out-
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put device in 3D scene semantic labeling systems.

– Chapter 5 is dedicated to the proposed 3D scene semantic labeling for a Human-

Scene interaction and its different components. Indeed, it describes our proposed

scene semantic labeling that is especially devoted for the visually impaired. These

labels are mapped on the device to be exploited by touch.

– Chapter 6 concludes this thesis by summarizing our proposed system and the

obtained results. In this chapter, we also discuss the system strength and limitation,

and we suggest some future works to improve it.

1.6 List of Publications

As part of this thesis, the following works have been published:

– An article: Zatout, C., Larabi, S. Semantic scene synthesis: application to as-

sistive systems. The Visual Computer (2021). https://doi.org/10.1007/s00371-021-

02147-w

– A conference paper: Chayma Zatout, Slimane Larabi, Ilyes Mendili, and Soedji

Ablam Edoh Barnabé. Ego-semantic labeling of scene from depth image for visu-

ally impaired and blind people. In 2019 IEEE/CVF International Conference on

Computer Vision Workshops, ICCV Workshops 2019, Seoul, Korea (South), Octo-

ber 27-28, 2019, pages 4376–4384. IEEE, 2019.

– A conference paper: Zatout, Chayma, and Slimane Larabi. A Novel Output

Device for visually impaired and blind people’s aid systems. 2020 1st International

Conference on Communications, Control Systems and Signal Processing (IEEE CC-

SSP), March 16-17, El Oued, Algeria, 2020.

https://ieeexplore.ieee.org/abstract/document/9151820.
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Chapter 2

Systems for Human-Scene Interac-

tion

2.1 Introduction

We can classify computer systems into two categories: systems with Human-Scene

interaction, or more generally systems with Human-Computer interaction, and sys-

tems which do not require Human-Computer interaction such as scripts. The systems

with Human-Computer interaction are those that offer to users the ability to inter-

act with computers and smartphones such as inserting information and gaming. In

the same way, the systems with Human-Scene interaction are those that generate

outputs after processing the captured scene in order to offer to the user the ability

to interact with the scene such as understanding its content and navigating.

In this chapter, we study and analyze the related works, from capturing the scene

to the Human-Scene interface. Indeed, this is important in order to determine their

limitations and to design our own system. For this purpose, in Section 2.2, we review

the state-of-the-art systems in different fields, namely: scene understanding and ob-

ject detection, indoor navigation and obstacle avoidance, outdoor navigation, ground

detection, semantic labeling, human computer interaction and auto-positioning. As

Human-Scene interaction is more delicate in aid systems, most of the studied sys-
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tems are of this type. Then, we study the different components of these systems in

Section 2.3. We conclude this chapter by discussing the limitations of the presented

systems in Section 2.4.

2.2 Human-Scene interaction: A review

The computer systems with Human-Scene interaction consist of a set of techniques

whose goal is to enhance the user life in different activities such as route finder,

indoor navigation, etc. Generally, these systems process the received data from the

real world using sensors and transform it into instructions and signs. They use depth

or RGB sensors and techniques of image processing, computer vision and machine

learning.

2.2.1 Scene understanding and object detection

In general, the computer systems for scene understanding depend on object clas-

sification and detection: detecting objects is important in most applications like

image captioning. In assistive systems for example, knowing the objects nature will

provide for the users the ability to interact with the scene such as auto positioning

and creating free space by moving some kinds of objects like chairs.

In [7], they proposed a wearable system for recognizing and locating some types of

obstacles using a depth camera. After detecting the ground, they used a linear clas-

sifier to classify the point cloud features into: chairs, tables, stair up, stair down and

walls. The obtained class is coded and mapped into a braille display; so by touching

the braille device, the user will understand what type of objects is in front of him.

In [16], they proposed a system that uses computer vision techniques (such as Visual

Odometry, Region-growing and Euclidean cluster extraction) and depth data to de-

termine if the horizontal planes are a valid step of a staircase. After the segmentation
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step, they transform the scene orientation into the Manhattan system [17]; so the

extracted planes can be classified into vertical or horizontal planes.

In [6], they proposed a wearable system for scene understanding using deep learn-

ing techniques. The scene is captured using an RGB-D camera and the results are

displayed using an earphone and a smartphone that serves as a haptic device. They

adapted FuseNet [18] and GoogleLeNe [19] to provide semantic segmentation and ori-

entation instructions respectively. The semantic segmentation model was designed

to predict 40 different classes; however, these latter are transmitted using an audio

device.

In [20], they proposed point cloud segmentation based on cascaded decision tree us-

ing RGB-D images. They showed good results; however, the system only classifies a

given segment, whether it is the ground, a wall or a table (a horizontal plane that is

not the ground). As in [21], they proposed a lightweight Convolutional Neural Net-

work (CNN) architecture that is able to be executed on smartphones for traveling

assistive system. They adopted PeleeNet for object detection to cover 80 different

classes using the RGB images as input.

Some other works were devoted for specific types of indoors such as public indoors

[22] and mesums [23]. In [22], they proposed an assistive system for object recogni-

tion in public indoors using RGB-D camera as an input device. Unlike the previous

systems, they developed a comprehensive method based on machine learning tech-

niques for object multi-labeling. In [23], they designed an exhibitor to communicate

museum samples to the visually impaired and blind people. The system generates

audio descriptions with adjusted volume according to the number of exhibits visitors.

It also displays close-up photos of the exhibits to offer to the visitors with low vision

to appreciate the most significant pieces’ parts and their original colors.

Other researches were devoted to a special kind of classes instead of static objects

and furniture: in [24], they proposed a system for face and text detection based

on video analysis techniques. The system is able to detect faces using the binary
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classification of sparse face representations. As for text detection, they opted for a

cascade of SVM classifiers and filters.

2.2.2 Indoor navigation and obstacle avoidance

Many researches are devoted for indoor navigation [6, 25, 26]. Indoor navigation in-

cludes detecting obstacles, the floor (or free space), providing orientation instructions

and/or computing the distance between the user and the obstacles. In navigation

assistive systems in particular, the navigation is not only about delivering orientation

instructions to move from a position/place to another, but also about ensuring the

safety of the user during the navigation; in other terms, it’s about avoiding obstacles.

Regarding obstacle detection, [27] applied a combination of elementary image pro-

cessing operations. They, first, extracted edges using the Canny edge detector.

Second, they connected the broken edges using the dilatation operation. With the

assumption of the closed boundaries are objects and since some boundaries may re-

main unclosed, they performed erosion and dilatation operations. After that, they

filled the closed boundaries with white pixels using the flood fill operation. Finally,

the area of each object (each white area) is computed and then if this area is below

a given threshold it will not be recognized as an obstacle.

In order to detect free space, in [28], they detected corners from RGB image us-

ing Harris and Stephens corner detector. Then, they divided the image into three

regions of interest: center, left and right. After that, wall-like obstacles detection

algorithm is applied to identify if the center region is safe. If this latter is not safe,

they identify the free walkable space (left or right) and provide the user with the

right orientation instructions. In [29], they proposed a multi-level recognition system

for indoor positioning and navigation. The system provides location recognition, ob-

ject recognition, semantic recognition and orientation instructions to navigate from

a location to another.
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When the input image is taken from an RGB camera of a smartphone, other sensors

as the accelerometer and gyroscope can be used [30, 31]. In [31], they proposed a

navigating system based on obstacle detection. The system combined the RGB cam-

era, accelerometer, gyroscope, and the magnetometer to observe the user and the

smartphone motion, extract the foreground and cluster it. In [32] and based on the

processing of images from head-mounted RGB-D, the navigation is achieved using

optical flow and tracking of certain points, or landmark identification that are indic-

ative of a user’s position along the crowded paths, or real-time 6-DOF ego-motion

estimation using sparse visual features, dense point clouds, and the ground plane.

2.2.3 Outdoor navigation

In outdoor navigation computer systems, several approaches are used. They are

generally based on the GPS and maps in order to get the user’s and the target’s

positions and to find the best path regarding some fixed criterion such as the shortest

path.

In [33], they proposed an algorithm for path planning that compute the optimal

path from the user’s current position to the target location regarding the number of

turns. The system receives the graph corresponding to the supermarket layout , the

system current position and the target position to provide orientation instructions.

An additional module is added for obstacle detection to perform obstacle avoidance

while navigating. In [34], they proposed an assistive system based on NavCog [35],

an open-source turn-by-turn navigation assistant. To construct a map, they extrac-

ted the layout from OpenStreetMap1 and populated it with Points Of Interest (POI)

from Yelp2 and FourSquare3 POI retrieval geolocation services. The navigation in-
1https://www.openstreetmap.org/
2https://www.yelp.com/
3https://foursquare.com/

https://www.openstreetmap.org/
https://www.yelp.com/
https://foursquare.com/
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structions and the information details about POI are transmitted via an audio-device

(smartphone).

Some other applications are based on image processing and computer vision tech-

niques to detect potential obstacles in the outdoors. In [36], they proposed a system

for obstacle avoidance in outdoor environments based on RGB camera. In order to

detect the most common obstacles in outdoors, namely people, bicycles, cars, motor-

bikes, buses, traffic lights and traffic signs, they opted for YOLOv2 [37], a well known

CNN network. To transmit the generated output, the system used a vibration-based

device having different intensity levels.

2.2.4 Ground detection

Ground detection is generally the first step to be performed in many computer sys-

tems such as in navigation, scene understanding and augmented reality (like putting

3D models in free space) systems. For this purpose and based on depth images,

many approaches have been proposed.

In [38], they use the fact that if a pixel is from the ground plane, its depth value must

be on a rationally increasing curve placed in its vertical position. However, this solu-

tion causes problems if the floor has significant inclination or declination. RANdom

Sample Consensus (RANSAC) algorithm is used in many approaches assuming that

the space position of the floor is within z-max value [39], or distinguishing the floor

from obstacles and walls based on hue, lighting and geometry image features [40] or

using the ground’s height determined by using the V-disparity [41]. Also, in [42], the

RANSAC algorithm is used to find planes, and the relative distance and orientation

of each plane with respect to the camera are then tested to determine whether it is

the floor or not. Wang et al. [20] proceed differently, they distinguished free from

occupied space by detecting planes. They proposed scene segmentation based on
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cascaded decision tree using RGB-D image to classify segments, whether the plane

is the ground, walls or tables.

Strong constraints are also used in [43] for floor detection assuming that ground

plane must be large enough and Kinect is mounted on the human body, such that

the distance between the ground plane and Kinect (y-axis coordinates) must be in

a range of 0.8 to 1.2m.

2.2.5 Semantic labeling

Semantic labeling consists of assigning to each input a class label as an output. For

instance, in semantic segmentation, it consists in labeling each pixel with a class.

For Human-Scene interaction, providing a clear and simple to understand semantic

labeling will save time and efforts. For example, labeling the set of pixels with the

object’s name is more effective than labeling them with different colors.

Horne et al. [4] proposed a semantic labeling for prosthetic vision for obstacle avoid-

ance and object localization. They proposed a 2D pattern of phosphenes with dif-

ferent discrete level of intensity. In case of navigation, the phosphenes are activated

to represent potential obstacles locations, thus free space was represented by gaps.

So the user can have an impression about his surroundings and navigate without

receiving audio instructions. Whereas for object localization (see Fig. 2.1), they

selected a class (intensity level) to be used as landmark for maintaining orientation.

To do this, they attributed for each pixel a discrete value that corresponds to its

semantic class.

In [5], they proposed a navigation system based RGB image processing. The sys-

tem transmits the generated scene and the navigation instructions on the Senseg

TM device. They used the electrostatic signs to generate codes and form textural

instructions for the visually impaired and blind people. They also used colors to
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Figure 2.1: Horne et al. [4]: (left) the task of finding the garbage. (right) the pro-
duced semantic labeling: the garbage is represented with high-intensity phosphenes
and the obstacles with low-intensity phosphenes. The user can follow the gaps to
the target.

encode additional visual feedback for the sighted and with low vision people (Fig.

2.2).

In [7], they encoded the considered object classes using the first character of the

class’s name: o, c, t and a space to represent obstacles, chairs, tables and free spaces

respectively. These codes are simple to understand, but it can be ambiguous while

covering a large set of objects, especially with objects having the same first character.

2.2.6 Human Computer Interaction

Some assistive systems were devoted to enhancing the visually impaired experience

in Human-Computer interactions. In [44], they proposed a system to analyze the

structure of a web page based on visual information. The system uses a hierarchical

segmentation of the web page after converting it to image. Using image processing

and computer vision techniques, the system detects edges and segment the input

page into semantic categories without the need to know the programming languages

or the tags used to write these components.
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Figure 2.2: Rubio et al. [5]: the Senseg TM device screen. Walls are represented by
the yellow outline, the user location is represented by the green box and the user’s
touch is represented by the red box.

2.2.7 Auto-positioning

Auto-positioning is another important task in everyday life. The auto-positioning

is difficult to accomplish in unfamiliar environments, especially for the visually im-

paired. Several auto-positioning systems are proposed in the literature. In [45],

they proposed an indoor positioning system to locate users based on artificial intel-

ligence and computer vision techniques. They opted for the VGG16 and a region

proposal network for feature extraction, object classification and bounding box ex-

traction. The pose estimation were based on matching SIFT features after applying

the RANSAC algorithm to remove outliers. Similarly, in [46], they proposed an auto-

localization system based on deep neural network and computer vision techniques.

The CNN features are used for localization; as for pose estimation, they computed

the Hamming distance between the ORB features.
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2.3 Human-Scene interaction: the systems’ com-

ponents

In general, for Human-Scene interaction, the computer systems consist of four main

components: two devices (namely input and output devices) and two modules (namely

the preprocessing and the processing modules). The input device, that most of the

time is a sensor, delivers numerical data from the real world. In scene understanding,

cameras are the most used sensors. The preprocessing module is the first step in this

process due to the noisy nature of the manipulated data. The processing module

is responsible to transform the input into an understandable output that can be

transmitted via the output device.

2.3.1 Input device

Regarding the input device, we distinguish four types of aid systems: Depth-based

systems, RGB-D based systems, Stereo-based systems and RGB-based systems. The

depth sensors provide a depth map that supplies how far is an object (pixel set) from

the user, if we suppose that the camera is carried by him. The depth camera can be

structured light based such as Microsoft Kinect v1 [47] and Asus Xtion [48] or time

of flight scanners, such as Microsoft Kinect v2 [47, 49] and ultrasonic [50].

An alternative to 3D sensors, is to use stereo cameras. In the stereo-based systems,

the depth is obtained by finding corresponding matches between two images captured

from two different cameras at the same time. With the absence of the described

sensors, RGB cameras are used [27, 51, 52] as an input device in assistive systems.

The type of the input device is important for the accuracy and the running time in

real-time applications. Depth sensors are more accurate compared to stereo cameras
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and RGB cameras. In terms of computational running time, depth sensors are

suitable mainly when the processing phase is considerably slower.

2.3.2 Data preprocessing

Data preprocessing is a set of techniques including data smoothing, data down-

sampling and data cleaning, that aims to reduce noise and redundancy to produce

accurate data with reduction if necessary. It is applied when the data are noisy and

huge regarding the algorithms in processing stage and thus it increases temporal and

spatial complexity. Depending on data nature, several techniques can be applied.

Regarding depth images, smoothing filters are used such as 2D-EEMD [53] filter

and bilateral filter [54]. As for point clouds, passthrough filter and voxelization are

widely used to reduce temporal and spatial complexity as in [16, 48] and many other

works that are based on 3D data.

2.3.3 Data processing

The processing phase can be split up into four major categories: techniques based

on image processing [27, 28], computer vision based techniques, artificial intelligence

based techniques [55], and augmented reality based techniques.

Among the computer vision techniques, segmentation techniques such as RANSAC

[51, 56, 57, 58] and region-growing [16]; computing descriptors such as SURF [59]

[55], and Visual Odometry [16] are widely used. With regards to artificial intelli-

gence approaches, cascaded decision tree [20], SVMs [59], multiple layer perceptron

(MLP) [31] and deep learning techniques [6, 22] are used. Augmented reality based

techniques on the other hand, are generally used for outdoor navigation [60] like

navigation in unfamiliar places, and especially proposed to enhance the perception

of people with a low vision as proposed in [61, 62].
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2.3.4 Output device

In general, the generated output can be transmitted through audio-based interface

[6, 21, 28, 34, 51, 55, 59, 61, 63], vibration-based interface [58] or a combination

of them [52, 53]. The audio feedback can be stereo tone [63], beeps [63], recorded

instructions [63] and text-to-speech [52, 53]. It can deliver some local information

(like obstacle in front of you, etc.) or instructions to navigate (like go straight, etc.),

to grasp objects (like up, down, left), etc.

Audio output is simple to understand and provides clear and concise information or

instructions if these latter are well coded. However, it can be sometimes distracting

and especially for the visually impaired. It also occupies ears and thus prevent them

from doing their job like detecting unsafe instant events such "a car passing by".

It can be seen when pedestrians cross the road while using their smartphones or

listening to music.

The vibration-based devices such as vibration sensors, phones and vibrotactile gloves

[57] is an alternative to audio feedback since it does not occupy the sense of hearing.

However, the number of possible instructions provided by vibration can be modest

(4 or 8 possible instructions are usually used). Military code as used in [52], enriches

the possible directions to take but can be ambiguous like distinction between 5 and

10 o’clock.

The discussed types can sometimes be annoying, distracting and can not be used

in some locations as using audio feedback in hospitals when silence is needed or su-

permarkets when there is huge noise. In these cases headphone [51, 61] or earphone

[59, 63] can be used, but again, this holds hearing and isolates it relatively from

the real world. With a simple informative semantic labeling for Human-Scene inter-

action, the navigation, the grasping and other tasks can be done without dictating

instructions. Furthermore, such a labeling allow to have an impression about the real

world and their surroundings, especially for the visually impaired and blind people
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Figure 2.3: Lin et al. [6] for Human-Scene interaction: The smartphone screen.

. For example, coding the free space and the occupied space permits navigation,

searching for an object, self positioning and other tasks.

Recently, tactile interfaces were proposed [6]. In [6], they proposed an output inter-

face for Human-Scene interaction using smartphones. The semantic segmentation of

the captured scene is mapped to the smartphone’s screen. After touching a specific

area (Figure 2.3), the proposed system transmits its label via wireless earphones

with a volume that is proportional to the object distance, the closer the object, the

higher the volume. This solution is based on touch sense; however, it still occupies

hearing. A braille device is also used in [7] in combination with vibration sensors and

an audio device (Figure 2.4). The braille device was used to transmit the occupancy

grid to the user and to deliver the character that represents the class of the detected

object in Braille system. They used the equivalent in the Braille system of: o, c, t

and a space to represent obstacles, chairs, tables and a free spaces respectively.

2.4 Discussion

In addition to the discussed limitations of the Human-Scene interfaces based on audio

and vibration. The state-of-the-art systems present many limitations:
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Figure 2.4: Wang et al. [7] for Human-Scene interaction: the hardware overview.
The labels and the occupancy grid are mapped in the refreshable braille display. The
haptic vibration belt produces pulse indicating the location of an obstacle.

• In indoor navigation, for example, they provide only a global description of the

captured scenes (free space and obstacles without describing their nature). In

some proposed systems when objects are detected, they usually use an RGB

camera as an additional input sensor [64]. In other works, they provide obstacle

classification, but by considering only a few classes such as classifying the scene

components into the floor, objects that are parallel to the floor and objects

that are perpendicular to floor without considering other features such as the

object’s height and its occupied area.

• The proposed semantic labels are less informative and can generate ambiguity

and do not consider some geometric features that can be helpful [7].

• The actual aid systems are vibration-based or audio-based. For the visually

impaired, the hearing replaces the sight in different tasks such as detecting

some events, thus, the importance of releasing it.
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2.5 Conclusion

In this chapter, we viewed and presented some of the state-of-the-art computer sys-

tems that are especially designed for Human-Scene interaction. These systems have

a similar pipeline even if they have not similar input and similar output. This latter

ensures generating the required output from the given input while reducing noise.

We will use the same pipeline for our proposed system. However, unlike these sys-

tems, we will generate an output that is exploitable by the touch sense and thus

we will overcome the discussed limitations. In other words, the system is designed

based on a touch interface for a better Human-Scene interaction. In our system, we

will be using point clouds as input. Therefore, in the next chapter, we will present

different techniques for point cloud processing.
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Chapter 3

Point Cloud Processing

3.1 Introduction

Nowadays, point clouds are widely used as inputs for many applications. They are a

3D representation that is suitable for dealing with real-world data, especially when

the 3D scene geometry is required, such as the distance from the input sensor, the

shape of objects and their size.

In this chapter, after defining the point clouds in Section 3.2, different types of 3D

scanners will be introduced in Section 3.3. In Section 3.4, we present the most com-

mon filters employed to reduce the noisy nature of point clouds. Some descriptors

will be also presented in Section 3.5; they are used to represent a point cloud differ-

ently depending on the application. The segmentation and the 3D shape recognition

techniques will be introduced in Section 3.6 and Section 3.7 respectively. Finally, we

will explain in more details deep learning techniques for point cloud classification in

Section 3.8.
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Figure 3.1: (Left) point cloud with only 3D coordinates. (Right) point cloud with
3D coordinates and RGB colors.

3.2 Definitions

A point cloud (Figure 3.1 (right)) is a collection of points that represent the captured

scene in real-world or objects in space. It is a discrete representation of the geometry

of scenes (objects). Point clouds are generally generated using 3D scanners or from

Computer Aided Design (CAD) models. In a more formal way, a point cloud is a

set of points pcd (eq. 3.1) where each point Pi is represented by its 3D coordinates

P (x, y, z), namely the x − coordinate, the y − coordinate and the z − coordinate.

The latter generally, represents the distance from the input sensor

PCD = {Pi : i = 1, ..., n}. (3.1)

Note that some other features can be added to describe point clouds such as RGB

colors, normals, etc. The RGB colors, for example, can be added in order to provide

more information (See Figure 3.1 (right)). This is done after aligning the depth

image and the RGB image.

Organized point clouds is a particular type that is provided by some scanners such

as Microsoft Kinect V1 and Microsoft Kinect V2. The organized point clouds are

point clouds that have an information about the points order: they are stored in a
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row or a grid. Microsoft Kinect V1, for example, provides a depth map D (a matrix

of depth information) that can be used to create an organized point cloud PCD(a

matrix of points): each point Pij at the row i and the column j is computed using the

depth of D at the row i and the column j. The advantage of organized point cloud

is the fact that some algorithms can be optimized and thus, the execution time can

be reduced such as searching for the point neighbors. Indeed, in this case, instead

of checking each point if it is a neighbor of a given point, the latter will be limited

around the point’s cell.

3.3 3D Scanners

3D scanners are a set of devices that use different technologies and techniques in order

to convert the real-world scene into a numeric measurements named point clouds.

3D scanners can be devised into three main categories, namely: laser scanners, time

of flight scanners and structured light scanners.

In this section, we will cover these types of scanners in Section 3.3.1, Section 3.3.2

and Section 3.3.3 respectively. Since we will be using Microsoft Kinect as the input

device, Section 3.3.4 is devoted to review it in particular. We will also explain how

to calibrate a depth camera for point clouds computation in Section 3.3.5. Finally,

we will present the possibility to estimate point clouds from a single RGB image in

Section 3.3.6.

3.3.1 Laser scanners

Laser scanners use a laser beam in order to compute point cloud. They project the

laser beam on the target (scene/objects) and after that, derive the distance to the

target based on the triangulation technique. This is done by adding a camera that

captures the intersection between the laser beam and the target. The laser scanner,
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the camera and the target form a triangle with its size defined by the distance between

the camera and the laser scanner, the angle of the laser corner and the angle of the

camera corner. This type of scanners is accurate, the distance that can be measured

is up to certain kilometers, but unfortunately they are highly expensive.

Laser scanners are also used in Light Detection and Ranging (LiDAR) technique

which is a time of flight based approach. In LiDAR based solutions, the distance

between the target and the laser scanner is represented by the time elapsed between

the emission and the reception of the laser beam. The LiDAR technique is usually

used for large and distant targets such as mountains and buildings.

3.3.2 Time of flight scanners

As for time of flight scanners, such as Microsoft Kinect v2 and ultrasonic, to compute

the depth data, they project light rays and then compute the time elapsed between

the projection and the reception of these later. These scanners are less expensive,

but also less accurate and noisy compared to laser scanners. The difference between

time of flight scanners and the LiDAR technique is that LiDAR uses only a single

laser beam.

Ultrasonic is a time of flight low-cost sensor, that computes the depth using the time

elapsed between the emission and reception of the ultrasonic waves [65]. It is used

not only for indoor navigation [63] but also for outdoor navigation in contrary to

Microsoft Kinect v2 that is more suitable in indoors.

3.3.3 Structured light scanners

Structured light scanners, such as Microsoft Kinect v1 and Asus Xtion, are less

expensive, lightweight but provide noisy data compared to the previous one. In
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Figure 3.2: Microsoft Kinect (V1) [8].

order to calculate the depth data, they compare the distortion between the projected

pattern light and the received one.

3.3.4 Microsoft Kinect V1

Microsoft Kinect (V1) (Figure 3.2) is a low-cost RGB-D sensor that provides, sim-

ultaneously, the RGB image and the depth image with (640x480) as resolution and

streams output video with 30 frames per second. Kinect is popular in the research

field, is involved in many applications such as indoor navigation, obstacle avoidance,

etc. It consists of an RGB camera, Infrared (IR) camera and IR projector. The IR

camera captures the pattern projected by IR projector (see Figure 3.3 (middle)) to

generate the depth image (see Figure 3.3 (right)).

Each pixel of the depth image denotes its distance from the camera. The depth

data provided is noisy, in particularly beyond a particular range fixed according to

the sensor’s state. Furthermore, with the nature of IR radiation, Kinect is sensible

toward transparent objects and strong sources of light. To prevent these problems,

other sensors, such as ultrasonic sensor, can be used alongside with the Microsoft

Kinect as in [63].
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Figure 3.3: Microsoft Kinect’s produced data. From left: RGB image, IR image and
Depth image.

3.3.5 Depth camera Calibration

To compute the point cloud from the depth image, calibrating the depth camera is

required. In general, there are three methods for calibrating a camera : using the

standard parameters provided by the factory, using the results obtained in calibration

research or calibrating the Kinect manually. The first two methods are simple but less

accurate since the factory parameters can be changed by time and can be slightly

different from a camera to another. The third method is more accurate, but it

requires using one of the calibration algorithm such as the chess-board algorithm

proposed by Zhang and Huang in [66]. This algorithm is implemented in Robot

Operating System (ROS) and OpenCV. The principle of the chess-board algorithm

is to compute the position of each corner of the black square (called pattern) and

the compute the difference between the obtained results and the positions in the

real-world. This later is finally used to extract and infer the distortion vector and

the camera matrix to correct the x and y values and convert them to the camera

system. This process is explained in [67].

In RGB camera calibrating, this is done by extracting the corners from the RGB

image; however, this is not the case of the depth camera since all the corners in

the chess-board have the same depth and thus it will look like a plane: the corners

cannot be seen. Thus, instead of using the depth image shows the distorted RGB

image input (Figure 3.4 (left)). The algorithm detects the chess-board to extract
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Figure 3.4: Camera calibration [9]. From left to right: an image with distortion,
the chess-board pattern used to compute the distortion parameters, and the image
results after calibration (the distortion is eliminated: the edges are straight).

the pattern (Figure 3.4 (middle)). After that the algorithm compares the size of the

extracted pattern with its size in real-world to compute the distortion vector. This

vector is, after that, used to remove distortion from images captured with the same

camera (Figure 3.4 (right)).

Once the distortion coefficients and the camera matrix are obtained using one of the

methods mentioned above, the x and y are corrected and the 3D coordinates are

then computed. Let D be the distortion vector, depending on the distortion nature

(if it is radial or tangential distortion), the corrected values of x and y are computed

respectively using one of the following formulas [9]:

in case of radial distortion:

x′ = x(1 + k1r
2 + k2r

4 + k3r
6), (3.2)

y′ = y(1 + k1r
2 + k2r

4 + k3r
6), (3.3)

in case of tangential distortion:

x′ = x+ [2p1xy + p2(r2 + 2x2)], (3.4)

y′ = y + [p1(r2 + 2y2) + 2p2xy], (3.5)
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knowing that D the vector of the distortion coefficients is given as:

D = (k1, k2, p1, p2, k3). (3.6)

Note that the same formulas can be applied to correct x and y of the RGB camera,

the only difference is to compute and use the distortion coefficients of the RGB

camera.

Once the x and y values are corrected, the 3D coordinates (X, Y and Z) are com-

puted. Let M be the estimated calibration matrix (or the camera matrix) of the

depth camera in the calibration process defined as:

M =


fx 0 cx

0 fy cy

0 0 1



Wehre (fx, fy) and (cx, cy) are the focal lenghth and the optical centers respectively.

Finally, the 3D coordinates are computed using the following formulas [67], where

depth(x′, y′) is the depth value at the raw y′ and column x′:

X = (x′ − cx) ∗ depth(y′, x′)/fx, (3.7)

Y = (y′ − cy) ∗ depth(y′, x′)/fy, (3.8)

Z = depth(x′, y′). (3.9)

Figure 3.5 shows the generated point cloud from the depth image using the previous

equations (equation 3.7, equation 3.8 and equation 3.9).

3.3.6 Deep learning for point clouds estimation

Many works have investigated the use of deep learning for point cloud reconstruction

from RGB images. These works can be divided into two categories: multi-view based

depth estimation and monocular based depth estimation. In the first category, the
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Figure 3.5: Left: the depth image. Right: the computed point cloud.

depth map is produced from a set of posed RGB images [68, 69]. The point cloud is

then generated using the intrinsic parameters of the camera as explained in Section

3.3.5.

As for the second category, the depth image is generated using a single RGB image.

They are generally, based on CNN networks such as fully convolutional residual

network [70], attention guided network [71], deep ordinal regression network [72].

The point clouds generated from the works [70, 71, 72] are distorted due to the quality

and the resolution of the estimated depth maps. DenseDepth [73] is a recent state-

of-the-art network that is a straightforward convolutional encoder-decoder network.

It generates depth images more accurate and with higher resolution; however, the

generated point cloud still distorted (see Figure 3.6).

3.4 Point cloud filters

The computed or the gathered point clouds can sometimes be noisy due to the nature

of the used 3D scanners or the captured scene. On the other hand, some algorithms

or computer vision techniques are sensitive to noise: the output can be affected
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Figure 3.6: Point cloud estimation using DenseDepth neural network. First row: the
input image (left) and the generated depth map (right). Second row: two views of
the generated point cloud. The depth image is over smooth; thus, the point cloud is
distorted.
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by noise and thus the system accuracy is decreased. In order to reduce noise, some

filters are used. These filters are also used to reduce the point cloud density and thus

reduce the computation time. In this section, the most common filters, namely: pass-

through filter, voxelization, statistical outlier removal filter, radius outlier removal

filter and parametric models for filtering, will be introduced. Other filters can be

found in this review [74] and a comparative study can be found in [75].

3.4.1 Pass-through filter

The Pass-through filter applies constraints on the input point cloud along a particular

axis. Each point passes through a defined constraints: it is removed if it is a non-finite

point or if it is outside the defined interval along the specified axis. This interval

is fixed according to the nature and the state of the input device. Like Microsoft

Kinect V1 for example, the interval is set to [800, 4000]mm along the Z − axis by

many researchers: the depth data is more accurate inside this interval and become

more noisy otherwise. The pass-through filter can be used not only for filtering the

input from noise, but also to reduce data such as considering the nearest points (see

Figure 3.7).

3.4.2 Voxelization

This voxel grid filter (Figure 3.8) transforms the point cloud into a 3D voxel grid.

The voxel grid divides the input into a set of l3 voxels, where k is the voxel size.

Each voxel includes points that belong to the same intervals regarding the 3 axes.

The points belonging to the same voxel are then down-sampled and replaced with

their centroid. This filter is used to reduce the point cloud’s size and to smooth it.

However, it is time consuming since it computes the centroids after reorganizing the

point cloud into voxel, and it is sensitive to outliers.
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Figure 3.7: Pass-trough filter. The red points will be neglected since they are out of
the fixed interval [1500, 2000]mm.

Figure 3.8: Left: the point cloud. Right: the point cloud after voxelization (in this
example, we took l = 5mm). The point cloud is smoothed and its size has been
reduced.
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Figure 3.9: Statistical outlier removal filter: the red points are outliers (in this
example, we took std = 0.03 and k = 500).

3.4.3 Outlier removal filter

Statistical outlier removal filter (Figure 3.9) is based on a statistical analysis on each

point and removing it if it does not meet a certain criterion. It provides a Gaussian

distribution of the point cloud with a given standard deviation, std, by computing

the mean distance from a given point to all its k neighbors and removing it if its

mean distance is outside an interval defined by the global distances mean. This

process is applied for every point of the point cloud.

Radius outlier removal filter (Figure 3.10) is a conditional filter that removes every

point that has less than a certain number, k, of neighbors within a certain range, r.

3.4.4 Parametric models for filtering

Parametric models such as the RANSAC algorithm or even simpler plane fitting can

be used as a filter. They fit the input point cloud into a defined 3D model (plane,

cylinder, etc.). The points that don’t belong to the defined model are considered as
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Figure 3.10: Radius outlier removal filter: the red points are outliers (in this example,
we took k = 300 and r = 10mm.

noise. Parametric models can also be used to smooth the point cloud by projecting

the points into a given 3D model.

3.5 Point cloud descriptors/features

In some applications, using the basic point cloud representation can lead to ambiguity

and misleading results such as in comparing between two captured frames. Due to

the nature of some 3D scanners, the same static scene captured at time t1 and t2

(t1 ≈ t2) using the same scanner with respects to the same origin, a same point p

from real-world can have two different computed values v1 and v2 from t1 and t2

respectively. In contrast, in a dynamic scene two different points p1 and p2 in the

real-world can have the same value v at t1 and t2 respectively: p2 took the place of

p1 at time t2. As a consequence, in this type of applications, it’s better to find other

features and descriptors for a better representation to distinguish between geometric

surfaces.

Point cloud descriptors/features are widely used in many fields, especially when

comparing between different point clouds or searching for the point cloud keypo-
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ints as in point cloud registration, visual positioning and scene classification. Point

cloud descriptors can be divided into three main classes: local-based descriptors,

global-based descriptors and hybrid descriptors. The selection of a good descriptor

is dependent on the performed task. In addition, a good descriptor should remain

efficient and invariant in the presence of rigid transformations (3D rotations and 3D

translations), density variation and noise. It should be highly descriptive with an

efficient computation. In this section, we will bravely introduce some of local and

global descriptors in Section 3.5.1 and Section 3.5.2 respectively. We can find more

descriptors in these surveys [76, 77, 78, 79].

3.5.1 Local descriptors

Local descriptors techniques estimate a set of feature vectors, generally based on

geometric information such as normals and curvatures. Each vector, is estimated

based on the geometry of the local neighborhood of a given keypoint. They describe

the characteristics and the geometry of their neighborhood. In other words, each

local feature vector describes the local neighborhood and their combination describes

the entire point cloud geometry. This later makes them robust to occlusion and

clutter. Spin Image [80], Point Feature Histograms (PFH) descriptors [81] and Fast

Point Feature Histograms (FPFH) descriptors [82] are among the most common local

descriptors.

Spin Image [80] consists of computing for each neighborhood of the keypoint that

is represented by its coordinates and its normal, two distances: the distance to

the key-point’s plan and the distance to the line holding the keypoint’s normal.

Then the descriptor (the spin image) is generated by accumulating the computed

distances of keypoints in discrete 2D bins. This descriptor has the property of the

local descriptors (robustness to occlusion and clutter); but it is not robust to local

noise and outliers.
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Unlike Spin Image, PFH consists of capturing the interactions between the points in k

neighborhood and their surface normals. It generates a multi-dimensional histogram

of values by generalizing the mean curvature. PFH is robust to noise and invariant to

the 6D pose; however, it is time consuming and not suitable for real time applications.

Therefore, FPFH was proposed to reduce the temporal complexity from O(nk2) to

O(nk) by computing the weighted simplified PFH. These descriptors are suitable for

3D registration.

3.5.2 Global descriptors

Global descriptors compute a single feature vector for the entire input point cloud.

They rely on the observation of the entire geometry and fail in environments with

occlusion and clutter. Global descriptors are suitable for 3D object recognition, geo-

metric categorization and shape retrieval applications. Several global descriptors

have been proposed over time: Point Pair Feature (PPF) [83], Global Radius-based

Surface Descriptor (RSD) [84], Viewpoint Feature Histogram (VFH) [85], etc. Re-

cently, deep features are widely used as global descriptors. Deep features are rep-

resented by the output or the input of dense layers of deep neural networks like the

classification models such as PointNet [13].

3.6 Point cloud segmentation

Point cloud segmentation consists of a set of techniques and algorithms that aim to

regroup raw 3D data into non overlapping regions. These regions may correspond to a

specific object structure or a specific structure. In point cloud segmentation, contrary

to semantic segmentation, the extracted segments has no semantic information since

the technique does not require prior knowledge. In this section, we categorized point

cloud segmentation methods into 3 main classes: Region growing based methods
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Figure 3.11: Result of point cloud segmentation using region growing algorithm [10]
for two different scenes: each color represents a single segment.

(that will be presented in Section 3.6.1), model fitting based methods (that will be

presented in Section 3.6.2) and clustering based methods (that will be presented in

Section 3.6.3). More details and more classes can be found in [86, 87].

3.6.1 Region growing based

Region growing methods were first introduced for 2D images (rgb and intensity

images) [1]. Then, it was applied on range/depth images in [88] and soon adapted

for point clouds (Figure 3.11). After that, several variations were presented in the

literature and still widely used today [89].

Before describing how they works, 4 factors should be presented: seed unit, seed unit

selection, criteria and growth unit.

• Seed unit: represents the initial entity. It can be pixels in 2D, points or voxels

in 3D.
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• Seed unit selection: represents the algorithms used to select seed units like

selecting points having the minimum curvature as seeds.

• Criteria: represents the similarity measures. Generally, in point cloud region

growing algorithm, they are based on the geometric features such as: normal

vectors or Euclidean distance.

• Growth unit: the amount of units to grow the regions with. It can be a single

pixel/point, a voxel or other other structures like octrees.

Region growing based methods consist of two main steps. The first step represents

the identification of the initial units, called seed units, based predefined metrics. In

the first adaptation, they used the points that has the minimum curvature values

(representing a flat area) as the seeds. Then, growing the initial seeds with the

defined growth unit based on the predefined criteria. The algorithm 1 summarises

the original algorithm called seeded region growing Algorithm [1]. Region growing

methods can be categorized into 2 classes: the bottom-up methods that start from

a set of seeds and grow them into segments with respect of the defined criteria; and

top-down methods that start by defining the entire point cloud as a single region

and then subdivide it to region.

Region growing based methods are robust to noise compared with traditional seg-

mentation algorithms such as edge-based algorithms; however, they are computa-

tionally intensive and their accuracy depends on the location of the selected seeds

and the estimation of the criteria like the accuracy of the estimated normals.

3.6.2 Model fitting based segmentation

Model fitting methods are based on matching the point cloud into primitive geometric

shapes like planes, spheres and cylinders. In general, model fitting algorithms classify

the input points that fit the mathematical representation of the primitive shape.
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Algorithm 1 Seeded Region Growing Algorithm [1]
Input: pcd: {p1, p2, ..., pm} the point cloud to segment

n the number of seeds
{C1, C2, ..., Cn} the clusters initialized by initial seeds sk

D the distance threshold
Output: {C1, C2, ..., Cn} the set of clusters
1: while pcd is not empty do
2: for each cluster Ci do
3: for each seed sk of the cluster Ci do
4: Select the neighboring points of sk;
5: for each each neighbor nj do
6: Compute d the Euclidean distance between nj and sk;
7: if d < D then
8: Add nj to Ci;
9: end if
10: end for
11: end for
12: end for
13: Update the seeds by the clusters’ boundary points
14: end while
15: return {C1, C2, ..., Cn}

These algorithms can be used to segment point clouds into segments that fit the

defined primitive shapes like segmenting the captured scene into planes. Model

fitting methods are based on 2 classical algorithms: Hough Transform (HT) and

RANSAC. Comparing these two methods, the RANSAC algorithm has shown more

efficiency in terms of segmentation quality and running time [90]. In this section, we

focus on RANSAC.

RANSAC was first proposed by Fischler and Bolles [91] for 2D detection. It was then

adapted to detect 3D primitive geometric shapes on point clouds in [92] such as planes

(Figure 3.12 (left)) and cylinders (Figure 3.12 (right)). After that, more RANSAC

variations and enhancements for point cloud segmentation has been proposed [93].

The original version of the algorithm consists of 2 main steps. First, it generates a

hypothesis (parametric model) by randomly selecting n points and then estimating

the model parameters. Then, the estimated model is evaluated by testing it against
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Figure 3.12: RANSAC for segmentation [10]. Green color and red color respectively
represent the detected plane and cylinder.

all the point cloud: each point that fit the model is considered as part of the model

(inlier). If the model fits well the data (it has more than m inliers), its parameters

are saved. These steps are executed iteratively to estimate the best parameters.

The explained steps represent the original algorithm that is used for filtering. An

additional criterion can be added to segment the point cloud into a set of 3D primitive

geometric shapes. The criterion can be set to: the number of potential shapes,

the number of the remaining points to consider as outliers, etc. The algorithm 2

summaries RANSAC for point cloud segmentation.

RANSAC algorithm is efficient and robust to outliers. It is commonly used for plane

detection. However, it is a nondeterministic algorithm: it exhibits different behaviors

on different runs for the same input.

3.6.3 Clustering based segmentation

In order to segment point clouds into coarse segments, clustering algorithms can be

used for irregular object segmentation. K-means [94, 95] (see Figure 3.13 (top left)),

mean-shift [96] (see Figure 3.13 (top right)), fuzzy-clustering [97] and Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [98, 99, 100] (see Figure

3.13 (bottom)) clustering algorithms are widely used for point cloud segmentation.
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Figure 3.13: Point cloud clustering: k-means (top left), mean-shift (top right) and
DBSCAN clustering (bottom). We first applied DBSCAN algorithm; it returned K
clusters (K = 7) that is used to set the number of the clusters for k-means and
mean-shift algorithms.
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Algorithm 2 RANdom SAmple Consensus (RANSAC) Algorithm
Input: pcd: {p1, p2, ..., pm} the point cloud to segment

criterion : used to stop the segmentation process k the minimum number of
points required to estimate model parameters // for planes detection k >= 3
n the maximum number of iterations to find the best model
D the distance threshold

Output: P the set of planes
1: while criterion is not satisfied do
2: BESTmodel ← ∅
3: while iterations < n do
4: Pick random k points;
5: Estimate the model parameters;
6: I ← ∅;
7: for each point p in pcd do
8: Compute the distance d between p and the estimated model;
9: if d < D then
10: I ← p;
11: end if
12: end for
13: if The size of I > the size of BESTmodel then
14: BESTmodel ← the fitted model;
15: end if
16: end while
17: Add BESTmodel to P;
18: end while
19: return P the set of planes

K-means, mean-shift and fuzzy-clustering are centroid based algorithms: the first

divides the input samples into K separate groups with equal variance while minim-

izing the distances between points. The mean-shift algorithm separates the input

samples into blobs with smooth density. As for the fuzzy-clustering, which is based

on fuzzy-logic, it assigns for each sample a probability corresponding to each cluster.

More the probability is high the more the sample is near to the cluster. One of the

disadvantages of these algorithms is that they require the number of clusters as input

which is unknown when dealing with real-world data.

On the other hand, the DBSCAN algorithm seeks to separate the samples into high

density clusters with low density areas. In addition, the number of clusters does not
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have to be defined beforehand. Furthermore, the DBSCAN is robust to noise: during

the clustering, the outliers are detected and neglected and thus, the clustering process

is not affected by them. It was first proposed by Ester et al. in [101]. It requires

only two parameters: minPts and eps that represent the minimum number of points

to form a cluster and the distance measure that is used to locate the neighbors

respectively. The algorithm consists mainly of two steps: it starts by randomly

selecting a point to compute its neighbors. Then, these latter are considered as a

cluster if there is at least minPts points. The last process is repeated recursively

for is neighboring point. The algorithm 3 summarizes the DBSCAN algorithm for

point cloud segmentation.

3.7 3D shape recognition

In general, the classification task consists of assigning a class as an output to the

given input. It is generally based on machine learning techniques with supervised

learning that showed considerable improvement in many fields, especially with RGB

data after introducing the CNNs.

At the early stage, researchers investigated the combination of different descriptors

or/and handcrafted features with machine learning techniques [102, 103, 104, 105].

In [102], they proposed 3D shape contexts and harmonic shape contexts, two local

descriptors for recognizing vehicles in noisy and cluttered scene. In [103], they

designed an object classification system based on computing shape features that

are orientation-invariant such as the volume, the average height and a spin image

descriptor; and contextual features such as the position of an object relative to its

environment. The extracted features are fed to a Support Vector Machine (SVM)

model to classify them into classes of urban environments. In [105], they investigated

the use of histogram based descriptors for 3D laser range data classification in Urban

Environments. It was shown that, histograms based on the point distribution, nor-
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Algorithm 3 DBSCAN Algorithm
Input: pcd: {p1, p2, ..., pm} the point cloud to segment

minPts the minimum number of points in a cluster
eps the distance used to locate the points in the neighborhood

Output: C the set of clusters
1: while pcd is not empty do
2: Select randomly a point a point pi;
3: Compute ni the neighbors of pi within the distance eps;
4: if the size of ni < minPts then
5: pi is a set of outliers;
6: else
7: C ← ni;
8: for each point sj in ni do
9: Remove sj from ni;
10: Compute mj the neighbors of sj within the distance eps;
11: if the size of mj < minPts then
12: mj is a set of outliers;
13: else
14: C ← C ∪mj;
15: ni ← ni ∪mj;
16: end if
17: end for
18: C ← C ∪ pi;
19: C← C ∪ C;
20: end if
21: end while
22: return C

mal orientations, or spectral values are more suitable in this type of classification.

These systems suffer from the same limitations of the used descriptors. For example,

the volume and the average height are features that are orientation-invariant, but

they are not scale-invariant and they are not robust to noise.

With the introduction of RGB-D and 2.5D scanners, other researchers used the

depth image as an additional channel along with RGB channels [106, 107, 108, 109].

These methods are straightforward; however, they do not really exploit the geometric

properties. Current works investigate the 3D object classification using multi-view

representation (example: Figure 3.14 (middle)), volumetric representation (example:
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Figure 3.14: Stanford bunny. From left to right: a single 2D view representation,
volumetric representation and point cloud raw representation.

Figure 3.14 (left)) or point cloud raw representation (example: Figure 3.14 (right)).

In this section, we will present these different models. Figure 3.14 shows Stanford

bunny 1, one of models most commonly used in testing and tutoring, in 2D, volu-

metric and point cloud representations.

3.7.1 Multi-view based classification

Multi-view based recognition models are based on 2D representations: 2D projection

images [110] or depth images [14]. These latter are estimated while performing

rotations most of the time around the y-axis. In [110], they designed a multi-view

CNN architecture for 3D shape recognition. The model combined multiple 2D views

of the input 3D shape. Each view is then fed to an unified CNN network to extract

view based features. These latter are then pooled across views and passed through

another CNN network to obtain a compact shape descriptor.

The multi-view based architectures preserve fined details unlike voxel based mod-

els, for example, that require resolution reduction to reduce temporal and spatial

complexity especially when using 3D convolutions. However, they fail when data

is incomplete or/and occluded especially in real-world where rotating the captured

object is non-informative.
1graphics.stanford.edu/data/3Dscanrep/

graphics.stanford.edu/data/3Dscanrep/
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3.7.2 Voxel based classification

Voxel based recognition models are based on volumetric representations. In [14], each

3D shape is represented by 303 grid of probability distribution of binary variables

where each voxel indicates whether it is inside the shape (assign it the value 1) or not

(assign it the value 0). To process the computed grid, they designed Convolutional

Deep Belief Network (CDBN), an adaptation of Deep Belief Networks (DBN) [111], a

probabilistic models to join probabilistic distribution over pixels, with convolutions.

In [112], instead of using a naive volumetric representation as in [14]. They integrated

a 323 volumetric occupancy grid that takes in consideration not only the free and

the occupied space but also the unknown space. By using a straightforward 3D CNN

model, this work outperforms the previous work since CNN models have the capacity

to learn spatial features.

The presented models were initially trained and tested on 3D CAD models. However,

when dealing with real-world data i.e. 3D or 2.5D scanners, these models adapted

the multi-view approach to estimate the volumetric representation in different ways.

In [14], computed the volumetric representation of the predicted best-next-view from

the initial view. Whereas in [112], the model votes over the predicted classes of the

volumetric representations computed from the 3D multi-views.

3.7.3 Point cloud based classification

The previous approaches require highly regular data. However, some scanners, such

as LIDAR, provide point clouds in their raw representation (a set of 3D points).

In this case, researchers transform the point cloud into a voxel grid which reduces

the input resolution. In addition, they are time and space consuming due to 3D

convolutions.

Point cloud based methods process the point clouds in their raw representation.
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Figure 3.15: The representations learned by AlexNet [11] of large-scale image classi-
fication.

These latter exploit the properties of point clouds: they are unordered, invariant un-

der transformations and the points are not isolated. Point cloud based classification

models are generally based on deep neural networks. Qi et al. proposed PointNet

network [13], a pioneer deep neural network for point cloud classification. It achieved

a great success, it surpassed the state-of-the-art models with an accuracy equal to

89.5. After its success several models were proposed like PointNet++ [113] which is

the enhanced version of PointNet and others [114, 115]. We will present PoinetNet

in more details in the next section (Section 3.8).

3.8 Deep Learning for classification

Deep neural networks are neural networks with several hidden layers. It is one of

the most powerful machine learning techniques. It has shown an incredible success,

especially for its ability to learn several representations (see Fig. 3.15) and handle

several data structures such as 2D data, 3D data, time series data, etc. In this

section, we will present VGG-16 and PointNet neural networks the pioneer deep

neural networks for image classification and 3D shape recognition respectively.
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3.8.1 VGG-16

After the great success of the convolutional neural networks, especially in large-

scale image and video recognition, many challenges arose in particular in image

classification and object detection such as ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) [116]. The ILSVRC challenge provides a large-scale dataset

that includes about 1.4M images of 1000 classes. Many research teams participated

and thus many architectures have been designed a submitted to this challenge like

the VGG models [117] that won the second place in the ILSVRC-2014 challenge

[116].

Karen and Andrew have investigated increasing the depth (up to 16–19) of neural

network architectures while using only small convolution filters (3 × 3) rather than

small networks with larger filter (7 × 7, 11 × 11, etc.). They designed several con-

figurations using the same principle. The best configuration was submitted to the

ILSVRC-2014 under the name of the team "VGG". The general configuration consists

on a set of stacks of convolutional (conv.) layers followed by three fully connected

layers and the classification layer. Each stack is followed by a 2 × 2 max-pooling

layer with stride 2. The ReLU function is the activation function off all the layers

except for the last layer that uses the soft-max function for classification.

VGG-16 is the best configuration with a minimum of the number of parameters. It

consists of 5 stacks of conv. layers (16 weight layers in total) of 64, 128, 256, 512,

512 filters respectively. Fig. 3.16 shows the model’s architecture: the input is a

224 × 224 RGB image which is passed to the first stack of conv. layers (with two

conv layers) followed by a max-pooling layer that reduce the input size to half. The

remaining stacks consist of 2, 3, 3 conv. layers. Each max-pooling layer produces

an output equal to half of its input. The output of the last of the max-pooling layer

is flattened and passed to three 1 × 1 × 4096 fully connected layers. The last layer

(the soft-max layer) provides the probabilities of the input belonging to each class.
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Figure 3.16: The VGG-16 architecture [12].

The VGG-16 model is widely used, The output of its dense layers is used as global

descriptors in many applications.

3.8.2 PointNet

PointNet network [13] is the first proposed point cloud based model and a state of

the art architecture. It is a deep multi-layer perceptron network that is designed for

3D raw data. It is invariant to permutation and transformation due to the use of max

pooling, a symmetric activation function, and T-net that ensures pose normalization.

It is also robust to small noise and incomplete data (with a small portion), but it

is not able to capture fine local patterns. Although several architectures have been

proposed over time such as [114, 115], PointNet is still used in different systems that

involve point clouds [118, 119].

PointNet consists of three stacks of fully connected layers separated by an input

transform unit (see Fig. 3.17). The first stack includes two layers with 64 perceptrons

for each. It receives a n× 3 vector, where n is the number of points, and generates
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Figure 3.17: The PointNet architecture [13].

a 1× 64 vector. The second stack is made of three layers: each layer consists of 64,

128 and 1024 perceptrons respectively. As for the third layer, it is represented by

three layers of 512, 256 and k, where k is the number of classes.

The input transform unit, also called T-net, is applied on the model’s input and the

first stack output. It predicts the affine transformation matrix and applies it to the

input points in order to normalize their pose. Like PointNet, T-net consists of a set

of fully connected layers with max pooling as the activation function.

Despite the simplicity of the model, PointNet manages to effectively classify the 3D

models. Indeed, it was shown that the second stack of layers was able to learns the

shape; thus, its output is considered as global descriptors.

3.9 Conclusion

In this chapter, we reviewed different techniques for point cloud processing. These

techniques are organized regarding their order in the processing pipeline. We first

defined point clouds and how they can be obtained or computed. Since we will be

using the Microsoft Kinect scanner as our input device, we explained in more details

how to calibrate it and how to compute point clouds from depth images. After that,

we present some filters that are used either for reducing the point cloud’s size or to
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reduce noise. This step is important when using techniques that are not robust to

noise. We also presented some descriptors since we will be using them for point cloud

classification. We also introduced the segmentation and classification techniques that

are the main modules in our system. Finally, the last section depicted some machine

learning techniques in more details. In the next chapter, we will present our 3D

interface for human-scene interaction that can be used in many applications.
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Chapter 4

3D Interface for Human-Scene In-

teraction

4.1 Introduction

In the previous chapter, we presented different techniques for point clouds processing

since our 3D interface requires 3D data for a better human-scene interaction that is

built on scene semantic labeling.

In this chapter, we present our designed device named Blind Assistive System for

Intelligent Scene Reading (BASISR), that can be used as output device in many

human-scene interaction based systems (see Section 4.2). After that, we will intro-

duce how the scene can be mapped to the device, it can be considered as a basic

system which maps the geometry of the scene on the device after only detecting the

ground, as it will be presented in Section 4.3. In Section 4.4, we will propose an

improved scene semantic labeling system based on plane detection. Section 4.5 will

be devoted to validating each component of the proposed system including our pro-

posed algorithm for ground detection. Finally, we will discuss the obtained results

in Section 4.6.
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4.2 BASISR: 3D interface for human-scene inter-

action

In this section, we will present in details our proposed device BASISR. For this

purpose, we will first explain the advantage of having a 3D interface for human-scene

interactions in Section 4.2.1. After that, the design of our device will be introduced

in Section 4.2.2. We will show finally how a given scene can be mapped to this device

by synthesizing or coding the point clouds.

4.2.1 Interests of the 3D interface

In chapter 2, we presented and discussed the limitations of the output interface of

the presented systems, especially that are designed for the visually impaired and

blind people. Therefore, our first challenge was to provide a scene description as it is

captured by a depth camera. This description should initially indicate to the user his

location in relation to the captured scene. In addition, it should provide the location

of the scene’s components as it is captured. Different information of different tasks

for different scenarios should be encoded and provided in a simple way, so the user

can use it to accomplish the desired task. For the second challenge, this information

should be perceivable by the touch. By touching the output interface, the user should

understand the provided information easily and without ambiguity.

Let’s take the indoor navigation as an example, if the scene does not contain obstacles,

we indicate to the user that the space is free from obstacles; so he will understand

that he can navigate freely. If the scene contains an obstacle, we should provide

the obstacle’s location, so the user can locate it in the scene by touching and then

can take the free space to navigate. Now, suppose that the scene contains differ-

ent obstacles, we should provide their locations on the scene, so the user can also
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take the free space to navigate. Additional information can be provided such as the

obstacle’s height and the occupied area and can be perceived only by touch without

external devices. Labeling and mapping objects’ locations and these additional in-

formation can be used for scene understanding; so the user can have an impression

of his surroundings.

4.2.2 Design of the device BASISR

Our aim is to provide for human-scene interaction an area with a trapezoid shape

that corresponds to the scaled view field of the camera. On this area, we will map

the coding of point clouds of the 3D scene which is in the camera’s view field as

shown in Figure 4.1.

The parameters of the depth camera are used to design the synthesis area. We chose

the ratio between the smaller and the longer bases of the trapezoid representing the

camera’s view field equal to 5 (for L = 400cm), the scaled area of scene synthesis

verifies the same ratio as indicated in Figure 4.1 (right).

Let b(xb, yb, zb) be a given point from the point cloud that represents the scene

geometry. The position of b′(ub′ , vb′), the mapping of b on the synthesis area is

calculated from the geometric relationship between the scene and the synthesis area.

The values of ub′ , vb′ are given by the equations 4.1 and 4.2 where d′ is the small base

of the synthesis area. The values of l, L for Kinect sensor are 80cm and 400cm.

ub′ = d′ × xb/d, (4.1)

vb′ = d′ × (zb − l)/d. (4.2)

In order to reflect the scene’s content, its correspondent semantic labeling or whatever

we want to transmit to the visually impaired, the tangible area is provided with pins
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Figure 4.1: (Left) Top view of the depth camera’s view field, only x-z axes are
represented. (Right) To view of the area of scene synthesis.

Figure 4.2: The proposed design allows to give to each pin different heights.

that can have different heights and form different shapes. Figure 4.2 and Figure

4.3 show the device’s design. The tactile area of the device has a set of lines and

columns of pins which can be raised to a different level. The 3D printing of the

device is shown in Figure 4.4. An electronic layer will be added below the device as

an additional component to control pins’ height each configuration.
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Figure 4.3: The bottom view of the device where a mechanical piece will be linked
to each pin to allow to push it towards the top of the device with different distances.
The motion of the mechanical piece will be performed via an electronic component.

Figure 4.4: 3D printing of the proposed device. Note that some pins have set up at
different heights.
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Figure 4.5: Scene coding on BASISR: a basic system.

4.3 Mapping the scene on BASISR device

In order to transmit to the BASISR device the 3D raw data or labels, three steps are

performed (Figure 4.5): (1) we detect the ground as it will be presented in Section

4.3.1. (2) we extract features from the 3D scene, (3) we map extracted features on

BASISR as it will be explained in Section 4.3.2.

4.3.1 Ground Detection

As mentioned before, detecting the ground is generally a first step in many applic-

ations with human-scene interaction. For this purpose, we will present DCGD, our

proposed algorithm for ground detection.

The DCGD algorithm is designed as follow:

Let (Oxyz) be the coordinate system attached to the RGB-D sensor mounted on the

human body. The RGB-D sensor can perform any rotation around the three axes

and can also perform a translation following three directions. We assume that the

Kinect sensor can have any pose without constraints on its orientation.

Let p(l, c) be the pixel located at row l and column c in the depth image Id(n×m)

and let Pl,c(x, y, z) be the associated 3D point in the scene where the coordinates

x, y, z are computed using the sensor parameters obtained after calibration.

The first step of our method is to select for each depth zi and for each column c

in the depth image Id, the pixel p∗(l, c) such that its associated 3D point has the

z− component equal to zi and a minimal value of y− component for all Pl,c(x, y, zi),
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Figure 4.6: The obtained curve (Gi) in cases where (left) the xz−plane is parallel to
the ground, (Right) the xz−plane has an unconstrained orientation.

l = 1..n . This allows to determine images of all projected points P of the scene

having the same depth zi as indicated with red color in Figure 4.6. The set of the

obtained pixels for a given depth zi defines a curve noted (Gi).

The curve (Gi) may be considered as the intersection of the x′y′−plane with the

scene, where the coordinate system O′x′y′z′ is the translation with a vector (0, 0, zi)

of the coordinate system Oxyz attached to the Kinect sensor.

Depending on the orientation of the xz−plane relatively to ground, the curve (Gi)

may change as it is shown in Figure 4.6. Consequently, the curves (Gi) are considered

as cuts on the point cloud of the scene.

For each curve (Gi), the set of aligned pixels constitutes candidate pixels of the

ground. Indeed, the second step consists to remove parts of (Gi) corresponding to

obstacles.

In order to facilitate the geometrical illustration, we draw the curves Gi considering

that the Kinect sensor performs only a rotation around x-axis. If the ground is a

plane without any convexity or concavity, all curves (Gi) for all zi will be lines (see

Figure 4.7(a)). We assume now that the presence of an object on the ground. The

curve (Gi), in case of an isolated object on the ground, will have the shape shown
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Figure 4.7: Example of 3D points at a given depth (colored in green) projected and
define the curve (Gi) in case where the curve (Gi) is a line (a), contains two concave
parts (b), contains three concave parts (c).

Figure 4.8: Removing iteratively convex parts (in red color) from Gi to keep only
the ground corresponding to concave parts (green color)
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Algorithm 4 Algorithm DCGD (Depth-cut based Ground Detection)
Input: Id(n×m) = {p(l, c), l = 1..n, c = 1..m},

The point cloud P = {Pl,c(x, y, z)}
Output: The set G of ground pixels p∗(l, c)
1: G ← ∅;
2: Determine Z = {zi/ ∃p(l, c) ∈ Id, Pl,c(x, y, z) verify z = zi} ;
3: for each zi ∈ Z, i = 1..Card(Z) do
4: Gi ← ∅;
5: for each column c = 1..m do
6: for each p(l, c), l = 1..n do
7: Determine p(l, c) such that Pl,c(x, y, z) verify z = zi;
8: end for
9: Select p∗(l, c) associated to Pl,c(x, y∗, z∗) such that z∗ = zi and y∗ =

Min(y − coordinate of Pl,c);
10: Gi ← Gi ∪ {p∗(l, c)};
11: end for
12: Remove from Gi convex parts and keep only concave parts;
13: G← G ∪Gi

14: end for
15: return G

in Figure 4.7 (b) with a convex part (lines curved outward) and two concave parts

(lines curved inward). However, when some objects are grouped, then the curve (Gi)

will contain many convex and concave parts as shown in Figure 4.7(c). Note that

the slope of all (Gi) is the same and depends on the rotation of the sensor around

z-axis.

Each (Gi) is composed by a set of convex and concave parts. By scanning the curves

(Gi) from left to right, we associate a label (cv for convex or cc for concave) to

each part. All cv parts are removed. The labelling and convex parts removal are

repeated until there will be no convex parts. We give in Figure 4.8 an example of

how the ground is determined from (Gi) . The algorithm 4 summarizes the steps to

be performed for the computation of the curves (Gi).
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4.3.2 Scene synthesis on the BASISR device

After detecting the ground, we extract the occupied space and compute the ground

height. From the points constituting the ground, the ground height is represented by

the y coordinate of the 30th percentile to avoid potential noise. Finally, we compute

the height of each point of the occupied space and map them on BASISR. The height

of a given point (hi) is represented by the distance between the point and the ground

y coordinates, yi and yg.

Figure 4.9 displays two examples of this system. From the capture scene (Figure

4.9 (top)), the system generates the scene coding (Figure 4.9 (bottom)) from the

depth image (Figure 4.9 (middle)). Each point of the occupied space is mapped

individually regarding its height and its location. This system can be used for scene

understanding and for navigation by providing the scene geometry and distinguishing

between the free space and the occupied space respectively. However, it does not

consider objects as separate individual units.

In Figure 4.10, the point cloud of the captured scene is directly mapped on the area.

The same point can be mapped into the synthesis area using different heights of the

pins (see Figure 4.11). This is done if the pin is set up to 5 different levels: the level

zero is used to represent the holes on the ground. The level 1 represents the ground

or the neutral element in some applications. The height of the illustrative labels that

are mapped in the center of the convex hull, is set to the computed level (i.e. level

2, 3 or level 4) and the height of the remaining area of the convex hulls associated

with the segment is set to level 2. For more visibility, we assigned the grey color, the

green color, the red yellow color and the red color to represent objects with level 2

(ground), 3, 4 and 5 respectively.

This representation is simple and basic: the points are directly mapped on the device

(see Figure 4.10). However, it cannot be adapted in the real world. Indeed, mapping

all points in their raw representation can generate ambiguity. In addition, it cannot



3D Interface for Human-Scene Interaction 64

Figure 4.9: Scene coding on BASISR device. From top to bottom: the captured
scene, the depth image (the system input) and the synthesized scenes (left and
right). For more visibility the color green, yellow and red represent level 1, 2 and 3
respectively.
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Figure 4.10: Mapping the point clouds on the area of the scene synthesis: all points
are inside this area.

Figure 4.11: Scene synthesis from raw data (point cloud) using pins. The color gray,
green, yellow and red represent levels 0, 1, 2 and 3 respectively.
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be generated physically using a device: points require support, they cannot be placed

in the air, and the concave surfaces cannot be represented using pins. Another

drawback is that there is no real semantic meaning: although it is perceivable to the

eye, it is more difficult to understand by touch and it takes effort and time.

4.4 3D scene labeling on BASISR device based on

plane detection

As the previous scene labeling does not detect and classify objects, in this section,

we introduce an improved system that consists mainly of: ground detection (that is

already presented), point cloud segmentation that segments the occupied space into

planes (it will be presented in Section 4.4.1), point cloud classification that classifies

each plane into the proposed classes (it will be presented in Section 4.4.2), scene

labeling that generates the 3D labels of each detected class (it will be presented in

Section 4.4.3) and the 3D interface, BASISR, that is used to provide the user with

the labels for a human-scene interaction. Our presented system is based on plane

detection and classification. The entire system pipeline can be summarized in Figure

4.12.

4.4.1 Plane detection

After breaking down the depth image into the free space (ground) point cloud and

the occupied space point cloud (Figure 4.12 (a)) and to avoid the noise produced by

the nature of Micorsoft Kinect, we first applied the pass-through filter to only accept

points that their depth is between 800mm and 4000mm. Then, we down-sampled

the occupied space point cloud (Figure 4.12 (b)) to reduce the number of points to

be processed and thus decrease the computational complexity of RANSAC. For the
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Figure 4.12: Scene labeling for human-scene interaction: First prototype. It receives
a depth image as input, detects the ground, extracts horizontal planes and generates
a 3D interface as output based on the provided scene labeling.
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down sampling, we used the voxelization filter with a grid of 3× 3× 3cm3 cells, each

voxel is replaced by its centroid. The hyperparamters were set by experiments.

After that, we applied RANSAC (Figure 4.12 (c)) for plane segmentation on the

reduced occupied space point cloud. To reduce the RANSAC’s run time and the

number of insignificant possible planes, we set the distance error threshold up to

2cm. This latter may affect the result by accepting some outliers, but it will be

proportionally handled later.

4.4.2 Planes classification

In our surroundings, every object has a location, a shape, a geometry and dimensions.

However, the eye of the human being is not capable to estimate the exact size of

objects, the estimate of the size is approximate. Therefore, we propose a promising

yet simple to compute object classification regarding two features: the object height

and the occupied area. This latter can also be extremely helpful for the visually

impaired and blind people.

Regarding the height, we define three classes: the first class defines objects with

a height less than 0.3m; it represents objects that can be traversed by feet. The

second class defines objects with a height greater than 0.3m and less than 1.6m; it

represents objects that can be touched by hands. The objects with height greater

than 1.6m represent the third class; it represents objects that are higher than the

average height of humans.

As for the occupied area, we also define three classes: the first class represents the

objects occupying small area with a radius less than 25cm that is can be explored only

by moving hands without effort. The second class represents the objects occupying

a medium area with a radius larger than 25cm and less than 50cm. This type of

objects can be explored with hands, but may need stretching the arm. The third

class represents the objects with a huge area, with a radius larger than 50cm, which
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cannot be fully explored just by stretching the arms, but may also require movement

around the plane.

The object’s location is another important factor for classification. Indeed, it rep-

resents the relationship between objects and their arrangement in the scene. For

instance, the night-stands are usually placed alongside the wall and next to the bed

rather than in the center of the room unlike tables which are generally placed in the

center.

With this approach, we designed 3 classes for each feature; but while combining

them, we actually designed 9 classes for instance. Indeed, each object is classified

according to its height and surface; for instance, the chair belongs to the 2nd and

1st class according to its height and width respectively. In addition, the location will

be taken in consideration in a straightforward way as it will be explained in Section

4.2.

In order to classify the planes into the designed classes, we proceed as follows: after

extracting the planes, we identified parallel planes to the ground (Figure 4.12 (d)). A

plane πi is parallel to the ground plane πG when the cross product of their respective

normal ni and nG is equal to the null vector:

ni × ng = ~0. (4.3)

We only considered these planes, assuming that are the objects’ surface and they

occupy a space in the captured scene unlike vertical planes for example.

In order to get the occupied space, we extracted the convex hull (Figure 4.12 (f))

encompassing each plane parallel to ground. To enhance the RANSAC’s result and

due to the sensibility of the convex hull technique toward noisy data, we first pro-

jected the plane into its equation and then applied the statistical outlier removal

filter (Figure 4.12 (e)) to refine the projected plane boundaries before extracting the

plane’s convex hull.
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At the end of the planes detection process, parallel planes to the ground are repres-

ented by their convex hulls. These latter are used later to extract occupied space

characteristics.

4.4.3 Scene labeling

In Section 4.4.2, we classified the input regarding their heights and occupied space.

In this approach, we aim to represent these features simultaneously. Thus we rep-

resented each class (of 9 classes) with a cylinder with a specific radius, height and

location. The reason why we chose a cylinder and not other 3D shapes is the fact

that it only admits these two properties and that is invariant to rotations since we

do not take into consideration the input pose.

The inputs are represented by a cylinder having a specific characteristics that are

related to the input characteristics in the real world. Each cylinder has its position

(the coordinates x and z of its center), its height that represents the class’s height

and its radius to represent the class’s occupied area.

To conduct this, we compute the centroid and the area of the concerned convex

hull; and the free space point cloud centroid. The center’s position is represented

by the plane’s centroid coordinates (x and z coordinates). The height is found by

subtracting the y-coordinates of the plane centroid and the ground’s centroid. As

for the radius, we searched for the radius of a circle having the same area as the

area of the convex hull. This is done for each plane that is parallel to the ground

plane. The computed cylinders are then transmitted to the user via the 3D interface

as shown in Figure 4.12 (3D interface).

Figure 4.13 illustrates the generated cylinders corresponding to the provided labeling

of three scenes. The first scene was taken in our first position and second scene was

taken few steps ahead. In the two scenes, the generated scene indicates that there

is a free space followed by an object having a height less than 300mm and it can be
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Figure 4.13: First row: scene 1: initial position. Scene 2: after few steps ahead.
Scene 3: with two obstacles. Second row: the coding on the generated scene.

explored with hands, but may need stretching the arm (its radius is less than 500mm

and larger than 250mm). Note that in the second scene, the position of the cylinder

changed to let the user understand that the obstacle became closer. In other words,

the area of free space has become smaller. As for the third scene, the generated scene

indicates that there are two objects, after a free space, having as height less than

300mm and they can be explored with hands but may need stretching the arm.

4.4.4 BASISR: use case scenarios

The proposed device can be used as an output device for many applications that

are based on human-scene interaction, including free space detection, scene under-

standing, indoor navigation and locating and grasping objects. It depends on the

interpretation that we give for different device’s configurations.

It can be used for scene understanding as shown in Figure 4.14, 1st row: a small

object and a large object are detected; the large object is behind the small object

and the remaining space is a free space. In case of indoor navigation (Figure 4.14

2nd row), the free space can be represented by pins with level 0 and level 3 represents
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Figure 4.14: Our proposed framework for: scene labeling, indoor navigation and
object searching (from Top to Bottom). From left to right: RGB image of the
captured scene, depth image as input data, the output mapped to the device.

the occupied space. As for object searching (Figure 4.14 3rd row), the target object

can be represented by pins with level 3. Figure 4.14 3rd row shows an example of

searching object application where the target object was the laptop.

4.5 Validation

In this section, we evaluate and test each designed module, namely: the ground

detection algorithm in Section 4.5.5 and the segmentation module in Section 4.5.6.

These modules will be validated using our constructed dataset and public datasets.

The validation metrics are presented in Section 4.5.1.
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4.5.1 Validation metrics

The model/algorithm validation involves computing metrics to illustrate the beha-

vior of the latter against different types of data (training data, validation data or/and

test data). The obtained results will be displayed/visualized and interpreted. These

metrics consist in comparing the results obtained by the model with the real val-

ues/classes (the ground truth).

The metrics to be computed strongly depend on the nature of the model output: if

it is a regression (or a continuous variable) the Mean Square Error (MSE) or Mean

Absolute Error (MAE) can be used; If it is a classification (or a discrete variable)

the precision, recall, f-measure and confusion matrix can be used.

Before presenting these metrics, we present 4 important terms, namely:

• True positive (TP) is where the model correctly predicts the positive class.

• True negative (TN) is where the model correctly predicts the negative class.

• False positive (FP) is where the model incorrectly predicts the positive class.

• False negative (FN) is where the model incorrectly predicts the the negative

class.

4.5.2 Evaluation metrics for regression

For what follows in this section, we note the size of the dataset, the instance class

and the predicted class by N , y, ypred.

- MAE is the mean absolute difference between the predicted and the actual values

it represent the mean distance between them. It is widely used for its simplicity:

MAE = 1
N

N∑
j=1
|yj − ypredj| (4.4)
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- MSE is represented by the average of the square of the error that is difference

between the predicted and the actual values:

MSE = 1
N

N∑
j=1

(yj − ypredj)
2 (4.5)

- Root Mean Squared Error (RMSE) is the root of MSE. It is a way to normalize

the MSE since it changes the units because of the exponent operation. Its formula is:

RMSE =
√
MSE =

√√√√∑N
j=1(yj − ypredj)2

N
(4.6)

4.5.3 Evaluation metrics for classification

- Accuracy: is the fraction between the correct predictions, true positive and true

negative, and all predictions.

Accuracy = TP + TN

TP + FP + FN + TN
(4.7)

- Precision: represents the positive class predictions that belong to the positive

class. It provides how much examples are actually positive out of all the positive

classes that have been predicted correctly.

Precision = TP

TP + FP
(4.8)

- Recall: represents positive class predictions made out of the positive examples in

the dataset. It provides how much examples was predicted correctly out of all the

positive classes.

Recall = TP

TP + FN
(4.9)
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- F-measure: is a single score that balances both precision and recall.

Fmeasure = precision ∗ recall
precision+ recall

(4.10)

- Confusion matrix: gives a summary of all the correct predictions of each class

and all the confusions between each class. It provides a detailed insight of how the

model performs and which kind of error it makes. For instance, thanks to confusion

matrix, we can say for a given class what are the classes that have confusion with

it and how much. In addition, if two classes have high confusion between them, we

can understand that the model find it difficult to distinguish between them.

- Receiver Operating Characteristic (ROC) curve: is graph that displays the

performance of a model at all classification thresholds. It shows the sensitivity and

specificity of the model using the true positive rate and the false positive rate. A

typical ROC curve is a curve where false positives and true positives increase at the

same time.

4.5.4 Datasets

In order to validate the ground detection algorithm on public dataset, we will use:

NYU Depth dataset V2 [2]. Ground Detection in Indoor Scenes (GDIS) [15] dataset

that will be also used to validate the ground detection algorithm and the geometric

feature extraction.

GDIS dataset

Several datasets exist in the literature; however, there is no dataset that is especially

devoted for ground detection from depth images. Some datasets include the ’ground’

class as one of the considered classes [2]. Some others consider the ground as part of

the background [120].
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Figure 4.15: (Top) Color and depth image, (bottom) ground colored with red color.

GDIS includes different depth and color images acquired by an RGB-D sensor (Mi-

crosoft Kinect V1) with various orientations and poses. The ground truth corres-

ponding to the floor is indicated in both images (depth and color) (Figure 4.15).

Each pixel is classified as ground or not the ground. The image labeling was done

by running the DCGD algorithm on the depth images. Regarding the RGB images,

we have performed an alignment and mapped the ground pixels to the RGB image.

The dataset is still under construction as we aim to add more interior with more

complex scenes.

NYU Depth dataset V2

NYU Depth dataset V2[2] (Figure 4.16) includes video sequences from a variety of

indoor scenes recorded by both the RGB and Depth cameras from the Microsoft
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Figure 4.16: Dataset samples: NYU Depth dataset V2 [2]. From left to right: the
RGB image, the preprocessed depth image and the image of labels.

Kinect. It consists of 1449 densely labeled pairs of aligned RGB and depth images.

Each pixel in the image is labeled with a class and an instance number. The number

of classes is 894.

4.5.5 Evaluation of DCGD algorithm

In order to evaluate the proposed algorithm, DCGD, we first explain some imple-

mentation details. Then, we analyze the defined parameters and compare the results

in function of these latter. After that we evaluate it using GDIS and NYU depth

dataset V2 respectively, and compare it with the state of the art.

Implementation details

The proposed algorithm can be divided into two main steps, namely: curves (Gi)

construction (Figure 4.17 (top)) and ground detection. The first step is done in one

shot by browsing the depth image only once. The complexity of this step having

as an input a depth image with n pixel is O(n). Furthermore, a down sampling by

depth step can be performed, it reduces the complexity and improves the detection

quality.

The second step includes subdividing of a curve into sub-curves and finding the

ground from objects. The subdivision (Figure 4.17 (bottom)) can be performed
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Figure 4.17: DCGD algorithm: curve reconstruction plot (left) and curve subdivision
into sub-curves (right) (only the first seven groups are plotted.

according to certain criteria such as the permitted error in height between elements in

same sub-curve h_err or the distance from the mean. Setting the value of these latter

(height and down sampling step) depend on the sensor nature. This step is applied

to all the obtained curves; so we need 2k iterations, including curve subdivision and

floor finding from k curves. The worst case is either we have n cuts or we need n

iterations to detect the ground. Thus, the proposed algorithm’s complexity is O(n).

Another step can be added to reduce noise: some sub-curves can be generated due

to noise and affect the floor detection; thus, removing sub-curves having small size

size_err can reduce noise as shown in Figure 4.18.

Parameter analysis

To evaluate the effectiveness of each discussed parameters, namely step, h_err and

size_err, we plotted the algorithm performance by varying each parameter as shown

in Figure 4.19. Regarding h_err parameter, we notice an improvement in the values

of the three metrics by increasing its value. However, the value of the precision starts
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Figure 4.18: DCGD algorithm: without reducing noise (left) and with reducing noise
(right). Note that by reducing noise, we prevent some false positive cases (circled
in red). Note also, other noise area (circled in black) was appeared on the object
borders.

to decrease from the value 27.5. Regarding the step parameter, the value of the recall

improves with increasing the step, the value of the f-measure improves modestly.

However, the precision starts to decrease from the value 4. As for size_err, we

notice an improvement in the values of the three metrics by increasing its value.

For best performance and real-time execution, we set h_err to 30, step to 4 and

size_err to 15.

Algorithm evaluation on GDIS dataset

We applied our method for indoor scenes. The ground is located in real time with

accuracy. Different scenarios have been tested with different orientations of the

Kinect sensor. Figure 4.20 shows qualitative results for a sample of scenes. Note

that some pixels of the ground are missing due to noise. As the color image is larger

than the depth image, the left and right of the color image did not appear in depth

image and thus not processed (see Figure 4.20).
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Figure 4.19: DCGD evaluation while varying h_err, step and size_err.

Figure 4.20: From left to right: Color image, depth image, ground colored with red
color.
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Figure 4.21 gives more details on computing the curve (Gi) for one value of depth

by applying the algorithm 4. The drawn (Gi) contains a convex part corresponding

to foot table, it is removed in the next step. Note that pixels defining the curve (Gi)

aren’t aligned because 3D points at the same depth zi have different values of the

depth. We then selected all pixels having the value zi ± 10mm. We note that the

area under the chair is detected as ground, which corresponds to the truth. However,

if we search to locate obstacles, the plane above this ground’s area will be taken into

account. In the next example shown in Figure 4.21, three depths are considered. All

(Gi) have the same slope corresponding to the orientation of the Kinect sensor with

respect to to the z-axis.

The measures, Precision, Recall and F-measure have been computed considering that

the ground truth of the ground begins from the furthest pixel on the depth image as

indicated in Figure 4.22. The mean of the computed measures are: Precision = 0.98,

Recall = 0.93 and the F −measure = 0.96.

Algorithm evaluation on NYU Depth dataset V2

We evaluated DCGD Algorithm using NYU Depth dataset V2 [2]. The proposed

algorithm scored a good performance nonetheless, it fails in some cases where depth

images are noisy. Figure 4.23 shows different results obtained with high, medium and

low score of accuracy. Our proposed algorithm scored the highest accuracy (91.84%)

for ground detection compared to the proposed one in [121] (80.3%). Thus, the

DCGD algorithm is more robust, especially when dealing with noisy data compared

to [121].

The results are reported in table 4.1: despite the complexity of certain scenes in

the dataset: the algorithm remains efficient (the minimum value of the f-mesure

is 78.26 %). Figures 4.24 and 4.25 respectively illustrate the distribution of the

values of different metrics as well as the ROC curve and the confusion matrix. The
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Figure 4.21: First row: The color and its associated depth image of indoor scene.
The white pixels represents the noise (depth equal to zero). The computed curve
(Gi) for depth zi = 2000m is drawn in red color. Note the presence of an obstacle
(the table’s foot) which produces a convex part in (Gi) is removed in the next step.
The discontinuity of (Gi) is due to occlusion of the area located at the depth zi by
the feet of the chair.Second row: Located curves (Gi) for three depths zi equal to
1500mm, 1800mm, 2000mm drawn respectively in blue, green and red color. For
the third depth, the missing part of (Gi) is due to the occlusion of the corresponding
area by the box.
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Figure 4.22: Determining ground truth data. (Left) the extremity of the ground truth
localized as the horizontal line passing by the pixel with maximal depth. (Right)
The drawn ground truth.

Figure 4.23: From left to right: sample color images from the NYU Depth V2 [2],
depth image, ground pixels in green color. From top to bottom: Case of high,
intermediate and of low score.
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Table 4.1: Performance evaluation of our proposed algorithm using NYU Depth
dataset V2 [2].

Accuracy Recall Precision F-measure
Min 85.23% 69.99% 68.30% 78.26%
Max 95.34% 95.42% 96.19% 91.35%
Mean 91.84% 84.21% 82.49% 83.05%

Ruiqi and Derek [121] 80.3% - - -

Figure 4.24: (Left) Values distribution for different metrics: The DCGD algorithm
performs well for the majority of scenes (exceed 83%) in terms of the computed
evaluation metrics. (Right) ROC curve: DCGD performs well in both sensitivity
and specificity.

DCGD algorithm performs well for the majority of scenes (exceed 83%) in terms

of the computed evaluation metrics (Figure 4.24 (left)) and in terms of sensitivity

and specificity (Figure 4.24 (right)). In addition, the system confuses ground and

non-ground pixels with a small value that does not exceed 1.6 (Figure 4.25).

4.5.6 Planes detection

For experiments purposes, we have taken two frames: with only one obstacle and

with two obstacles parallel to floor (Figure 4.26). Note that by using basic RANSAC,

some outliers persist: points that do not belong to obstacles, but they were considered

as part of the detected planes as seen in Figure 4.26 surrounded by red circles. For-

tunately, the applied statistical outlier removal filter, implemented by Point Cloud
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Figure 4.25: Confusion matrix: DCGD is very efficient in ground detection with
confusion not exceeding 2.5%.

Table 4.2: Table of AE between respectively the computed radius and height, and
the radius and height in real world in millimeters.

Radius Height Radius AE Height AE
Scene 1 298 197 6 38

Scene 2, Object 1 282 264 22 29
Scene 2, object 2 303 193 31 33

MAE 45.988 35.306

Library (PCL) [122], reduced the noise and thus these latter do not affect signific-

antly the plane characteristics computation such as the height and the radius. The

table was not detected as plane parallel to the ground, it was detected in fact, as

perpendicular plane since the table’s perpendicular area is larger than the parallel

one.

In order to compute how much the obtained characteristics are near to the real-

world measurements, we have taken obstacles’ measurements and then compared

them with the computed characteristics as seen in table 4.2. The MAE does not

exceed 46mm for both characteristics, this latter is generally insignificant regarding

our proposed labeling.
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Figure 4.26: From left column to right: color image, occupied space point cloud,
planes parallel to the ground in green color for one plane (first row) and two planes
(second row) detection.

As for running time evaluation, using scenes from GDIS dataset, we evaluated each

step: the ground detection, the point cloud segmentation, the geometric features

computing and the point cloud classification steps. For each scene, we computed the

running time of each step and then computed their mean. On average, the ground

detection algorithm takes 1.143 seconds, the point cloud segmentation algorithm

takes 2.030 seconds, the geometric features computing and the point cloud classifica-

tion modules take 2.007× 10−6 seconds for each segment. For the ground detection,

the running time is related to the number of objects in the scene since the algorithm

eliminates recursively the depth cuts representing the objects. It is related to the

point cloud size for the segmentation step: the larger the point cloud, the greater

the execution time and vice versa. The running time of computing the geometric

properties and the classes is negligible.
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4.6 Discussion

BASISR is a novel output device that is proposed in order to serve as an output

device that generates 3D cues and representations. It has the shape of the view field

of a single depth camera. It allows to have an impression of the surroundings in the

user’s hand. It can generate more complicated representations as we will show in

the next chapter. However, the generated output is mapped manually on the device

since we still working on the electronic layer that will make the output generation

automated.

The DCGD algorithm is also developed to detect efficiently the ground from a depth

image. It scored a high accuracy in both NYU Depth dataset V2, a public dataset

and GDIS, our local dataset.

A system for scene labeling was proposed. It is based on plane detection that repres-

ent objects/obstacles. The detected planes are classified regarding their geometric

features that are mapped as cylinders on the proposed 3D interface, BASISR (see

Figure 4.27). This classification is informative and it is simple to understand and

to interpret the 3D interface in order to interact with the scene. However, the clas-

sification and the labeling modules only provide the geometric features of a given

object. In other terms, they do not take in consideration the objects’ shapes and

their nature. In addition, unlike the first system, this system did not map objects /

obstacles like the wall, for example, since it was not detected as a horizontal plane.

4.7 Conclusion

In this chapter, we introduced our proposed 3D interface for human-scene interaction.

This is our main contribution. In order to provide the visually impaired with a

concise and an informative output that can be exploitable by touch, we designed
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Figure 4.27: 3D printing of the proposed device. The device with three generated
shapes coding the content of the perceived 3D scene using a depth camera.

two systems that can be used for navigation and scene understanding for human-

scene interaction. However, due to their limitations when the user needs more details

to perform more difficult tasks and/or to have more details about their surroundings,

in the next chapter, we will propose a more informative scene labeling that also takes

into consideration the object’s shape and their nature. We will also show how to use

BASISR for a better human-scene interaction.
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Chapter 5

Scene Semantic Labeling for Human-

Scene Interaction

5.1 Introduction

In the previous chapter, we introduced our designed 3D interface named BASISR.

This latter was used in two different scene semantic labeling systems: a basic system

that directly maps the occupied space on the device and an improved system that is

based on plane detection. We also proposed the DCGD algorithm that will be also

used for ground detection in this system.

In this chapter, we will present our system based on object classification. We propose

two approaches: the first approach concerns object classification and the second

approach concerns object labeling. The proposed labels are mapped on our 3D

interface. They are easy to understand, learn and remember as we will show later.

For this purpose, in Section 5.2, we will overview the system architecture. After

that we will present its different modules, namely: point cloud classification and

scene semantic labeling in Section 5.3, and Section 5.4 respectively. The system

components are validated in Section 5.5 and the results are discussed in Section 5.6.
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5.2 The system overview

The proposed system for human-scene interaction is based on point cloud processing

and includes four main steps: the first step consists of filtering the input and reducing

noise. This latter can sometimes be ignored when the processing techniques are

robust to noise such as BDSCAN algorithm and deep neural networks. The second

step consists of detecting the ground or the free space. After that, according to the

system application, the free space or/and the occupied space is/are processed. In

our case, the occupied space is extracted, segmented and then classified. The last

step represents the output generation.

This system (Figure 1.2), that is for human-scene interaction, takes a single depth

frame captured by a head-mounted depth camera as an input. After detecting the

ground using the DCGD algorithm, the occupied space is extracted and segmented.

Each computed segment is then fed to the feature extraction to perform object

classification. The feature extraction module computes geometric features (such as

the object’s height) and the segment nature. After that, the provided class and

features are used to generate semantic labels. Finally, these labels are mapped on

the 3D interface to be exploited by the user. The system can be adapted to use an

RGB camera as the input sensor; however, one more step that consists of estimating

the depth image will be required.

5.3 Point cloud classification

Before the point cloud classification step, a segmentation step is required as it will

be described in Section 5.3.1. After segmenting the occupied space, each segment is

then classified. The classification is performed according to the nature of the objects
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and their geometric properties as we will see in Section 5.3.2. The conception of this

latter is then presented in Section 5.3.3.

5.3.1 Point cloud segmentation

In this system, we are interested in salient objects, thus coarse segmentation is

needed. In case of point cloud coarse segmentation, the DBSCAN is more suitable as

shown by Figure 5.1. Indeed, unlike K-means and Mean-shift that are centroid based

algorithms (the clusters are shaped like circles around the centroids) and require the

number of clusters, DBSCAN algorithm is based on density and does not require the

number of clusters as input parameter.

To reduce the temporal complexity, we applied a down sampling on the input point

cloud. A pass-through filter can be applied for noise removal; its parameters are fixed

according to the characteristics of the depth camera. In our case, we only considered

points with a depth between 800mm and 4000mm. After the segmentation step,

each segment is injected into the feature extraction and classification modules.

5.3.2 Point cloud classification: approach

Generally, object classification is achieved by considering a set of objects or by group-

ing them into different groups. In [64], they classified objects into three classes: fixed

objects, rearrangeable objects and transit objects. The fixed objects’ class includes

objects that are not rearrangeable, they are permanent and/or hard to uninstall such

as stairs and elevators. The rearrangeable objects class includes objects that can be

moved more or less easily. They can be small, medium such as tables and chairs; or

larger such as dressers and refrigerators. As for the transit objects class, it represents

self-moving objects or objects that are created by schedules. However, this approach
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Figure 5.1: (Top) From left to right: color image, depth image and occupied space’s
point cloud. (Bottom) From left to right: K-means, Mean-shift and DBSCAN. The
DBSCAN (the black points represent outliers).

is not suitable for semantic scene labeling for human-scene interaction, especially

when the visually impaired and blind people are involved.

We propose a new approach for object classification, we design classes which are

related to the semantic of the selected objects. For this purpose, in Section 5.3.2,

we present our designed classes that relies on the selected objects. In Section 5.3.2,

we show how to combine the object classification and the classification based on

geometric features for an informative point cloud classification.

Object classification

Our aim is to provide an object classification that is more informative, especially in

the context of assistive systems. In order to cover a significant number of classes in

a simple way, we consider salient objects (large and medium objects) and regroup

them into 7 semantic classes that include 16 object classes, namely chairs, beds, sofas,

benches, stools, tables, desks, night-stands, dressers, wardrobes, shelves, bathtubs,
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toilets, windows, doors and stairs. These classes do not only contain semantic mean-

ing, but the objects belonging to the same class have also similar geometric shape

while preserving some characteristics.

The first class represents objects that we sit on, it includes chairs, stools, beds,

sofas and benches. The second class represents objects that we put something on,

it includes tables, night-stands and desks. The third class represents objects that

we put, hide or arrange something in, it includes dressers, wardrobes and shelves.

As for the fourth, the fifth and sixth classes, they represent bathtubs and toilets;

windows and doors respectively. The last class represents stairs and since the stairs

can be dangerous, making the difference between the stairs leading to upstairs and

stairs leading to downstairs is important.

This approach requires the object in its 2D or point cloud representation as input.

In order to obtain the input’s class, deep neural networks can be used as we will

explain in Section 5.3.3.

Point cloud classification

We combined the two classification methods, i.e. the designed object classification

and the classification using the geometric features to provide rich information. For

each point cloud, we provide its object class, its height class, its occupied area class

and its location. When the deep learning model predicts the object class with low

probability, only the second classification is maintained. In this way, we are sure to

provide an accurate description even if the deep learning model fails to predict the

right class.

In addition, combining these classes allows the distinction between objects belonging

to the same class. Chairs, beds, sofas and benches are objects that we sit on; however,

they are different in their forms and occupied area: beds are generally a large object

(3rd class regarding the occupied area), chairs have small surface (1st class regarding
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the occupied area) and benches and sofas are medium objects (2nd class regarding the

occupied area). Tables, night-stands and desks represent the second class; however,

they differ in their forms and locations: night-stands are usually small whereas desks

and tables are larger. In addition, unlike desks, tables are usually surrounded by

chairs. Dressers and shelves are all objects that we arrange something in; however,

they have different heights and occupied areas: dressers are represented by the 3rd

class regarding the height, but shelves are usually medium objects.

Figure 5.2 and Figure 5.3 represent the layouts of two different scenes. In these

latter, the objects are represented by their class, their geometric features and their

positioning in the scene; however, using these features combined with their location,

we can deduce their nature. In Figure 5.2, the larger chair is a bed, the medium

chair is a sofa, the rest are chairs; the small tables that are next to the bed are

night-stands, the table that is alongside the wall is a desk (only a chair is next to it),

the rest are tables (surrounded by chairs) and the dresser is near the night stand.

In Figure 5.3, the small objects that belong to the class ’chairs’ are chairs; since

the tables are at most surrounded by two chairs, they probably are desks and the

dressers represent shelves.

Combining the two methods allow us to design only 7 labels to represent 16 classes.

This latter will facilitate users’ interaction with the scene by learning only 7 classes

instead of 16 different classes. In addition, even if an object is not included in the 7

classes, it will be labeled using its geometric features.

5.3.3 Point cloud classification: conception

After defining our classes, we now explain how they are obtained. This module

includes 3 different sub-modules. The first sub-module computes the point cloud

class based on classifying its global features. The second sub-module computes the

point cloud geometric features. As for the last sub-module, it combines the output
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Figure 5.2: Example of a scene representing a room. The objects are represented by
their class, their geometric features and their positioning in the scene (C, T and D to
represent the class chairs, tables and dressers respectively; and blue, yellow, purple,
green, red, orange, white and cyan represent the object desks, chairs, shelves, beds,
sofa, night-stands, tables and dressers respectively).
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Figure 5.3: Example of a scene representing an office (my supervisor’s office). The
objects are represented by their class, their geometric features and their positioning
in the scene (C, T and D to represent the class chairs, tables and dressers respect-
ively; and blue, yellow and purple represent the object desks, chairs and shelves
respectively).

of these sub-modules in order to provide the final classes and provide them for

the semantic labeling module. For the first sub-module, we tested two categories

of classification architectures: multi-view based models and raw point cloud based

models.

For the first category, in order to compute the input, we construct an organized point

cloud from the depth image that contains only a single object after the segmentation

step. An organized point cloud is a tensor 3 × w × h where 3 is the number of

channels, w and h represents the width and the height of the bounding box after the

scaling step. The first channel, the second channel and the third channel hold the

X values, the Y values and the Z values respectively. The scaling step is essential

since the input’s shape of a given neural network is fixed and cannot be flexible

for each entry. We used nearest neighbor interpolation in the scaling step. Feeding

with the organized point cloud tensor will allow the neural network to learn the
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relation between the adjacent points on the three axes using convolutions. Finally,

we apply data normalization in [−1, 1] interval. Since depth images are the input of

our system, we investigated the behavior of different architectures that are designed

for image classification and then, we selected the most accurate model. To do so, we

trained the networks until they reach 100% as accuracy on training set or the training

does not improve after some epochs. After that, we design a new architecture based

on the selected neural network. The designed network has to be lightweight and

accurate. Instead of starting training from scratch, we first took a pretrained model

using data from the ImageNet challenge [123] and then, we opted for the transfer

learning approach. The obtained results will be presented and discussed in Section

5.5.

As for the second category, to classify a given point cloud, we trained the Pointnet

network [13]. The limitation of this model (as mentioned in Section 3.7.3) will not

highly affect our system since we only consider salient objects (for the time being).

Note that, in this work, we are not designing a novel architecture. However, using

our approach of merging the objects’ classes that are geometrically similar and have

the same function increased the accuracy by 5% on the test set. The obtained results

are reported, compared and discussed in the experiments Section 5.5.

Regarding the second sub-module, we followed the same step as in the first prototype

except for the computation of the heights. Since we consider irregular segments and

not planes, we computed the height as the height of the 90th percentile of the points’

y− coordinate. We chose the 90th percentile instead of the 100th to avoid potential

outliers. The third sub-module, combines the obtained classes and transmits them

to the semantic labeling module.
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Figure 5.4: (Left) The Braille system. (Right) Kanji, the Japanese writing system.

5.4 Object semantic labeling

Regarding the point cloud classification that we designed, we propose an improved

object semantic labeling which takes into consideration the nature of the objects. It

is inspired by the Braille system and Kanji (the Japanese writing system) (Figure

5.4). An alphabet in the Braille system is represented by a cell that is provided with

raised dots. Each cell contains at most six raised dots. Kanji is a Japanese writing

system that is inspired by logographic Chinese characters. Some Kanji letters that

represent some objects are driven from nature, i.e. these objects’ shape in the real

world; it’s the case for ’mountain’ as shown in Figure 5.4 (right) first line.

In order to draw our illustrative semantic labeling, we designed cells with at most

25 raised dots. The cell’s shape can be revised depending on the precision of the

3D interface: if the 3D interface is rich in pins, we can design cells with more raised

dots. The cells must be chosen such that the shape can be touched only by a single

finger to avoid ambiguity.

On the other hand, the illustrative labeling is derived from the object’s shape in the

real world. For each semantic class, we chose the object that is the most close to

the class’ meaning: we chose a chair, a table, a dresser, a bathtub, a window and
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Figure 5.5: Our proposed semantic labeling from the first class to the last class,
respectively (From top to down). We first drew the selected objects in the real world
(Left) and then, we derived shapes recursively until we obtained the current semantic
labeling (From left to right).

Figure 5.6: The proposed semantic labeling for stairs. Stairs leading to upstairs and
leading to downstairs, their chosen labels, their positioning in the synthesis area.

a door to represent the proposed classes in Section 5.3.2 respectively as shown in

Figure 5.5. To ensure the user’s safety, we provide two different labels for the stairs

leading to upstairs and stairs leading to downstairs as shown in Figure 5.6. In this

way, by touch, the user will understand if he is about to climb the stairs or about to

go downstairs.

The described labeling is used alongside with the geometric features semantic labeling

to enrich the scene description. The reason we combined the two labels instead of

creating an illustrative label for each object, is to reduce the number of possible
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illustrative labels since it can be deducted from its height and its occupied area as

explained in Section 5.3.2. Note that although the labels are inspired by Braille and

Kanji systems, understanding and memorizing these labels do not require the user

to be comfortable with them.

Once the geometric features and the classes are computed, we generate their semantic

labeling on the BASISR device at the segments locations. We combine the proposed

semantic labeling, but instead of mapping cylinders that represent the geometric

features of each segment, we directly map the segments’ convex-hulls. The advantage

of this latter is that, the user will have a clear impression of the object’s shape and

pose contrary to cylinders that only represent the geometric features. If the semantic

class of a given segment is predicted with high probability, we map its label at the

center of the convex-hull. Otherwise, we only map the convex-hull of the segment.

Let b1(x, y), b2(x, y), .., bn(x, y) be the points defining the box encompassing the ob-

ject. The mapped points b′1(u, v), b′2(u, v), .., b′n(u, v) are located on the area. All pins

in the area defined by the points b′i, i = 1..n are set to level 2. The pins associated

to the label of the object are set to their associated level 3, 4 or 5 at the barycenter

as indicated by Figure 5.7. We assigned the grey color, the green color, the red

yellow color and the red color to represent objects with level 2 (ground), 3, 4 and 5

respectively.

5.5 Validation

In this chapter, we will evaluate and test the deep neural network models that are

used for point cloud classification (in Section 5.5.2) using public and local datasets

that will be presented in Section 5.5.1. We will show also, how the output is generated

and synthesized in Section 5.5.3. Our obtained results are reported, discussed and

compared with the state-of-the-art systems.
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Figure 5.7: The convex hull and the positioning of the label (here for a table) on
the area. Note that the pins of the label in red are at level 3 (corresponding to the
height of the table in the scene). The pins of the convex area in blue are at level 2.
The remaining pins in the synthesis area (in green) are set to level 1 corresponding
to the ground.

In order to perform the training, we ran our models on a GPU provided by Google

Colaboratory platform. After that, we executed our proposed system on a laptop

having Intel Core i5− 7200U CPU (2.50GHz × 4) and 4GB as processor and RAM

respectively.

5.5.1 Datasets

In this section, we introduce the different datasets that will be used for validating

and testing our models, namely: NYU Depth dataset V2 [2] that will be used to

validate the ground detection algorithm, the dataset from the Reconstruction Meets

Recognition Challenge (RMRC) challenge that will be used to train and validate the

VGG-16 network, ModelNet40 dataset [14] that will be used to train and validate

PointNet, and GDIS [15] that will be used to validate the ground detection algorithm,

PointNet, the geometric feature extraction and the entire system.
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Figure 5.8: Dataset samples: RMRC challenge (2014). From left to right: the RGB
image, the preprocessed depth image and the image of labels.

Dataset from the RMRC challenge

To train the CNNs based models, similar to [112] and [14], we used the data from

the RMRC challenge (Figure 5.8). Since the dataset for 3D classification is no

longer available in RMRC challenge (2014), we construct our data from its Semantic

Segmentation Challenge. The data was initially consisted of 1800 RGB-D images

with dense classification (23 possible classes). For each image, we considered only

regions that belong to our selected classes (i.e. chairs, beds, sofas, benches, tables,

desks, dressers, night-stands, shelves, bathtubs, toilets, windows, doors and stairs).

The classes windows, doors and stairs were not among the 23 proposed classes so, for

the multi-view semantic classification, we only consider the remaining classes. After

the selection process, we obtained 3494 new images each of which represents one

object only (a single segment). Table 5.1 represents the number of instances for each

of the seven classes. We used the terms chairs, tables and dressers to represent the

first three classes respectively. We also considered 35% of the data as the validation

set.

Table 5.1: The number of instances for each class.

Chairs Tables Dressers Bath-tubs Toilets
1595 934 786 80 99
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Figure 5.9: Dataset samples: Modelnet40[14].

ModelNet40

As to train the PointNet model, we extracted our 16 selected classes fromModelNet40

[14] (Figure 5.9), a public dataset which consists of 40 classes of CAD models. Note

that we excluded doors and windows since they are represented by holes and in

the real world and they can be confused with noise or walls when they are closed.

ModelNet40 originally includes 12311 models among which 2468 are used for testing.

Our constructed dataset includes 5560 models among which 988 are used for testing.

GDIS dataset

In addition, we used GDIS dataset [15] (Figure 5.10), our local dataset, for additional

experiments. GDIS dataset was initially constructed for the ground detection task,

but we can also consider some scenes for point cloud classification and the validation

of the entire system (from the ground detection to the semantic labeling).

5.5.2 Point cloud classification

In this section, we evaluate the point cloud classification, the third module to execute

in the system pipeline. In this section, we validate the Multi-view based model and



Scene Semantic Labeling for Human-Scene Interaction 104

Figure 5.10: Dataset samples: GDIS [15]. The red color represents the detected
ground.

the point cloud based model. Finally, we compare the obtained results with the state

of the art.

Multi-view based classification

Several networks were proposed for object classification among which we cite: AlexNet

[124], VGG16 [117], GoogleLeNet [19], ResNet [125] and MobileNet [126]. We took

the pretrained model of each of the cited networks and we replaced the last dense

layer with a dense layer with 5 perceptrons (we have 5 classes). We stop the training

if the accuracy does not progress after executing at least 30 epochs or if the model

reaches 100% as training accuracy.

Figure 5.11, Figure 5.12 and Figure 5.13 display the loss function and the accuracy

on the training and the validation set respectively. Note that in this step, we did not

apply any data augmentation. We wanted to study the architectures’ performance

without additional preprocessing.

The Figures 5.11, 5.12, 5.13, show an overfitting for all the models. In addition, the

models’ performance is not stable during training except for AlexNet model. This

is due to the models’ parameters, the nature of data, its complexity and the dataset
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Figure 5.11: Comparison between the loss function of each tested model on training
dataset. The blue marker represents the epoch where the model reached the highest
accuracy on validation set.

Figure 5.12: Comparison between the loss function of each tested model on training
dataset. The blue marker represents the epoch where the model reached the highest
accuracy on validation set.



Scene Semantic Labeling for Human-Scene Interaction 106

Figure 5.13: Comparison between the accuracy of each tested model on validation
dataset. The blue marker represents the epoch where the model reached the highest
accuracy on validation set.

size. The highest accuracy (the blue marker) on validation set is achieved at the same

time as the highest accuracy on training set for only AlexNet model which showed

smooth improvement during training; however, it was achieved while overfitting. The

VGG-16 model achieved the highest accuracy (72.082%) on validation set.

Based on the obtained results, we built our model based on VGG-16 by reducing the

number of hidden layers (see Figure 5.14). We continued training after applying the

presented data preprocessing. The model achieved an accuracy equal to 72,81% on

the validation test (Figure 5.15) and 94.85% on our GDIS dataset [15].

Figure 5.16 and Table 5.2 show the confusion matrix and the model’s precision, recall

and F-measure on each class respectively. The accuracy and the F-measure exceed

60% and 59% respectively for most classes. Although the model’s accuracy on the

class ’chair’ is the highest, its F-measure is the lowest. This is due to the confusion

between this class and the remaining classes (Figure 5.16, column ’Chair’). On the

other hand, the class ’bath-tub’ has low accuracy, but a high F-measure. This latter

is due to the fact that the model mistakes the class ’bath-tub’ for the other classes
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Figure 5.14: (Top) the VGG-16 architecture. (Bottom) The selected architecture:
we removed the 4th, 6th, 9th and 12th layer.

Figure 5.15: Accuracy evolution by epochs on training and test sets. Although the
model couldn’t generalize well, the accuracy improves on both sets.
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Figure 5.16: The confusion matrix of our selected model. The confusion matrix
shows that there is some high confusion between objects having almost the same
geometry: 26% of the toilet instances were confused with chairs and there is no
confusion with tables and bathtubs.

Table 5.2: The validation metrics of the CNN network on the test set.

Bath-tubs Chairs Dressers Tables Toilets
Precision 0.545 0.778 0.669 0.630 0.667
Recall 0.214 0.823 0.691 0.586 0.647
F-measure 0.308 0.8 0.68 0.607 0.657

(Figure 5.16, line ’Bath-tub’), but it rarely mistakes the other classes for the class

’bath-tub’ (Figure 4.25, column ’Bath-tub’). To visualize these latter, we display

some samples from well classified instances and misclassified instances in Figure 5.17

and 5.18 respectively.

Point cloud based classification

Since PointNet is 3D raw data based, the CAD models are sampled into point clouds

of 2048 points and normalized into a unit sphere. Regarding the experimental set-

tings, we applied the same configurations as in [13]. As for data preprocessing, we,

on the fly, applied random rotations around the yaw axis and jittered the points
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Figure 5.17: Sample of well classified instances. From left: Chair, Table, Dresser,
Bath-tub and Toilet.

Figure 5.18: Sample of misclassified instances, the predicted class (class): Dresser
(Chair), Chair (Table), Table (Bath-tub), Chair (Toilet)

position as described in [13]. PointNet achieved the state of the art with 89.2%

accuracy in their original paper.

In this work, we trained our model on a sub-set of 14 (after excluding doors and

windows) classes from ModelNet40. The model started to converge starting from

the 50th epoch and reached 91.67% accuracy on the test set after 262 epochs (Figure

5.19 and Figure 5.20).

However, as shown by the confusion matrix (see Figure 5.21), there is a high confusion

between the class ’wardrobe’ and the classes ’bookshelf’ and ’dresser’ (about 20%

and 10%, respectively), between ’table’ and ’desk’ (about 16%), ’stool’ and ’chair’

(about 15%). There is also a small confusion between the ’sofa’ and the classes

’bench’ and ’chair’. These confusions are due to the geometric resemblance between

them.

This leads us to consider combining classes for the classification as explained earlier

in Section 5.3.2. As the previous model, this model started to converge after the

50th epoch. The accuracy has been improved by 5% to reach 96.35% on the test set
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Figure 5.19: PointNet loss function: the model learned to generalize. Training
PointNet with 14 classes; the model starts to converge from epochs 50

Figure 5.20: PointNet accuracy. Training PointNet with 14 classes; the model starts
to converge from epochs 50 and reach 96.19% and 91.67% on train-set and test-set
respectively.
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Figure 5.21: Confusion matrix: there is high confusion between the class ’wardrobe’
and the classes ’bookshelf’ and ’dresser’ (about 20% and 10%, respectively), between
the classes ’table’ and ’desk’ (about 16%), the classes ’stool’ and ’chairs’ (about 15%);
and small confusion between the class ’sofa’ and the classes ’bench’ and ’chair’.

after only 226 epochs (Figure 5.22 and Figure 5.23). Thus, the described confusions

have been eliminated (see Figure 5.24).

The confusion matrix (see Figure 5.24 (Left)) shows that the confusion between the

different classes does not exceed 7% unless for stairs that 15% of them were confused

as chairs. To visualize this latter, we plot the three worst classification for each class

(Figure 5.25): the instances have similar geometry with the predicted class with a

certain probability. However, the confusion remains small and the system predicts

accurately with high recall and precision (see Figure 5.24 (Right)).

The model was trained using 3D CAD models. On real-world data (from GDIS

dataset), the model predicts the right class when the input is noisy and slightly

incomplete (see Figure 5.26); however, it fails otherwise. As shown in Figure 5.27

(column 2), the system has predicted incorrectly the class of the table that was

poorly segmented (we only used background removal to simulate the cropped data).
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Figure 5.22: PointNet loss function. Training PointNet with 6 classes; the model
starts to converge from epochs 50.

Figure 5.23: (Left) PointNet loss function. (Right) PointNet accuracy. Training
PointNet with 6 classes; the model starts to converge from epochs 50 and reach
98.26% and 96.35% on train-set and test-set respectively.
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Figure 5.24: (Left) Confusion matrix: the confusion between objects does not exceed
6% unless for stairs that 15% of them were confused as chairs. Most of the objects
are not confused with other objects (0% confusion). (Right) Recall-precision curve:
the system predicts accurately with high recall and high precision).

Figure 5.25: Worst 3 classification results. P and L stand for Predicted and Label
respectively. There is a geometric resemblance of the input instance with the objects
of the predicted class.
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Figure 5.26: From left to right: the captured scene (chair, chair, chair), its associated
depth image (the system input), the resulting segment. The system has predicted:
chair, chair, chair.

To overcome this problem, we only consider the predicted class with high probability

(higher than 0.95).

Comparison with state-of-the-art systems

Compared with the results of object classification based aid systems presented pre-

viously (Table 5.3), in the system [7], authors didn’t mention the accuracy of their

proposed depth-based classification algorithm. As for the system [6], the authors
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Figure 5.27: From top to down: the captured scene (table, table, dresser), its as-
sociated depth image (the system input), the resulting segment. The system has
predicted: table, chair and dresser.



Scene Semantic Labeling for Human-Scene Interaction 116

adapted FuseNet for RGB-D semantic segmentation that has 76.27% as accuracy.

Compared to the third system [20], our model surpasses its accuracy and with a

larger set of classes.

Table 5.3: Comparison with the classification module of the presented state-of-the-
art systems.

Input Nb Classes Classifier Accuracy (%)

Wang et al.[7] Depth image 5 Depth-based
classifier [7] -

Lin et al.[6] RGB-D 70 FuseNet[18] -

Wang et al.[20] RGB-D 4 Cascaded Decision
Tree 71.45

Ours Depth map 6 VGG-16 based 72,81
Ours Point cloud 14 PointNet[13] 91.67
Ours Point cloud 6 PointNet[13] 96.35

5.5.3 Scene semantic labeling

For more experiments using the entire system with PointNet on real-world data, we

show and discuss the output of each module for 4 images taken from a video sequence

from our GDIS dataset [15] (Figure 5.28). After the ground detection (Figure 5.28

third row), we applied the DBSCAN clustering algorithm to break the occupied

space into coarse segments (Figure 5.28 fourth row). After that, we compute for

each segment its geometric features and its class.

For the segmentation module, we took the measurements of some objects in the

real world and then compare it with the obtained geometric features. This is done

by computing the MAE between the objects’ height and the computed one. The

obtained results showed a slight mean difference that does not exceed 30mm. This

small difference of 3cm will not affect the classification process except at the bounds

of the defined intervals.

The Pointnet network has classified well the chair except for the last frame (Figure
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5.28 last row, last column), it was classified as a table with a low probability (0.53),

so the class was not mapped, only the convex hull was mapped. The model failed

to predict the right class because the chair’s point cloud was segmented into sub

segments and this is due to the noisy nature of the Microsoft Kinect V1. If the class

is not predicted, we set all the pins that represent the segment to the segment level,

rather than mapping the class to that level.

As for running time evaluation, using scenes from GDIS dataset, we evaluated each

step: point cloud segmentation, geometric features computing and point cloud clas-

sification. For each scene, we computed the running time of each step and then com-

puted their mean. On average, the point cloud segmentation takes 1.700 seconds,

geometric features computing takes 1.907 × 10−6 seconds for each segment and the

point cloud classification step takes 0.807 seconds for all segments. For the ground

detection, since we used the same algorithm, the running time is the same, on aver-

age, as in the previous system. It is related to the point cloud size and the model

arguments for the segmentation step. The running time of geometric properties is

negligible. As for the classification running time, it is strongly related to the com-

plexity of the model and slightly related to the number of segments.

5.6 Discussion

The proposed system combines the deep learning features and the geometric features

to provide for the user a scene description for a better human-scene interaction: for

each segment, its label, location, shape, occupied space and its height are computed

and mapped on the 3D interface.

The system detects 7 semantic classes that cover 16 different object classes. For each

semantic class, we proposed a semantic label which is mapped to the center of the

occupied space. Providing and only mapping coarse information is the first step for
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Figure 5.28: (From Top) The RGB image, the depth image, the output of the ground
detection algorithm, the segmentation using DBSCAN and the semantic labeling
mapped on the 3D interface. For more visibility, the color green, yellow and red
represent levels 1, 2 and 3 respectively.
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the scene description task. It provides a global scene description of the captured

scene and how the objects are arranged in.

The proposed system fails to predict the semantic class of some point clouds due

to the nature of real-world data that is incomplete and cropped. Different cropped

objects can be similar to some cropped objects belonging to different classes. As

current solution, the model ignores the predicted class if this latter has been predicted

with a small probability.

5.7 Conclusion

In this chapter, we presented our latest system that employs a 3D interface for

human-scene interaction. The system detects the ground as a first step using DCGD

algorithm. It is more informative than the previous systems presented in chapter

4, since it takes into consideration the objects nature. It is able to detect a consid-

erable number of classes while providing only 8 semantic labels that can be easily

memorized. We validated our methods using two kinds of datasets: public and local

datasets. This allowed us to compare our system with other systems and test it

in real-world environment. Our methods showed efficient results. Some limitations

have been detected during the test process as we reported in the discussion section.

To this end, we will conclude our thesis with the next chapter, the conclusion and

the future works.
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Chapter 6

Conclusion

In this thesis, we proposed a scene semantic labeling for a better human-scene in-

teraction. The semantic labeling that is inspired by the Braille and Kanji systems,

is mapped on our proposed 3D interface. For this purpose, the designed system

describes the captured scene architecture and provides geometric features and the

nature of the detected objects mapped as the touch-based semantic labels. By sensing

the generated interface, the user can understand his surroundings and thus interact

with it whether by actions or contacts. The object classification approach is based

on deep learning networks implemented to classify the 3D shape of the captured

objects. Although we are using a state-of-the-art neural network, with our explained

approach the accuracy has been improved by 5%.

The designed system acquires a depth image as input. Then the ground is detected

using the DCGD algorithm and the occupied space is extracted for further seg-

mentation using DBSCAN, an efficient clustering algorithm. Then, each segment

is classified according to its nature and its geometric characteristics. The 3D la-

bels of the estimated classes are finally mapped on our proposed device. However,

the system only provides information about salient objects; other objects are not

considered.

Furthermore, the system has shown promising quantitative results; however, in addi-
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tion to the limitations discussed in the discussion section of the experiments chapter,

an extensive clinical study should be performed for a qualitative validation.

6.1 Future works

This thesis has opened several doors to exploit, research in several fields: ground

detection, point cloud segmentation, classification of 3D shapes and scene semantic

labeling for human-scene interaction.

Regarding the DCGD algorithm, we aim to improve its performance so that it takes

into account the holes. The holes are dangerous obstacles, especially for the visually

impaired and blind people. Hence, taking them into consideration is an important

step. In addition, the algorithm must differentiate between the ground and the lowest

object when the ground does not appear.

As for the segmentation, a second step can be added in the future for fine seg-

mentation. In this step, objects that are arranged on a given coarse segment can

be detected using coarse to fine segmentation. These latter, can be mapped in 3D

interface only by commands from the user to avoid ambiguity while exploring the

scene. In other terms, mapping coarse and fine information at the same time is time

consuming and ambiguous, such as mapping the table and the objects that are on

it. We can imagine this scenario: the user is searching for a cup. After providing

the global description, the user can locate the table on the 3D interface. After that,

by long clicking on the table’s label, we can at this time map on the whole surface

of the area only the table and what’s on it. At this step, by touching the new area’s

configuration, the user can have an idea about what is on the table and can search

for his desired item.

Regarding the incomplete objects, a potential solution is that the proposed model

will be extended to work for a succession of frames and thus, the cropped objects
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can be completed by the alignment process and thus the prediction can be corrected.

In addition, this latter can be used to improve the DCGD algorithm performance by

comparing the previous ground’s cuts with the current ones.

We also aim to provide a detailed scene semantic labeling, in a clear way, to include

not only salient objects like tables, but also other small objects. This can be done

by hierarchical classification, by considering the classification of the salient objects.

For example, to classify objects that are on the table the system will consider that

the object is on the table.
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