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X PREFACE TO THE ENGLISH EDITION

past three years have been included where they have an important bearing on
the subject matter. Alterations, other than corrections and those due to
changes of terminology, have been inserted as translator’s footnotes.

(4) SI units (rationalised MKS) have been used throughout, though the
coefficient  (see preface to the French edition)is retained in relevant formulae.
Thus, despite some spectroscopists’ aversion to changing, for example, from
angstr6m units to a subunit of the metre or from gauss to tesla, numerical
values are always given in SI.

(5) Important names and dates are given for their historical interest only
and accordingly precise references are usually omitted, as in the French
edition. Where the French edition refers to textbooks that have not been
translated into English, an English substitute has been given.

I should like to express my thanks to Dr M. H. Tinker for reading and
commenting on the entire translated manuscript, to my wife who sacrificed
much of her time for several months in preparing the final typescript version,
and finally to the publishers for their continued encouragement and helpfulness.

J. J. Thomson Physical Laboratory
Reading J.S.D.
December 1973



Glossary

1 Latin Alphabet

*
b({

acceleration
semi-major axis of an ellipse, or other length

magnetic vector potential

amplitude of a sinusoidal function
magnetic moment coupling constant
probability of spontaneous emission
atomic mass number

atomic mass (approximately equal to 4 in CGS or to 4/1000 in MKS)

impact parameter in collision problems
semi-minor axis of an ellipse, or other length

magnetic induction vector, usually called magnetic field
(the excitation vector H = (1/uou,) B is hardly ever used)

absorption and induced emission probability coefficients
(Einstein notation)

amplitude of a sinusoidal function

magnetic field vector

velocity of light
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GLOSSARY

( constant in a Coulomb law of force (W(r) = C|r)
Curie constant of magnetic susceptibilities
capacitance
torsion constant of a wire

differential

symbol for the quantum number /= 2 (total orbital angular momen-
tum of an electron)

electric induction vector
probability density
distance

symbol for the quantum number L = 2 (total orbital angular momen-
tum of an atom)

intensity of a beam of particles per unit cross-sectional area (N = 2tS)
elementary positive charge e = 16 x 1071° C
base of napierian logarithms e = 2-7183

{ electric field vector

| algebraic value of the total energy of an atomic state

complex function associated with the electric field of a wave

a function
force vector .
oscillator strength

symbol for the quantum number / = 3 (orbital angular momentum of
an electron)

resultant vector for a system of forces

symbol for the quantum number L = 3 (orbital angular momentum of
an atom)

symbol for the quantum number / = 4 (orbital angular momentum of
an electron)

statistical weight or order of degeneracy
symbol for the quantum number L = 4 (total orbital angular momen-
tum of an atom)

Planck’s constant (4 = h/27)

Hamiltonian operator

Hamiltonian function

square root of —1, the base of imaginary numbers

Jindex number
\_angle of incidence



GLOSSARY Xiii

magnitude of an electric current
moment of inertia
nuclear spin quantum number and the corresponding vector

the electric current density vector
index number
quantum number of angular momentum and the corresponding vector

total angular momentum quantum number of an atom, and the corres-
ponding vector

Boltzmann’s constant
wave vector
an integer

contact potential difference
absorption coefficient
symbol for the principal quantum number n = 1

a length
orbital angular momentum quantum number and the corresponding
vector

luminance

the total orbital angular momentum quantum number of an atom and
the corresponding vector

symbol for the principal quantum number n =2

lagrangian function

mass, especially mass of the electron
magnetic quantum number

molecular mass

mass, especially the mass of an atom or a nucleus
intensity of magnetisation vector

symbol for the principal quantum number n =3

magnetic moment vector

number of particles per unit volume
principal quantum number

an integer (dimensionless)
unit normal vector
symbol for the principal quantum number n = 4

Avogadro’s number

symbol for the principal quantum number n =5
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GLOSSARY

momentum or impulse vector

electric dipole-moment vector

index number

population of an energy level

symbol for the quantum number /=1 (orbital angular momentum of
an electron)

power

polarisation vector of a dielectric

symbol for the quantum number L =1 (total orbital angular momen-
tum of an atom)

symbol for the principal quantum number n =6

generalised impulse vector
algebraic electric charge (especially charge on the electron g = —e)

electric charge
quality factor of a resonant cavity or a resonant circuit reduced quad-
rupole moment

components of the quadrupole tensor

radius vector, distance between two points

distance between two points

electric resistance

Rydberg constant for atomic spectra
gas constant for a perfect gas

radial wave function

spin quantum number and the corresponding vector

screening coefficient

symbol for the quantum number /= 0 (orbital angular momentum of
an electron

area

total spin quantum number of an atom and the corresponding vector

symbol for the quantum number L = 0 (total orbital angular momen-
tum of an atom)

time

absolute temperature
period
spectral term

work

energy density
unit vector
transverse component of the magnetisation M in a rotating frame

internal energy
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velocity vector
transverse component of the magnetisation M in a rotating frame

{ electrostatic potential or electromotive force
| exceptionally, velocity vector

volume

a small energy

co-ordinate

v
w

W  energy in general, and especially potential energy W (r)

x

X

y co-ordinate £y
Y

angular wave functions of hydrogen (spherical harmonics)

z co-ordinate
co-ordinate
Z atomic number of an element

{ co-ordinate

statistical partition function

2 Greek Alphabet

fine structure constant (« = e2/4r &, fic)
angle

direction cosine

name of a type of particle

angle
direction cosine
name of a type of particle (8~ and f* rays)

gyromagnetic ratio
direction cosine
name of a region of the electromagnetic spectrum

{ Bohr magneton
r moment of a force or resultant moment of a system of forces
) increment, difference
A Laplacian operation

width of a line
4 correction applied to an energy value following a perturbation calcula-
tion

constant depending on units, &y, (in CGS ¢, is replaced by 1/4n)
dielectric constant ¢,
a conical eccentricity
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0 angle, especially latitude in spherical co-ordinates

[ angular wave function
2] ﬂL Debye temperature

k =1 in MKSA system

K constant depending on units: gq iy ¢ = K2 . ;
p g oHo K = c in gaussian system

A wavelength

A Compton wavelength (A = h/mc)

constant depending on units, u,, (in c.g.s., Y, is replaced by 4r)
M magnetic permeability

reduced mass
v frequency
14 co-ordinate

pressure
probability

3-1416. ..
symbol for a polarisation of a wave (parallel to a magnetic field)

product
density

p { electric charge density

particular values of a radius vector

angular momentum vector

o cross-section
symbol for a polarisation of a wave (circular or perpendicular to a
field)
X summation
T time constant (lifetime, relaxation time)
¢ angle, especially longitude in spherical co-ordinates

magnetic flux
angular wave function

angle
magnetic susceptibility

angular velocity of rotation
angular frequency of a sinusoidal function

solid angle
exceptionally, angular velocity of rotation

1 angle
v JLtota\l wave function



Introduction

The first volume of this two-volume series, Modern Atomic Physics—
Fundamental Principles, dealt with fundamental classical problems by
describing experiments involving basic properties of atoms: quantisation of
energy, wave-particle duality, the planetary model of the atom, and the
magnetic moment and angular momentum of atoms. The great contribution
of atomic physics to the birth and development of theoretical physics was
stressed in this first volume, but it was designed to be readily understood by
those who have not studied quantum mechanics; its language was therefore
essentially classical. As a result, we were unable to introduce those aspects
of atomic physics that could not be readily understood without the use of
quantum theory, or at the very least their results. For this reason a second
volume is required.

Two themes will be found in this volume. The first, forming the basis of
chapters 1 to 6, is a logically developed account of atomic structure, using the
methods of quantum mechanics. It is accordingly assumed that the reader has
already studied quantum mechanics, at least at an elementary level. However,
the first four chapters do not use the formal aspects of quantum theory and
an understanding of the general ideas of quantum mechanics will suffice. We
have tried to avoid writing a purely theoretical book, and in order to remain
as closely in contact with the real physical world as possible, we have en-
deavoured to provide a considerable amount of experimental data. The wish
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to make this book of use to students at various levels has led us, especially in
chapter 5, to provide for these different requirements in that various sections
can be omitted without affecting comprehension of the whole.

Chapter 7 presents the second theme of this book. The study of atomic
systems has always been of importance in the elaboration and development of
physical concepts, and atomic physics is an area where the interaction between
the experimentalist and theoretician has been highly beneficial. This mutual
co-operation, especially marked in the early part of this century, remains of
value. The discovery of the ‘Lamb Shift’ (see p. 80), opened up the field of
quantum electrodynamics which itself is now a well understood and most
accurate physical theory. At present, many basic and important problems in
quantum electrodynamics are being studied: problems concerning the
relationship between the electron and the muon; the evaluation of hadronic
corrections; problems of possible symmetry violations in electrodynamics.
Furthermore, the study of so-called ‘exotic atoms’ (muonic, pionic or kaonic
atoms) should provide a wealth of information about nuclear structure. We
have not attempted to present an exhaustive account of these problems, as
this would have required a series of books, but by means of a few examples,
we have aimed simply at providing an insight into current research in atomic
physics.

In writing this book, we have tried to show the student how to handle for
himself the results of an experiment and to give him a sense of orders of magni-
tude necessary for justifying those approximations without which few calcula-
tions in physics would be possible. This prevents us from putting, in the way
theoreticians do: A= c¢ =1; so we had to confront the irritating problem of
units. Since French students have for several years used SI (rationalised MKS)
units, we did not want to interfere with this practice, and we have used
rationalised formulae. However, most publications and major works in
atomic physics, even the most recent, use the non-rationalised gaussian
system and one should be able to convert from one to the other. To this end,
we have introduced into our formulae a coefficient k defined by the relation

K = goflo C*

(1) In the SI system, x = 1: the coefficient x can be simply disregarded in
all the formulae, which then become normal rationalised formulae, and
the numerical values of the constants are

1L . o
9x10°’ an 10

(2) In the gaussian system, where electrical units from the electrostatic
CGS system and magnetic units from the electromagnetic CGS system
are used simultaneously, the coefficients are determined thus

Ho
dne, =1; 411:—1 and K=¢

Appendix 1 gives a set of electromagnetic formulae showing how the
classical formulae should be modified to take account of the coefficient k. We
have taken these modified formulae as the starting point for all our calculations
in atomic physics.

47{8() =
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Finally, we should like to thank all the staff and research workers in our
laboratories, both in Paris and Grenoble, who have helped us to prepare this
new presentation of atomic physics, But above all, we must thank Professors
Kastler and Brossel for all their inspiration, both by their teaching and in the
everyday life of the laboratory.

B. Cagnac
J-C. Pebay-Peyroula






1

A Single Electron without Spin
in a Central Potential—Quantum
Treatment

1.1 Introduction

Volume 1 showed that many aspects of atomic physics could be understood
in terms of simple models, using methods of analysis very similar to those of
classical mechanics. Nevertheless, when a detailed study is required, much less
natural and less obvious hypotheses need to be made and it then becomes very
difficult to assure good agreement between classical theory and experiment.
The methods of quantum mechanics on the other hand appear eminently
suited to atomic physics. Their gradual evolution—non-relativistic wave
mechanics, Dirac’s relativistic mechanics, quantum field theory—has enabled
the understanding and accurate description of many phenomena; further-
more, as will be seen in chapter 4, the concept of electron spin arose as a result
of the development of quantum mechanics. However, it should immediately
be pointed out that a rigorous treatment is possible only in the case of the
hydrogen atom and even this is very difficult. The study of more complex
systems could not be undertaken without the help of various methods of
approximation. This chapter will show how to describe the behaviour of an
electron without spin in a central potential. This study covers the case of the
hydrogen atom and of the hydrogen-like atoms, having a single electron as
described in volume 1, chapter 6. Nevertheless, the reader should try to find
a wider theme in this chapter: a number of assertions made previously should
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become clearer and the results for an electron in a central potential will be a
basis for the study of atoms with many electrons.

The quantum study of the motion of an electron of a hydrogen-like atom
is dealt with in books on quantum mechanics. To ensure this book has the
necessary continuity the main points have been reviewed with emphasis on
the physics and on the description of the results. The notation is that used in
the book on quantum mechanics in this same series from which we have
drawn considerably. The reader may often find it convenient to refer to it.}

1.2 The Case of the Coulomb Field. Quantum Numbers and
Energy

1.2.1 Schrédinger’'s equation

The problem concerns an electron of charge —e orbiting in the coulomb
electrostatic field of the nucleus. If the nucleus is a proton of positive charge e,
the problem studied is that of the hydrogen atom. If the nucleus carries a
charge equal to 2e, 3e, ..., the system under consideration would be an
ionised atom, known as a hydrogen-like atom. For the sake of generality, we
shall take the charge of the nucleus equal to Ze, Z being the atomic number.

The potential energy of the electron in the coulomb potential of the nucleus
is

and by introducing the reduced mass u of the electron (see volume 1, chapter 6)
the hamiltonian for the problem is

K2 h? C
H=——A4+W(r)=—r-4+—
2u 2u r

Schrodinger’s equation may be written as
2u
Ay + — 7 E——)y=0

and by expressing the laplacian operator in spherical polar co-ordinates

Lo, oy e A
2al\" o |T rsino 5 6 | Tosinz0 942

(1.1)
+ — 2 (E—E)!// 0

h?

t+Y. Ayant and E. Belorizky, Cours de mechanique quantique. This book has not been
translated into English. As an alternative, readers are recommended to consult books by
P. T. Matthews, Introduction to Quantum Mechanics, and A. Messiah, Quantum Mechanics.
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It may be shown quite generally that for motion in a central field of force
where W depends only onr, that the solution of the Schrédinger equation must
be of the form

l//(l’, 0, ¢) = @(r) Y(e, ¢)

Y (6, ¢) being the eigenfunctions of 6,2, ¢, being the orbital angular momen-
tum (see textbook on quantum mechanics). Using the assumed form of
¥(r,0,¢), we may write the Schrodinger equation as

4@\ 2 ( c\_ _1[ 1 2 oy
za\" @ | TR F )= 7| sine 20|30

1 %Y
 Sin?0 947
Since the two sides of this equation depend on different variables, they can

equal each other only if they are equal to a constant A. The following two
equations must be true simultaneously

[ Ld( .\ [um(, ¢ AP
@ =g\ ) w\ ) e

(b) 1 0 ,an 1 0*Y 17 =0
sno 20\ """ %0 | T Snt0 agr 1T

Only radial variables come into equation (a) and only angular variables
into equation (b).

1.2.2 Study of the angular part
First it should be noted that equation (b) is separable by putting

Y(6,9) = 6(6) P(¢)
© and @ satisfy the differential equations
(
2o 1

(a) WX6=—I(

b L g 0 0 + 4 k 0=0

—— — | sinf — - = =

® o ag ("0 @ sin? 0

<

The general solution of equation (1.3a) may be written without difficulty
(p:Aei\/(k)d’+ Be—iJ(k)¢
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The existence of a physically acceptable solution requires that ¢ should be
a periodic function of the angle ¢, so that

B(P) = B($+2m) O WIS = i@+

eiv®2r must be equal to unity, which is possible only if 4/(k) is an integer.
The solution will be taken as

®=Aeim (1.4)

by putting k = m?, m being a positive or negative integer.
This value of k is substituted into equation (1.3b) which we rewrite by a
change of variables w = cos 0, the function @(6) becoming P(w)

ey &l (e ™ Vpoo 15
@(—w)£+ 1ot = (1.5)

Generally this second-order differential equation has two independent
solutions that become infinite for w = +1. However, we are studying the
problem of the electron-nucleus bound state; consequently, whatever the
values of the variables, the wavefunction must become zero at infinite distance.
Therefore the general solution is not physically acceptable. Nevertheless, if

A=IlI+1) where / is integral and / > 0
one of the solutions can be finite for all values of w:

for m =0, P(w) will be a Legendre polynomial;
for m # 0, a finite solution will be possible only if |m| < /.

In the latter case, the solution will be an associated Legendre polynomial P,"(w)
such that

Pm (@)= (1 — o?)!m2 P(w) (1.6)

c()Iml

The solution of the angular part of the Schrodinger equation will therefore be
Y im(0, ) = Nim P/™\(cos 0) .6 a7

N, being a normalisation constant which we shall define later. Table 1.1 gives
expressions for P;™ for the commonest values of /.

Y(6,¢) are the eigenfunctions of the orbital angular momentum &, (see section
1.2.1); the quantum numbers / and m therefore allow the orbital angular momentum
associated with the electron motion to be expressed

magnitude: lor]l =+ U+ D]k
component along Oz: (a.), = mh
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Table 1.1 Associated Legendre polynomials
entering into the expression for the angular
function Y (0.9) (see equation (1.7))

/ m P,™(cos6)

0 0 1

1 1 sin 0

1 0 cos 0

2 2 3sin26

2 1 3cosfsinf

2 0 1(3cos2f—1)

3 3 15sin3 6

3 2 15 cos Osin2 0

3 1 3(5co0s20 —1)sinf
3 0 1(5cos® 6 — 3cos 0)

1.2.3 Study of the radial part

The results of the previous section require that A has the value /(/ + 1) in the
radial equation (1.2a).
After rewriting the unknown function £ = y(r)/r, the radial equation

becomes
dzy 2u C I+ 1)
— 4~ 2] = =0 .
arz T [ﬁl( ) X (1.8)

r r?
This differential equation may be solved by using the reduced quantities

A=—2uElR, B=-2uC/, A=I(I+1) (1.9)

(We restrict ourselves to bound states of negative energy E.) The parameters
A and B are positive, and the use of reduced quantities leads to

d?y B 2
—|A——+ —<|x=0 (1.10)
ror?

dr?

The reader may find in quantum mechanics books a discussion leading to
the solution of this reduced equation. Let us review the main steps.

(1) Finding the ‘asymptotic’ behaviour of x(r) as r tends to infinity, the
terms in 1/r and 1/r? in equation (1.10) may be neglected, and the solution is
then straightforward

xnsympt. (r) = etV r

(2) Taking this asymptotic behaviour into account, y(r) will be found to
be of the form

Ar) = u(ryeVr
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u(r) is a polynomial and the negative sign in front of the exponential is chosen
so that the wavefunction does not become infinite for infinite r, which would
be incompatible with the problem under consideration. u(r) must satisfy
the equation

d?u

2 du (B_ A 0 111
37 WA Gl |u= (1.11)

(3) The solution of this differential equation will be obtained in the form
of a series in increasing powers of r. However, in order to satisfy the physical
conditions of the problem (see preceding section), this solution must remain
finite for all values of r. This can be satisfied only if the series expansion has
a limited number of terms. The recurrence relation giving an expression for
the coefficients of the different terms of the series must therefore ‘cut off” at
a certain order p so that the coefficients of the terms for powers of r greater
than p are zero. Calculation of these coefficients shows that this is possible
only if the constant B is a multiple of 24/(A4):

B=(+p+ 1)24/(4) = n.2/(A) (1.12)

It may be shown that all the coefficients of the terms of power greater than
p=n—1—1 are zero. The integral number n must therefore satisfy the
condition

nzl+1

When this condition is satisfied, u(r) is a finite polynomial, and by returning
to the expression for Z(r), one finds that

2Zr \! 2Zr
R=K | — e—Zr/nalenli-ll - (113)

na, na,

a, being the radius of the first Bohr orbit of the hydrogen atom (see
volume 1, chapter 6)
2 h? "

ay=5=——F=4ng, —5

B ucC ue

and K is a normalisation constant.
L2'%1(x) represents a polynomial derived from the Laguerre polynomials
L,(x) by the relation

s

d
L) = 7 L)

Table 1.2 gives the expression for L2 for some values of n and /. Figure 1.1
shows the form of the radial function %(r).



SINGLE ELECTRON WITHOUT SPIN IN A CENTRAL POTENTIAL 7
Table1.2 Polynomials L,z.'f:'(x) entering into the
radial functions (x is proportional to r) (see
equation (1.13))
n / Lo
1 0 —11
2 1 —-31
3 2 —51
4 3 71
2 0 2x—4
3 1 24x — 96
4 2 720x — 5760
3 0 —3x24+18x—18
4 1 —60x2 4 600x — 1200
4 0 4x3 — 48x2 4+ 144x — 96

n=1 n=2 n=3
| 1s 2s 3s
2|, 04
i
=0 '1\ n=11=0 02} n=31=0
\
A) L \ T —
0 5 10a, 0 ~——5— 10 15a,
3p
=1 n=3I=1

DTS et S0

3d

L

0 5 10

15 20a,

Figure 1.1 The radial part Z(r) of the wave function of the hydrogen atom: the
abscissa is the radius vector measured in units of a,, a, being the radius of the first
Bohr orbit (a, & 53 pm); the ordinate is the dimensionless number (a,)%2%(r) ; for
comparison, the value of Z% * is in dotted lines
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1.2.4 Main results

The solution of Schrédinger’s equation (the stages of which were discussed
above) with regard to the requirements of the physical problem propounded,
has led to the definition of:

(1) the magnetic quantum number m entering into the angular part in ¢;
this quantum number m enables the observable values of the component
o, of the orbital angular momentum to be obtained;

(2) the quantum number /, which allows an acceptable solution for ©(6) to
be found, and moreover has to satisfy / > |m| (this quantum number /
characterises the magnitude of the orbital angular momentum);

(3) the principal quantum number », introduced into the solution of the
radial equation, such that n > / + 1.

The eigenvalues E of the hamiltonian H, that is to say the possible values
for the total energy of the electron—nucleus system, may be deduced from
the condition (1.12), which we transform by using the expressions (1.9) for
the reduced parameters 4 and B

4prc? e 2E
h* h?
This requires that the possible values of energy depend only on n; conse-
quently they may be written

A
E—_ 2

T T T

Rhe R is Rydberg’s constant
(see volume 1, chapter 6) (1.14)

Thus, without making any assumption other than Schrédinger’s equation, we
again derive the energy values deduced experimentally from the spectrum of
the hydrogen atom. These energy values E depend only on the value of the
quantum number #», they do not involve the values of / and m; several distinct
quantum states correspond to the same energy E. These energy levels are said
to be degenerate, with a certain order of degeneracy, equal to the number of
these distinct quantum states, in other words, to the number of possible
combinations that can be formed with different values of / and m.

Bohr’s theory of circular orbits did not introduce this concept of
degeneracy; its introduction in this chapter should be particularly noted by
the reader.

Notation. To characterise the various electronic states, frequent use is
made of a pair of symbols, formed from a number, giving the value of n, and
a letter, symbolising the value of /, according to the following code:

Value of the quantum number 0 1 2 3 4 etc.
Letter symbol s pdf g etc

the values for / > 3 following alphabetical order. The state 3p for example, is
characterised by the values n=3, /=1. The symbols s, p,d . . . arise for
historical reasons, and have no logical explanation.
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1.3 Position Probability of the Electron in a Hydrogen-like Atom

Information about the locality of the electron (described by the wavefunction
solution of the Schrodinger equation) will be obtained from the position
probability. This problem will be treated in spherical co-ordinates and to
avoid misunderstanding it is as well to recall that

Y(r,6, ). y*(r,0,¢)dv"

(y* being the complex conjugate function of ) represents the probability of
finding an electron in an elementary volume d¥~ defined in figure 1.2, this
volume being

d¥ =r?sinfdrdode

V4

Figure 1.2 Differential elements in spherical co-ordinates

Normalising the wavefunction  will amount to equating to unity the
integral over all space of this position probability; thus

[wwr2drsingdodg =1 (1.15)

Y may be expressed as the product y = £0 @, and the normalisation condition
can be written in the form of three independent conditions for the variables

r, 0, ¢
j.@@*ﬂdr:l (1.16)
[ @0*sinado =1 (1.17)

[@ordg—1 (1.18)
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These three expressions allow calculation of the normalisation constants used
previously. Using these constants, the wavefunction may be written

¥(r, 0,9) = A(r) 6(0) D(¢) = %(r) Y (6, ¢)

2Z\3 (n—=1I1-1)! ] 2Zr \! 27Zr
g(r) = {( U ) - (___) e‘z’/"“lLf,'++,‘ (_)
na, 2n[(n+ D'P f na, na,

21+1 ({—m)! )
Y(6,¢9)= A/ [ ] (-1)"P,"(cos B)eim® form>0
4z (I +m)!

and for m < 0, one may use the relation
Yl—m — (_] )m Ylm*

Comment Different authors use different conventions to represent Y(6,4). We
have followed that of A. Messiah, Quantum mechanics, and Condon and Shortley,
Theory of atomic spectra. The reader should be wary of this in calculations involving
wave functions.

where

1.3.1 Radial probabilities

The problem under consideration is treated in spherical co-ordinates; since #
depends only on the variable r, the expression

D(r)ydr = ZR* r2dr (1.19)

represents the probability of finding an electron situated between spheres of
radius r and r + dr, that is to say whose distance from the nucleus is between
r and r + dr. From the analytical expression for £, diagrams of D(r) as a
function of r can be drawn. Figure 1.3 shows the probability function D(r)
for some hydrogen-like quantum states. It will be noted that the number of
zeros of the function D(r) is equal to the radial quantum number n, introduced
by Sommerfeld: n, = n — k where k is identified as / + 1.

Position probability at the origin. The probability function D(r) cannot be
used to evaluate the position probability of the electron at the origin, where
r=0. It will be noted that the probability of finding an electron in a small
volume d¥” at the origin is proportional to Z#*d¥". From the results given
in figure 1.1, we see that Z%* is zero for r =0, except for s electrons. The
latter therefore have a non-zero position probability at the nucleus. This
result, specific to the quantum treatment, is very important. Its importance
will be seen especially in chapter 6.

1.3.2 Angular probabilities

It may be seen immediately from the expressions (1.17) and (1.18) that
D(¢)d¢ = ¢, P,*do
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represents the probability of finding the electron within a region of space
bounded by the two planes passing through the z axis and making angles ¢
and ¢ + d¢ with the x axis. A very simple calculation from the expression
(1.4) shows that this probability is always equal to d¢/2x. This indicates that
the distribution of the electrons has a rotational symmetry around the Oz axis.

©0O*sinfd0 represents the probability that the electron-nucleus radius
vector makes an angle between 6 and 6 + d@ with the Oz axis; but the solid
angle dQ corresponding to df (figure 1.2) is

dQ
dQ =2rnsinfdf and OO*sinfdb=pEE* e
7.1

Because of the rotational symmetry about the z axis, the probability of finding
an electron within a fixed solid angle therefore will be proportional to @@*.

1=0
s electron

p electron
m=1 m=0 m=-1
DS = =
d electron
m=2 m=1 m=0 m=-1 m=-2
o K K+ <=
f electron
m=3 m=2 m=1 m=0 m=-1 m=-2 m=-3

Figure 1.4 The angular probability density D(6) in polar co-ordinates

The reader may verify without difficulty that a spherically symmetric distri-
bution of particles has a constant probability per unit solid angle; this
property justifies using @ @* as a probability density.

The most important results arising from this discussion are given in
figure 1.4, which, for different states, shows D(f) = ©@* in polar co-
ordinates, the length OM being proportional to D(f). It may be seen
immediately that for an s state, the probability function D(8) = 1/4= is inde-
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pendent of §; and since D(¢) is always independent of ¢, an s state, corre-
sponding to zero orbital angular momentum has spherical symmetry. This
result is particularly satisfactory because in the Bohr model, although it was
impossible to interpret the existence of zero orbital angular momentum for a
classical orbit, this assumption was necessary nevertheless, in order to obtain
agreement with experiment. To conclude, the notion of an electron orbit in a
classical sense and as in Sommerfeld’s theory has disappeared. It is replaced
by a description in terms of the position probability of an electron. To simplify
the language, and to generalise, the ensemble in this description is often called
an ‘orbit’, and in the rest of this book, the reader will often find expressions
such as 2s orbit’, ‘orbit of an electron in a central potential’, and so on. He
must therefore translate this into quantum language. In many books,
especially in quantum chemistry, the term ‘orbitals’ is used to avoid any
confusion.

1.4 Comparison with the Bohr—-Sommerfeld Model

In volume 1, chapter 6, the reader may find results from the old Bohr-Sommerfeld
semi-classical theory, in particular an expression for the energy E,; involving the two
quantum numbers 7 and k. Various other quantities such as the velocity of the
electron, the axes of the elliptic trajectory, the mean radius vector between the
electron and nucleus and so on, can be calculated. It is interesting to compare them
with the results of section 1.2.

(1) Energy. The energy E, given by the quantum model is identical to that found
by Bohr’s circular orbit hypothesis. This agreement is satisfactory since no rela-
tivistic assumptions were made in the discussion in section 1.2. The relativistic case
will be discussed later.

(2) The quantum number k. In Sommerfeld’s theory (volume 1, chapter 6), the
quantum number k is related to the orbital angular momentum by

G'L=k£=kh
2r

Since o, represents the orbital momentum of the electron in an elliptic trajectory, it
is impossible to imagine how g, could be zero, except in the unlikely case of a linear
trajectory passing through the nucleus, the limiting case of an elliptic trajectory
whose minor axis passes through the nucleus. Quantum theory showed the possibility
of spherically symmetric states, corresponding to /= 0. Correspondence can be
contrived by identifying k with /+ 1, and it also ensures agreement between the
possibility of kK = n in Sommerfeld’s theory and the condition n > /+ 1 in quantum
theory.

Comment By combining the results shown in figures 1.3 and 1.4, position probability
functions may be obtained for hydrogen-like states. Some of these functions are
illustrated in figure 1.5.
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Figure 1.5 Electron clouds for several hydrogen-like states. An electron cloud may be
imagined as a luminous material whose brilliance is proportional to the electron density.
This material has rotational symmetry around the Oz axis (vertical in the figure). Each
diagram represents a cross-section of this material, cut by a plane passing through the
Oz axis. (From White, /ntroduction to Atomic Spectra, McGraw-Hill)
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(3) Mean radius. From the expressions for the position probabilities, on the one
hand, and from calculations involving the Bohr-Sommerfeld model on the other
hand, the following table can be drawn up:

Mean
value Bohr—Sommerfeld model Quantum model Agreement if

a,nz[ 1 ( k2 )] a, nz{ 1[ /(/+1)]}
> 1T4+—f1—-— 1+~-1—-—— k=+/TI(+1
N z +2 n? z +2 n? v+l

2 3 k2 22 —1
(2 a, nz[1+_(1__)] a,2n :1+E[1_l(/+1) 3]]k=
22 2 )| 2z 2 2 |
VI(+1)—3]

<1> 23 23 .
r 2,313 k3 3,302 1(1+3) (/+1) \3/[/_(/+.E)(,+1)]

(4) Spatial quantisation. The Bohr-Sommerfeld theory can be refined by taking
into account the postulates of spatial quantisation; the normals to the orbits, parallel
to the orbital angular momentum vector, can, depending on the value of /, make only
a limited number of angles 8y with the Oz direction, the axis of quantisation (figure
1.6). The orbits can only be in planes normal to these directions, defined by the
possible values of the angle 6y, but there is no physical parameter corresponding to
a particular value of 8y that allows a distinction to be made among the various
possible different planes so as to localise the orbit. This classical model therefore
suggests a certain delocalisation of the electrons.

Some similarity with the results of quantum model, shown graphically in figure
1.4, is therefore apparent. However, this can only be qualitative since in most
instances the direction of the maximum probability does not coincide with the
direction given by the Bohr—-Sommerfeld model.

To summarise, we see that complete correspondence between the Bohr—
Sommerfeld model and the quantum model cannot be found. The Bohr-Sommerfeld
model can only be considered as a stage in the history of physics.

Figure 1.6 Spatial quantisation in the Bohr—Sommerfeld model
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1.5 The Non-Coulomb Central Potential—Lifting the
Degeneracy in /

At the same time as progress was being made in the study of the hydrogen
atom, from the Bohr model to the use of quantum mechanics, models were
developed in order to interpret the more complex spectra of atoms with several
electrons. The various electrons are at a variety of mean distances from the
nucleus; we shall define these in the following chapter, where the concept of
successive ‘electronic shells’ will appear. In a certain class of atoms, an
electron is situated at a mean distance from the nucleus far greater than that
corresponding to the other electrons, and the assembly of the latter possesses
an overall spherical symmetry; they are known as atoms with one outer
electron. The different states usually observed for such atoms differ only in
the trajectories of the outer electron, while the description of the other
electrons remains the same.

A more complete description of atoms with one outer electron will be given
later. In this section we shall study the motion of an outer electron interacting
with the core of the atom, formed from the nucleus and the spherically
symmetric assembly of the other electrons.

1.5.1 Penetrating and non-penetrating orbits

Let us first take a very simple example, inspired by the Bohr or Sommerfeld
model, in which the orbits of the electrons have definite paths in the classical
sense. Two possibilities exist.

(1) The first is the case when the outer electron has a non-penetrating orbit,
shown in figure 1.7(a). If it is accepted that the mean symmetry of the cloud

-, @
’,’ ~ ’/ 1
e \\ // /,
e \ -’ /
. ' - ;
- 1 /’ 7/
. ! ,
L’ A e s
’ ’ . s s ad
e ,/ (the ‘core’ of the L L
, , A , ,
, . , atom is in grey) - L’
/ e ~o ’ A 7
, p . N
/l 7 \\ ’ ’, // \\ ,,
. v ’ / ’ \ -
Do ' e ) )W
P ; ’ I 0\ Piag
' \ / 4 \ -7
' N ’ Pd RN AN ’
\ , . N /
Al \\ // // N ,’
N - P N
(a) *~. .- (b)

Figure 1.7 (a) Non-penetrating orbit, (b) penetrating orbit

formed by the Z — 1 inner electrons is spherical (this will be justified in a later
chapter), the electron experiences the resultant electrostatic potential of the
nuclear charge Ze and of the spherical distribution of charge (Z — 1)g. It will
therefore be subjected to a potential identical to that created by a single
charge e and the discussion presented for the hydrogen atom remains valid.
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(2) On the other hand, if the orbit of the outer electron penetrates inside
the ‘core’ of the atom (figure 1.7(b), penetrating orbit), the problem is much
more complex. A fairly simple solution was given by Sommerfeld using the
model shown in figure 1.8; the Z — 1 inner electrons are distributed within a

————

- \
-~ /
- /
-7 q_s
o i ® Electron
// /A\ ///
’
|4 p’(\\ ///
I/ | _ -~
\ N ><r

~ +" Charge Ze
Charge (Z -1)g~——"

Figure 1.8 Sommerfeld’s model of a penetrating orbit
sphere of radius p. Application of the elementary laws of electrostatics allows

the evaluation of the electrostatic potentials V;,, and V,,, interior and
exterior to the sphere of radius p. Outside one has

N 1 e
ext. 4?80 r
Inside the sphere of radius p, the potential will be
1 Ze
Viae, = — + constant

* 4mey, r

the constant being determined from the continuity of the potential function
at the surface of the sphere of radius p

v 1 Ze e Ze
= | — 4+ —— —
int. 47’.'80 r p p

1.56.2 A quantum model for atoms with one outer electron

During the study of the hydrogen-like quantum states, we saw that it was
impossible to define the exact paths of the electrons and that only the concept
of position probability had any meaning. The concepts of penetrating and
non-penetrating orbits must therefore be modified. We retain only the fact
that when the electron is close to the nucleus it experiences a potential energy

Ze?

Wr)=- - + constant

4re,
and that at a large distance it experiences a potential energy

e2

Wi(r)=—

4rey r
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The solution of Schrédinger’s equation may be attempted by determining
a central potential whose analytic form is adjusted to give the best possible
description of the atom in accordance with experimental results. In general,
the solution can only be carried out numerically. Various methods have been
used (Thomas-Fermi, Hartree); these are specialist problems and it is im-
possible for us to outline them here, even superficially. However, we shall
present an abbreviated approach to the problem that will bring out the main
result. We take as the potential energy

1 2 b\ C b e
W == s 1+;)=7 1+7) C=- 3] 20

which at large distances behaves as —e?/r and which, by adjustment of the
positive parameter b, may become —Ze?/r in the proximity of the nucleus. The
main advantage of this potential is that it adapts to a simple analytical dis-
cussion. The solution of Schrédinger’s equation will be carried out by
following closely the analysis of section 1.2. Separation of the angular and
radial variables is carried out in the same way, and the angular equation is
the same. The radial equation may then be written

d?y 2u 2u C b I(+1)
E—= 14— - 2=0

—— + JR——
dr? h? " r r r?

so, by using the reduced quantities defined by equations (1.9)

2

d? B —Bb+I(l+1
X—[A r+—r(-)]x=0

If I* is any number and we put
I*(*+1)=I1(l+1)— Bb (1.21)

the radial equation takes the same reduced form as in section 1.2 (equations
(1.8) and (1.10)) the only difference being that /* is not an integer. A solution
is sought in the form

x(r) =evOru(r)

and will have physical meaning only if the polynomial u(r) has a finite number
of terms. So that the recurrence relations between the coefficients of the
polynomial u(r) may allow for this, p must be a positive integer or zero, and

B=2(I* + 1+ p)v/(A)

A and B being reduced variables defined by equations (1.9). From the ex-
pression for these reduced variables, the only possible values of the energy
are therefore

Rhc

E=— (l*+—+1)2 (R is Rydberg’s constant)
p
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We see that not only the integer p but also /*, related to the quantum number I,
now appear in the expression for E.
We shall change the notation as follows
(1) The integer » is called the principal quantum number »n, such that

=l+p+1
(2) The effective quantum number n* is defined as
n*=*+p+1=n-4l, where A/=1—-1*
and we write
Rhe Rhc
n*? (n— 4l)?
If b is small so that [ ~ [*, it is easy to evaluate from equation (1.21)
an 2 L0
2041 I+1% a
and the energy levels, a function of the integers n and /, will be characterised

by the energy values
—Rhc

BTV
n__
( all+%)

Our study of the particular potential

C b
W(r)= 7(14‘7)

allows us to see that the degeneracy in | characteristic of the hydrogen-like
orbits is lifted, and that an energy level is characterised by the two quantum
numbers n and . We shall assume that this result is independent of the central
potential W(r). This can be described as the main conclusion of this section.

From the relationship (1.22), it is easy to see that for a given value of n, the
algebraic value of the energy is an increasing function of /. In the following
chapter we shall return to the order of the levels E,, on the energy scale, a
sequence depending only slightly on the shape of the potential W (r). We shall
sce that this point is of great importance (see figure 2.1).

(1.22)

Comment Application to the alkali atoms: some orders of magnitude. In a later
chapter, it will be seen that the alkali atoms (lithium, potassium, sodium, rubidium,
caesium) come within the category of atoms having one outer electron. We now
present some data.

The table below gives the values of the effective quantum number n* for the sodium
atom, calculated from the experimental values of the energy, for various values of
nand /.
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n=3 n=4 n=5 n==6
/=0 1-627 2:643 3-648 4-651
/=1 2177 3133 4-138 5-441
1=2 2-990 3-989 4-987 5-989
/=3 4-000 5-001 6-008
/=4 X X
/=5 X
/=6

We have not indicated in this table the values of n* correspondington=35, /=4,
and n=6, /=4 and /= 5. The corresponding spectral terms can be obtained only
from low intensity infrared transitions, and there is too large a dispersion amongst
the results to allow a meaningful determination of a value of n*.

It will be noted from the table that when n and / have large values, n* is found to
be close to n. This corresponds to non-penetrating orbits. However, forn =4, /=3,
and n=6, /=3, we see that n* exceeds n, which is a priori contradictory to the
relation (1.22). This may be attributed to the simplicity of the model used; a more
precise theory must take into account the deformation of the spherical symmetry
of the atomic core, a deformation produced by the electric field created by the outer
electron (figure 1.9).

Various approximate solutions may be obtained for the wave functions corre-
sponding to the orbits of an electron in a central potential. From the radial part of
the wave function, it is possible, as for the hydrogen-like orbits, to draw curves
giving the radial probability densities D(r) as a function of the distance r from the
nucleus. Figure 1.10 illustrates this for the sodium atom, where the curve drawn
with a thick line represents the radial probability of finding one of the core electrons
in a unit volume; curves (a), (b), (c) drawn with a thin line, represent respectively the
radial probability densities for the outer electron according as it is in the 3s, 3p and
3d quantum states. The probability of finding a 3d electron in the ‘core’ is seen to be
very small, and the 3d orbit may be considered as non-penetrating, in contrast to
the 3s and 3p orbits.

~o==

Figure 1.9 Core polarisation under the influence of the electric field due to the electron.
The shaded part represents a non-spherically symmetric core
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D(r)h

~ao

T
2 4 6 8 10 12 l4a, r

Figure 1.10 Radial probability densities for the sodium atom. The curves drawn in a
thin line represent radial probability densities for the outer electron in various states.
The curve drawn in a thick line represents the radial probability density for the assembly
of core electrons. The two maxima marked with arrows should be noted; they substan-
tiate the concept of an electronic shell, which will be introduced in the next chapter.

This figure is the quantum-mechanical description of the diagrams shown in figures
1.7(a) and 1.7(b)

To conclude this study of the motion of an electron in a central potential,
we should remind ourselves of:

(1) the introduction of the quantum numbers n, / and m imposed by the
reality of the physical problem during the solution of the Schrodinger
equation;

(2) the description of the s orbits (corresponding to / = 0) in terms of the
position probability and their spherical symmetry;

(3) and, above all, the concept of degeneracy.

In the particular case of a Coulomb potential, the energy depends only on
the quantum number »n. In a more general central potential, this degeneracy
is partially lifted, and consequently the energy levels of the electron in this
potential W(r) are described by the two quantum numbers » and /.
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Independent Electron
Approximation in a Central
Potential. Electronic
Configurations

2.1 The Various Interactions in a Complex Atom

In chapter 1 we considered two simple models, one being the hydrogen atom
in which the electron moves in a coulomb potential, without spin being
considered, the other enabling a simplified description of an alkali atom to be
given, its outer electron again being considered without spin.

If we wish to study a given atom in detail, various interactions should be
included when setting up the equation of the problem:

(1) the electrostatic interaction of the electrons with an assumed infinitely
heavy point nucleus;

(2) the electrostatic interaction between the electrons;

(3) the magnetic interaction of the electron spins with the orbital motion;

(4) the interaction between the electron-spin magnetic moments.

The description of the nucleus of the atom is complex. Its existence requires
the consideration of other terms:

(5) the interaction of the orbital and spin magnetic moments of the electrons
with the magnetic moment of the nucleus;

(6) additionally, corrections should be made expressing the motion of the
nucleus, its finite size, and the distribution of the nuclear charges when
the latter is not spherically symmetric.
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We see therefore that the study of an atom is an extremely complex problem.
One approach to its solution is to neglect some of the interactions: terms (5)
and (6), concerned with the influence of the nucleus, cause only very small
changes in the energy levels and when they are neglected the resulting descrip-
tion of the atom is sufficient for many problems. We postpone their study to
chapter 6 and until then we shall confine ourselves to studying the effect of
the interactions (1), (2), (3) and (4).

Furthermore, for most atoms, the main ideas can be brought out by making
the two following assumptions:

(a) the non-relativistic Schrédinger equation may be used;
(b) the spin—spin interaction (4) is much weaker than the spin—orbit
interaction (5).

For atoms with very few'electrons (hydrogen, helium, and so on) assump-
tions (a) and (b) are no longer valid. We shall discuss them again in chapter 4.

If we write the hamiltonian of the system, taking into account the three
interactions (1), (2) and (3) together with the assumptions (a) and (b), we
obtain a complicated Schrédinger equation which cannot be solved exactly.
A solution involving successive approximations must be used. The most
important terms of the hamiltonian correspond to the electrostatic inter-
actions, so first we write the hamiltonian obtained by neglecting the magnetic
interactions (3)

where the inequality j> i is necessary to avoid counting a term in r;; twice;
A; is the laplacian operator, defined with respect to co-ordinates x; y; z; of the
ith electron, r; is the distance between the nucleus and the electron i, and r;;
the distance between electron i and electron j. We still cannot accurately
solve the Schrodinger equation involving this electrostatic hamiltonian. The
difficulty of an accurate solution of the general problem of N interacting
particles, where N> 3, is not unique to quantum mechanics. The same
impossibility exists in classical mechanics. This is a very general result of the
mathematical properties of systems of partial differential equations.
Accordingly we try to simplify the problem further.

(1) As a first approximation, we assume that the electrons are independent
of one another, and subjected to a central potential W(r) (the word potential
is often used for potential energy); thus the hamiltonian reduces to a relatively

simple term H,
hZ
H0= E "'ﬂA,'{'W(r,)

i
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It might seem that we could take for W(r;) just the term

1 Ze?

4ney 1y

of the hamiltonian H, but such an approximation would be very poor, because
we should not have taken account of the electron—electron interactions. To
improve this first approximation, one tries to represent the two terms

1 Ze? 1 €

_ d -
4ney r; 4rneg 1y
J>i

as closely as possible by a central potential W (r). We therefore generalise the
problem of atoms with one outer electron, treated in the preceding chapter,
where the interaction of this outer electron with the core electrons was
expressed by a modification of the potential in 1/r. Intuitively, we can imagine
that as a result of the periodic motion of the electrons, the mean value of the
electrostatic electron—electron interaction forces is a central force.

As we shall see in the next section, the problem described by the hamiltonian
H, can be treated rigorously.

(ii) As a second approximation, it will be necessary to correct the results of
the preceding approximation and also to add the magnetic terms previously
neglected, that is to say we put

H=Ho+T,+T,

The term T represents the error introduced by replacing the two electrostatic
interaction terms by W(r,), so that

1 Ze? 1 €
T,=Z -——+ — —W(ry)
4re, 1y 4mey ry;

¢ J>i

(the potential W(r,) is chosen such that T} is as small as possible); the term T,
represents the magnetic spin—orbit interaction which for the moment we
do not make explicit.

Here we must make an extremely important remark. In the explicit form
of T, that we have given, only corrections due to the electrostatic electron—
electron interactions appear. When the electrons are considered as particles
having spin, the solutions of H, + T resulting from the quantum treatment
should include the description of the spin state of the electrons because of
exchange effects. The corresponding energy terms are known as exchange
terms. The reader should avoid confusing these effects with spin—spin inter-
actions of magnetic origin which we have neglected (assumption (b}). In later
chapters we shall often come across the importance of the exchange terms.
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We should note also that only ‘off-diagonal’ interactions between electron i
and electron j come into the term T,. After evaluating 7T, in the next chapter
we shall see that T, on the other hand, contains only ‘diagonal’ terms relative
to the various electrons i. If we wish to take account of the magnetic spin-spin
interactions, which are off-diagonal, they should be included in the term 7.

Study of the roles of T, and T, taking account of their respective orders
of magnitude, will be the subject of the next chapter.

2.2 The Energy Levels of a System of NV Independent Electrons
in a Central Potential. Configurations

2.2.1 The energy levels

The hamiltonian H, can be written in the form
Ho = Z h;
i

where

h2
h,~ =— m A,- + W(r,.)

The eigenvalues of H, can be calculated from those of each of the inde-
pendent terms A;. Each of the terms A, represents the hamiltonian of an
electron without spin subjected to a central potential W(r;), and finding these
eigenvalues is a problem similar to one we have already treated.

In the study made in the preceding chapter of an electron without spin in
a central potential, we obtained the energy levels as a function of two quantum
numbers # and / of the electron. By studying the problem in more detail, it
may be shown that the respective positions of these energy levels depend very
little on the exact value of the potential energy W(r); their sequence in order
of increasing energy is shown in figure 2.1, where each level is described by
the number »n and by a letter representing the number / (the convention con-
cerning the use of these letters was described in section 1.2). Some states
having different values of n and / may have nearly equal energies, and their
relative position on an energy scale may then depend on the potential W(r);
in figure 2.1 we have shown them as coincident.

For a fixed value of n, the energy is always an increasing function of the
quantum number /, conforming to the model in the preceding chapter (see
also volume 1, chapter 7; the energy is higher for a circular orbit than for an
elliptic orbit of the same major axis). For small values of the quantum number
n, it behaves as a principal quantum number, in that it mainly determines the
value of the energy: all the levels n = 2 lie above the level » = 1, and below all
the levels n = 3. However, from n = 4, the situation is'no longer so simple: the
energy differences corresponding to variations of n or of / become of the same
order of magnitude. Thus the 4s level is very close to the 3d level (and usually
slightly lower); similarly, the 5s and 6s levels are very close to (and often
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Figure 2.1 Order of the energy levels of a single electron in a central potential (each
level is denoted by the principal quantum number n and a letter s, p, d or f, representing
the values 0, 1, 2 or 3 of the quantum number /). The arrows indicate the normal order
of filling (see section 2.4)

below) the 4d and 5d levels respectively. The most glaring, however, is
observed with the 4f level, which is clearly higher than the two levels 5s and
5p and very close to the 5d level.

Knowing the energy levels E;, eigenvalues of the hamiltonian 4;, we now
seek the eigenvalues of H,. Since all the electrons are equivalent, we may
apply the theory of identical particles in order to find the energy levels corre-
sponding to the hamiltonian H,. We summarise the results of this theory,
which are given in books on quantum mechanics, as follows.

(1) The energy levels of a system of N identical particles may be obtained
by summing the energies E; that each particle can have when placed
individually in the potential W(r,).

(2) The wave function of the system of N electrons can be put in the form
of a determinant (the Slater determinant) whose elements are obtained
from the wave functions of the individual electrons. The form of this
wave function forbids a state in which two or more electrons are
described by the same set of quantum numbers (the Pauli principle).
We shall discuss this latter point in section 2.3.

Property (1) allows the energy levels of the system to be determined
immediately. We take a system of three electrons as an example; in figure 2.2,
(a), (b) and (c), we have shown the energy levels of the three clectrons
separately, and (d) is the diagram corresponding to the total energy of the
system.
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Figure 2.2 Determination of the energy of a system of three electrons

2.2.2 Description of the electronic states. Shells and sub-shells.
Configurations

From property (2) summarised above, the total wave function of an atom
formed from independent electrons is obtained from the wave functions of
its individual electrons. Therefore, we describe the state of an atom corre-
sponding to each of the above energy levels in terms of the state of each of its
electrons. In particular we shall specify the quantum numbers » and / of each
of the electrons.

The central potential approximation enables one to show that electrons
having the same value of n are situated at a similar average distance from the
centre of force. Consequently for these electrons, the potential W(r)) is of
the same order of magnitude. This idea has already been expressed in the
course of interpreting X-ray spectra (volume 1, chapter 7), the screening
constant s having values differing considerably according to the value of the
quantum number n. These electrons having the same value of n are said to be
situated in the same electronic shell.

If electrons, situated within the same shell, also have the same quantum
number /, they are said to be in the same sub-shell. A description of the state
of an individual electron includes, inter alia, a specification of the sub-shell
in which it appears. Following established convention, we shall symbolise
each sub-shell by a number, equal to the principal quantum number s,
followed by a letter representing the value of the quantum number / (see, for
example, figure 2.2: two electrons are in the s sub-shell and one electron is
in the 2p sub-shell).

We obtain a description of the overall state of the atom by indicating to
which sub-shell each electron belongs. This overall description is said to
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define a configuration of the atom. We denote a configuration by writing
sequentially the symbols of the sub-shells to which the various electrons
belong. When several electrons belong to the same sub-shell, we write the
corresponding symbol only once, and indicate the number of electrons in
this sub-shell by a superscript.
Examples The configuration corresponding to figure 2.2 is denoted 1s22p.

A configuration consisting of two 1s electrons, two 2s electrons, six 2p electrons,
is denoted 1s22s22p®.

Among all the configurations of an atom, one of them possesses a minimum
energy; it is described as forming the ground state corresponding to the most
stable structure. All the others form excited states. It should be noted at this
point that certain excited configurations are very unlikely since the states of
several electrons would have to be changed simultaneously in order to excite
them.

2.3 The Pauli Principle and Degeneracy of a Configuration
2.3.1 The four quantum numbers and the Pauli principle

In the preceding chapter, we studied the motion of an electron in a certain
potential and characterised the electron by three quantum numbers: the
principal quantum number n, the orbital quantum number / and the magnetic
quantum number m. We recalled that the two quantum numbers / and m
characterise the angular momentum due to the orbital motion of the electron.
We must now introduce the spin angular momentum of the electron charac-
terised by the quantum number m; which has values +} (see volume 1,
chapter 12) and the wavefunction of the electron must be modified to take
this into account. To avoid confusion later, we shall no longer denote the
magnetic quantum number, related to the orbital angular momentum, by m,
but instead by m; with the subscript /.

To summarise, the electron in the atom will therefore be characterised by
the four quantum numbers:

n, the principal quantum number;

/, the quantum number defining the orbital angular momentum;
m,, defining the components of &, along the axis of quantisation;
mg = +}, defining the components of the electron spin.

The Pauli principle is a consequence of the indistinguishability of electrons
and has been incorporated already in proposition (2) set out in the preceding
section. It may be stated as follows: in an atom, the wave functions of the
individual electrons must all be different from one another, and two electrons
therefore cannot have identical values for the set of four quantum numbers
n, I, m;, mg. This principle turns out to have fundamental consequences in the
physics of the atom.

(1) It allows us to state the maximum number of electrons in an atom that
can have the same energy. This concept is already familiar to the reader; the
interpretation of X-ray emission spectra led us to conclude that some of the
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energy levels that might be accepted by atomic electrons are normally complete:
an X-ray emission line can be observed only if an electron from a complete
level is first detached from the atom (see volume 1, chapter 7).

(2) It leads us to evaluate the order of degeneracy of a configuration. In
the central potential model, a configuration specifies the quantum numbers
n and [ for each electron. Let us introduce, in addition, the quantum numbers
m, and m,. (Note that, although we have not introduced the spin through the
term 7, in the hamiltonian, we take account of this parameter henceforth in
order to classify the electronic states.) We see, therefore, that to each single
configuration there will correspond a certain number of descriptions, differing
in the values of m, and m; of each electron. A configuration will therefore have
a certain order of degeneracy. In the next chapter, when we take account of
the terms 7; and 7,, energy corrections will appear which more or less
completely raise this degeneracy.

2.3.2 The maximum number of electrons belonging to the same shell or
sub-shell

(1) The case of a sub-shell. We investigate the maximum number of electrons
having simultaneously identical values of n and /. These electrons must differ
either by the value of m, (which can be one of the (2/+ 1) integral values
between —/ and +/) or by m,(which can take the two values + or —1).

There exist, therefore, 2(2/+ 1) distinct quantum states corresponding to
the same values of n and /, and therefore we can have 2(2/ + 1) electrons in a
sub-shell of quantum number /

I=0(selectrons) maximum number = 2
I=1 (pelectrons) maximum number = 6
=2 (d electrons) maximum number = 10
/=3 (felectrons)  maximum number = 14

A sub-shell containing 2(2/ + 1) electrons is said to be complete.

(2) The case of a shell. Let us now determine the maximum number of
electrons having the same n but different quantum numbers /, m,, m,. We
know (see chapter 1) that the quantum number / can have all values such that

I<n—1
Using the preceding results, we must add up the maximum number of electrons
in each sub-shell

s electrons (I = 0) p electrons (/= 1) [/ anything
maximum number maximum number maximum number
2 + 6 + 4221+ 1)

electrons with /=n — 1
maximum number
+ e+ 22n-1)



30 MODERN ATOMIC PHYSICS: QUANTUM THEORY AND ITS APPLICATIONS
This series may be written as follows
! (n—1Dn

I=2n+4 —— =21
n 4 2 h

l=n-1 l=n—
Z 2201+ 1)=2n+4
=0 1=0
using the well-known result for the sum of the first (n — 1) integers.

The maximum number of electrons of quantum number # is therefore 2n2.
So in a configuration, there is a maximum of two electrons with n = 1, eight
electrons with n =2, 18 electrons with » =3, and so on. A shell containing
the maximum number of electrons, 22, is called a complete shell.

2.3.3 Order of degeneracy of a configuration

We saw (in section 2.3.1) that a given configuration possesses a certain order
of degeneracy. We shall now evaluate this order of degeneracy G.

First case: a single electron in each sub-shell. In the configuration considered,
no electron is characterised by the same pair of quantum numbers # and /. An
electron i may have Y; states according to the values of m, and my, Y; repre-
senting the number of places in the sub-shell

Y. =2QL+1)
and thus there will be
G= H Yi

different states corresponding to this configuration.

Example For a system with three electrons, we may readily find the following
orders of degeneracy
the configuration 1s2s2p -> G =2 x 2 x 6 =24
2p3d4f - G =6 x 10 x 14 = 840

Second case: several electrons in the same sub-shell. Consider a configuration
in which X electrons possess the same » and / quantum numbers. For this
value of /, an electron can have Y = 2(2/+ 1) different states characterised by
different values of m, and m;.

To enumerate the number of possible states, we must take account of the
Pauli principle and of the indistinguishability of the electrons. A simple
procedure enables an easy solution of the problem: we must find the number of
ways of arranging X non-distinguishable objects in Y places, each containing
a maximum of one object.

We obtain these combinations by finding all the permutations of Y objects
amongst themselves, this being Y! permutations. However, among all these
permutations there are a large number that do not give rise to distinct com-
binations: X!, arising from the permutation of two objects and (Y — X)!,
corresponding to the permutations of the empty places, do not produce
discernible changes. The actual number of distinct combinations is therefore

Y!

= Y(r=
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The number g also represents the number of different states corresponding
to X electrons. (Note: in the special case of a complete sub-shell, only one
combination exists, X = Y — g = 1.) The total degeneracy of the configuration
is obtained from the product of g and the degeneracy due to the electrons in
other sub-shells.

Example 1 What is the degeneracy G of the ground state of carbon 1s22s22p2?

(a) for the set of two 1s electrons: X =2 Y=2 g=1
(b) for the set of two 2s electrons: X =2 Y=2 g=1
(c) for the set of two 2p electrons: X=2 Y=6 g=15,

and from the product of the three, one obtains G = 15.

Example2 What is the degeneracy G of an excited state of nitrogen of configuration
1s22s22p23pt?

(a) 1s sub-shell: complete --> g =1

(b) 2s sub-shell: complete --> g =1 G=15%x6=90

(c) 2psub-shell: X=2 Y=6->g=15

(d) 3psub-shell: X=1 Y=6->g=Y=6

2.4 The Periodic Classification of the Elements

2.4.1 The ground state configuration

The different atoms that exist in nature are characterised by a certain number
of electrons, equal to the atomic number Z. The ground state of the structure
is described by a configuration of these electrons such that the total energy is
a minimum. For a description of this structure, it will be convenient to use
the various properties set out in this chapter:

(1) the total energy is the sum of the energies that would be possessed by
each of the electrons alone in a potential W(r);

Table 2.1
Number of
electrons Atom Ground configuration
Z=1 H 1s
=2 He Two electrons in the 1s state: configuration 1s2
=3 Li Since the maximum number of electrons in the 1s shell is
two, the configuration of minimum energy is 1s22s
=4 Be The 2s sub-shell is complete and the ground configuration
is 1s22s2
Z=51t09 The 1s and 2s sub-shells are complete; the 2p sub-shell
progressively fills up
=10 Ne The 2p sub-shell is now complete and the configuration is
1522s22p®
Z=11t017 The three sub-shells 1s, 2s and 2p are complete ; the 3s and
then 3p sub-shells fill up
=18 A The five sub-shells of lowest energy are complete:

1522522p63s23pb
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Table 2.2 Electronic configuration of the elements

The number of electrons in a sub-shell is shown in each column. This number is printed
on a grey background when the sub-shell is complete. (Line 1, line 2, and so on, refer
to the Periodic table, table 2.3.)

Shell K L M N [ P
Sub-sheli 1s [2s 2p|3s 3p 3d|4s 4p 4d 4f |55 5p 5d 5f 5g | 6s 6p 6d 6f 6g 6h | 7s
tine1 | 2he [7]
3L |21
4Be |20
5B 20201
. 6c |2}.2]2
Line 2 7N 21213
80 [2:{2]4
9F 21 25
10Ne [2]26
1M Na [2]2°6 |1
12Mg {2 ("2 612
13A1 [2]2 621
. 14si [[2]°2:6 122
Line3 | 45p 212 6 }2|3
168 2| 2 624
17¢1 (2426|256
18A 2|2 6|28
19K |2{27642 6 1
20ca (22 &2 6 2
21sc |21 276 {2 &, 1|2
2Ti {22 62 6 2|2 @
23V 212 61261 32| s
24cr (2|2 6 |2 6! 5[1 0
25Mn |22 '6 |2 6! 5[2Z °E
26Fe (212 6 [2 6! 6|2 ga
Linea || 27Co |22 6|2 6] 7|2 £2
28Ni (22 6 [2.6]| 8]2 e~
29Cu (2| 2.6 {2 6 10 1_ =
30zn |22 6 {2 "6 102
31Ga [ 226 |2 610211
32Ge (2|26 {2 6 10|2!2
33As (2|2 642 .6 10,213
34se [2|2 62 6 90|12 ]4
36Br [[2{2 6 |26 1W0}2.[56
36Kr (21261286 10]2 6
37Rb |22 6 }2 671 |2 8 1
38Sr (22612 6 10{2 .6 | 2]
39Y 202 126 10}2 6] 1 2
402 |22 612 6 102 6] 2 2 £
41Nb | 2| 26 [2 6,102 6] 4 1 3 _
42Mo [ 2(.2 8 [2 "6 10} 28 5 1 £%
43Tc [2{2.6]12 6 102 6] & 2 °G
44Ru (22 6|2 610|261 7 1 So
) 45Rh [ 212 6 |2 6 10} 2 6| 8 1 8
LineS | 46pd |2f 2 6 |2 6 10| 2 &[10 g~
47Ag | 2{ 2 6|26 10| 2776 | 10 1 =
48cd (2] 2 6|2 6 10} 2 8| 10 3
49 |22 6.1°2 6 10 |.2 8} 10 201
s0sn (22 6 12 6 102 6] 10 2.2
51sb |22 6 {2 6 10/2 6|10 243
52Te |22 6 {2 6 102 6110 214
531 22 6|2 6 102 6/10 215
S4Xe | 2|2 6 |2 6 10{2 6|10 2 s‘]
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Table 2.2—continued

3

Shell K M o P Q
Sub-sheli 1s {2s 2p|3s 3p 3d|4s 4p 4d 4f | 5s 5p 6d 5f 5g | 6s 6p 6d 6f 6g 6h | 7s
56Cs [2 12 6|2 6°10(2 6 10 2 6 L1
56Ba |2 {2 6}2 6 10}2 6 10 2 & 2
57La (212 62 6 102 6 10 2 6| 1 2 1
58Ce (2|2 642 6 10|{2 6 10: 2|2 6 2 |
59Pr (2|2 &}2 6 10{2 6 10 3|2 & 2 |
60Nd 212 62 6 10[2 6 10 4|2 6 2 ‘
61Pm |2 |2 6|2 6 10{2 6 10 5|2 6 2 @
62Sm |2 |2 6 (2 6 10{2 6 10; 6|2 6 2 =
63Eu |2 12 6|2 6-10}2 6 10 7|2 6 2 >
64Gd |2 }2 6|2 6 .10[2 6 10: 7|2 6! 1 2 ®
65Tb 212 6{2 6 10[2 6 10;: 9|2 6 2 «
66Dy |22 6|2 6 102 6 10.10}2 6 2, |
67Ho | 212 6]2 6 10[2 6 10:11}2 & 2 i
68Er (2|2 6|2 6 102 6 10]12|2 6 2 |
69Tm |2 |2 642 6 10| 2 6 10;13|2 6 2 |
70Yb {2 |2 62" 6 10{2 6 10 4|2 6 2 1
Line 6 |f--------- B T T T B e T e T —_—
Mu (2|2 6|2 6 10,2 6 10 14,2 6] 1 2 1
72Hf {212 6|2 6 10| 2 6 10 14| 2 6@ 2 2 2
73T7a |[2{2 6|2 6 10/2 6 10 14/ 2 6 3 2 e~
74w (2|2 62 6 10[2 6 10 14| 2 6. 4 21 G 3
75Re |2 |2 612 6 10[2 6 10 14/ 2 6, 5 2. T g
760s 212 612 6 10[ 2 6 10 14{ 2 6: 6 2! Pt
77 212 612 6 10|2 6 10 142 6 7 _2_,[ .
7Pt |22 612 8 10/ 2 6 10 14| 2 6| 9 1 .
79Au |2 |2 62 6 10| 2 8 10 14{2 6 10 1 R
{ao Hg |2 12 6|2 6 10| 2 6 10 14{2 6 10 —2] : '
81T |2{2 6.2 6 10[2 6 10 142 6 10 211 |
82Pb [2{2 6]2 6 102 6 10 14{2 6 10 212
83Bi |2{2 6|2 6 10|2 6 10 14/2 6 10 2 | 3
84Po |2 12 6{2 6 1012 6 10 142 6 10 24
85At (2 |2.612 6 1002 6 10 14{2 6 10 215
86Rn |2 /2 612 6 1012 6 10 14}2 6 10 2 6
87Fr 212 6]2 6 10{2 6 10 142 6 10 2 6 1
88Ra |.2°|2 6|2 6 102 6 10 142 6 10 2 6 21
...................... FUNY USRUUY S SURU N S
89Ac (22 6|2 6 10,2 6 10 14|2 6 10 2 6|1 2,
90Th (2|2 6|2 6 10{2 6 10 142 6 10 2 6|2 2 [
91Pa (212 . 6{2 6 1012 6 10 14|2 6 10: 2 2 6|1 2:
92U 212612 6 102 6 10 142 6 10 3 2 61 20
93Np (2|2 6)l2 6 10[2 6 10 14}{2 6 10 4 2 6|1 2
94Pu (212 612 6 10f2 6 10 14{2 6 10 5 2 6|1 2!,
95Am |2 [2 612 6 16|2 6 10 14{2 6 10: 6 2 6|1 23
Line7 | 96Cm |2 }2 6.{2 6 102 6 10 14{2 6 10| 7 2 6|1 2. €
97Bk |2:{2 612 6 10|2 6 10 14}t2 6 10| 8 2 8|1 213
98Cf 2|2 612 6 1|2 6 10 14{2 6 1010 2 6 2|5
99 E 2126:/2 6 10{2 6 10 14{2 6 101 2 6 2.
100Fm | 2°}2:-6[2 6 102 6 10 14{2 6 10|12 2 6 2
101Md {212 6 ]2 6. 10(2 6 10 14|2 6 10 {13 2 6 2
102No |22 6|2 6 10}l2 6 10 1412 6 10 14 2 6 2
103w |2 |2 €12 6 10}|2 6 10 142 & 10 14 2 6|1 rz_J

(2) theincreasing sequence of energies for electrons belonging to the various
sub-shells depends only slightly on the exact value of this potential
W(r) and is as indicated in figure 2.1: Is, 2s, 2p, 3s, 3p, and so on;

(3) as a result of the indistinguishability of the electrons and Pauli’s
principle, there is a maximum number of electrons that may belong to

each sub-shell.
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These three properties enable the ground configuration of an atom to be
determined once the total number Z of its electrons is known (see table 2.1).

For atoms having more than 18 electrons, it is difficult to state the ground
configuration at once. As we have already indicated (see section 2.2 and
figure 2.1), a certain number of electronic states such as 4s and 3d, 5s and 4d,
have nearly equal energies, and the form of the central potential used for the
best description of the atom will determine which one is the greater. Therefore
itis not always obvious which configuration corresponds to a minimum energy.
Table 2.2 gives the ground configurations of different atoms (see page 32).
Examination of this table prompts the following remarks.

(a) The order of filling of the sub-shells, with a few exceptions, is given in
figure 2.1 (the direction of the arrows). When several electronic states have
nearly the same energy, under the assumption of a central potential, those
with the smallest / (s state, / = 0) fill up first. It may be asserted that the order
of filling corresponds to a regular increase of the quantity n + /.

(b) This order of filling means that certain sub-shells start to fill, even
though a sub-shell of smaller principal quantum number n may be completely
empty. The ground configurations of many atoms demonstrate this anomaly.

Examples Potassium, calcium (n=3, /=2); rubidium, strontium (n=4, [=2
and / = 3); elements 39-57 (n =4, [ = 3) and so on.

(c) The so-called transition elements are groups of ten elements that
correspond to the progressive filling of an (» — 1)d sub-shell even though the
ns sub-shell is already occupied. Three series of transition elements exist:

filling of the 3d sub-shell from Z = 21 to Z = 30,
filling of the 4d sub-shell from Z = 39 to Z =48,
filling of the 5d sub-shell from Z = 71 to Z = 80.

(d) The so-called rare-earth elements are the 14 elements corresponding to
the progressive filling of the 4f sub-shell, even though the 6s sub-shell is
already complete (from Z = 57 to Z = 70).

(e) Irregularities exist in the order of filling: compare, for example, the
adjacent elements 23 and 24; 40 and 41; 57 and 58; 77 and 78, and so on.

2.4.2 The ground configuration and the properties of an atom

(1) Ionisation potential. Experiments such as Lenard’s permit investigation
of the binding energy of the electrons that are least strongly bound to the rest
of the atom, and allow ionisation potentials to be defined (see volume 1,
chapter 1). Figure 2.3 shows the ionisation potentials for atoms of atomic
number up to 40. Simple considerations enable these results to be understood.

Let us first consider a very elementary picture of a spherically symmetric
distribution of electrons in successive shells. Let r be the number of electrons
in the outermost shell, that is those with the largest value of the quantum num-
ber n. An elementary electrostatic model (such as that discussed in the course
of the study of Moseley’s law in volume 1, chapter 7) shows us that each of the
external electrons sees a field corresponding to the attraction by r protons
only. A single outer electron (r= 1) will therefore be much more weakly
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Figure 2.3 lonisation potential V; of elements whose atomic number Z is between
1 and 40

bound than an electron belonging to an outer shell for which the number r is
large. The ionisation potential V; will therefore be an increasing function of r,
which is particularly noticeable in figure 2.3: V; is a minimum for the alkali
atoms (Li, Na, K, Rb, Cs) which have only one outer electron. On the other
hand V; is a maximum for the rare gases (He, Ne, Ar, Kr, Xe) whose outer s
and p sub-shells are complete and contain a total of r = 8 electrons.

The preceding outline is far from perfect because the picture of shells of
successive charges of spherical symmetry is not realistic. It should be noted
in particular that potassium and copper, each having one outer s electron,
have very different ionisation potentials. The efficiency of screening from the
nuclear charge depends on the exact nature of the interior sub-shells. Let
us refer back to the curves giving the position probability density of an electron
in a central potential (figure 1.10). We may verify that the position probability
of a 3d electron extends to much greater distances from the nucleus than
those of a 3p electron. Hence the inner shells 1s22s?2p®3s23p® of potassium
form a more efficient screen between the outer 4s electron and the nuclear
charge than that formed by the inner shells 1s22s22p®3s23p®3d*° of copper.

(2) Chemical properties. The chemical properties of an atom are related to
the bonding possibilities of that atom with others. This problem is extremely
complex—it may involve a wide variety of interaction processes: electrostatic
forces, exchange forces of quantum origin (see section 4.3.5). We shall confine
ourselves to a few very elementary remarks that concern in particular the
relation between the configuration of the atom and its chemical properties.
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(a) We saw previously that electrons of a slightly filled outer shell were
characterised by a small ionisation potential. The corresponding atoms can
easily lose the electrons of this outer shell, called valence electrons; the atoms
then form a positive ion, providing the origin of very strong electrostatic
bonding.

(b) Now let us consider an atom such as chlorine, bromine or iodine. The
number of electrons in the outer shell is r = 7. It requires one more for the p
shell to be complete. This outer shell, therefore, is not spherically symmetric
and so provides only imperfect screening between a charge external to the
atom and the charges of the inner shells and nucleus. In particular, an ad-
ditional electron is often captured and a negative ion is thereby formed.
These atoms are also very reactive.

(c) Interactions between atoms can result also from an electrostatic bonding
involving the absence of spherical symmetry of the charge distribution (see
appendix 3). The noble gases (helium, neon, argon, krypton, xenon, radon),
with all their sub-shells complete, have a spherically symmetric distribution
of charges, enabling their great chemical inactivity to be understood.

(d) In table 2.2, we remarked that a certain number of elements have an
incompletely filled inner sub-shell, and we called them ‘transition elements’.
Electrons in an incomplete sub-shell may have a binding energy only slightly
different from that of the outer electrons. Several types of positive ions may
be formed and the element is characterised by several valencies (for example
mono- or divalent copper, bi- or trivalent iron, chromium, manganese and
SO on).

These elements are also characterised by noteworthy magnetic properties:
the magnetic moment of the atom or ion resulting from the combination of
orbital and spin angular momenta of incomplete sub-shells usually has a
large value.

(3) The periodic classification of the elements. In the last century, Mendeléev
proposed a classification of the elements by their chemical properties, in the
form of a table in which elements of the same vertical column possess com-
parable chemical properties, elements in the same horizontal line forming a
period. The atomic number Z of each element was obtained by numbering
the positions in this table.

Chemists have come to perfect this table by dividing each of the vertical
columns into a column A and a column B, displayed separately by extending
the layout as in table 2.3. The correspondence between this extended table,
the manner of filling the sub-shells, and the value of the ionisation potentials
is remarkable, and in agreement with the discussion in the preceding section.

Table 2.3 is a relatively simple presentation of this periodic classification,
showing the correlations between properties of the elements and their elec-
tronic configuration; the parts of the table corresponding to the elements
classified by columns are shown in thick lines. Information concerning the
electronic configuration is shown in thin lines and thin characters. At the
centre are the groups of transition elements. The position of the elements
traditionally called ‘rare-earths’ is marked by a cross. The latter differ from
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one another (see table 2.2) essentially by the filling of the 4f sub-shell. Their
chemical properties are very similar. We have displayed on a grey background
the elements whose chemical properties correspond to an affinity for external
electrons (see paragraph 2(b) of this section). They are called metalloids in
some traditional chemistry books.



3

Angular Momenta and
Enumeration of the Energy
Levels

A possible state of an atom is characterised not only by its energy, but also
by its total angular momentum. This total angular momentum is obtained by
the addition of the various angular momenta involved in the atom. In this
chapter, we shall assume that the nucleus of the atom possesses no angular
momentum; we shall take account only of the angular momenta of the elec-
trons. Accordingly, the conclusions that are reached are valid only for atoms
without nuclear angular momentum. The complete problem will be dealt with
in chapter 6.

The determination of the total angular momentum of an atomic state is
important for the following two reasons.

(1) It is closely related to the total magnetic moment, a property which
can be inferred from the angular momentum and which can be measured by
various types of experiment (see volume 1, chapters 9-11). However, we defer
until chapter 5 the determination of the total magnetic moment of an atom,
and the exact theoretical interpretation of these experiments.

(2) It presupposes a detailed study of the different elementary angular
momenta which add together within the atom, and the way in which they
orient themselves in relation to each other. Each of the possible orientations
has a different energy value, and because of this, the degeneracy of each
configuration is partially lifted. In general, it is impossible to calculate these
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energies, but on the other hand it is easy to predict the number of these distinct
energy values, and thus to label the separate energy levels that can be observed.
This chapter is devoted to the second of these tasks.

3.1 Composition of Angular Momenta

3.1.1 Results of the quantum mechanical theory of angular momentum

An angular momentum ¢ can be characterised by two observable quantities:
its magnitude || and its component o,. These two observables are charac-
terised by the two quantum numbers j and m, which may be either integral or
half-integral, and which enable the eigenvalues to be expressed

o, =mh (see volume 1, section 10.2 and figure 10.4)
o] = VLG + DI where —j < m <

If we consider only the orbital angular momentum of a particular electron,
the quantum number j is integral and is identical to the quantum number /
introduced in chapter 1 in the solution of Schrodinger’s equation for a central
potential.

The rules for combining angular momenta are established in textbooks on
quantum mechanics: consider two angular momenta ¢, and ¢, with quantum
numbers j,, m,; and j,, m, respectively. The resultant angular momentum

6=06,+0,
will be characterised by the quantum numbers j and m such that
—Jsm<+j
and
ljs —Ja2| ST <ji+ /s

j can vary only by integer values between these two limits.

If j, and j, are both integral or both half-integral, the resultant quantum
number j is necessarily integral. On the other hand, if one of them is integral
and the other half-integral, then j is necessarily half-integral.

From the equation above we see that the number of possible values of j is
equal to the smaller of the two numbers 2j, + 1 and 2/, + 1.

Comment To derive the preceding results, use is often made of the ‘vector model’.
Nowadays, the formalism of quantum mechanics is familiar to many students, and
the vector model is becoming obsolete. In certain instances, however, it may be a
useful ‘model’; we shall discuss it later (chapter 4).

3.1.2 Notation

In studying the atom, a certain number of angular momenta of various
origins have to be defined. We shall use the following conventions.



ANGULAR MOMENTA AND ENUMERATION OF THE ENERGY LEVELS 41

(1) The quantum numbers are represented by the following letters:
I =the quantum number associated with the orbital motion of an
electron;
s = the spin quantum number of an electron, which always has the
value ;
j = the quantum number associated with the total angular momentum
of an electron;
L = the quantum number associated with the sum of the orbital angular
momenta of the electrons of an atom;
S = the quantum number associated with the sum of the spin angular
momenta of the electrons of an atom;
J = the quantum number associated with the total angular momentum
of an atom.
my, my, m;, mp, ms, m, designate the magnetic quantum numbers
associated with the projection of the preceding angular momenta on
the axis of quantisation.
(2) The angular momentum vector will be represented by the vector o,
with a subscript letter corresponding to the quantum number.

Example

G'Jz.lh

To summarise : in the case, for example, of the orbital motion of an electron,
we write

the vector operator: o, =1h
the eigenvalue of the modulus: lo)| = V[l + D]A
the eigenvalue of the Oz component: (6,), = 0,, =m A

With this notation, we may define the resultant vectors
06;=0,+ 05
6,.=2 0y,
]
Os= Z s,
1

6,=6,+065=20; =20 +20,
i 1 i

or, in units of A,

j=1l+s
L=Zl,
S=Zs,~

J=L+S=Zji=zli+zsi

the sum ¥ being extended over all the electrons of the atom, denoted by the
subscript /.
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By projecting the dimensionless vector equations on to an Oz axis, we
obtain the relations between the magnetic quantum numbers

m;=m; + m mp=2m, ms =2 mg,
i i

mJ=ml.+ms=ij‘=zml,+st,
i i i

This notation, relating to the quantum numbers and the associated
dimensionless vectors, has been adopted internationally by spectroscopists.
Care should be taken because some quantum mechanics books adopt a
slightly different notation.

3.1.3 Total angular momentum of a complete sub-shell

The resultant angular momentum of an assembly of electrons forming a
complete sub-shell is zero. The quantum number m,, defining the orientation
with respect to an axis of quantisation, takes all values between —/ and +/, and
an equal number of electrons have the values m; = +% and m; = —1. Whatever
the Oz axis on which we project the angular momentum vector, we will
therefore have for the assembly of electrons

o, =h>m+h3>m=0

Thus an assembly of electrons forming a complete sub-shell will have
spherical symmetry. This property allows us to simplify the problem of
finding the total angular momentum of an atom: it will result from the
combination of the angular momenta of the electrons in incomplete sub-shells.
The study will be especially simple in the most common situation where only
the outermost sub-shell is incomplete. The transition elements will present
more complications since one of the inner sub-shells is also incomplete.

3.1.4 Angular momentum of the ground state : some examples

In the preceding chapter, we presented a table of the ground state configura-
tions. For certain atoms, it is easy to go further and indicate the angular
momentum of the ground state. Some examples may be given as follows.

(1) Sodium has the configuration 1s22s22p®3s. The single 3s electron, with
orbital angular momentum zero, gives the atom an angular momentum equal
to A by virtue of its spin. This accounts for the historical importance of the
Stern and Gerlach experiment; by verifying the existence of a magnetic
moment in the ground state and by demonstrating that the atom should be
associated with an angular momentum of quantum number J = 4, this experi-
ment confirmed a theory incorporating the electron’s own magnetic moment.

(2) Mercury is formed from complete sub-shells; the total angular momen-
tum will therefore be zero.

(3) Carbon also has some complete sub-shells and two outer electrons
which are p electrons. Thus the resultant angular momentum can have different
values, depending upon the way in which the orbital and spin angular
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momenta are combined. A more refined investigation that we shall carry out
in the following sections will show that the degeneracy of the ground state
(here equal to 15; see section 2.3) is lifted and that several energy levels
corresponding to this configuration, but characterised by other parameters,
may be defined. One of these, of minimum energy, is the ground state with its
related angular momentum. Its magnitude can be determined only by a far
more detailed study (see section 3.4).

(4) Gadolinium is a very complex atom, the 4f sub-shell containing seven
electrons. The total angular momentum will result from the combination of
these seven electrons with the angular momentum of the electron in the 5d
sub-shell, which is also incomplete. The degeneracy of the sound configuration
will be found to be equal to 34 320, and the statements concerning carbon are
equally applicable.

3.2 Spin-Orbit Interaction

To explain the term T,, which was introduced in the preceding chapter to
account for the interactions between the spin and orbital magnetic moments
of the electrons, we shall consider the case of an electron subjected to a central
potential W (r). The electron of velocity v, spin s, describes an orbit with an
orbital angular momentum &, = r x mv = fil. The calculation is carried out
in two stages as follows.

3.2.1 The magnetic field B’ in a frame bound to the electron

The electron of charge ¢ = —e moves in the electrostatic potential
V(ry=W(r)lg=—-W(r)le

Thus in the laboratory frame, there exists a coulomb electric field E = —grad V.
However, in the frame R’ bound to the electron there also exists, as a result of
its motion and the laws of relativistic electromagnetism, a magnetic field B’
which can be calculated from v and E. Let us consider the two galilean
reference frames (R) Oxyz and (R) O'x’y’z’, the reference frame (R’) being
in uniform translational motion in the Ox direction with velocity v with
respect to (R). The usual formulae for the electric and magnetic fields under a
change of reference frame may be written (using the conventional constant k
that depends on the units, and is defined in the introduction or in appendix 1)

E' =E, B, = B,
v €
E - B, B, + o#osz
K , K
E/=————— B

17TV 4T T Vo)

€o Ho
K

v
Ez +— By Bz - UE.V
K

’ ’

T e——— B e ———
V(I = v?e?) TV =eed)

“z
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Our problem is more complex because of the non-rectilinear motion of the
electron.

We consider a particular instant ¢, and we choose as a moving frame (R’),
the galilean frame tangent to the motion of the electron at this instant: its
origin O’ is coincident with the electron at this instant, and its velocity v
coincides with that of the electron at the same instant ¢; the axis O’ x’ is there-
fore parallel to the tangent to the orbit. We may also choose a laboratory
frame (R) whose axes have an origin O coincident with the position of the
electron at the instant ¢ (see figure 3.1). Between these two frames (R) and
(R), we apply the field transformation formulae set out above.

’

A

)

Figure 3.1 Diagram showing axes Oxyz in the laboratory and axes O'x’y’z’ at an
instant of time in a frame tangential to the motion of an electron

In addition we assume that (1) v € ¢, and thus the square root is nearly
equal to unity; (2) the magnetic field is zero in the laboratory reference frame
B.=B,=B,=0

In the frame (R") we deduce that

B, =0
,  €Ho K . . 2 2
= vE, = = vE, (using the relation g, o ¢*= k2)
, €o Ho K

B, =-— vEy=—c—sz,,

<

or, in vector form, independent of the particular axes used in the calculation

. K
B=C—2(E><v)
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3.2.2 Interaction of the spin magnetic moment with the magnetic field B’

The spin—orbit interaction energy, which we shall call AE, results from the
interaction between the magnetic field B’ and the spin magnetic moment

(¢ is negative, but the Bohr magneton f§ is positive).
We may make use of the results of classical electromagnetism by writing

AE= ., B’

However, it must be noted that B’ has a direction in a particular instantaneous
reference frame (R’) and that the electron is continually ‘jumping’ from one
frame (R’) to another tangential reference frame (R’). Evaluation of the
coupling energy AE was carried out for this case by Thomas (in 1926). By
expressing the energy in the laboratory frame (R), he obtained

AE=—1.4, B
We shall use this expression in the following calculation.

The remainder of the calculation of AE does not present difficulties. The
electrostatic field E may be deduced from W (r)

—W(r 1 dW »r
E =—grad V= —grad ( )=____
e e dr r
(r is the radius vector directed from the centre of force C towards the electron
at O').
If we write
K Kk 1dw
B’ = Ex my= ——rxmy
cZm ctme r dr
and since
6, =r X mv
we have
Kk dw k dw
- = ———hl
¢z mer dr mec?r dr

The interaction energy between the magnetic moment . and the field is
therefore

whence
h? dw
~omictr ar °
Important comment We note that dV/dr is negative and consequently d W/dr is
positive. The quantity that precedes the scalar product /.s is positive.

AE
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The preceding calculation may be generalised to the case where the potential
is not central, simply by replacing d W/dr with the partial derivative of W with
respect to r. Thus we may finally write the spin—orbit interaction energy

Y %
AE Is G.1)

T 2mPcrr or
We note that this result involves only mechanical quantities. The formula is

therefore the same in MKSA or CGS units. This ceases to be so if we transform
the previous expressions by using the Bohr magneton

1 eh
Tk 2m
We then obtain
B'=—2ao,uoﬁla—yl and AE=-2¢p ﬂ—zla—Vl.s
er or 070 e r or

Comment A simpler and more intuitive but less general argument also allows the
preceding results to be derived. Suppose that the electron describes a circular path.
Inits rest frame, it sees the nucleus orbiting with a velocity —v. By using the elementary
laws of electricity, the reader may easily show that the electron will see, as a result of
this motion of the nucleus, a magnetic field

the radius vector r being directed from the nucleus C towards the electron. B’ may
be transformed straightforwardly

Uo Ze o, Kk Ze o, k dw
— 0}

W (r) is the potential energy corresponding to the coulomb attraction of the nucleus.
Thus we again arrive at the same expression for B’ and the calculation may be
completed as before.

Evaluation of the assembly of spin—orbit couplings in an atom. The expression
for AE obtained above during the study of an electron moving in a potential
W(r), will allow us to evaluate the term T, of the hamiltonian H of the atom
(see section 2.1). We note that in the calculation of AE, the appearance of the
orbital angular momentum // expresses only the interaction of the spin with
the potential W (r) in which the electron moves. For an atom with N electrons,
we must sum over N terms, each term corresponding to an electron labelled i
and involving the product /;.s,. The reader should satisfy himself that an
expression containing a product such as /;.s;, involving the orbital angular
momentum of the electron j and the spin of the electron i, is meaningless.
(This is strictly true only when assumptions (a) and (b) mentioned in section 2.1
are valid. A spin i—spin j interaction may lead to a spin i-orbit j coupling
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by means of a spin j-orbit j coupling.) The term 7, of the hamiltonian may

then be written
r R aw, /
2= Z zmz (,‘2 r ar' -5

i

where W,(r)is the potential in which the electron i moves. Since 7, enters only
as a correction term, the non-central part in Wi(r) can be neglected; W(r)
will then be the potential involved in H,.

3.3 Principles of the Calculation of Energy Levels in Atoms with
Many Electrons

We now wish to show how the first approximation of a central potential
discussed in chapter 2 can be refined by taking account of the terms 7' and 7.
The degeneracy of a given configuration will then be partially lifted and
several energy levels corresponding to the same configuration will be obtained,
which gives a more realistic situation. Two successive parts of the problem
must be distinguished as follows.

(1) From general considerations, related above all to the symmetries of
the problem, it is possible to show, from the hamiltonian

H=H,+T,+T, (seesection?2.1)

how the degeneracy is lifted and which are the parameters (in particular,
the angular momenta) that allow characterisation of the energy levels
thus distinguished.

(2) A later stage—that we cannot treat in depth—consists of using approxi-
mation methods and then numerical calculations, in order to find the
position of the energy levels. Chapter 4 will provide an introduction to
this problem in the simple case of atoms with one or two electrons.

3.3.1 The possible approximations to the hamiltonian

The hamiltonian H describes an atom isolated in space, and the angular
momentum J must therefore be a constant of the motion. This is manifested
quantum mechanically by the fact that H commutes with the vector operator
J, and every determined state of the atom is described by a value of the total
angular momentum quantum number J.

As it is impossible to solve the problem described by the hamiltonian H
cxactly, the discussion will proceed in successive stages of approximation.

(1) The first stage (stage (1)) is already familiar to us: it consists of con-
sidering only the part H,; this is the approximation of independent electrons
in a central potential. Its solutions are the electronic configurations studied in
the preceding chapter.
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The next stages depend on the respective orders of magnitude of the two
terms 7, and 7.

(2) The second stage (stage (2)) associates either T, or T, with H,, so as to
obtain either

H =Hy+T, ifT\>T,
H2=H0+T2 ifT1<T2

(3) Having obtained the descriptions of the energy levels corresponding to
H, or H,, the third stage (stage (3)) consists of studying the small corrections
that must be applied to these results in order to express the influence of the
term that has been neglected:

either the influence of 7, on the description corresponding to H;—this is
described as L-S coupling (T, > T,);

or the influence of 7, on the description corresponding to H,—this is
described as j—j coupling (T, € T}).

The more general case, in which the two terms 7T, and T, are of the same
order of magnitude, presents far greater difficulties; this intermediate coupling
will not be considered in this book.

3.3.2 L-S coupling

We consider the case where 7, > T, and study in broad outline stages (2) and
(3) above, in order to understand how the degeneracy of a configuration such
as calculated in the preceding chapter can be at least partially lifted.

Stage (2). Let us consider the hamiltonian H; = H, + T;; it describes an
isolated system and consequently commutes, like H, with the total angular
momentum J. By using the general properties of invariance demonstrated in
texts on quantum mechanics, we establish that:

(1) H; commutes with S, where § represents the angular momentum
vector obtained by combining the individual spins s; of each electron
(we remind the reader that although electron spins do not enter into T
explicitly, exchange effects require that the existence of electron spin be
taken into account; see section 2.1);

(2) H, commutes also with L, where L represents the angular momentum
vector obtained by combining the orbital momenta /; of each electron.

Hence the following points may be deduced.

(a) The preceding commutation properties require that the different
eigenstates of the system described by H, should be characterised by a pair of
possible values of the quantum numbers L and S. The electrostatic interaction
energy between the electrons depends on the relative positions of the electronic
orbits, and therefore also on the relative orientations of the vectors /;. It is
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these orientations that determine the vector L; consequently it may be under-
stood why the energy is different for each value of the quantum number L.
Exchange effects also require that the energy depends on S for a given value of
L. Thus the degeneracy of the configuration obtained in stage (1) is found to
be at least partially lifted.

(b) H, does not contain any term expressing the relative orientations of
the pairs of vectors /;, s;. All states having given values of L and of S, whatever
the value of J, have the same energy; they remain degenerate.

(c) To a possible value of L, there correspond 2L + 1 orientations of this
momentum with respect to the axis of quantisation; similarly, for a given
value of S there correspond 25 + 1 possible orientations of this momentum.
Therefore an energy level characterised by the pair of numbers LS will still be
(2L + 1)(2S + 1) times degenerate.

We obtain distinct energy levels arising from the same configuration by
seeking the different pairs of quantum numbers L, S compatible with this
configuration. Since the orbital momenta and the spin momenta resultants of
a complete sub-shell are zero, it is sufficient to consider only the electrons of
incomplete sub-shells in order to obtain the vectors L and .S. When we combine
on the one hand the vectors /; and on the other hand the vectors s;, in order to
obtain L and S, the possible mathematical solutions are not all necessarily
compatible with the Pauli principle and the principle of indistinguishability
of the electrons. This will be considered in more detail in the examples in
section 3.3.4.

Stage (3). We now seek the predictable results of the perturbation calcula-
tion that takes into account the term 7,. The hamiltonian H=Hy,+ T, + T,
no longer commutes with L and .S but only with J. The eigenstates will be
characterised by the single quantum number J and the degeneracy in J,
mentioned in paragraph (b), will be lifted.

The spin—orbit interaction energy 7, depends on the relative orientations
of the pairs of vectors /;, s; and consequently on the relative orientation of the
resultant vectors L and S. This relative orientation determines the vector
J =L + S; thus it may be understood why each value of the quantum number
J corresponds to a different value of the energy. These energy differences
between levels of the same S and the same L but different J, resulting from the
influence of the term T,, are usually called fine structures. Each energy level
characterised by the quantum number J is still 2J + 1 times degenerate.

We obtain all the distinct energy levels arising from the same level (L, S) of
stage (2), by finding all the values of J compatible with the quantum numbers
[.and S. From the rules for combining angular momenta, reviewed in section
3.1, the number of possible values of J is equal to the smaller of the two
numbers 2S5+ 1 and 2L + 1. In most cases, S is smaller than or equal to L,
and the number of distinct energy levels arising from the same level (L, S) is
then equal to 25 + 1. This number 25 + 1 is often called the multiplicity of the
level (L, S) of stage (2); this terminology is retained even if L is less than S.

The distinct levels J obtained in this way are fairly close, since the term T,
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is small in relation to the other terms of the hamiltonian. They are described
as forming a multiplet:

a singlet if 2S+1=1 thatistosay S=0
adoubletif 2S5+ 1 =2 thatistosay S=1%
a triplet if 25+ 1=3 thatistosay S=1
a quartet if 2S+ 1 =4 that is to say S = 2, and so on.

Figure 3.2 summarises these ideas by showing successively the influence of
the terms 75 and T, for the case of a p—p configuration (the atoms of carbon
or silicon for example). In this diagram we give details of the different levels
corresponding to stages (2) and (3) of successive approximation. In the
enumeration of the possible levels, we have taken into account the influence

Stage (1) Stage (2) Stage (3)
Solution of H, Solution of H, = Hy + T,
Energy Energy Energy
L=0 S=0[1] J=0 1S, [1]
[15] L=2 S=0[5 J=2 "D, [5]
L=2 S=005] J=2 3P, [5]
L=1 S$=119] J=1 3P, [3]
J=0 3P, [1]
Energy level of the The term T, defines energy The term T, defines energy
p—p configuration in levels characterised by the levels characterised by the
the central potential pairs (L, S) number J

approximation

Figure 3.2 Fine structure of the energy levels of the p—p configuration in L—S coupling
(the orders of degeneracy are in square brackets)

of Pauli’s principle and of the indistinguishability of the electrons. The reader
should note particularly that in stage (2) not all possible combinations of the
values of L and S are present. In drawing up figure 3.2 we have anticipated
the results of section 3.4.

Spectroscopic notation. In L-S coupling, it is usual to designate an energy
level (or spectral term) by a set of symbols defining the values of L, S and J.

(1) A letter characterises the value of L according to a notation convention
introduced by early spectroscopists. It is merely the transposition in
capital letters of the convention already described at the end of section
1.2 for the quantum number / of an electron:

Letter symbol: SPDFGH
Corresponding valueof L: 01 2 3 4 5 etc

(2) A superscript in front of the letter gives the value of the multiplicity
2S + 1 (and not the value of .S). This may seem at first sight to be a little
irrational but in practice it proves to be useful.
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(3) A subscript after the letter gives the value of J.

To summarise, this notation may be represented thus
25+1[letter symbolising value of L],

Examples
2Fs;p > S=1% L=3 J=3
D, >S=1 L=2 J=2
Often, the configuration of which the level considered forms part can be
designated without ambiguity by indicating the quantum number » of an

electron that has been excited. For example, the ground configuration of an
atom of mercury is
(i) (—)6s?

and some of the excited configurations are
(i) (—)6s6p (iii) (——)6s7p (iv) (—)6s6d, etc.

The different levels of the configurations (i), (ii) and (iv) are defined by putting
the number 6 in front of the symbol defined previously

61S,, 63P,;, 63D,
and so on, and the levels of configuration (iii) by putting the number 7:
7 3P,

3.3.3 j— coupling

In stage (2) we study the hamiltonian H, = Ho, + T,, where H, is a hamiltonian
describing a central potential, as is 75, in accordance with the approximation that
we stated at the end of section 3.2; H, can then be written

h? h? ldW(r,)]
H.=S | —— A+W@E)+1.5s
2 /_‘[ o (r) "2m2c2 T

This is the hamiltonian of identical independent particles in a central potential.

Each of the electrons, assumed isolated in this central potential, will have energy
levels characterised by j;, the quantum number corresponding to the total angular
momentum of the electron, and by the values /; and s,. The problem is the same as
that treated in section 1.5 and continued in section 2.2, but as a result of spin—-orbit
interaction, the eigenstates of the electron will be characterised not only by »; and /;
but also by j;. It should be noted that, for a given configuration, j; can take only two
values, /; — 4 and /; + 4.

The energy levels of the hamiltonian H, may be found without difficulty, the
cnergy being the sum of the individual energies of the electrons, and a particular
level will be characterised by the set of quantum numbers 7, /; and j; of the individual
clectrons. Figure 3.3 shows the energy levels for two p electrons of given quantum
number #n, characterised by j values equal to 3 and 3. The centre column defines the
cnergy levels of the hamiltonian H,. We note that as a result of the indistinguishability
of the electrons, the two states j, = 4, j, = } and j, = %, j, = 1 have the same energy.

In stage (3), we now investigate the influence of the term T, considered as a cor-
rection to the preceding results. The energy levels that we obtained as eigenvalues
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Stage (1) Stage (2) Stage (3)
Solution of H, Solution of H, = Hy+ T, Solutionof H=Hs+T,+ T,
Energy (Two p electrons) Energy Energy
' 32 J=0 1
c i _a
[15] Jh=]2= 32 (6] {% 3 J=2 [5]
hi2=%% [8] 23 J=2 18]
23 J=1 [3]
h=h=3z [1] 13 J=0 [1]

Figure 3.3 Fine structure of the energy levels of the p—p configuration in j—/ coupling
(as for the ground state of lead (Xe) 6s2 6p2. Note: The positions of the levels (the
orders of degeneracy are in square brackets) as shown in figures 3.2 and 3.3 are entirely
arbitrary. Only the principle is illustrated

of H, are characterised by the different j; and can thus correspond to various values
of the angular momentum J; these energy levels are therefore degenerate in J. On
the other hand H = H, + T, has eigenvalues characterised by J. The degeneracy in
J will be lifted and the energy levels will now be defined by the j; and a particular
value of J. The third column in figure 3.3 gives the result for an atom with two p
electrons. We suggest that the reader confirms, after studying section 3.4, the number
of levels arising from stages (2) and (3) as consequences of the indistinguishability of
the electrons and of Pauli’s principle.

Notation. It is obvious that neither the resultant L of the orbital momenta nor the
resultant .S of the spins are involved in any way. The notation for the spectral terms
must state the quantum numbers 7, /;, j; and the total angular momentum J for each
electron. The values of j; are usually written within brackets, followed by a subscript
denoting the value of J and preceded by the characteristic set of #; and /, for the
electrons contributing to the angular momentum.

Example One of the levels of the ground configuration of lead (corresponding to
figure 3.3) may be denoted as

6p6p(1/2, 3/2),

/1
J1 J2 J

Comments The two cases treated in sections 3.3.2 and 3.3.3 are extreme cases
permitting a fairly precise theoretical study of a certain number of elements; but
many actual cases are only imperfectly described by one or other of these models.
Consider for example the elements that possess complete internal sub-shells and
two p electrons in their ground state: carbon, silicon, germanium, tin, lead (Group
IV B of the periodic table). Carbon is adequately described by L-S coupling, lead
by j—j coupling, but silicon, germanium and tin must be studied under conditions of
intermediate coupling.

Now H commutes with J; also, the number of possible states derived from the
assembly of electrons, characterised individually by s, and /,, is always the same,
whatever the type of coupling. The reader should be able to deduce that the number
of levels having the same value of J is independent of the type of coupling (compare
figures 3.2 and 3.3).
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Different models have been proposed to study intermediate coupling, especially
for atoms involving more than two electrons (the excited states of the rare gases in
particular). Even a schematic study of them is beyond the scope of this book.

3.4 Determination of the Angular Momenta and Enumeration of
the Different Energy Levels of a Configuration

In the previous section we presented general outlines of the methods of
calculation of energy levels by means of stages (1), (2) and (3) of successive
approximation. The study can now be taken a little further. By taking account
on the one hand of the indistinguishability of electrons and of the Pauli
principle, and on the other hand of the rules for combining angular momenta,
we will show in this section how the exact number of distinct energy levels
corresponding to the same configuration may be counted, and how to attribute
an angular momentum to each of them. In this section we shall consider only
the case of L-S coupling. The reader could—and this would be an excellent
exercise—carry out an analogous study for the case of j—j coupling.

As remarked in the preceding section, in order to determine the values of
L, S and J, it is sufficient to combine the angular momenta of electrons not
belonging to complete sub-shells. For the various elements, these electrons
appear on a white background in table 2.2. Two cases should be considered
as follows.

3.4.1 Electrons belonging to different sub-shells

None of the electrons belonging to incomplete sub-shells has both quantum
numbers » and / simultaneously equal to those of another electron. (These are
called non-equivalent electrons.) All combinations of the vectors /; and s; are
possible, none being forbidden by Pauli’s principle. The quantum numbers
L, S and J are determined by seeking all possible combinations, first of s, and
I;, then of S and L. To each different value of J obtained (from the different

Table 3.1
Stage (1) Stage (2) Stage (3)
Order of Order of
degeneracy Spectral degeneracy
Configuration S L (2S+1)(@2L+1) J term 2J + 1
ns—np 0 1 3 1 P, 3
/1 =0 /2 =1 R
Order of degeneracy Y Po
(45, +2) (4, +2)=12 11 9 1 3p, 3
2 3P, 5
A / N——

Two distinct levels Four distinct levels
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values of L or S) there corresponds a distinct energy level. Tables 3.1 and 3.2
provide two examples, and the agreement between the degeneracies obtained
may be confirmed.

Table 3.2
Stage (1) Stage (2) Stage (3)
Order of Order of
degeneracy Spectral degeneracy
Configuration S L 2S+1)@L+1) J term 2J+1
0 1 0 1So 1
0 1 3 1 P, 3
0 2 5 2 D, 5
np-mp 10 3 1 3S, 3
L=1 I,=1 0 3p 1
Order of degeneracy ©

4, +2) (4, +2)=36 1 1 9 1 3P, 3
2 3P, 5
1 3D, 3
1 2 15 2 3D, 5
3 3D, 7
R,__/ R,__/

Six distinct levels Ten distinct levels

3.4.2 Equivalent electrons (belonging to the same sub-shell)

Apart from complete sub-shells, an atom may possess equivalent electrons,
that is to say, belonging to the same sub-shell and having the same quantum
numbers z and /. We confine ourselves to considering the case of two equivalent
electrons. More complex cases can be treated by means of a similar technique.

An elegant method provides an immediate solution to the problem: it is
sufficient to use the symmetries of the wave function and we refer the reader
who is sufficiently familiar with quantum mechanics to specialised books (see
Messiah, page 600). Here we use the more elementary method of deducing
the different states satisfying Pauli’s principle and of seeking the spectral
terms that can be formed with these states.

We explain the method by taking the example of two equivalent p electrons.
The order of degeneracy of a p—p configuration is G = 15 (see chapter 2). Let
us set up a table (table 3.3) allowing all the possible states to be classified. To
do this, we set out the magnetic quantum numbers m, (—1, 0, +1) and m,
(=3 and +3) of electron 1 in a horizontal line and the same quantities for elec-
tron 2 in a vertical line.

Thus we form 36 squares, but we note:

(1) that the squares placed on the principal diagonal of the table correspond
to states having two electrons with the same quantum numbers m, and
m.--Pauli’s principle requires that they be eliminated:
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(2) that since the electrons are equivalent, it is impossible to distinguish
states represented by two symmetric positions with respect to the
principal diagonal—a straightforward analysis shows that only 15 states
are realisable, which is consistent with the value of G already calculated.

In each square, we indicate the values of the magnetic quantum numbers m,,

and mg corresponding to the total angular momenta. From the principle of
composition of angular momenta, they are equal to

mp=m +mg,

ms = mg, + ms,

respectively. )
Without Pauli’s principle and indistinguishability we would obtain from
stage (2) of approximation the six distinct levels (L, S) obtained in table 3.2.

Table 3.3
1 1 0 0 -1 -1 | m,
3 -3 3 -z 3 —% ms,
1 3 1
1 -3 2\ 0
0 3 TN 1 0 In each square
0 -+ L1\ o] 1N\ oNo my, ms
-1 z 0 110 0|—=1\1|—1 0
1 —1 o0 0N=1 [T\ 0 [—1\—1|-2\ 0 _
T: (e) (d) (e) (b) (a)
H‘,__/
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We now show for the case with which we are concerned that the values indi-
cated for m; and mg are compatible only with a restricted number of levels.

(a) We note that in table 3.3, the particular value mg =1 and m; = 2 does
not exist. A 3D set of levels (the multiplet S = 1, L = 2) therefore cannot exist
since some of the states required for this multiplet are missing.

(b) We find the values mg =0, m; =2 and mg=0, m;, = —2. A multiplet
with L = 2 therefore must exist, and as we have eliminated the multiplet 3D,
it can only have S = 0, that is to say the multiplet *D consisting of the single
level 'D,. The set of values situated on the line (a) allows this 'D, term to be
constructed.

(c) In the remaining squares, we note especially the states m; =1, mg=1
and m; =1, mg=—1. The multiplet S =1, L =1 therefore should exist; the
corresponding levels 3P,, 3P,, 3P, can therefore be constructed from the set
of values situated on lines (b), (c) and (d).

(d) The last remaining square, on line (e), corresponds to the term *S,.

To summarise, the p—p configuration will contain five levels as shown in
table 3.4 below. This is the assumption made in setting up figure 3.2 and which
is now vindicated.

Table 3.4
Stage (1) Stage (2) Stage (3)
Order of Order of
degeneracy Spectral degeneracy
Configuration S L (2S+1)RL+1) J term 2J +1
00 1 0 1S, 1
np-np 5 2 D 5
Lh=1 l,=1 0 2 2
Order of degeneracy 0 3Po 1
G=15 11 9 1 3P, 3
2 3P, 5
N—— — N——’
Three distinct levels Five distinct levels

3.4.3 Hund's rule

The analysis carried out in sections 3.4.1 and 3.4.2 has led to an enumeration
of the energy levels corresponding to a particular configuration, but we have
no information, even qualitative, as to the position of these levels. Hund’s
rule partially fulfils this requirement by providing information about the
structure of the level whose energy is the lowest within a configuration. It
states that:

the lowest energy level of a given configuration has the largest possible value
of S, and for this value of S, the greatest possible value of '..

The proof of this rule is not strictly rigorous and is beyond the scope of this
book. Hund’s rule is valuable for a ground configuration; it allows the values
of S and L of the ground configuration to be determined, an important
application, especially in the study of magnetism.
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3.5 Summary

The central potential approximation involves only the electrostatic interactions
within the atom. As shown in chapter 2, it gives rise to the notion of a con-
figuration that characterises the atom by a description of the individual
electrons distributed in shells and sub-shells.

The next stage, developed in this chapter, was to complete the model of the
atom by introducing, in particular, magnetic interactions and seeking the
values of the total angular momentum. Thus we defined the possible energy
levels that correspond to a given configuration. The complexity of the problem
did not permit us to go beyond the stage of enumerating energy levels, but the
results obtained are fundamental: they are preliminary to all more detailed
studies, such as those of the following chapter, and are introductory to the
discussion of atomic magnetism in chapter 5.



4

The Spectroscopy of Systems
with One and Two Electrons

The main purpose of the discussion in the preceding chapters was to explain
and characterise the various energy levels of the atom. We met the concept of
a configuration (chapter 2), and then the characterisation of the levels as a
function of the various angular momenta involved (chapter 3). However, we
only established qualitative results and there is little possibility of obtaining
more detailed information about the position of these levels on an energy
scale. There are two main reasons for this:

(1) as we indicated at the beginning of chapter 2, the formulation of the
complete equation proves to be very complex: it is necessary to take
account of many interactions that, depending on the atoms considered,
can have a wide range of relative magnitudes;

(2) no rigorous solution is possible and a quantitative study requires, in a
majority of cases, the use of numerical methods.

The object of this chapter, in contrast to that of chapter 3, is to present a
more detailed study of some particular cases for which we may either establish
some simple results for the position of the levels, or provide interesting in-
formation from a historical point of view or in terms of the ideas that emerge
from such information.

The influence of the nucleus (interactions (5) and (6) described in section 2.1)
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should also be studied. These interactions will be considered as the final stage
of our study and will be the subject-matter of a special chapter. Thus the
results obtained in this chapter will be valid—apart from small corrections—
only for atoms whose nuclear spin is zero.

Atomic spectroscopy is concerned with the study of the characteristic fre-
quencies of the radiation emitted by atoms. Since many properties of an atom
derive from the spectra observed, this discipline has considerable importance.
In this chapter we shall make use of the relationship between the energy
levels and the radiative transitions that are observed. As a result of the Ritz
combination principle, the wave numbers 1/A of the observed transitions may
be obtained from the difference of two spectral terms

1
1= T,-T,

the spectral term T being equal to

1
T=—-——FE
hc
where E is the energy of a level. However, not all combinations of spectral
terms are possible; only a limited number of them can be observed, and
selection rules allow these to be determined. In some simple cases the selection
rules can be established from a semi-classical theory of radiation. In each case
studied in this chapter, we confine ourselves to stating the selection rules and
describing their use by means of examples. Nevertheless, in section 4.1, we
indicate the stages in the quantum treatment that allow the selection rules to
be derived. Some of the points raised will become familiar to the reader only
after studying chapter 5 and appendixes 3 and 5. Therefore we suggest that
the study of this next section could be postponed.

4.1 Selection Rules

The quantitative study of transition probabilities between two levels 1 and 2 requires
knowledge of the values of the coefficients A4,,, B, By, (see volume 1, chapter 3).
Direct study of the spontaneous emission coefficient A4,, which is the main concern
of this chapter, proves to be more difficult in quantum formalism than that of the
coefficients B,, and B;,; however, we note that the relation

8nh
—X,—Bzx

allows us to reduce the problem to the study of the absorption and induced emission
coefficients By, and B,;.

These two coefficients express the interaction of an atom with an external electro-
magnetic field. In the presence of such a field, the hamiltonian of an atom may be
obtained by adding the terms defined by relation (5.12) to the hamiltonian of the
free atom. Some of the terms of the hamiltonian are rearranged into a term HY
dependent on time. The study of the hamiltonian may therefore be carried out by
using time-dependent perturbation theory and from this we learn that the transition

Ay =
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probability, induced by the perturbation between the states 1 and 2 of the atom, is
proportional to the square of the matrix element

(1[H“)|2>

connecting the description of state 1 to that of state 2.

In general, it is impossible to evaluate transition probabilities rigorously, and so
an expansion of A in terms of successive multipole orders is used (see appendix 3).
These terms express successively:

(1) the coupling of the electric field E(¢), assumed uniform over the volume of the
atom, with the electric dipole moment p of the atom;

(2) the coupling of the magnetic field B(¢), assumed uniform, with the magnetic
dipole moment J of the atom;

(3) the coupling of the electric field and of the magnetic field with the electric
quadrupole moments; and so on.

We restrict ourselves to a brief analysis of the case of electric dipole emission
corresponding to the first term, disregarding the rest. H‘¥ may then be written

HY =—p E

Since E is assumed uniform over the volume of the atom, the transition probability
is proportional to the square of the matrix element

Ad|p|2>

p being a vector operator. Let us assume that state 1 is characterised by the quantum
numbers J and my, and state 2 by the quantum numbers J’ and m,’. As a direct
result of the Wigner—Eckart theorem (see appendix 5) we may state a general selection
rule as follows.

From the general form of the Wigner—Eckart theorem given in appendix 5.3, it
follows from the properties of the Clebsch-Gordan coefficients that the matrix
element

< Imy|TAHT T my™>

of the component g of the tensor operator 7% must be zero unless
my—my’ =q
|[J-J<k<J+J

In the particular case of a vector operator, k =1, g =0, +1. Therefore, the only
matrix elements (1| p|2) different from zero are those such that

my — m,’=0,il
J—-J =0,+1
excludingJ=J"=0

Comment The selection rule for the quantum number m; is the one that we obtained
from the conservation of angular momentum of radiation, and confirmed by means
of the Zeeman effect (volume 1, chapter 11).

Thus we find selection rules for electric dipole emission, valid whatever the type
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of coupling. Other selection rules involve either L and S in LS coupling or j, and j,
in j—j coupling. They arise from a more complex analysis that we shall not attempt
here. We shall merely point out that a relatively simple calculation for the case of a
hydrogen-like atom allows one to show, from expressions for the wave functions
and by using a recurrence relation for the associated Legendre polynomials, that the
only non-zero electric dipole matrix elements are those connecting two states / and
I” such that

I=I"+1

A numerical calculation shows that the electric dipole transition probabilities are
much greater than magnetic dipole transition probabilities. Therefore evidence of
magnetic dipole transition phenomena can be obtained only in certain circumstances
where the selection rules forbid electric dipole transitions. Such is the case for
magnetic resonance transitions between Zeeman sublevels of a level J; we shall
meet other examples in chapter 7.

4.2 An Atom with One Outer Electron, Taking into Account
Electron Spin

We studied previously (section 1.5) the energy levels of a system formed by
one electron without spin, moving in a non-coulomb central potential; each
of the energy levels of this system is characterised by one value of the orbital
quantum number. For the elements of Group IA (the alkalis), all the states
observed correspond to the following scheme: an outer electron, and a core
formed from the nucleus and the other electrons. However, to obtain results
in agreement with observation, it is necessary to take account of the spin of
the electron. In a more detailed study, therefore, we should introduce the total
angular momentum and study the energy corrections resulting from spin—orbit
coupling.

Comment Silver, in column IB, may be similarly described; in the case of copper,
excited states of a more complex configuration are observed in addition.

4.2.1 The total angular momentum

If the core has a total orbital angular momentum and spin angular momentum
of zero, L reduces to /, S to s and J to j, where /, s and j are respectively the
orbital, spin and total angular momenta of the outer electron. In order to
obtain the total angular momentum of an atom we shall add to / the angular
momentum s by applying the coupling rules for angular momenta. For a
given value of / different from zero, we therefore have two values of the
angular momentum . To each value of j there will correspond an energy
level that we shall denote with the aid of the spectroscopic notation defined
in the preceding chapter. It should be noted that all the levels of the simplified
model of the alkali atom without spin will now be found to be doublets except
the s levels (/ = 0) (see figure 4.1).
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——— F
1=3 f ;—a(3,ﬂ) 2

'Atom with | Atom with

'ope outer electron, one outer electron,
Idisregarding spin | taking account of spin
|

Figure 4.1 Influence of spin—orbit coupling on the energy levels of an atom with one
outer electron

4.2.2 Spin-orbit coupling

To the values of energy obtained solely from the coulomb interaction between
electrons (as obtained in section 1.5), we shall add the spin-orbit coupling
energy (section 3.2)

hl
—1Il.s=al.s

AE= 2m2c?r dr

We saw previously that for a given value of /, there are two values of j, that
is to say, two different values of the scalar product /.s. The scalar product
may be evaluated easily by squaring the sum of the operators

Jj=1l+s
$O
ji=1+s2+2ls
whence
jz —]2_§2

ls=
s 2
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By means of the expressions for the eigenvalues of the operators representing
squares of the angular momenta, we obtain

p JG+D =10+ 1) —s(s+1)
5=
2

and so we may write the spin—orbit coupling energy

JU+D -1+ —s(s+1)

AE = a(l,n) >
where
Ln) W dw
a(l.n C 2m2clr dr

a(l,n) depends on the quantum numbers » and / through the mean value of r,
and can be written explicitly in terms of expressions for the mean radius r and
and the potential energy W(r).

For given values of / and » (I # 0), there are two values of j and thus two
values of AE. Let us take as an example the case where the orbital momentum
[ of the electron is equal to one. We have

I=1, j=%—>AE,=a(l,n) Gx3)-(1Ux2)-Gx3

2
a(l,n)
) )
=1, j=t—>AE —a(n DD ZEXD
=—a(l,n) @)

Comment The reader may confirm that the difference AE, — AE, is equal to
a.jmaxs Whatever the value of /, jma, being the larger j value for the pair of levels.

By letting E, be the energy obtained from the theory involving only the
coulomb interaction (£, is an eigenvalue of H,, stage (1) of chapter 2; we note
that there is no stage (2) in this example), the two corresponding levels have
energies

E,=E,+ AE,
E, = E, + AE,

Figure 4.1 shows the results obtained for different values of /, and figure 4.2
shows the principal energy levels of sodium obtained experimentally. In this
diagram, the energy levels have been labelled in accordance with the spectro-
scopic notation defined in chapter 3, and for the sake of clarity, the levels
corresponding to the different values of / have been set out in a direction
perpendicular to the energy axis. It should be remarked that the existence of
doublet levels was of considerable historical importance: they demonstrated
experimentally the existence of spin.
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5.13 S p D F

328, ,, Ground level

Figure 4.2 Energy levels and spectrum of sodium. Only a few transitions are shown
in this diagram (the numbers indicate the wavelengths measured in nanometres). The
ordinate is the energy measured in electron-volts, the energy of the ground level being
taken as zero. Note: The separations between doublet levels have been strongly

exaggerated

4.2.3 The observed spectra

The following selection rules are used.

The allowed transitions are those corresponding to a transition between an
energy level described by the quantum numbers n,, /;, j, and a level described
by n,, ,, j,, such that

An = n, — n, = any value
Al= [2 - ll = tl
Aj=j,—j1=0, +l

We should note that in figure 4.2, the lines connected to an S state are
doublets whereas the lines not connected to an S state are triplets. Since the
two lines

3?p, —3?S, and 3°P, — 3%S,

are by far the most intense of the spectrum, they are often incorrectly
described as ‘the sodium doublet’—such a generalisation should not be made.
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4.3 Atoms with Two Electrons

Under this heading come atoms formed from complete sub-shells with two
additional electrons. Apart from the helium atom, there are atoms having
complete internal shells and two valence electrons such as the alkaline earths
(magnesium, calcium, barium, strontium), zinc, cadmium and mercury. There
are other atomic systems in this category, for instance the ions Li*, C2+, N3+
and so on. The calcium atom may be taken as an example. Its ground con-
figuration is
[1s2 252 2p® 352 3p®] 4s? = [—]4s?

Many types of excited states can occur, the most probable being those where
only one electron is excited
[—]4sns [—14snp [—]4snd [—14s nf
In addition, the states
[—]3d4s [—]3d4p [—]3d3d [—]4pdp

may be observed.

4.3.1 Method of approach

It is possible to obtain some quite simple results for atoms with two electrons
by generalising the method used for the alkali atoms. We saw (section 4.2)
that the only correction to be made to the energy E, of an electron without
spin in a central potential is related to the existence of electron spin and its
coupling with the orbital angular momentum. Let E, be the energy associated
with the configuration of an atom with two electrons in the central potential
approximation. The angular momenta involved are:

(1) the spins s; and s, and the orbital angular momenta /;, and /, of the
two electrons;
(2) the resultants

inL-Scoupling:L=1I/,+1/, and S=s,=5,
inj—j coupling:j, =4 +s, and j,=05L+s,;
(3) the total angular momentum J=L + S =j; + j,.

We assume that the energies E of the different levels of an electronic con-
figuration, characterised by a particular set of angular momenta, are obtained
from the relations

in L-S coupling: E=Ey+ a; 5.5, +a,l,.l,+ AL.S 4.1
\——\/—-'/ _—
T, T,
inj—jcoupling: E=Eq+ asl,.s, +a,l,.5,+ A'j, .j, 4.2)
~———— ~——

T; T,
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a,, d,, azand a, have fixed values within a configuration. 4 and 4’ are functions,
within a configuration, of L and S or of j, and j, respectively.

4.3.2 Coupling between angular momenta and the vector model

Let us try to justify the relations (4.1) and (4.2) that we wrote above. According to
chapters 2 and 3, we should add to H,, describing the central potential approxima-
tion, terms expressing the electron—electron coulomb interactions and the inter-
actions involving the spins of the electrons explicitly. We assume here that the
energy-level solutions of the hamiltonian can be written

E= Eo+ a; .52 +a211.12 + a311.31 + a4lz.32
or -

E:E0+ Tl + T2

the term a,/,.l, expressing the electrostatic interaction and the term ays,.s,. the
exchange effects (see section 2.1). T, represents the spin—orbit coupling. We have not
included the terms /;.s, and l,.s, because we are neglecting magnetic spin-spin
interactions (see section 3.2.2).

The coefficients a; cannot in general be expressed analytically; but we can state
how the coefficients a; depend upon the type of coupling in an atom.

(1) L-S coupling. We saw that the angular momenta L and S, obtained by coupling
the orbital angular momenta I/, and /, and the spin angular momenta s, and s,
respectively, were characteristics of the levels together with the total angular momen-
tum J. For a given level, the existence of L and S imply strong coupling between I,
and J,, and s, and s,, that is to say constant values for the scalar products s, .s, and
l,.1,. On the other hand, j, and j, are not characteristics of the levels, the scalar
products /; . s, and J,.s, having values that vary with time.

The existence of L and S necessitates a greater coupling energy between /, and /,
and s, and s, than between /, and s, and I, and s, and numerically the coefficients
a, and a, therefore have greater values than a; and a,.

(2) j+ coupling. If one argues by analogy, then the existence of the angular
momenta j, and j, implies that:

(a) the scalar products /,.s, and /,.s, are fixed;
(b) the scalar products /; ./, and s, . s, have values that vary with time.

The first two scalar products of expressions (4.1) and (4.2) are self-evident. This is
not true of the third products. We shall show that they can be readily interpreted by
means of the ‘vector model’.

The vector model. This is often used in atomic physics and many books describe
and use it. Nevertheless, the reader should regard it only as a tool for treating certain
parts of a problem which could otherwise be carried out rigorously by means of
quantum mechanics. In this model the angular momentum operators are represented
by vectors, an angular momentum ¢; being associated with a vector of length
V0 + D]A.

The angle between two vectors will be such that the expression for the scalar
product will be the same as that obtained by a quantum mechanical calculation. The
angle a between the vectors s and /, whose resultant is j, will be given by

21.s=2|lj|s| cosa
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so that
JG+D =10+ —s(s+1)
cosa =
2V + DIV Is(s + 1]

If the vector j is a characteristic of the atomic state, no favoured plane defined by /
and s can exist, and / and s may be pictured as precessing around their resultant j
(figure 4.3). We shall have an opportunity in chapter 5 of showing that the vector
model illustrates one of the general properties of vector operators.

This model allows a number of simple calculations to be made. The diagram for a
system of two electrons in L—S coupling is shown in figure 4.4: I, and /, precess

~
—_—— =)

Figure 4.3 The vector model: coupling between / and s

Figure 4.4 The vector model: L—S coupling
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around their resultant L, s; and s, around their resultant S, and S and L around J.
The spin-orbit coupling energy 7, can be written

T» = as)l||s1| cos(h,8)) + asllz| |s2] cos(ly, 57)

However, the angles (/,s,) and (/»,s,) are not constants. The mean values of their
cosines may be written as equal to

cos(ly, s,) =cos(ly,L)cos(L,S)cos(S,s,;)
cos (1. 5,) = cos (I, L)cos (L, S)cos (S, s,)

respectively. These relations may be confirmed readily by taking the mean value of

1, .s, = (vector projection of /, on L).(vector projection of s, on .S)
and so
I, .5y =[|li| cos (11, L)1 [|s:| cos (sy, S)]cos (L, S)]

and similarly for /, . s,.
We may write, therefore
T, =cos(L,S)[as|l,! |s,| cos(I,,L) cos (S, s,) + as|ly| |s2| cos (15, L) cos (S, 5,)]
which may be written after using the cosine rule
T,=AlL||S|cos(L,S)=AL.S

Is|2 = |5512 + [S]2\ [ 112 = |L]? + |LI?
=a
’ 2IS|2 2|L|?

N Is2]2 — |5, |2 + 1S12\ [ |I|* = |1,]? + |L)?
a
‘ E 2|L|?

When s, = s,, the preceding expression may be considerably simplified. We note that,
for given values of .S and L, the term A has a fixed value.

A similar calculation may be carried out to evaluate AE, + AE, for the case of
J—j coupling, and gives the third scalar product in expression (4.2).

where

4.3.3 L-S coupling

(1) Position of the energy levels. By expanding the scalar products in
expression (4.1) we obtain

AE=a,s,.s5+a,l,., + AL.S
AE = % [S(S+ 1) = 81051 + 1) — 53(5 + )]
a
+ 7’ L+ 1) = Ly + 1) = L, + 1)]

+—;1[J(J+ ) —LIL+1)—SS+ 1] (4.3)

which allows us to determine the relative positions of the different levels. The
coefficients ¢ and 4 can have positive or negative values, according to the
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case considered; this explains one feature of the diagrams given in figures
4.5 and 4.6, which correspond to the two examples we shall now study.

EA |

Stage 1 Stage 2 | Stage 3 |
(configuralion)l | | Ip
| t s=01-=1 | |

| -2, | I

o | 1 |

e B e i Kl

a,/4 i 3p
| ¢ fA 12
l $=1 L-1 @%J ',
| pr—{

Figure 4.5 Relative positions of the energy levels of an sp configuration in L—S coupling.
Note: In figures 4.5 and 4.6, and in figures 4.8 and 4.9, the energy differences a, s, s2,
a,l, 1, etc. are given their algebraic values and symbolised by a line with an arrow in
the direction of the energy shift. In other figures (figures 4.1, 4.10 and 4.13) absolute
values of the energy differences are given and are symbolised by a line with two arrows

Let us consider first the simple case of an atom having one s electron and one
p electron as outer electrons. The four energy levels corresponding to such a
configuration were specified in table 3.1. In table 4.1 we recall their quantum
numbers, and indicate the corresponding energy corrections. The values
given may be verified without difficulty by the use of equation (4.3). The relative
positions of the energy levels are shown in figure 4.5.

The more complicated case of a p electron and a d electron may be treated
in the same way. Table 4.2 gives the values of the correction energies AE and
figure 4.6 shows the arrangement of the energy levels.

(2) The Landé interval rule. Let us consider three levels having the same
values of S and L, but different J. They are said to form a triplet. Let Jo,
Jo+ 1, Jo + 2 be the respective values of J for these three levels. The energy
correction T (stage (2)) is the same for each; from equation (4.3) the values
of T, are

for the level Jo: 3A[Jo(Jo+ 1) — L(L + 1) — S(S + 1)]
for the level Jo + 1: $A[(Jo + 1) (Jo + 2) — L(L + 1) — S(S + 1)]
for the level Jo + 2: 3A[(Jo +2)(Jo +3) —L(L+ 1) = S(S+ 1]

The energy difference between the levels J, and J, + 1 is A(Jo +1). The
energy difference between the levels J, + 1 and J, + 2 is A(J, + 2). Hence we
can state the Landé interval rule:

‘The separations between pairs of consecutive levels in a triplet are propor-
tional to the larger of the J values characterising the pair of levels.’

The reader may confirm this rule for the triplet levels of the pd configuration
given in table 4.2 and figure 4.6.
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Ed  Stagel ; Stage 2 i Stage 3 |
|
(configuration)l  a,s,.s, a1, |
+ - 'pl
| | |
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| | [ |
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| _ | [
L s=0 | _ i |
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Figure 4.6 Relative positions of the energy levels of a pd configuration in L—S coupling

Table 4.1
Spectral Stage 2 (7,) Stage 3 (7,)
term S L J a,8,.82 azly .1, AL.S
P, 0 1 1 —3a, 0 0
3P, 1 1 0 —2A
3P, 1 1 1 3 0 —A

3p, 1 1 2 +A
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Table 4.2
Stage 2 (7,)
Spectral Stage 3 (73)
term S L J a,8,.52 axly .1, T,=AL.S
Py 0 1 1 —3a,
D, 0 2 2 —3a, —ay 0
F;3 0 3 3 2a,
3P, 1 1 0 —2A
3P, 1 1 1 —3a, —A
3P, 1 1 2 A
3D, 1 2 1 %a, —3A’
3D, 1 2 2 —ay —A
3D, 1 2 3 2A°
3F, 1 3 2 —4A"
3F; 1 3 3 2a, —A"
3F, 1 3 4 3A”

Note In this table, as in figure 4.6, 4, A” and A” represent different numerical
values of the constant 4. They should not be confused with the constant 4" used
elsewhere, especially in the discussion of j—j coupling.

(3) The optical spectrum of an atom with two valence electrons. The lines
that are observed during transitions from excited states towards the ground
state are determined from the following selection rules, valid only if L-S
coupling applies:

(a) no transition is possible between a singlet state S=0 and a triplet

state S=1;
(b) the only permitted transitions are those satisfying
AL=+1
AJ=0, +1

the transition J = 0 — J = 0 being forbidden.

Figure 4.7 shows the most intense transitions observed from a discharge in
mercury vapour. The reader will notice the existence of the ‘resonance’ line
6%P, - 6!S,; this is an ‘intercombination’ line between a singlet level and a
triplet, which violates condition (a) but which can be particularly intense in
certain discharge conditions (the light emitted by fluorescent tubes commonly
used for illumination comes from the fluorescence of a coating, excited by
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_l‘
E(em O qinglet levels Triplet levels
5=0 s=1
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0

lonisation
limit
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—40 000
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-84178

Figure 4.7 Principal energy levels of the mercury atom. The numbers indicate the
wavelengths measured in nm. Note the various intercombination lines. (Comment:
because of the selection rule A S = 0, the 3S1 level is classified as a triplet although it is
single.)

this ultraviolet transition). This arises from the fact that the coupling in the
mercury atom is not represented perfectly by L—S coupling.

Atoms of Group IIA (see chapter 2) and Group IIB are in general described
quite well by L-S coupling. Nevertheless, this representation is often in-
adequate, and this is revealed in particular:

(a) by appreciable departures from the Landé interval rule—mercury is a
typical example:
Triplet 63D;-6°D,-6°D,. Experimental value of the difference
65D; — 6°D, is 35 cm™!, and of the difference 6°D, — 6°D, is 60 cm™'.
Ratio of the intervals is 0-58, whereas the theoretical value is 1'5;
(b) by the appearance of spectral lines forbidden for perfect L—S coupling.
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Comment In figure 4.7, we also notice levels, such as 6P, and 6°P,, from which
there is no spontaneous transition. They are described as metastable levels; an atom
in this state cannot return to the ground state by the emission of electric dipole
radiation. However, various processes (collisions, complex radiative processes and
so on) allow such a transition, although with a small probability, which give these
metastable levels a longer lifetime—of the order of 10~3 seconds—than the other
excited states, whose lifetimes are of the order of 1028 seconds.

4.3.4 j~f coupling
The problem can be treated in a way similar to that of L—S coupling. Equation
(4.2) of section 4.3.1 leads to
a .
AE=—[i0i+ D) = il + D = si(si + D]

+ ”2—‘[1'2(12 1) = Ll + 1) — sy + D]

A
+ S U@+ D =)+ D = sz + D]

Figure 4.8 shows the relative energy differences in j—j coupling, correspond-
ing to an sp configuration. As an exercise, the reader should check the values
indicated.

Ed Stage 1 1 Stage2 | Stage 3
(conﬁgur-' (7,) : (7))
ation) . .
1j=1/2 ! B
! j,=3/21 J=1 (3/2,1/2),
jor : —_—
=372 11 =(5/4)41=~(5/12)a,
|zl

1 (3/4)41=(3/12)a,

|
|72, | J=2 (3/2,1/2),

r_Sp_LL_.___.;_ ___________ —
|

|
|
|
|
[
[
] J=1 (l/2,l/2)l
-

|

[

!

I

|

[

| T ————

! YW= -0/12a,
L y=iy=1/2 g - (37 43=(3/12)a,
|

J=0 (l/2,1/2)“

Figure 4.8 Relative positions of the energy levels of an sp configuration in j/~f coupling.
(As an exercise, the reader should confirm that the coefficients A’ can, in this particular
configuration, be expressed solely as a function of a,: A, = —A," = a,/3.)
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The fbllowing selection rules must be used in j—j coupling
(1) AJ=0, 1, the transition J = 0 — J = 0 being excluded
Aj;=0 and Aj,=0=1
(2){ or
Aj,=0 and Aj;=0z%1
The examples corresponding to j—j coupling are less numerous than those
corresponding to L—S coupling. The elements of Group IVB (carbon, silicon,
germanium, tin and lead) have the following configuration: complete sub-
shells, and four outer electrons—two s electrons and two p electrons. Some
excited states arise from placing one of the p electrons into a different state.
Since the two s electrons form a complete sub-shell, the study of these excited
states reduces to that of a system of two electrons. Carbon may be described

by L-S coupling, and lead may be described by j—j coupling. The other elements
correspond to intermediate coupling.

4.3.5 Light atoms

The light atoms represent rather special cases; relativistic effects become especially
important, and the magnetic spin-spin interactions, together with the exchange
term, cannot be expressed entirely by a term of the form a, s, .s,. The Landé interval
rule then fits very poorly and in the case of helium, one can even observe an inversion
in the sequence of term energies.

For helium, a three-body system, several methods of approximation can be used
to solve the hamiltonian of the problem. The elementary steps may be found in the
usual quantum mechanics textbooks (see, for example, Messiah, pages 690 and 771).
They allow a physical interpretation to be given which is far more satisfactory than
the phenomenological treatment we have applied in this section. In particular, if we
return to the case of the 1s2s configuration, we find

a, 3a1
a,; 5..5; =X(S= 1) and a;s,.s; =——4—(S=0)

a211.12=a3l,.sl =(l412.52 =0

The interpretation of the perturbation calculation amounts to identifying the energy
difference between the states S =0 and S = 1, equal to a, (figure 4.9), as twice the

EA

Figure 4.9 Splitting of a term due to exchange interaction
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exchange integral. The main source of this energy separation is therefore related to
the quantum phenomenon of exchange.

4.4 Energy Levels of the Hydrogen Atom: Fine Structure of the
Lines

In the preceding section, we emphasised the fact that some of the approxima-
tions used were not valid for light atoms. The study of the hydrogen atom is a
particularly good example. The quantum model presented in chapter 1 should
be regarded only as an elementary stage in the argument. Spectroscopic
observation with apparatus of sufficient resolution shows that different lines,
such as H, (n=3 — n=2) for example, actually consist of several closely
spaced wavelength components. A fine structure of the energy levels must be
sought. Theoretical studies are difficult and in this book we can present only
an overall view, outlined in a series of steps reflecting historical progress.
Our aim is to present the fundamental ideas.

4.4.1 First step: Bohr's circular orbits model

This was explained in volume 1, chapter 6 and leads to the following ex-
pression for the spectral term T

T =—E/hc = R|n?

where R is the Rydberg constant. This formula exhibits degeneracy in /. Using
the non-relativistic Schrédinger equation (chapter 1), the quantum treatment
results in the same expression for the spectral term 7.

4.4.2 Second step: the Bohr—Sommerfeld relativistic model

By using the methods of theoretical mechanics and by supplementing Bohr’s
quantisation postulates with the postulates of relativistic mechanics,
Sommerfeld in 1916 developed a model in which he took account of the
relativistic corrections due to the variation of mass with velocity. This rather
complicated calculation leads to the following expression for the spectral
term as a function of the quantum numbers # and k (k < n)
2 -4

E uc o ue
T=——=

he —h_1+(n—k+\/(k2—ot2))2 i3

u being the reduced mass of the electron and « the fine structure constant (see
volume 1, chapter 6):
e2 e2

*= he - 4re, hic
inCGS in Sl
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T can be put in the form of a convergent expansion in powers of a

R Roa*(n 3 Ro*
—_— — +7(...)+...

where R = uca?/2h. We note that the first term (R being the Rydberg constant)
corresponds to the result of Bohr’s theory; the other terms result in corrections
whose values depend not only on # but also on k. The degeneracy of each level
n is therefore lifted.

Column II of figure 4.10 shows the energy levels obtained from the preceding
expression for the spectral term T for different values of k. There is excellent
agreement with experimental results from optical spectra.

Energy or }
spectral ferm ) | (1 | () | av
Sommerfeld’s | AT, correction AT, + ATy,
I correction | correction
y | ? |
Positive T T, n=3 | I I
energy 2l <
direction | 0.018 k=3 _ _ - T =} — =572
400 g TR
| 3p I=1 7
| [0.108 : —L
_ N =1/
Positive A S = 'T ————— B S b VA
direction | | I,’
for the { I /
spectral ' | /|
terms | | // |
| 3s_1=0

Figure 4.10 The n = 3 level of the hydrogen atom (upper level of the first Balmer line,
see volume 1, figure 1.3). T, represents the spectral term deduced from Bohr’s theory

4.4.3 Third step: relativistic correction to the quantum model

By using the relativistic Schrodinger equation, Heisenberg and Jordan (1926)
found the following expression for the spectral term

T R+Ra2 " 3 —R+AT (4.4
ot I+3 4 T n? " 4

The corresponding energy levels are shown for different values of /in column
IIT of figure 4.10. The optical lines that can be deduced from this are not in
agreement with experiment.

4.4.4 Fourth step: spin—orbit coupling

Let us modify the results of the third step by taking account of the spin of
the electron: a correction designed to take account of spin—orbit coupling is
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added to the spectral term defined previously. The calculation may be carried
out as for an alkali atom by writing the spin—orbit coupling energy as

m AW 12— |12 — |s|?
2m?c?r dr 2

AE; =

but the potential W is

C e 1
r 4ney r

and from the mean value of 1/r3 given by a quantum mechanical calculation

1 1
<F> Y

(a, is the radius of the first Bohr orbit) we may write
e2h2 1 Ij{l_llll_|s|2
2m? ?4ney alPndl(l+ H(I+ 1) 2

The correction to be applied to the spectral term AT, may be written by
introducing the Rydberg constant R and the fine structure constant o
AE, Ro? j12— |12 — |s|?
Az DEs_ 12 =122 = s
he i+ HI+1) 2
Since j can take only the values j=/— % and j =/ + %, the previous expression
may be simplified after substitution and leads to
Ra?

o e ————— ‘:l
ATy P2 DT D) forj=1+1%

AT, =+ Ra?
BT 2+ 3)

AEls =

(4.5)
forj=1—14

The levels predicted in the third step are now split and figure 4.11(a) illustrgtes
this prediction by taking as an example n =3, /=2, 1, 0. The exact position

Energy Ty
2
T AT, N D)
1=2 sz;/z
= 2
/=1 2P|/2
/ S1n2
S, 1=0
Spectral
term (a)

Figure 4.11 Fine structure of the n=3 level of hydrogen, excluding radiative
corrections but including relativistic and spin—orbit corrections
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of the different levels indicated in figure 4.11(a) may be obtained by adding
the corrections A7, and AT, to the spectral term 7.
For a given value of /, we have, from expressions (4.4) and (4.5)

AT = AT, + AT, = (1 3 forj=1 4.5
HATu=— | fori=l+3|  (@59)
AT= AT, + AT, = R (13 forj=I—
rt Al =—3 I orj 1 (4.5b)

Let us now consider two levels of the same j, but corresponding to two
successive values of / (for example D: and Pj); the correction AT is
obtained by replacing /in (4.5a) by j — 4 and in (4.5b) by j + 1. The two values
of AT are therefore equal to

Ral( 1 3)
AT= —|———— (4.6)

Levels of the same j are therefore coincident and the energy level diagram is
that shown in figure 4.11(b), and displayed in column IV of figure 4.10.

We note that by identifying & with j+ 1 we obtain a result similar to
Sommerfeld’s. Figure 4.10 thus summarises the first four steps of this account
of the hydrogen atom, with certain numerical values being defined.

In 1928, Dirac developed a relativistic quantum theory in which the concept
of spin was inherent, resulting from the underlying postulates. The theory of
the hydrogen atom can be worked out in this formalism and leads to:

(1) an expression for the spectral term identical to that obtained by adding
the relativistic and spin-orbit corrections (4.6);

(2) the wavefunctions, allowing the position probabilities of the electron
to be obtained as in chapter 1.

The results are clearly different from those given in chapter 1, where the
electron spin was not taken into account and, as a result, the values of the total
angular momentum were integer multiples of /. Figure 4.12 illustrates the
hydrogen atom as represented by the results of the Dirac theory. It shows the
variation of certain angular probability densities D(f). On the other
hand, the radial probability densities D(r) are hardly affected by the intro-
duction of spin: they correspond very closely to those obtained from the
solution of the non-relativistic Schrodinger equation. This point is very
significant; it justifies the use of the simple non-relativistic model in many
situations.

The excellent agreement (except for the corrections defined in the next step
of the discussion) between the experimental results and the results of the
Dirac theory must be considered as one of the great historical achievements
of physics, showing the importance of the relativistic theories and firmly
establishing the concept of electron spin.
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J=1/2 {B P,

m=1/2 m=-1/2

J=3/72
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J=5/2
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Figure 4.12 Angular probability density D(f) for the hydrogen atom obtained from
Dirac’'s theory (compare with figure 1.4). The radial probability densities D(r) are very
similar to those obtained by solution of the Schrodinger equation for the same values
of n and / (figure 1.3)

4.4.5 Fifth step: radiative corrections

The correct description of phenomena concerned with the interaction of an
electromagnetic wave and an atom is possible only within the framework of a
theory involving quantisation of the electromagnetic fields. In this theory, a
single electron in a vacuum should be considered as surrounded or ‘dressed’
by an electromagnetic field. As a result of the interaction between the electron
and this electromagnetic field, the electron has an additional electromagnetic
mass. In the case of a bound electron forming part of a system of particles,
this interaction with the electromagnetic field of the ‘vacuum’ will also lead
to a change of the effective potential energy of this electron. The calculation
of this ‘radiative correction’ gives rise to a series expansion in Za, a being the
fine structure constant, the first term being in (Z«)*:

a(Zo)* mc?
3

AFE «
2nn

The constant of proportionality is a function of the quantum number /.

This correction removes the coincidence between levels of the same j, such
as Sy, P,, for example, and the actual energy level diagram will therefore
appear as in figure 4.11(a). The energy separations between the levels
S, - -P, and P, — D, are nevertheless very small, of the order of a fraction
of a cm™ in wave numbers and smaller than the separations between levels
of different j. An order of magnitude determination of these separations was
carried out in 1938 by optical interferometric measurements on the transitions
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Figure 4.13 (a) Structure of the n=2 and n= 3 levels of the hydrogen atom.
(b) Structure of the H, transition. The letters refer to the various transitions of figure
4.13(a). The curve in dotted lines shows the appearance of the spectrum obtained with
a Fabry—Perot etalon

n=3-—>n=2. Lamb and Retherford devised a method involving radio-
frequency spectroscopy (see chapter 7) that allowed the difference 2S, — 2P,
to be determined with remarkable precision. The value found from their
measurements, sometimes called 4.5, was

8S =1057-3 MHz
and is in excellent agreement with theoretical determinations based on quan-

tum electrodynamics. Several differences of the same origin—usually called
the ‘Lamb shift’—have been determined in recent years.
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The optical lines of the hydrogen spectrum may be obtained without diffi-
culty from the energy levels, by applying the selection rules already stated in
section 4.2 for the alkali atoms. In respect of the levelsn=1,n=2and n=3
alone, figure 4.13(a) shows the transitions that may be observed. In particular,
the H, transition (n =3 — n = 2) has a complex structure, known as the fine
structure of the H, line and which is shown on a wave number scale in figure
4.13(b). We should note, however, that as a result of the width of the optical
lines, related mainly to the Doppler effect (see volume 1, chapter 1), observa-
tion of the H, line provides evidence for only two components, each corre-
sponding to the sum of several transitions. (Zranslator’s note: a recent
experiment by Héansch, Shahin and Schawlow, Nature, 235, 56 (1972) has
permitted resolution of the components (d), (¢) and (f) in figure 4.13(b) by
means of a new technique involving the use of tunable lasers (see section 7.1).)

The hydrogen atom has a particularly simple structure that allows detailed
study; comparison between theoretical and experimental results is therefore
crucial. Considerable interest was aroused between 1947 and 1953 when
measurements of the Lamb shift confirmed very clearly the hypotheses of
quantum electrodynamics. The reader should not forget, however, that
hydrogen is a very special case: the degeneracy in / is lifted only through the
influence of spin-orbit coupling and by application of the laws of relativistic
mechanics, whereas in other atoms it is also lifted by electrostatic interactions
between electrons.

4.5 X-Ray Spectra

With the information that the reader has acquired in the preceding sections,
we can complete the study of X-rays started in volume 1, chapter 7. We confine
ourselves mainly to studying a very simple case that will allow the principal
ideas to emerge: we shall consider an atom in its ground state that has all its
inner sub-shells complete, and a ground state whose total angular momentum
is zero. Atoms of cadmium or of zinc can be taken as an example.

4.5.1 The angular momenta attributed to the different levels

Let us reconsider the diagram in volume 1, figure 7.8(b). We recall that the
different energy levels labelled K, L;, Ly, L, and so on, can be interpreted
as those of an atom that has lost one of its electrons. We can characterise each
of these levels (figure 4.14):

(1) by its electronic configuration: this is denoted in column I; for simpli-
city, we indicate in column II the characteristic letter of the missing
electron followed by the number —1 as a superscript;

(2) by the total angular momentum of the ion formed in this level.

Since the ground state has zero angular momentum, and since an electron
is removed from a complete shell of total angular momentum zero, the angular
momentum of the ion has the opposite direction and same magnitude as that
of the extracted electron. Let us examine the various shells.
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Ground level of the atom
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Figure 4.14 X-ray spectrum of the cadmium atom. In this figure we have used the
convention of volume 1, figure 7.8(b). Any alteration with respect to the ground con-
figuration [1522522p63s23p€3d104s24p€4d105s2] is shown in column . In this figure,
we have shown only the transitions of the K and L series mentioned in the table in
volume 1, chapter 7. By applying the selection rules, the reader may determine other
allowed transitions

(1) The K shell. If an electron is removed from the K shell, where n =1, it
can have only zero orbital angular momentum and a spin angular momentum
characterised by the quantum number s = 4. Thus the level of the correspond-
ing ion will be characterised by

=0, s=% and j=1
This is described, therefore, as a %S, level.
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(2) The L shell. Either an s electron or a p electron may be removed. Since
these electrons have a spin quantum number s =1, three combinations of
angular momenta are possible:

Corresponding level
for an s electron, I=0 j=% 3%, L,
j=% ?Py Ly
=3 2P§ Ly

for a p electron, =1 {

J=2

By anticipating somewhat, these three states will have different energies and

consequently the ion formed by the detachment of an electron from the L

shell may have three energy levels which will be characterised by the symbols
*S,, ?P,, 2P, or in X-ray level notation L;, Ly, L.

(3) The five M levels. In the same way the existence of the five M levels
can be explained by the detachment

Corresponding level

either of an s electron, /=0 j=% 2S5, M,
i=% 2P, M

or of a p electron, =1 I - S
_/ = % Pg Ml"
i=3 2D, M

or of a d electron, =2 {j _ ;f ZD; M:,v

4.5.2 Spectral terms and energy

In volume 1, chapter 7, we wrote the value of the binding energy of the detached
electron, using the convention corresponding to figure 7.8(a)

he (Z - n)2

2

E,=-R

n

and the fact that the screening constant s, depends on / explains in part the
fine structure. In addition, phenomena related to Is coupling must be taken
into account. These latter corrections cannot, however, be studied in the
disjointed way in which we treated the alkalis: the K and L levels involve
electrons in close proximity to the nucleus for which relativistic corrections
are important and of the same order—as we saw in the case of the hydrogen
atom—as those due to spin-orbit coupling.

The position of the energy levels will be obtained, therefore, from a
relativistic theory similar to that used for the hydrogen atom (see section 4.4).
The result may be written in the form

Rhe(Z — 5,)> Rhca¥(Z — s'2)* ( 3 1
= — -+ _——
n 1, J 2 4n / + %

n nd
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o being the fine structure constant. We note that the screening constant that
must be used in the term in a?> does not have the same value as that in the
first term.

In X-ray language, a separation such as L; —L;; is called ‘the screening
separation’, and such as L;; — L;;; ‘the spin-relativity separation’. (The levels
L, and L;; have the same j but different /; the levels L;; and L;;; have the same
I but different j.)

4.5.3 The observed spectra

The lines which are observed in an X-ray emission spectrum are determined
by using the following selection rules, the same as those for optical spectra:

An: any value
Al: *1
Aj: 1,0

On the left-hand side of figure 4.14, transitions that can be observed have
been indicated with an arrow. Certain features not explained in volume 1,
chapter 7, are thus clarified.

The X-ray emission spectrum of certain elements such as the rare earths is
far more complex than that shown in figure 4.14. This is due to the fact that
some inner shells are not complete and as a result possess a non-zero angular
momentum. The angular momentum of the ion formed when an atom with
this incomplete shell is excited will now result from the combination of two
angular momenta, and several values can be obtained. Therefore the problem
becomes equivalent to the one in the case of optical spectra, of an atom with
several valence electrons. Some of the lines observed will have complex
structures, called multiplets.



5

Atomic Magnetism. The Zeeman
and Paschen-Back Effects

The fundamentals of the Zeeman effect were established in volume 1, chapters
10 and 11. A level corresponding to an atomic state of angular momentum o;
and magnetic moment ya; (y being the gyromagnetic ratio), splits into 2J + 1
Zeeman sublevels whose separation is proportional to the field B. The energy
difference between two consecutive sublevels is

E=gpBB

where the Bohr magneton 8 = eh/2mk.

The polarisation state of the emitted light was also studied. After studying
this chapter, the reader will understand the origin of the Landé factor, g, and
will appreciate that the previous account relates to a special situation. In
general, the action of the magnetic field is complex : the total angular momen-
tum J results from the combination of the various angular momenta of the
atom, which interact with the magnetic field not only together but also
individually. The various interactions compete and only a detailed study will
permit a valid description of the action of the magnetic field on the energy
levels.

V/e shall give a quantum mechanical description of the atom under the
influence of a magnetic field. First we shall establish an expression for the
hamiltonian of an atom in the presence of a magnetic field, a fundamental
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expression which is the starting point of many theories. Then, after stating
the main approximations used, we shall present the stages in the solution of
the hamiltonian of the atom in the presence of a constant magnetic field, so as
to bring out the main features: the Zeeman effect in a weak magnetic field and
the Paschen—Back effect in a strong magnetic field.

As in the preceding chapters, our study will be limited to atoms whose
nuclei do not have a nuclear magnetic moment. The general case will be
discussed at the end of chapter 6.

This chapter may seem difficult to some readers. They should note that
they can acquire the main ideas from a partial study: section 5.1 can be
omitted, and on a first reading sections 5.3.5, 5.4.3 and 5.5.1 will suffice. We
deal with certain aspects of the Zeeman effect and Paschen-Back effect by
use of the vector model. There are two reasons for this: the reader who has
some difficulty with quantum formalism should be able to understand the
fundamental points more easily; the others will notice that the quantum
models provide a justification for the vector model which is then no longer
simply a tool for calculation, but instead a very useful representation.

5.1 The Hamiltonian of a Charged Particle in the Presence of an
Electromagnetic Field

5.1.1 The lagrangian and the equation of motion of the particle

The theory of electromagnetism rests on certain assumptions, the justification of
which may be found in the agreement between their consequences and experimental
facts. Depending on the approach used, the propositions taken as assumptions can
differ widely. If we take Maxwell’s equations and the force acting on a particle of
charge g situated in an electromagnetic field

q
f=qE+—vx B 5.1)
K

as postulates, we cannot deduce by means of logical steps the lagrangian required to
write the hamiltonian of a charged particle in the presence of an electromagnetic
field. On the other hand, we shall show that equation (5.1) may be obtained if, in
addition to Maxwell’s equations, we take as a postulate, the lagrangian

q
L =mc*/(1 —v?/c)+—A.v—qV (5.2)
K

where A4 is a vector potential and V is a scalar potential. This result is obtained
within the framework of relativistic mechanics (m designates the rest mass of the
electron).

The lagrangian (5.2) differs from the lagrangian of a free particle in the second
and third terms, which are zero in the absence of an electromagnetic field. They
should not seem arbitrary if it is noted that —(g/k) 4. v represents the magnetic
energy of a particle, a form that reduces easily to the general expression for the
magnetic energy: the integral, over the distribution of current j, of —(1/x)j. A.
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For a free particle, the momentum vector p may be calculated
A mov

v /(1 —?/c?)
The notation p = 9.£/dv signifies that the components of the vector p have the values

0¥ 0% 0¥

b= ov, p== v,

Px=5;:

In the same way, for a particle in the presence of an electromagnetic field, we define
a generalised momentum from equation (5.2)

A B mo
B /(1 —v?cP)

q
+24-ps iy (5.3)
K K

The lagrange equations may be written in a contracted form by using the notation
defined previously

d (02 0¥
—|—)=— (5.4)
dr\ dv or
We may write
¢ q
— = —grad(4.v) —qgrad V
or K

A well-known formula of vector calculus gives us
grad(A4.v) = (A.grad)v + (v.grad)4 + A x curl v + v x curl 4
In order to evaluate this partial derivative, it must be assumed that v is constant
and the terms in

(A.grad)v and curly
may then be equated to zero. Thus we have

¢ q q
—=—(v.grad)A+—vxcurld —ggrad V
or «k K

Taking account of equation (5.3) the lagrange equation (5.4) may be written

d q q q
—(p+—A)=—(v.grad)A+—v>< curld —ggrad V (5.5)
dr K K K

We transform this equation by noting (since A is a function of time and position)
that
d4 24 ( dr

04
—=—+|—.grad | A=—+(v.grad) 4
T ar® ) or (v-grad)
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Equation (5.5) may then be written

dp q 04 q
—=————ggradV+—-vxcurl4d .
dr Kk ot 78 K ¢6

Equation (5.6) can be recognised as the dynamical equation
dp
—=f
dr

The right-hand side of equation (5.6) is therefore equal to the force facting on the
particle

qo4 q
f=—ggradV— —— + —vxcurld
kot Kk

or alternatively
q
f=gqE+—-vx B
K
where
104
E=—grad V— —a— and B=curl4
t

K

5.1.2 The hamiltonian
The hamiltonian may be obtained by writing

0¥
v

and so, from equations (5.2) and (5.3)
q 2 2 /A2 q
H=v |p+—A|+mPyv/(A—-v}c?)——A.v+qV
K K

which, after evaluating the scalar product v.p

2

mv
TP VA=)
reduces to
f:—L+qV=T+qV (5.8)
V(1 —v*/c?)
T denotes the energy of the particle, and is the sum of the rest energy and the kinetic
energy.

The latter expression for 5 could have been written directly by noting that the
potential energy of the particle is gV, since the magnetic forces, always perpendicular
to the trajectory, do no work.
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Let us express # solely as a function of the generalised momentum £. In order
to eliminate the velocity », we use equation (5.3), written in the form

q mv
P——A=————=p
K V(1 —v?/c?)
in addition to the relation

T=+/(m*c* + p*c?)

From equation (5.8) we obtain an expression for 5#

9?=A/(mzc"+c2

If the velocity of the particle is small compared with the velocity of light, we can use
the non-relativistic approximation. From the lagrangian, which may then be written
(dropping the constant mc?)

) +qV (5.9)

?-14
K

m? q
L=—+t—A.v—qV
2 K
and from the relationship 7 = p?/2m, we obtain by a similar argument

2

1 q

#:—(?——A) +qV (5.10)
2m K

Comment The hamiltonian written in the form
p2

H =—+qV
2m

is clearly simpler; but subsequently we shall see that it cannot be used in this form.

5.1.3 The hamiltonian operator

From the basic assumptions of quantum mechanics, the hamiltonian operator may
be obtained by replacing the generalised momentum 2 by the operator

—ihgrad or —iAV

By confining ourselves to the non-relativistic approximation, we write the hamil-
tonian operator by using equation (5.10)

l 2
H=—(—ihV—q—A) +qV (5.11)
2m K

anc by expanding the square

I 2
He—|-#vi+i-nlva+indave L a2)iqv
2m K K?
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When the operator H is applied to wave function i, we must pay attention to
the operator V. 4 which gives two terms

V.Ay=(V. Ay +A4.(Vy) = (divd) y + (4.grad) y

(V and 4 do not commute), and we find

1 q 2
Hy=—|-#V2y +ih 2 (V. Ay + 2ih 24 Vy + L a2y | 4qvy
2m K K K?

By returning to the usual notation for the laplacian, the divergence and the gradient,
we write the hamiltonian operator

1 ., q . 2
=—(—h2A +ih—divA4 + 2ih iA.grad+q—A2)+qV (5.12)
2m K K K?

5.2 The Hamiltonian in the Presence of a Constant, Uniform
Magnetic Field

5.2.1 The case of one electron

The expression (5.12) obtained above is valid for the most usual electro-
magnetic field, a function of space and time. The hamiltonian (5.12) is, in
particular, the starting point of the theory of radiation describing the inter-
actions between an electromagnetic wave and an atom. In this chapter we are
concerned with the Zeeman effect, involving the interaction between an atom
and a constant, uniform magnetic field, whose direction is assumed to be
parallel to the z axis. The potential V is zero and, moreover, in a spherical
co-ordinate system at a point defined by the radius vector r, it may be shown
without difficulty that the vector potential from which a uniform magnetic
field B is derived can be written

A=3Bxr), andso (A4,=1B.x
A,=0

The hamiltonian (5.12) may be simplified thus
divd=0

and the operator 4. grad may be evaluated easily

A.grad =—3B o 9
.grad = — —— X
g yax xay

The operator /,, the Oz component of the orbital angular momentum
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measured in units of /i in accordance with our convention (see section 3.1), is

equal to
I,=1i 9 4
N S oy

i
2ind 4 grad=-L gy,
K K

Therefore we may write

The last term in the brackets of (5.12) may be written

q° q’ q’
2__ 1 —_ in2
;;A =0 Bxr).(Bxr)= mBzrzsm 0
0 being the angle between the radius vector and the Oz direction.
The hamiltonian therefore reduces to

et e Tp o @ pryaguag (5.13)
2m K ° 4K? .

which can also be written by introducing the Bohr magneton f (see volume 1,
section 5.2), remembering that g is negative and S positive

2 2

h
H=——A+jB
™ + BBI, +

8mszzrzsin20 (5.19)

Comment If for the moment we disregard the term in B2 whose order of magnitude
will be discussed later, SBI, can be identified as —., B which justifies the quantum
mechanical expression for the orbital magnetic moment

1 g
M=—Pl=——pl
K 2m

The term in B? gives rise to diamagnetic effects.

5.2.2 The case of an atom
In chapter 2, we studied the hamiltonian of an atom, written in the form

H=H0+T1+T2

In the presence of a static magnetic field B, the interaction between the orbital
motion of an atomic electron designated by the subscript i, and the field B,
may be expressed by an additional term in the hamiltonian, as previously
established

2

q
8mic?

BB.I, + B?r2sin?0,
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However, we must also take account of the interaction between the field B and
the spin magnetic moment ., of this electron; this is done by adding the
interaction potential energy
h
i, B=— 2, B=—T 5 B=2ps B
mK mx

We may now write the hamiltonian of the atom, taking into account the con-
tributions of all the electrons

H=H0+T1+T2+W (5.15)
where

2
W = Z BB.(I; + 2s;) + z §,%F32r"2 sin? 0,
! i

Let us evaluate the order of magnitude of the two terms in the equation for
W for an electron of quantum number / = 1 and for a magnetic field B of 1 tesla

"
BB = % B~ 1072 joule

By taking r;sin 8, & 100 pm = 10~1° m, we have

2

q
8mic?

B?r2sin? 6, ~ 10728 joule

Therefore the term in B2, for normal magnetic fields, can be neglected and,
after putting (in the conventional manner—see section 3.1)

§=Ss, L=31
i i

we may write
W = BB.(L+2S)=BB(L,+2S,) (5.16)

the z axis being in the direction of the magnetic field.

Comment The quantity (g//2mk)L can be identified as #; and can be interpreted
as the resultant of the orbital magnetic moments. Similarly (g#/2mi)2S can be identi-
fied as /5 the resultant of the spin magnetic moments, the Landé factor in this case
being equal to two. If J is the resultant magnetic moment of the atom, the term W
may be written

W=—(My+Ms).B=—M.B

Thus in a briefer study we could have written the expression for the term W
directly.

The haniiltonian H describing the atom in the presence of a field cannot be
studied rigorously. The solution may be undertaken by approximation
methods; the procedure used will depend on the relative size of the terms
T,, T, and W. In the following two sections, we shall consider only the case
of L-S coupling. The main ideas apply equally to the case of j—j coupling.
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5.3 The Zeeman Effect in a Weak Magnetic Field in the Case of
L-S Coupling

The field conditions are said to be weak when the term W is small compared
with T, and T,; W may then be considered as a perturbation on the system
described by the hamiltonian H, + T + T,. The term T, describes the spin—
orbit coupling and is manifest in the fine structure differences of the energy
levels (see chapter 3). A field will therefore be weak when its influence on a
level gives rise to energy differences much smaller than the fine structure.

We shall consider an atomic level defined by a description of its electronic
configuration and by the values of S, L and J. This 2J + 1 times degenerate
level will be characterised by its energy E,° in the absence of a field. The
influence of W will be studied by using perturbation theory. Accordingly we
shall assume that the reader has already studied this technique in a quantum
mechanics book.

5.3.1 The application of perturbation theory

In our discussions concerning the energy levels of an atom, we have recognised
the existence of perturbation theory but have not until now used the tech-
nique in calculations. Let us review the notation and the results that we shall
use for a first-order perturbation calculation, applied to a degenerate level
(they are given, for example, in Messiah, page 698):

(1) to an unperturbed level, denoted by E°, characterised by the parameter
i and having an order of degeneracy G, the perturbation H¥ is applied;

(2) k is an index which takes G; values;

(3) the first-order corrections E¢}? to be added to the unperturbed value
of the energy E;° are equal to the matrix elements of the diagonalised
matrix H®

k| HOiy k' = EQ Sy (5.17)

In the problem with which we are concerned we apply a perturbation to
an atomic level E,° characterised by a given value of the angular momentum
J and of degeneracy 2J + 1. We shall use the {J?, J,} representation in the
subspace characterised by the energy E,°. The basis states will be denoted by
|E,° Jm;). In order to use the results that we have described, we must identify
i with J, G, with 2J + 1 and H© with W. The first-order correction, written as

AE=E® =EW

will be found by diagonalising the matrix W, -
Wm_,m,’= <EJOJ’mJ| WIEJOJ’mJ/>

The .onditions for application of perturbation theory require that

Wi, my

Ef—E£p <
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E,®beinga value of energy corresponding to any state of the atom other than
that of energy E,°. The influence of the magnetic field, described by W, must
therefore give rise to a change of energy far smaller than any separation
between the levels existing in zero field. This conforms with the assertion
made at the beginning of section 5.3.

The operator W is given by equation (5.16)

W=B(L, +2S,) B

In the next section we shall see that the operator W commutes with J,. Con-
sequently, the matrix W, .- is diagonal in the representation |E,°Jm;).
Our problem reduces to finding the elements of this matrix.

5.3.2 The Wigner—Eckart theorem and the introduction of the Landé g factor

In order to evaluate the matrix elements 1, ,, - we shall use the following
two properties.

(1) In the {J?2,J,} representation, in a subspace corresponding to the
energy E,° of the atom and to a given J value (in which the basis vectors are
represented by |E,°Jm,)), the matrix elements of the components of vector
operators are proportional to one another. The coefficient of proportionality
is the same for each component.

If A and B are any two vector operators and if we introduce the standard
components 4,, the index ¢q taking the values —1, 0, +l

Ao =4, A= ( —i4,) A —5 (A4 +14,)

V2 +1= ‘/2
we may then write
CE,CJmy|Ag|E,Jmy"> = alE,° Jmy| B,| E,°Im,"> (5.18)
a being the coefficient of proportionality, independent of m,, m;" and q.
This can be written more concisely

In the subspace E,° and in the representation {J2,J,}
A=aB

(2) Within the subspace E,°, the matrix elements of the component A4, are
related to those of the component J, of the angular momentum by the relation

KESLImy|J. A|E,°Imy)>
JU+1)

Since in the given representation, {E;°Jm;,|J.A|E,°Jm,) is equal to the mean
value of the scalar operator J. A, which we denote by {J. A), equation (5.19)
may be written

CEXImy|J,|ES°Imy">  (5.19)

<EJ°JmJ|Aq|EJOJm,'> =

J. 4>
JU+1)
This second property provides us with an expression for the coefficient of

CE,CJmy| Ag|E,0Jmy"> = CESL Jmy| T |EC Jmy">
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proportionality a in equation (5.18), for the special case where one of the
vector operators is the angular momentum operator J.

Properties (1) and (2) stated above are the consequences of a more general
principle which forms the Wigner—Eckart theorem. The reader wishing for
more information on this subject is referred either to a book on quantum
mechanics (see, for example, A. Messiah, Quantum Mechanics (Wiley),
chapter XIII; E. Merzbacher, Quantum Mechanics (Wiley), chapter 16) or to
appendix 5, where proofs of properties (1) and (2) are presented and where
a general statement of the Wigner-Eckart theorem is given.

Property (1) allows us to say that in the |E,°Jm;) representation, the
matrix elements of L, + 2S, and of J, are proportional. Since the matrix of
J, is diagonal, the matrix of L, + 2S, will be as well. (This property also
results, more directly, from the commutation relation [A4,,J,] =0 proved in
the appendix.) The proportionality relationship may be written

CESSJmy|L, + 2S,|E,°Imy' > = g{E,°Imy|J,|E,°Jm,"y = gm; Opm,m,. (5.20a)

The coefficient of proportionality g is called the Landé factor.

Comment I Property (1) can be accepted more readily by means of the following
intuitive argument: consider an atom, the vector operator J and another operator
A; the only conservative vector in the atomic system is the vector J. For reasons of
symmetry the only observable component of the operator A is its projection on the
vector J. Therefore we write its average value <4) as proportional to J

{A) = constant X J
The same reasoning can be used for the operator B and as a result we may write
A =al{B)

Comment II Properties (1) and (2) provide the theoretical justification of the
vector model (see section 4.3). Let us take the simplest example of an operator 4
and an operator J, as in the preceding comment. Only the projection of 4 on the
vector J has any physical meaning and so the vector A4 can be represented as having
any position within a certain cone whose axis is defined by the vector J. Property (2)
is a justification of the various calculations carried out by means of the rules of the
vector model.

5.3.3 Calculation of the Landé factor

The discussion in the preceding section may be summarised by the vector
equation
L+2S=gJ (5.20b)

provided that it is applied only within the representation {J?,J,}.
In order to evaluate the Landé g factor, let us consider the operator

JL+28)=J.(J+S)=J*+J.S
By squaring L = (J — §), we can write
L*=J*+S8?-2J.8
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and so
J2 S2 _ LZ
J.S= ISt
2
allowing us to write
JP+ 8?17
J.(L+28)=J*+ — (5.21)

In the representation in which the basis vectors are | L, SJm) the average value
of J.(L + 28) is, from (5.21), equal to

JUJ+D+SES+1)—LEL+1)
2

However, in this same representation we can evaluate the mean value of
the operator J.(L + 25, directly from property (2) of the preceding section.
Equation (5.19) may be written

T(L+28S)y=J(J+1)+ (5.22)

J.(L+28)>

CE,°Jmy|L, + 2S,| E,°Jm,") = o))

<EJOJmJ|Jz|EJOJmJ’>

and from (5.20a) this becomes
J.(L+2S8))

g<EJOJmJ|Jz|EJOJmJ’> = T+ 1)

CE°Imy|J,|E0 Imy"y

which, after simplification, leads to

I (L+28))y=gJ(J+ 1) (5.23)
Thus property (2) shows us that in order to calculate the mean value of the
scalar product J.(L + 25), it is permissible to replace the vector (L + 2.5)
by gJ.
By combining (5.22) and (5.23), we obtain
JUJ+D+SES+D)-LIL+1D

g=1+ 27 + 1) 29

or
3 S(S+D-LL+1)

"2 20(J+ 1)

The latter form is easier to remember; it is simple to verify the special cases
S=0—>J=L—>g=1 (pure orbital momentum)
L=0->J=8S—>g=2 (pure spin momentum)

From this formula, it is seen that g values may sometimes be negative.

5.3.4 The Zeeman diagram in a weak field

Returning to the expression (5.16) for the operator W, and using equation
(5.20), we may write the matrix element W, ,, -

Wm,m,i=gﬂBm16m_,mJ, (525)
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The first-order correction may be written immediately
E® = AE = gBBm, (5.26)
The quantum number m; can take 2J + 1 values
my;=—J, my=—=J+1,..,my=J

Thus, in the weak-field approximation, we derive the results given in
volume 1, section 10.3: the presence of the magnetic field lifts the degeneracy
and a given magnetic field gives rise to 2J + 1 equidistant Zeeman sublevels,
the distance between two consecutive sublevels being gf3B.

Solutions of Solutions of
(;) 1st stage 2nd stage
E ] 1
@ Ef g, |HoH T+ Ty Hot T+ Hy+Ty {Hyt T+ W Hot T+ W+ T,
' v+ LW E :, =
1 1 1
| ! ! 1 k=8 !
La1§=1J=2 =——— ' :
[l I ———— L&=6 k=L
0 ' ———— 0 11 P—————————
E ! 5 : E k=5 ;
L=1S=1 ! i =185=1! i
L=] =] J=] bt L=1S5=11 4 43
! —_ = —
L=1S8=1J=0 ! — "t
| \ k=1 —
| | | pel—
) AE
=1.5
g P
Al
EO
A
A
lpo
B
Note: For weak fields, the energy
scale is expanded

Figure 5.1 Weak-field case (Zeeman Figure 5.2 Strong-field case (Paschen-
effect): (a) for a given value of B; Back effect) : (a) for a given value of B ;
(b) as a function of B (b) as a function of B
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The results of our study in a weak field are summarised in figures 5.1(a) and
5.1(b). Figure 5.1(a) summarises the successive stages of approximation in
the absence of a field (see figure 3.2, but we have limited ourselves to the
values L =1 and S = 1) and the result of lifting the degeneracy for one value
of B is shown. Figure 5.1(b) shows the result obtained as a function of B for
the same levels as thosc considered in figure 5.1(a). Figure 5.1(b) thus repre-
sents the ‘Zeeman diagram’ of the three fine-structure levels 3Py, 3P,, 3P,; the
3P, level has no electronic magnetic moment and is clearly unaffected by an
external magnetic field. A calculation using equation (5.24) leads to numerical
values of g for the 3P, and 3P, levels that may be shown to be equal.

Comment In order to position the levels of figure 5.1(b) correctly, we have started
from the results in figure 4.5.

5.3.6 The Zeeman effect described by means of the vector model

In some books, the Zeeman effect is studied by using the vector model.
Although this may result in a repetition of our preceding study, we shall
review the principal features.

We saw (section 4.3.2) how, in the absence of a magnetic field, the vector
L representing the orbital momentum and the vector .S representing the spin
momentum of the electron precess together around their resultant J. When a
magnetic field B is applied, the coupling of L with B and the coupling of S
with B become evident. In the absence of coupling between L and S, the
latter precess independently around B, but in general the motion will be
complicated as a result of this coupling. In the first instance, we shall study
the case where the magnetic field is weak. Here the coupling energy between
the orbital momentum and the spin momentum is much greater than that
due to the coupling between these momenta and the field. This means that:

(1) the presence of the magnetic field does not perturb the coupling between
L and S—the diagram formed by the vectors J, L and S is unaltered;

(2) the interaction with the magnetic field is represented by the precession
of the aforementioned diagram—with respect to the vector J, for
example—around the magnetic field B (see figure 5.3).

Let us examine the situation with respect to the magnetic moments:

(a) the orbital magnetic moment is a vector colinear with the angular
momentum L:

g/ﬂL=—ﬂL

(b) the spin magnetic moment is a vector colinear with the angular
momentum §

Ms=—2BS

but because of the different gyromagnetic ratios, the triangle with sides .
and s is not similar to the triangle with sides L and S. The resultant angular
magnetic moment M is not colinear with the resultant momentum J.
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M therefore precesses around J with the angular velocity of the precession
of L and S around J, a velocity that we have assumed to be much greater than
that of the precession of J around B. The angle between .# and B varies
continually, but its average value is equal to the angle (J, B). We may therefore
write the interaction energy between . and B as equal to

AE=—M,>.B (5.27)
(M ;> denotes the vector projection of # on the direction of the vector J;
if u is a unit vector parallel to J, we may evaluate (., > by writing
(M ;> = (projection of .#; on J + projection of s onJ)u
J

1 1
=- (BmL.J+ 2BmS.J) u=—ﬁ—ﬁ(L.J+2S.J)

which, after evaluation of the scalar products L.J and S.J in the usual way
(squaring S =J — L and L =J — §), leads to
3J2+ 82— L2)

Since (> is colinear with J, equation (5.27) gives us, after replacing J?
with J(J + 1) and so on
AE=—(—pgJ).B=+gBJ.B= gPfm, B
where
JUJ+D+SS+1D)—-L(L+1)
2J(J+1)

This is in agreement with the results of the quantum mechanical calculation of
sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4.

g=1+

5.4 The Paschen-Back Effect in a Strong Field. The Case of
Intermediate Fields

As in the preceding sections, we confine our study to the case of L-S coupling.
Strong-field conditions are said to exist when the separations between sub-
levels produced by the magnetic field become much greater than the energy
separations due to spin-orbit coupling. Thus the various terms of the
hamiltonian H describing the atom in the presence of the magnetic field are
such that

T,>W>T,
The conditions for application of perturbation theory, used in the preceding

section, are no longer valid. We shall carry out the calculation in two suc-
cessive stages which are illustrated in Figures 5.2(a) and 5.2(b)
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5.4.1 First stage, neglecting spin—orbit coupling

If we neglect spin—orbit coupling, we may apply the perturbation W to the
hamiltonian H = H, + Ty, which excludes spin-orbit coupling. This
means that in this first stage, in the absence of a field, the level E° corre-
sponding to particular values of the angular momenta L and S is
(2S + 1)(2L + 1) times degenerate. We shall therefore use as a basis repre-
sentation the basis defined by the vectors L and S, and denoted by
|ECLSm_ms). The use of the notation of section 5.3.1 results in the matrix
elements of the perturbation W being denoted by W,,., the subscript k being
able to take (2S5 + 1)(2L + 1) values.

We note immediately that L, and S, are diagonal in the |E°LSm ms)>
representation, since the matrix elements may be written

(E°LSmymg|L,|E°LSm, ms'> = My Omymy
<E0LSmLmS'S,|EOLSmL' ms,> = Mg 5"‘5"‘8'

and thus
Wi = CE°LSm; mg| B(L, + 2S,)| E°LSm,' mg")

= B(my + 2mg) S (5.28)

The matrix W,,. is diagonal, and to clarify its interpretation we have drawn
up a table (table 5.1) giving the value of m, + 2myg as a function of the subscript
k. This table has been drawn up for the case S =1, L = 1. In order to define k
we have chosen a sequence such that an increase in the value of k corresponds
to an increase of m; + 2mg (but this is completely arbitrary).

The first-order energy corrections E® will be equal to the diagonal
elements Wy,

EM = AE= W, = BB(m_ + 2myg)

Table 5.1 Table of values of K, mgm; and 2mg+ m; forS=1,L =1
(Note the arbitrary order of numbering k)

mg my 2mg 4+ my, Ampmg my + mg
1 —1 —1 -3 A -2
2 —1 0 -2 0 —1
3 -1 +1 —1 —A 0
4 0 -1 -1 0 —1
5 0 0 0 0 0
6 0 +1 +1 0 +1
7 +1 -1 +1 —-A 0
8 +1 0 +2 0 +1
9 +1 +1 +3 A +2
N—_———

relates to section 5.4.2

Comment I In examining table 5.1, we note that some energy levels remain de-
generate after application of the perturbation W (m, + 2ms = +1 or —1 in the example
given).
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Comment II Since m, + 2ms can take only integer values, the separation between
the levels that is obtained is given by the classical equation for the Zeeman effect
with a Landé factor equal to unity.

The results of this first stage, for a given value of B, are shown in the middle
part of figure 5.2(a) (still limited to the particular case S = 1,L = 1). The levels
obtained as a function of the field B have been drawn in dotted lines in figure
5.2(b); in the weak-field region, these levels are clearly without physical
meaning.

5.4.2 Second stage

We now apply to the energy levels defined above, the perturbation expressed
by the term 7,, which may be written as a result of the discussion in section

3.2.2
T2 = Z a; Ii .8
i

In the case of L-S coupling, it may be shown by application of the Wigner-
Eckart theorem (A. Messiah, Quantum Mechanics, page 705) that T, can be
put in the form

T,=AL.S

(This result was proved in section 4.3.2 in the case of a system of two electrons,
by means of the vector model.)

Let us consider the simplest case, where the levels to which we shall apply
T, are not degenerate. Using the results of perturbation theory, the energy
correction E™ is equal to the mean value of T, evaluated for the unperturbed
state. If we write

T, = A(L: Sy + L, S, + L. S,)

the mean value of the first two terms in the bracket is zero. In addition, since
a state is characterised by given values of m, and ms, the mean value of L, S,
is equal to m_mg, and so

Ty =Ammg

By using the various methods of evaluating mean values, the reader can
establish this result rigorously, and generalise it to the case where the per-
turbation T, is applied to a still degenerate level (k =3 and 4 or k=6 and 7
in the example shown in figure 5.2).

Thus, finally, we may write the energy separation AE between the various
sublevels in a strong field

AE = BB(m; + 2mg) + Amymg

The results obtained in this second stage, after application of the perturba-
tion T, are shown in figure 5.2 for the particular case just studied:

(1) for a given value B, in the last column of figure 5.2(a);
(2) as a function of B, by the thick lines in figure 5.2(b).
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Figure 5.3 Vector model of the weak-field Zeeman effect: L and S remain coupled

Comment The reader may establish, by drawing up a table similar to table 5.1 for
other cases (S=1,L=2; S=1, L =1 and so on), that the perturbation AL .S does
not always completely lift the degeneracy of all the levels that are solutions of
Ho+ T, + W. In a strong field some of the levels obtained from first-order perturba-
tion theory can remain degenerate.

5.4.3 Use of the vector model

Let us re-derive the preceding results by using the vector model. Under the
assumption of a strong field, the coupling energy between the magnetic
moments and the applied field B is much greater than the coupling energy
between the magnetic moments. Accordingly, the following scheme is adopted
(figure 5.4):

(1) the vector L, coupled only to the magnetic field B, precesses around the
direction of this field with an angular velocity w, ;

(2) the vector S, also coupled only to the magnetic field B, precesses around
the direction of this field with an angular velocity ws.

Since ws # wy, the resultant J has a length and direction that are con-
tinually varying with time, and it becomes impossible to define the quantum
numbers J and m;. We cannot therefore use J, which has become meaningless.
The vectors S and L retain their meaning and we shall use as the quantisation
condition:

(a) the projection of L on B, which takes an integer value m, such that

(b) the projection of S on B, which takes an integer or half-integer value
mg such that

—S<ms<5
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Figure 5.4 Vector model of the strong-field Zeeman effect: L and S no longer coupled

Let us evaluate the energy of an atom in a strong field. We must add to the
energy E° in the absence of a field the coupling energy AE, g of L with the
field B, the coupling energy AEsg of S with the field B, and the spin—orbit
coupling energy AE, s which we have assumed to be a very small term com-
pared with AE,p and AEgg. The first two of these terms may be evaluated
without difficulty

AE;=——1 WL.B— Bpm,
2mK

AEsy = — L hS.B=2Bpm;
mKk

The coupling energy between L and S may be written by using the notation
of chapter 4
AELS = AL ‘S

but since L and S precess independently around B, the angle (L,S) varies
continually. By means of spherical trigonometry, we can evaluate the mean
value of this angle

cos(L,S) = cos(L, B)cos (S, B)
If u is a unit vector parallel to the field B, we may write
AE, = A(L.u).(S.u) = Amymg

The energy of the Zeeman sublevels may then be obtained by adding to the
energy E° in the absence of a field, the quantity

AE= AELB + AESB + AELS = (mL + 2ms) BB+ AmLms
This is identical to equation (5.29) on page 101.
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5.4.4 Intermediate fields

This is the situation where the perturbations are of the same order of magnitude, and
consequently we must apply the total perturbation

W=B(L+2S).B+ AL.S

directly to the solution of Hy + T7.

It is therefore necessary to find the matrix elements of the operator AL.S in the
representation |LSm.ms>. The energy correction resulting from perturbation
theory should be expressed as a function of a physical parameter that retains its
meaning for all values of the magnetic field; this is not so for m, and ms. The only
conservative vector is the vector J. Therefore m; = m; + ms is taken as a parameter
as it will retain a physical meaning in the perturbed states. The calculation of the
matrix elements should be carried out in such a way as to express them as a function of
my. The calculation is generally complicated, although the particular case where
S = 1 may be treated without difficulty.

The qualitative features of the energy diagram are often sufficient for discussion
of an experiment. The physicist may then merely join in freehand style the weak-field
and strong-field diagrams. The fact that m; = ms + m, must be conserved for a
given level usually removes much of the uncertainty in the joining. In addition, it
can be shown that two levels with the same m; do not cross one another. Figure 5.5

Figure 5.5 Complete energy diagram obtained by joining up figures 5.1 (b) and 5.2(b).
It should be noted that the two levels m; = +2 and m, = —2 are represented by
straight lines. It should also be noted that the two dotted lines, and the asymptotes of
certain levels, converge towards the value of the unperturbed level £°in zero field

m;+2mg=3
-
E -

m,=
mL+2mS=2

m;=1
m;=2 '"L+2'"S=1
1 m; = m;+2mg=1

_ ’"J=O

2 _
0 my =0 m;+2mg=0

=] m;=—1
O —
'ﬂio m+2mg=—1
’"j\—_] my+2mg=—1
my=-2
m;+2mg=—2
~ mL+2mS=—3
\\

B
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shows the energy diagram covering the regions of weak, intermediate and strong
fields for the case of 3P levels. This figure was obtained by joining figures 5.1(b)
and 5.2(b).

The reader will note that a certain number of ‘level-crossings’ exist. Spectral
transitions taking place in the presence of a magnetic field and corresponding to a
level-crossing may show certain unusual effects. The use of this feature in spec-
troscopy will be discussed in chapter 7.

Comment Suppose an atomic system is placed in a very strong magnetic field such
that
W>T,>T,

We must then reconsider the various stages of the perturbation calculation and start
by applying the perturbation W to the level E° corresponding to the approximation
of independent electrons in a central potential. The procedure is not difficult and we
limit ourselves in the following section to pointing out the results obtained in the
particular case of an atom with two electrons.

We should also note that these conditions of very strong fields (total Paschen-Back
effect) are rarely achieved with the magnetic fields that are commonly obtainable in
the laboratory.

5.5 The Zeeman Effect and the Paschen—-Back Effect of Atoms
with One or Two Electrons

Chapter 4 was devoted to a detailed study of systems with one or two electrons.
In this section we collect together additional information concerning the
atomic magnetism of these simple systems.

5.5.1 Atoms with one outer electron

The theory developed in sections 5.3 and 5.4 may be applied straightforwardly,
the operators L and S representing in this case the orbital angular momentum
operator / and the spin angular momentum operator s of the outer electron.

To illustrate the theory, we give some calculated Landé factors in table 5.2.

Table 5.2
’ / o 1 1 2 2 3 3
s + 0¥ 0+ ¥ 3 3 %
J 3 z 2 2 2 3 z
Spectral term 283 2Py 2Pg 2Dz  2Dg 2Fg 2F%
g 2 z 3 2 3 $ 3

In figures 5.6 to 5.9 we shall illustrate the study of the Zeeman and Paschen-
Back effects for the two resonance transitions of the alkali atoms, usually
called D, and D,:

D,: n’P, — n*S;

D,: n*P3 — n*S,
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Before discussing the spectral transitions themselves, the effect of the
magnetic field on the levels concerned must be studied. The upper levels form
a doublet corresponding to the quantum numbers s =% and /= 1; for these
quantum numbers we can follow the example studied in the preceding section
where we chose S=1,L=1.

In this new case, figures 5.6, 5.7 and 5.8 replace figures 5.1, 5.2 and 5.5
respectively in the previous example. Figure 5.6 represents the weak-field
problem: figure 5.6(a) for a given value of B, and figure 5.6(b) as a function
of the variable field B. Figure 5.7 represents the strong-field problem with
parts (a) and (b) having the same significance. The upper part of figure 5.8
presents the complete energy diagram obtained by joining figures 5.6(b)
and 5.7(b).

Solutions of Solutions of
(a)E}H T, \H+ T+ T H+T, | *x) Hy+T, \H+T,+W H+T, '
+T, H+ T+ G H+T + | +T, \HAT+W H+ T+
0 1E o™ 1 2: [} +1T2+W: 0T : o T ot A,
: : E ;____T __________ A/2
oV} S—1 : : :
Y77 e— ? . '
L=1 | i : L=15=1/2 ‘.—,——14/2
s=1/2} 4 ; ! l -
1= 172 e ! '
i — — %
: | ! ' I '
i : ' 1 | Remains |
degenerate
(b) (b) A/2
E

A
2=2/3
2
B
B
Figure 5.6 Weak-field case (Zeeman Figure 5.7 Strong-field case (Paschen—
effect) : (a) for a given value of B; (b) Back effect): (a) for a given value of

as a function of B B; (b) as a function of B
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Figure 5.8 Zeeman and Paschen—Back effects of the 2S;, 2P3 and 2Py levels of

an alkali atom

The diagram of the Zeeman splitting of the 2S, ground state of an alkali
atom has been added in the lower part of figure 5.8. The latter diagram presents
no difficulty because the ground state is one of zero orbital momentum and

there is no spin-orbit coupling.

The experimentally observed spectral transitions take place between the
sublevels shown in the two parts of figure 5.8. By using the selection rules
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stated in volume 1, chapter 11 and in section 4.1, the reader may confirm that
the frequencies of the various transitions, as well as their polarisation states,
are correctly represented by figure 5.9. Figure 5.9(a) shows the observed

Frequency of the
4\ Frequency observed lines
E -E
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.
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o
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(a) (b)
Figure 5.9 Zeeman effect of the 2Py— 2S; and 2Pz — 2S3 transitions of an
alkali atom. (a) Polarisation state of the observed spectral lines for particular values of B.
(b) Frequency of the observed spectral lines as a function of B. Note: Figure 5.9(b) is
drawn with ordinate and abscissa having the same scales as in figure 5.8.

lines for two given values of B: in a weak field, four Zeeman components of
the D, line are observed separately, and six components of the D, line; in a
strong field the Paschen—Back effect, common to both the D, and D, lines,
is observed. In figure 5.9(b) we show the variation of the observed frequencies
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as the field Bis changed, by joining up the two limiting cases. As an exercise, the
reader may put numerical orders of magnitude for the various alkalis on to
the different axes (field and frequency) with the help of the values given in
table 5.3.

Table 5.3
The spin—orbit
A measured in nm coupling constant

n D, transition D, transition A (cm™)
Lithium 2 670-785 0-22339
Sodium 3 589-592 588-996 11-45
Potassium 4 769-898 766-491 385
Rubidium 5 794-764 780-023 158-4
Caesium 6 894-346 852:112 369-4

5.56.2 Atoms with two electrons in j/—/ coupling

The theory presented in section 5.3 and 5.4 relates to the case of L-S coup-
ling; this is a rather special case, but the method can be adapted without much
difficulty. As an example, we shall show how the Zeeman and Paschen-Back effects
can be described for two electrons in j—j coupling.

(1) The weak-field case. We could apply the Wigner-Eckart theorem, as in L-S
coupling, and write

KE,°Imy|L, + 2S.|ES°Imy") = gm; Omym,” (5.30)
but the stages that follow cannot be used because the angular momenta S and J are

not physical characteristics of the levels in j—j coupling. Therefore we write the
operator W in such a way as to emphasise the operatorsj, and j,

W=B(ji+j.+ s +5,).B

The Wigner-Eckart theorem must now be applied several times consecutively; for
brevity, we confine ourselves to applying it without giving a complete account of the
various steps in the calculation. The form of the argument may be understood if
it is appreciated that it is analogous with the evaluation of g in L-S coupling.

(a) Let us apply the Wigner-Eckart theorem to the matrix elements of the
operator j,,

Imyljiz| Imy"™> = aldmy|J.|Imy">

After squaring j, = J — j,, the operator j, .J may be written

and aence the mean value of j, .J is
JIT+ D+ + 1) —j(2+ 1)
2

<j|--’> =
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We can also calculate { j, .J> directly from property (2) stated in section 5.3, equation
(5.19), and we readily obtain
hdd>=al(J+ 1)
Hence
e JUI+D)+40i+ D=2+ 1)
2J(J+ 1)

(b) The matrix elements of the operator j,, may be found by a similar process.
We write

<‘,m1|j2z|‘lml/> = b<‘,ml|‘,z|',ml/>
and deduce that

b JUI+D)+j(/2+ D) —ji(ji + 1)
2J(J+ 1)

(c) If we consider the matrix elements of the operator j,, + s,,, the Wigner—-Eckart
theorem allows us to write

Imy| jiz+ 51| Imy"> = g1 {Imy jr| Imy">

The evaluation of g, is carried out in the same way as the evaluation of g in L-S
coupling; after evaluating the mean value of j,.(j, + s,) in both ways one obtains

1+ S+ D +si(si + D)=L+ 1)
250+ 1)

=
(d) Similarly, after writing

Iy jaz + 22| Imy"> = 8:24Imy|jrz|Im;">
we obtain
+j2(j2 + D) +sy(s:+ )= L(L+1)
2/,(j2+ 1)

g2=1

From these four steps, we can write
{Imy|L; + 28, Imy"> = (ag, + bga) <Imy|J;|Imy">
from which we obtain the Landé factor
g=ag, +bg,
The study may then proceed as for L-S coupling.

(2) The strong-field case. First we apply the perturbation W to the solutions of the
hamiltonian H, + T> which form levels each characterised by particular values
of the angular momenta j, and j,. These levelsare(2j; + 1) (2j, + 1) times degenerate,
the perturbation W will partially lift this degeneracy. Next we apply the perturbation
T, in the form A’j,.j, (see chapter 4). As an exercise we leave the reader to show
that the energy differences with respect to the E° solution of the hamiltonian Ho + 77,
are given by

AE=(gim;, +g.m;,) B+ A" mj m;,
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(3) The total Paschen—Back effect for an atom with two electrons. The energy
levels in this case can be defined without further difficulty. We confine ourselves to
illustrating the physical phenomena by means of the vector model diagram (figure
5.10): the coupling energies between each magnetic moment and the applied field
B become much greater than the coupling energies between the various orbital or
spin magnetic moments. The four vectors /;, [,, s, and s, then precess independently
around B.

Figure 5.10 Total Paschen—Back (strong field) effect for a two-electron atom in j—/
coupling



6

The Nucleus and the Physics of
the Atom

In the preceding chapters, the nucleus of the atom was considered as a point
charge, providing a very simple 1/r electrostatic potential. This assumption
proved to be very useful for a preliminary discussion of the properties of the
atom, but it is insufficient to explain many experimental results. In particular,
the lines of an atomic spectrum, when observed with a high-resolution spectro-
graph, often show a ‘hyperfine structure’ which cannot be explained within
the framework of the atomic model as developed until now.

Some of the earliest observations of ‘hyperfine structure’ of spectral lines
were made by Michelson (1891), Fabry and Perot (1897) and Janicki (1909).
In the interpretation by Pauli (1924) and Russel (1927) the assumption was
made that the nucleus possessed its own angular momentum and its own
magnetic moment. By analogy with the electron, the angular momentum of
the nucleus itself is called the nuclear spin.

The existence of this nuclear magnetic moment complicates the study of
atomic magnetism; so we shall refine the study of the Zeeman effect and show
in particular that the deflections of an atomic beam in a magnetic field (the
Stern and Gerlach experiment) can be correctly described only by taking
account of the nuclear magnetic moment.

A detailed account of the atom should also take account of the finite size
of the nucleus in the evaluation of the electrostatic interactions between the
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nucleus and the electrons. This problem presents great difficulties and many
atomic spectroscopy groups devote their attention to it. In this chapter we
shall often have to be satisfied with a qualitative account and confine ourselves
to particularly simple cases.

6.1 The Nucleus: Magnetic Moment and Angular Momentum
6.1.1 The magnetic moment of the proton

The reader has seen how the hypothesis of electron spin was confirmed by the
interpretation of the Stern and Gerlach experiment (see section 3.1.4). Some
years later, Esterman, Frisch and Stern (1932) provided evidence of the
angular momentum and magnetic moment of the proton.

The hydrogen molecule is formed from two hydrogen atoms, that is, two
electrons and two protons. The magnetic moment of this molecule results
from the composition of the orbital and spin magnetic moments of the
electrons, and of the magnetic moments of the protons. The hydrogen
molecule can exist in two forms: orthohydrogen, in which the nuclear moments
of the protons are parallel, and parahydrogen, in which the nuclear moments
of the protons are anti-parallel. Methods based on the properties of the
thermodynamic equilibrium between these two forms enable them to be
separated. Esterman, Frisch and Stern performed a Stern and Gerlach
experiment with orthohydrogen and parahydrogen in succession. The
difference between the results obtained was then related to angular and
magnetic moments of the protons and the following two hypotheses allowed
a coherent interpretation of the experiments:

1) the proton possesses an angular momentum o, described by the spin
 ang P p
quantum number %; this angular momentum obeys the general rules
of quantisation

component along the Oz axis: (6,), = +3A
magnitude: |o,| = v/ [3(3 + D14
(2) the proton possesses a magnetic moment .4, parallel to and in the
same sense as its angular momentum o,; the gyromagnetic ratio is
therefore positive, in contrast with that of the electron.

The term ‘magnetic moment of the proton’ is used to indicate, not the
vector ., but the magnitude of its component along an axis; expressed as a
function of the positive charge e and of the mass M of the proton, it is
nuir srically equal to

eh
M= (M), =279 ——=2-79
o= I(A).] =279 =279
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introducing the ‘nuclear magneton’ Sy derived from the Bohr magneton by
replacing the mass m of the electron by the mass M of the proton

eh ‘ﬂm“’ﬂ 1
bn=ame =P 3™ P 1336

(The value 2-79 was found from more accurate measurements obtained by the
same method in 1937.1) We should emphasise that the numerical factor of
2-79 has no direct relationship with the spin magnetic moment of the electron.
The introduction of Sy might therefore seem to be rather artificial.

Evidence of the precession of the proton’s magnetic moment can easily be
obtained by means of magnetic resonance (see volume 1, chapter 9). Frequency
measurements allow a very accurate value to be obtained for the magnetic
moment of the proton. The presently accepted value is

M= |(M,),| = 2792775 By

6.1.2 The magnetic moment of the neutron

The picture of a charged particle, of a certain size, rotating around an axis,
allows the existence of a magnetic moment to be explained qualitatively by
means of a classical argument. In such a classical picture, we can understand
the existence of a magnetic moment for the neutron only if we accept that the
zero charge of the neutron arises through the balancing of a distribution of
positive and negative charges. It may be concluded from the interpretation of
the results of certain nuclear reactions that the neutron possesses an angular
momentum ¢, described by the quantum number 1.

It is very difficult to carry out an experiment similar to Stern and Ger-
lach’s in order to determine the nuclear magnetic moment of the neutron.
This type of experiment requires a very well collimated beam of particles,
which is incompatible with a sufficiently high neutron density. The methods
used involve Larmor precession.

The basic idea (F. Bloch, 1936) is related to the possibility of obtaining a
partially polarised beam of neutrons by using scattering from a magnetised
medium. The neutron scattering process involves an interaction between the
magnetic moment .4, of the neutrons and the magnetic moment .#, of the
atoms of the scattering material. If this is a magnetically saturated ferro-
magnetic substance, all the moments .4, are in the same direction, and the
number of scattered neutrons will depend on the angle between the moment
A , of the incident neutrons and the direction of magnetisation. The moments
M, of the transmitted neutrons that have not been scattered, thus have a
non-isotropic distribution. The beam is said to be partially polarised (figure
6.1). It will be noted that the method used to polarise neutrons is quite similar
to that used for polarising electrons (see volume 1, section 12.2).

We shall now describe the experiment illustrated in figure 6.2. A beam of

+ Esterman, 1., Simpson, O. C., and Stern, O. (1937) Phys. Rev., 52, 535.
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neutrons is obtained by bombarding a target of deuterium, according to the
reaction

iBe+iD — '¢B+én

It is partially polarised by a magnetically saturated piece of steel, number I,
acting as a ‘polariser’. It then passes into a region where there is a magnetic

Incident beam of
neutrons with an
isotropic distribution
of nuclear moments

Scattered
neutrons

/

B, (constant)

Direction of
magnetisation

Scattered neutrons

Transmitted beam
B, (alternating)

These neutrons are oriented
(the number of neutrons with m=1/2 is differ-
ent from the number of neutrons with m=-1/2).

Figure 6.1 lllustrating the method of obtaining a partially polarised beam of neutrons

10

Figure 6.2 Diagram of the Bloch and Alvarez experiment: (1) cyclotron, (2) cyclotron
beam (3) target, (4) hydrogen-containing material (paraffin) serving to slow down and
collimate the neutrons, (5) steel block No. | serving as a polariser, (6) steel block No. Il
serving as an analyser, (7) pole pieces of the electromagnets (not shown) magnetising
the pieces of steel to saturation, (8) pole pieces of the electromagnets creating the
static field By, (9) coil creating the radio frequency field B,, (10) a BF3 neutron detector
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field B, in the same direction as the polarisation direction of the neutrons.
This means that in this region of space the number of neutrons of magnetic
quantum number m = +% is different from the number of neutrons of quantum
number m = —%. If an oscillating magnetic field B, of frequency w, produces
magnetic resonance in this field B,, the number of neutrons in the states
m=+% and m = —} are equalised (see volume 1, chapter 10) and the beam
will then be depolarised.

The piece of steel, number II, acts as an analyser: the number of neutrons
scattered, and hence the number of neutrons transmitted, will depend on the
polarisation state of the incident beam. Magnetic resonance, producing a
change of polarisation of the beam, will therefore be detected by a change of
the beam intensity reaching the detector. The magnetic moment ., will be
found easily from the resonance frequency w, (see volume 1, chapter 9). In
practice, the apparatus is designed so as to produce nuclear magnetic resonance
of protons at a frequency w,’ in the same field B,. The measurement of w,
and w,’ allows the determination of the ratio of the magnetic moments (their
components in the direction of the field B,)

M| M, = o]y

The magnetic resonance technique has other refinements which permit the
orientation of the magnetic moment in relation to the angular momentum to
be determined, that is to say the sign of the gyromagnetic ratio. This sign is
often indicated by describing the sign of the magnetic moment. The magnetic
moment of the neutron is found to be in the opposite direction to that of its
angular momentum; by convention it is given a negative value.

The first experimentst date from 1940. When repeated with a much more
intense beam of slow neutrons originating from a reactor, they led to the
adoption of the following value}

M =—(1-913148 + 0-000066) B

6.1.3 Angular momenta and magnetic moments of some nuclei

It seems reasonable that a nucleus can possess an angular momentum and a
magnetic moment in view of the fact that its constituents possess them. How-
ever, it is difficult to go much beyond this assertion, as the example of deu-
terium demonstrates. The nucleus of deuterium, or the deuteron, consists of a
proton and a neutron, possesses a spin quantum number equal to one, and a
magnetic moment

My = 0-857406 P

which, even within experimental error, cannot be considered as the sum of
the magnetic moments of the proton and neutron

Mo+ My = (279277 — 1-91314) By = 0-87963 By

+ Bloch, F., and Alvarez, L. W. (1940). Phys. Rev., 57, 111.
t Cohen, V. W., Corngold, N. R., and Ramsey, N. F. (1956). Phys. Rev., 104, 283.
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The structure of the nucleus is very complex: the inter-nucleon forces are
non-central forces involving the angles between the magnetic moments and
the radius vector joining the nucleons. Furthermore, within the nucleus, the
nucleons possess an orbital angular momentum. Therefore, all we can say is
that each nucleus is described by a magnetic moment and an angular momen-
tum—which can be zero for certain nuclei—an assumption in good agreement
with experimental results. The nuclear angular momentum oy will be charac-
terised by the integral or half-integral quantum number /

lowl = VI + DI; (o), =myh,  where -I <m; <1

and we shall use the dimensionless vector I such that ex="1.

The nuclear magnetic moment vector is usually characterised by indicating
the maximum value of its component along an axis, when m; = I. It is this
value which is called the nuclear magnetic moment .# in tables of constants.
It is measured in units defined either by the Bohr magneton B, or by the nuclear
magneton By (see section 6.1.2). The values measured experimentally by
various methods, some of which are cited in chapter 7, are usually of the
order of the nuclear magneton (see table 6.1).

Table 6.1 Values of /, .#, g, and Q for several nuclei

Nuclear magnetic moment

My Landé factor

in nuclear in Bohr Q, in barns
Atom / magnetons magnetons a/ g (10724 cm?)
IH 4 +2:79278 0-00152112 5-5883 0-00304226
2D 1 40-85742  0-00046700 0-85742  0-0004670 0-0028
3He % —2-1276 —0-0011588  —4-25656  —0-002317
3¥K & +0-3914 0-0002132 0-2609 0-00014212 0-09
$6Zn 5 +40-8757 0-0004769 0-35028  0-00019076 017
%°Rb & +1-3527 0-0007367 0-564108  0:00029470 0-28
29%e 1 —0-7768 —0-0004231 —1-6636 —0-00084622
'3BCs I +2:579 0-0014097 0-7369 000040133  —0-003
oHg % +0-5027 0-0002738 1-0054 0-0005477
201Hg 2 —0-5567 —0-00030321 —0-37113 —0:00020214  +0-45

Likewise we define a nuclear Landé factor. However, the reader should be
very careful because the conventions used vary according to the authors or
tables consulted. We shall put

My=g Bl
1

and My=g; B so glzmgll



118 MODERN ATOMIC PHYSICS: QUANTUM THEORY AND ITS APPLICATIONS

g; or g, is called the nuclear Landé factor. (According as the numerical value
of the nuclear magnetic moment is expressed in Bohr magnetons or in nuclear
magnetons, it has the value # =g, or #Mn=g;'1)

The above formulae are based on the following generally adopted sign
convention: the Landé factor is considered as positive when the nuclear
magnetic moment and the angular momentum are in the same direction, and
as negative when in the opposite direction. Similarly a nuclear magnetic
moment is represented by a positive or negative number according as it is in
the same direction as the nuclear angular momentum or in the opposite
direction (see figure 6.3). We should note that this convention is opposite to
that used for electronic moments: the Landé factors g, are considered as
positive when the magnetic moments (orbital and spin) are in opposite
directions to the corresponding angular momenta (figure 6.3).

Vi I AJ
My
o
g,>0
My A\>0 A,
y
g <0 g,>0
A< 0
_
~
Nucleus Electron
Ay=+g, bl H =—g, 8

Figure 6.3 Sign convention.

By consulting a complete table of nuclear moments, we may state that:
(1) all isotopes having an even mass number 4 and an even atomic
number Z have zero nuclear spin and zero nuclear magnetic moment.
Example $He, '$0, and 2INe; all even isotopes of mercury (Z = 80 with 4 = 196,
198, 200, 202, 204), and so on.
(2) all isotopes having an even mass number A4 and an odd atomic
number Z have an integral nuclear spin.
Example 2D, /=1;8Li, /=1;'IB, I=3;etc.
(3) all isotopes having an odd mass number A have a half-integral nuclear
spin (see tables 6.1 and 6.3).

6.2 The Magnetic Hyperfine Structure of the Energy Levels

Back and Goudsmit interpreted the hyperfine structure of spectral lines by
making two hypotheses that we state below in sections 6.2.1 and 6.2.2. The
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reader should note the similarity with the previous account of an atom without
nuclear spin, where a level is characterised by the total angular momentum J
and where a coupling energy exists between different angular momenta.

6.2.1 Composition of the angular momenta

An energy level of an atom will be characterised by the quantum number F
describing the total angular momentum of an atom, the sum of the angular
momenta of the nucleus and the assembly of electrons

0F=6.’+61
or in units of A
F=I+J (6.1)

For given values of I and J, the operator F will be obtained by using the rules
for combining angular momenta, already stated in chapter 3; as a result,
several levels having different values of F will correspond to one value of J
(figure 6.4).

F=9/2
F=1/2
J=3 —— F=5/2

 F=3/2

(a) (b)

Figure 6.4 Hyperfine splitting of a level arising from the interaction between the
electronic and nuclear magnetic moments. Hyperfine levels are characterised by different
values of the quantum number F. (a) Ignoring the existence of nuclear spin; level
characterised by J = 3. (b) Taking account of a nuclear spin / = 3/2

6.2.2 The interaction energy

A correction to the energy E, of a level J will be introduced as a consequence
of the interactions between the nuclear magnetic moment and the electrons.
It will take the form

AE,=A'1.J (6.2)
A’ being a constant, characteristic of the level J.

This hypothesis, which will be discussed in more detail in the next section,
reduces to the assumption that the nuclear moment

My =g fl

interacts with a magnetic field B, which is parallel to J. The field at the nucleus
is the resultant of the magnetic field created by the orbital motion of the
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electrons and of the magnetic field created by the magnetic dipole moment
due to the spin of the electrons. The interaction energy may then be written

AE0=—./ﬂN.Bo

The two hypotheses above facilitate a simple study of the relative positions
of energy levels of the same J and different F. The energy change of a level
characterised by F (with respect to E,, a solution in the absence of a nuclear
moment) may be found by expanding the scalar product I.J. To do this, we
square the identity F=I+ J :

F*=I*+J*+21.J
from which we obtain
F*—1*-J?
2

and after substituting the eigenvalues, we have

1.J=

AEy(F) = %I [FCF+1)—II+ 1) =J(J + 1)] (6.3)

Figures 6.5(a) and 6.5(b) show, for two particular cases, the values of the
energy differences AE, calculated as a function of the quantum number F and
of the parameter A’ (which is independent of F). It should be remarked that

\ F=4
sera| Java T J=ssa | 13478
=1/ = A'/4

E() [ EO F -———F=3

, 184’74 121474

34'/4 Fe?

[ F=0 L r=1

J=1/2 J=5/2

(@)  I1=1/2 (b) 1=3/2

Figure 6.5 Hyperfine structures

experimentally, one does not measure the energy correction AE(F) corre-
sponding to a level characterised by F, but instead the energy separation
between two levels of different F, and generally between two consecutive
values F and F + 1. A typical separation

AES(F + 1) — AEy(F)

is called the ‘hyperfine splitting’ or ‘hyperfine structure’.
In table 6.2 values for several levels are given. It will be noticed that some
measurements can be made to a high degree of precision; indeed, certain
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Table 6.2 Values of hyperfine separations for several atomic levels

Configuration F"—F Measured hyperfine
Atom / of level J transition structure (MHz)
H 3 t1s 3 1—0 1420-4057518+%
3He 1 1s 2s 1 251 6739-7013
%K 2 1t [—] 4s 3 21 461-71971
8izZn s [—] 4s 4p 2 212 2418111
1—>8% 1855-690
5§ —>32 1312-:065
>3 781-865
133Cs 2 t [—] 6s 3 4 =3 9192-63177 ¢

t The levels marked with a dagger correspond to ground levels.
¥ Transitions used as frequency standards.

hyperfine splittings serve as frequency standards and hence as time standards.
The General Conference of Weights and Measures held in 1964 recommended,
alongside the definition of the second based on astronomical observations,
the use of the ‘atomic second’ defined from ‘the transition between the hyper-
fine energy levels F = 4, mp = 0 and F = 3, m; = 0 of the 6°S, ground state of
caesium 133, unperturbed by the external magnetic fields, the frequency
assigned to this transition being 9 192 631 770 Hz’. The thirtieth General
Conference of Weights and Measures in 1969 adopted this definition of the
second as the fundamental unit of the ‘Systéme International’ (SI). In some
countries it has not yet become the legal unit.

Note In the following few lines and in the next section (6.3.1) we denote the orbital
momentum vector of an electron by the symbol L, contrary to our usual practice.
This is to avoid confusion between the two symbols / (commonly used for the
orbital momentum of an electron) and I (the nuclear angular momentum).

Comment I Depending on the level J considered, the coefficient 4’ can be positive
or negative:

(1) the nuclear magnetic moment can be in the same direction or in the opposite
direction to the vector I,
(2) the field B, can be oriented parallel to J or in the opposite direction.

The field B,, created at the nucleus by the orbital motion of an electron is in the
opposite direction to the vector L (figure 6.6) due to the negative charge of the
electron, whereas the field By, created at the nucleus by the spin magnetic moment
A is parallel to s. For the assembly of atomic electrons, depending on the respective
values of S and L in L-S coupling or the different j; in j—j coupling, the projection of
the resultant of these fields on J, representing the mean value B, of the field at the
nucleus, can be either parallel to J or in the opposite direction.

Comment II From the equation giving AEy(F) the reader could easily derive a
Landé interval rule similar to that found in section 4.3.3: ‘for a given value of J, the
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separations between consecutive hyperfine sublevels are proportional to the greater
of the F numbers of these two sublevels’.

Figure 6.6 lllustrating the magnetic fields created at the nucleus by the orbital motion
of an electron and by its spin angular momentum

6.3 Magnetic Interactions Between the Nucleus and the
Electrons: Calculation of the Hyperfine Structure Constant

The results of section 6.2 were obtained from the hypothesis of a field B, created at
the nucleus by the atomic electrons. A quantitative study justifies this hypothesis,
and permits a more detailed approach, allowing the parameter 4’ to be related to
the various fundamental constants. The calculations are very complex and require
specialised techniques. We limit ourselves to a general discussion. The evaluation of
the parameter A’ requires that the various contributions to the energy correction
AE, expressing different physical effects, are studied successively.

6.3.1 The interaction between the nuclear magnetic moment and the
orbital magnetic moment of an electron

The nuclear magnetic moment %\ creates at a point »r anywhere in space, a vector
potential

Ho 1
A=———(./IlN X F)

In the first step the interaction energy w, with the electron cloud will be expressed
by introducing a volume current density j at each point in space. Using classical
electromagnetism we may calculate w, by means of a volume integral

./IlN X r
w,=—f” AJdV:——-—fff N jdr
space space

By introducing the charge dg placed at the point M at the extremity of the vector
r and moving with a velocity v, we have

j‘f‘f .,ﬂN(rXJ) 3 Ay J'J'J‘ rxv
4mc space 4nk space
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Since the orbital angular momentum &, = m(r x v) is a constant of the motion it
can be taken out of the integral. By introducing the Bohr magneton and the orbital
momentum measured in units of 4 we can write

w, = +ﬂ2BL../ItN<r‘3>
4r

2[5
space r?

(the minus sign disappears when ¢ is replaced by —e in order to introduce the Bohr
magneton f).
Finally, after introducing the nuclear spin I, we obtain

where

W, =+?2g, BL. I3 (6.4)
T

Comment The preceding result can be obtained more simply by imagining a point
charge g = —e describing a classical orbit with velocity v. At a given instant, the
field it creates at the nucleus is

Ho —r Ho q Hoq O

B=——q¢qyp = —mr X v=
4nk r3 4nmk r3 4nmi r3

(r is still directed from the nucleus towards the charge q); hence the average field is

h 1
_ Hoq E’-ZB Nz
" dnmi r3 4n r3

and it only remains to write the interaction energy w, = —#.Bo,.

6.3.2 The interaction between the nuclear magnetic moment and the
spin of an electron describing a non-penetrating orbit

The nuclear magnetic moment # and the electronic spin magnetic moment
are considered as magnetic dipoles, localised at a separation r. By using an entirely
classical equation from electromagnetism (see appendix 3), the interaction energy
may be written

My Ms  I(My.r)(HMs.r)

(6.5
4n r3 rs )

W2 =

r being the radius vector separating the two moments. We note that the expression
for w,, equation (6.5), cannot easily be simplified.

6.3.3 The case of a penetrating electronic orbit

Here the electron has a finite probability of being within a sphere whose radius is
equal to that of the nucleus. The electron—nucleus separation » considered in the
previous calculations can reduce to zero, and the method used is then meaningless.
The coupling energy between the part of the electron close to the nucleus and the
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nuclear magnetic moment may be evaluated by means of Fermi’s ‘contact term’.
The case of orbits is particularly important. In chapter 1 we saw that in this case
the position probability at » =0 is finite; however, since the orbital momentum is
zero, the term w, is zero. The contribution made by the contact term is then the
most important. The calculation of the interaction between the nuclear magnetic
moment and the electronic spin for a hydrogen-like s orbit is quite simple: its starting
point is the classical expression giving the energy of a magnetic moment placed at
the centre of a spherically symmetric magnetised medium ; the magnetisation of this
medium is taken as the magnetic moment per unit volume resulting from the
non-localisation of the electron spin.

It should be noted that the numerical value of the contact term has great import-
ance; it represents the main contribution to the hyperfine splittings in the case of s
orbits.

6.3.4 Various corrections

In addition to the fundamental interactions that we have just described, the discussion
of the theoretical results and their comparison with the experimentally obtained
values of hyperfine structures leads to the introduction of several further corrections
as follows.

Polarisation of the inner shells. For atoms with many electrons, the resultant of the
electron spins in the completed inner subshells cannot be regarded as exactly zero,
due to electronic exchange phenomena; statistically each spin has a slight tendency
to align parallel to the spins of the valence electrons. In evaluating the field B, it is
therefore necessary to take account of this magnetisation of the inner shells. The
correction to AE can be large, as in the case of the lithium atom where it is 30 per cent.

Relativistic effects. These become important for atoms of high atomic number Z.
As a result of the high electrostatic charge of the nucleus, the velocity of the electrons
is high in the neighbourhood of the nucleus and relativistic corrections are necessary.
These corrections can modify the results found for heavy atoms, for levels with a
small value of J, by a factor of the order of two.}

Volume effects. Since the size of the proton is of the order of 1/40 000 of the radius
of the first Bohr orbit of the hydrogen atom, the dimensions of the nucleus of a
heavy atom can be about 1/5000 of the mean radius of the trajectories of its valence
electrons. In more accurate calculations the approximation of a point nucleus cannot
be preserved.

When the different contributions that we have listed are combined for the various
atomic electrons, it is possible to factorise the scalar product I.J, the rest of the
expression having a mean value which depends only on the description of the level
E,, and which may thus be identified with the parameter 4”.

Comment The case of a hydrogen-like orbit, other than an s orbit. In this particularly
simple case, the hyperfine energy correction AE(F) may be obtained directly from
the contributions w, and w,

T This should be contrasted with relativistic effects in fine structure which are important
only in the lighter atoms, as discussed in sections 2.1 and 4.4.
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AE(F)=CD| + w>

The vector model allows AE to be evaluated from expressions (6.4) and (6.5) by a
calculation similar to those carried out in section 4.3. Its application here is of little
use because the results obtained are inaccurate. The study of the problem within the
framework of quantum theory leads to a particularly simple result

o VA

U
A ="0g p
2P TG

6.4 Corrections due to the Electrostatic Interaction Between
the Electrons and the Nucleus

The hyperfine splitting expressed in frequency units between levels of the
same J is usually of the order of 10° Hz. Compared with the energy difference
between the ground level and the excited levels (~ 10'* Hz), the effects of
hyperfine structure therefore appear as very small energy corrections, with a
relative magnitude of the order of 107°. For these corrections to be meaning-
ful, it is necessary to study the atom in sufficient detail; in particular it is
necessary to take account of the fact that the nucleus is not a point, the ratio
of its dimensions to those of the electronic orbits being of the order of 1073 or
104, We shall discuss two aspects of this. First we shall see that a quadrupole
coupling term can lead to corrections that depend on the value of F; the
interpretation of the hyperfine splittings must therefore take account of this
effect. Then we shall study isotope effects; they are manifested by a shift of
the level E,, and therefore do not influence the separations between hyperfine
levels.

6.4.1 Electric quadrupole effects

Often, the distribution of the charge gy within the nucleus is not spherically
symmetric, and the electron—nucleus electrostatic interaction term

qangi

.Z ri
1

must be refined so as to take account of the departure from spherical sym-
metry, by the inclusion of higher-order terms of the multipole expansion (see
appendix 3).

In classical theory, if the origin is taken as the centre of gravity of the
electric charges within the nucleus, the corresponding electric dipole moment
is zero; there then remains the problem as to the relative positions of the
centre of gravity of the electric charges and of the centre of gravity of the
masses within the nucleus. In quantum theory, symmetry rules result in zero
electric dipole moment for the nucleus, and there is no experimental evidence
for ¢n appreciable nuclear electric dipole moment (see chapter 7). The first
term that must be considered in the multipole moment expansion therefore
corresponds to the interaction of the electric quadrupole moment with the
electric field gradient created by the electrons in the region of the nucleus.
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Let us assume that the nucleus has a cylindrical charge distribution around
the OZ axis, defined by the direction of the nuclear angular momentum I. The
electron cloud has cylindrical symmetry about Oz, Oz being the direction of
the electronic angular momentum J. The electric field gradient (see appendix
3) may then be defined by a single component ¢,, = —0E,/0z = 8> U[0z2. By
using the parameter Q, the quadrupole moment of the nucleus, the additional
energy AE, resulting from quadrupole coupling will be

e zz

% eosto 1)
0 being the angle between the Oz and OZ axes, that is to say between the
vectors I and J. ¢,, depends on the level considered, corresponding to a given
configuration and a given value of J, for which we shall define the ‘quadrupole
coupling constant’

AEQ =

B = eQ¢ZZ

To a hyperfine sublevel with given quantum numbers J and 7, it is therefore
necessary to apply the energy correction

B
AE, = 7 [3cos?2(I,J) — %]

However, the expression obtained by replacing cosf by its value from the
vector model

FF+1)—-IJ+1)—-JJ+1)
cosf =
2+ 1)J(J +1)]

proves to be inaccurate. The correct result obtained by Casimir using quantum
mechanics is

_BIC(C+ D) -2AU+1IJ+1)

AE, =
?7 4 1QI-1)JQ2J-1)
| Energy
F=5/ +B/4
34'/2
J=1 \
E, P
F=3/2 _
54°/2 - B
F=1/2] —_____ _+5B/4
-
Level with Magnetic Quadrupole
nuclear spin hyperfine correction
excluded interaction

Figure 6.7 Magnetic hyperfine structure and quadrupole correction (for J=1 and
1=23)
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where
C=FF+1)—-II+1)-JUJ+1)

Table 6.1 gives the order of magnitude of Q measured in barns (10~24 cm?) for
several nuclei. Figure 6.7 shows the corrections that must be applied to the
position of the energy levels having J =1, I=3. It should be remembered
that nuclei without nuclear spin or with a nuclear spin of 4 have spherical
symmetry and their quadrupole moment is zero (see table 6.1).

6.4.2 Mass and volume isotope effects

When the spectra emitted by isotopes of the same element are observed, it is
found that a complete interpretation can be given only if, apart from the
corrections AE due to hyperfine and quadrupole effects, it is assumed that the
position E, of the level J depends on the isotope under consideration. These
differences of the energy levels between different atoms having the same
number of electrons but different mass numbers are called isotope shifts.
They are of a similar order of magnitude to hyperfine differences.
Isotope shifts arise from two independent effects as follows.

(1) The mass effect or motion of the nucleus. The reduced mass of the electron

m

b= T,

entering into the Schrédinger equation depends on the mass My of the nucleus
and varies therefore with the isotope considered. It is easy to show for a
hydrogen-like atom that the energy difference 3E between two equivalent
levels E, of two different isotopes is such that (see volume 1, chapter 6, com-
parison between the hydrogen atom and the He™* ion)

3E 1 m m dMy

— =¥ — =3 =+ —

Eo (l+m/MN) (MN) My My
(Since the energy E, is negative, 3E has the opposite sign to 3 My.)

For an atom with many electrons, the simple reasoning above is only
qualitative. The evaluation of the reduced mass of a given electron must
involve the various electron orbits of the atom and a complete calculation is
complex.

It should be noted that the motion of the nucleus leads to appreciable
relative energy shifts only for elements of low atomic number, where there is
a large relative variation of the nuclear mass between different isotopes. The
effect is therefore considerable between hydrogen and deuterium. In this
case, a very simple calculation shows that the isotope shift in a level of
quantum number 7 is expressed in terms of frequency by the formula

894 000
Ey— Ep= T2 MHz
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(2) Volume effects. For the heavy elements, the observed isotope shift is
much greater than that caused by the motion of the nucleus, and, moreover,
the energy shift is in the opposite sense. In addition, it depends on the con-
figuration of the levels. Pauli and Peierls provided the first interpretation,
based on the variation of the volume of the nucleus and of the charge distri-
bution within the nucleus between one isotope and another.

The electrostatic potential function V(r) varies from one isotope to another.
The largest relative change of V(r) occurs near the origin, and therefore
volume effects have the greatest influence for s orbits. For a given atom,
isotope shifts therefore depend on the configuration of the level under
consideration.

Comment When an electron is found within a spherically symmetric nucleus, it is
attracted towards the centre by only a fraction of the nuclear charge (this is a classical
electrostatics problem, see volume 1, section 5.2.3). Compared with a point nucleus,
its binding energy therefore has a smaller absolute value, and a greater algebraic
value. It may thus be understood why a nucleus of larger volume (the heavier
isotope) results in higher energy values: 8§ E has the same sign as 8 My, in contrast
with the mass effect.

6.5 The Hyperfine Structure of Spectral Lines

The effects of hyperfine structure and of quadrupole shifts become apparent
experimentally through electromagnetic transitions between levels; similarly,

AE

—- F=7/2

F=5/2

F=3/2

F=1/2

F=572

J=1 F=3/2

F=1/2

Figure 6.8 Examples of allowed hyperfine transitions: J =2 —J =1, with /=3
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the comparison of spectra originating from two different isotopes leads to the
determination of isotope shifts. In previous chapters, we saw that only transi-
tions satisfying certain selection rules could be observed. Having improved
the description of the atom, we must also refine the selection rules. Radiation
theory shows that the selection rules expressed in various parts of chapter 4
for electric dipole transitions remain valid and all that is necessary is to
include a selection rule for the quantum number F

AF =0, +1

a transition F= 0 — F = 0 being forbidden.

By applying these rules, it is easy to determine the set of hyperfine com-
ponents that can be observed spectroscopically. Some examples are given in
figures 6.8 and 6.9.

When a light source emitting an atomic spectrum is constructed, one
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Figure 6.9 63P, transitions in the mercury atom for various isotopes. (a) Energy
differences with respect to the 63P,; state of the even isotope 200. Their values are
given in 1073 cm™". Note the inverted order of the hyperfine sublevels corresponding
to the isotopes 199 and 201. The mean wavelength of the transitions is 2637 nm.
(b) Position of the spectral lines on a wavenumber scale
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normally uses a natural element, formed from a mixture of isotopes which
can have different nuclear spins. The observed spectrum will therefore be
complex: first, the hyperfine and quadrupole effects differ according to the
isotope and secondly, the effects of isotope shifts are involved. Spectroscopists
often have to make light sources from pure isotopes, obtained by costly
separation in a mass spectrometer ; fortunately, several fractions of a milligram
are usually enough to make a sufficiently intense light source.

Figure 6.9 shows the structure of the 6°P;—-6'S, transition observed with a
natural mercury lamp. The latter contains many isotopes (see table 6.3); the
levels of the two odd isotopes exhibit hyperfine structure (complicated by
quadrupole shifts for the 201 isotope); the levels of the four even isotopes do
not have hyperfine structure but do not overlap due to isotope effects.

Table 6.3 Isotopic composition of a few natural elements

Element / Percentage
B 10 3 18-83
11 E 8117
Br { 79 3 50-53
81 3 49-47
78 0 0-354
80 0 2-266
Kr 82 0 11-56
83 3 11-55
84 0 56-9
86 0 17-4
196 0 015
198 0 1012
Hg 199 b 17-04
200 0 23:25
201 2 13-18
202 0 29-54

Figure 6.9(a) shows the energy-level diagrams corresponding to each
isotope; in each case, the energy of that isotope in the 6!S, ground state has
been taken as a reference energy. (This simplifies the diagram, but bears no
relation to the energy values of the ground state with respect to the usual
reference energy, an electron at infinity.) Figure 6.9(b) shows the observed
spectrum on a wave number scale; it should be noted that the Doppler width,
about 50 x 1072 cm™!, is of the same order of magnitude as the differences
between the indicated spectral components; some of them are almost
coincident.

For a level of given quantum number J, transitions between hyperfine sub-
levels are allowed, but they fall in the microwave region and their spontaneous
emission probabilities are extremely small (see volume 1, chapter 3); their
observation in spontaneous emission is almost impossible under laboratory
conditions. However, we should point out that radioastronomers observe the
transition between hyperfine sublevels of the ground state of hydrogen
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(1?84, F=1) > (1?S;, F=0) at a frequency of 1420 MHz in the radio-
frequency spectrum emitted by interstellar space. Observation in induced
emission is technically much easier; it requires the existence of a population
difference between the sublevels under consideration, obtained either by the
method of optical pumping or by a mode of excitation which preferentially
populates some of the sublevels, or by atomic beam deflection methods (see
volume 1, section 4.3.3). We shall return to this in chapter 7.

The general aims of research in physics will be discussed in chapter 7. Here
we emphasise the importance of hyperfine structure measurements of atomic
lines: they provide values of the hyperfine constant 4’ related to the nuclear
magnetic moment, of the hyperfine constant B’ related to the quadrupole
moment, and of isotope shifts related to the volume of the nucleus; from
them, considerable experimental evidence supporting the theories of nuclear
structure is obtained. They provide a link between nuclear and atomic physics.

6.6 The Magnetism of an Atom Possessing Nuclear Spin. The
Zeeman and Back-Goudsmit Effects

In the preceding sections we saw how each energy level of an atom possessing
a nuclear magnetic moment is characterised by the total angular momentum
F, and consequently has an order of degeneracy 2F + 1.

The study of raising the degeneracy by a magnetic field is more complicated
than in the case where the nuclear magnetic moment is zero (see chapter 5),
but the main ideas in the solution of the problem remain the same. The
hamiltonian of an atom in the absence of a field will now contain, in addition
to the terms 7, and 7),, a term 7 expressing the interaction between the
electrons and the nucleus. In this section our discussion of the term 7’3 will be
limited to the hyperfine magnetic interaction A’Z.Jand will disregard the terms
expressing isotope effects and quadrupole shifts; the latter produce shifts on
the Zeeman diagram independent of the magnetic field.

6.6.1 The field-dependent perturbation W

W is given by equation (5.16) to which we add the term —. . B expressing
the coupling between the nuclear magnetic moment and the magnetic field.
We write
W=pB(L+2S).B— Mn.B
But
Mn=g Bl

so that

W=pL+25—gI).B=B(L,+2S,—g,1,)B (6.6)
(In passing, we note the minus sign in front of g, resulting from the convention

described in section 6.1.3.)
The discussion is based on the conditions of L-S coupling (T, > T,); the
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term 75 produces energy shifts much smaller than 7,. We must distinguish
the following cases according to the strength of the applied magnetic field.

(1) T, >T,>T;> W. W may then be considered as a perturbation which
is applied to the solutions of the hamiltonian H= Hy+ T, + T, + T;.
This is described as the weak-field region.

(2) T, > T, > W > T;. The perturbation W is applied first to the hamiltonian
H,+ T, + T, describing the atom in the absence of a nuclear magnetic
moment; then the perturbation 73 is applied to the solution obtained.
This condition is described as /-J decoupling or the Back—-Goudsmit
effect.

(3) T, > W > T, > T, The treatment of the Paschen-Back effect (section
5.4) must be refined by corrections expressed by 7T'.

6.6.2 The case of weak fields—the Zeeman effect

We shall apply the perturbation W to the (2F+ 1) times degenerate level
E.°, eigenvalues of the hamiltonian H, + T, + T, + T5. By using the results
of perturbation theory (see section 5.3), the energy corrections to E:° will be
given by the elements of the diagonalised matrix W which commutes with F,,
the component of the total angular momentum of the atom along Oz:

<EF0’ F’ mFl WlEFO’ F's mF'>
my being the quantum number describing the projection of the angular
momentum F on the Oz direction.

Application of the Wigner-Eckart theorem allows us to write, as in section
5.3.2

CE, Fymg|L, + 28, — gy L|E°, F,mg"> = g{Eg°, F, mg|F,|E¢°, F,mg">
:ng(smpmr' (67)

g may be evaluated in several successive steps; these steps are very like those
presented in section 5.5.2 for the case of two electrons in j—j coupling. We shall only
outline them.

(1) We may write

<EF0» Fy mFILz + ZSZIEFO’ F, mF/> =gJ<EF0’ F’ mFljzlEFo’ F¢ mFI>

From a calculation identical to that for the weak-field case in the absence of a nuclear
moment, we obtain

1+ JU+ 1)+ SES+1)—-LIL+1)
2J(J+1)

g1 =
(2) We can also write
CEf®, F,me| L Ef°, F,me"> = al Ef°, F, m¢| F;|EF°, F, me”)
and the calculation of the mean value of the operator J. F leads to
FF+1)+JUJ+1)-I1(I+1)
‘= 2F(F+ 1)
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(3) Similarly, by using the mean value of the operator I.F
{Ef, F, mr|1z|Er°, F,mg"> = b Ef°, F, mr|Fz|Er°, F,mg">
where

y_ FEFDHIA+ D) —JU+1)
- 2F(F+ 1) B

—a
From these three steps, we may write

CEf, F,me|L, +2S. — g1 L|Ef°, F,mg"> = (ag, — bgr)<Ef°, F, mg|F,| Ef°, F,mg">
and from equation (6.7)

FF+D+JU+D=1U+1)  FFE+ D+ IU+1) ~T(J+1) 68
2F(F+ 1) & 2F(F+ 1) ®

g=8s

where g; has the value calculated in the absence of nuclear spin in the preceding
chapter.

The energy correction to first order may then be written
E=gm. BB

The sublevels for a given field are equidistant. The left-hand side of figure 6.10
gives the Zeeman splitting of the various hyperfine levels corresponding to
the spectral terms 3P,, 3P,, 3P, for I = 1. In this figure we have taken the same
electronic levels as those used in figure 5.1. The reader may thus compare the
effect of the magnetic field with and without a nuclear magnetic moment.

Comment I g; is of the order of 10~3 (see table 6.1). In most cases it is therefore
justifiable to neglect the second term of equation (6.8) and write g as

CFFE+ D) I+ 1) = 1A+ 1)
Ex 2F(F+1)

&

Comment II g can be positive or negative according to the respective numerical
values of F, I and J. With the conventions used for atomic magnetic moments, a
negative value of g would correspond to the case where the total angular momentum
o and the magnetic moment 4 are in the same direction. The existence of negative
Landé g factors in connection with nuclear moments explains the discussions in
volume 1, section 11.2 concerning magnetic resonance experiments.

Comment ITI A level with quantum number J = 0 has a resultant electronic magnetic
moment Hs + M, of zero. Without nuclear spin, the magnetic field therefore has
no influence. The existence of a nuclear spin then gives this level a purely nuclear
magnetism. Because g; =0, the Landé g factor equals g,. (Since different sign con-
ventions are chosen for the nuclear Landé factor g; and the total Landé factor g,
one strictly obtains ¢ = —g;.) For a given field the separation between the Zeeman
sublevels is much smaller than in the case of electronic magnetism. An example of
this is the 6'S, ground state of the 199 and 201 isotopes of mercury (/ = 4 and I = 3).
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6.6.3 The Back—Goudsmit effect in a strong field

Let us now consider the case W > T;. First we apply the perturbation W to
the solution of the hamiltonian H, + T; + T,. Although it does not enter
explicitly, we must take account of the nuclear spin in the description of the
state; so each level is characterised by the values of 7and J, and as no coupling
energy between I and J is involved, the order of degeneracy is (2J + 1) (21 + 1).
The problem is studied in the E,, J, my, I, m; representation and is entirely
analogous to that of the Paschen-Back effect (section 5.4). By transposition,
it may then be easily shown that the energy correction is

AE=(m;g,—m; g) BB

The levels thus obtained are drawn in dotted lines in the middle section of
figure 6.10. If we disregard m, g, in comparison with m;g, which is much
larger, the diagram is identical to that obtained in a weak field for the same
atom without nuclear spin (compare with figure 5.1(b)). However, it should
not be forgotten that each of the dotted lines in fact represents (27 + 1) close
but distinct lines, corresponding to the various values of m;.

We now apply the perturbation

T,=A'1J

to the levels obtained above. It is applied to non-degenerate levels and pro-
duces an energy shift equal to the mean value of 4'.J for the level considered.
In a way similar to the study of the Paschen-Back effect, this mean value is
found to be 4" 'm;m,.

The various levels, represented by thick lines in the middle section of figure
6.10, therefore correspond to a shift

AE =(m; gy —mig) BB+ A'mym,

with respect to the energy E,°.

6.6.4 The case of very strong fields

This is where T, > W > T, > T,, that is to say the Paschen-Back effect
conditions for an atom without nuclear spin. Experimentally, the problem is
of little interest and we shall merely give a qualitative picture of the energy
diagram on the right-hand side of figure 6.10: the dotted lines represent the
energy levels in the absence of nuclear spin (Paschen-Back effect, see figure
5.2(b)); the continuous lines represent the levels taking account of the hyperfine
interaction T5.

6.7 Energy Diagrams in the Intermediate Field Region.
Effective Magnetic Moments

In the preceding section, our study was limited to certain special cases: weak
field and strong field. However, in many atoms with nuclear spin, hyperfine
structures are very small, of an order of magnitude between several megahertz
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and about 10000 MHz. With a Landé factor g =1, the energy difference
between two consecutive Zeeman sublevels, in frequency units, is about
14 GHz per tesla, and it is very probable that in the magnetic field conditions
of an experiment, one of the preceding approximations will not hold; many
experiments are carried out—particularly in radiofrequency spectroscopy—in
conditions of intermediate field. Therefore it is often necessary to solve the
problem where the total perturbation W + T, must be applied to the solutions
of Hy+ T, + T,. As we remarked in section 5.4, the solutions should be
expressed as functions of mg = m; + m, since the only conservative quantity,
whatever the field, is the projected total angular momentum F,.

In general, an analytical solution is impossible, and numerical methods of
solution must be used. However, in the special case where either J or I is
equal to 4, an analytical solution can be found; it is known as the Breit—Rabi
formula. For example, let us state this formula for a level with J = } and any
value of I. Let E(F, mg) be the energy in the field B of an atom of total angular
momentum F, and characterised by the quantum number

mg=my+ my

E, is the energy calculated without taking account of hyperfine structure.
Finally, let us introduce the reduced parameter x in place of the magnetic
field B

_2(g1+g1)ﬂ3_( + )ﬁ
T na TRy

(where 8W = [(2I+ 1)/2]A4’ is the energy difference between the two levels
F =1+ %in zero field). The Breit-Rabi formula may then be written

A 2I+ 1) A’ 4m
E(F,mr)—Eo:——_gzmrﬂBi(4—)/(1+ ul x+x2)

4 2I+1

The plus sign is taken for levels F =TI+ 4 and the minus sign for F=1—%
when the field is weak (x < 1); on the other hand, when the field is strong
(x > 1), the sign chosen is that of the quantum number m;. These relations
permit Zeeman diagrams to be constructed by simple numerical calculation,
and figure 6.11 gives some examples. The reader should show that the Breit—
Rabi formula, in the limiting cases (x — 0, x — =), reduces to the relations
established for strong and weak fields in the preceding sections.

In this book, we have frequently used an expression giving the coupling
energy between a magnetic moment .# and a magnetic field B

AE=—M.B=—M,B

The variation of AE with the magnetic field B is then linear and the component
M , of the magnetic moment .# represents the slope of the line AE = f(B).
For intermediate fields, the relation AE = f(B) is no longer linear. We shall
generalise the concept of magnetic moment as follows: let us consider a given
magnetic field B and let us vary B by 8B; the energy varies by 8 E and we put

SE =—M 5B
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We shall let ./ ¢ be the effective magnetic moment of the atom in the Zeeman
sublevel under consideration, for the field B,. .#; is therefore a function of
B; physically this corresponds to the fact that the total effect of the various
interactions undergone by the elementary magnetic moments is a function of
the magnetic field. The curves representing .#.¢ as a function of the field B
may be obtained by differentiating the curves AE = f(B). Figure 6.12 shows

me=1
£ mE=0 im,=+1/2)
mg=2 mF=_1[
F=2 1=3/2
05.1.0 1.5 2.0 25 3.0 X
] 1 me=-1 _
m=—1 _ mp=—2
F=0 mp=0 F=1
] }(m,=—1/2) mg=0 }(m,=—1/2)
(a) (b)
J=1/2 1=172 J=1/2 1=3/2

Figure 6.11 Splitting of a J = 1 level in the presence of a magnetic field, in (a) with
=% and in (b) with /= 3. The abscissae are proportional to the magnetic field and
measured in terms of the parameter x defined in the text
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Figure 6.12 Effective magnetic moment .# . as a function of magnetic field measured
in terms of the parameter x proportional to the magnetic field

the variation of . ¢ (measured in terms of the Bohr magneton f) as a function
of the magnetic field, for the levels corresponding to the Zeeman diagrams in
figure 6.11.

The concept of an effective magnetic moment allows in particular the Stern
and Gerlach experiments to be described in all field conditions: an atom in
the apjaratus having a quantum number m will follow a trajectory corre-
sponding to the effective magnetic moment .# . that it possesses in a field B,
where B is the average field in the apparatus.

For example, suppose that we carry out a Stern and Gerlach experiment
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with the natural isotope ?*Na of sodium. The ground level is a 2S, level, but
since the nucleus has a nuclear spin I = 3, the level splits into two hyperfine
sublevels F=1, and F=2. The Zeeman diagram corresponds to that of
figure 6.11(b), the hyperfine separation in zero field being 1773 MHz. For a
given field in the apparatus there will be as many spots observed on the screen
as there are values of the effective magnetic moment. The number and the
position of the spots may be predicted from the curve .. =f(B) (figure
6.12(b)). Eight spots are generally observed except for the two particular
values indicated in figure 6.12(b), where only six or seven spots respectively
are observed. For the value of B corresponding to x = 0-5 (B =~ 30 millitesla
in the case of sodium) an undeflected spot is observed. This property has been
used experimentally by certain authors in order to investigate hyperfine
structures.



7

Experimental Methods in Atomic
Physics

The scope of this chapter is necessarily limited. We cannot describe fully all
the work that has been done in the field of atomic physics; therefore we shall
present only a survey, supported in some sections by experimental details, so
that the reader will be able to appreciate some of the problems studied in
research laboratories. Some additional, rather specialised, concepts will also
be introduced. We confine our study to free atoms, disregarding problems
such as magnetic resonance phenomena in solids which involve the collective
interactions of atoms described by macroscopic quantities.

The various sections of this chapter are, for the most part, independent.
They may be regarded as illustrations of the fundamental ideas which have
been presented in this book so far. Many references are therefore made to
volume 1 and chapters 1-6 of this volume, often to material in small print
because these sections were not regarded as essential to the general under-
standing of the subject.

7.1 Introduction
7.1.1 The aims of research

There are several thousand physicists engaged in carrying out and utilising
experiments in the sphere of atomic physics. The main aim of research is the
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increase of knowledge, and the field of atomic physics has received consider-
able attention. Although practical applications have sometimes been a direct
result of these studies (frequency standards, magnetometers, methods of
analysis) it should be said that, in general, discussion of the aim of a piece of
research is often difficult. However, the following points can be made.

The relationship between atomic physics and theoretical physics is very
important; a certain number of problems in atomic physics, especially those
concerned with the hydrogen atom, can be studied in depth theoretically.
Consequently, there has always been a close connection between these two
disciplines; an experiment might suggest or require extension of a theory, or
a theory might be tested by means of an experiment in the field of atomic
physics. Several times in this chapter we shall describe experiments whose
results have confirmed fundamental theories to a high degree of precision.

Most experiments provide a considerable amount of data which, apart from
their intrinsic interest, give physicists the necessary information to construct
models, used in a majority of problems where rigorous study, in the mathe-
matical sense of the term, is impossible. For example, the results of the study
of isotope shifts and quadrupole effects have an important bearing on the
concept of a nuclear model.

Finally, numerous parameters related to the description of the atom are
required in other fields of physics: the description of the ground state of an
atom is required by the solid-state physicist and by the physical chemist;
astrophysicists and plasma physicists need values of excitation cross-sections
and the lifetimes of excited states.

7.1.2 The interpretation of an experimental signal

The techniques used in experimental atomic physics are extremely varied, but
it will be noticed that quite similar problems arise when it comes to interpreta-
tion of the signal provided directly by the apparatus so as to extract the
information sought. Two rather different aspects of interpretation should be
noted in particular.

(1) In some cases, the result sought is expressed by a quantity requiring
either a set of measurements on the phenomenon studied (for example the
width at half height of a resonance curve), or the knowledge of various
experimental parameters. (The interpretation of the experiment described in
volume 1, section 12.2.2, leading to the magnetic moment of the electron,
requires the knowledge of the velocity of the electrons. The determination of
the Landé factor by a Stern and Gerlach experiment requires the value of the
field gradient in the airgap of the electromagnet.) Discussion of the accuracy
of a measurement may therefore involve several parameters.

(2) In other cases, the signal is presented as a graph plotted as a function
of an abscissa which can be measured very accurately (the current creating a
magnetic field, the frequency of an electromagnetic wave and so on). The
plot will enable the parameter to be measured directly. Measurements of
gyromagnetic ratios by magnetic resonance methods, of hyperfine structure
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by radiofrequency spectroscopy, and measurements in optical spectroscopy
are examples of this.

The accuracy obtained in a measurement involves two phenomena in
particular.

(a) The width of a line. When the result of an experiment is expressed as a
line which must be plotted or analysed, this line possesses a certain width
which will affect the expected precision of the measurements. In many experi-
ments the phenomenon studied is an electromagnetic transition and the width
of the experimental curve is equal to (or maybe proportional to) the frequency
width of an electromagnetic transition emitted or absorbed by an atom. This
problem has been considered several times in this book and we shall recall
the various aspects that may be involved:

(i) the natural width related to the lifetime of the atom in the state under
consideration (volume 1, section 4.2.3);
(i1) the Doppler width resulting from the motion of the atom (see volume 1,
section 1.3.3);
(iii) other causes, such as the Stark effect, which can be minimised by
careful choice of the experimental conditions (see volume 1, section
1.3.3).

The study of the width of a line, therefore, may be reduced in a first approxi-
mation to the comparison between the natural width and the Doppler width.
This matter is often of prime importance and we take care to discuss it in the
experiments that we shall describe.

(b) The noise. An experimental signal recorded as a function of a variable
parameter never appears as an infinitely thin line, even if all experimental
imperfections (instabilities, vibrations, and so on) are eliminated (figure 7.1).

1

1 P

-

0.61 0.62 0.63 Ho(mT)
Figure 7.1 Signal and noise. Magnetic resonance on the 53P, level of cadmium,
detected optically, the frequency of the field H, being very low (14 MHz). The field H,
is the abscissa and the degree of polarisation of the 53P, — 5,S, transition is the
ordinate (see section 7.4)
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The signal is subjected to random fluctuations, related to the discontinuous
nature of the quantities involved in the experiment: an electric current results
from the flow of a finite number of electrons; the measurement of the intensity
of a beam of light by a photoelectric detector reduces to counting photons.
In a given experiment these fluctuations are characterised by a certain ‘signal-
to-noise ratio’. It is not possible for us to analyse these phenomena in this
book so we confine ourselves to asserting intuitively that for a given experi-
ment, the longer the measurement time, the better the signal-to-noise ratio.
Figure 7.2 is an illustration of this: a particular magnetic resonance phe-
nomenon on an excited atomic state (see section 7.3) is observed, in figure
7.2(a) after sweeping a field for 30 minutes, and in figure 7.2(b) after an
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Figure 7.2 The same magnetic resonance curve (an excited level of argon, optical
detection) : (a) recording time of 30 minutes; (b) total duration of experiment, 48 hours

experiment lasting for a total of 48 hours, by averaging over a large number
of measurements by means of a data accumulation apparatus. The theory of
measurement shows that the improvement in the signal-to-noise ratio is
proportional to the square root of the ratio of the measurement times, which
can be confirmed by figure 7.2.

7.2 Optical Spectroscopy

In this section, we bring together experiments which enable excited atomic
levels to be studied by analysis of the radiation emitted in the visible or near
visible region. We shall distinguish mainly: interference spectroscopy which
consists of analysing the wavelengths of the emitted radiation (we shall not
discuss methods utilising a prism spectrograph which in practice are hardly
ever used in atomic spectroscopy), and level-crossing spectroscopy, where the
intensity of radiation emitted as a function of magnetic field is studied. The
latter technique has been considerably improved in recent years.
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7.2.1 Interference spectroscopy

Interference spectroscopy has emerged as the most general method of studying
atomic levels. It has provided a considerable amount of information; consul-
tation of energy-level tables shows the wealth of results that have been
obtained. As an example, a partial reproduction of the spectroscopic results
obtained on the excited levels of platinum is shown in figure 7.3. In the case of
complex atomic spectra (the rare earths, actinides, and so on) where the light

« B 195 Y
Term Av A’ 194-196

ao 5d® 6s 3D, +696 +199 +82
a, — 3D, —203 —81 +117
a, 5d8 6s? 3F, +140 +31 +203
as 5d10 1S, — — —
as 5d8 6s2 3p, +197 +89 +160
as — 3F, +192 +55 +202
as 5d® 6s 3p, —252 —168 ~+90
ay — D, +481 +192 +120
ag 5d8 6s2 3F, +189 +76 +200
b — 1G, +403 +90 +93
c 5d8 6s 6p 5D,° +6267? +139? +110?
d 5d® 6p 3p,0 +169 +67 +36
e 5d® 6s 6p 5Gg° +725 +132 +108
f 5d® 6p 3F;0 +389 +111 +56
g 5d8 6s 6p 5D,° +75 +21 185
h — 5Gg +1006 +155 +107
i — 5,0 A —55 ~—22 +84
i — 6,0 +204 +82 +49
k 5d® 6p 3F,0 +253 +56 ~+30
| 5d® 6s 6p 8g° +252 +72 ~+40
m — 3Fg0 +606 +110 +112
n — 5F,0 +174 +39 +107
o — 5D,0 +308 +123 ~+50

Figure 7.3 Extract from the Landolt—-Bornstein tables (1952). Column « gives the
spectral term and the configuration. Column B is relative to the 195 isotope. It gives the
hyperfine structure Av in thousandths of cm™1, as well as the coefficient A" defined in
chapter 6 and related directly to Av. Column y shows, in thousandths of cm~', the
relative isotope shift of the levels between the isotopes 194 and 196

intensity is dispersed among many lines, modern methods of high resolution
spectroscopy involving subtle techniques of exploiting the signal have made
very detailed experimental analysis possible. Comparison of results from
optical spectroscopy with the various theories describing the interactions
within the atom has proved to be very useful. In fact optical spectroscopy
laboratories always include groups of atomic theoreticians; progress in this
field results from continual competition between theoreticians and
experimentalists.

The general features of an optical spectroscopy experiment may always be
reduced to those of figure 7.4. An interference device (grating, Fabry-Perot,
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Figure 7.4 Principal features of an experiment in optical spectroscopy

or other interferometer) is used to analyse the radiation. The detector is
usually a photoelectric detector used under optimum conditions of signal-to-
noise ratio. This detector is very often connected to devices for treating the
signal so as to exploit to the maximum the experimental results. For instance,
when a Michelson interferometer is used, the detector records an interferogram
from which the spectrum 7 = f(v) must be extracted by calculation. (Descrip-
tions of the various techniques of instrumental spectroscopy may be found in
specialised books.)

The width of a line. In an optical spectroscopy experiment the width of a
line results mainly from the Doppler effect. The phenomena studied are either
in the visible or in the near ultraviolet region and, referring back to volume 1,
section 1.3.3, we see that Doppler widths are of the order of 1000 MHz,
whereas natural widths, depending on the lifetimes of the excited states in-
volved, are between 1 and 100 MHz. However, this short discussion should
only be considered as very approximate. The theoretical profile of a line
broadened only by the Doppler effect and the theoretical profile resulting
from the natural width have different mathematical expressions; for, from
the centre of the line, it is generally the effect related to the natural width that
becomes predominant (see figure 7.5).

In order to obtain the greatest possible accuracy, the experimenter must

Luminous intensity

Figure 7.5 Solid line: shape of a Doppler broadened line. Dotted line : natural lineshape
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therefore construct a source having the smallest possible Doppler broadening.
A method often used consists of employing a ‘hollow cathode’, illustrated in
figure 7.6. The light used is that emitted in the region of the cathode, which is
cooled to a very low temperature. The discharge is established in a gas such
as argon. The atoms are extracted from the cathode containing the element
under study and are excited by the discharge; as a result of the low temperature
of the cathode, the thermal velocity of these atoms is small. In addition, the
magnitude of the discharge current is small, so that Stark broadening does
not become predominant. An ordinary spectral light source has a line width
of several thousand megahertz. For lines in the visible spectrum, a cooled

Observation

C u 1 Pump

Glass

Anode (aluminium)

Aluminium cathode
containing element
under study and
immersible in a bath

Discharge nersioie
i /oflnqund nitrogen

region

Figure 7.6 Hollow cathode (schematic)

hollow cathode allows line widths of several hundred megahertz to be
obtained.

An atomic beam excited by a beam of electrons (figure 7.7) in which all
atoms move in the same direction, has also been used. Doppler broadening
for transverse observation is theoretically zero. However, this type of source
always provides a low light intensity and is not often used. It should be noted
that to obtain an atomic beam, it is necessary to heat the atoms to a high
temperature; their speed is therefore large, and to ensure that the Doppler
width of the emitted light is small, observation must be as close to transverse
as possible. If « is the angle of divergence of the beam and f the angular
aperture of the light beam, sin(« + ) must always be much smaller than unity.

The treatment of a spectrum consists usually of analysing the line profile
and ¢aables components that are closer together than the line width to be
studied. An example may be found by referring to chapter 4; a detailed analysis
of the profile of the Ha lines obtained by interferometric methods allowed an
approximate evaluation of the Lamb shift. By means of a careful study of a
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Figure 7.7 Diagram of an atomic beam lamp

line profile, the ultimate resolution that one can hope to attain in optical
spectroscopy is a few tens of megahertz.

It should be noticed that in atomic spectroscopy, most transitions are in
the near ultraviolet, visible and near infrared regions (0-2 to 2 ym). The more
specialised techniques of infrared spectroscopy are used mainly in molecular
spectroscopy.

Use of the laser. Compilation tables show that quite a large number of
atomic transitions can be observed in stimulated emission. Analysis of their
spectra shows that they can have frequency widths as small as a few hertz. At
first sight, it might seem that there are sources available with much narrower
line widths than conventional sources, and that considerable improvement
could be obtained in ultimate resolution. However, one should bear in mind
the laser mechanism: a vapour excited by a discharge is placed within a
resonant Fabry-Perot cavity. This cavity possesses a large number of modes.
For a cavity 1 m long, the frequency separation of the modes is 150 MHz.
The laser oscillations may be ‘locked’ on to one of the modes contained
within the Doppler width of the transition under consideration (see volume 1,
figure 4.11). Various techniques allow the mode to be selected and the oscilla-
tion to be stabilised. However, the frequency of the oscillation can have an
arbitrary value within the Doppler profile: to within the precision correspond-
ing to the stability obtained, it does not represent any parameter related to
the excited level of the emitter.

In general, no spectacular gain in resolution can be obtained at the moment
by using a laser, but the laser is used as a source in some spectroscopic experi-
ments—some rather weak transitions in spontaneous emission in a conven-
tional source can be intense in a laser. The gain obtained in signal amplitude
is then of considerable interest to the experimenter, and allows tesolution to
be gained by improvement of the signal-to-noise ratio. We should note,
however, that in special cases accurate measurements of isotope shifts have
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been carried out by taking advantage of the resolution gained as a result of
the line width of laser emission.

It is possible that in a short time, the use of the laser will bring about spec-
tacular progress in spectroscopy. Techniques are being studied for controlling
the cavity in such a way that the Fabry—Perot mode remains exactly at the
centre of the Doppler line; in addition, research has been undertaken in order
to develop super-radiant sources from which emission is observed without a
resonant cavity (see volume 1, section 4.3.4).}

7.2.2 Level-crossing spectroscopy

(1) The principle. Let us consider a set of excited atomic states </ in the
presence of a magnetic field of such a value that the energy diagram describes
a situation of intermediate field (see section 5.4.4); a certain number of level
crossings exist. This set of atomic states can be either a set of multiplets
exhibiting a fine structure in zero field, or a set of hyperfine states with the
same value of J (see chapter 6). Various transitions may be observed, such as
those indicated by the arrows (D and Q) in figure 7.8, corresponding to the
de-excitation from two of the states of the group &/ towards another common
level.

E)
o
O @
'\L
\
fd
B

Figure 7.8 Level-crossings

We shall assume for the moment—we return in paragraph (3) to the actual
situation—that the radiations corresponding to the transitions () and Q)
observed in a given direction, are plane electromagnetic waves of amplitudes

t Translator’s note: Since this book was written, developments have taken place enabling
narrow (& 1 MHz), stabilised, and continuously tunable radiation throughout the visible
region to be obtained from lasers in which the active medium is a solution of an organic dye.
These dye lasers are now being widely used in high resolution optical spectroscopy (see, for
example, Hinsch, T. W. (1972). Proc. 3rd int. Conf. Atomic Physics, Boulder, Colorado), and
considerable progress has alrcady been made.
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a;cosw; t and a,cosw,t respectively. Let us observe with the aid of a photo-
detector the light corresponding to the sum of the transitions (D) and Q).

(a) For a magnetic field not corresponding to a level crossing, the transitions
(D and Q) have different wavelengths and the mean signal observed will
have an intensity proportional to a,? + a,2. (The photomultiplier is
followed by an amplifier whose band width is a few Hz or kHz and
therefore cannot detect higher frequency beats.)

(b) Let us now suppose that the value of the magnetic field corresponds to
a level crossing. Both transitions (I) and (2) have the same wavelength.
and the two electromagnetic waves will interfere at the photocathode.
We have assumed that these two waves are in phase; the observed
intensity will then be proportional to (a, + a,).

When the magnetic field is swept, the output current from the photo-
multiplier will therefore change as the field passes through a value corre-
sponding to a level crossing. The experiment thus allows us to investigate the
magnetic-field values at which the various level crossings occur, and by using
the results from a theoretical study of the diagram of the levels &/ in inter-
mediate fields, it is possible to obtain fine structure values (the parameter 4
of chapters 4 and 5) or hyperfine structures (the parameter 4’ of chapter 6).

(2) Selection rules. The lower level is the same for both the observed
transitions () and Q). If we apply the selection rule for an electric dipole
transition, dm =0, +1, the two upper levels must be levels with quantum
numbers m; and m, such that |m; — m,| equals 0, 1 or 2.

However, as we indicated when studying intermediate field diagrams,
levels of the same m; do not cross; therefore |m; — m,| = 0 must be excluded.
Hence, the study of intensity variations of light emitted in the presence of a
magnetic field can only provide evidence of level crossings such that
{my — m,| =1 or 2. Depending on the state of polarisation of the light received
by the photodetector, either both types of crossing |m, —m,| =2 and
|m, —m,| =1 may be observed, or only one type. In addition, the curves
giving the intensity 7 as a function of B (the shape of the line) can have different
shapes according to the state of polarisation.

(3) Coherence of the excitation. The description of the level-crossing
phenomenon given above used a representation of the emitted light in terms of
a plane wave. As a result, it left out one of the subtle features of the effect.
Classically, the emission of light by an atom takes place in the form of a
succession of damped wave trains unrelated in phase. During an observation
on a human time scale, all the phase fluctuations are averaged out and
consequently no interference effects between light produced by different
atoms can be observed. However, in a quantum representation, if the excited
atom is described by a wave function which is a coherent superposition of the
wave functions of two states of different m, the emitted radiation at each
instant will possess properties allowing the observation of the interference
effects described in paragraph (1). The method of exciting the state &/ that
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one wishes to study must be carefully chosen; as we have just mentioned, it
must allow a coherent superposition to be achieved. Figure 7.9 gives an
example of one type of excitation.
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Figure 7.9

The atoms, at O, are subjected to a magnetic field directed along Oz. A
beam of resonance light, linearly polarised parallel to Oy and propagating
along Ox, excites atoms in the ground state to an excited state &/. The atoms
situated at O experience a linearly oscillating electric field, which can be
resolved into two circular vibrations ¢* and ¢~ rotating around B in opposite
directions. The Zeeman effect selection rules then require that the excitation
from the ground level to the excited levels satisfies m =1 and dm = —1. In
an experiment where the Doppler width of the source allows the energy
conditions to be satisfied, the state obtained by such a mode of optical excita-
tion will be a coherent superposition of the states m = —1 and m = +1. This
is called ‘coherent excitation’. We should also point out (see section 7.3.4)
that a beam of electrons with an energy of several tens of electron-volts and a
well-defined direction perpendicular to the magnetic field, can produce a
partially coherent excitation, also allowing level crossings to be detected.

(4) The line width. The curves observed express the variation of the light
intensity at the photodetector in passing through a level crossing. This effect
is produced by the interference of waves coming from the same atom, as
described in the preceding paragraph. Consequently, any frequency difference
between the waves that interfere cannot result from the Doppler effect. Only
the frequency spread related to the uncertainty principle will be involved ; the
width of the lines is therefore related to the natural width of the levels. Here we
come across a fundamental difference, accounting for the superior resolution
which may be obtained experimentally in comparison with interference
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spectroscopy. The fact that the width of a line is closely related to the natural
width has led some authors to analyse level-crossing experiments within the
framework of radiofrequency spectroscopy where one comes across the same
property.

Comment The width of the level-crossing curves is also a function of the Landé

factors of the levels; the width of the effect involves the slope of the levels, a fact
easily understood from figure 7.10.
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Figure 7.10 Diagrams illustrating that for levels of the same lifetime, and therefore the
same energy uncertainty 3£, the width of the level crossing curves depends on the
Landé factor

(5) Level crossings at zero field: the Hanle effect. All Zeeman sublevels cross
at zero field. If the conditions for observing level crossings are realised, a
variation of the observed light intensity must also occur when the applied
field passes through zero. The width of the observed phenomenon in terms of
field will be a function of the Landé factor and the lifetime of the level under
consideration. This zero field effect was discovered by Hanle in 1925, much
earlier than the discovery of level-crossing effects (Franken, 1959). Its inter-
pretation was first given from a classical viewpoint of the radiation.

Let us briefly present this classical argument by modernising it somewhat. The
atoms are subjected to a magnetic field B in the Oz direction. Let us consider excita-
tion conditions corresponding to those described in figure 7.11 and assume that the
exciting light, linearly polarised parallel to Oy, is the superposition of two circularly
polarised beams, one right circular and one left circular. By using results from the
study of the angular momentum of radiation (volume 1, chapter 11), we see that the
atoms excited by the left-circularly polarised light acquire a magnetic moment in the
positive Ox direction, whereas those excited by right-circularly polarised light
acquire a magnetic moment in the negative Ox direction. Thus we express the con-
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Figure 7.11 Diagram of a Hanle experiment. The lengths of the arrows from the
origin O are proportional to N («)

cept of coherent excitation in classical language, by saying that if dNV atoms are
excited in a time interval dz, d N/2 atomic angular momenta are aligned in the positive
O. direction, and dN/2 in the negative Ox direction.

As a result of Larmor precession around Oz (see volume 1, chapter 9), the magnetic
moments aligned along Ox will precess with an angular velocity

e
w=—yB=g—B
2mk
and they will make an angle « with the Ox direction after a time ¢ = «/w.

However, due to spontaneous emission with lifetime 7, the number of excited
atoms decreases progressively with the rotation of the magnetic moments. Under
steady-state conditions we can write that the number of atoms N(x)da whose
magnetic moments are between the angles « and « + da is

N(a)da = Ae ""da= Ae " da
where

~ 0

| N@da=N,

Jo
which gives
A = No/wt

(The atomic magnetic moments are represented in figure 7.11 by vectors of angle «
and with a length proportional to N(«).)

Let us assume that the radiation emitted in the Oz direction by an atomic state
whosc angular momentum is directed parallel to Ox possesses an electric field along
Oy (see classical study of the Zeeman effect, volume 1, section 8.4) and let us place
in front of the detector a polariser whose direction of polarisation makes an angle g
with the Oy direction (figure 7.11).
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Consider atoms whose magnetic moment vector makes an angle between « and
o + da with the Ox direction, that is to say whose electric field radiated in the Oz
direction makes an angle between « and « + da with the Oy direction; the intensity
I(x)da transmitted through the polariser is proportional to N(a)da and to
cos? (B — a).

The total intensity received by the detector is therefore

constant j’ ®

wTt

e~/ cos? (B — a) da

o

This integral may easily be evaluated for particular values of §. By letting I, be the
intensity received by the photodetector in zero field for g = 0, we obtain

for f=0 =" :
or =0 = — + —
2 | + 40?12
w=g

Wt ) 2mk

I

forf=n/4: I=—|] + —————

p=ni 2 ( 1 +4w? 72

Figure 7.12 shows the curves obtained. They have the same shape as magnetic
resonance curves (see volume 1, chapter 9) and as the absorption and dispersion
curves studied in appendix 2. From the preceding expressions, the reader may show
that for the frequency wo = 41, corresponding to a field

mk

By=—
egr

N\ Light intensity transmitted through
/y a polariser making an angle with
the O: axis of:

B =0 (absorption)

=

B =n/4 (dispersion)

1 1 >B

Figure 7.12 Shape of Hanle effect curves
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the second term of the bracket, for f = 0, has a value of } (half height of the curve).
These values of wo and B, correspond to the extrema of I for f = n/4.

(6) Results. The study of the Hanle effect and of level crossings has been
very productive. Apart from lifetime determinations, many fine or hyperfine
structure measurements have been obtained by taking advantage of the
resolution offered by the narrow width of the observed curves which is usually
of the order of several megahertz; fine or hyperfine structure separations can
thus be determined to a much higher degree of accuracy than in interference
spectroscopy. Most atomic levels that are accessible by optical excitation
have been studied by this technique. For instance, the 2°P;, —2°P, fine
structure of °Li has been found to be 10 052:76 MHz, and in figure 7.13 we
show the appearance of the experimental curves obtained from experiments
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Note: The observation conditions account for the dispersion shape of the curve

Figure 7.13 Level crossings observed in the 2P2 > 2Sj transition of copper. The
energy levels are shown in the upper half of the diagram
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on copper. The excited levels of helium in particular have been studied very
extensively, either by stepwise optical excitation from a metastable level (the
first level-crossing experiment: Franken, 1959), or by electronic excitation.

The method of magnetic depolarisation, for levels whose Landé factor is
known, enables atomic lifetimes to be measured very simply. It should be
noted that atomic lifetimes determined in this way are in fact ‘coherence times’
of the excited state, a concept that we shall discuss later, in section 7.3.4.

7.3 Radiofrequency Spectroscopy

In this section, we bring together experiments involving transitions between
levels that are close enough for the frequency of the electromagnetic radiation
emitted or absorbed by an atom to fall in a region usually known as the radio-
frequency region. The frequency spectrum proves to be very extended and
goes from several kilohertz to hundreds of thousands of megahertz; the
experimental techniques therefore can be quite varied. Despite the term
‘radiofrequency spectroscopy’ it is important to note that the observation of
some phenomena can take place by measuring a quantity unrelated to a radio-
frequency wave: the displacement of an atomic beam, the change of polarisa-
tion of a light beam and so on. Some of the transitions which are observed
result from an electric dipole mechanism, others from a magnetic dipole
mechanism (see section 4.1).

7.3.1 General description of experiments in radiofrequency spectroscopy

(1) Absence of the Doppler effect. We can ascertain the main feature of
radiofrequency spectroscopy straight away. The ratio v/c, where v is the mean
velocity of thermal agitation, is less than 10~5; the Doppler width will there-
fore be Avp = (v/c)ve and since v, < 101° Hz, Avp < 10° Hz. It is therefore
less than the natural width of an excited level. The resolution of a radio-
frequency spectroscopy experiment carried out on excited states will therefore
be limited only by the natural width.t If the transitions studied are of high
frequency, and involve ground levels or long-lived metastables whose natural
widths are small, these simple considerations lead to the calculation of a
Doppler width greater than the natural width. However, in many experiments,
the Doppler effect remains negligible for another reason: the displacement of
the atom is confined to a distance less than the wavelength A of the radio-
frequency field.

This condition is realised when the atoms under study form a vapour
enclosed by a cell of small dimensions or when this vapour is mixed with a
foreign gas at sufficiently high pressure, thereby restricting the mean free
path of the atoms. Under these conditions, a random-walk calculation for an
atom must be carried out, taking account of the frequent changes of velocity.
This was done by Dicke, who showed that the width obtained is much less
than the Doppler width calculated by the usual formula.

+ This is only a first approximation; a more complete discussion is given for a particular
case in section 7.3.4, paragraph (2).
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Comment A simple argument based on the elementary explanation of the Doppler
effect, allows the Dicke effect to be understood intuitively. The Doppler frequency
shift depends on the fact that in a given time interval the observer and the emitter
do not count the same number of periods: in figure 7.14 we show the respective
positions of an atom A in motion and a stationary observer O at successive times ¢,
and t,; the distance AO is N, 1 at time ¢, but is only N, at time ¢,, and during the
time interval 7, — ¢,, the observer will have counted (N, — N,) periods more than the
atom. Now, if the atom is enclosed within a region of linear dimension less than 4,
N, remains equal to N, whatever the time interval ¢, — f,.

Time 1, b= i r——~————lI

!
Time 1, p—— =  E——

Ny i

Figure 7.14

To summarise, the resolution in radiofrequency spectroscopy is limited
only by the natural width of the level under study, inversely proportional to
its lifetime in the wider sense. (For ground levels or metastables, this ‘lifetime’
is determined not by spontaneous emission, but by non-radiative transitions
related to relaxation effects.)

(2) Spontaneous emission, induced emission and absorption. In volume 1,
chapter 3, the reader was introduced to the concept of a spontaneous emission
probability A4,,, the coefficient of induced emission B,, and the coefficient of
absorption By, (level 1 is the lower energy level). It was also noted that

A21/321 = 871:/1/).3

From this relationship, an order-of-magnitude calculation shows that spon-
taneous emission can be disregarded when radiofrequency transitions are
studied. Induced emission and absorption are then the main modes of inter-
action between the radiation and the atomic system.

For simplicity, let us assume that the statistical weights G, and G, of the
two levels are equal; therefore B, = B,,. By using the notation of volume 1,
chapter 3 (n, and n, are populations and u, is the energy density), the number
of photons absorbed per unit time is n, B,,u, and the number of photons
emitted is n, B,, u,. The interaction between the atoms and the radiation can
be observed only if these two numbers are different

ny By, # ny By,

that is to say, if n, # n,.
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Let us assume that the excited states have populations described by a
thermal equilibrium law at an ambient temperature 7= 300 K ; if E, and E,
represent the energies of states 1 and 2, the Boltzmann law may be written

"z/nl — e_(EZ_El)/kT — e—th,/kT
Since hv,,/kT is very small, we can write
nyfn, =1 —hvy, [kT

and we obtain for various values of v,; and for 7= 300 K

V21
(Hz) ny/ny &1 — hvyy kT

103 1—16x10710
108 1—-1-6x1077
10° 1—1-6x1074

Examination of this table shows us that the ratio n,/n, is very close to unity
for thermal equilibrium; the number of photons emitted by induced emission
will be nearly equal to the number of photons absorbed.

Experiments on atomic levels are usually carried out on the atoms of an
atomic beam or of a gas at low pressure. The number of atoms involved is
therefore small (of the order of 10® to 10!2) and it proves impossible to observe
the interaction between the atomic system and the radiofrequency wave with
population ratios so close to unity. A process must therefore be devised whereby
the population distribution differs significantly from that obtained in an equilib-
rium state. Any radiofrequency spectroscopy experiment carried out in order
to study atomic levels will therefore feature a means of selectively populating
certain levels.

Comment In the case of radiofrequency spectroscopy experiments carried out on
solids or liquids, the number of atoms involved is much greater and it is possible to
detect a difference in the rates of induced emission and absorption in thermal
equilibrium. This is a special case of magnetic resonance (see volume 1, chapter 10).

(3) Classification of radiofrequency spectroscopy experiments. It is difficult
to find a logical classification of the various experiments in radiofrequency
spectroscopy carried out in the field of atomic physics so as to study them
systematically. They can be distinguished by several different criteria:

(a) By the atomic state investigated. The state investigated may be the
ground state of an atom or, on the other hand, an excited state.

(b) By the nature of the transition studied. This can be induced either by the
electric field (electric dipole transition) or by the magnetic field (magnetic
dipole transition) of the radiofrequency wave used. By confining ourselves to
L-S coupling, transitions between levels of different L such that AL = +1,
are electric dipole transitions. Transitions within the same multiplet and
transitions between hyperfine levels for which AL =0, are magnetic dipole
transitions.
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(c) By the process that creates the population difference. Rabi’s mechanical
method; excitation by polarised light; optical pumping of the ground state;
electronic excitation creating a population difference as a result of different
excitation cross-sections.

(d) By the method used for detection. A change in the number of atoms
reachinga given point in the apparatus in the case of an atomic beam; a change
of the light intensity or the degree of polarisation of the light emitted or
absorbed by the atomic system; a change of radiofrequency amplitude.

We devote the rest of section 7.3 to describing several methods used in
radiofrequency spectroscopy of the atom. In none of these do we wish to make
an exhaustive study, but only to present experiments that make an important
contribution to atomic physics, either due to a particular result or because
of the wealth of data obtained. In this book the reader has already met some
of the fundamental aspects of these techniques; we shall refer back to them
in order to elaborate.

7.3.2 Measurement of the ‘Lamb-shift’ in the n = 2 level of atomic
hydrogen

(1) Principle of the experiment. As we saw in section 4.3, the energy difference
S between the 22S, and 2°P, levels was observed in 1940 by interferometric
methods, which indicated that the order of magnitude of the effect was
0-03 cm~1. In 1947 Lamb and Retherford undertook a systematic study of the
n =2 level of hydrogen in the presence of a magnetic field that separated the
magnetic sublevels. Figure 7.15 shows the energy diagram of these sublevels.
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Figure 7.15 Zeeman splitting of the n=2 level of hydrogen (from Lamb and
Retherford). Abscissa: magnetic field, unity corresponding to 5214 GHz; ordinate:
energy measured in frequency units, unity corresponding to 7300 MHz
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Some properties of the hydrogen atom enable the principle of the Lamb
and Retherford experiment to be understood.

(a) In the case of atomic hydrogen, atoms in the 2P state return to the 1S
ground state by emitting the Lyman « line of wavelength 121-6 nm.
The lifetime of the 2P state is very short (1-6 x 107%s).

(b) An atom in the 22§, state is metastable and has a lifetime of the order
of 107%s.

(c) The transitions 2°P, —22S, and 22S, — 2?P, have an electric dipole
character and are easy to induce by a radiofrequency electric field.

With the help of these remarks, the diagram of the experiment given in figure
7.16(a) can be understcod.

Source Atomic Interaction region: Detector
beam 2 ZS,,2 magnetic field and
radiofrequency
electric field
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Figure 7.16 The Lamb-Retherford experiment. (a) Schematic diagram of the experi-
ment. (b) Resonance curve observed for hydrogen at 2395 MHz. Abscissa: magnetic
field (in GHz); ordinate: percentage of atoms @ having undergone a transition (a
transition between the levels « and f of figure 7.15)

A beam of hydrogen atoms in the 27S, metastable state may be obtained
from a source within a vacuum chamber. This beam passes into an interaction
region where it is subjected to a magnetic field and to a radiofrequency electric



EXPERIMENTAL METHODS IN ATOMIC PHYSICS 159

field.The beam finally reaches a detector which enables a quantitative measure-
ment of the number of incident 2°S, atoms to be obtained.

One operates at a fixed radiofrequency and a variable magnetic field. When
the Zeeman splitting corresponds to the frequency of the radiofrequency field,
there is a transition from the 2?S, state to the 2P states, followed immediately
by a return to the 1S ground state by emission of the Lyman « line. The number
of atoms in the 2§, state decreases and there is a drop in signal at the detector.
By making use of the Zeeman effect formulae, the shift 65 can be deduced
from the position of the resonance.

The experiment thus described may seem simple, but it presents many
difficulties. The main difficulty is due to the width of the resonance line, which
is about 10 millitesla. However, the position of the resonance has been
measured to nearly 10 microtesla. This requires extreme care on the part of
the experimenter and, above all, a thorough study of the causes of systematic
errors that result in shifts or distortions of the resonance curve.

(2) The apparatus. We shall give a brief description of Lamb’s apparatus.

(@) Production of the beam of atoms in the 2*S, state. Thermal dissociation
of molecular hydrogen produces atomic hydrogen in the 1S ground state.
At 2770 K, the degree of dissociation is 64 per cent. Bombardment of the atomic
beam by electrons allows a small fraction of the beam to reach the excited
2’S, metastable state.

(b) Detection of the beam. A beam of metastable atoms incident on a metal
plate can release electrons. In the case of hydrogen atoms, the phenomecnon
is quantitative. An anode enables the electrons to be collected and the current
is measured by means of an electrometer. Under typical experimental condi-
tions, a current of 3 pA is measured (when the bombardment current that
produces the metastable atoms is 200 uA).

Let I, be the anode current when there is no radiofrequency applied, 7, the
current at resonance and /5 the residual current when no atoms are incident
on the detector. Hence, the percentage @ of atoms having undergone a radio-
frequency transition is

5L -1

& =100
I -1,

(see figure 7.16).

(c) Interaction region. The magnetic field is produced by means of an
electromagnet, calibrated by nuclear resonance. The radiofrequency is fed
in through a waveguide; the frequency is measured by a beats method and is
compared indirectly to the 5 MHz frequency standard of a local radio
station WWV.

(3) Results. Figure 7.16(b) shows one of the transitions observed; the shape
of the line has been studied very carefully in order to define its position
accurately and several corrections have had to be applied to take account of
various effects. In particular, we may mention the Stark effect produced by
the electric field E = (1/x)v x B scen by the atoms moving with velocity v in
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a magnetic field B, and the influence of the hyperfine structure of the 2S and
2P levels, not shown in the diagram of figure 7.15.
From their experiment, Lamb and co-workerst deduced the value

35 =1057-77 + 0:-10 MHz
very close to the theoretical value deduced from quantum electrodynamics
8Sn=1057-56 +£ 0-10 MH z

Similar experiments have been performed on the same levels of deuterium
and of ionised helium.

7.3.3 The hyperfine structure of hydrogen. The hydrogen maser

The hydrogen atom possesses a nuclear spin /=41 and consequently the
structure of the ground state of hydrogen, in the presence of a magnetic field,
is of the form shown in figure 7.17. The hydrogen maser developed by
Kleppner, Goldenberg and Ramsey (1960) has enabled this hyperfine structure
to be measured very accurately. We give a brief description of its principle
of operation below (figure 7.18).

A beam of atomic hydrogen in the ground state is obtained by thermal
dissociation of molecular hydrogen (see section 7.3.2, paragraph (2)). It is
directed along Oz and enters a magnetic selector formed from magnets
arranged in such a way that the magnetic field is zero along the Oz axis and
increases the further one goes from the axis. The energy of the states F =0
and F=1, mg=—1 is a decreasing function of the magnetic field; hydrogen
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. - r = B(mT)
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Figure 7.17 Hyperfine structure of the ground level of hydrogen in the presence of a
magnetic field

+ Lamb, W. E., and Retherford, R. C. (1952). Phys. Rev., 86, 1014,
Triebwasser, S., Dayhoff, E. S., and Lamb, W. E. (1953). Phys. Rev. 89, 98, 106.
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Figure 7.18 Schematic diagram of the hydrogen maser

atoms in these states therefore have a tendency to move away from the axis,
the most stable state being that of minimum energy; on the other hand, atoms
in the states F = 1, my = 0 and m; = 1 will be focused towards the axis of the
selector. Therefore at the exit from the selector we see that the atomic beam
on the Oz axis is enriched with atoms in the F = 1 state. The beam then leaves
the magnetic field region and enters a quartz bulb placed within a resonant
cavity tuned to the frequency of the hyperfine splitting and situated in a
region where the magnetic field is zero. Within the cavity the number of atoms
n, in the F =1 state is greater than the number », in the F=0 state; the
conditions for maser oscillation are therefore satisfied. With achievable beam
intensities, the power resulting from the oscillation is very low, of the order
of a picowatt. The frequency stability is remarkable; by comparing the
frequency with the frequency of a caesium atomic clock used as a time
standard, an extremely accurate value of the hyperfine structure

dvy = 1420 405 751-786 + 0-028 Hz

is obtained. Similar measurements have been carried out on deuterium and
tritium.

7.3.4 The spectroscopy of excited states by magnetic resonance and
optical detection

(1) Principle of the experiment. In volume 1, section 11.4, Brossel’s magnetic
resonance experiment on the 63P, level of mercury was described. The reader
should recall the main features of the experiment :

(a) selective optical excitation of the Zeeman sublevels of the 6°P, level by
means of polarised light at a wavelength of 253-7 nm from the transition
6P, — 6'S,;

(b) atransition between the Zeeman sublevels (a magnetic dipole transition)
under the influence of a radiofrequency magnetic field of amplitude B, ;

(c) cetection of the resonance by observation of the degree of polarisation
of the emitted light: the resonance changes the populations of the
Zeeman sublevels and, as a result, the polarisation state of the emitted
light.
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(2) Application of the experiments. In the simple case that has been
described, the influence of the magnetic field may be described in terms of the
Zeeman levels in a weak field (the experiment is carried out on an even isotope
of zero nuclear spin, so there is no hyperfine structure; the fine structure
separations 6°P, — 6P, — 6°P, are very large—see figure 4.7). The position
of the resonance line leads to the Landé factor: the excellent signal-to-noise
ratio allows the line to be plotted accurately and the Landé factor can be
determined with a relative precision of the order of 10-*. Such a measurement
proves to be a useful test of theoretical atomic structure calculations.

The shape of the resonance line is a rather complicated function of the
amplitude B, of the radiofrequency field and of the lifetime t of the level. If
the value of B, is gradually reduced to zero in a series of experiments, the
curves obtained have a decreasing amplitude (see volume 1, figure 11.10), but
their width at half height tends towards a limiting width which depends only
on the lifetime 7 of the level

‘ 2
AB=y|Aw=|y|-=g-——

(see steady-state solution of the Bloch equations, volume 1, section 9.5.3).

If the number of atoms in the cell is very small, corresponding to pressures
less than 10~* mm of mercury, the time t is effectively the radiative lifetime of
the level. At higher pressures, collisions take place during which the excited
atoms lose their excitation energy. Their lifetime decreases, and the curves
broaden.

Comment The preceding paragraph is valid in general. However, in Brossel’s actual
experiment, carried out on a resonance level by optical absorption, the situation is
more complex. There is competition between the collision processes, which de-excite
the atoms and thus reduce their lifetime, and the process of ‘multiple scattering’
which acts overall to lengthen the lifetime. Let us explain the latter process: when an
atom (1) in the 63P; state is de-excited, it undergoes the transition 6°P;, — 6!S, and
emits a photon which can be absorbed by a neighbouring atom (2) in the ground
state; this reabsorption of the photon becomes more probable as the pressure is
raised. A theoretical study of this phenomenon shows that the description of excited
atom (2) in terms of its wave function cannot distinguish it from excited atom (1);
for the whole vapour, we see therefore that this process leads to an increase in the
apparent lifetime of the 63P, state. This is a collective phenomenon; one speaks of
the ‘coherence time’ of the 63P; level, reserving the term lifetime for phenomena
related to the de-excitation of an isolated atom. It is this ‘coherence time’ that in fact
is involved in the expression for the line width.

This process of lengthening the coherence time involves the phase properties of
the wave functions. It should not be confused with another aspect of multiple scatter-
ing that we have met already: the imprisonment time of resonance radiation (see
volume 1, section 3.2.2, comment). The coherence time cannot be greater than twice
the radiative lifetime, whereas the imprisonment time can be tens or hundreds of
times longer.

(3) Generalisation of the method and its limitations.
(a) The use of optical excitation with polarised light allows only levels
directly connected to the ground level by an allowed transition, usually called
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‘resonance levels’, to be reached. In addition, the transitions necessary for
excitation should be in a spectral region that is easily accessible experimentally.
(The resonance levels of the rare gases, for instance, decay to the ground
level by emitting radiation =50 nm in the far ultraviolet region.) The element
studied should be sufficiently volatile to form either a vapour or an atomic
beam. Some of the levels that have been studied are the resonance levels of
the various isotopes of mercury, zinc, cadmium, sodium and potassium.

While retaining the same method of detection, a population difference
between the Zeeman sublevels can be created through excitation by a beam
of slow electrons having a well-defined direction. This direction defines an
anisotropy in the excitation, manifested by population differences in the
Zeeman sublevels. The use of excitation by electrons of energy between 10
and 50 eV has permitted an extension of Brossel’s resonance method to many
excited levels that cannot be reached by optical excitation.

(b) The interaction time between the atom and the radiofrequency field is
determined by the lifetime of the excited state. This implies that the shorter the
lifetime 7, the greater must be the amplitude of this field (see volume 1, section
9.5.3). When t < 107% s, the amplitude of the radiofrequency field B, necessary
to produce magnetic resonance is of the order of a millitesla, which requires
a power of several tens of watts in the circuit producing B,; in addition to
various technical difficulties, undesirable discharges appear in the vapour
under study, produced by these strong alternating fields. The method is
therefore not easily applicable to levels of short lifetime.

(c) When the level under study has hyperfine structure, the experiment is
usually carried out in conditions of intermediate field; the sublevels then
have a complicated pattern and for a given value of the field the separations
between consecutive Zeeman sublevels are no longer identical. The observed
phenomena are complex; apart from the various 3 F =0 transitions, some
dF =1 transitions can be detected. Analysis of the results, taking account of
the Zeeman diagram in intermediate field, enables values of the hyperfine
structures to be obtained, from which the value of the nuclear magnetic
moment of the atom under study can be deduced.

To summarise, the method of magnetic resonance applied to excited levels
has contributed a considerable amount of spectroscopic data. It has also led
to several new investigations in fundamental physics: atom-radiation inter-
actions and the study by means of line widths of collision phenomena involving
excited atoms, for example.

7.3.5 Study of the ground level in an atomic beam by Rabi’s method

This experiment was discussed in volume 1, section 10.5 and a diagram of the
apparatus given in volume 1, figure 10.7. The population difference is obtained
by means of an inhomogeneous static field B, which allows only atoms of a
given quantum number |m| to reach the region of interaction with a radio-
frequency field situated in the airgap of magnet (2). Magnet (3) provides an
inhomogeneous field B; which permits only atoms having a particular value
of |m| to reach the detector.
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The Rabi method can be applied easily only to atoms in the ground state
or in a metastable state because, owing to the velocity of the atomic beam, an
excited atom of lifetime 10~7 s will travel only a fraction of a millimetre. The
main use of the Rabi method is to measure hyperfine structures of ground
states in order to obtain nuclear moments. For discussion of its field of
application, it is convenient to amplify some of the points made in volume 1,
chapter 10.

(1) The existence of hyperfine structure complicates the Zeeman diagram,
and the paths of atoms of different m, in magnets (1) and (3) must be studied
by using the concept of an effective magnetic moment, as defined in
section 6.7.

(2) The radiofrequency magnetic field can induce a large number of
magnetic dipole transitions, as illustrated in figure 7.19 for a level with
J=11=1:
(a) in a weak field, one can observe either the transitions 6F =0,

dme = +1 (‘low-frequency’ transitions) or 8F = +1, dmp =0, +1 (‘high-
frequency’ transitions);

(b) in a strong field, one can observe either the ‘low-frequency’ transitions
dm; =0, dm;=+1, or the ‘high-frequency’ transitions 8my; = +1,
dm;=0;

(c) in an intermediate field, we can only provide a continuity argument:
the transitions that have a large probability are those corresponding to
an allowed transition between two given levels in both weak and
strong fields; these are shown in figure 7.19.

E
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=—1/ ’
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Figure 7.19 High-frequency and low-frequency allowed transitions for the case J = %,

I=1%
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From measurements carried out on the magnetic resonance lines corre-
sponding to these transitions, hyperfine structure separations can be calculated
(for instance by using the Breit—-Rabi formula, see section 6.7).

(3) The width of the resonance lines is inversely proportional to the transit
time ¢ of an atom in the region where it is subjected simultaneously to the
radiofrequency magnetic field and to the static field B,. To obtain the greatest
possible accuracy in hyperfine structure determinations, the resonance lines
should be narrow and consequently the transit time ¢ should be long. As the
velocity of the atomic beam is not easily adjustable, the interaction region (2)
between the atom and the radiofrequency field must be made as long as
possible. This is clearly very difficult if the necessary conditions of homo-
geneity of the fields are to be maintained. A clever device to overcome this
problem was proposed by Ramsey (figure 7.20): after passing through the
inhomogeneous field B,, the atoms enter a region of length L in which a
homogeneous magnetic field B, exists; towards each end of this region, the
atom is subjected to a radiofrequency field over a distance /. The line then
has a complicated shape (figure 7.21); the width of the envelope, drawn in
dotted lines, may be inferred from the time ¢ = //v, where v is the average
speed of the atoms, whereas the width of the central peak is related to the
time 7= L/v. The position of the central peak can then be determined with
great accuracy.

I Magnet 1 I L Magnet 2 J l Magnet 3 I

Inhomogeneous I ; Homogeneous field ..J.l lnhomogeneousl
field P— field

Figure 7.20 Similar to volume 1, figure 10.7. Ramsey’s arrangement: the radio-
frequency field is applied in the two shaded regions each of length /

B

Figure 7.21 Theoretical shape of a resonance line obtained with a Ramsey arrange-
ment (figure 7.20)
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(4) Rabi’s method has been widely used; most elements, both stable and
radioactive, have been studied. For example, experiments have been carried
out on the isotope sodium 21 with a radioactive lifetime of 23 s, and on several
transuranium atoms. Figure 7.22 shows part of a table of hyperfine structures
measured by the Rabi technique. The Rabi method has also been used to
construct frequency standards which are then used as time standards (see
section 6.2.2),

Atomic
Isotope / state J F Avg p_4(MHz)
87Rb 3 25 1 2 6834-€82614 (1)
89y 3 2p 5 3 88-63 (60)
32 2 114-72 (20)
9oy 2 2p s 2 403-719 (37)
3 293-203 (22)
g 198-287 (24)
3 114-515 (19)
3 Z 613-023 (34)
£ 410-871 (24)
3 235-722 (26)
o1y 1 2p 5 3 103-0
3 2

Figure 7.22 Part of a table giving the hyperfine splitting Avg g _, between a level F
and a level F— 1 of the ground level. (In the last cclumn, the estimated errors in the
last significant figures are given in brackets.)

7.3.6 Study of the ground state by optical pumping

Optical pumping was described in volume 1, section 11.5. It enables a popula-
tion difference to be created between the ground state Zeeman sublevels of
an assembly of atoms, thereby permitting magnetic resonance experiments to
be performed; detection of the magnetic resonance is carried out by
optical analysis of this atomic vapour. In volume 1, chapter 11 a simplified
scheme was used as a basis of explanation; in the case of alkali atoms, two
neighbouring resonance lines, D, and D,, exist (see figure 5.8) and further-
more, the ground level has hyperfine structure due to the nuclear spin, which
in volume 1, chapter 11, was deliberately overlooked, since at that stage the
reader had not met this concept. The description of the pumping cycle is
therefore, in general, rather complicated, but the fundamental ideas remain
the same.

We shall describe below some physical aspects of the techniques that have
been developed from the method of orientation of the ground level by optical

pumping.

(1) The width of a resonance curve. We have seen several times that the width
of a resonance is inversely proportional to the lifetime of an atom in the
state under consideration. At first sight, by generalising the ideas developed
in section 7.3.4 with regard to excited states, then, since the lifetime of a
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ground state is infinite, the resonance curves should be infinitesimally narrow.
However, what is important here is the lifetime of the sublevels involved in
the experiment, that is to say the relaxation time which was studied in volume 1,
chapter 9; the width of the resonance is therefore related to the relaxation time.
Several relaxation effects can occur as discussed below.

(a) The experimental procedure itself, the pumping light preferentially
emptying one of the sublevels, brings about relaxation of an atom—that is to
say a limit to its lifetime. The greater the intensity of the pumping light, the
shorter will be the relaxation time of an atom.

(b) The vapour has to be contained in a cell, and atoms will be disoriented
on collision with the walls; after a collision, the direction of the magnetic
moment of an atom will in general have changed. Early experiments showed
that the line widths observed corresponded to a lifetime equal to the mean
time of flight of an atom between one wall and another, this time of flight
being of the order of 10~* s. However, certain atoms, whose ground state is
spherically symmetric, do not have an electronic magnetic moment, so their
magnetic moment is of purely nuclear origin. Nuclear magnetic moments
interact only weakly with the walls and they have only a small probability
of being disoriented by collisions with the walls of the cell. Mercury is a
particular example, for which very narrow resonance lines can be obtained
(0-01 Hz in frequency units). In the case of an alkali atom, whose ground
level is not spherically symmetric and which possesses electronic spin, two
techniques have enabled very narrow resonance lines to be observed as follows.

(i) Certain coatings on the walls of the cell (paraffins, silicones) enable an
atom to undergo collisions without being disoriented.

(ii) The introduction of a foreign gas within the cell allows the time of
flight between the walls to be increased, and experiment has shown that the
rate of orientation (see volume 1, chapter 11) increases correspondingly, as
long as collisions with atoms of this foreign gas do not cause disorientation.
A study of the influence of various gases has enabled optimum conditions
for obtaining narrow lines to be defined. However, it should be pointed out
that as the pressure of the foreign gas (usually called the buffer gas) increases,
collisions between the excited atoms and the gas may become evident; these
collisions equalise the populations of the Zeeman sublevels of the excited
state and the pumping process becomes inefficient. To avoid this difficulty,
Dehmelt devised a different optical pumping process for the alkali atoms: the
irradiation of the vapour by circularly polarised light whose D, and D, lines
have different intensities.

Comment Here a fundamental difference may be seen between an experiment of
the Rabi type and an optical pumping experiment. In the Rabi experiment the atoms
are isolated and the relaxation time is therefore infinite; it is the time of flight of an
atom through the apparatus that limits the interaction time between the atom and
the radiofrequency field.

(2) Multiple quantum transitions in magnetic resonance. When electro-
magnetic waves of high intensity arc used, it can happen that an atom makes
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a transition between two energy states £, and E, by absorbing several photons
simultaneously.

These multiple quantum transitions are possible if they conserve energy. For
example

Ez - El = hV1 +hv:
for two waves of different frequencies.
E, — E, =2hv, 3hv, 4hv, etc.
for a single wave.

These transitions, however, must also be able to conserve angular momen-
tum, and they provide confirmation of the concept of angular momentum of
a photon (see volume 1, chapter 11).

These multiple quantum transitions between two nearby Zeeman sublevels
may be observed by magnetic resonance. With a wave of fixed frequency
v, they are produced in a magnetic field B two or three times greater than the
normal transition, such that sv = gf(B/2) or gf(B/3) and so on. These tran-
sitions do not, however, occur under all conditions.

(a) If the wave is circularly polarised, these » quanta transitions cannot
occur because an atom cannot absorb an angular momentum »/# corresponding
to n photons.

(b) If an oscillating field 2B,coswt is produced perpendicular to the
constant field B, (see volume 1, section 9.5.4), it is equivalent to the sum of
two fields rotating in opposite senses, that is two waves of polarisation ¢* and
6~ ; the atom can then absorb simultaneously p c™-photons of angular momen-
tum —/4 and p + 1 o*-photons of angular momentum +#, since the 2p + 1
photons together contribute the necessary angular momentum. Thus only
transitions with an odd number of photons are possible.

(c) If one adds an oscillating field parallel to the constant field B,, that is to
say photons of zero angular momentum, transitions with an even number of
photons become possible (the experiments of J. Winter in 1955).

Comment These transitions are not easily observable in excited states because
their lifetimes are too short, and because radiofrequency fields of sufficient amplitude
cannot be produced.

(3) Detection by modulation of the absorption. During magnetic resonance,
a transverse magnetisation M is present in the vapour; this magnetisation
precesses around the Oz direction of the magnetic field B, (figure 7.23). The
M, component of this magnetisation is therefore a sinusoidal function of
time, of frequency wo = By/y. Moreover, the absorption properties of a beam
of light polarised by an atom are related to the direction of its magnetic
moment. (In section 7.2, we used a similar property, in the case of emission,
in the study of the Hanle effect.) If, therefore, besides the pumping beam (1),
a second beam (2) of the same resonance wavelength is passed through the
cell in the Ox direction (figure 7.23), an absorpticn of this beam as a function
of the value of M is observed. After passing through the cell containing the
vapour, the beam (2) will be partially modulated at the frequency w,. After
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Figure 7.23 Schematic diagram of Dehmelt’s crossed-beam method. Beam 1 = circu-
larly polarised pumping beam. Beam 2 = detection beam whose intensity is modulated
by the magnetic resonance. P, and P, are polarisers, F is a filter, A is an analyser and
C is a photodetector

being received by a photodetector, this modulation may be amplified and
displayed. This technique, introduced by Dehmelt, and known as the crossed-
beam technique, has proved to be very useful in the analysis of magnetic-
resonance phenomena.

(4) Applications of optical pumping. There are many of these, and for the
most part they are related to the width of the observed lines.

(a) Spectroscopic applications. As in Rabi’s method, hyperfine structure
and nuclear magnetic moment measurements have been detected from the
shape of the resonance curves. We may mention in particular:

(i) the nuclear magnetic moment measurements of
ZJNa’ 39K’ 40K, 4‘K, 652[1, 67Zn, Bst’ 87Rb, 107Cd, IOQCd,
lllCd’ llSCd, 133CS, 134CS, 135CS’ l‘)}Hg’ 195Hg’ 197Hg’ 199Hg’
ZOIHg
by an optical pumping method similar to that described above.
(i1) the use of exchange methods of orientation (described for electrons in
volume 1, section 12.3): it has been possible to orient various atoms in their
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ground state by collisions with alkali atoms oriented by pumping—for
example, we may mention the experiments on the ground level of nitrogen;

(iii) the ground level of the isotope *He can be oriented by transfer of
orientation produced in the 23S, metastable level by a pumping cycle involving
the 23P — 23S, (1-083 pum) transition.

(b) Fundamental physics. In the realm of fundamental physics, it has been
possible to study many effects related to interactions between atoms and
radiation, and it has been shown that the illumination of an atomic system
can produce very small shifts of the energy levels; these have been observed
thanks to the narrowness of the resonance curves (Cohen-Tannoudji, 1962).

(c) Application to magnetometers and to frequency standards. In the weak
field Zeeman effect, the resonance frequency is proportional to the value of the
field. This property has led to the construction of magnetometers for the
measurement of low fields. Some of these instruments use a low frequency
resonance 8F =0, dm; = +1 in one of the hyperfine sublevels of the caesium
atom. Dehmelt’s pumping technique is used, detection being carried out by
the method of crossed beams described in paragraph (3). A rather complicated
electronic arrangement adjusts the frequency of the transmitter so that
resonance conditions remain satisfied during changes of the magnetic field.
By measurement of the frequency, this servo-mechanism allows the resonance
line to be plotted very accurately. The resonance frequency in the earth’s field
is of the order of 150 kHz, and the apparatus remains sensitive in a magnetic
field of the order of 107! tesla.

The transitions 8F=1, m=0— my=0 have a frequency practically
independent of magnetic field. In the cases of 133Cs, 85Rb and 8’Rb they have
formed the basis of frequency standards. Two principles are used: the first
consists in the construction of a servo-system similar to that described for
the magnetometer, which regulates the frequency of a transmitter so that the
resonance retains a maximum amplitude; the second amounts to producing a
population difference within a cavity, sufficient to generate maser oscillation
as in the case of the hydrogen maser (see section 7.3.3).

7.3.7 Conclusion

This brief review illustrates the wealth of spectroscopic radiofrequency
experiments; they have made important contributions to the development of
theoretical physics where increasingly accurate measurements are required
for the interpretation of subtle effects. In addition, they have given rise to
applied research problems: magnetometers, and time standards.

7.4 Lifetimes and Oscillator Strengths

The concepts of lifetime and of absorption and emission probabilities were
studied in volume 1, chapter 3. In this section, we shall refine these ideas and
give an account of various experimental methods.

In chapters 1 to S, we described an atom in terms of energy levels, and in
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previous sections we showed how modern experimental methods have enabled
extremely accurate data to be obtained in this area. However, we have not
studied the intensity of the emitted spectrum at all, nor considered the popula-
tions of the various excited levels. This information, however, expressed in
the concepts of lifetime and of oscillator strength, is required in various areas
of physics whenever an accurate quantitative analysis of an excited or ionised
medium must be undertaken: a gas laser operates only if a ‘population
inversion’ exists between certain excited levels (see volume 1, section 4.3), and
the populations of the levels result from competition between processes creating
excited states that involve ‘excitation cross-sections’ (to be studied in section
7.5) and decay processes that involve, in particular, the radiative lifetime of
the levels. Astrophysicists obtain information about stellar and interstellar
media by studying in particular the intensity of emitted lines; the values of
oscillator strengths and of atomic lifetimes therefore will also be fundamental
parameters for describing these media.

7.4.1 Definition of oscillator strengths and of lifetimes

In appendix 2 we review the classical results for the absorption of an electro-
magnetic wave of frequency v by an assembly of N dipoles per unit volume
(formed from elastically bound electrons of natural frequency v,). The
absorption of the incident wave of intensity /; is described by a coefficient K
such that after travelling a distance z, the intensity is given by

lzloe_Kz (71)

The absorption coefficient K was calculated in the approximation where the
absorption band is narrow enough to be able to write |w — wo|< w. It is
proportional to the number of dipoles N contained in a unit volume.

For a classical description of the absorption of an electromagnetic wave
by a medium containing » atoms per unit volume, these atoms having an
absorption frequency v,, we assume that each atom is equivalent to f classical
oscillators; f'is then called the oscillator strength. Thus N = nf, and therefore
we write the absorption coefficient

2
Y
K@) = 7.2
W=7 1612 meg ¢ ((vo —v)? + (y/47r)2) (7-2)
(y is a damping coefficient, see appendix 2).
If the incident wave has a continuous frequency spectrum, the total absorp-
tion is found to be (see appendix 2)

ne?

o= Kwdv=f (7.3)
0

4megC

The total absorption o therefore depends only on » and on the value of f;
in particular it does not involve the value of the damping coeflicient y. This
has an extremely important practical application because the absorption of a
continuous spectrum will permit the oscillator strength to be measured
independently of any other paramecter.
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If the incident wave is suddenly cut off, the electrons will continue to oscillate
with an amplitude which decreases owing to damping effects. Classical theory
shows us that the emitted intensity can be written

I(t) = lo e_'/'

where © = 1/y. The parameter 7 is called the lifetime.

The classical picture provides only a very elementary model; it takes
account of the many possible transitions between various excited states only
with difficulty, and does not express the quantum nature of the phenomena.
In quantum theory, if there are », stationary atoms per unit volume in the
state i able to absorb the radiation v;; (thereby passing into the energy level
E,; > E;), the shape of the absorption line is given by the Weisskopf relation,
similar to the relationship (7.2)

i L 7.4
16n2 meyc Jus v —vi;)* + (I ;/4n)? (74)

i

Kij(v) =

fi; represents the oscillator strength associated with absorption of the transi-

tion v;;; it is no longer an integer and is less than unity: I'; is the damping
coefficient. These two parameters are related to the Einstein coefficients 4 ;,

B;; and B;; defined in volume 1, chapter 3.
(1) To a good approximation the coefficient I'; can be taken as equal to
rj = 2‘:‘ Ajk
the summation over k being carried out over all levels of energy less than that
of level j. Comparison between the expression (7.4) and the classical expression
(7.2) indicates that with the lifetime of level j is given by
1 1

T, = =
Ajk

=M

(2) The relationship (7.3) for the total absorption by » atoms, is always
valid. It allows the oscillator strength to be related to the Einstein coefficients.
Let us assume that the radiation incident on the assembly of atoms has a
continuous spectrum whose differential energy density u, is constant over the
whole region where K;;(v) is different from zero. There are n; atoms per unit
volume in the state / under consideration. From equation (7.3), we have

2

o = j:K,.,.(v) dv =~ ety (71.6)

meg C

By using the relationship established in volume 1, section 3.1.4

)."‘ 1
B, = —hi; f K;;(v)dv
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and by taking the value of the integral given by equation (7.6), we have
Bj=——f=— 1, (7.7)

(3) By making use of the relations expressing B;; as a function of 4 ; (see
volume 1, section 3.3), we can also relate the oscillator strength f;; to the
spontaneous transition probability 4 ;. Let us denote the order of degeneracy
G =2J+ 1 of the levels i and j by G; and G, respectively. (Remember that in
this section the level j is the higher energy level, and the level i has the lower
energy.) We have

8nh 8nh 8nhvd G,
Aj=-—5Bji=—F]ViBji=————B;
23 3 ¢ G;
and hence from equation (7.7)
2ne* v G;
A, = 221 (7.8)
Ji 80m63 Gj f/

From the definitions and properties given above, the reader will note that
the lifetime is a parameter characterising a given atomic level, whereas the
oscillator strength characterises a transition between two levels. These two
concepts are very similar however; if only two levels i and j were involved, 1
would be proportional to 1/f, from equations (7.5) and (7.8).

The quantum theory of radiation allows lifetimes and oscillator strengths
to be evaluated from wave functions. Rigorous calculations are possible only
in the case of the hydrogen atom and usually, therefore, theoretical determina-
tions will require approximations and numerical solution. Consequently,
experimental study is of considerable interest; apart from the fact that it can
give important numerical results, it allows parameters to be obtained whose
theoretical evaluation is difficult. When comparison between theory and
experiment is possible, the latter can provide useful tests of suggested approxi-
mate wave functions.

Comment I The oscillator strength f'= f;; which we have defined, relates to absorp-
tion; some authors use f'= fj;, an oscillator strength relating to emission, such that

fu= oy
gi=Ji G,
Care should therefore be taken when reading articles dealing with oscillator
strengths.

Comment II When only two levels i and j are involved (this can be the case if j is one
of the first excited states), the expression (7.8) gives us the inverse of the lifetime of
the level j directly: 1/t = A;;. This may be compared with the expression calculated
classically (see appendix 2)

2ne? Voz

1
r= T 3egmc?

One converts from one to the other by replacing (G,/G)) fi, by 4.
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7.4.2 Experimental study of atomic lifetimes

(1) Study as a function of time of the decrease of the intensity of a transition
originating from a level B, after cutting off the excitation. This is the simplest
and most general method of studying the lifetime of this level B. Some aspects
of this method were discussed in volume 1, chapter 3, and although the method
is very attractive at first sight, two types of difficulty arise as follows.

(a) The lifetimes of excited atomic levels are of the order of 10~7 to 10~° s;
study of the decrease of the emitted light intensity is difficult and
requires the use of fast electronic techniques.

(b) Cascade effects make the interpretation difficult. Suppose the transition
B — A (figure 7.24) is observed, originating from level B. A higher
level C, with a lifetime longer than that of B, can produce atoms in the
state B through the transition C — B. Level B, after the cut-off of
excitation, will therefore be fed throughout the lifetime of level C, and
the profile of the decreasing light intensity will be a function of the
lifetimes of both levels B and C.

A

Figure 7.24 Cascading

However, the use of advanced techniques and a systematic analysis of the
results enable satisfactory data to be obtained for a large number of atoms.
An experiment involving this principle is illustrated in figure 7.25. The measure-
ment cell is filled with the atomic vapour under study, at a pressure of the
order of 100 torr, and a voltage pulse with a fast time rise produces exci-
tation by electron bombardment. This starts the time sweep of a multi-
channel analyser, whose channels are activated in succession; channel n of
this analyser is opened between the times n0 and (n + 1)0, 0 being a time
interval short compared with the lifetime 7. This channel receives pulses
produced by the photoelectrons during this interval; their number N is
proportional to the light intensity at the time ¢ = n0. Figure 7.26 shows the
results obtained (the number of pulses received in each channel) for a transition
in argon. One notes first an increase of light intensity after the cut-off of the
discharge, due to other modes of excitation, then a decrease which cannot be
reconciled with one exponential decay since this would show as a straight-line
graph on a logarithmic scale. A complex analysis, bearing in mind the
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Figure 7. 25 An apparatus for measuring lifetimes of excited states
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Figure 7.26 Decrease of intensity of the 4511 nm transition of argon
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observation of a large number of transitions, results in attributing a lifetime

of 95 + 2ns to the upper level of the transition.

(2) Ream-foil spectroscopy. This recently developed technique is based on
a principle very similar to that of experiments involving instantancous excita-
tion of an atomic beam (see volume I, figure 3.7). It has enabled the lifetimes
of many cxcited states of ions to be determined. The apparatus is illustrated
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in figure 7.27. A beam of ions, accelerated by a potential difference of 10° to
about 10° volts, passes through a target formed from a very thin carbon foil,
whose thickness is of the order of a micrometre. The drop in velocity caused
by this foil is only a few per cent, but because of ‘stripping’ reactions (see
section 7.5), multiply ionised species of the incident ion are formed in excited
states. By means of emission transitions, they will return to the ground state
of the corresponding ion:

o
A+ SIPPINE | As+ | (excited) — hv + A . ..

As a result of the high velocity of the ions (of the order of 10° m/s), light
emission will be observed over a considerable length of the beam, of the order
of several tens of centimetres for a lifetime of 1076 s. Analysis of the emitted
light with a spectrograph allows different transitions to be isolated, and the
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Figure 7.27 Diagram showing the principal features of a beam-foil spectroscopy
experiment

measurement of the emitted intensity as a function of the distance from the
carbon foil enables an analysis to be carried out which, by taking account of
possible cascade effects, gives a value of the lifetime. Results have been ob-
tained with ions such as those of iron, sodium, nitrogen, xenon and so on.
The main difficulty is the construction of the ion source that must be attached
to the accelerator.

(3) From the widths of lines. In section 7.2 we described level-crossing
experiments and in section 7.3, radiofrequency spectroscopy experiments.
The widths of the lines observed are related to the natural width of the level
and when such experiments on an excited level are possible, a study of the
width of the curves leads to accurate results for its lifetime; they are usually
free from cascade effects, because the phenomenon observed is generally
specific to the level under study (the position of a resonance line depending
on the Landé factor). Unfortunately, as discussed in section 7.3, the conditions
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necessary for the observation of radiofrequency transitions mean that these
techniques cannot be applied to all levels. However:

(a) magnetic resonance experiments on levels excited optically or by
electronic excitation have led to the determination of lifetimes of an
appreciable number of atomic levels that can be studied in the form of
a vapour (alkalis, mercury, zinc, cadmium, rare gases);

(b) the zero-field level-crossing method (Hanle effect) has been applied
especially to resonance levels excited optically—many experiments have
been carried out on such excited levels, both of neutral atoms and of ions.

7.4.3 Experimental study of oscillator strengths

(1) From absorption measurements. Equation (7.6) enables the value of the
oscillator strength fto be determined from these measurements. However, to
obtain the value of the total absorption

o = j:K(v)dv

it would be necessary to have a spectrometer of sufficient resolution to follow
the variation of K with v, that is, a resolution enabling the line profile to be
traced. The problem is simplified considerably if the absorption is weak;
expression (7.1) can then be written

I~ 1)1 — Kz)

and the total absorption over the spectrum j (I, — I)dv measured experi-
mentally, can then be simply related to ./

[Tto-Davatez [ Ko)dv=Iozat
0 4]

In order to separate the transition under study from other transitions, all
that is necessary is to isolate a band of the spectrum with a low-resolution
spectrometer since the contribution to the integral f K(v)dv of frequencies
far from the absorption line centre is negligible.

Depending on the element under study, the experimental factors in
constructing an absorption cell and a convenient source can be quite different
and can lead to a variety of arrangements.

(2) From the intensity of a transition v,; in emission. The power P emitted
spontaneously at a frequency v, ;, within a solid angle £, can be calculated as
a function of the total number N; of excited atoms present in the luminous
source. (If a resonance line is involved, the source is assumed to be thin
enough to disregard the process of self-absorption (see volume 1, section
3.1.4, comment).)

Q
P=NJA.“hV‘,E
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If the total number of excited atoms N; is known, an absolute intensity
measurement can lead to the value of 4;; and thus to the value of f;; by using
the relationship (7.8).

(3) From dispersion measurements. In section 7.4.1, we reviewed only the
laws concerning the absorption of electromagnetic radiation by an atomic
vapour. Dispersion phenomena are also involved (see appendix 2); the
refractive index of the vapour varies in conjunction with the absorption,
and involves the oscillator strength f. Refractive-index measurements in the
neighbourhood of an absorption band can then be used to obtain oscillator
strengths.

7.5 Electronic and Atomic Collisions

In this book, we have focused our attention for the most part on the properties
of an isolated atom: the description of excited levels, the description of the
emitted radiation and so on. However, atoms are not usually isolated and in
most problems it is necessary to study the interactions between an atom and
another particle (atom, electron, ion, and so on). Sometimes these inter-
actions can lead to the formation of a stationary bound state (molecule, ion,
and so on), but they always appear in a transitory fashion as particles approach
each other during the complicated evolution of a system. The branch of
physics devoted to the study of these transitory phenomena is called the
physics of electronic and atomic collisions. Many physicists work in this area,
and the results they obtain provide important data for plasma physics and
astrophysics.

This branch of physics is vast; here we can give only a brief insight into a
particular aspect. The concept of a ‘cross-section’, which we shall review next,
is very important; it is a fundamental parameter, and its value is of interest
to experimental collision physicists and theoreticians.

7.56.1 The collision cross-section

The reader has already come across the concept of a collision cross-section
in volume 1, chapter 3, in the model of collisions between hard spheres, and
in volume 1, chapter 5, during the discussion of Rutherford’s experiment.
Here, we bring together the main ideas concerning the concept of a cross-
section.

The various collision processes may be classified essentially as elastic
collisions and inelastic collisions (see volume 1, chapter 2).

(a) In an elastic collision, the total kinetic energy of the system of inter-
acting particles is the same before and after the collision; there is no change
in the internal energy of the particles. Therefore the collision is manifested
mainly by a change of trajectories. This is often described as an elastic scatter-
ing process. Results will be sought to express these changes of trajectory.
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They can be described either in a laboratory reference frame or in the centre-
of-mass frame. They will often be described in terms of a ‘differential cross-
section’.

(b) In an inelastic collision, the momentum is conserved, but the total
kinetic energy of the system is changed as a result of a change of internal
energy of one or more of the particles taking part. As in the case of an elastic
collision, the study of the geometry of the trajectories can be of interest, and
leads to a differential cross-section, but usually the objective is to find the
probability of a certain change of state occurring in one of the particles
present. This is done by means of the total cross-section.

(1) The differential cross-section. A beam of incident projectile particles is
directed along the Oz axis in the laboratory frame, and the experiment involves
the passage of N, projectiles. The N,,,, target projectiles form a cloud and
are at rest in the region of the origin O. Let us suppose that the collisions are
only elastic. Furthermore, we shall assume that the density of the target
particles is sufficiently low to be able to disregard the screening of one target
particle by another.

Let N(0, ¢)dQ be the number of projectile particles scattered during the
experiment within the solid angle dQ2 around the direction 6, ¢ (see figure
7.28). The integral over all space of this quantity will give the total number
of scattered particles, which must be equal to N,,;.

By generalising the relationship given in volume 1, section 3.1.1, we can write
that the probability of scattering projectiles within the solid angle dQ2 is

43S

Incident beam
of projectiles

Figure 7.28 Geometry used in the discussion of differential cross-sections
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proportional to this solid angle dQ and to the number of targets per unit
cross-sectional area
N, ¢)dQ Niar
O34 _ 0 o Vo
Nproj

where S is the cross-sectional area common to the target and beam.

The coefficient of proportionality F(0, ¢), a function of 6 and ¢, is called
the ‘differential cross-section’. Henceforth we write it by using the usual
notation (da/dQ)(6, ¢) or, more simply, do/d Q.

From equation (7.9), we see immediately that F(0, ¢)dQ = (do/dQ).dQ
has the dimensions of area. Let us give a physical interpretation of do/dQ;
from (7.9) the quantity

(7.9)

0.6)d2 =740 x 1
p(0, _E) XE

represents the probability of an incident particle being scattered within the
angle dQ(0, ¢) by one target particle.

Therefore we shall interpret (do/dQ)dQ as an area associated with the
target particle such that any incident particle crossing this area is scattered in
the direction defined by 0 and ¢, and within the solid angle dQ. Any incident
particle crossing the total area S of the target outside the area (do/dQ)dQ
will be scattered in a direction different from 0, ¢. (Volume 1, figure 5.3,
illustrates this property for the special case of Rutherford scattering.)

(2) The total microscopic cross-section. This will be obtained by integration
of the differential cross-section over all angles 6 and ¢

@©=2n pO=n dO'
o= —(0,¢)sin0d0d
J:p=o -L=0 de d)) ¢

In certain cases the above integral does not converge and the discussion
can be complicated. If we ignore this difficulty, we note that ¢ represents an
area, associated with a target particle, such that any incident particle crossing
this area undergoes a deflection with respect to its initial motion. In a collision
problem, ¢ may be thought of as the ‘size’ of a target particle.

Let us return briefly to the question of convergence. In the interpretation
of a collision phenomenon in classical mechanics, the reader may readily
appreciate the following points.

(a) The total cross-section of an elastic scattering process is infinite (unless
one imagines a law of force acting only at a finite distance). Whatever the
value of the impact parameter, the particle is deflected, the deflection clearly
tending to zero as the impact parameter tends to infinity. This is the situation
in Rutherford’s experiment (volume 1, chapter 5).

(b) If the process is inelastic, energy must be exchanged between the target
particle and the projectile particle. For this to happen, the impact parameter
must be sufficiently small, since beyond a certain value no energy exchange
will occur. In this case, the total cross-section has a finite value.

We shall not deal with the quantum description.
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(3) The total microscopic cross-section and the absorption coefficient. Let us
consider an inelastic collision process. We wish to know only the total prob-
ability of the process, and are not interested in the trajectories of the particles
after the collision. By calling N,;; the number of projectiles having undergone
the process, integration of equation (7.9) will lead to the same relationship
as in volume 1, chapter 3

Ncoll —q Ntﬂl’l (710)
Noro; S
o being the total microscopic cross-section.

Let us introduce the intensity 2 of the beam of projectiles (that is, the
number of projectiles per unit area per second). The beam enters the target
at z = 0; if 9(z) is the intensity of particles not having interacted at a distance
z, equation (7.10) leads to:

Dz)=De s (7.11)

(see volume 1, section 3.1.2) n being the number of target particles per unit
volume.

We see, therefore, that the total microscopic cross-section (sometimes
called the ‘atomic cross-section’ or simply the ‘cross-section’) can also describe
the macroscopic evolution of a system in terms of the intensity of particles.
The quantity no = K, representing an absorption coefficient and having
dimensions of inverse length, is often used (some authors call K, rather
inadvisably, the macroscopic cross-section).

Comment Cross-sections having the dimensions of an area can be expressed by
means of a variety of units:
(a) in centimetres squared;
(b) in units of a,? or na,?, a, being the radius of the first circular Bohr orbit:
a, =0'5292 x 1078 cm a>=2-803 x 10~!7 cm?
na;* = 8-:806 x 10~'7 cm?

(c) in ‘barns’, the barn being equal to 10-2* cm? (used for collisions with nuclei
or elementary particles).

7.5.2 The various collision processes

There are clearly a great number of collision processes involving a variety of
interactions between two or more of the following atomic entities:

neutral atom (0)—excited atom (0")—singly ionised atom (I)—multiply
ionised atom (1, 2, 3, . . .)—negative ion (I)—electron (e).

The symbols in brackets are used by some authors to describe an inter-
action: process symbolically. For example, the excitation of an atom by an
electron would be represented by the expression

¢0/e0’
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where the particles in the initial state are on the left and the particles in the
final state on the right. Similarly, ionisation by electron impact will be
denoted by

e0/eel

In this section we list only the most important processes.

(1) Elastic scattering of electrons and of atoms in a gas. Understanding this
is of fundamental importance; this phenomenon, which should be analysed
in every collision problem, becomes dominant when the particles involved
have insufficient energy to produce inelastic collisions.

(2) Ionisation and excitation of atoms by electron impact. This type of
collision will be studied in detail later (section 7.5.3).

(3) Inelastic collisions between heavy particles (atoms, molecules). Collisions
of this type are very common in electric discharges and plasmas; some
examples are

transfer of excitation A + B excited — A excited + B
ionisation A*+B — At +Bt+e
charge transfer A*+ B —- A+ B*

Under this type of collision, we must also classify ‘stripping’ phenomena,
mentioned in the description of beam-foil spectroscopy experiments

A*+B—->A>*+B+e

where the atom A may also be obtained in stages of multiple ionisation.

(4) Recombination. These processes, the inverse of certain processes men-
tioned above, contribute to the achievement of steady states in electric dis-
charge phenomena. They can occur in several forms

radiative recombination

A* + e — A excited + hv
dissociative recombination involving a molecular ion XY*
e+ XY* — X excited + Y excited

ion-ion recombination which can occur in different ways

Xt+Y = XY+ hv
X+ + Y~ — X excited + Y excited

(5) Formation of negative ions. The phenomenon of attachment of an
electron to a neutral atom to form a negative ion takes place with ease in the
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case of atoms having a nearly complete electronic shell (F, Cl, I, etc.) (see
section 2.4.2)

e+A—> A"

When this attachment occurs in an ionised medium, the number of electrons
will diminish, which will have an important bearing on the macroscopic
electrical characteristics.

In this list, deliberately abbreviated, we have not mentioned collisions
involving three particles, nor those where unstable intermediate stages are
involved in a transitory fashion, for example, states where two electrons from
the shells of an atom are in excited states and whose energy is greater than the
ionisation threshold (auto-ionising levels). The reader will appreciate the
importance of a specific study of these different types of collision; the actual
description of an ionised gas will result from the competition between
processes that often oppose one another.

7.5.3 lonisation and excitation of atoms by electron impact

Amongst all the possible processes, we shall merely provide some information
about experimental methods of studying ionisation phenomena and of
excitation by electron impact. In these rather simple experimental situations,
related to phenomena studied in previous chapters, the reader should be able
to appreciate the experimental difficulties and the different orders of magnitude
of the results obtained.

(1) Ionisation. The general experimental arrangement is shown in figure
7.29. An electron gun E provides a beam of electrons with as well-defined an
energy as possible. This constitutes a severe constraint and permits only
beams of very low intensity, of the order of 1078 A, to be obtained. The beam
then passes into the collision chamber C where the atoms to be studied are in
the form of a gas at a pressure of the order of 10~ torr. The ions formed are
collected by an electrode P, charged to a negative potential; the intensity of
the electron beam is determined by means of a collector F. The experimental

Figure 7.29 Diagram of an experiment to study ionisation cross-sections: E = electron
gun; C = collision chamber; F = electron collector
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conditions are chosen so that all the ions formed can be collected by P, and,
moreover, so that the number of electrons involved in collisions is small
compared with the total number transported in the beam; only in this case
will the measurement of the current at F have any meaning. Let I* be the
current collected by P, / the current transported by the electron beam, » the
number of atoms per unit volume in the chamber C and z the thickness of the
gaseous target in C; the ionisation cross-section o; may easily be obtained
from equation (7.10).

It =Io;nz

The basic difficulty is the production of a mono-energetic electron beam
despite the energy spread related to thermionic emission. Two techniques are
normally used, as follows.

(a) The electrostatic selector. The electron gun is illustrated in figure 7.30.
The electron beam, after passing through electrode (a), enters a cylindrically

Figure 7.30 Electrostatic selector

symmetric electrostatic field whose magnitude is proportional to 1/r, pro-
duced by electrodes (b), (c), (d) and (e), charged to potentials that can be
adjusted. The theory of the arrangement shows that there is a refocusing of
the electrons emitted at (a) at various angles, if the angle « has a value of 127°.
For a radial field of given magnitude, focusing occurs at the point P for
electrons of a particular energy only.

By paying careful attention to the geometry of the apparatus, it is possible
to obtain at the exit slit P, electrons having an energy of several electron-
volts, with an energy spread of 0-02 eV. These experiments require careful
work on the part of the experimenter.

(b) The r.p.d. (retarding potential difference) method. A special technique
allows a beam with an energy spread of less than 0-1 eV to be obtained
quite simply. The apparatus, reduced to its essential elements, is shown
in figure 7.31(a). First we ignore the electrode R; the electron beam is
accelerated by the potential difference between the collision chamber at
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Figure 7.31 The r.p.d. method

zero potential and the filament F at a negative potential V;. Because of the
fluctuations in the initial thermal energy of the electrons, and space charge
phenomena, the velocities of the electrons collected in the collision chamber
are characterised by a certain spread; figure 7.31(b) shows the energy spectrum
of these electrons in dotted lines.

Let us now consider the electrode R charged to a potential V, slightly
lower than V. It slows the electrons and only those whose initial energy is
sufficiently high can pass through it ; it stops all electrons whose initial velocity
is too small. Among the electrons received in the collision chamber, the
slowest are those that were able to pass through the electrode R with zero
velocity; their kinetic energy at the entrance to the chamber is |eV,|. The
energy spectrum of the electrons collected then displays a rather sharp cut-off
at the value |eV,| (see curve in thick lines in figure 7.31(b). Let us now increase
V, by 8 V,; the ion current collected in the ionisation chamber will change by
81*. It is easy to show that 8/* corresponds to the number of ions created by
a mono-energetic beam of electrons of energy |eV,| and of energy spread
edV,.

Many experimental results have been obtained by the above techniques.
Figure 7.32 shows ionisation cross-sections of mercury. The existence of
ionisation thresholds and the existence, as a rule, of maximum cross-sections
will be noted, as will be the orders of magnitude of the cross-sections. The
use of a beam of well-defined energy enables a ‘fine structure’ to be observed
in certain cases, an example of which is given in figure 7.33. This structure
corresponds, on the one hand, to the existence of structure in the ground
level of the ion and, on the other hand, to the presence of the several processes
leading to ionisation. The contribution of these elementary processes is
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Figure 7.32 lonisation cross-sections of mercury (the scale is in 1072 m2 for Hg3*
and Hg**)

A lon current
(arbitrary units)

Figure 7.33 lonisation of krypton near threshold. At the ionisation threshold, AV = 0.
The ordinate is in arbitrary units (the crosses denote experimental points)

illustrated in figure 7.33 by extrapolations in broken lines. Apart from direct
ionisation by electron collision, account should be taken of indirect processes
where the atom is excited to an intermediate state (an ‘autoionising state’) of
energy greater than the ionisation threshold.

(2) Excitation. The study of excitation cross-sections of excited atomic
levels is also very important for many problems. The experimental situation
is more difficult because the excited levels may be studied only by means of
optical measurements on the emitted radiation. We outline the principle of
an excitation cross-section measurement: radiation emitted in a collision
chamber is analysed by a spectrograph, followed by a detector which is
usually a photomultiplier. An ancillary experiment enables the apparatus
to be calibrated against a standardised incandescent source in order to
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be able to determine the number of photons emitted. Figure 7.34 shows
the variation of the excitation cross-section of the 2p level of hydrogen
as a function of the energy of the incident electrons.

Cross-section
(x10™1%cm?)

100 3

10 3

1 4+ ———rrry Ty eV
10 100 1000

Figure 7.34 Excitation cross-section of the 2p level of hydrogen (logarithmic scale)

7.6 The Electric Dipole Moment of the Neutron and of the
Electron

7.6.1 Aim of the experiments

For a particle having an angular momentum, the existence of an electric
dipole moment is not compatible with the symmetry rules that express the
conservation of parity and incorporate time reversal. However, some experi-
ments (decay of the K meson) have shown that these symmetry principles
can be violated. Taking account of experimental results, and calculating the
order of magnitude of these violations, theoreticians have evaluated a possible
order of magnitude of the electric dipole moments of the neutron and the
electron. In particular, in the case of the neutron, the ratio of the dipole
moment py to the charge e of the electron should have an upper limit between
10~2! and 10~2* metres, depending on the author.

The experiments are therefore relevant to the discussions of the symmetry
laws. They have been undertaken especially in the case of the neutron since
its total charge of zero is a simplifying factor in the interpretation of the results.

7.6.2 The electric dipole moment of the neutron

(1) The principle. Basically the experiments are very simple. In figure 7.35
the energy levels of the neutron in a magnetic field are represented by thick
lines. Since the spin equals 1, then

W=+igB

(g is the Landé factor of the neutron).
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N
()

Figure 7.35 Energy, as a function of magnetic field B, of a neutron with a dipole
moment pn in an electric field £

Let us impose an electric field in the same direction as B; since the electric
dipole moment vector py is parallel to the spin vector, there is an additional
energy

We=+pnE

The + sign depends not only on the state m = +1, but also on the sense of E
in relation to B and the sense of py in relation to the spin. The total energy in
the presence of E and B is therefore represented by the set of curves (1) or (2)
in dotted lines, according to the orientations defined above. If the sense of E
in relation to B is changed, we pass from diagram (1) to (2) or vice versa.

Suppose we carry out a magnetic resonance experiment, such as described
in volume 1, chapter 8, on a beam of polarised neutrons, in the presence of an
electric field E, parallel to a magnetic field B. The frequency of the transition
m =+% — —% will depend on the sense of E in relation to B, as illustrated by
the two arrows in figure 7.36. The shift of the magnetic resonance in the
presence of the field E will then allow py to be determined.

(2) A difficulty. The neutron moves with velocity v in the electric field E.
Besides the applied field B, it will also see a ‘motional’ field, in accordance
with the results obtained in electromagnetism by a change of reference frame
(section 3.2.1)

K
B,,,'———ZEXI)
4

(see figure 7.36).

When B and E are exactly parallel to Oz and v is directed along Oy, B, is
directed along Ox; the magnitude of the field B + B,, seen by the neutron is,
to a good approximation, equal to B.
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4

A B

Figure 7.36 Direction of ‘motional’ electric field

On the other hand, if B and E are not perfectly colinear, E for example
being in the xOz plane, a component of B,, in the Oz direction will appear.
A change of FE will then produce a change of magnitude of the total magnetic
field seen by the neutron. The observed shift of the resonance will not then be
related exclusively to the influence of the electric dipole moment, but will
result also from the variation of the coupling energy between the magnetic
moment and the magnetic field.

To demonstrate the importance of this effect, let us carry out an order-of-magnitude
calculation. We take the following approximate values
applied electric field: E=10" V/m
velocity of thermal neutrons at ordinary temperatures: v =2 x 10° m/s
magnetic moment of the neutron:
My=19138y =1-913 x 5-05 x 10727 SI ~ 1026 SI
The magnitude of the motional field is

€o Ho

K
|Bm| = vE=—vE=22x107T
c

Let us assume that the electric field E makes an angle « = 1073 radian with the y axis;
then the change of magnitude of B as a result of the appearance of B,, will be of the
order of

SB=aBn,~2x1071°T
Let us calculate the electric dipole moment p which, when placed in the field E,
would cause the same energy change as a nuclear magnetic moment .#  experiencing
a change of field dB, in other words such that
pE= #,5B
Taking account of the value of .#, (see chapter 6)

p~2x107* SI soplex~ 107**m

The error introduced is of the order of magnitude of the effect sought.
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(3) The experimental procedure. This proves to be difficult. From the outset,
it is advisable to use conditions allowing the best possible magnetic resonance
signal to be obtained:

(a) a resonance curve as narrow as possible which requires a neutron—
magnetic field interaction region as long as possible, as in Rabi’s
experiments on atomic beams (see section 7.3);

(b) a good signal-to-noise ratio, and therefore the use of an intense and
strongly polarised neutron beam.

To minimise the effect of the motional field, it is also advisable to use very
slow neutrons and to pay careful attention to the geometry of the apparatus.
Figure 7.37 shows the arrangement used by Ramsey and his associates at
Oak Ridge. The reader should ascertain the purpose of the various com-
ponents and appreciate the difficulty of the experiment. The velocity of the
neutron beam is 136 m/s. The magnetic resonance is carried out in a field B
of 1:8x 10™* T. The uncertainty in the results confirms only that
paje <2 x 10725 m.

Several experiments are now in the process of being undertaken and from
them a better resolution is anticipated.

7.6.3 The electric dipole moment of the electron

The principle of these experiments is similar; they have been performed on
atomic beams of alkali atoms in an apparatus resembling Rabi’s arrangement
with the addition of an electric field E parallel to the static field B. The shift
of a magnetic resonance line is studied as a function of the applied electric
field E. The discussion is more complicated because, as a result of the charge
of the electron, the electric field E interacts with the atom independently of
any dipole moment, and produces a shift of the level (the Stark effect). In the
last few years, a number of experiments have been carried out and the most
recent have led to attributing an electric dipole moment to the caesium atom
Pcs such that

Pcs/e=(0-8 £ 1:8) x 107** m
This result allows an upper limit to be defined for pcs and hence an upper
limit for the electric dipole moment of the electron
Pele <3 x 1072° m

7.7 Muonium, Mesic Atoms and Positronium

These are related systems involving positrons and u mesons. The main
properties of these two particles are summarised in table 7.1.

(a) Positronium is formed by the association of an electron and a positron
rotating around one another. It was discovered in 1951 by M. Deutsch. and
is formed mainly when a beam of positrons of energy of the order of one MeV
is stopped by a gas. It is often produced by placing a source of sodium 22 in
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Table 7.1
Positron pt oru” Meson
Mass m, = 0:9109 x 1073° kg m, = (206-767 + 0-003) m,
Charge +e +e or —e
Spin quantum number 3 3
Gyromagnetic ratio Yp = —Ye = +1-001159 (e/m,) +1-001167 (e/m,)
Lifetime Stable (but annihilated on an 2:2x107¢6s

encounter with an electron)

an atmosphere of argon. The disintegration of sodium 22 produces positrons
according to the reaction

22 22
##Na — #Ne + g+

(B* is the positron emitted by the nucleus).

(b) Muonium is the positive p meson—electron system. 1t is obtained by
stopping a beam of p* mesons in a gaseous target. It was discovered by
V. W. Hughes in 1960.

(c) Mesic atoms are formed by the capture of a = meson by a nucleus.
They are produced when a beam of high-energy mesons is stopped by a
target of dense material (Wheeler, 1953).

The study of these systems turns out to be extremely important; they permit
certain parameters to be ascertained in conditions often far more favourable
than in conventional atomic systems. The construction of accelerators with
increasingly improved performance (an energy of at least several tens of MeV
is necessary to obtain p mesons) gives rise to the expectation of more intense
beams of mesons as well as important developments in the physics of mesic
atoms.

7.7.1 Positronium

Positronium can be considered as a light isotope of hydrogen (the positron is
1836 times lighter than the proton). An elementary quantum study will then
lead qualitatively to the same results as for the hydrogen atom; quantitative
results will be obtained by taking the reduced mass of the electron equal to
half the mass of the electron. The energy differences between levels will
therefore be very nearly equal to half those of hydrogen and the expected
wavelength of the various transitions will therefore be twice as long.

A more detailed study, especially of the fine structure, gives rise to consider-
able differences when compared to hydrogen. The reasons are as follows.

(1) The magnetic moment of the positron is equal in magnitude to that of
the electron, and consequently is much greater than that of the proton.
Spin-spin interactions will have a much greater influence than in the case of
the hydrogen atom.

(2) Particle-antiparticle annihilation interactions existing between the
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positron and the electron will enter into the fine structure calculations,
involving the methods of quantum electrodynamics.

In particular, the description of the ground level, involving coupling of the
electron and positron spins, will be completely different from that of hydrogen.
The experimental study of positronium, therefore, would appear to be
extremely important, as a test of a rather complex theory.

The ground level of positronium. Depending on the relative directions of the
electron and positron spins, we obtain two states, of total spin S=0 and
§'=1; the ground state is said to have a fine structure Av,. (Qualitatively the
effect is similar to the hyperfine structure of the ground level of hydrogen
resulting from the coupling between the magnetic moment of the electron
and the magnetic moment of the proton; but in the case of positronium, this
coupling involves two electronic magnetic moments, as in the fine structure
effects of an atom: hence the term ‘fine structure’.)

This coupling between the electron and the positron has an influence on
the electron—positron annihilation process:

(a) In the S=1 state, the lifetime of positronium before annihilation is
1-4 x 1077 s; it is manifested by the emission of three y photons.

(b) In the S=0 state, the lifetime is 125 x 1071° s; annihilation occurs
with the emission of two y photons.

These quite different properties have led some authors to consider these
two states as different species: parapositronium, S=0 (!Sy) and ortho-
positronium, S =1 (3S,). In a steady-state regime of continuous creation of
positronium, the much shorter lifetime of parapositronium will lead to a
smaller population of the 'S, state. Therefore a population difference will
exist between the two states.

Figure 7.38 shows the Zeeman diagram of the ground state. It may be
shown theoretically that the levels m = +1 of orthopositronium are degenerate

A E(10°Hz)

Avy = 2034 x 10" Hz

m=0

0.2 0.4 0.6 B(T)

Figure 7.38 Zeeman diagram of the ground level of positronium
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and independent of B. Furthermore, it may be shown that in the presence of
a magneticfield, the states m = 0 are mixtures of the S, and 'S, wave functions;
since the states m = +1 have a pure 3S; wave function, it may be seen that the
decay modes will differ for the states m =0 and m = +1 and consequently
population differences will exist between these states. It is then possible to
induce a transition between different Zeeman sublevels by means of a radio-
frequency field. The fine-structure separation 'S, — 3S; in zero field, Av,, is
of the order of 2 x 105 MHz, corresponding to a wavelength of 1-5 mm; this
makes the experiment difficult. On the other hand, the separation
m=0< m=+1at0-8 T is about 3000 MHz (1 = 10 cm), and thus in a region
where the dimensions of tuned cavities makes the experiment easier. In order
to induce this transition a strong radiofrequency field, requiring powers of
the order of a hundred watts, is necessary. This transition will be manifested by
a change of population of the two sublevels and thus a change in the annihila-
tion mode (since one is a pure 3S; state and the other a mixed 'S, — 38, state)
as detected by two coincidence scintillation counters. Figure 7.39 gives the
arrangement of the experimental apparatus. From the theoretical shape of
the Zeeman diagram, and knowing the frequency and the field B, correspond-
ing to the resonance, Av, can be deduced. The experimental value is found to be

Ave = (203398 + 0-00011) x 105 MH z

whereas the theoretical value is
2-03380 x 10° MHz
This slight disagreement hardly exceeds the experimental uncertainties.

(a) View in a vertical plane

Radio- G
\ frequency

|
+ 1
D;l C\ Diz
| A i
L |

(b) View from above

Figure 7.39 Measurement of the fine structure of the ground level of positronium.
Diagram of the apparatus: A: Pole pieces of the electromagnet; B: Resonant cavity;
C: Gas inlet; S: source of sodium 22—positronium is produced within the resonant
cavity; D, and D,: Detectors formed from a crystal scintillator (sodium iodide) i and a
photomultiplier. These two detectors are connected in coincidence, enabling ortho- and
para-positronium to be distinguished by their mode of disintegration
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Comment The study of excited levels of positronium would also be of great interest,
but unfortunately the density of positronium obtained is too small to allow the
excited levels to be investigated by means of optical transitions in emission.

7.7.2 Muonium

Muonium can also be regarded, in terms of its energy levels, as a light isotope
of hydrogen. The absence of annihilation phenomena, and the magnetic
moment of the u meson, much smaller than that of the positron (about 200
times smaller), make the study rather similar to that of hydrogen. This two-
particle system can be treated rigorously; in particular, the hyperfine structure
of the ground level can be expressed in the form of terms dependent on the
fine-structure constant a. The experimental studies, which act as tests of the
theory, are also very important. The transitions between ground-state sub-
levels can be investigated by means of the positrons resulting from the decay
of the u meson.

Accelerators now being planned will enable far more intense beams of
p mesons to be obtained than those available presently: the higher number of
muonium atoms that could then be obtained in the ground state might permit
the study of the excited levels of muonium.

7.7.3 Mesic atoms

The radius of a Bohr orbit of an electron (see volume 1, chapter 6) is inversely
proportional to its mass m. An atom formed from a meson moving around a
nucleus will therefore have Bohr radii 207 times smaller. In addition, it is
subjected to the total charge Ze of the nucleus. The probability of finding a
meson within the nuclear charge distribution is therefore very high (figure
7.40); it constitutes one of the main reasons for studying mesic atoms—the

2.0 4
1.8+ 2py, 3dy,,
L6 NJs1 2 (Xl-O(i)
1.4 4
1.2+
1O ==Y (x10)
0.81 \

0.61 \

041 ‘

0.2+ \

3ds.,
(x100)

t T T T T T T
4 ¢ 8 12 16 20 24 28
R=6.687 r(10 ")
Figure 7.40 Continuous line: position probability of the meson in various orbits.

Broken line : nuclear charge distribution. The figure represents the case of lead, Z = 82.
(nuclear radius R == 6.687 x 1075 m)
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study of the various interactions with the nucleus. A mesic atom retains its
electron cloud with changes, if necessary, to conserve the average charge
neutrality. However, since the orbits of the p meson are much smaller than
the electronic orbits, in most cases it is unnecessary to consider the electrons
in the study of mesic atoms.

The energy levels of a mesic atom. Let us assume that a meson is captured
by a nucleus. As there is only one meson, all the muonic states except one are
empty; if we suppose that it was captured in a level corresponding to n =7,
it will cascade to lower-energy levels, each of these transitions being charac-
terised by the emission of electromagnetic radiation. The observed lines also
correspond to the pattern of the hydrogen spectrum. Their energy is of the
order of 10° to 107 eV, in the X-ray and y-ray region. Figure 7.41 shows the

Energy (MeV)
04.

10 T {—

111

Figure 7.41 Mesic level diagram for Z = 60. Levels drawn with a solid line correspond
to the assumption of a point nucleus. Levels drawn with a dotted line take account of
the finite size of the nucleus. The importance of the effect for 1s and 2s levels should be
noted; this is consistent with the data of figure 7.40
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energy-level diagram and figure 7.42 shows some of the observed transitions.
The reader will find many similarities between the spectrum of a mesic atom
and the X-ray spectrum of an atom. The radiation emitted during mesic
transitions may be analysed by means of photon detectors, as in nuclear
physics, the amplitude of the pulses received being a function of the wave-
length. The trace of a spectrum is obtained by using an amplitude selector.
Until 1964, sodium iodide scintillators attached to a photomultiplier were
used as detectors, and their energy resolution did not allow the various fine
structures to be resolved. The discovery of Ge(Li) detectors has improved the
resolution considerably, and 1 keV can be achieved.
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Figure 7.42 Mesic transitions in titanium: Lyman series (7p — 1s) and Balmer series
(nd — 2p) (from D. Kessler and co-workers)
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Isotope shifts. The considerable localisation of the meson within the nuclear
charge distribution gives rise to large level shifts related to the finite size of
the nucleus. Figure 7.43 shows the shifts that result for the K, and K,,
transitions relating to the different isotopes of neodymium. A considerable
amount of experimental data has been collected, providing nuclear-structure

Ka, (2P, 15,,3)
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Figure 7.43 Mesic transitions K., and K., of various isotopes of neodymium. The
reader should note: the isotope shifts; the broadening of the odd isotope and 150
isotope lines due to hyperfine interactions (the vertical lines represent the calculated
position and relative intensity of the various components) ; the resolution obtainable by
amplitude selection with Ge(Li) detectors
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theorists with important information. It should be noted that isotope shifts
observed in optical transitions of a normal atom include the screening action
of the internal electrons and consequently their interpretation is more com-
plicated than that of mesic transitions where this effect is not involved. Once
again we discover a direct link between atomic physics and nuclear physics.
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Electromagnetic Formulae

adaptable to all the usual systems of units

The formulae are rationalised, but from the coefficients &,, o and from the
velocity of light ¢, we introduce a coefficient k such that

€0 Mo € = K2
In the S system

] Ho
. T 93100 4n

In the gaussian system (electric units of the c.g.s. electrostatic system and
magnetic units of the c.g.s. electromagnetic system)

K=c dreg =1 po/dn=1

Definition of the fields

1
f=qE+ —qux B
K
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Maxwell’s equations

( 10B
curlE+ ——=0
K Ot
) _ 104
general solution E=—grad V- x ot
B=curl 4
\_divB=0
& oE
curl B — ofo 2 _ &j
(11 ot K
div E = p/e,
By adopting the Lorentz gauge
oV
diva+ 22 o
K Ot

Hence equations of propagation of the potentials are found which justify the
relation between ¢, k and ¢

AA_Eo#oaA Ho

2 oz .k d
Eoto 2V p
AV - =T T

The retarded potentials (general solution of the propagation equations)

2 [ 250w v [ 2

Hence, for the static or quasi-static case (j and p vary slowly with time):

jxr Idl xr
f ff d¥" or — (Laplace’s law)
4m< 47[ r3

1 gr i
47r£0 JJJ —d¥" or e (Coulomb’s law)



Appendix 2

Review of the Classical Theory
of Radiation

The theory of dipole radiation is of considerable importance in physics.
First, it allows a simple interpretation of many phenomena related to the
interactions between radiation and matter, to be given in terms of classical
models. Furthermore, it is the starting point for the quantum interpretation.
Some of the simpler aspects of the theory which arose in the course of the book
are reviewed below.

A2.1 The Radiation from an Oscillating Dipole
A2.1.1 Assumptions

A dipole is formed from two charges +Q and —Q at the extremities of a small
linear element / centred at the origin, and lying along the Oz axis (see figure
A2.1(a)). The charges Q are assumed fo occupy fixed positions but their mag-
nitudes vary with time; to assure charge conservation, it must be assumed
in addition that a current of magnitude I=29Q/dt= (1/l)dp/ot = (1/D)p'(¢)
passes through the linear element /, where p is the algebraic value of the
electric dipole moment p = QI along Oz and p’ is its derivative with respect to
time. The dipole is oscillating, that is to say the dipole moment will be assumed
to vary sinusoidally with time; using imaginary notation, p = pye'®".
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r axis

Figure A2.1

This problem is interesting from three points of view:

(1) it leads to relatively simple calculations;

(2) it allows an exact account of the theory of radiofrequency antennae to be
given;

(3) it may be applied as a first approximation to an isolated charge C of
constant magnitude ¢ moving with a non-relativistic velocity v = dz/d¢ (see
figure A2.1(b)); it is sufficient to put p = gz. The exact theory for the case of
an isolated charge in motion utilises the Lienart-Wiechert potentials, but it is
complicated and contains many correction terms in v/c.

A2.1.2 Retarded potentials

We calculate retarded potentials at a point M defined by the spherical co-
ordinates r, 0, ¢ (see figure A2.1(a)).
(1) The vector potential

po I(t—rfc) Mo 1 r
- —— = e — p’ t
AM, 1) 4nx ! 4nic r

This may be reduced to its component along the Oz axis

1
AZ(M?t)= ‘::t_(:(—r‘pl(t_%)

(2) The scalar potential may be obtained most simply from the Lorentz
condition
oV K K 0A4, K 0A,

ot €0 Mo tolly 02 Eollo r




204 MODERN ATOMIC PHYSICS: QUANTUM THEORY AND ITS APPLICATIONS

By taking account of the fact that 4, depends on r both through the factor
1/r and through the factor p(t — r/c), then integrating with respect to time,
one obtains

vty = ——coso | 2 p(e- ") Lo
s =—2¢C - - - b - -
4re, © r? p c + rcp c

A2.1.3 The radiation fields
Calculation of the fields may be carried out using the two equations
1 24
E=—-gradV — — —
K Ot
and
B=curl4

In spherical co-ordinates, one obtains the components

g - o) ]
4ne, r’ c ric c rc? c
\ Es(M,1) =0
(B,(M,1)=0
By(M,t)=0

Ho . 1 r 1 r
B )= —— —p t— — —p"lt—- -
d)(M’ ) 4ﬂKSln9lr2p ( C)+ rczp ( C)]

At a sufficiently great distance r, the terms in 1/r in the expressions for
E, and B, dominate. These terms are proportional to p”, the second derivative
of the electric dipole moment, and thus for an isolated charge, toits acceleration
a =d%z/dr2.

For sinusoidal motion, complex quantities are introduced

\

p(t)=poe'’,  p'(t)=iwp, P'()=—w?p
and hence the terms in 1/r become dominant when
r»clo=2A2n

(where A is the wavelength corresponding to the frequency w).
Making use of this condition, the radiation fields at large distances may be
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written
E,~0
1 sinf t d L sin0 o eglergmi@/or
o~ Ineg r2 ¥ c_47t80"62p0
\Fe =
B, =0
B, =0
By~ —E,

It may easily be verified that in this approximation the fields at the point M
are similar to those of a plane wave propagating in the direction of the radius
vector r, the term in e~ (“/r representing the dephasing due to propagation.

Comment It can be shown that the same formulae are applicable in the non-relativ-
istic approximation (v < c¢)toanisolated chargein any type of motion(non-rectilinear,
and non-periodic), provided that the position of the charge is taken as the origin
and the direction of its accleration vector a at the time (¢ — r/c) is taken as the Oz
axis. It is then permissible to write p”(f — r/c) = qa(t — r/c). The emission of a radia-
tion field (of amplitude in 1/r, relatively important at large distances) occurs every
time an electric charge has an acceleration vector. This happens for instance when
high energy electrons are suddenly stopped by collision in a metal (deceleration
radiation or ‘bremsstrahlung’, see volume 1, section 7.3.1) or when high velocity
electrons in a magnetic field are in uniform circular motion (synchrotron radiation).

A2.1.4 Total radiated power

The total power P radiated throughout space may be obtained by calculating
by means of Poynting’s vector the flux emerging from a sphere £ (of large
radius r)

KEB KEBr Ezr
— ExB~ — —=¢gC -
Ho #oo¢’ orTe

At every point on the sphere X this vector is perpendicular to an element of
area

dS =r2sin0dfde
and directed outwards such that

1 r\|? > 7
— 2 .2 o1 - ” - d in3
P H‘zsoch rtsin0dfd¢ 1—671?2806‘3 [p (t c)] L 17 Lsm 0do

The product of the two integrals is 87/3, and one obtains

1 1

2
” 4 .2 ZaZ

1

= I) = w /)
6me, 2 6meg ¢ 6mey c?
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depending on whether p” is replaced by —w?p (the so-called oscillating dipole
case) or by ga (as for an isolated charge g of acceleration a).

The power thus calculated is independent of the radius r of the sphere ¥;
whatever its size, the same quantity of energy crosses its surface in a given time
interval.

A2.2 Application to an Elastically Bound Electron—Damping of
Free Oscillations

The classical theory of radiation is based mainly on the results for the dipole
reviewed above. We shall now go on to discuss some elementary aspects of the
theory. We assume that an atomic electron whose position is defined by the
radius vector r is bound by an elastic force proportional to r (the Thomson
model; see comments in volume 1, sections 1.3.2 and 5.2.3)

f=—kr

If such an electron happens to be displaced from its equilibrium position,
it carries out a spontaneous oscillatory motion, or free oscillation, with a
natural frequency determined by the attractive force

k
(l)o = E
(m is the mass of the electron)

We consider, for simplicity, linear motion in only one dimension; in imagin-

ary notation
z = zy e'®!

Since this electron is accelerating, it generates an electromagnetic wave that is
a function of its acceleration a = d?z/d¢2, and that continuously carries away
energy to infinity.

Using the results of the preceding section, we can calculate the mean value
in time of the power transported by the wave

1 — 1 Zy?
2,473 2. 4
q-wo" z q- Wo

}—) = =
6ney 6me, C 2

3

On the other hand, it is known that an oscillator of mass m, of natural
frequency w, and of amplitude z,, stores an energy

W = dmwy? zy?

(This result may be obtained by writing, for example, the kinetic energy of an
oscillator as it passes through its equilibrium position, where the potential
energy corresponding to the attractive force is zero.) To satisfy the principle
of conservation of energy, the amplitude z, of the oscillations must gradually
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decrease with time in such a way that the loss of energy W is exactly counter-
balanced by the energy carried away by the wave

dw 1 Zo? g% wy?
2 6ne,c*m

Thus the energy W obeys the differential equation
1dw g% wy? 1

W dt 6ne,c3m T

where the constant representing the second term has been called 1/r with the
dimensions of an inverse time.

Integration of this well-known differential equation shows that the energy
W decreases exponentially with a time constant

W = Wo e_’/t

and by taking the square root of the energy, the variation of amplitude may be
deduced

Zo= C e—t/2r

The amplitude decreases with twice the time constant. The oscillatory
motion practically stops after a time of the order of 7, the time 7 being called
the lifetime of the oscillator.

The complete equation of motion of the electron, including this damping
phenomenon, leads to a third-order differential equation. A simplified solution
may be obtained to a good approximation by describing the damping as a
viscous friction term; the differential equation for the free oscillation may
then be written

d?z dz

a‘z- +y5+w022=0

which leads to the solutions

e e S

in agreement with the results found above when y = 1/7.

N =<

iiwo)t] if y € wg

A2.3 Forced Oscillations of an Elastically Bound Electron

A2.3.1 Steady-state motion of the electrons

The difierential equation written at the end of the preceding section is the same
for the three co-ordinates of the electron and can be applied directly to the
vector r defining the position of the electron in space.
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When the electron is subjected to the influence of an external sinusoidal
electric field E = E,ei*!, of fixed direction and frequency w, different from
w,, the differential equation describing its motion becomes

dzr dr

2, — i E_ E iw
__+‘]y.___+wo = — Oe t

From this the steady-state solution may be found directly

1 q q 1
r=———Eeiw‘=————-——
we? — w? + iwy m m wy? — w? + iwy

o o

If the electromagnetic wave of frequency w propagates in a material medium
containing N electrons per unit volume (all elastically bound and having the
same natural frequency w,), an oscillating current density j appears in this
medium, such that

dr Ng? 1 o0E

.=N s T
=M T T W% — w? +iwy dt

A2.3.2 The complex refractive index and the coefficient of absorption
The Maxwell-Ampére equation

Ho oE
1B=22(eo "+
cur ” (80 2t +])

may be written to take account of the motion of the electrons

Ng? 1 OE o, OE
me, wo — w*+iwy | dt  k ot

curlB=#—,:so(l+— — €& —

where we have put

Ng? 1
&=1+4 — 02 2 1o
mey Wo” — W* + 1Y

Thus we have expressed the Maxwell-Ampére equation in a form equivalent
to that describing a dielectric medium with a complex relative dielectric
constant ¢,. The theory of propagation of electromagnetic waves thus leads
to the introduction of a complex refractive index (n — ik) such that

g =m—ik)2=n?—k?*—-2ink ~ n* — 2ik
where we have made the following approximations

the real part of the refractive index n = 1
the imaginary part of the refractive index k < 1.
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Equating real and imaginary parts of ¢, then allows one to write

Ng? we? — w?

real refractive index n=1+
2mey (w2 — w?)? + w?y?

Nqg? wy

imaginary refractive index k =
2mey (we? — ?)? + w?y?

The curves of figures A2.2(a) and A2.2(b) show the changes of » and of k
respectively as a function of the frequency w of the incident electromagnetic

Real
refractive index |7 —1 |

|
|
| l
| I (a)
| |
, |
1 @
| |
0\
I\
||
Imaginary | |
refractive index, bk || |
proportional to |
coefficient of
absorption |
|
(b)

w

Figure A2.2

wave. The real refractive index n enables the phase velocity of the propagating
waves to be calculated; it represents the normal refractive index. It should be
noted that at high frequencies (w > w,) the refractive index » becomes less
than urity; this may be confirmed experimentally in the propagation of
X-rays. The imaginary refractive index k enables the absorption coefficient
of the electromagnetic wave in the medium under study to be calculated. We
summarise this calculation as follows.
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If one starts from the Maxwell-Ampere equation expressed in the form
above and applies the theory of wave propagation, a solution may be obtained
for a plane wave propagating parallel to the Ox axis

E(x,t) = Aexp{io[t— (n—ik/c)x]}
or, by rearranging the terms
E(x,t) = A exp[— k(w/c)x] exp{iw[t— (n/c)x]} = E; exp{io[t — (n/c) x]}
where
E,= Aexp[— (w/c)kx]

This equation represents a wave that propagates with a phase velocity c/n
and with a decreasing amplitude E,.
Its intensity E,? is damped according to the exponential law

E? = A%expl — 2(w/c)kx] = A% exp'~K*

with an absorption coefficient (see volume 1, section 3.1.2)

Thus we obtain a theoretical expression for the absorption coefficient K
as a function of frequency. This description must be considered only as an
outline; it can be improved by introducing several types of electrons having
different natural frequencies.

A2.3.3 The absorption coefficient in the region of a natural frequency

The expression obtained for K can be simplified by making the following
additional assumption

Y < Wo
This assumption is often true (it signifies that the oscillator has time to carry
out many oscillations before dying away); under these conditions the absorp-

tion coefficient K is practically zero except in a narrow frequency interval
around w,. We can then make the approximation

|wo — o] <€ wo

and

W+ WX 2w
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Hence
2wk Ng? y Ng? y

~

K= x =
c megc MHwo— w)2+92  16m%eocm (vo — v)? + (y/4m)?

If the incident electromagnetic radiation has a continuous frequency
spectrum, each frequency band is absorbed with a different coefficient K(v).
Some theories (see volume 1, section 3.1.4) involve what is called the total
absorption, proportional to the area bounded by the curve in figure A2.2(b)

j: K(v)dv

To facilitate the evaluation of this definite integral, it should be noted that
the coefficient K(v) is practically zero when the frequency v differs from the
natural frequency v,; although having no physical meaning, we can write

Ng? J*‘” (y/4n) dv
—o (v = vo)? + (y/4n)?

0 + o
Kwv)ydvx| K(@)dv=
J.O @) dv -[—“) O)dv 4neocm

The latter integral may be evaluated by standard techniques in terms of an
arctan, and may be shown to be equal to n. Hence the total absorption may be
found

2

® N
f K(v)dv ~ —3
o 4eocm

This expression is utilised in section 7.4 to define oscillator strengths.
It should be especially noted that the damping coefficient y =1/t does
not appear; this coefficient is a measure of the frequency width at half
height of the absorption curve (see figure A2.2(b)); the area under the curve
K(v) has the same value whatever the causes of damping determining its width.

A2.3.4 Thomson scattering of X-rays

While investigating the laws for reflection of X-rays, Imbert and Bertin Sans,
in 1896, demonstrated the existence of omnidirectional X-ray scattering.
J. J. Thomson interpreted this effect as due to radiation from the electrons
of the material, forced into oscillation by the incident radiation. In the case of
X-rays, the frequency of the incident wave is far greater than the resonance
frequency of the electrons, and thus the motion of the electrons can be written
by simplifying the equation in section A2.3.1

q
mw

WD wy-rp=— E

2
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Each electron in motion behaves as an oscillating dipole of moment p = gr
and emits a radiation field. The electrons are distributed randomly in space
and their separations are of the order of magnitude of the wavelength of the
X-rays; under these conditions the phase differences between these various
radiated fields are completely random and it is their intensities that are added.
(These results are in complete contrast with those relating to the scattering of
visible light by a condensed solid or liquid medium.)

Therefore, we obtain the total power P scattered by all the oscillating
electrons simply by multiplying the contribution calculated for one of them
as if it were isolated, by their total number ¥"N (¥ is the volume of a sample
containing N electrons per unit volume)

1
P =¥N w*qiri=yN —1 ___ p2
6ne, 3

Let us assume that there are n atoms per unit volume in the scattering
material and that each atom contains Z electrons (the atomic number), so that
N =2n.

Let us also assume that the incident beam of X-rays is a parallel beam of
cross-sectional area S, so that the incident power transported is P; = SgocE?.

Hence the ratio of energy scattered to energy incident is

P, v q*

P S Zn 6mey? ¢t m?

This ratio can be determined experimentally and, knowing n, the number of
electrons per atom, Z can be deduced. Barkla in 1909 was the first to determine
the value of Z by this method.

Comment I This result can be expressed in a slightly different way in terms of the
absorption coefficient K. The scattered power P; is equal and opposite to the change
8 P; in the incident power as a result of passing through the scattering sample. If the
latter fills the cross-section S of the incident beam over a distance 8x (its volume is
therefore ¥~ = S8x), one finds

18P, 1P q*
= _zp—1
P;dx 8xP; 6mey? ¢t m?
The same formula can be calculated from the expression for K obtained at the end of
section A2.3.2, by simplifying it using the assumption w > w,

Ng? ha

& cmw?

=

and then replacing y by the expression calculated in section A2.2 for the case where
the radiation is the only cause of damping of the electronic motion

1 wq?
r=TE=ET 5
T 6neoc’m
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Comment II Spatial distribution and polarisation of the scattered wave. The wave
radiated by each electron is not distributed isotropically; the amplitude of the field
obeys the sinf law derived in section A2.1; thus the intensities obey a sin?0 law
(0 being the angle between the dipole moment p and the direction of observation).
Hence the scattered power P, must be distributed among the various directions of
observation according to a (1 + cos 2a) law, where « is the angle between the direction
of observation and the direction of propagation Ox of the incident wave. This law is
in excellent agreement with experimental measurements.

Besides this intensity variation, a greater variation in polarisation of the scattered

wave is also observed, depending on the angle «, which may be explained completely
by the classical theory. We shall consider only a simple case where the direction
of observation Oy is perpendicular to the direction of propagation Ox of the incident
wave: the forced oscillations are produced in the yOz plane. Dipoles in the Oz
direction radiate in the Oy direction an electric field parallel to Oz, and dipoles in
the Oy direction emit no waves in the Oy direction. This explains why the wave
scattered in the Oy direction is 100 per cent linearly polarised: since half the dipoles
do not contribute to this emission the wave is half as intense as it is in the forward
or backward directions.
CommentIII The case where w < wo, on the other hand, is called Rayleigh scattering
(in contrast with Thomson scattering). An example of this is the scattering of visible
light by air molecules in the atmosphere. By simplifying the equation in section
A2.3.1, a radius vector r is obtained independent of w. The scattered power is then
proportional to w*.



Appendix 3

Multipole Moments

A3.1 Stationary Charges—Electric Multipole Moments

Statement of the problem and notation. A collection of charges g, situated at
points C, are all in the region of a point C which will be taken as the origin

(see figure A3.1):

CC,=r, (with components X,, yn, Z,); o= Pl
4
Cx xCy4
xC, C 4
u
x Y/ (.87 R
M

Figure A3.1
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We investigate the interaction between the collection of charges C, and other
charges situated at points M at a great distance from C:

CM=R  (withcomponents X, Y,Z);  R=|R|

We shall assume that R > all the r,. The unit vector # = R/R along CM will
be introduced, the components of which are the direction cosines of the line
CM:a=X/R, B= Y/R,y=Z|R.

A3.1.1 Calculation of the potential at M created by the collection of
charges

1 qn
V(M) =
M) 4nsozc,,M

n

To evaluate 1/C,M, we form an expansion in terms of the small quantities
xm y"’ zn

1 1
CM  VIX =%+ (Y= 32 + (Z - z.)7]
of o o *f o f

= X’ Y7Z “An S,  n _zn—+1xn2 +xn [ P a——
/ )=xnax ey oz TR o TR nayay

=f(X_xm Y_ymZ_Zn)

+ ..., etc.
f(X,Y,Z)=(X*+ Y*+Z% V2= /R

0fj0X =—X(X>+ Y2 +Z%) 72 =—a/R?
f0Y =—Y(X2+ Y2+ Z2)"32 = _B/R? These are the components of the

vector grad f=—u/R?
9f]0Z = —Z(X? + Y2 +2Z2) 32 = —y|R? grad f=—u/

Rf10X? = —(X2 4+ Y2 +Z2) ™32 4+ 3X3(X2 + Y2+ Z2)52 = (302 — 1)/ R>
2f]0X0Y=+3XY(X?+ Y?+Z?)~%2=3aB/R?, etc.

1 1 | r, X2 (32 —1\  x,y, 38 .
= — — — + ..., etc
c™m R|I'TRTRE\ T2 TR
This form of the expression emphasises the order of magnitude of the
successive terms. By adding the contributions of all the charges, one obtains

1
4ney V(M) = E(Z qn) + 1%(2 qm) +

R (3 = 1) (2 gu X))+ 604B(2 gn Xn yu) + - . -, etc.]
Interpretation of the result
(1) When > g, #0, there exists a centre of gravity of the charges ¢, at
which the origin C can be placed; then > ¢,r, =0 and the second-order terms
cancel out. The first term after the term in 1/R is the term in 1/R3 (a particular
example is the nucleus of an atom).
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(2) When > g, =0, the sum > g,r, is independent of the choice of origin C
(from the theory of the centre of gravity) and therefore characterises the
charge system completely.

This vector p = q,r, is called the electric dipole moment because the
simplest way to set up such a system of charges is to choose two equal charges
of opposite sign. (It is then possible to choose the origin and orientation of
the axes such that the terms in 1/R? cancel out.)

(3) When > ¢,=0 and 3 g,r, =0 simultaneously, the first non-zero terms
are those in 1/R3. It may be easily shown that the coefficients of these six
terms are then independent of the choice of origin C. The symmetric tensor
of second order formed from these six coefficients > ¢,x,%, > ¢,X,y, and so
on, is called the electric quadrupole moment because the simplest example of
one is to arrange four charges, equal in magnitude, placed at the corners of a
parallelogram so as to form two dipoles in opposition (see figure A3.2). In
section A3.3 we present a more detailed discussion of the quadrupole moment.

+q -4

-q tq

Figure A3.2

(4) Generally speaking, the set of coefficients expressing the term in 1/R"*!
is called the electric multipole moment of order 2", because the simplest way
of cancelling the set of preceding terms is to choose a system of 2" charges
suitably positioned.

A3.1.2 Calculation of the forces applied to the collection of charges

This calculation is in some respects analogous to the preceding one. It enables
the same multipole moments to be found in a slightly different way, but does
not introduce any new fundamental concept.

It is well known that forces can be calculated by the method of virtual work,
by deriving the interaction energy (see textbooks on classical electromag-
netism). Here we shall merely calculate the interaction energy W between the
collection of charges C, and the other charges situated at points M far removed
from C (all the R > all the r,). If we let U(C,) be the potential created at each
point C, by all the other charges, this interaction energy is W= 3 ¢, U(C,).

Since the charges creating the potential U are all far from C, the potential
U varies very little from one point C, to another, and we can express U(C,)
as an expansion around the origin C

U(C,)=U(C) au+ au+ au+% 262u+ Fu t
) = +Xg—+Vp—+z,—+IxP—+ X, y.—— +.. ., etc.
( ( ax "oy "oz a2 " axay
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Summing over all the charges C,, one obtains

0*u

20x2

% u

W=U()(2 g, +grad U. (3 g,r.) +

+...,etc.

2 gnxa?) + (2. GnXnyn)

0x 0y

Consider orders of magnitude: U goes as 1/R, grad U goes as 1/R? and
the second-order derivatives in U go as 1/R® and so on. As in the preceding
section, the expansion is found to converge rapidly, and this expansion may
be expressed in terms of components of the multipole moments that have
already been defined.

A3.1.3 Field corresponding to the dipole term

We must calculate the gradient of the potential obtained in section A3.1.1,
case (2)

1 p.u 1 pP.R
M)=—*=—=
V(M) 4ne, R?  4me, R

The vector p=> gq,r, is independent of M and hence: grad(p.R)=p.
Furthermore,

1 3 3 3R
grad g =—FgradR=——u=——

1 (3p.R 1
E=—gradV=— R——p

4me,

Hence, in particular, the interaction energy of the dipole p with another
dipole p’ placed at M is given by

1 .2 3p.R(p.R
W=p'.gradV=—p E=— [pp_ (p-B)(p )]

41'[80 123 R3S

The latter formula has many applications in atomic physics.

A3.2 Charges in Motion—Magnetic Multipole Moments

Assumptions and notation. We shall consider the same collection of charges g,
as in section A3.1 but we shall assume that each of them has a velocity v,; we
propose to calculate the magnetic field created at a very distant point M
(R> r, for all n).

This is a magnetostatics problem, that is to say (1) the velocities v, are all
much less than ¢, the velocity of light; (2) the mean distribution of the electro-
static charges is unchanged by this motion. (In the formalism of continuous
functions, the equation for charge conservation relating the current density



218 MODERN ATOMIC PHYSICS: QUANTUM THEORY AND ITS APPLICATIONS

Jj to the charge density p may be written: divj=—0p/0t =0.) In the case of
point charges, one may write that the various electric multipole moments of
the charge collection are independent of time, or that their derivatives with
respect to time are zero.

The following derivations can also be generally applied to systems of
charges that do not obey the usual assumptions of magnetostatics, provided
that mean values in time are considered. One need then only assume that the
charges remain enclosed within a bounded volume.

Let /() = > gn.x.y. be a function of the type we have to use (a component
of an electric multipole moment). Let us calculate the mean value in time of
its derivative with respect to time

df 1 (2d 1
(—f)= | Gar= e

det t,—1t, L—t

Taking account of the additional assumption (bounded volume) the
function f varies within finite limits; the quantity f, — f; is therefore finite
and by lengthening the time interval ¢, —¢,, the mean value (df/d?) can be
made as small as required. Hence, provided that mean values in time are
considered, the derivative of the function fis zero and therefore the function
fis constant in time. In other words, any system of charges that remain enclosed
in a bounded volume conforms on average with the assumptions of magnetostatics.

This may be applied in particular to an atom or to a molecule. In this case,
the time interval ¢, — ¢, over which an average must be calculated is of the
order of a period of orbital motion of the electrons.

A3.2.1 Calculation of the magnetic field created by the system of charges

To calculate this from the vector potential

Ho qn ¥y
AM) = —
M) dni C,M
we use the same expansion of 1/C, M as in section A3.1, but the greater com-
plexity of the calculation necessitates concentration on the first two terms

4 1 g, 0, 1 qn ¥,
7;A(M)=E(Z - )J'FZ[ - (r,,.u)]+...,etc.

In the earlier electrostatic calculation, the second term in 1/R? was found
to have the simple form of a product between a part depending only on M
(that is, on # and R) and another part depending only on the charge collection
(that is, on g,, r,, v,); but this is no longer the case—now we cannot take the
vector u outside the summation. However, a special technique allows this
separation into two independent parts to be carried out.

Consider the vector identity

dr, dr, d
V(P 1) + 10, 0) = E(r,,.u) + r,,(a.u) = o [ralr,.w)]
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By choosing the Ox axis parallel to CM, that is, to u, the three components
of this vector may be written

d ) d d
dr (X,, ), d—t(yn xn)9 a(zn xn)

By summing all these vectors multiplied by g, the three components

d d d
- 2 _ —_
dt(E GnXn®)s 5 (2 GnXn¥n), dl(Z G Xn Zn)

are obtained. According to our assumptions, these three components are zero
(constancy of the quadrupole moment in time); therefore

zqnvn(rrru) + anr,,(l’".u) =0

Furthermore, the difference between these same two vectors is a double-
vector product

Z qn[vn(rn'u) - rn(vn'")] = an(rn X vn) xu
Hence
zqnvn(rn-u):%zqn(rn X IJ,,) X "=%[an"n X vn] xu

In the double-vector product thus introduced we can take the vector u
outside the summation. Finally

4n 1 q.v, u 1 Gutn X 0,
— AM) = — —— X = —+.. ., ctc.
Ho M Rz K Z

Interpretation of the result

(1) When » g,v, #0, that is to say, where the charge collection is equivalent
to a current element, an origin C’ can be found such that the term in 1/R?
is zero.

Let us take the point C’ as the origin such that CC’ =s. With this origin,
the radius vectors become r,” = r, — s and we require > g,r, x v, =0, that is
to say

S (Gutn X V) —8 % (2 ga0) =0

By projecting the above vector equation on to the axes, a system of three
equations is obtained with three unknowns, s, s,, s,, components of the
vector s, which can thus be determined.

(2) When 3 ¢,v, =0, it may be shown that the vector > g,r, X v, is inde-
pendert of the choice of origin C. With C’ as the origin, such thatr,’ =r, — s,
one obtains

zannl X v, = anrnx v, — 8 X :\;(/nvn :".\_:(/nrnx Uy
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The vector
1
‘/ﬂ=;Z %ann X v,

is therefore a characteristic of the system of charges in motion. It is called the
magnetic dipole moment of the system of charges.

This may be applied in particular to any isolated system of charges con-
tained within a limited volume (as in an atom or molecule, for example)
because the quantity

zqnvnz—dclt'(zann)

is the derivative of a quantity that remains fixed; the argument given above
therefore shows that the average value of > q,v, is zero.

Comment The formula enabling the vector potential 4 to be calculated from the
vector J is identical to that found in volume 1 when calculating the vector potential
created at a large distance from a small electric circuit having a magnetic moment
M = (1/k)ISN (I is the current, S the area of the circuit and NV a unit vector normal
to the plane of the circuit).

(3) The expansion can be continued; in a similar way to the electrostatic
calculation, a magnetic multipole moment of order 2" may be defined from
the term in 1/R"*! of the expansion.

A3.2.2 Calculation of the magnetic forces applied to a system of charges
in motion

This calculation is analogous to the preceding one; we assume that distant
charges in motion create a magnetic induction B(C,) at each charge C,. Each
charge C, is subjected to a force

1
.,r.l =—(gnVp X B(Cn)
K

This set of forces has

aresultant F= 3 f,
a resultant moment I'= 3 r, x f,

F and T can be calculated by using the following expansion to express the
induction B(C,) at each charge C,

B(C,)=B+ (r,.grad)B+. . ., etc.

where B is the value of the induction at the point C chosen as origin.
Here we shall calculate only the resultant moment. To calculate I to first
order, only the first term of this expansion need be considered

rx3>r,x (ﬂv,,xB)
K
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We wish to transform this expression in such a way as to be able to take B
outside the summation, and to do this we use a technique identical to that of
the derivation in section A3.2.1.

r, x (v, x B)=v,(r,.B) — B(r,.v,)
v, X (r, x B)=r,(v,.B) — B(r,.v,)
Subtracting
ty X (v, x B) —v, x (r, x B)y=v,r,.B)—r,(v,.B)= (r, x v,) x B

Furthermore

dr, dr,
r,x (U, x B)+v,x(r,x B)y=r, x IXB +d—><(r,,><B)
t

_a[rnx(rnx )]

By summing over #, the last term becomes
d B
3 O [ x (ra x B)]

which from our assumptions is zero. Therefore
zrnx(anB)+Zvnx(rnXB)=0
St X (VX B)— v, % (r,x B)y=(r,xv,) xB

Hence
Dty X(v,x B)=%(r, xv,) x B

and consequently, to first order, I = .# x B. We have derived a formula well
known in the case of small electric circuits.

A3.3 A Detailed Study of the Electric Quadrupole Moment

Sections A3.1 and A3.2 set out the main ideas concerning multipole moments.
In the series expansions, we have concentrated principally on the terms in
1/R? corresponding to electric or magnetic dipole moments, since use is made
of these most often. However, the concept of an electric quadrupole moment
is important in the characterisation of atomic nuclei and for this reason we
are expanding our treatment of the subject.

Nuclei have very small but nevertheless finite dimensions. In many problems,
they can he considered to a first approximation as point charges, but sometimes
it is necessary to take account of the volume distribution of the nuclear
charges. In such calculations the nucleus may be represented as a superposition
of (1) a point charge placed at its centre of gravity (and therefore the term
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corresponding to the dipole moment is zero: > ¢,r,=0); (2) an electric
quadrupole. It is the quadrupole part that we discuss below.

A3.3.1 General definition and properties of the electric quadrupole tensor

(1) In section A3.1, we calculated the potential created by a quadrupole at a
distance R in a direction having direction cosines «, f, y; it had the form

1
47[30 V= 2_133 [(3“2 - 1)(2 qnxnz) + (3ﬂ2 - 1) (z qnynz) + (3)’2 - 1) (Z q"Z,,Z)
+ 60B(2 gnXnVn) + 6BY(Z GnVnzn) + 693 G zn X,)]
Since x,% + y,? + z,% = r,2, one obtains
1
4meo V = T B2, GnXn?) + 3022 qnyn®) + 392 (2 Gn2a®) — 2 qula®

+ 60> guxuyw) + . . ., etc.]

This expression is not homogeneous with respect to the direction cosines
«, B, y; to make it homogeneous, the term > g,r,2 is multiplied by the quantity
o? + B2+ y* = 1. The terms in ?, f2 and y* can then be rearranged, and one
obtains

4T[80 V= ZLRS [az Z qn(3xn2 - r"2) + ﬂz Z qn(3yn2 - rnz) + )’2 z qn(32n2 - rnz)
+20B 2 (3qn Xn ) + 2By 2 (34nYn ) + 290 2, (340 20 X,)]

The six summations > that enter into this expression form the nine com-
ponents of a symmetric tensor | Q| of second order, defined as follows

Oux = Z qn(3xnz - rnz) Qxy = ny = Z 3qn XnVn
ny = Z qn(3yn2 - r"2) Qyz = sz = Z 3‘]..}’.. Zn
sz = Z qn(3zn2 - rnz) sz = sz = Z 3‘]'. ZnXp

This tensor is usually called the electric quadrupole moment. The electric
potential created by a system of charges can be written as a function of its
components

1
47[80 V= 2'_R—3 (az Qxx + ﬂz ny + 'yz sz + 2aﬁQxy + zﬁyQyz + 2)’“sz)

The matrix representing a tensor can be diagonalised, that is, new axes XYZ
can be found, called the principal axes of the tensor, such that the off-diagonal
components of the tensor are zero

Qxy= Qyz= sz=0
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and the potential created by the charge system may be written simply

|
4ney V= SR (& Qxx + B* Oyy + 72 O12)

(2) The electric quadrupole tensor also has the following properties

(a) Qxx + ny + sz = Z qn(3xn2 + 3yn2 + 3Zn2) -3 Z ann2 =0
The sum of the diagonal components is zero whatever the co-ordinate axes. Of
the nine components of the tensor, only five are independent : three parameters
determine the orientation of the charge system in space, and only two
parameters characterise the ‘shape’ of the charge distribution.

(b) If the charges g, have a spherically symmetric distribution

DXt =2 QnVnt = 2 GnZa =% 2 Gula’

and hence Q,, = Q,, = Q,, =0, the other components of the tensor are also
zero. The electric quadrupole tensor measures to some extent the departure
from spherical symmetry of a collection of charges.

(c¢) When a collection of charges is reduced to a pure electric quadrupole,
that is when > ¢, =0 and ) g¢,r, =0 simultaneously, it may be shown that
the components of the tensor || Q| are independent of the origin chosen for their
calculation:

Let C’ be a new origin relative to which the co-ordinates are x,’, y,’, z,’. The
components of the vector CC’ are denoted by a, b and ¢

anxlz zqn-x —0)2 zqn _2azqnxn+azzqn:zqnxn2
2. GnXn' Vn' =2 qu(Xn = @) (Ya=0) =2 4uXnVn— @ 2. GnVn— b 2> Gux,
+ab 3 Gn=72 quXnn
(3) The components of the tensor also allow an expansion to be found for the

interaction energy W between the collection of charges ¢, and other external
charges that create a potential U. In section A3.1, we found

102U 102U 102U

=§ a Z(Zq" "2)+§ a 2 (anynz)"'z oz 2 (anznz)

2 2 2

U U
+ n n n nnn+ n“n n
axay(Zqxy)+ayaz(2t1y2) aZax(ZqZX)

To extract the diagonal components of the tensor, a special property is used
based on the fact that the laplacian of the electric potential is zero outside the
charges which create this potential: AU = 0.

Therefore we can omit from the expression for W, the quantity

02U 102U 102U

ln " whn”) + —
L R AR L ey v

X Gura?)

- ]
0= AAU(: annz) = g
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as it is zero. One then obtains

1(0*U +62U Y 2BZU 2BZU
6\ aw Ot 5 Ot g Q¥ 255,00 4 25,5, 0
2aZU
8z£3xQzx

If the principal axes of the tensor, XYZ, are taken as co-ordinate axes, the
off-diagonal components are zero and

W=— Oxx+ 70w +

1(82U 2 U 92U
6\ox? P azzQ

A3.3.2 Special case of rotational symmetry

(1) If the charge distribution has rotational symmetry around the OZ axis

2 qn Xa’ =29, Y7
and hence

Qxx = ny = —lezz

The ‘shape’ of the charge distribution is now characterised only by a single
parameter. In practice, it is useful to factorise the elementary charge
e=1-6 x 1071° C out of the expression for Q,,; one then writes

QZZ = z qn(3Zn2 - r"2) = eQ

Rotational symmetry is met very frequently in practice and the parameter Q
thus defined is usually called a quadrupole moment. It has the dimensions of
area, and since the dimensions of nuclei are of the order of 107!* m, it has a
magnitude of the order of 10728 m? (see end of this appendix and figure A3.5).
The quadrupole moments Q are often measured in terms of a practical unit:
1 barn = 10728 m2.

O can be positive or negative.

(a) For example, Q >0 is obtained with a uniform density of positive
charge within a prolate ellipsoid, that is, a nucleus elongated in the shape of
a cigar.

(b) On the other hand, Q < 0 is obtained with a uniform density of positive
charge within an oblate ellipsoid, that is a nucleus flattened into an oval shape
(see figure A3.3).

(2) Taking account of rotational symmetry, the expressions given above
for the potential V' or the interaction energy ¥ can be simplified still further,
by taking as axes the principal axes X YZ of the quadrupole tensor.

(a) The potential V created at a distance R in a direction having direction
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(a)

Figure A3.3
cosines «, B, y may be simplified by taking account of the fact that
o+ pr+y2=1

dmeg V= 22 (yz— a2+ﬂ2)=f—Q—(3y2— l)=e—1%(300820— 1

2R} 2 4R? 4

where 0 is the angle between the symmetry axis OZ of the system of charges
and the direction in which V is measured.

(b) The interaction energy W with other distant charges which create a
potential U may be simplified by taking account of the fact that

AU= R U/dX?+ * U[dY? + 0* UJaZ*> =0

eQ[2U 1[2U 2U\] eQa*U  eQIE,
=% |azz 2\axr T Ay 4z

4 0z

where E; is the component along the symmetry axis OZ of the electric field E
created by the distant charges.

(3) The second derivatives of the potential U to which the quadrupole is
subjected also form a symmetric tensor of second order. In many problems it
is convenient to take as axes the principal axes of this new tensor related to the
external potential U, that is axes xyz such that

92 Ufox dy = 92 Uy 0z = 8 UJdzox =0

If o, B, y now denote the direction cosines of the quadrupole’s symmetry axis OZ
with respect to the axes xyz, it may be shown readily that

0
— =00/0x+ f0/dy + y0/oz
7 adf Bojoy + v/

(Note that a, B, y here have a meaning different frem that used previously.)
Taking account of the fact that the second derivatives of U with respect to two
different co-ordinates are zero, then

92 UJ0Z? = a? 82 Uldx* + B? 8% UJdy* + y* 8% U[3z?
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and it follows that the interaction energy is

Q| P®U 2U *U
=_a2 +ﬂ2

W 2
|\ Yo T g T 5

Since the laplacian of U is zero, its three second derivatives depend only on
two independent parameters. The usual choice is to express 02 U/ox* and
0% U/0y? as a function of 82 U/dz? by means of a parameter # defined as follows

*U RU  PU
a2z a2 ez

(n is zero if the function U has rotational symmetry around Oz; 7 is to some
extent a measure of the departure of the function U from rotational symmetry.)
Knowing that 8% U/ox? + 6% U[dy* = —0* U/9z2, then

ax? 2 a2 2 o

P?U  1-n ?U *U 1+n 82U

By substituting into W and remembering that «> + 2 + y?> = 1 one obtains

eQd*U o + fp? 2 B2\ eQd*U
W:—Q 2 __ ﬂ+}1a B =—Q
4 0z* 2 2 8 0z2

(3y* = 1+ (e — p*)]

This expression is used in several problems. It may be simplified if the potential
U also has rotational symmetry around Oz, because then 7 = 0 and one obtains

eQ?U eQPU

= oF = D=5z Geost0—1)

where 6 is the angle between the symmetry axis OZ of the quadrupole and the
symmetry axis Oz of the potential U in which it is situated. It should not be
forgotten that in the latter part of this section, the symbols o, § and y do not
have the same meaning as in paragraph (2) and all previous sections.

A3.3.3 Equivalence between a quadrupole moment and a system of
four point charges

A system of charges may be reduced to a quadrupole moment if two conditions
are fulfilled simultaneously

>4,=0 (zero total charge)

2.q.tn=0  (zero dipole moment)

The simplest way of fulfilling these two conditions is to take four charges
arranged in a parallelogram so as to form two equal and opposite dipoles.
If the X YZ axes are to be the principal axes of the quadrupole tensor, it is
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simplest to place these four charges on the axes: thus each of the charges has
two co-ordinates equal to zero, thereby ensuring that the products X, Y,,
Y.Z,, Z, X, are all zero, and therefore that Qyy = Qy, = Q,x = 0. This leads
to a diamond-like arrangement of the charges as in figure A3.4:

(1) two equal charges on the OZ axis, each of magnitude ¢ and situated at
the same distance ¢ on either side of the origin;

(2) two equal charges on the OX axis, each of magnitude —q and situated
at the same distance a on either side of the origin.

One then finds

Oxx = —29(2a* + ¢?), vy =2q@* - c?), Q22 =+ 29(a® +2¢%)
(It may be verified that Qyy + Qyy + Qz, =0.)

\ Z

Figure A3.4

When values are given to Qyy, Qyy and Q,;, the OY axis is selected such
that the corresponding component has a value intermediate between the two
others (Qxx < Qyy < Qz7); the three equations above then provide two
independent linear equations with two unknowns @? and c¢?, which can thus
be determined

2 20xx + Q22 2= Oxx +20;2
B 6g 69

With our chosen convention, the two quantities 2Qyx + Oz and Qxx + 20z,

have opposite signs and the solution of the system of equations is always

possible (the magnitude of ¢ remains arbitrary). Thus it is always possible to

find four point charges equivalent to a given quadrupole moment. (An infinite

number of systems of four charges corresponding to the same quadrupole

momert can be found. The one we have studied is the simplest to calculate.)
When the charge system has rotational symmetry, we have seen that

Qxx = _szz
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It may then be shown that a = 0. In other words, two of the four point charges
are coincident midway between the two others, in such a way that all the
charges are aligned along the symmetry axis OZ. If the absolute value of the
point charges is chosen to be equal to the elementary charge e, one obtains

Q22 = eQ = +dec?

The + sign depends on the sign of Q,, and Q; the two cases are illustrated in
figure A3.5. It will be noted that in both cases the absolute value |Q| of the
quadrupole moment is equal to the area of the square whose side is the
separation 2c¢ of the two charges furthest apart.

V4 V4
el L te . .l e _
] ] ] :
' i | !
: : ! | i
E @®-2 | E @ +2e |
! ! ! !
| | ! |
ot (! o 4 ;

+e -e

(a) (b)

Figure A3.5 (a) Q > 0 (nucleus elongated like a cigar) ; (b) Q < 0 (nucleus flattened
like a pancake)



Appendix 4

Non-Relativistic Elastic Collisions

Two particles that interact during a collision form an isolated system to which
the laws of conservation of energy and momentum may be applied. It may
easily be shown that these laws are valid in all galilean frames; they are par-
ticularly simple to apply in the centre of mass frame because the total momen-
tum there is zero. We reviewed the properties of the centre of mass C at the
beginning of volume 1, section 5.1.1 and we retain the same notation.

Radius vectors of the two particles Velocities of the two particles

In the oM, oM, Vi=vi+V V,=v,+V
laboratory

In the ms; m, m, m,
centreof rH=————r;rp=——m—r v,=— vV, v,=——V
mass frame my + m; m, + m, m, + m, my + m,

where r =r, — r; and v =dr/dt = v, — v, = ¥V, — V, (relative velocity),
and where V is the velocity of the centre of mass in the laboratory frame.
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From conservation of kinetic energy (the collisions are elastic)
m, v, + m,v,*> = constant v, = constant
From conservation of momentum
in magnitude m, v, = m, v, v, = constant
mv, +myv,=0 the direction of v, is
always opposite to v,
Hence the magnitude v of the relative velocity also remains constant.
Figure A4.1 summarises the results obtained in the centre of mass frame. In

it, quantities after the collision are labelled with a ‘prime’: v; =v{; v, =v}
andv="".

vy
\
\
\
\\
¢ \
——-—D——— -———\ c B ——— ]
- —_——— V.
M@ v, \ 2 M,
\
\
Figure A4.1

The only quantity that remains undetermined is the angle of deviation ¢.
This may be calculated as a function of the impact parameter (the distance
between the two lines colinear with the vectors v, and v,) if the interaction law

between the two particles is known (see volume 1, chapter 5, Rutherford’s ex-
periment).

Special case where a projectile meets a stationary target. The initially stationary
target is particle number 1. Since ¥, =0 one finds

v=V>,

m, m,

= V,= v
m; +m, my; +m,

After the collision, the velocities in the laboratory are

for the target

Vi=v + V= —2__ (v—v)
[ =0 = ———(v—10
1= m, + m,
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for the projectile
, ' my , m,
Vz =0, + V= v + v
m; +m, m; +m,

It should be remembered that the two vectors v’ and v = ¥, have the same
magnitude.
(1) If the target is much heavier than the projectile
Vi=~0
m;>m, —
V, ~ v', with a relative error of the order of m,/m,

the projectile keeps almost all of its kinetic energy and its angle of deviation
in the laboratory frame is nearly equal to ¢.

(2) If the masses of the target and of the projectile are of the same order of
magnitude, the angle of deviation y observed in the laboratory frame must be
determined. To do this, we project the velocity vectors on to a line D parallel
to the initial velocity ¥, and on to a perpendicular line (see figure A4.2).

Initial Final
relative relative
velocity velocity
v v’ Final velocity of projectile V5
Projection on D v veosd my veosd + mz
I "4
(parallel to V) m, + m, m, + my
Projection on a . m
. . 0 vsing vsin ¢
perpendicular line m, + m,

Hence the angle of deviation y in the laboratory frame is given by

m, sin ¢ sin ¢

tany = =
X mycos¢ +m, C€OS ¢+ mylm,

It is confirmed that y & ¢ when m,/m, < 1.

Figure A4.2



Appendix 5

The Representation of Vector
and Scalar Operators. The
Wigner-Eckart Theorem

Here we state the important properties of the matrix elements of scalar or
vector operators. We use the {J?, J,} representation, the basis vectors being
denoted by |Jm).

The commutator [4, B] will be taken as
AB— BA

[4, B] =

A5.1 The Matrix Elements of a Scalar Operator A

A scalar operator A is by definition invariant under rotation. Let # be a
rotation operator. A system previously described by a basis state |a) is
described after rotation by a basis state |a’). Rotational invariance implies that

(a|A|a) =<(a'|A|la’> where |a')=2R|a)
This relationship may be rewritten

(a|A|a) = (a| R AR|a)
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Hence
A=RTAR or RA=AR (A5.1)

Let us take £ as an infinitesimal rotation through an angle w around an axis
defined by the unit vector u. 2 may then be written (see a textbook on quantum
mechanics, for example, Messiah, page 531)

R=1—-i(J.u)dw (AS.2)
Equation (AS.1) becomes
AJ=JA (A5.3)

The scalar operator 4 commutes with the angular momentum operator, and
in particular

AJ,=J, A (A5.4)
which in matrix form may be written
Im' |AT|Im)y = (JIm'|J, A|Im)
Let us evaluate these matrix elements by using the matrix multiplication rule

S I AT m T | T Imy =S (I || m"y (I | A|Tm)
J"m”

el
Since the matrix of J, is diagonal
I"m" | T | Im) = mSyw yOyv g
the above expression reduces to
JIm'|A|Imy (m' — m) =0
Therefore the matrix elements of A will be different from zero only if m =m’.
By considering the operator J, =J, + iJ,, equation (A5.3) leads to
Al,=J, A
which in matrix form can be written, for particular elements
Iym+ AT |Imy = (T, m+ 1|J, A|Jm)

Evaluating this relationship by using the matrix multiplication rule and taking
account of the value of the matrix elements of J, (refer to a textbook on
quantum mechanics), this equation may be reduced to

Tym+ 1A, m+ 1> = (Im| 4| Jm)

Therefore all the diagonal elements of the matrix 4 are equal and consequently
independent of m.

To summarise, the matrix of a scalar operator A is diagonal, and all its
elements are equal (spherical matrix).
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Ab5.2 The Matrix Elements of a Vector Operator A
Ab.2.1

Let us consider a vector A with components 4,, 4,, 4,. By applying a rotation
of angle dw around the direction of a unit vector u, we obtain the vector

A=A+ 50 x A) (A5.5)

If we denote the matrix elements of the operator A4 before rotation by
{a|A|a) and after rotation by {a’|4|a’), equation (A5.5) may be written

(a'|Ala’y ={a|d|a) + dw.u x {a|A|a)
From this, one deduces that
RYVAR = A + dw(u x A) (A5.6)

For the infinitesimal rotation defined by (A5.2), the first term in equation
(A5.6) may be written

R 1AR = (1 + iJ.udw) A(1 —iJ.udw) = A — 18w[A(J.u) — (J.u) A]

which, after simplification, becomes

[A,J.ul=ux A (A5.7)

Several commutation relations may be deduced from (A5.7). Let us illustrate
this with respect to the component A4,. For this component, (A5.7) may be
written

(A, J ul=u, A, —u, A, (A5.8)
This relationship must be true for any unit vector #; hence
(4:,J:1=0 (A5.9a)
[4,,J.]=A, (AS.9b)
(4.,J,] = —A, (A5.9¢)

Similar commutation relations may be obtained with 4, and 4,.

A5.2.2
Let us write the relation (A5.9a) 4,J, —J, 4, = 0 in matrix form
Im' | AT, Im) = (Im' | T, A, | Jm) (A5.10)

After multiplying the matrices and taking account of the values of the matrix
elements of J,, equation (A5.10) may be written

JIm'|A)Imy(m—m')y =0

Therefore A4, is a diagonal matrix.
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Ab.2.3

Let us consider the vector operator A, = A4, +i4,; from equation (A5.7) it
may be shown without difficulty

[A+9Jz] = [Ax + lAyan] = _Ay + le = lA+
Thus
A J, —J, A, =—A, (AS.11)

After multiplying the matrices and taking account of the value of the matrix
elements of J,, we obtain

Im'|A |Imy(m—m'+1)=0
The only non-zero matrix elements of A, are elements such that

m=m+1

Ab.2.4
From equation (A5.7), we can evaluate the commutator [4,, J,]
(4,0, )=[A4.+i4,,J, +iJ,)]=—A4,+ 4,=0
so that
A J. =J, A, (A5.12)

Using the property of the matrix elements of A, derived in section A5.2.3 and
the values of the matrix elements of J,, equation (A5.12) may be written

Im+ 24|, m+ 1>, m+ 1 | L,m) = I,m+2|J,|J,m+ 1)
x (Jym+ Y AL|J, m)

so that
<J,m+2|A+|J,m+1>_(J,m+2|J+|J,m+1>
Iom+1A,]L,my  Iom+ 1|, m)

Equation (A5.13) is true only if the matrix elements of 4, and J, are propor—
tional to each other; if a is a constant of proportionality, we may write

(A5.13)

m+ 1A, my =ald,m+ 1|J,|J,m) (A5.14)

A5.25
From equation (A5.7) we can also write
[Aze‘,+] = _lA+
so that
AJ, —J, A, = A,
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Using equation (A5.14) this leads to the equation
Iom+ 14|, m+ DT, m+ 1|, |, m)y — <, m+ 1|J,|J,m)

x {J,ml|d,|J,m) =alJ,m+ 1|J,|J,m)
Simplified, this expression may be written

Iym+ 1A, m+ 1> =, m|4,|J,m)=a (A5.15)
Equation (A5.15) can be satisfied only if the matrix element (Jm|A4,|Jm) is of
the following form

(JIm|A,|Jm) =am + b

where b is a scalar. Let us prove that b is zero, by evaluating the trace of 4,
m=+J +J

Trd, = > (Im|d|Jm)=73 (am+b)=Q2J+1)b

m=—-J -J

However, from equation (A5.7), we can write

1
Az = [Ax"’y] = T(Ax‘,y _JyAx)
1

As a result of a general property of the trace of a product
Tr AB=Tr BA

from which Tr4, =0 and thus b =0.
Therefore we have (Jm|A4,|Jm) = am, which can be written

(Im|A,|Im) = alJm|J,|Jm) (A5.16)

To summarise, the relationships (A5.14) and (A5.16) may be stated as follows.

In the {J?, J,} representation, in a subspace corresponding to a given value
of J in which the basis vectors are represented by |Jm), the matrix elements
of the components of vector operators are proportional, the coefficient of
proportionality being the same for the various components; this may be
written

JIm'|A|Im)y = a(Jm'| T |Jm) (A5.17)

Ab.3 The Wigner-Eckart Theorem

This theorem generalises the property we have just established in the case of
vector operators to that of ‘irreducible tensor operators’, entities that cannot
be defined here, but of which vector operators are a particular case.

The Wigner—Eckart theorem states (see, for example, A. Messiah, Quantum
Mechanics, page 489):

In a standard representation {J2, J,} whose basis vectors are represented
by |tJ,m), the matrix element (Jm|T¥|J'm’) of the gth standard component
of an irreducible tensor operator T* of given order & is equal to the product
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of the Clebsch—Gordan coefficient {J'km’g|Jm}) and a quantity independent
of m, m" and ¢

e dm| T T m'y = | TH|1' ') KT km' q| Jm)

The quantity <{tJ|T*|t'J’> is the reduced matrix element of the tensor
operator. The factor 1/4/(2J + 1) introduced by Messiah has been deliberately
suppressed here by adopting a different normalisation.

Vector operators are irreducible tensor operators of order k=1; the
components ¢ (an index that can take the values —1, 0, +1) are the standard
components of vector operators, that is to say, if 4 is a vector operator

1 1
A= ——(A, +id) Ag=A, A, =—(d, —id
1 \/2( y) 0 1 \/2( y)

Applied in this way, the reader may easily verify that the relationship (A5.17)
is a particular case of the general theorem stated above, the quantity inde-
pendent of m, m’ and ¢ being a constant.

Ab5.3.1

Application of the Wigner-Eckart theorem: for example, property (2) stated in
section 5.3.2. Let us successively apply the Wigner-Eckart theorem to the com-
ponents A, and J, of the vector operators 4 and J

Ctdm|A, |t T m'y = (|| A||T' I T 1m gl Im)
dm|J,|t' ) m" = | TP T (T 1w g|Im)

The reduced matrix element of J is zero when J #J’, in contrast to the
reduced matrix element of 4. When J=J’, we can compare the matrix
elements of 4 and J by using the above relations

SN

<‘er|Aq|‘t Jm > = <TJ—|-|T“T—'J—>-

dm|J |t Im'y (A5.18)

The reduced matrix element (tJ||4|t'J) is a scalar quantity, completely
independent of m. It may be written as proportional to the various matrix
elements of the scalar operator J. 4 which are all equal to one another for
m = m', and equal to zero for m # m’ (see section A5.1); thus

|||ty = (eIm|| T . A||tIm) (A5.19)

the coefficient ¢ being independent of A.
To determine the value of ¢, we apply the Wigner—Eckart theorem to the
particular matrix element (tJJ|J,|t'JJ) which has the value J

J =<t |0 JT> = eI |T|T I (IO >
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Using the value of the Clebsch-Gordan coefficient

J
TVIO|JTY = «/(71—1)

GIT Ty = /[TJ + 1)) (A5.20)

Now let us apply equation (A5.19) to the case 4 = J; since the matrix elements
of J? are equal to J(J + 1), we deduce the value of c:

1

By substituting into equation (A5.18) the reduced matrix element of J given
by (A5.20) and the reduced matrix element of 4 given by (A5.19), and taking
account of the expression for ¢, equation (A5.21), we obtain

tIm|J. Al IJm)

(tIm|A |t Im') = T

(dmlJ, |t Im”D (A5.22)

This formula, (A5.22), provides us with an expression for the coefficient of
proportionality a in equation (A5.17), as a function of the scalar operator J. 4.



Appendix 6

Historical Summary of Atomic
Physics

A6.1 The Existence of the Atom and Avogadro’s Number

Proust’s law of definite proportions, 1801.
Dalton’s law of multiple proportions, 1807.
Gay-Lussac’s law of combination by volume, 1808.
Avogadro’s hypothesis, 1811.

The Avogadro—Ampere law, 1814

Interpretation of Boyle’s law by Bernoulli, 1738.
Brownian motion, 1827.

Clausius’ kinetic theory of gases, 1857; Maxwell, 1860.
Scattering of light: Tyndall, 1868 ; Rayleigh, 1871.
Boltzmann’s law, 1896.

Atomic beams: Dunoyer, 1911; Stern, 1920.

Measurements of &/
(1) From statistical laws
The interpretation of Van der Waals equation and the viscosity of gases,
1875.
Thermal radiation: Planck, 1900.
Brownian motion: Jean Perrin, 1907.
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Critical opalescence : Smoluchowski, 1908.
Scattering of light by a gas: Cabannes, 1913.

(2) From the charge of the electron —e compared to 1 faraday: Millikan,
1908.

(3) By counting a-particles and measuring simultaneously:
the volume of helium liberated Rutherford, Geiger, Regener, Mme.
the period of disintegration Curie, about 1910.

(4) From atomic dimensions
Diffraction of X-rays: Rontgen, 1895; von Laue, 1912; Bragg, 1914;
Debye-Scherrer, 1915; Siegbahn, Compton, 1925.
Monomolecular surface layers: Devaux, Langmuir, 1917; Marcellin.

AG6.2. Identification of the Electron

Volta’s battery, 1800.

Laws of electrolysis: Faraday, 1833.

(Maxwell’s equation, 1855.)

Cathode rays: Hittorf, 1869; canal rays: Goldstein, 1886.

The theory of ions: Arrhenius, 1887.

Transport of negative charge by cathode rays: Jean Perrin, 1895.

The Zeeman effect (4w = eB 2m), 1896.

Direct measurement of e/m for cathode rays: J. J. Thomson, 1897.

Lorentz’s theory of the electron, 1897.

Direct measurement of ¢: Millikan, 1908.

Thermionic diode: Fleming, 1904. Triode: Lee de Forest, 1907; improved by
Langmuir, 1915.

Measurement of e from fluctuations in thermionic emission : Hull and Williams,
1925 (from Schottky’s formula, 1918).

Measurement of e by counting particles and measurement of the charge
transported.

Measurement of e/m for free electrons within a metal: Tolman and Stewart,
1916.

Measurement of e¢/m from the cyclotron frequency (w = eB/m): the Lawrence
cyclotron, 1933; Purcell and Gardner, 1950; Sommer, Thomas and Hipple,
1950.

Measurement of e¢/m by electron magnetic resonance: Rabi, 1938; Zavoisky,
1945.

A6.3 Quantisation of Radiated Energy

(The measurements of 4 are marked with an asterisk.)
Kirchhoff’s laws of thermal radiation, 1859.

Stefan’s law (1879); theoretical justification by Boltzmann, 1884.
The photoelectric effect: Hertz, 1887; Halbwachs, 1888.
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The spectral distribution of thermal radiation: Wien, 1893.

Quantum explanation by Planck, 1900.

*Confirmation by Lummer and Pringsheim, 1901 (volume 1, section 1.1).

Einstein’s explanation of the photoelectric effect, 1905} volume 1,

*Confirmation and measurement of 4: Millikan, 1915 section 1.2.

(Quantum theory of specific heats: Einstein, 1907; Debye-Born and von
Karman, 1912.)

*(Specific heats of solids at low temperatures: Keesom and Kamerlingh
Onnes.)

*The limit of the continuous spectrum in X-ray emission: Duane and Hunt,
1915 (volume 1, section 7.3).

*The Compton effect, 1922; Gingrich’s measurements, 1930 (volume 1,
section 2.3).

*Wavelength for annihilation of an electron and a positron: Du Mond,
1952.

A6.4 Atomic Structure

(The measurements of /4 are marked with an asterisk.)

Periodic table, 1869 (section 2.4).

Balmer’s hypothesis, 1885, transformed by Rydberg, 1889 (volume 1,
section 1.3).

Lenard’s observation of cathode rays passing through apertures, 1894.

The Zeeman effect, 1896 (volume 1, sections 8.4 and 11.3 and volume 2,
chapter 5).

Tonisation potentials: Lenard, 1902 (volume 1, section 1.4).

The theory of paramagnetism: Langevin, 1905 (volume 1, sections 9.2 and
10.4).

Wood’s optical resonance experiment, 1905 (volume 1, section 1.3).

The combination principle: Ritz, 1908 (volume 1, section 1.3).

Measurement of the atomic number by scattering of X-rays: Barkla, 1909
(appendix 2).

Existence of the nucleus: Rutherford, Geiger and Marsden, 1911 (volume 1,
section 5.2).

The existence of isotopes: J. J. Thomson, 1913. The mass spectrograph:
Aston, 1920.

*The Bohr atom (interpretation of Rydberg’s constant), 1913 (volume 1,
section 6.1).

*Resonance potentials: Franck and Hertz, 1913 (volume 1, section 1.4).

Moseley’s law, 1913 (volume 1, section 7.4).

X-ray absorption spectra: Maurice de Broglie, 1916 (volume 1, section 7.1).

The theory of X-ray emission spectra: Kossel, 1917 (volume 1, section 7.3).

X-ray photoelectrons: Maurice de Broglie, 1921; Robinson, 1923 (volume 1,
section 7.2).

Gyromagnetic experiments: Barnett, 1914; Einstein—de Haas, 1915 (volume 1,
section 9.3).

*The Stern and Gerlach experiment, 1921 (volume 1, section 10.1).
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The Paschen—Back effect, 1921 (section 5.4).

The Landé factor, 1923 (volume 1, section 10.2 and section 5.3).

The hypothesis of spin: Uhlenbeck and Goudsmit, 1925 (volume 1, chapter 12).
Pauli’s exclusion principle, 1925 (volume 1, section 7.3 and section 2.3).

The direct measurement of the spin magnetic moment of free electrons

(1) in an electron beam, polarised by scattering: Louisell, | volume 1,
Pidd and Crane, 1954; chapter 12.
(2) by magnetic resonance: Dehmelt, 1958.

A6.5 Nuclear Magnetism

Existence of the hyperfine structure of spectral lines: Michelson, 1891;
Fabry and Perot, 1897; Lummer and Gehrcke, 1903.

The hypothesis of a nuclear magnetic moment: Pauli, 1924; Russel, Meggers
and Burns, 1927.

A detailed explanation of hyperfine structure in terms of nuclear spin: Back
and Goudsmit, 1927 (section 6.5).

The hypothesis of neutron spin: Heisenberg, 1932.

Measurement of the magnetic moment of the proton: Stern, 1933 (section 6.1).

Nuclear magnetic resonance on atomic beams: Rabi, 1938 (volume 1,
section 10.5).

Measurement of the magnetic moment of the neutron: Alvarez and Bloch,
1940 (section 6.1).

Electronic detection of nuclear magnetic resonance: Bloch, 1946; Purcell,
1946 (volume 1, section 9.5).

A6.6 Wave Mechanics and Quantum Mechanics

Bohr’s correspondence principle, 1923.

Matter waves A = h/mv: Louis de Broglie, 1923 (volume 1, section 4.4).
Schrédinger’s equation, 1925.

Heisenberg’s matrix mechanics, 1925.

Commutation laws: Born and Jordan, 1925.

Probabilistic interpretation: Born, 1926.

The uncertainty principle: Heisenberg, 1927 (volume 1, section 4.2).
Diffraction of electrons by a crystal: Davisson and Germer,

1927. (volume 1,
Diffraction of molecules: Stern, 1932. section 4.4)
Fresnel diffraction of electrons: Boersch, 1940.

The relativistic wave theory of the electron: Dirac, 1928.
The anomalous spin magnetic moment: Kusch and Foley, 1947 (volume 1,

sections 12.1 and 12.2).

Energy difference between the 2S,,, and 2P, ,, levels of hydrogen: Lamb and

Retherford, 1947 (chapter 4).
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Absorption, classical theory of 208
coefficient of 68
cross-section 66, 177
of y-rays 58
of X-rays 169
optical resonant
self-

Alkali atoms, effective quantum numbers

18, 56

quantum model of 17
spectroscopy of 61
Zeeman and Paschen-Back effects
in 105
Alkaline earth atoms, spectroscopy of 65
Alpha particles, scattering of 145
Alvarez and Bloch 115
Amplification ofawave 110
Angular momentum, as a characteristic of an
atomic state 39, 53
composition of 40, 119
for motion due to a central force 144
in a centre of mass frame 143
of a complete sub-shell 42
of agroundstate 42
of anucleus 173
of a photon 273, 168
of radiation 266
orbital 159, 164, 245, 40
quantisation of 159, 164, 245, 40
quantum number 246
rela(t)igonship of, to magnetic moment
2
spin 291, 41
Angular part of a wave function 3
Atomic beam, as a light source 145
speed of 263
suppression of the Doppler effect in
145

used in, measurement of lifetimes 77
population inversion (maser) 112
Rabi’s experiment 257, 163
Stem9 and Gerlach experiment
23
Atomic number, and periodic (Mendeleev)
table 37
Barka’smeasurementof 212
Chadwick’s measurement of 154
Moseley’s law of 186
Auger effect 175, 182
Avogadro’s number 36

Back and Goudsmit effect 118
Balmer 14, 15, 17, 160, 197

Barkla 48, 212

Barnett 219

Basov and Prokhorov 113
Beam-foil spectroscopy 175

Beth 271

Birlmg‘i‘ng energy of atomic electrons

Black-body radiation 3, 85

1,

Bloch and Alvarez 115

Bloch equations (magnetic resonance) 226

Bloch method of detection (magnetic
resonance) 232

Bloembergen 113

Bohr-Coster diagram 187

Bohr hypothesis 14, 257

Bohr magneton 248

Bohr model of an atom 158, 13

Boltzmann constant 36

Boltzmann proof of Stefan’s law 44

Boltzmann thermal equilibrium 83, 111,
212, 251, 156

Brackett 17, 161

Bragg diffraction of X-rays 136, 169

Bragg and Pierce, experimental law of 171

Breit 292, 136

Bremsstrahlung 62, 177, 205

Brillouin 251

de Broglie, Maurice (X-rays) 172

de Broglie wavelength 129

Brossel 284, 161

Briick 78

Carrara 273
Casimir, equation of 126
Central potential or force, motion under a
144
quantum mechanical treatment of 1
Centre of mass 142
Chadwick 154
Chemical properties of elements 35
Circular polarisation (of a wave), angular
momentum 270
in magnetic resonance 273
in the Zeeman effect 282
interaction of, with a crystalline plate
266
Classical theory, of diamagnetism 201
of magnetic resonance 223
of multipole moments 214
of radiation 79, 202
of radiation pressure 37
of the elastically bound electron 206
ofthe Zeeman effect 203
planetary model 141
Coherence, of atomic excitation 148
spatial,of awave 123
temporal, of a wave 126
Coherence time 126, 154, 162
Collisions, elastic and inelastic 27
non-relativistic elastic 229
of electrons 24-34, 183-7
of hard spheres 66
of photons 48-64
probability of 67
various types of, process 181
Collision cross-section 66, 178
Combination principle 14
Compton 48
Configuration, clectronic  25-38
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Conservation, of angular momentum 215
of energy 3-36
of momentum 270-90
Constant, Curie 253, 256
fine-structure 161
fundamental 34-6
Rydberg; see Rydberg
screening 186
Contact potential 10
Contact term 124
Core polarisation 20, 124
Correspondence principle 162
Coster, Bohr and 187
Coulomb, law of 201
non-, potential 16
Coulomb potential 151, 2
Coupling, hyperfine (I-J) 119, 132
j—j 51,73
L-S 48,53,68
spin-orbit 43
Crane 295
Critical potentials 32
Cross-section, and absorption coefficient
68, 181
and transition probability 70
differential 148, 179
hard-spheres collision 66
total 68, 180
Crystal diffraction 135, 169
Crystalline plate, interaction of, with a
polarised wave 266
Curie (law and constant of) 253, 258
Cyclotron frequency 201, 297

Damped wave train 79, 101
Damping, of an oscillator 206
radiation 207
Deceleration radiation 177, 205
Degeneracy 164, 250, 8, 16, 19, 30
Dehmelt 299, 167, 169
Deuteron (nucleus of deuterium) 116
Deutsch 191
Diamagnetism 201
Dicke 154
Diffraction, of electrons 136
of neutrons 136
of X-rays 169
Dipole, electrostatic 216
magnetic 220
oscillating (classical theory) 202
transition; see Transition
Dipole moment; see Electric dipole moment
and Magnetic moment
Dirac 292, 78
Dispersion (classical theory of) 207
Doppler effect, in y-ray spectroscopy 60
in optical spectroscopy 21, 144
inradiofrequency spectroscopy 154
Duality, wave—corpuscle
Doublet (energy level) 50
Duane and Hunt 177
Dunoyer 240

Einstein and de Haas experiment 213
Einstein equation (photoelectric effect) 8
Einstein theory of radiation 80

Elastic collisions, and inelastic 27, 63

INDEX

non-relativistic 229
of photons 48
Elastically bound electron; see Electron
Electric dipole moment, of the electron and
of the neutron 187
general discussion of 216
Electric quadrupole moment, general dis-
cussion of 216, 221
of a nucleus 125
Electromagnetism, absorption and disper-
sion 208
general formulae of 200
multipole moments 214
oscillating dipole (radiating) 202
oscillator strength 73, 170
polarised wave passing through a
crystalline plate 266
radiation pressure 37
Thomson and Rayleigh
211,213
Electrostatic selector 184
Electrons, associated wavelength of 129
collisions of, with atoms 24-34
collisions of, with photons 50
conduction (or free) 27
elastically bound 20, 79, 80, 206, 207
interference of 129
mass of 36
outer 17,61
valence 36
Electron bombardment
Electron diffraction 136
Electron paramagnetic (or spin) resonance
(e.p.r.oresr.) 234
Electron spin 291
Electron volt 34
Electronic configuration 25-38
Electronic orbit; see Orbit
Electronic shell and sub-shell 27, 29
Elliptic orbits 164
Emission, in cascade 76, 174
induced orstimulated 80, 108, 260, 155
of y-rays 58
resonant 15, 31, 57
spontaneous 73, 173
superradiant 118
thermal 3,13, 83
Energy, binding, of atomic electrons
84

scattering

24-34,183-7

171,

Bohr’s quantisationof 159
exchanged, in collisions 27, 53, 62
extraction or escape 8,171
hyperfine coupling 119, 122
ionisation 12, 24, 34
magnetic 195
photon 5,8
resonance 29, 56
spin—orbit coupling 43, 62, 66
units of 34

Engergy density, and number of photons 68,

7

and radiation pressure 41, 42
and transition probabilities 71, 72
of thermal radiation 3

Energy level diagram, of hydrogen 17
of mercury 72
ofsodium 64



INDEX

Energy levels, crossing of 105, 147
deep (X-rays) 182,82
enumeration of 53
excited 20
experimental evidence for 31
ground 19
of hsygirogen (Bohr’s theory) 14,17,

1

of hydrogen (in quantum mechanics) 8
hyperfine 118
of mercury 72
of sodium 64
theoretical discussion of 47
Equivalent electrons 54
Esterman, Frisch and Stern 113
Exchange, effect of 24, 74
Excitation, by collisions with electrons 24,
183
by optical resonance 18, 56
coherent 148
probability and cross-section 71, 178
Exclusion principle 183
Extraction energy (or escape energy) 8, 9,
171

Fabry-Perot (use in lasers) 117, 120
Faget and Fert 129
Fermi, contact term 124
Field, induced 109
‘intermediate’ 104, 135
‘motional’ 188
radiation (classical theory) 202
relativistic transformation 43
Fine structure 164, 189, 49
of hydrogen 164
Fine-structureconstant 161
Fluorescence optical 18, 19
X-ray 175
Foley and Kusch 293
Fourier transform 98
Frame of reference; see Reference frame
Franck and Hertz 27, 28, 32
Franken 150, 154
Frequency, cyclotron 201, 297
Larmor 200, 210
of orbital motion 162
resonance 18, 56
threshold; see Threshold
Frisch, Esterman and Stern 113
Fundamental constants 34, 35
Gamma rays, absorption of 59
and the Mossbauer effect 58
emission of 58
Gaussian system of units  xiv, 200
Geiger and Marsden 153
Gerlach, Stern and 239, 137
Gorter, de Haas and Vanden Haendel
Goudsmit, Back and 118, 135
Uhlenbeck and 292
Gozzini 275
Grotrian diagrams 283
Ground state 19, 31, 161, 287, 166
Gyromagnetic ratio, in terms of the Landé
factor 248
manifestation of, by a mechanical
effect 213

255

249

meZ%s‘I‘.lrement of, by magnetic resonance
nuclear 116
orbital 209
relativistic expression for 296
spin 291
G)%%scopic effect (or diamagnetic effect)

Hamiltonian, of a many-electron atom 23
of an electron in a magnetic field 89
of the hydrogen atom

Hanle 150

de Haas, Einsteinand 213
Gorter and Vanden Haendel

Half-life 75

Half-width 102

Helium, exchange interactionin 74
ionspectrumof 164

Hertz; see Franck

Holboum 271

Hollow cathode 145

Hund 256, 56

Hunt, Duaneand 177

Hydrogen, Balmer-Rydberg law for 14
Bohr model of 158
energy-level diagram of 17
fine structure of 75
ortho and para 113
quantum theory of 2

Hydrogen maser 160

Hydrogen-like ions 162

Hyperfine structure 112

Hyperfine splitting data 121

255

Identical particles 26
I-J coupling 119, 132
Imprisonment (of a resonance line) 79
Independent electron approximation 22
Induced (stimulated) emission 80, 108,
260, 155
Inelastic collisions, and elastic 27, 63
of electrons 24, 182
of photons 54
Interactions within an atom 22
Intercombination lines 71
Interference, between two lasers
of electrons 129
of single photons
Inversion of population

127

94,128
112, 290

Ionisation, by collisions with electrons 24,
181, 183
light-induced 12
of alkali atoms and rare gases 27
Ionisation cross-section 185
Ionisation potential and energy 12, 24, 34

Isotope shift 127, 198
in mercury 129

Javan 116
Jj—jcoupling 51,73, 109

Kastler 287
Kepler's law 156
Keyser (unit of wavenumber) 34
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Kinetic energy, exchanged in collisions 28,
63

relativistic 47
Kossel 168
Kusch and Foley 293

Lagrange equations 86
Lagrangian of an electron in a magnetic
field 87
Laguerre polynomials 6
Lamb shift 80, 157
Landé factor, definition of 248
for electron spin 292
measurement of, by Zeeman effect
nuclear 117
quantum theory of 94
sign of 118
Landé interval rule 69, 121
Langevin theory of magnetisation 250
Laplacian in spherical polar co-ordinates 2
Larmor angular frequency 210
Larmorangular velocity 199
Larmor explanation of Zeeman effect
Larmor precession 208
Larmortheorem 197
Laser, gas 115,117
general description of 108
ruby 115
use of, in spectroscopy 146
Lebedew 44
Legendre polynomials 4
Lenard 24
Level-crossing 105, 147
Lifetime, classical theory of 79, 207
coherence 126, 154, 162
imprisonment 79
of an excited state 73, 170
Linear oscillator 202
Lineshape 144
Linewidth, absorption 71
Doppler 21, 144, 154
emission 21
in magnetic resonance 229, 165, 166
natural 23, 100, 144, 149, 154
Stark 23
L-S coupling 48, 66, 68, 93
Lorentz curve 102
Louisell, Pidd and Crane 295
Lummer and Pringsheim 5
Lyman series 17, 20, 160, 197

277

203

Magnetic field and induction 193
Magnetic quantum number 246
Magnetic sublevel 249, 97
Magnetic moment (dipole), anomalous, of
the electron 293, 297
classical microscopic definition of
194, 220
effective 136
nuclear 116
of the proton and of the neutron 113,
114
quantisation of 248
rela(t)ionship of, to angular momentum
208
resultant, in /-J coupling 13!
resultant, in L-S coupling 93, 98

INDEX
spin 291, 43
sugjeé:ted to an inhomogeneous field
Al

subjected to a uniform field 209
Magnetic resonance, and circular polarisa-
tion 273
Bloch equations for 226
Bloch method of detection of 232
classical explanation of 223
detection of, in an atomic beam (Rabi’s
method) 257, 163
mechanical 275
multiple quantum transitions in 167
nuclear 234
on free-electron spins 299
optical detection of 284, 287, 161, 166
quantum explanation of 257
radiofrequency detection of 231, 260
Magnetisation, diamagnetic 202
due to orbital motion 213, 219
longitudinal and transverse 213
paramagnetic 211
rotating (in rnagnetic resonance) 229
Magnetometer 234
Magneton, Bohr 248
nuclear 114
Magyar and Mandel 127
Maiman 115
Mandel and Pflegor 128
Marsden, Geiger and 154
Maser, general description of 108
hydrogen 160
three-level 113
Townes’s 112
Mass, centre of 142
of the electron and of the proton 36
reduced 143
units of 34, 35
Mass effect (in spectroscopy) 127
Matrix element, of a scalar operator 232
of a vector operator 234
Maxwell’s equations 39, 201
Mendeleev (periodic) table 37
Mercury, energy-level diagram of 72
hyperfine structure of 129
isotope shift of 129
isotopes of 130
magnetic resonance in an excited state
of 284
Mesic atoms 192, 195
Metastable state 33, 73, 158
Millikan (photoelectric effect) 10
MKSA (S1) system of units  xiii, 200
Model, Bohr 158
notion of a 166
planetary (Rutherford’s)
shell chapter 2
Thomson 153, 157
vector 66, 95, 98, 102, 111
Momentum, conservation of 42, 46
expressed in terms of a wave vector 97
generalised, of a charge in a magnetic
field 87,89
of a photon 46
of radiation 37, 42
Moseley’s law 186
Maossbauer effect 58

141,151,154



INDEX

Multiplet level 50

Multiplicity 49

Muiltipoles (in classical theory) 214
p-mesons 192

Muonium 191, 195

Natural width 23, 100, 144, 149, 154
Neutron, electric dipole moment of 187
spin and magnetic moment of 114
Noise, signal-to-, ratio 141
Normal Zeeman effect 203, 282
Nuclear magnetic resonance (n.m.r.) 234
Nucleus, angular momentum and magnetic
moment of 113
electric quadrupole moment of 125
existence of (Rutherford) 145
mass and volume effects 127

Optical pumping 115, 287, 166
Optical resonance 18
Optics, non-linear 125
Orbit, Bohr 161
penetrating 189, 16, 195
Sommerfeld 164
spin-, interaction 43
Orbital angular velocity 162
Orbitals 13
Order of degeneracy, of a configuration 29
of energy levels in j—j coupling 52
of energy levels in L-S coupling 50, 53
of the levels of hydrogen &8
in the theory of radiation 83
Orientation, of angular momenta or
polarisation 212, 250, 288, 300, 114
Ortho-hydrogen 113
Oscillator, linear 202
strength of 173, 170

Para-hydrogen 113
Paramagnetic magnetisation 211, 250
Paramagnetic resonance 234
Paschen series 17, 160
Paschen-Back effect 99
total 111
Pauli principle 183, 28, 53
Penetrating orbit 189, 16, 195
Periodic table 37
Perturbation theory, application of, to the
problem of an external field 96, 99
to the problem of electronic
interactions 23
to the problem of magnetic inter-
actions 47
principle of 93
Pflegor and Mandel 128
Pfund series 17, 161
Photoelectric effect, in metals 5
photoionisation 12, 62
X-ray 171
Photemultiplier 90
Photon, angular momentum of 273
energy of 5,8, 15
interference 92
momentum of 46
Photon absorption 66
Photon counting 90

251

Photon collisions  48-64
Pickering 164
Pierce, Braggand 171
Planck constant 5, 35
Planck formula (radiation) 5, 85
Planetary model 141, 151, 154
Polarisation of angular momenta; see
Orientation
Populations of atomic states, in an optical-
resonance experiment 82
in magnetic resonance 259
in paramagnetism 251
in thermal equilibrium 83, 111, 212,
251, 156
inversion of 112, 290
spontaneous evolution of 74
Positron 62, 192
Positronium 192
Potential, central (in classical theory) 144
central (in quantum theory) 3
contact 10
critical 32
extraction or escape 8
ionisation 12,24, 34
non-coulomb 16
resonance 28
Precession, Larmor 208
Principal quantum number 159
Pringsheim, Lummer and 5
Probability, and amplitude of a wave 92
and cross-section 68
of a collision 66
of a transition 70, 257
of spontaneous emission 73
of stimulated emission 82
position, of an electron in an atom 9
Probability density, angular 12
radial 1/
of the sodium atom 27
Prokhorov 113
Proton, mass of 36
resonance 234,114
spin and magnetic moment
Pumping, optical 115, 287, 166
radiofrequency 113
Purcell 232

113

Quadrupole; see electric quadrupole
moment

Quadrupole tensor 222

Quantisation, of angular momenta 159,
of energy chapter 1
spatial 239

Quantum number, and Pauli’s principle 28
angularmomentum 246
effective 19
half-integral 246
magnetic 246,4
principal 159, 165, 6
spin 291

Quantum efficiency 11

Quenching 83

Rabi 257, 136, 163
Radial wavefunction 5
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Radiation, classical theory of 202
de%leration (Bremsstrahlung) 62,177,
5
Einstein theory of 80
laser 123
scattered 211
spectral 13
spontaneous 73
stimulated (or induced) 108
thermal (black body) 3, 13, 85
Radiation pressure, and momentum 42
classical theory of 37
experimental evidence for 43
Radiative corrections 79
Radiofrequency spectroscopy 154
Radiometer
Radius (mean) of the hydrogen atom 162, 15
Radloff 128
Ramsey 160, 165, 191
Rare earths 34, 36
Rayleigh scattering 213
Recoil, absence of (Mdssbauer) 61
of an electron (Compton) 53
of a nucleus (y- emission) 58
Reduced mass 143
Reference frame, centre of mass 142
Larmor 198
rotating (in magnetic resonance) 224
Refr}ctive index (real and imaginary parts)
20
Relgtivistic energy-momentum relationship
4

Relativistic field transformation 43
Relaxation, longitudinal and transverse
213
in magnetic resonance 226, 261, 167
magnetic 211
paramagnetic 211
time 213
Resonance, energy 31
line 19, 31,72
optical 18, 56, 81, 185
paramagnetic 234
potential 28
Retherford, Lamb and 80, 157
Reversal ; see Self-reversal
Ritz 16,178
Roth 256
R.P.D. (retarding potential difference) 184
Rutherford’s model of the atom 154
Rutherford’s scattering experiment 145
Rydberg constant 14, 158, 160, 186
Rydberg law 14, 158

Saturation, of magneticresonance 229,262
of magnetisation 253
Scattering, Bragg 135
classical Rayleigh 213
classical Thomson 54, 211
Compton 48
multiple 79, 162
of electrons 293
of particles (Rutherford) 145
Schawlow 117, 81
Schrédinger’s equation 2
Screening effect and coefficient of 188
Screening separation 84

INDEX

Selection rules, for magnetic quantum
number
general 59
in j—jcoupling 74
in L-S coupling 7/
in X-ray spectra 181, 84
Self-reversal of a resonance line 73
Series (of spectral lines) hydrogen 17, 160
X-ray 178
Shells (electronic) 27, 29
SI system of units  xiii, 200
Singlet level 50
Sodium, energy-level diagram for 64
ground state configuration of 42
probability density of electrons in 21
Sommerfeld, Bohr—, comparison with
quantum mechanics 13
Sommerfeld elliptic orbits 164
Spectral term 15, 178, 75
Spectroscopic notation 50
Spectroscopy, level-crossing 147
of alkalis 61
of atoms with two electrons 65
of hydrogen 14,158, 75
of X-rays 168,81
optical 13
radiofrequency 154
Spectrum, continuous 14
line 14,177
photoelectron velocity 172
X-ray absorption 169
X-ray emission 175
Specular reflection 20
Spin, nuclear 117
of the free electron 291
Spin magnetic moment 292
Spin-orbit coupling 43
Spin quantum number 292
Spontaneous emission 73, 173
Standards of frequency and of time 121,
161, 170
Stark effect 23
States, excited 20
ground 19, 32, 161, 287, 166
Statistical weight; see Order of degeneracy
Stefan’s law 44
Stern, and Gerlach 239, 137
Estermann and Frisch 113
Stimulated (induced) emission
260, 155
Stripping 176
Structure, fine 188, 49
constant 161
of hydrogen 164,75
of the alkalis 61
hyperfine 112 (chapter 6)
Superradiance 118
Susceptibility, diamagnetic 201, 203

Temperature, negative 112,290

Tensor, quadrupole 222

Tensor operator 236

Thomas 45

Time, imprisonment, of aresonance line 79
relaxation 213

Thermal emission, radiation 3,13

Thermal equilibrium 85, 111, 212, 251, 156

80, 108,



INDEX

Thermoelectric effect 8, 24
Thomson scattering 54, 211
Thomson model of the atom 20, 153, 157
Threshold frequency, for photoelectric
effect in metals 7
photoionisation 12, 26
X-rayabsorption 171
Townes 112,113,117
Transition, electric dipole 60
magnetic dipole 226, 61, 156
multiple quantum 167
spectral or radiative 16, 31, 65, 59
Transition element 34, 36
Transition probability 70, 257
Triplet level 50

Uhlenbeck and Goudsmit

Uncertainty principle 96

Units, of energy 35
systems of  xiii, 200

292

Valence 36
Van Leeuwen 238
Vector model 66, 95, 98, 102, 111
Vector operator 234
Velocity, cyclotron angular 201, 297
in a vapour 21, 28
in an atomic beam 263
Larmor angular 199
orbital 162
Volume effect (in spectroscopy) 127

Wave, and corpuscle 87
de Broglie, of a particle 128
Fourier components of 98, 101

253

induced (stimulated) 108
polarised; see Circular polarisation
Wave functions, angular 3, 10
radial 5,9
Wavelength, Compton 53
de Broglie 128
of spectral lines 14
Wavenumber 14, 32
Wave vector 96
Weisskopf 172
Wigner-Eckart theorem 60, 94, 232
Wilkinson 296
Wood 18

X-rays, absorption spectra of 169
and Auger effect 182
Bremsstrahlung 176
diffraction of (Bragg’s law) 169
discontinuities in absorption of 170
Moseley’s law for 186
photoelectric effect 171
scattering (Thomson, Barkla) of 211
selection rules for 179, 84

X-ray emission lines 175, 81

Young’s slits 92

Zavoisky 232

Zeeman components 276

Zeeman effect, anomalous 207
classical explanation of 203
including nuclear spin 131
quantum explanation of 276

Zeeman sublevels 249



