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FOREWORD 

A book describing statistical approaches specific to nuclear industry 
safeguards applications has long been needed. Statistical Methods in 
Nuclear Material Control helps meet this need by presenting selected 
methods useful for plant safeguards control and evaluation. The dis
cussions in this volume should provide increased industry-wide under
standing and guidance that will be instrumental in improving material-
unaccounted-for control and evaluation. 

The U. S. Atomic Energy Commission, Division of Nuclear Ma
terials Security, in conjunction with the Safeguards Training Program 
at the Argonne Center for Educational Affairs sponsored the prepara
tion of this book. 

Leonard M. Brenner 
Acting Director 
Division of Nuclear Materials Security 
U. S. Atomic Energy Commission 
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PREFACE 

This book grew out of material prepared for several courses on the 
application of statistics to problems of nuclear control. T h e courses 
were conducted as part of the Safeguards T ra in ing Program sponsored 
by the Atomic Energy Commission (AEC) and administered by the 
Argonne National Laboratory (ANL) through its Center for Educa
tional Affairs. Participants in the courses and others involved with 
applying statistics to nuclear material control suggested that the course 
notes be prepared for wider distribution. This general feeling provided 
the impetus for the project that has resulted in this book. 

T h e project rather forcibly brought to my at tent ion that there 
is a considerable gap between crudely prepared lecture notes and what, 
I hope, is a more polished and more nearly complete presentation on 
the subject. T h e course material was extended considerably from the 
original lecture notes. For example, essentially all the material in 
Chap. 3 tlealing witli the in iponaiu topic of estimation of measure
ment-error variances is new since I touched only very lightly on this 
subject in my past courses. Because of this and other extensions, all 
the material presented in this book can scarcely be covered in any 
detail in a short course. 

Although an outgrowth of short courses, this volume is not in
tended as a textbook. Consequently there is a complete absence of 
problems that can be assigned. Rather , the book is intended as a per
sonal reference book tliat the reader would study on an individual 
basis, applying tlie methods to Ills problems. Witlr this in mind I 
placed heavy emphasis on worked examples, usually with sufficient cal-
culational details to enable the reader to follow the solution step by 
step. 

Some sections can be omitted by the reader whose only interest 
is in application. T h e organization of the material is such tliat the 
statistical bases for the solutions are in separate sections, which are 
generally somewhat more mathematical in na ture and can be skipped 
without impairing tlie usefulness of the book. T h e material is struc
tured so that each major section in Chaps. 4 to 9 begins with a descrip
tion of the problem under consideration. If a particular problem is 
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of little concern, the following sections, which give the solution, 
worked examples, and basis for the solution, can be omitted. Also, a 
few topics are quite specialized in nature and may not be of great 
interest to the reader concerned with applying statistics to his own 
particular problems. To assist the reader in selecting topics of greatest 

.interest for more intensive study, I included Chap. 10, which sum
marizes the topics and the examples in an orderly fashion and directs 
the reader's attention to the parts of the book likely to interest him 
most. 

A bibliography is not included. The only references to other 
works occur when they are cited in text for specific reasons. This is in 
no way intended to slight the past writings that touch on this subject. 
But the time frame of the project was such that a literature survey 
was out of the (jiiestion; two complete drafts were written between 
mid-June and the end of December 1972. Therefore I placed heavy 
reliance on my personal experience rather than on other works in 
selecting the material to be presented. Although I hope the end prod
uct is mostly self-contained in the essentials, there are, no doubt, in
equities in the amount of attention given to certain topics because of 
my special interest in them. I can only ask your indulgence in this. 

I am indebted to many individuals who have contributed in one 
way or another to this project. In particular, I owe a debt of gratitude 
to M. A. Kanter, who both conceived of this project and provided 
financial support through his role as Director of the Safeguards Train
ing Program of the Argonne Center for Educational Affairs. Beyond 
this, I gratefully acknowledge his personal assistance in providing 
encouragement and technical comments that resulted in major im
provements of the first draft. The project was administered through 
ANL by T. S. Sherr of the AEC Division of Nuclear Materials Security, 
whose encouragement and editorial assistance is also appreciated. My 
thanks to him extend also to others in the AEC and among the AEC 
contractors who lent their support by reviewing the first draft. 

In the examples presented it is apparent that I drew heavily on 
my years of experience at Hanford. Although I hesitate to mention 
certain persons by name for fear of omitting others also deserving of 
mention, it would be a disservice were I to omit expressing gratitude 
for my pleasant and rewarding associations with R. A. Schneider, K. 
B. Stewart, and C. A. Bennett, whose collective influence on this book 
will be noted by the reader. In particular, on numerous occasions 
while writing the book, I talked by phone with R. A. Schneider to 
obtain his reactions to certain sentences, paragraphs, examples, etc. 
His comments and ideas have been most appreciated. Throughout the 
book I have noted specific contributions from these individuals and 
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Others. In many instances this notation concerns data for the examples. 
Although acknowledging these data sources, I supplied the solutions 
and bear full responsibility for any shortcomings in this and other 
respects. 

To continue with the acknowledgments, I am most grateful to 
the management of Exxon Nuclear Company, and, in particular, to 
L. P. Bupp, for giving me the time and opportunity to work on this 
project. I acknowledge a special debt of gratitude to the typist. Marge 
Groff, who very expertly waded through two complete drafts of the 
manuscript, and hope that, if nothing else, her knowledge of the Greek 
alphabet has been enhanced thereby. I would like to thank R. F. 
Pigeon, AEC Office of Information Services, who handled the admin
istration of the publication of the book. The expert editorial assistance 
provided by Margaret Givens, Dee Jared, and Joan Roberts at the 
AEC Technical Information Center is very much appreciated. Finally, 
for his assistance in indexing, I am grateful to Jonathan Jaech, who 
was motivated by the opportunity of having his name appear in the 
preface in lieu of financial rewards. 

I dedicate this book to my wife, Lorna, using this means to express 
the idea that Lorna has been a continuing inspiration to me in all 
aspects of my life, including the preparation of this book, even though 
I suspect that she is numbered among those who "don't believe in 
statistics." Her continuing courage, unwavering faith, and never ending 
love and concern for others in the face of personal suffering are the 
sources of this inspiration to me, and to others. Those among my 
readers who are privileged to know Lorna will understand it when I 
say that, when judged against what her contributions to mankind have 
been, this book and all the effort that went into its preparation pale 
into insignificance. [Prior to the publication of this book, Lorna was 
called to her eternal rest. This book is lovingly dedicated to her 
memory.] 

I would like to conclude the preface by saying that it is my sin
cere hope that the end product of these efforts will be useful to you, 
the reader, in the execution of your work assignments. 

John L. Jaech 
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Chapter 1 

INTRODUCTION 

This book is concerned with the application of statistical methods in the 
solving of problems associated with the control of nuclear materials. The 
motivation for exercising this control is not the issue here, but it is rec
ognized that more than one motivating factor is at work. 

If for no other reason, the operator of a facility is concerned with the 
control of nuclear materials because of economic incentives. I t is good 
business practice for him to guard against the loss of this economically 
valuable resource and by being accountable for it to demonstrate to 
himself and to others that the measures taken to prevent losses have 
succeeded. 

O n the other hand, nuclear materials not only have economic value 
but also strategic value in that they can be harmful if used for illicit pur
poses. In this connection the operator is responsible to the public to secure 
nuclear materials entrusted to his care and to demonstrate that his security 
measures have successfully guarded against the diversion of nuclear ma
terials for illicit purposes. The public is represented in this by a national 
agency (in the United States, the Atomic Energy Commission) charged 
with providing credible assurance that each facility operator is exercising 
responsible stewardship of nuclear materials. 

If we take the strategic value of materials one step further, we see that 
the control of nuclear materials is also an important international issue. 
The scope of the problem differs, but the essential ingredients are the same. 
In this instance the international agency (namely, the International 
Atomic Energy Agency) is charged with providing assurance to the member 
states that a given state has not diverted nuclear materials from peaceful 
endeavors to the production of nuclear weapons. 

In viewing these different situations, we see two quite distinct aspects 
of the problem. First, and quite clearly more important, is the problem of 
guarding against losses. This is accomplished (1) by plant design and opera
tion to minimize the amount of nuclear materials that is lost in the sense 
that it exits from the facility without having been measured, or perhaps 
it remains within the facility unbeknownst to anyone and is therefore 
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unaccountable, and (2) by a physical security systein that guards against 
theft of such materials. With respect to the first point, the operator of a 
facility strives to keep the yield high and to guard against all losses, meas
ured or unmeasured. From a control viewpoint, it does not matter in 
principle how small the yield is as long as scrap and waste materials can be 
measured adequately. However, experience indicates that scrap and waste 
materials are difficult to measure, and, as a general rule, the smaller the 
amount of such materials created, the better the control that is exercised. 

The second aspect of nuclear materials control is the ability to demon
strate that the amount of material lost is below some specified amount, i.e., 
that the steps taken to guard against losses have been effective. Clearly, if 
the preventive measures have not been effective, the control cannot be 
demonstrated. (This assumes that the system of accounting provides an 
honest reflection of the true state of affairs.) Thus the problem of guarding 
against losses is the more important one. On the other hand, it is not 
comforting if the steps taken to physically control the materials have been 
effective but the control system cannot demonstrate this with any credible 
assurance. Therefore the importance of this aspect cannot be minimized 
either. 

How is adequate control demonstrated? In its simplest form, adequate 
control requires only proper accounting for all the nuclear materials 
entering and leaving a facility. In addition, at specified times there must be 
the ability to measure the materials in inventory. This process is referred 
to in broad terms as nuclear materials accountability. 

Thus far in the discussion there has been no mention of statistics. If 
the problem of accounting for materials were as simple as indicated in the 
previous paragraph, there would, in fact, be little need for statistical 
methods to effect and/or to demonstrate control. But the problem is not 
that simple—it is difficult to count atoms! It is never known for certain 
how much material enters or leaves a facility or how much is really there 
when an inventory is taken. Because of measurement errors, these quantities 
can only be estimated, and effective control is limited by the ability to 
measure. 

This problem is not different in principle from problems associated 
with control of other materials. The operator of a grocery store, for ex
ample, also makes errors when taking an inventory, and he also has un
measured losses. The problems are more serious for nuclear materials, 
however, for two reasons. First, the control must be very tight because of 
the high value (economic and strategic) of these materials; and second, 
the measurement problems can be very complex. 

This, then, is where statistics enters in. The role of statistical methods 
in this field of application is twofold: (1) to obtain objective measures of 
the effectiveness of the control system and (2) to indicate how the effective
ness can be improved. 
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This book is aimed at providing the practitioner with the tools needed 
to apply statistical methods profitably in nuclear materials control problems. 
Although statistics is a universal discipline that can be applied in any field, 
a specialized book for nuclear materials control is considered profitable 
because each field of application presents unique problems, whose solutions 
may not be adequately covered in readily accessible sources. Such appears 
to be the case in nuclear materials control, where the dominant problems 
are associated with such topics as 

• estimation of many different measurement-error variances 
• existence of (and often the dominance of) systematic-error 

variances 
• propagation of error variances in complex systems 
• problems associated with measuring and verifying an inventory 
• paired data, which occur in shipper-receiver differences, in 

inventory veriflcation activities, and when an item is measured 
simultaneously by two methods of measurement 

This book is intended to present a unified approach to the preceding 
problems and to other problems of primary concern to the practitioner in 
the field of nuclear materials control. 

Chapters 2 and 3 are introductory chapters, with Chap. 2 covering 
essential topics in probability and statistics and Chap. 3 concerned with 
the sources of measurement errors in this particular field of application. 
Chapters 4 to 9 follow a format that, I hope, will be helpful to the reader. 
Each section is divided into four parts: (1) a statement of the problem and 
the assumptions; (2) the solution; (3) worked numerical examples; and 
(4) the basis for the solution. The intent is that the book be usable even if 
the bases for the solutions are not studied or even read. In this sense the 
book is similar in nature to a cookbook, but at the same time, by including 
the bases for the solutions, it creates the opportunity for the reader to 
understand better the various topics. 

Chapter 10 is, in a sense, a summary chapter. All the examples, except 
those in Chap. 2, are indexed by type of problem and type of facility to 
permit easy reference. Further, brief descriptions are given of these prob
lems to convey their substance with respect to both technical and statistical 
content. 
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Chapter 2 

PROBABILITY AND STATISTICS 

OVERVIEW 

"Probabflity and Statistics" is an ambitious title for a single chapter. In a 
specialized book of this nature, there are those who might question the 
need for including material that is readily available from a large number 
of other sources of varying difficulty. Most potential users of this book will 
be likely to have at least one book on probability and statistics in their 
own personal libraries or, if not, to have ready access to one. Why then is 
this chapter included? There are a number of reasons. 

First, as mentioned in the Preface, this book is largely based on material 
from several short courses presented as part of the Safeguards Training 
Program conducted at the Argonne Center for Educational Affairs. Even 
though most students were familiar with the basic ideas of probability and 
statistics, the instructor considered it helpful to spend some time reviewing 
this basic material as a preliminary to discussing special topics of interest 
in nuclear material control. The review served the twofold purpose of 
refreshing memories on topics that might not have been reviewed for several 
years and of providing a common base of usage and terminology to aid in 
later presentations. I hope that the material in this chapter will fulfill the 
same role in this book. 

Second, in spite of the ready availability of reference books, I con
sidered it worthwhile to make this book self-contained so that the user 
does not need a battery of reference books to use the material presented 
here. Although complete success is not possible, I hope that this chapter 
will minimize the number of occasions in which the user must look else
where for help and clarification. 

Third, even introductory books on probability and statistics are often 
lengthy and contain material of little direct value for statistical problems 
of nuclear material control. This chapter is an at tempt to emphasize 
the topics of greatest value and interest to the specialized reader who will 
have occasion to use this book. Additional emphasis is gained by the presen-

5 
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tation of examples that largely relate to the application of probability and 
statistics to problems of nuclear material control. 

There is no attempt to be mathematically rigorous in the presentation; 
such rigor is sacrificed for clarity in exposition. Further, many basic topics 
may be conspicuous by their absence, because completeness is not the aim. 
Rather, the intent is to focus on the topics considered to be most useful in 
understanding the material in subsequent chapters. 

Chapter 2 is divided into nine major sections. Section 2.1 deals with 
descriptive statistics. In Sec. 2.2 some basic ideas and results in probability 
are presented. This leads to a discussion of random variables and probability 
distributions in Sec. 2.3, with some specific distributions considered in 
Sec. 2.4. Bivariate distributions involving two random variables are dis
cussed in Sec. 2.5. The remaining sections deal with statistical inference, 
with sampling distributions covered in Sec. 2.6, parameter estimation in 
Sec. 2.7, and hypothesis testing in Sec. 2.8. The final section, Sec. 2.9, 
presents some particular tests for testing the validity of distributional 
assumptions. 

2.1 DESCRIPTIVE STATISTICS 

This section is concerned with the presentation of data. How can a 
number of data points, or observations, be presented to summarize them 
best? The practitioner faces this problem when making oral or written 
presentations involving data. No attempt is made to make inferences from 
the data; the problem is simply to present the data in such a way that 
the listener, or reader, can visualize the entire set of data. The ways in 
which this can be accomplished are best shown by an example. 

Example 2.A 

Table 2.1 lists 144 consecutive mo iths of diffusion plant MUF* ex
perience data.t These data have been coded to disassociate the MUF 
experience from any specific production period and from any relation to 
throughput. 

First, the need for some kind of data summarization is evident. The 
data as tabulated are not very meaningful. One approach might be to 
retabulate the data in increasing magnitude. This would be helpful, but 
still not too instructive, and would involve considerable effort if done by 
hand. One can achieve the same result and provide additional information 
at the same time with a frequency table, or frequency distribution. 

• The term "MUF" is an acronym for material unaccounted for, which is the algebraic 
difference between a book inventory and a physical inventory. A negative MUF represents a 
"gain" of material. 

t These data were supplied by Charles A. Keller of the Oak Ridge Operations Office, U.S. 
Atomic Energy Commission. 
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TABLE 2.1 DIFFUSION PLANT MUF DATA 

Year 

Month 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 

-358 
-3,287 
5,798 

-4,115 
616 

-2,825 
1,287 

-1,619 
394 

1,930 
3,701 
6,254 

2 

-10,771 
-1,416 
-889 
134 

1,555 
-19 
144 

-932 
4,462 
854 

4,612 
-5,593 

3 

-1,524 
906 

4,410 
645 

-684 
3,056 
-635 
-624 
-164 

491 
2,225 
198 

4 

4,518 
292 

-2,160 
-433 
418 
336 

-140 
1,225 
212 
179 

-2,716 
13,8^9 

5 

-7,461 
-202 
346 

4,338 
-3,182 
-117 
-460 
-248 

-1,759 
-1,440 

1,911 
737 

6 

4,526 
-4,055 
2,678 

-1,132 
517 

-2,689 
-1,895 
1,592 
1,956 
2,081 
1,481 

-5,317 

Year 

Month 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

7 

-694 

933 
-1,350 

637 
-1,305 
1,318 
-779 
-351 
2,354 
11,311 

-13,775 
1,384 

8 

-345 
1,344 

-1,508 
1,501 
1,782 

-2,542 
1,018 
-436 
1,055 
277 
234 
928 

9 

15 
529 
-59 
1,701 
-447 
767 

1,421 
-85 
-248 
434 
820 
144 

10 

1,604 
324 

-725 
-493 
264 

1,520 
-1,120 
-352 
2,263 

-3,615 
4,002 
2,155 

11 

-3,690 
299 

-580 
201 

-336 
-2,436 
4,364 

-3,634 
-3,014 

3,835 
-3,094 

617 

12 

-3,476 
2,736 

-4,147 
58 
447 

-418 
-2,100 

-47 
-667 
4,525 
-376 
3,618 

In the construction of a frequency distribution, the first step consists 
in dividing the total range of values into a number of classes, or cells, of 
equal width. Experience shows that 12 to 20 such cells will result in a good 
picture of the distribution of values. T o accomplish this, note the smallest 
and largest values in the table. The smallest is —13,775 (observation for 
year 7, month 11), while the largest is 13,859 (year 4, month 12). Thus 
the data range from 13,859 to —13,775 for a total of 27,634 units. A cell 
width of 2000 units gives about the right number of cells. 

In the formation of the cells, it is helpful to select the cell boundaries 
or limits such that there is no question as to which cell each observation 
belongs. This is accomplished by defining cell boundaries to be halfway 
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between any two potential observations. For example, if observations are 
rounded to the nearest unit, as in this example, the cell boundaries are 
rounded to the nearest half unit. 

For the data under consideration, the cell boundaries can be defined 
as follows, in descending order: 

14,000.5 
12,000.5 
10,000.5 

etc. 

A frequency table, or a frequency distribution, is then formed from 
the data by tallying each observation in its appropriate cell. Table 2.2 
gives the results for the data being discussed The first observation falls in 
cell 8, the second in cell 9, the third in cell 5, etc. 

TABLE 2.2 FREQUENCY DISTRIBUTION OF M U F DATA 

Cell 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 

Cell boundaries 

12,000 5-14,000 5 
10,000 5-12,000 5 
8,000 5-10,000 5 
6,000 5-8,000 5 
4,000 5-6,000 5 
2,000 5-4,000 5 
0 5-2,000 5 

- 1 , 9 9 9 5-0 5 
- 3 , 9 9 9 5 - ( - 1 , 9 9 9 
- 5 , 9 9 9 5 - ( - 3 , 9 9 9 
- 7 , 9 9 9 5 - ( - 5 , 9 9 9 
- 9 , 9 9 9 5 - ( - 7 , 9 9 9 

5) 
5) 
5) 
5) 

- 1 1 , 9 9 9 5 - ( - 9 , 9 9 9 5) 
- 1 3 , 9 9 9 5 - ( - l 1,999 5) 

Frequency 

1 
1 

1 
i W r J-HT 
ij-rr u r r i 
i « t i+n i « T J4+T jj+r iWTij-fr ij+r 

iHT an: i i i i 
u+T u + r u+T 1++T i H T i j+r i + t r u+f ii 
I-HT iHT 14+r 1 
U+T 
1 

1 
1 

This frequency distribution gives a much clearer picture of the his
torical M U F data than does Table 2.1. We can see immediately where the 
bulk of the data lies and can readily observe that most of the monthly 
MUF ' s lie between - 6 0 0 0 and +6000 units. 

A frequency distribution or frequency table can be presented as a histo
gram or bar graph. This is simply a representation of the frequency distri
bution by rectangles of equal width, corresponding to the cell width, in 
which the height of the rectangle is proportional to the number of observa
tions. If one is careful to make the tally marks of equal size, then the histo
gram does not really carry much additional visual impact. The histogram 
for the preceding frequency distribution is shown in Fig. 2 1. 



DESCRIPTIVE STATISTICS 9 

CELLS 

FIGURE 2.1 Histogram of M U F data. 

Although the frequency distribution and the histogram serve to sum
marize the data as a group, they fail to provide any information about 
time trends that may appear in the data. This problem is discussed in 
more detail in Sec. 2.8. It is worthwhile to indicate here, however, that for 
this particular set of data, where the observations are ordered in time, a 
plot of the monthly MUF data versus time would be an instructive com
panion plot to present along with the histogram. In more general terms, 
when data are ordered with respect to some variable or variables, a plot 
of the data versus each such variable is helpful not only in summarizing 
the data but also as a prelude in using the data for making inferences. 
The importance of simple data plots should not be minimized. One danger 
of the use of high-speed computers is that this plotting step is often not 
included. 

To continue with descriptive statistics, the data described by the 
histogram in Fig. 2.1 can be characterized quite well by two kinds of num
bers, one describing central tendency and the other describing spread, or 
dispersion. Measures of central tendency most often used are the mean, the 
median, and, less frequently, the mode. Dispersion is usually described by 
the range and the variance (or its square root, the standard deviation). 

The mean is the arithmetic average of the observations. The obser
vations are summed, and the sum is divided by the total number of observa-
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tions. The reader can verify that the mean of the M U F data is 22508/144 

= 156 units. 

When the data are grouped as in the frequency distribution, the 

mean is more easily calculated (by hand). The mean calculated for the 

grouped data will not agree exactly with the value calculated from the 

original ungrouped data, because all observations in a given cell are 

assumed to have the same value. This value is halfway between the cell 

boundaries and is called the class mark. 

The frequency distribution for the M U F data of Table 2.1 is shown 

in Table 2.3, where Xi denotes the class mark for cell i and / j is the frequency. 

The mean is then denoted by x and is calculated by the following steps: 

Instructions for Eq. 2.1 

1. Multiply each class mark, A-,, by the class frequency, / , . 

2. Sum these products over the k classes. 

3. Sum the class frequencies, / „ over the k classes. 

4. Divide the sum in instruction 2 by the sum in instruction 3. The 

resulting value is x. 

In algebraic form, x is given by 

- flXl+fiXj-j- . . . +JkXk 

" ' / 1 + / 2 + . . . + / . 
/ k (2-1) 

1 = 1 / » = 1 

where there are k cells. 

This calculation can be done without the aid of a calculator if a simple 

transformation is made on the data. This is done by defining a new quantity, 

M„ and setting it equal to zero in some central cell, to =fc 1 in the cells on 

either side of this middle cell, to ± 2 in the next cells, etc. (The answer 

does not depend on which cell is chosen as the central cell.) The mean of 

u is then calculated from Eq. 2.1 with w, replacing x,. The relation between 

the mean of x, x, and the mean of u, u, is 

x = wu-\-xo (2.2) 

where w is the class width and xo is the value of Xi in the cell chosen as the 

central cell corresponding to M, = 0 . In Table 2.3, zti =-2000 and xo= 1000.5. 

(At this point in the discussion of the example, ignore the last column of 

the table.) 
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TABLE 2.3 FREQU 

Class mark (xi) 

13,000.5 
11,000.5 
9,000.5 
7,000.5 
5,000.5 

3,000.5 
1,000.5 
- 9 9 9 . 5 

- 2 , 9 9 9 . 5 
- 4 , 9 9 9 . 5 

- 6 , 9 9 9 . 5 
- 8 , 9 9 9 . 5 

- 1 0 , 9 9 9 . 5 
- 1 2 , 9 9 9 . 5 

ENCY DISTRIBUT 

Frequency (/t) 

1 
1 
0 
1 

10 

11 
54 
42 
16 
5 

1 
0 
1 
1 

ION FOR MU] 

Ui 

6 
5 
4 
3 
2 

1 
0 

- 1 
- 2 
- 3 

- 4 
- 5 
- 6 
- 7 

F DATA 

2 

36 
25 
16 
9 
4 

1 
0 
1 
4 
9 

16 
25 
36 
49 

E , / . = H4 

From Eq. 2.1, with u, replacing Xi, 

- (1)(6) + (1) (5)+ . . . + ( l ) ( - 7 ) 
" - [44 

= - 6 1 / 1 4 4 = - 0 . 4 2 3 6 

Then, the mean of x is, from Eq. 2.2, 

^ = ( 2 0 0 0 ) ( - 0 . 4 2 3 6 ) +1000.5 

= 153 units 

which compares with the value of 156 units found for the ungrouped data. 
This comparison gives some indication of the size of the computational 
error that might be introduced by grouping. 

Consider the median as another measure of central tendency. The 
median is defined as the middle oljservation, half the values being larger 
than the median and half being smaller. If the total number of obser
vations is odd, the median is a unique value; if the total number is even, 
the median is the average of the two middle values. For the M U F data 
of Table 2.1, we can verify that the two middle values are 179 and 198; 
thus the median is 188. This value is in fair agreement with the mean, x, 
in this example because the frequency distribution appears to be quite 
symmetric about the central values. The median is a useful alternate 
measure of central tendencv especially when unsymmetric or skewed 
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distributions are encountered. Since this does not occur often in nuclear 
material control applications, the median receives little attention in this 
book as a descriptive statistic. 

The final measure of central tendency is the mode. The mode is the 
observation that occurs the most frequently and is meaningful only for 
grouped data. The mode for :he grouped M U F data is 1000.5. No further 
mention is made of the mode in this book. 

Next, consider measures of dispersion, or spread. The two common 
measures are (1) the range and (2) the variance or the square root of the 
variance, which is the standard deviation. 

The range is the difference between the largest and the smallest 
observations. For the M U F data the range was shown previously to be 
27,634 units. The range sets bounds on the observed values and has the 
advantage of being very simple to calculate. One disadvantage is that the 
size of the range depends on the number of observations. It is clear that, 
if additional M U F data were to be presented, the calculated range for all 
the data could never become smaller than the value based on the original 
144 observations; it could only become larger. Another disadvantage is 
that one or two spurious observations have a great effect on the range 
and can result in a misleading picture of dispersion. 

The more commonly used measure of dispersion is the variance, or 
its square root, the standard deviation. The variance is the second moment 
about the mean. When the variance is used as a descriptive statistic, a 
word of caution is in order. The use of the variance requires a certain 
knowledge on the part of the reader or listener as to how to make the 
translation from the standard deviation to data spread. He may know, for 
example, that for certain commonly encountered symmetric distributions, 
the mean plus or minus twice the standard deviation encompasses most 
of the data whereas the mean plus or minus three times the standard 
deviation encompasses virtually all the data. The danger is that the standard 
deviation may always be interpreted in this way, even when calculated for 
unsymmetric distributions. Fortunately most applications in this book 
deal with distributions for which this interpretation of the standard de
viation is reasonably valid. 

The calculation of the variance and the standard deviation requires 
more effort than does the calculation of the range. For ungrouped data, 

y\,y2, • • . ,yn, the variance is conveniently defined as 

s^ = ~ , (2.3) 
n—1 

where JJ is the mean of they values. The divisor is («—1) rather than n 
for reasons that will become clear in Sec. 2.7. 
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An equivalent form of Eq. 2.3 that is more convenient from a compu
tational viewpoint is 

%/•-[{%')'/'. s^ = ~ ^ ^ ' 7 ' ^ - — ^ (2.4) 
n— 1 

If one prefers instructions rather than formulas, the following steps are 
performed. 

InslrUctid'ns for Eq. 2.4 

1. Square each value, and sum over all the n values. 
2. Sum the n values, and square this sum. 
3. Divide the sum in instruction 2 by n. 
4. Subtract the result in instruction 3 from that in instruction 1. 
5. Divide the result in instruction 4 by (n—l). The result is s^. 

When the data are grouped as in Table 2.3, the formula for the vari
ance is 

s' = '^ ^ ^ ^ ^ • = ' -* (2.5) 

• = 1 

where the x, are the class marks and t h e / , the class frequencies. 
As was true in calculating x, it is again much simpler to use transformed 

«i values. The variance of the «, values is found from Eq. 2.5, with u, 
replacing x^. Then the variance of the .*•, values, denoted by s^, is related to 
the variance of the «, values, denoted by s^, by 

(2.6) 

where w is the class width. 
For the M U F data under discussion, 

£ / . « . = - 6 1 

14 

2^/,M? = 373 (sum of cross products of columns 2 and 4 
• - ' of Table 2.3) 

Then, from Eq. 2.5, with «, in place of Xx, 

2 3 7 3 - [ ( - 6 1 ) V l 4 4 ] 

143 
= 2.4277 
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The variance of the x values is then found from Eq. 2.6: 

^̂  = (2000)" (2.4277) =9.7108X10" 

The standard deviation, Sx, is 

x, = V9.7108X10' = 3116 

In this example, note that 

^ ± 2 j , = 153±2(3116) 

= -6079 to 6385 

does, in fact, embrace "most of the data," and Sx is reasonably descriptive 
in this sense. 

2.2 PROBABILITY 

Probability is a measure of the likelihood that some chance event 
will occur. The calculus of probabilities is basic to statistical inference. 
Most modern texts develop the concept of probability on a purely axiomatic 
basis, making use of set theory. This purist approach, although logically 
much more satisfactory, is not considered essential for purposes of this 
book. Rather, the laws of probability are stated for the more easily under
standable classical definition of probability. The empirical and subjective 
concepts of probability are then treated briefly. 

2.2.1 Classical Interpretation of Probability 

With the classical approach to probability, an experiment can have 
M equally likely and mutually exclusive outcomes, of which n have some 
attribute E. Two outcomes are said to be mutually exclusive if the occur
rence of one precludes the occurrence of the other. Then the probability 
that the event with attribute E will occur (or, more simply, the probability 
that the event E will occur) is written Pr (E) and is defined as 

P r ( £ ) = ^ (2.7) 

For example, let an experiment consist in tossing a fair coin. There 
are two equally likely and mutually exclusive outcomes: a head (H) or 
a tail (T). Thus JV=2. Let the event E be the occurrence of a head. This 
can occur in n = 1 way. Then, from Eq. 2.7, 

Pr (£) = Pr (head)=-
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As another example, let the experiment now consist in tossing three 
coins. There are now N=8 equally likely and mutually exclusive out
comes, as shown in Table 2.4. 

TABLE 2.4 COIN-TOSSING EXPERIMENT 

Outcome* 

1 
2 
3 
4 

5 
6 
7 
8 

1 

H 
H 
H 
H 

T 
T 
T 
T 

Coin number 
2 

H 
H 
T 
T 

H 
H 
T 
T 

3 

H 
T 
H 
T 

H 
T 
H 
T 

' Clearly the ordering of these outcomes is immaterial. 

In the three-coin experiment, let the event E be the occurrence of 
exactly two heads. Note that this event happens with outcomes 2, 3, and 5. 
Thus, « = 3 and, from Eq. 2.7, 

Pr (£) = Pr (2 heads) ^ 
8 

With this classical definition of probability, it follows that: 

1. For any event E, 

0 < P r ( £ ) < 1 (2.8) 

since 0<n<N. Further, as Pr (£) approaches 1, the event is more likely 
to occur, but, as Pr (E) nears 0, E is less likely to occur. When Pr (E) = 1, 
the event is sure to occur, and Pr (E) = 0 means it cannot occur. 

2. Then, 

2 Pr (£,) = 1 (2.9) 

The probabilities of all events Ei must sum to 1. This is true since 

3. For any two mutually exclusive events, E and F, 

PT (E or F) = -Pr (E)+?r (F) (2.10) 

where this notation means that either E will occur or F will occur. The 
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left-hand side of Eq. 2.10 may also be written as Pr (E + F) or, with 
set-theory notation, Pr (E KJ F). 

4. If E and F are not mutually exclusive, then 

Pr (E or F) = Pr (E) + Pr (F) - Pr (EF) (2.11) 

where the event "EF" means that both E and F occur. This is also written 
Pr (E,F), Pr (E X F), or Pr (Er\F). In Eq. 2.11 the event "E or F " means 
that E occurs, F occurs, or both occur. 

T o illustrate Eqs. 2.10 and 2.11, let us again consider the coin-tossing 
experiment involving the three coins. Let the event E be the occurrence 
of exactly two heads and let F be the occurrence of three heads. Clearly 
E and F are mutually exclusive because both cannot occur simultaneously. 
From Eq. 2.7, 

,r-.s_^ (corresponding to outcomes 2, 3, and 5 in 
P r ( i i ; - g Table 2.4) 

Pr {F)=- (corresponding to outcome 1 in Table 2.4) 
o 

From Eq. 2.10, 

^r{EorF)J-+l = { 

which is the probability that exactly two or three heads will occur. This 
corresponds to outcomes 1, 2, 3, and 5 in Table 2.4. 

If E were again defined as the occurrence of exactly two heads but if 
F were the event second coin is a tail, then E and F are not mutually ex
clusive, and Eq. 2.11 is applied. 

3 
Pr (£) = - (outcomes 2, 3, and 5 in Table 2.4) 

o 

4 
Pr (F)=- (outcomes 3, 4, 7, and 8) 

8 

Pr (EF) = - (outcome 3: two heads and second coin a tail) 
o 

Then from Eq. 2.11, 

, 3 4 1 3 
Pr(£ or F) = - + - - - = -

This corresponds to outcomes 2, 3, 4, 5, 7, and 8. 
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5. If E and F are independent events in the sense that the occurrence 

or nonoccurrence of one event in no way affects the probability of occur

rence for the other, then 

Pr {EF) = Pr (£ ) X Pr (F) (2.12) 

If E and F are not independent, then 

Pr {EF) = Pr (F) X Pr (F |F) (2.13) 

= Pr (F)XPr (F|F) (2.14) 

where Pr (F \F) is the conditional probability that E will occur, given 

that the event F has occurred, and Pr (F \E) is the conditional probability 

that F will occur, given that the event E has occurred. 

To illustrate, consider the three-coin experiment. If E is the occurrence 

of two heads and F is the event second coin is a head, then E occurs in out

comes 2, 3, and 5. Given that E has occurred, i.e., that outcome 2, 3, or 5 

has occurred, then Pr ( F | F ) = 2 /3 , i.e., F occurs in outcomes 2 and 5. 

Therefore, from Eq. 2.14, 

gives the probability that there are two heads and that the second coin 
is a head. This event corresponds to outcomes 2 and 5. 

2.2.2 Other Interpretations of Probability 

Although the classical interpretation of probability is attractive be

cause of its simplicity and because it creates an understanding of the laws of 

probability, some troublesome difficulties are associated with this approach. 

For example, what if the total number of possible outcomes, N, is infinite? 

Or, suppose the coins used in the previous section are biased so that the N 

events are not equally likely? Also, how could one use the classical defi

nition of probability to answer a question such as "Wha t is the probability 

a given fuel pellet will have a density exceeding 9 3 % of theoretical density?" 

Here N is not defined, nor are the outcomes equally likely. 

Handling of such problems requires other interpretations of proba

bility, different from the classical interpretation but still retaining the 

basic idea that probability is a measure of the likelihood that some 

event will occur. Two such interpretations are called the empirical and 

the subjective definitions of probability. 
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(a) Empirical Interpretation 

If an experiment is conducted N times and some event, E, occurs n 
times, then the limit of n/N as N becomes large is defined as the proba
bility of F , Pr (F) . 

The experiment in question need not actually be conducted to define 
or interpret Pr (F) . However, to evaluate Pr (F) , one would have to 
experiment. 

This interpretation does not cover all situations since in some in
stances it is difficult to conceptualize the preceding experiment. What is 
the probability of an accidental process spill of a given size? Of a process 
holdup in excess of k kilograms of uranium? Of an attempted diversion of 
nuclear material? A third interpretation is given for such situations. 

(b) Subjective Interpretation 

In this interpretation, Pr (F) is a measure of the degree of belief one 
holds that the event F will occur. 

This interpretation gets back to the basic idea of probability. Clearly 
the interpretation is a much broader definition and is deficient because of 
its subjectivity. Nevertheless, in some situations it is the only interpretation 
that is adequate. 

No matter which concept of probability is used, the basic laws of 
probability given in Sec. 2.2.1 remain the same. The different concepts 
should therefore present no practical difficulty in application. 

2.2.3 Examples of Probability* 

Ten cans are listed on an inventory as containing UO2 powder. 
Actually, two cans contain marijuana. If an audit team opens one can at 
random, what is the probability it contains marijuana? Suppose two 
cans are opened. Then what is the probability that marijuana is found in 
one or both of the cans? 

To answer the first question, apply Eq. 2.7. There are N= 10 possible 
outcomes of the experiment, corresponding to the 10 cans that may appear 
in the inspector's sample. The number of outcomes, n, which correspond 
to the event, F (marijuana in the can selected), is 2. Therefore 

^•^^^^ N 10 

Working from basic principles, we can find the solution to the second ques
tion with different but equally valid approaches, the specific approach 

• Further examples of probability are given in Sec. 2.4. 
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depending upon how the problem is structured. Different approaches are 
discussed in the following paragraphs. 

Approach 1: Assign (conceptually) the numbers 1 to 10 to the 10 
cans. If we keep a record of which can is drawn first and which is drawn 
second, then there are 10 cans (outcomes) corresponding to the first drawing 
and 9 corresponding to the second. Thus the total number of outcomes, N, 
is 10X9 = 90. These could be fisted as in Table 2.5. 

TABLE 2.5 POSSIBLE O U T C O M E S 

Outcome 

1 
2 
3 

Can 

In first drawmg 

1 
1 
1 

number 

In second drawing 

2 
3 
4 

10 2 1 
11 2 3 
12 2 4 

88 10 
89 10 
90 10 

Consider the outcomes that correspond to the event one or both cans 
contain marijuana. Let the two marijuana cans be numbered 1 and 2 (clearly, 
it makes no difference which numbers are selected). Then the outcomes 
that contain can 1 or can 2 or both are outcomes numbered 1 to 
18 (which have either can 1 or can 2 as the first can drawn), 19-20 (which 
have either can 1 or can 2 as the second can drawn), 28-29, 37-38, 4 6 ^ 7 , 
55-56, 64-65, 73-74, and 82-83. Thus in this approach n is 18 + 2 + 2 + 2 
+ 2 + 2 + 2 + 2 + 2 = 34, and, by Eq. 2.7, 

T. /,.x « 34 17 

P ' - ^ ^ ) = } V = 9 0 = 45 

Approach 2: This is similar to approach 1, but now the order in 
which the cans are drawn is ignored. The .A'' possible outcomes now corres
pond to the number of ways in which two cans can be selected from the 
total cans. In this instance outcomes 1 and 10 in Table 2.5 are identical 
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since both outcomes consist of cans 1 and 2. This is true of all pairs of cans, 
and the number of outcomes becomes 90/2 = 45. Similarly the number of 
outcomes corresponding to the event F is also halved, and Eq. 2.7 then gives 

17 
?r{E)=-

which is the same result as for approach 1. 

Approach 3: In the previous two approaches, we made recourse 
to the basic definition of classical probability. We can also structure the 
solution by applying the laws of probability. To do this, we define two 
events, F and F, where F relates to the outcome of the first drawing and F 
to the outcome of the second. 

First, note that the overall event G one or two cans of marijuana in the 
sample of two cans can occur in three ways: 

1. First can contains marijuana; second does not. (Fi; Fi) 
2 First can does not contain marijuana; second does. (F2; F2) 
3. Both cans contain marijuana. (F3; F3) 

These three outcomes are mutually exclusive so that the probability 
of each can be found and then summed by Eq. 2.10 to give the probability 
of interest. 

Consider case 1. 

P r ( F O = ^ ( b y E q . 2.7) 

P r ( F i i F i ) = g (also by Eq. 2.7) 

because after a can of marijuana was drawn in the first sample, nine cans 
are now left, eight of which do not contain marijuana. Then, by application 
of Eq. 2.14 to case 1, 

P r ( £ i F t ) = y = ^ (2.15) 

Consider case 2. By similar reasoning, 

8 
Pr(F2)=: 

Pr(F2iF2)=; 

10 

2 
9 
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P r ( £ . F 2 ) = f Q | = | (2.16) 

Consider case 3. Again, by similar reasoning, 

2 
Pr (Fs) =77: (first can contains marijuana) 

Pr (F.s jF.'i) = - (second can also contains marijuana) 

P r ( £ , / ^ . ) = f o 9 - = | ^ (2.17) 

Then, sum Eqs. 2.15, 2.16, and 2.17: 

^'" * - ^ ~ 9 0 " ^ 9 0 " ' ' 9 0 " 9 0 ^ 4 5 

the same result as in the other two approaches. 
This example has been belabored a bit. It shows that we can solve 

problems of this nature by applying first principles, although even this 
small example gives an indication that the enumeration of all possible 
outcomes can be onerous. For a way to avoid this enumeration, a fourth 
approach to the same problem is given in Sec. 2.4. 

2.3 RANDOM VARIABLES AND PROBABILITY 
DISTRIBUTIONS 

In the previous section the concept of an outcome of an experiment 
was introduced. It is usually convenient to assign numbers to the possible 
outcomes. Usually this occurs quite naturally. For example, outcomes can 
be the percent ^'*U measured in a sample, the number of gross discrepancies 
between the facility and an audit team in an inspection situation, or the 
amount of plutonium in a barrel of solid waste. When a number is not 
assigned naturally, it can be assigned somewhat arbitrarily without diffi
culty. Thus, for example, if we speak of an attempted diversion, either 
there will be an attempt of some kind in a given instance or there will not 
be. To the two possible outcomes, we can arbitrarily assign the values 0 
and 1 (or 1 and 0, if we prefer) for convenience. 

This assignment of numbers is described by defining a random variable. 
By definition a random variable is a numerical-valued function defined 
over the elements of a sample space (outcomes of an experiment). By con
vention, a capital letter is used to designate the random variable and a 
small letter to designate a particular value taken on by the random variable. 
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To illustrate, X may be the percent "^U in a sample of UO2 powder. 
In a given sample, x may be Z.^iM^, for example. Alternately, if X is the 
number of gross discrepancies of some kind between a facility and audit 
team in a sample of Â  containers, then it may take on the values A: = 0 , 1,2, 
...,N. 

This distinction becomes clearer if it is related to the previous section 
on probability. We speak of 

Pr (x = xo) 

which is the probability that the random variable, X, takes on a particular 
value, xii. In a given instance this probability can be evaluated, and, if 
we could enumerate all the k possible values that X may take on and calcu
late the associated probabilities of occurrence, a table such as Table 2.6 
could be prepared. 

TABLE 2.6 PROBABILITY DENSITY FUNCTION IN TABULAR F O R M 

X, fixi) 

Xi f{xi) 

Xk f{xk) 

k 

X;/U.) = l byEq. 2.9 
1 = 1 

Table 2.6 is an example of a. probability density Junction, which assigns a 
probability to each possible value of the random variable. 

It is generally possible, and more convenient, to express the probability 
density function in functional form, i.e., with an equation rather than a 
table. By convention the density function is denoted by / (*) ; so the following 
relation holds: 

P r ( x = x,)=/(;t .) (2.18) 

Examples of some specific density functions are given in Sec. 2.4. We 
can verify at this point, however, that in the three-coin experiment, if 
the random variable X is defined as the number of heads that appears 
among the three coins, its density function can be written 

/ ( ^ ) = ;^T(^I3T (0-5)' (* = 0, 1, 2, 3) 
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Keep in mind that 0! = 1 by definition. 

Since X is numerically valued, it is ordered. Thus we can also speak 
of the probability that X takes on values equal to or less than x. By conven
tion, this is written as 

Pr {x<x^)=F{x^) (2.19) 

F{x) is called a cumulative distribution function or, more simply, a distri
bution function. 

Again with reference to the three-coin experiment, 

P r ( x < l ) = F ( l ) = / ( o ) + / ( l ) 

= o | T ( 0 - 5 ) ' + l | i ( 0 - 5 ) ' 

_ 1 3 _ j ^ 

~ 8 " ' " 8 ~ 2 

Also note that, by Eqs. 2.19 and 2.9, 

Pr (X>A:O) = 1 - F ( * O ) (2.20) 

Thus far in the discussion, attention has been restricted to discrete 
random variables. A random variable, X, is discrete if its distribution func
tion, F{x), is a step function when plotted against x. If the random variable 
is not discrete, it is continuous, and F{x) is then plotted as a monotonically 
nondecreasing curve. Stated alternately, discrete random variables are 
associated with counted data, whereas continuous random variables are 
associated with measured data. 

A continuous random variable also has a density function and a 
distribution function associated with it, but the interpretation is slightly 
different from that for a discrete random variable. This difference is seen 
in Fig. 2.2, which shows examples oif{x) for both a discrete and a continuous 
random variable. If Z i s discrete, the density function,/(;«•), has the appear
ance of a bar graph, or a histogram (Fig. 2.2(a)); the area of a given rec
tangle is proportional to/(A;), and these areas sum to one. \iX'ls continuous, 
f{x) is a smooth curve (Fig. 2.2 (b)); the total area under the curve equals 
one. 

In the continuous case it is not possible theoretically to speak of the 
probability that x is any given value, since probability is proportional to 
area. At any given value, x, the area under the curve is zero. However, 
the density function is converted to a probability upon multiplication by 
some incremental quantity, dx, so th.a.tf{x) dx represents an area and hence 
describes a probability. 
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n [ 

n n n n n 

fix) 

X 

(a) 

1/̂  i ^ ^ _ _ _ 

X dx 

(b) 

FIGURE 2.2 Example of (a) discrete density function and 
(b) continuous density function. 

In the discrete case the distribution function, F{x), is obtained from 
the density function,/(;>(•), by the summation process. Thus 

F{X,)^Z/{X^) 
» = 1 

(2.21) 

where xi<X2< . . . <Xk. 
In the continuous case this summation process is replaced by inte

gration and gives the relation 

F{xo)=j'^J{x)dx (2.22) 

In this instance the probability that x lies between two values, xi and 
X2, with .JCI<A;2, is 
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Pr {xi<x<x2)=F{x2)-F{x,)= £' f{x) dx (2.23) 

It was remarked earlier that, for a continuous random variable, there 
is zero probability of observing any given value of the random variable. 
Mathematically this is a true statement, but it is not very helpful for such 
a question as, "What is the probability that the measured percent uranium 
in a given fuel pellet is 88.1%?" Clearly this answer cannot be zero. T o 
answer this, we must recognize that, because of rounding, the question 
should really be phrased, "Wha t is the probability that the measured 
percent uranium in a given fuel pellet lies between 88.05% and 88.15%, 
i.e., that it equals 8 8 . 1 % when rounded?" This question can now be 
answered with Eq. 2.23: 

rss.is 
Pr ( 8 8 . 0 5 % < x < 8 8 . 1 5 % ) = J^^^^ f{x) dx 

2.3.1 Mean and Variance of a Random Variable 

In the discussion of descriptive statistics, it was pointed out that there 
are two kinds of numbers which can be quite descriptive of the entire 
frequency distribution: numbers which describe central tendency a n d 
those which describe dispersion. The same is true for random variables; 
one would like to define quantities that are descriptive of the density 
function, at least with respect to its central tendency and its dispersion. 

These descriptive measures are usually based on moments. The first 
moment about the origin (zero) describes central tendency and is called 
the mean of x, or its expected value. Conventionally this quantity is de
noted by the Greek letter mu, /i. For a discrete random variable, 

^.^E{x) = T.^xf{x)* (2.24) 

where E{x) is the expected value of x. 
For a continuous random variable, 

U^ = f"^xf{x)dx (2.25) 

Note the similarity between Eq. 2.24 and the definition of the mean for a 
group of data in Eq. 2.1. 

To illustrate Eq. 2.24, again consider the density function in the three-
coin experiment of Sec. 2.2. This density function was written 

* In general, tlie expected value of a constant times some function of x, e g , ag(x), is 

E[ag(x)] = a E[g(x)] = a 2 gM fix) 
all X 



26 P R O B A B I L I T Y AND STATISTICS 

/ ( ^ )=^ ! (3 - ; , ) ! (0-5)' (̂  = 0, 1, 2, 3) 

By Eq. 2.24, the mean of x is 

M = 0+(l)(3)(0.5)3+(2)(3)(0.5)'+(3)(0.5)' 

3 6 3 
= 0+8+8 + 8=1-^ 

Note that in this example the mean is a fractional value and cannot 
occur. Yet it does describe central tendency. 

The dispersion can be measured with moments by using the second 
moment about the mean. This moment is called the variance and is con
ventionally denoted by the square of the Greek letter sigma, o-̂ . The square 
root of the variance is called the standard deviation and is denoted by a. 

For a discrete random variable. 

<7̂  = F ( X - M ) ^ = J {x-y)'f{x) (2.26) 

Equivalently * this may be written 

a^ = E{x')~^x' = T,^xy{x)~^,^ (2.27) 

For a continuous random variable, the corresponding equations are 

'^' = j'„(.'(-y)'f{x)dx (2.28) 

and 

<^'' = ̂ '^ x''f{x) dx-fi^ (2.29) 

In the three-coin experiments, on application of Eq. 2.26, with /x = 1.5, 
as already determined, 

<72 = F ( ; C - M ) ' = ( 0 - 1 . 5 ) 2 ( 0 . 5 ) ' + ( 1 - 1 . 5 ) 2 ( 3 ) ( 0 . 5 ) ' + ( 2 - 1 . 5 ) 2 ( 3 ) ( 0 . 5 ) ' 
+ (3-1.5)2(0.5)3 

2.25 , 0.75 , 0.75 , 2.25 ^ ^^ 

and 
<̂  = V(72 = V0.75 = 0.866 

* The definitions in Eqs 2 26 and 2 27 are identically the same but are simply expressed 
in different forms The same is true of Eqs 2 28 and 2 21 
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Alternatively, by Eq. 2.27, 

(r2= (0)2(0.5)5+(l)2(3)(0.05) '+(2)2(3)(0.5)3+(3)2(l)(0.5)3-(1.5)2 

3 12 9 9 6 

= « + 8 - + 8 - + 8 - 4 - = 8 = «-^^ 

an identical result. 

Consider another example. Assume that, of a large number of con
tainers in inventory, 3 0 % of them weigh 10 kg, 2 0 % weigh 15 kg, 15% 
weigh 20 kg, and 3 5 % weigh 30 kg. The random variable, X, is the weight 
of the given container. What is its mean, ii, and its variance, u^? 

This is a discrete density function that can be written in tabular 
form as follows: 

x% 

10 
15 
20 
30 

Pr(x=Ar.) 

0 30 
0 20 
0 15 
0 35 

1 00 

Then, from Eq. 2.24, 

M = (10)(0.30) + (15)(0.20) + (20)(0.15) + (30)(0.35) 

= 3 . 0 + 3 . 0 + 3 . 0 + 1 0 . 5 = 19.5 units 

From Eq. 2.26, 

0-2 = (10 -19 .5 ) 2(0.30)+ (15 -19 .5 ) 2(0.20) + (20 -19 .5 ) 2(0.15) 
+ (30-19.5)2(0.35) 

= 27.0750+4.0500+0.0375 + 38.5875 

= 69.75 kg2 

(These results are used later in example 4.B of Sec. 4 1.3.) 

Although attention is focused on these two moments, let us briefly 
discuss two higher moments. The third moment about the mean, F(A:—yu)' 
is a measure of the skewness, or lack of symmetry of a density function. 
(For a symmetric density function, it is intuitively obvious that this quan
tity is zero because of cancellation of positive and negative values.) The 
fourth moment, F(x —/x)^, is a measure of kurtosis, or peakedness. No 
further use is made of these higher moments in this book. 

Finally, although moments are most commonly used to describe 
central tendency and dispersion, there are other measures of these charac-
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teristics. For central tendency, the median and mode are defined in a 
manner completely analogous to their definitions when used as descriptive 
statistics. The range, as a measure of dispersion of a density function, is 
obviously meaningful only if it is finite. There are other measures of dis
persion. As far as density functions are concerned, however, the mean and 
variance (or standard deviation) are used exclusively in this book. 

2.4 SOME SPECIFIC POPULATION DENSITY 
FUNCTIONS 

A large number of specific density functions have been used in the 
various applications of statistics. Some common discrete functions include 
(in alphabetical order) the binomial, geometric, hypergeometric, multi
nomial, negative binomial, and Poisson functions. Commonly encountered 
continuous density functions include the beta, Cauchy, exponential, 
gamma, log-normal, normal, uniform (or rectangular), and Weibull 
functions. The foregoing are population density functions. In addition, 
derived sampling density functions are discussed in Sec. 2.6 (Student's /, 
chi-square, F distribution), where the distinction between population and 
derived sampling density functions is covered. 

This section is limited to population density functions, of which four 
have particular application in this book: the binomial and hypergeometic 
density functions for discrete random variables and the normal and uni
form densities for continuous random variables. 

2.4.1 Binomial Density Function 

The binomial density function is applicable to certain audit inspection 
activities. It arises under the following conditions: 

Condition 1: A single observation is classified as being either a 
"success" or a "failure." 

Condition 2. The parameter p is the probability that any given 
observation is a success, and it is a constant. 

Condition 3: The occurrence of a success or a failure for any given 
observation in no way affects the probability of success or failure for other 
observations (i.e., there is independence). 

Condition 4: There are n total observations. 
Condition 5: The random variable, X, is the number of successes 

among the n observations. 

In inspection, a success may correspond to the occurrence of a "defect," 
which might be described as a well-defined discrepancy between the 
operator's statement of what is in the container and what the audit team 
finds. Alternatively, one could choose to label this a failure, and the problem 
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would then be restructured. Of course, there is no essential difference in 
the two choices as long as one assigns the appropriate value to p. 

The binomial density function is 

./(^) = ^ , ^ 1 ^ ) 1 ^ ( 1 - / ' ) " - ' (^ = 0, 1, 2, . . . , n) (2.30) 

We immediately recognize that the three-coin experiment previously 
considered is an example of the binomial density function with n = 3 and 
p = Q.b. Also, consider the following example. 

Assume that N items are in inventory, N being a " large" number. 
(The question of how large is " large" is deferred until Sec. 2.4.2.) Twenty-
five of these are selected at random and classified as either being a defect 
(in some sense) or not being a defect. The inventory is accepted as having 
been verified if there are < 1 defects among the 25 selected. What is the 
probability of accepting the inventory if p, the probability that any item is 
a defect, is 0.05? 0.10? 0.20? 

The solution is based on the binomial density function. This function 
is applicable because N is large. Strictly speaking, with finite N, the bi
nomial density function cannot apply, because the occurrence of a defect 
on any trial does affect the probability of occurrence of a defect on the sub
sequent trial and thus violates condition 3. However, for large JV, this is 
not a practical concern. 

To find the probability of accepting the inventory, find the probabilities 
that x = Q and that * = 1, and sum. The summation of the two probabilities 
gives the probability that either 0 or 1 defect will be found, by Eq. 2.10, 
and corresponds to the situation in which the inventory is accepted. 

Therefore, applying Eq. 2.30 gives the following solutions. 

For/) = 0.05, 

251 
/(O) = ^ T ^ ( 0 - 0 5 ) »(0.95) 25 = 0.277 

25 ' 
/ ( I ) =Y1^(0.05)K0.95)2* = 0.365 

Therefore 

^(1) = / ( 0 ) + / ( l ) = 0.642 = Pr (inventory is accepted | given that 

jb = 0.05) 

For/> = 0.10, 

25 ' 
/ ( 0 ) = — r T ( 0 . 1 0 ) "(0.90)25 = 0.072 

/ ( I ) =0.199 
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Therefore 

F(l) =0.072+0.199 = 0.271 =Pr (inventory is accepted |given that 

p = 0.\0) 

For/) = 0.20, 

/(O) =0.004 

/ ( I ) =0.024 

Therefore 

F(l) =0.028 = Pr (inventory is accepted |given that/; = 0.20) 

By these calculations the inspection plan has been characterized for 
its adequacy. If the inspector is not happy with a probability of 0.271 of 
accepting an inventory with /) = 0.10, i.e., with 10% defects, he should 
alter his plan to reduce this probability. 

Chapter 9 is devoted entirely to inventory-verification activities and 
contains rather complete characterizations of inspection plans. This 
example was introduced here to illustrate the application of the binomial 
density function. 

The mean and variance of the binomial distribution are given by the 
following formulas: 

li = E{x)=np (2.31) 

<r2 = F(x-M)2 = n/)(l-/)) (2.32) 

Of more interest in many situations are the mean and variance of 
x/n, the ratio between the number of successes and the total number of 
observations. These quantities are 

EQ=P (2.33) 

< : - - ) 
• - ^ " - « (2.M) 

n 

To illustrate, for n = 25 and/; = 0.2: 
E{x) = (25) (0.2) = 5.0 * (from Eq. 2.31) 

O-2 = F ( A : - M ) 2 = ( 2 5 ) ( 0 . 2 ) ( 0 . 8 ) = 4 . 0 (from Eq. 2.32) 

E(£\=0.2* (from Eq. 2.33) 

• T h u s , on average, we would expect to find 5 defects in a sample of size 25 drawn from 
a large population containing 20% defects Since x/n = 5/25 ~ 0 20, the expected probability 
of finding a defect in this sample is the same as that of finding a defect in the population 
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< - ^ ) ' = 
(0.2) (0.8) 
^^—^y-^ = 0.0064 (from Eq. 2.34) 

V0.0064 = 0.08 

2.4.2 Hypergeometric Density Function 

In the audit inspection example of the previous section, 25 items were 
selected from a total inventory of N items, N being large, and the proba
bility of finding zero or one defect in the sample of 25 was found for different 
values of/), the probability that any given item is defective. Suppose now 
that N is not large, i.e., that N is so small that the random variable cannot 
be validly assumed to follow the binomial distribution. In this situation 
the hypergeometric probability density function applies. 

Let 7V''= total number of items (in population, lot, inventory, etc.) 
Z) = number of items which are defects (or successes, in a more 

general discussion) 
n = number of items in sample 
x = number of defects in the sample of size n 

Then, the density function is 

f(')-^'')"''' (2.35) 

C) 
This is called the hypergeometric probability density function. The 

notation 

C) = 6!(^! (2.36) 

which some readers will recognize as the number of combinations of a 
things taken A at a time in combinatorial theory. 

Equation 2.35 is applied to the inspection problem of the preceding 
section. Evaluate the probabilities of obtaining 0 or 1 defect in a sample of 
size 25 for jV=40 and 7V= 100. The values of D corresponding to /) = 0.05, 
0.10, and 0.20 are 2, 4, and 8 for jV=40 (i.e., 2/40 = 0.05, 4/40 = 0.10, etc.) 
and 5, 10, and 20 for N = 100. 

Equation 2.35 is applied to calculate the various probabilities. For 
^•=40: 
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At/) = 0.05 or D = 2, 

on ^, , V0 / \25 / 2!38!25!15! (15)(14) f(c\\ — ^ ' \—'_ — — _ :i—'_^—'_ _ f) I ^ :̂  * 
^^' / 40 \ 0!2!25!13!40! (40) (39) 

VlJV24J_ 2!38!25!15! _ (2)(25)(15) _ 
^^^ / 40 \ 1!1!24!14!40! (40)(39) 

V25/ 

At/) = 0.10orZ) = 4, 

^4\/36> 

) 

) 

k0/\25y 
/ ( 0 ) = / . \ =0-015 

xl/\24> 
/ ( 1 ) = ^ ^ ^ = 0.124 

At/) = 0.20orZ) = 8, 

\ 2 5 / 

8 \ /32 

) , , vi/ \24y 
/ 0 ) = \ . \ =0.002 

For7V=100: 

At/) = 0.05 orZ) = 5, 

• The evaluation of hypergeometric probabihties is simplihed if we recognize that 

al/fcl = a ( a - l ) ( a - 2 ) ( a - h + 1 ) 
For example, I5V131 = (15) (14) 
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5\/95 
:) 

) 

.0/\25> 
/ ( 0 ) = / , n n \ =0-229 

, , \ l / \ 2 4 ; 
/ ( 0 - \ , n \ =0-404 

At/) = 0.10 orZ) = 10, 

/ioy9o\ 

/ ( 0 ) = ^ = 0.048 

/ 1 0 \ / 9 0 \ 

^^^'- /ioo\ ~^-^^^ 
V25/ 

At/) = 0.20 orZ) = 20, 

/ 2 0 \ / 8 0 \ 

/(o) = ^ = o . o o i 

/ 2 0 y 8 0 \ 

•^(^)- / i o o \ - ° - ^ ^ ^ 

The results of this example plus those of the corresponding example 
in the previous section for large N are summarized in Table 2.7, which 
is instructive in visualizing how large is "large." 

A comparison of the » columns (binomial) with the JV=40 and jV= 
100 columns (hypergeometric) makes it evident that ignoring the fact that 
the population is of finite size and applying the binomial density to this 
particular inspection problem can lead to grossly incorrect probabilities. 
Thus it would appear that a population of size 100 is not sufficiently large 
to permit valid application of the binomial density function, at least for 
the sample of size 25. 
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TABLE 2.7 PROBABILITIES OF OBSERVING ZERO OR ONE DEFECT 

/(O) / ( I ) 

N N 

Percent defect 40 100 oo 40 100 

5 % 
10% 
20% 

0, 
0. 
0. 

,135 
015 

,000 

0 
0 
0 

.229 

.048 

.001 

0 
0 
0 

.277 

.072 

.004 

0 
0, 
0, 

,481 
,125 
.002 

0.404 
0.181 
0.013 

0, 
0, 
0. 

,365 
,199 
.024 

There can be no precise answer to the question of how large is " la rge" 
in more general terms, because it is a question of how close an approxi
mation is required. However, a rule of thumb given by many authors is 
that the binomial density function provides an acceptable approximation 
to the hypergeometric if the sample size is less than 10% of the population 
size. This is a reasonable rule to apply. Note that this criterion was not 
met in the numerical example just concluded. 

The rule of thumb can be given some basis if the moments of the hyper
geometric are examined and compared with the moments of the binomial. 
The mean is 

nD 
y. = E{x)=— (2.37) 

This mean is identical with the mean for the binomial iiD/N\s written 
as/), its equivalent. (See Eq. 2.31.) 

The variance for the hypergeometric is 

{N-n)nD{N-D) 
" - N\N-\) ^^-^^^ 

Again, if D'N is replaced by p to relate it to the binomial variance, Eq. 
2.38 may be written in its equivalent form, 

{N-n)np{X-p) 

In comparing this with Eq. 2.32, note that the equations differ only 
by the factor {N—n)/{N— 1). This is cominonly called the finite population 
correction factor. As N gets large, this factor approaches one, and the 
variances are identical. Also note that, if n = Q.\QN, corresponding to the 
rule-of-thumb criterion, this finite population correction factor is about 
0.9, which means that the variance of x found by using the binomial density 
is inflated by about 10% or the standard deviation by about 5 % . This is 
not generally considered to be a serious inflation. 
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For another application of the hypergeometric density function, 
see the example in Sec. 2.2.3. The same problem was solved previously by 
three different methods by the use of the basic laws of probability. It is 
handled more easily by the hypergeometric function. 

The problem of Sec. 2.2.3 is not restated here. If the hypergeometric 
notation is used, 

N= 10 (ten cans in inventory) 
D = 2 (two "defects", i.e., cans containing marijuana) 
« = 2 (sample size) 
A; = 1, 2 (values of the random variable corresponding to detection 

of the defects) 

Then from Eq. 2.35, 

/ ( 1 ) = 

/(2) = 

' 2 \ / 8 > 

. 1 / 2!8!2!8! 16 

1!1!1'.7!10!~45 C9 
^2/VO/ 2'.8!2!8! 1 

"0!2!0!8!10!~45 C") 
/(o)+/(i)=^ 

which is in agreement with the results found by the other three approaches. 
Further detailed consideration is given the hypergeometric density 

function in Chap. 9 dealing with inventory verification. This is a most 
important topic in nuclear materials control applications. However, before 
leaving this topic, let us make an interesting and somewhat more chal
lenging application which (it is hoped) is primarily of academic interest 
in nuclear materials control. Although this particular example is unrealistic, 
the problem suggests an inspection situation in which the strategy is to 
inspect until x defects are found (.v being specified), with the random 
variable being the sample size corresponding to the x defects. This is con
trasted with the more common approach of fixing the sample size and 
counting the number of defects. 

Example 2.B 

Ten cylinders of UFe are received. Four are known to be at one 
2'^U enrichment and the other six at quite a different enrichment. Un
fortunately the identifying labels were removed by some prankster, and 
the cylinders appear indistinguishable. A cylinder is selected at random, 
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analyzed, and identified with respect to enrichment. What is the probability 
that the identification will require sampling exactly five cylinders before 
all cylinders are correctly identified? eight cylinders? ten cylinders? 

Immediately it is known that the probability of sampling ten cylinders 
must be zero since once the first nine are identified there is no need to 
identify the tenth. 

To find the probability that exactly five cylinders will require sampling, 
note that this possibility occurs only if exactly three of the first four cylinders 
sampled are at the first enrichment and, further, if the fifth cylinder is 
also at this enrichment. The probability that both these events will occur 
is found by using Eqs. 2.35 and 2.13, where the event E is three of first 
four cylinders at enrichment one and F is fifth cylinder at enrichment one. 

From Eq. 2.35, 

< 3 / \ l / 4!6!4!6! 4 
P r ( £ ) = 

and, from Eq. 2.7, 
c:) 3!1!1!5!10! 35 

Pr (F|£:) 
6 

since of the six cylinders remaining only one is at the first enrichment. 
Then, from Eq. 2.13, 

p'^(^^)=Q)G)=^=«-«>^ 6/ 210 

which is the probability that exactly five cylinders must be sampled. 
To find the probability that exactly eight must be sampled is a bit 

more complicated because this can occur by two routes: (1) either all 
the cylinders of enrichment one are identified, which occurs if exactly 
three of the first seven are identified as enrichment one, as is the eighth, 
or (2) all the cylinders of enrichment two are identified, which occurs if 
exactly five of the first seven are identified as enrichment two, as is the 
eighth. The probabilities are calculated as previously. 

Route 1: Pr (£ i ) = 
' ) ( ' ) »,3/V4/ 4!6!3!7! 1 

1!3!2!4!10!~2 

C°) 
Pr(Fi |£ i )=^ 
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Route 2: Pr (/to) = 
<2j\5) 4!6!3!7! 3 

Pr {Fi \E,) = ^ 

Pr {E,F,) = 

2!2'.1'.5!10! 10 

1_ 
3 

/ 3 \ / l \ 1 
,10/V3/ 10 

Then by Eq. 2.10 the probability that exactly eight cylinders must be 
sampled is 

1 1 4 
6+T0 = r5 = 0-2^^ 

It is interesting to calculate this probability for all possible values of 
the random variable. Table 2.8 summarizes the results. 

TABLE 2.8 PROBABILITY FOR ALL POSSIBLE VALUES OF T H E RANDOM 
VARIABLE 

Number of cylinders that 
must be inspected (x) f(x) 

4 1/210 
5 4/210 
6 11/210 
7 26/210 
8 56/210 
9 112/210 

E=i 

Note that the highest probability is associated with nine cylinders, and, in 
fact, the probability exceeds 0.5 that this many cylinders must be tested. 

2.4.3 Normal Density Function 

Contrary to what at times appears to be popular belief, it is not true 
that all continuous random variables are normally distributed, i.e., have 
density functions of the form 

^̂ ^̂ =vL̂ p̂ 
{x-by 

2^2 
( - ^ < A : < = O ) (2.40) 
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Nevertheless, the normal density function is one of great importance 
because: 

1. In fact, many random variables are normally distributed or can 
be made normal by some simple data transformation, 

2. It is a limiting distribution in sampling situations (see Sec. 2.6). 
3. Much statistical inference assumes that the random variable is 

normally distributed. 

Reason 3 is not a justifiable reason in itself, of course. However, 
fortunately many statistical-inference procedures are quite "robust ," a 
term used to indicate that slight-to-moderate departures from normality 
for the random variable in question will have small effect on the validity 
of the statistical procedure in question. Thus the assumption that a random 
variable is normally distributed can often be violated to some moderate 
degree without affecting the validity of conclusions reached on the basis of 
data. 

With respect to reason 1, in the great majority of problems of interest 
in nuclear materials control, we deal with random variables that relate 
to errors of measurement. In this type of situation, the normal density 
function is generally applicable, although some transformation may be 
required in certain instances. 

Let us note here, however, that we cannot simply assume that the 
normal distribution assumption is always valid without giving the question 
further thought. Section 2.9 deals with the problem of how this assumption 
can be verified for a given set of data if there is some concern as to its 
validity. 

The normal density function, Eq. 2.40, involves the parameters a and 
b. However, since it can be shown that E{x)=b and E{x — b)^ = a^, i.e., 
since x has mean b and standard deviation a, and since, as was pointed 
out earlier, the Greek letters fx and a are conventionally used to denote 
the mean and standard deviation for any random variable, the normal 
density function is generally written 

• ^ W = /T- exp 
V27r c 

{x-^)^ 

2a 2 

From Eq. 2.22 the distribution function F{x) is 

( - o o < x < o o ) (2.41) 

dx (2.42) 

This integral cannot be evaluated in closed form, and numerical 
integration is required. Clearly it would be an impossible task to tabulate 
F{x) for all conceivable combinations of the two parameters M and a. 
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Fortunately this is not required, because the random variable is "stand
ardized" by (1) subtraction of the mean, /j, and (2) division of this difference 
by the standard deviation, c. 

In mathematical terms this means that the random variable, X, is 
replaced by a new random variable, ^ , by means of the transformation 

x — ix 
z = (2.43) 

in which /i and a- are the mean and the standard deviation of x. This trans
formation being made, the mean and the standard deviation of z become 
0 and 1, respectively. This then permits tabulation of the normal distribu
tion function in standard form. 

A table of 

Fap) = ; 7 | ^ / ! > - ' ' ' ^ ^ ^ (2.44) 

is given as Appendix A, where P = F(zp). 
In Appendix A the values of Zp are given only for positive values of 

Zp. Symmetry makes this possible. If Zp is negative, then F{zp) is 1 minus 
the tabulated value. The sketch at the top of Appendix A should help us 
understand this. In fact, when we read values from a table such as this 
without complete confidence in our ability to read the table, we should 
make a rough sketch similar to that at the top of Appendix A to make sure 
that we are using the table properly. 

As a very simple example on the use of Appendix A, assume that a 
random variable, X has mean M = 2 units and standard deviation o- = 5 
units. Find the probability that a given x value is less than 3 units; i.e., 
find Pr {x<3). 

Operate on both sides of the inequality to standardize the random 
variable. Using the transformation Eq. 2.43, proceed as follows: 

/x-2 3 - 2 \ 
Pr (x<3)=Pr ( - y - < - y - j = Pr (^<0.20) 

From Appendix A this probability is 0.5793. 
Suppose now that the probability that x will fall between —4 and 3 is 

to be determined; i.e., find Pr ( — 4 < A ; < 3 ) . 
By Eq. 2.23 this is 

F ( 3 ) - F ( - 4 ) = P r ( x < 3 ) - P r ( * < - 4 ) 

„ /x~2 3 - 2 \ „ /x-2 - 4 - 2 \ 

= Pr (^<0.20)-Pr (^<-1 .20) 

= 0.5793-(l-0.8849) =0.4642 (from Appendix A) 
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Psote that Pr (4;< —1 20) is 1 minus the entry tabled at .; = + ! 20 
However, rather than trying to remember this rule by rote and applying 
it when negative values of the standardized normal random variable are 
encountered, it is preferable to create a better understanding by drawing 
a rough sketch similar to Fig 2 3 to identify the probabilities, or areas, of 
interest The shaded area corresponds to the probability of interest 

2.4.4 Uniform (Rectangular) Density Function 

Another continuous density function that has application to nuclear 
materials control problems is the uniform or rectangular density function 
This very simple function also has two parameters and is written as 

F{x)-
1 

b — a 
(a<x<b) (2 45) 

The function does not involve x Its plot is of equal height throughout 
the entire finite range of the random variable This means that the proba
bility that a given observation, x, will he between any two specified quan
tities, Xi and X2, is dependent only on the diff^erence, X2 — xi, and not on the 
values xi and x^ 

I t is easy to see that the distribution function, F{x), is 

The mean of x, /x, is 

Fix)=-

a+b 

(2 46) 

(2 47) 

which is the value halfway between a and b 

Pr (^ < 0 2) 

IS the same as 
in the left-hand 
IS 1 - Pr U < 1 20) 

FIGURE 2 3 Identification of probabilities m Appendix A 
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The variance is 

12 
(2.48) 

or one-twelfth the square of the range. 
The density function has application in nuclear materials control 

because it describes "rounding" error. If a recorded weight, for example, 
is always rounded to the nearest 50 g and if no other weighing errors are 
made, then the true weight of the item may be regarded as a random 
variable. This true weight lies somewhere in the interval within 25 g on 
either side of the reported weight and is equally likely to occur anywhere 
in this interval. Thus from Eq. 2.45, the density function of X, the true 
weight is 

/(^) = ^ liW-25)<x<(25+W)] 

where W is the reported weight in grams. 
From Eq. 2.47, the mean of x, ju, is 

iW-25) + C25+W) ^^^ 
M = 2 = ^ 

and from Eq. 2.48, the variance is 

, {25+W-W+25)^ (50)2 

12 12 

(7= 14.4 g 

= 208.33 g2 

The variance o-̂  is that due to rounding. In nuclear materials control 
applications, this may be a dominant source of variation due to weighing 
for some types of items. 

It is instructive to note the effects of different rounding rules on the 
standard deviation due to rounding, as given by Table 2.9. 

TABLE 2.9 EFFECT OF ROUNDING ON VARIANCE DUE T O ROUNDING 

Round to nearest G, g* <r^> g' ", g 

G = l 0.0833 0.29 

5 2.0833 1.44 
10 8.3333 2.89 
25 52.08333 7.22 
50 208.3333 14.43 
100 833.3333 28.87 

• Or kg, lb, or other unit of weight. 

This topic will be discussed further in Chap. 3. 
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2.5 BIVARIATE DISTRIBUTIONS 

Thus far in the discussion, only a single random variable has been 
considered. The single random variable receives almost exclusive attention 
in this book because most problems of interest in the control of nuclear 
materials can be dealt with on this basis. This is not to say that certain 
quantities may not, in turn, be functions of several random variables. 
But, if all the random variables are defined over different sample spaces, 
the resulting function of random variables is itself regarded as a single 
random variable, and there is no need to speak of other than the uni
variate situation. 

However, in some instances this simple modeling may not apply, 
and it is necessary to introduce the multivariate case. In particular, let us 
consider the bivariate case involving two random variables, X and Y, 
both defined on the same sample space. 

Restricting interest to the continuous case, we say that two random vari
ables, X and 2", have the bivariate probability density function J{x,y) if, 
for two pairs of values {xi,X2) and {y\,y-2), 

Pr {xi<x<xr,yi<y<y2) = j^^~ £^' f(x,y) dx dy (2.49) 

The expression/(x,j') is also referred to as the joint probability density 
function for the random variables X and Y. In extending the principle 
expressed in Eq. 2.12, we say that two random variables are independent 
if and only if their joint probability density function is the product of their 
marginal density functions, where the marginal density function of x, for 
example, is represented by g{x), given by 

^W=/_°°„/(*. j )^^ (2.50) 

i.e., g(x) is the density function of ;f without regard to the value oiy. 
Also, with reference to Eq. 2.13 or Eq. 2.14, x andj" have conditional 

density functions. For x, 

^ ( - b ) = ^ (2.51) 

with h(j |x) similarly defined. 
For the bivariate case we can also define the means and variances of 

X and J). For example, 

Mx = E{x) = /_°°^ /_"^ xj{x,y) dx dy (2.52) 

with txy similarly defined. The variances are the second moments about 
the means, as before. 
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Of particular interest in the bivariate case is a quantity called the 
covariance between x and j ; , defined as 

covix,y)=E[ix-,,,){y-lXy)] (2.53) 

or, alternately and equivalently, as 

cov {x,y) = E{xy) -ji^Hy (2.54) 

If X and y are independently distributed, it follows immediately that 
E{xy) = {nx)i^y) and, from Eq. 2.54, the covariance is zero. 

Finally, it is often convenient to use a standardized measure of the 
dependence between x and y. This is called the correlation coeflScient, 
generally denoted by the Greek letter rho, p, and is simply the covariance 
divided by the product of the standard deviations. 

^°^ (̂ '->') (o ^=^ 
Pa;,» = (2.55) 

O'xffy 

Later in the book as the need arises, we will refer to the results pre
sented here. 

2.6 SAMPLING DISTRIBUTIONS 

The problem of statistical inference is one of drawing conclusions 
about a population of possible events on the basis of a given random 
sample of the events. Thus far, it has been tacitly assumed that the popula
tion is known or completely specified and, in the continuous case, that the 
sample size is one. 

The idea of sampling from a known population is consistent with 
certain aspects of statistical inference. For example, in the formulation of 
the tests in Sec. 2.8 dealing with hypothesis testing, this situation obtains, 
either wholly or in part. In other facets of inference and, in particular, 
those dealing with estimation discussed in Sec. 2.7, the population is only 
partially specified, and the problem is to use the sample results to complete 
the specification as well as possible. 

In either situation we deal with the idea of sampling and of making 
inferences about the population from the results of the sampling, which 
may be called the data. This is the subject of this section. 

Before proceeding further, let us consider the term " random" sampling. 
Random sampling can be defined in rigorous terms, but here we shall 
sacrifice unneeded rigor for clarity of meaning and define a random 
sample as a selection of items from a population such that every item in 
that population has a fixed and known probability of being selected. 
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Some objective means should be used to achieve randomness, e.g., with 
random number tables, because individuals left to their own devices are 
simply not capable of making a random selection in the true sense of the 
word. 

To continue with the ideas of sampling, let the random variable be 
denoted by X, and let it have the density function/(;£•). Draw a random 
sample of n items from the population, and designate the sample values 
by xi, X2, . . . , x„. The problem is to use the sample values, or data points, 
to make inferences about/( jr) . Specific types of inferences to be made are 
discussed in Sees. 2.7 and 2.8. The problem in this section is to provide 
the additional necessary tools that will permit making these inferences. 

In the case of the discrete distributions, binomial and hypergeometric, 
the tools have already been provided in Sees. 2.4.1 and 2.4.2, and the re
sults will be applied to statistical inference problems later. In this section, 
therefore, attention is restricted to the problem of sampling from continuous 
distributions. 

There are two statistics of primary interest in many problems of 
statistical inference: the sample mean and the sample variance. These 
quantities were introduced in Sec. 2.1 on descriptive statistics. At that 
point their function was simply to summarize a set of data. There was no 
intent to make inferences about some population from which these data 
might have been sampled. Now they are to be used for this purpose. In this 
connection we must recognize that the sample mean and variance are 
also random variables and, as such, have their own probability density 
functions and corresponding moments. These and the density functions for 
certain functions of means and variances are discussed in this section. 

The sample mean, x, is given by 

M 

E X. (2.56) 
- 1 = 1 
* = 

n 

The X, are observations on a random variable. Assume that each x, has 
mean /i and variance cr̂ . Since x is also an observation on a random vari
able, this random variable has its own probability density function, and 
we can speak of the mean and variance o(x. It will be shown in Sec. 4.1.2 
that 

£(^)=M (2.57) 

The variance of 7 is also derived in Sec. 4.1.2. Assume initially that 
the population being sampled is of infinite size. This assumption has the 
eff'ect of making the individual observations, x,, statistically independent; 
i.e., the covariance between x, and Xj is zero. Under this assumption, the 
variance of x, denoted by erf, is 
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<T| = - (2 .58) 

If the population is finite in size, containing JV items, then x, and Xj 

have a nonzero covariance. As shown in Sec. 4.1.2, this leads to the result 

,,J^-^)<^' (2 59) 

where the factor {M~n)/(M—l) is called the finite population correction 

factor. This factor has been introduced before in connection with the 

hypergeometric density function (see Eq. 2.39). In nuclear materials con

trol applications in which one deals with measurements, it is generally 

true that the population sizes may be regarded as infinite so that Eq. 2.58 is 

applicable. Unless specifically stated otherwise, we shall assume in what fol

lows that this is the case. 

Although Eqs. 2.57 and 2.58 give, respectively, the mean and variance 

of "x, they shed no light on its probability density function. However, the 

following two points are made: 

1. If the X, are normally distributed, then x is also normally distributed. 

2. As a consequence of the important Central Limit Theorem, the 

sum of a "sufficient number" of random variables having finite variances 

will be approximately normally distributed, regardless of how the indi

vidual random variables are distributed. Roughly speaking, this says with 

respect to a sample mean that, if a population has finite variance, then the 

distribution of the sample mean approaches normality as the sample size 

increases. 

Thus in many instances we can say that the sample mean, x, is normally 

distributed with mean, /i, and variance, a'^/n. It should be pointed out that 

in some instances some data transformation is desirable to achieve a closer 

approximation to normality. One common transformation applied is the 

logarithmic transformation. Further, such transformations are sometimes 

made for other reasons, and the closer approximation to normality that 

results is a desirable by-product. If data are transformed by the use of 

logarithms, we say that the original untransformed random variable has 

the log normal probability density function, or, simply, is log normal. 

Return to the data: xi, X2, . . . , x„. The other statistic of interest is 

the sample variance, s^, defined by 

._ Si!2!^ (2.60) 
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An equivalent form of s^, more convenient for calculation purposes, is 

n-l 
(2.61) 

The reason for division by («—1), called the degrees of freedom, 
rather than by n is explained in Sec. 2.7. [If we should happen to know the 
population mean, n, then 7f in the preceding equations would be replaced 
by fi and the (n—l) divisor by n.] 

The sample variance, s^, is also a random variable. Its expected value 
is 

E{s^)=a^ (2.62) 

The variance of .r ̂  is not too important for purposes of this book but 
is given for completeness: 

M4- [ (» -3 )^V( . - l ) ] 
t r , 2 - - (2.63) 

n 

where m is the fourth moment about the mean, i.e., fii = E(x—ti)*. 
When sampling is from a normal population, /xt is 3cr*, and so Eq. 2.63 

reduces to 

<r.% = - ^ (2.64) 

In practice we wish to use x and/or s^ to make inferences about the 
corresponding population parameters, yu and/or tr̂ . The specific inferences 
to be made are the subjects of Sees. 2.7 and 2.8. However, to make the 

TABLE 2.10 C O M M O N SAMPLING DISTRIBUTIONS 

Statistic Distribution 

Standardized normal; mean 0 and standard 
deviation 1 

2. ^ p— Chi-square; (n—l) degrees of freedom 

_ Student's (; (n—l) degrees of freedom 

2 (Two sample variances dr^wn F distribution; (ni—1) and ( n j - 1 ) degrees 
4. -\ from populations with the of freedom 

•̂2 same variances) 

AC — M 

<r/V^ 

{n-\)s^ 
<r» 

X — fi 
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inferences, we must know the density functions for x and j ^ and for certain 
of their functions, i.e., knowing only their moments is not sufficient. To 
that end, we speak of the sampling distributions of certain statistics. These 
are summarized in Table 2.10, and each of the four functions is briefly 
discussed in the following sections. It is assumed that the population random 
variable is normally distributed with mean, ju, and variance, cr̂ , and that 
the population is of infinite size. 

Other statistics of interest are introduced later. 

2.6.1 Standardized Normal 

Since x is normally distributed with mean, MJ and variance, a^/n, 
it follows from Eq. 2.43 that (x—yi)\/n/a is normally distributed with mean 
0 and standard deviation 1. This density function is used to make inferences 
about ju when the population standard deviation is assumed known. 

2.6.2 Chi-Square 

If ti, h, . . . , t^ are independently distributed standardized normal 
variables, then the sum of their squares, denoted by x^j has a density 
function: 

/(x=)=Ci«-x^'Mx^) < ' ' " - ' (2.65) 

where Ci is a constant. This is known as the x^ density function with the 
single parameter v, called the degrees of freedom. 

The result of Eq. 2.65 is used to develop the density function for 

( « - l ) 5 ' 
X^= i— (2.66) 

and the resulting density function is given by Eq. 2.65 with parameter 
(« — 1) in place of v. 

A table of the cumulative distribution function, 

F{x%) = £h{x')dx' (2.67) 

is given as Appendix B, where P=F(xl)- The column headed "df" is the 
degrees of freedom, (n—l). 

Example 2.C 

If (r̂  = 5 (units)'', what is the probability that the sample variance, s^, 
based on n = 17 observations will exceed 10 (units) ?̂ 
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For an answer, s'^ must be standardized by Eq. 2.66; i.e., it must be 
multiplied by (n—l) and divided by the population variance, v^. 

= P r ( x ' > 32.00) 

= 1 -0 .99 (from Appendix B with 16 df) 

= 0.01 

2.6.3 Student's t 

When c is not known and we wish to make inferences on ix using x, 
it is intuitively reasonable to replace a in the standardized normal random 
variable by s, giving the statistic, /, 

X — il 

< = V 7 = 2.68) 

Because s is in itself a random variable and introduces additional 
uncertainty, we would not expect / to be normally distributed but, rather, 
to have a broader distribution to account for the added uncertainty. It 
turns out that the density function for / is of the form 

[ /2"l-(>.+ l ) / 2 

1+-J (2.69) 

where d is a constant and v={n—\) is the single parameter called the 
degrees of freedom. 

The / statistic can be described in more-general terms. If two random 
variables, w and y, are independently distributed and if w is normally 
distributed with zero mean and unit variance while jv is distributed as chi-
square with V degrees of freedom, then the random variable 

w 

is distributed as Student's t with v degrees of freedom. In the application 
leading to Eq. 2.68, identify 

x — n {n—\)s^ 
w= , ,- and y = — 

cr/Vn <^ 

•r 
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Then 

(x — ix)\/na x — jx 
t = \/y/v as sly/n 

consistent with the definition in Eq. 2.68, since v = (n—\). Notice that the 
degrees of freedom in the ^-statistic are those associated with the determina
tion of 5̂  and the sample size used to determine "x does not enter in. 

A table of the cumulative distribution function, 

P^iv) = l''ijki)dt (2.71) 

is given as Appendix C, where P = F{tp). The column headed "(/f" is the 
degrees of freedom, (n—l). 

Example 2.D 

Nine observations are drawn from a normal population. What is 
the probafiility that the sample mean, x, is greater than 0.62^ units removed 
from the true mean, /i, where s is the observed sample standard deviation? 
This occurs either when x is too small or too large, and the desired proba
bility is the sum of two probabilities, pi and p2, where 

/-i = Pr [{x-ix)>Q.&2s] 

P2 = Pr K M - x ) > 0 . 6 2 ^ 1 = Pr \{x-ix) <-0.62s] 

pi will be evaluated, and p2 equals/)i by symmetry. Standardize the random 
variable, (x—tx), by dividing it by its estimated standard deviation, s/\/n 

= V \ / 9 = V3. Then 

j6i = Pr [{x-ti)> 0.62s] = Pr 

= Pr ( 0 1 . 8 6 ) 

'(x-fx) 0.62s' 

_ s/Vn ^ s/3 _ 

From Appendix C, with 8 degrees of freedom, this probability is 
1—0.95 or 0.05. Therefore, since/)i=/)2 by symmetry, pi-\-pi = 0.lO, which 
is the desired probability. 

2.6.4 F Distribution 

The final sampling distribution of particular note introduced at 
this time is that used in comparing two independent sample variances, 
si and si, based on samples drawn from populations having variances 
cTi and cri and with vi and C2 degrees of freedom, respectively. The statistic 
called the F ratio is introduced. 
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j 2 / 2 

F = 4A (2.72) 
S^/<J^ 

The density function for F is given as 

f{F)=C,F^nn^-i 1 + ^ (2.73) 

where Cj is a constant. 

This is a two-parameter density function with parameters vi and vj, 

the degrees of freedom for the numerator and denominator, respectively, 

in the F ratio. 

It is also possible to describe the F ratio in more-general terms as the 

ratio of two independently distributed chi-square variables, each divided 

by its degrees of freedom. 

A table of the cumulative distribution function, 

F(Fp)=f^'"fiF)dF (2.74) 

is given as Appendix D, where P = F(Fp). In this table the degrees of free

dom for the numerator and denominator are given as ni and nj, respectively. 

These are not sample sizes but degrees of freedom. 

Example 2.E 

A random sample of size 7 is drawn from a normal population, and s'i 

is computed. A second sample of size 5 is then drawn from the same popu

lation, and sl'is computed. What is the probability that the first variance, 

si, is at least four times as large as the second ^'ariance, si? 

To answer this, recognize that <r̂  = (r2 since both samples are drawn 

from the same population. Then, the /^statistic given in Eq. 2.72 is simply 

2 

F = < 
Si 

with (7—1) = 6 and (5—1) = 4 degrees of freedom for the numerator and 

denominator, respectively. The probability required is 

( ^ > * ) ^ 
Pr f ^ > 4 ) = Pr (/?>4) = 1 -0 .90 = 0.10 (from Appendix D) 

(The tabular entry corresponding to ni = 6 and n2 = 4 at P = 0.90 is 4.01, 

rounded to 4.) 
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2.7 PARAMETER ESTIMATION 

The introductory remarks to the preceding section stated that the 
problem of statistical inference was that of using sample results to draw 
conclusions about the population. These conclusions fall in two broad 
categories: 

1. Parameter estimation, in which we obtain estimates of the param
eters of the density function for the population random variable and indi
cate how "good" these estimates are. 

2. Hypothesis testing, in which we make a priori statements (hy
potheses) about the population parameters and use the sample results to 
verify or refute these statements. 

Both types of inference are of interest in nuclear materials control 
applications. Parameter estimation is described in this section; hypothesis 
testing is covered in Sec. 2.8 and is extended to other more general hy
potheses in Sec. 2.9. 

In parameter estimation we distinguish between the "poin t" estimates 
of the parameters and their "interval" estimates. Point estimation is 
discussed first. 

2.7.1 Point Estimation 

The principle of maximum likelihood is often used to estimate param
eters. Under this principle the parameter values are chosen to maximize the 
likelihood, or probability, of obtaining the sample results. Tha t is, for all 
other possible values that could be assigned the parameter in question, 
the probability of observing the given set of sampled data is smaller than 
for the maximum-likelihood estimate of the parameter. 

This principle is best understood with an illustration. Consider the 
binomial density function. For n observations, let X be the number of ob
served successes. Then, the likelihood, or probability, that x will take on a 
given value is given by Eq. 2.30, which is repeated here: 

/ W = ; T ( f ^ / ' ^ ( l - / ' ) " - ^ (2-30) 

The maximum-likelihood estimation principle says that the parameter, 
p, should be chosen to maximize/(x) . It is a simpler mathematical exercise 
to maximize the logarithm oif{x), which is clearly maximized at the same 
value of j& as isf{x). 

Write the logarithm of/(x) as 

Z.= l n / ( x ) = ln n ! - l n x\-\n{n-x)\+x \np+{ri-x) In ( 1 - 6 ) 
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This is a simple function that can be maximized by applying basic 
results from calculus. 

The partial derivative of L is taken with respect to p, equated to zero, 
and solved for p. The solution is the maximum-likelihood estimate oi p. 

dL X n — x 

dp~p~l—p~ 

which gives 

/ = ; (2-75) 
n 

where the caret ( ) is used to denote that x/n is an estimate of the param
eter p. 

Thus the maximum-likelihood estimate of the binomial parameter, 
p, is the number of successes divided by the number of observations. 

Reference to Eq. 2.33 shows that^ft, or x/n, has expected value/). When 
the expected value of an estimate is equal to the parameter being estimated, 
this estimate is said to be unbiased. This is a desirable property because it 
indicates that, by use of the estimating procedure that produces the un
biased estimate, the estimate will equal the parameter being estimated 
"on the average." 

There are other important properties of estimators that are not dis
cussed here. I t suffices to say that the maximum-likelihood method results 
in estimators with desirable qualities. (It is noted that maximum-likelihood 
estimators are not, in general, unbiased. They can be made unbiased, 
however, very simply, and this is not a serious criticism of the method.) 

The hypergeometric, normal, and uniform density functions have 
been discussed previously. The following point estimates are maximum-
likelihood estimates of the parameters, the notation being consistent with 
that in Sec. 2.4. 

(a) Hypergeomefr/c Density Function 

^ = {^} (2.76) 
where { } denote " the integer just less than . . .". Clearly D must be an 
integer. 

(b) Normal Density Function 

The maximum-likelihood estimate of ix is 

;^x (2.77) 

Since E{x)=ix for any distribution, including the normal, from Eq. 
2.57, X is an unbiased estimate of ju. 
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The maximum-likelihood estimate of a- ̂  is 

^ 2 = £ ( ^ ! Z : f ^ (2.78) 
i= i n 

However, it can be shown that E(a^)9^a^, and the estimate is biased. 
This can be remedied if n in Eq. 2.78 is replaced by (n—l) to give the 
estimate 

, 2=J ( l ^ (2.79) 
, = 1 n — l 

By Eq. 2.62 since E(s^)=a^, s^ is an unbiased estimate of a^. This is 
the motivation for division by (n—l) rather than by n. 

We noted earlier in Sec. 2.1 that other measures of central tendency 
and dispersion might be used as descriptive statistics. The question arises 
as to whether or not the median, for example, could be used to estimate 
the population mean, fx, and some function of the range, say, to estimate 
(7 .̂ This is possible. The resulting estimates are not as good in a statistical 
sense as x and s^, but this may not be a serious drawback if simplicity is 
thereby introduced. For example, we can find the range of 5 numbers by 
inspection, but determining the variance, s^, requires calculation. However, 
the author's experience is that in most nuclear materials control applications 
there is little occasion to use estimates other than x and s^, and therefore 
we shall drop the subject at this point without further mention. Those 
interested in pursuing it further can find the subject discussed in many 
textbooks. 

(c) Uniform Density Function 

The maximum-likelihood estimates for the parameters of the uniform 
density are found by letting x' be the smallest of the n x, values and x" be 
the largest. Then the parameters a and b of the density function (Eq. 2.45) 
are estimated by 

a=x' b = x" (2.80) 

Since there will be no occasion to estimate the parameters of the 
uniform density function in this book, no more will be said on this subject. 

2.7.2 Interval Estimation 

After an estimate of some given parameter is obtained, the next 
obvious question is "How good is the estimate?" To rephrase this more 
precisely, we might ask, "Wha t is the probability that the estimate of a 
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parameter differs from the true value of that parameter by more than u 
units?" * This question is answered by the construction of a confidence interval. 

Roughly speaking, a confidence interval is an interval within which the 
true parameter value lies with some specified degree of confidence, or with 
some specified probability. This may bother some readers because it seems 
to imply that the parameter has a distribution and hence is a random 
variable. However, this is not the case. Rather, the interval is the random 
variable. A 95% confidence interval, say, on some arbitrary parameter, 
d, is interpreted as follows: If the experiment were to be repeated over and 
over again and the interval were always constructed in the given manner, 
then 95% of these intervals will be expected to include the true parameter 
6. This is often freely translated as "With 95% confidence, 6 is included 
within the interval in question." 

Confidence intervals (the end points of a confidence interval are called 
confidence limits) are constructed for the parameters of the density func
tions of greatest interest in this book. The normal density function is con
sidered first. 

(a) Normal Density Function 

Three cases are considered. In the first two cases, a confidence interval 
is to be constructed on the population mean, ju, first with a known and 
second with a not known. In the third case a confidence interval is con
structed on the population variance, a^. 

Case 1: Confidence limits (CL) on ix, known o-. 

Since 
_ x—ix 

a/y/n 

is standardized normal, with zero mean and unit standard deviation, the 
following "equal-tailed" probability statement can be made if we wish to 
construct a confidence interval within which ix lies with 100(1—a)% 
confidence. 

PrU„/2<r777=<^i-«/2) = l - « (2.81) 

where 

r"'"'f{z)dz=\-a (2.82) 

defines Za/2 and zi-a/2. Because of symmetry, Zan niay also be written as 
— •Cl-o/2. 

* Or, possibly, by more than p %} 
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Equation 2.81 is solved for fx to give the equivalent probability state
ment, 

Pr [x—Zi-« 12—P<!!•<'(+Zx-an~F)='^—<^ \ Vn V n / 
(2.83) 

This is the desired confidence interval for ix, with known <T. It may also be 
written as 

ix = x±zi-air^ (2.84) 
v n 

Case 2: Confidence limits on y., unknown cr. 

An approach similar to that of case 1 is used. Now the z statistic is 
replaced by t defined by Eq. 2.68. The quantities tai2 and <i_„/2 are defined 
as in Eq. 2.82 with the density function being Student's t rather than the 
standardized normal. Again, with the use of the symmetry of the t density 
function, the resulting 100(1 —a)% confidence interval is 

M = ^±<i-a/2-7= (2.85) 
Vn 

Case 3: Confidence limits on (T^ 

The confidence interval on cr̂  is constructed by using the x^ variable 
given by Eq. 2.66. The probability statement is 

Pr fxa /2<(n - l ) ^<Xi -a /2J = l - a (2.86) 

with Xa/2 and xi-a/2 defined by Eq. 2.67. This interval is constructed on 
a^ to give 

/ ( n - l ) . ' „ . ( n - l ) . ' \ 
P r ( - - 2 <<r2<—-^ l = l - a (2.87) 

\ Xl-a/2 Xa/2 / 

Note that the confidence intervals constructed in the preceding para
graphs are all symmetric in the sense that equal probabilities are assigned 
to each tail. This is common practice when two-sided intervals are used. 
However, there is nothing in the definition of a confidence interval which 
requires this. 

In some applications one is interested in constructing a one-sided 
interval, i.e., in making a statement to the effect that some arbitrary 
parameter 6 is less than (or greater than) some value with a given stated 
degree of confidence. This is a limiting case of an unsymmetrical two-sided 
interval in the sense that either the subscript a/2 for z, t,ovx'^ for the three 
cases just studied is replaced by a and the subscript (1—Q:/2) is replaced 
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by 1 or (1—a/2) is replaced by a /2 and a / 2 by 0. One-sided intervals 
are discussed more fully when the parameters of the binomial and hyper
geometric density functions are treated in Sees, b and c. 

Example 2.F 

Five samples of UO2 powder are measured for percent uranium with 
the following results: 

A:I = 8 7 . 6 2 7 ;c4 = 87.571 
A:2 = 87.649 X6 = 87.637 
A:3 = 87.642 

Construct a 9 5 % two-sided confidence interval on the mean, fx, for 
the population from which the samples were drawn and a 9 0 % two-sided 
confidence interval on the variance. 

To construct the CL for the mean, apply Eq. 2.85. For 9 5 % confidence, 
a = 0.05 and a / 2 = 0.025. Therefore, from Appendix C with df=4, 

h-a 12 = tn.9n = 2.776 

Next, X, s^, and s are calculated from the data. By Eq. 2.56, x is found 
by summing the five values and dividing by 5: 

^ (87.627+ . . . +87.637) 
. = ~ 

= 87.625 

By Eq. 2.61, 

(87.627)2+ , , + (87 .637 )2 - [ (87 .627+ _ _ _ +87.637)/ '5] 
r.2 ^ ^ _ _ ^__ _ 

4 

= 0.000982 

and 

i = V 0 . 0 0 0 9 8 2 = 0.0313* 

Instructions for Eq. 2.4 (Sec. 2.1) may be used if the reader prefers in
structions to equations. 

From Eq. 2.85, the 9 5 % confidence limits for the mean, ix, are 

. = 8 7 . 6 2 5 ^ ^ ^ - ^ ^ ^ ^ ^ ' ^ -
v 5 

= 87.625±0.039 

* In the actual calculation, 87 mav be subtracted from all the numbers to permit working 
AMth small values Then 87 is added to the calculated mean to give \ I he terms s- and s are 
unaffected by addition of, or subtraction of, the same tjiiantitv to (from) all the observations. 
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Thus the mean, n, lies in the interval from 87.586 to 87.664 with 9 5 % 
confidence. 

T o construct the 9 0 % confidence interval on the variance, a'^, apply 
Eq. 2.87. For the 9 0 % confidence level, a = 0.10 and, from Appendix B 
with 4 df, 

X?-a/2 = X 0 95 = 9.49 and xi/2=X0 05 = 0.71 1 

Thus the confidence interval is 

(4) (0.000982) ^ (4) (0.000982) 

9.49 ^^ ^ 0.711 

0.000414 <cr 2 < 0.005525 

The corresponding interval for the standard deviation, a, is found 
by extracting the square roots of these limit values: 

0.0203 < (7 < 0.0743 

Example 2.G 

In example 2.F, suppose it is known from previous data that cr = 0 .05% 
(absolute percentage units). Then what is the 9 5 % confidence interval on 

Equation 2.85 is applied. From Appendix A, 

^ l - a / 2 = ^0 976= 1-96 

Then the interval is 

M = 87.625± 7= 
v 5 

= 87.625±0.044 

(b) Binomial Density Function 

The problem of constructing confidence limits for the binomial 
parameter, p, is more complex. This reduces to finding the largest value 
of p, say pi, such that, for that value of p, 

t^.p'^'-py-4 (2.88) 
and the smallest value oi p, say p2, such that 

« . n\ a 
P'{\-py-^<- (2.89) x=o x\{n—x)\ 
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where A'O is the number of observed successes in n total observations and 
100(1 — a)%, is the confidence coefficient. 

With the binomial and hypergeometric density functions, we are 
often interested in a "one-sided" interval, i.e., an upper limit on the 
parameter only. This is accomplished by solving Eq. 2.89 with a / 2 re
placed by a and by ignoring Eq. 2.88. If a lower limit is required, a / 2 is 
replaced by a in Eq. 2.88, and Eq. 2.89 is ignored. 

Equations 2.88 and 2.89 can be solved by trial and error, but this is a 
laborious process unless xo is very small. Fortunately, in the most common 
nuclear materials control applications that are related to inspection 
activities, xa will be quite small, and it is reasonable to proceed on that 
basis. 

For larger ;ii:o, we must resort to tables or approximate formulas. This 
is not discussed further here, however, because (1) it is felt that Eqs. 2.88 
and 2.89 can be solved rather easily in most applications likely to be en
countered in this particular field of application and (2) owing to the finite 
population sizes often encountered, more attention should be given the 
hypergeometric density function, which is the next subject. 

Example 2.H 

Fifty fuel rods are selected at random and scanned to verify the 
^^*U enrichment. All are verified as having the correct enrichment, i.e., 
as stated on the inventory listing. If we assume that the total population of 
fuel rods is very large, what is the upper 9 9 % confidence limit on the pro
portion of fuel rods that might have the wrong enrichment, based solely 
on this inspection activity? 

Here n equals 50, and xo, the number of defects or successes, is 0. 
Since an upper limit is desired, Eq. 2.89 is solved ior p, with a /2 replaced 
by a = 0.01. There is only one term in the sum, namely, that corresponding 
to x = 0. This term is very simply (1—pY or (I ~p) ^°. Equate this to 0.01 
and solve for p. 

(1-^)60 = 0.01 

(l-j&) = (0.01)i/5'' = 0.912 

so that 

/7= 1-0 .912 =0.088 

Thus with 9 9 % confidence the true proportion of fuel rods that 
might have the wrong enrichment is 0.088, or 8.8%, based on the results 
of the inspection activity. 

Suppose now that 120 rods were scanned and one defect were found. 
What is the 9 9 % upper limit based on these data? 
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Here n equals 120 and xo equals 1. Equation 2.89 is again solved for p, 
but this time there are two terms in the sum, namely, 

( l _ ^ ) 1 2 0 + l 20^(1 -j&)U9 

Factoring out (1—j&)''' and equating to a = 0.01, we must solve the 
following equation for p. 

{I -py(l -p+l20p) =0.01 

( l - j6 ) "9 ( l + 119/))=0.01 

This equation is most easily solved by trial and error. In the following 
table, values are assigned to p, and the quantity on the left-hand side of 
the preceding equation is evaluated. The solution for p occurs at the point 
where this quantity is equal to 0.01. 

p 

0 08 
0 05 
0 06 

(1-/,)"»(1+119/-) 

0 0005 
0 015b 
0 0052 

P 

0 055 
0 053 
0 054 

(1-/-)'"(!+119/.) 

0.0090 
0 0112 
0 0100 

Thus /) = 0.054 is the required solution. With 9 9 % confidence the true 
proportion of fuel rods that might have the wrong enrichment is 0.054, or 
5.4%, based on the results of the inspection activity (i.e., one defect dis
covered in 120 rods scanned). 

(c) Hypergeometric Density Function 

Attention is restricted to construction of an upper confidence limit 
on D, the number of defective items in the population of size .A''. For 100 
(1 — a ) % confidence, this requires finding the smallest value of Z) such that 

(IS) 
0 

<c (2.90) 

where ATO is the number of observed defects in n total observations. 
Again, in most instances of practical concern, xo is very small, and it 

is possible to replace the left-hand side of Eq. 2.90 by approximations that 
yield solutions for D with very little efl^ort. In particular, solutions are 
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found for j;o = 0 and for xo=l. For A;O = 0, i.e. ,no observed defects, Eq. 2.90 
is replaced by 

0-2]v:^)'^« (2-91) 

For A:O= 1, it becomes 

The basis for these equations is given in Sec. 9.1.4. Further discussion 
and applications of the hypergeometric density function as it pertains to 
the important inspection applications in nuclear materials control are 
also contained in Chap. 9, which deals with inspection. 

Example 2.1 

In the examples considered for the binomial case, let the total number 
of rods in inventory be JV=300. Then, for A;O = 0 defects, apply Eq. 2.91 to 
find the upper 99% confidence limit on D. For n = 50, find the smallest 
value of D such that 

V 601-Z) / 

This is solved by trial and error. The left-hand side of the equation 
is evaluated for different values of D, and the solution is the largest integral 
value of D such that this quantity is less than 0.01. 

D \ 601-D) 

25 0.0085 
22 0.0154 
24 0.0104 

Therefore the upper limit on D is 25, since this is the smallest value of 
D that produces an a smaller than 0.01. Note that D/JV= 25/300 = 0.083, 
whereas the corresponding upper limit in the binomial case was 0.088. 

If n= 120 and X(,= 1, then Eq, 2.92 is solved for D. 

I 240 \ ^ / 120Z) \ 

This equation is a bit more formidable than when Afo = 0 but can still 
be solved rather easily by trial and error on a desk calculator. 
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0.0044 
0.0070 
0.0112 

Thus Z)=14 is the upper limit. By comparing this with the result 
based on the binomial distribution, note that Z)/JV= 14/300 = 0.047 
whereas the corresponding upper limit in the binomial case was 0.054. 

Some comment is in order on the choice of a in constructing confidence 
intervals. This topic has been avoided thus far except that, in the various 
examples, confidence intervals of 90%, 9 5 % , and 9 9 % were constructed 
and thereby left the impression by implication that they are reasonable 
choices for 1 0 0 ( 1 - a ) % . 

I t is important to note that the choice of a is not a statistical problem; 
however, the construction of the confidence interval once a is selected is 
a problem in statistics. In addition, the user who selects a value for a in 
a given application must be made aware of the implications of this choice. 
For example, if the user wants to construct a 9 0 % confidence interval, 
he should recognize that there is one chance in ten that the parameter he 
has estimated is not contained within the interval. It that good enough? 
Is it perhaps too good? This is for the user to decide. Of course, there is 
nothing to prevent the construction of several intervals corresponding to 
different values for a in a given instance. This gives a more complete 
picture of just how well the parameter in question has been estimated. 

Before we leave the subject of parameter estimation, and, in par
ticular, interval estimation, it is worthwhile to make the distinction be
tween a confidence interval and other statistical intervals, particularly, a 
tolerance interval and prediction interval. This distinction is as follows: 

Confidence interval: An interval that includes a given parameter with 
a specified degree of confidence. 

Tolerance interval: An interval that includes a specified proportion of 
all population values with a specified degree of 
confidence. 

Prediction interval: An interval that includes some specified function 
of k future observations from some population 
with a specified degree of confidence. 

Attention in this book is restricted to confidence interval estimation, 
which is the kind of interval of most interest in nuclear materials control 
applications. 

D 

15 
14 
13 



62 PROBABILITY AND STATISTICS 

2.8 HYPOTHESIS TESTING 

This aspect of statistical inference plays an important role in nuclear 
materials control applications. Hypothesis testing involves the following 
steps: 

Step 1. A statement is made about some parameter. This is called the 
null hypothesis and is denoted by Ha. Examples of null hypotheses 
include: 

a. The true amount of material unaccounted for (MUF, or M) 
during a given material balance period is zero units. This is 
written as Ho:M = 0 or, possibly, Af <0 . 

b. The true shipper-receiver difference, R, for a given shipment 
of materials is zero units. (Ho'. R = 0) 

c. The true discrepancy, D, between the operator's statement of 
his inventory and the corresponding statement of an audit team 
is zero. (HQ: D — 0) 

d. The true proportion, p, of incorrectly labeled containers in 
some segment of an inventory is below some amount, po. 
{Ho:p<po) 

Step 2. Decisions are made as to how the validity of a given hypothesis 
will be tested. This involves specifying the data to be collected, 
the test statistic to be computed, and the range of values for the 
test statistic which will result in the conclusion that the stated 
hypothesis is not a valid one. 

Step 3. The data are collected, the test statistic is calculated, and the 
decision is made to reject or not to reject the hypothesis. 

A misapplication of hypothesis testing occurs when the hypotheses 
are formulated after the data are collected. This practice of using data to 
suggest hypotheses is at variance with the whole idea of hypothesis testing. 
Once the data have been collected, anyone with an ounce of brains and 
a lesser amount of integrity, or more charitably stated, "any misguided 
individual," can formulate hypotheses that will be rejected when tested 
against the data. The statement is then made that "the data prove that 
such and such . . .". It is an acceptable practice, of course, to formulate 
hypotheses based on given data sets, but it is simply not acceptable to test 
their validity with the same set of data that provided the basis for formu
lating the hypotheses in the first place. 
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2.8.1 Definitions of Terms In Hypothesis Testing 

In its formal structure, hypothesis testing involves such terms as null 
and alternative hypotheses, type I and type II errors, a and /3 probabilities, 
significance level, critical region, power curve, and one-sided tests. These 
terms are defined in this section. 

A null hypothesis. Ha, is established. This is a statement about the value 
of some population parameter or some function of several parameters 
either from the same or from different populations. If the hypothesis in
volves a single value, e.g., 77o: AI = MO, it is called a simple hypothesis. If it 
involves a range of values, e.g., 77o: ix<ixo, it is called a composite hypothesis. 

After the data have been collected, the test statistic has been calcu
lated, and a decision has been reached either to reject or to accept 77o, the 
following possibilities exist: 

1. The null hypothesis is actually true, but it has been rejected. 
2. The null hypothesis is actually false, but it has been accepted. 
3. The null hypothesis is actually true, and it has been accepted. 
4. The null hypothesis is actually false, and it has been rejected. 

With possibilities 3 and 4, the correct conclusions are reached. If 
possibility 1 occurs, a type I error has been committed, i.e., the null hypothesis 
has been rejected even though it is true. If possibility 2 occurs, a type 77 
error has been committed, i.e., the null hypothesis has been accepted even 
though it is false. 

For a given situation the probability of committing a type I error 
can be computed. This is designated by a. The a probability is controlled 
by the experimenter in the sense that the range of values that the test 
statistic must take on to result in the rejection of the null hypothesis, 
called the critical region, is defined so as to achieve the desired value for a. 
(What value should be chosen for a? In many applications, a is chosen to 
be 0.05, and the reader may have formed the impression that this is a 
magic value. It is not. See the closing comments in Sec. 2.7 dealing with 
the choice of a in constructing confidence limits. The same sort of comments 
might well be made here.) The a is also called the significance level of the test. 
The type I error is sometimes loosely referred to as the a error. This is 
poor practice; a is a probability, not an error. 

The probability of committing a type II error is designated by 0. 
A value for fi is meaningful only when it is related to an alternative hypothesis, 
which is a value outside the region designated by 77o for the parameter in 
question. A specified alternative hypothesis is usually designated by Hi or 
HA. Because of the relation between /3 and 77i, it is instructive to calculate 
fi for various values of 77i. This evaluates the ability of the test in question 
to reject a given hypothesis when it is false for a range of such alternative 
hypotheses. The plot of (1 — )3) versus 77i is called a power curve. If the range 
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of the alternative hypothesis includes values of the parameter on both sides 
of the null hypothesis, the hypothesis test is a two-sided test. This occurs, 
for example, if HQ: iJi = no against the range of values for Hi: M?^MO- If, 
in this example, Ho: ju^Mo, then the range of values for Hi is /J>MO, and 
the corresponding test is called a one-sided test. Figure 2.4, a sketch related 
to a one-sided test is helpful in clarifying some of the preceding ideas. 

For the two-sided test with a simple hypothesis, the sketch is similar 
except that the power curve reaches the minimum value of a at Ho. Ex
amples of statistical hypothesis testing are contained throughout the book, 
particularly in the next section. Sec. 2.9. Although the main purpose of 
this section is to introduce the concepts and terminology, a simple example 
at this point can help fix the ideas discussed. The example also shows how 
the test design is influenced by the values assigned the various test 
parameters. 

Example 2.J 

A number of samples of UO2 powder from a given batch are to be 
measured for percent uranium. In practice a standard factor of 87.60% 
is used for UO2 powder, but, if the true factor for a given batch of powder 
is as low as 87.55%, this must be detected with a probability of 0.80 and 
the new factor must be used for the batch in question. O n the other hand, 
if the true factor for the batch in question does not differ from 87.60%, it 

PROBABILITY OF 
REJECTING W, 

REGION IN 
-WHICH H IS-»-

TRUE 

FIGURE 2.4 Power curve. 
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is desired to use the standard factor of 87.60%; the new estimated factor 
should be used with a probability of <0.02 in this instance. It is known that 
the standard deviation of a given observation is 0.04 percentage points. 
Design the test procedure to accomplish this, i.e., find the sample size and 
the critical region Assume that the random variable is normally distributed. 

With fi the true concentration factor for the batch in question and 1 
the estimated factor based on n samples, the various test parameters are 
identified as follows: 

Ho' M^87 60* The true percent uranium for the batch equals or 
exceeds 87.60%. 

Hi: fi = 87.55 The true percent uranium corresponding to the 
stated alternative hypothesis. 

a = 0.02 When /i = 87.60%, Ho should be rejected with a 
probability of 0.02. 

/3= 1 -0 .80 = 0.20 When ^ = 87.55%, Ho should be rejected with a 
probability of 0.80 or accepted with a probability of 
0.20. 

o- = 0.04 The known standard deviation of a single observa
tion. 

This is a one-sided test. The null hypothesis is rejected i( x<c, where c 
defines the critical region and x is the sample mean which estimates the 
true mean, fi. 

Since a = 0.02, c must be chosen to satisfy the equation 

Pr (x<(r|M = 87.60)=0.02 

i.e., when the true batch mean is 87.60%, the probability that Ho is re
jected is 0.02; Ho is rejected when x<c. 

Also, to satisfy the requirements on (3, 

Pr ( X < C | M = 8 7 . 5 5 ) = 0 . 8 0 

i.e., when the true batch mean is 87.55%, the probability that Ho is 
rejected is 0.80. 

These two equations are solved simultaneously for c and n (which 
appears implicitly in x) by standardizing each and using Eq. 2.43. T o 
standardize, we subtract the mean and divide by the standard deviation. 
The mean of x is 87.60 in the first equation and 87.55 in the second. The 
standard deviation of x is o-/\/n = 0.04/-v/« (by Eq. 2 58). 

• In practice a two sided test \\ould be more reasonable in this example. However, a one
sided test IS used at this point in the discussion to avoid unnecessary complications m the 
arithmetic 

file:////ould
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The first equation is 

/ ^ - 8 7 . 6 0 c - 8 7 . 6 0 \ 

V0.04/VH ^0.04/Vn) 

^ r ( c - 8 7 . 6 0 ) V " ! 
^'b< 0.04 J = Q-Q̂  

where ^ is a standardized normal random variable. From Appendix A, 

( f -87 .60) V n 
0.04 

• = - 2 . 0 5 4 

since the area from — oo to —2.054 under the standardized normal density 
curve is 0.02. 

The second equation is handled similarly: 

V. / - , „ . ..X „ I ( f - 8 7 . 5 5 ) V n ' 
Pr(A:<<;|M = 87.55) = P r U < = Pr L 

0.04 

From Appendix A, 

(c -87 .55) \ / ^ 

= 0.80 

0.04 
= 0.842 

since the area from — =o to 0.842 under the standardized normal density 
curve is 0.80. 

The two equations are solved simultaneously for c and n. The first 
becomes 

(0.04) ( -2 .054 ) -0 .08216 

^ " ~ c - 8 7 . 6 0 " c - 8 7 . 6 0 

and the second becomes 

(0.04) (0.842) 0.03368 
\/n = -

-87.55 c - 8 7 . 5 5 

After equating the right-hand sides of these equations to eliminate n, the 
equation in c becomes 

-0 .08216 (c-87.55) =0.03368 (<:-87.60) 

or 

10.14348 

^= 011584: = ^^-^^^ 

from which 

1.03368^" /O.O 

"=V"o: 015 / 
= 5.04 (or 5) 
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Thus the test procedure is to draw a sample of 5 observations and 
compute the mean, x. If x<87 .565%, reject Ho\ i.e., conclude that the 
standard factor of 87.60% should not be used for the batch in question. 

2.8.2 Control Charts 

In the example just concluded, a test was made of the hypothesis 
that the percent uranium in a given batch of UO2 powder is not different 
from some standard value, where the standard value is presvimably based 
on past experience. This is a situation in which the test would be performed 
for each batch. That is, a series of hypothesis tests would be made corre
sponding to the batches as they are created. 

In this instance the successive hypothesis tests are related to one another 
in the sense that the sample size is constant from batch to batch, as is the 
critical region. This suggests that the hypothesis testing procedure can be 
simplified since the critical region need not be determined for each test. 
When the simplification is accomplished by plotting the successive batch 
means as a fimction of time and noting whether or not each mean falls 
in the critical region, the resulting plot is called a control chart. (This 
discussion on control charts is very limited. Once the reader understands, 
however, that a control chart and a test of hypothesis are equivalent, he 
can construct control charts of many kinds, e.g., on sample variances.) 

A standard control chart on sample means is simple to construct. 
The construction involves determining the null hypothesis value, ju (the 
standard factor of 87.60% in the preceding example), the known standard 
deviation of a sample average, cr, and the critical region, defined by what 
are called control limits in control chart terminology. 

The proper value to use for <T is covered in detail in Chap. 3. At this 
point in the development, it suffices to say that cr is the standard deviation 
that describes the dispersion of successive x values when a state of control 
exists, i.e., when the true batch means are constant. 

The control limits are of the form (/J±^(r) for a two-sided test, with 
either the plus or minus sign disregarded in a one-sided test. The constant, 
k, depends on the significance level of the test. In the previous example, 
it was seen that at a significance level of 0.02, or 2 % , and with a one-sided 
test, k is 2.054. For other significance levels, the appropriate value for k 
may be read from Appendix A. For a one-sided test, k is read directly from 
the table corresponding to a given a. For a two-sided test, the significance 
level, a, must be divided by two before finding k. For example, if the 
significance level for a two-sided test is a = 0.05, k is found from Appendix 
A as the value that corresponds to 0.025 (i.e., a tabular entry of 0.975), 
which is 1.96. 

Although the appropriate k may be read from Appendix A, this degree 
of refinement is often not used in the practical application of control charts. 
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Rather, it is customary in many occasions to simply choose k = 'i and use 
(/i±3cr) as the control limits. This procedure has the advantage of simplicity 
in construction and ensures that a plotted point that is out of control (i.e., 
falls in the critical region defined by the control lines) constitutes rather 
strong evidence that the true mean for the batch in question is really 
different from /x. (At ^ = 3, with a two-sided test, the a value is only 0.0026, 
which means that only 0.26% of the time will a point fall out of control 
because of chance alone.) Although each application of control charts 
should be examined to see if the use of /: = 3 is appropriate or if a different 
value should be used, a choice of A = 3 should prove to be satisfactory in 
many nuclear materials control applications. 

Example 2.K 

Construct a control chart for the average percent uranium in batches 
of UO2 powder. Assume that the standard factor, /i, is 87.60%, and use 
(7 = 0.06% (absolute percent). Then plot the batch averages for the following 
19 batches and determine whether there is any significant shift from the 
standard factor. 

87.54 
87.56 
87.50 
87.47 
87.64 

87.56 
87.71 
87.61 
87.60 
87.60 

87.47 
87.60 
87.69 
87.78 
87.69 

87.72 
87.77 
87.79 
87.78 

The two-sided control limits are of the form {ti±k<j). With a k value 
of 3, these limits are 

87.60±3(0.06) = 8 7 . 4 2 - 8 7 . 7 8 

The control chart. Fig. 2.5, shows the plotted batch averages. The 
circled points fall on or beyond the upper control limit; this indicates 
that the true means for the batches in question are greater than 87.60%. 
In fact, it appears that the means for all the last few batches have shifted, 
even though not all the individual batch means are out of control. 

I t should be evident from this example that an out-of-control situation 
can occur for more than one reason. For example, it may be that the mean 
for only a single batch is high (or low) for some reason. Or it may be (as 
appears to be the case in this example) that the mean of several successive 
batches has shifted, although the shift might be small enough that it is 
not detected for several batches. 

Although a moderate shift in the overall mean will be detected even
tually by a standard control chart, other means for detecting such a shift 
also have some appeal. One such means is the cusum chart, or cusum plot. 
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87.78 

87.74 

87.70 

87.66 

87.62 

87.58 

87.54 

87.50 

87.46 

87.42 

-*-•-

UPPER 
CONTROL 
LIMIT (UCL) 

LOWER 
CONTROL 
LIMIT (LCD 

FIGURE 2.5 Control chart on batch average percent uranium values. 

2.8.3 Cusum Plot 

The cusum plot is ideally suited for detecting shifts. Although formal 
means exist for constructing control limits for use with cusum plots, their 
formal construction is beyond the scope of this book. Rather, the cusum 
plot is introduced very briefly here as a method of plotting data. This is 
especially useful because of the visual impact created by shifts in the mean. 
With such a plot, just where the mean may have changed in value can be 
pinpointed rather precisely. 

This is best illustrated by presenting the data of the previous example 
as a cusum plot. "Cusum" stands for "cumulative sum". The values plotted 
are the successive sums of (x—n) values. The calculations for the cusum 

TABLE 2.11 CUSUM VALUES FOR BATCH AVERAGE PERCENT URANIUM 

Batch 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

X 

87.54 
87.56 
87.50 
87.47 
87.64 
87.56 
87.71 
87.61 
87.60 
87.60 

(*-87.60) 

-0 .06 
-0 .04 
-0 .10 
- 0 . 1 3 

0.04 
-0 .04 

0.11 
0.01 
0.00 
0.00 

Cusum 

-0 .06 
-0 .10 
-0 .20 
-0 .33 
-0 .29 
- 0 . 3 3 
- 0 . 2 2 
-0 .21 
-0 .21 
-0 .21 

Batch 

11 
12 

13 
14 

15 
16 

17 
18 

19 

X 

87.47 
87.60 
87.69 
87.78 
87.69 
87.72 
87.77 
87.79 
87.78 

(x-87.60) 

- 0 . 1 3 
0.00 
0.09 
0.18 
0.09 
0.12 
0.17 
0.19 
0.18 

Cusum 

- 0 . 3 4 
-0 .34 
- 0 . 2 5 
- 0 . 0 7 

0.02 
0.14 
0.31 
0.50 
0.68 
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FIGURE 2.6 Cusum plot. 

plot are shown in Table 2.11, and the cusum values are plotted in Fig. 
2.6. A shift in an overall mean is reflected by a change in the slope of the 
plotted points. Although a formal test of significance has not been made, 
it is evident from this plot that a shift in the mean occurred with the last 
7 to 8 batches. This indication of a shift is often all that is required in prac
tice; i.e., formal tests of significance may not contribute much additional 
justification for taking some kind of action, such as changing the value for 
a standard factor in this instance. 

2.9 TESTING DISTRIBUTIONAL ASSUMPTIONS 

The final topic in this chapter deals with a few specific techniques 
for testing the validity of certain assumptions made in using sampled 
data to make inferences about the corresponding population. The following 
types of perturbations may occur and hence invalidate the results of the 
statistical analysis: 

1. One or more of the sample values may be an "outlier" in the sense 
that it is questionable whether or not it can be considered to be a member 
of the population it is represented to be. 

2. There may be a lack of "randomness" in the data; this suggests 
either that the population parameter(s) are shifting or that the sample 
selection method is creating nonrandomness. 

3. A random variable may be assumed to be normally distributed 
when, in actual fact, the density function differs from the normal function 
in some respect or respects. 
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Each of these three situations is a major topic in itself and can be treated 
only rather briefly. The main purposes are to warn the reader to be aware 
of the possible discrepancies between assumptions that are made and the 
actual situation that may obtain and to call attention to some statistical 
tests that may be used profitably. 

2.9.1 Test for Outliers 

Much has been written on this subject. There are two quite distinct 
aspects to the problem: how to detect outliers objectively and how to 
treat them, once detected. Only the first problem is covered here, even 
though the second is equally, if not more, important. (A detected outlier 
is evidence of some difficulty and should, at least, be investigated to de
termine the cause or causes. When an experimenter is too zealous in 
indiscriminately ignoring "discrepant" observations, this results in a biased 
picture of reality.) 

A number of statistical tests have been suggested to identify outliers. 
Only the simplest situation is considered here, namely, that in which there 
is a single random variable and one population density function. Further, 
it is assumed that this population density function is the normal function 
with variance not known and that only a single observation is suspect. 
Although this is a simple situation, it is commonly encountered. 

The so-called "?"„ test" is applicable in this instance. To perform 
this test, order the sample values so that xi<X2 . . . <x„, where n is the size 
of the sample. Then, calculate x and s^ by Eqs. 2.56 and 2.60 or Eq. 2.61, 
using all the data, including the suspect observation. Let the suspect obser
vation be the largest one. The Tn statistic is computed. 

r„ = ̂  (2.93) 

The hypothesis is that Xn is from the population. If Tn exceeds the critical 
value given in Appendix E at the a significance level, this hypothesis is 
rejected; i.e., Xn is labeled an outlier. 

The table is constructed so that critical values are shown for a one
sided test, i.e., in the case where suspect observations are always either on 
the high side or on the low side. For the more common situation in which 
an outlier may be either too large or too small, the column headings 
should be multiplied by two. Thus, in this instance, for a = 0.10, the column 
for the 5% significance level in Appendix E should be used; for a = 0.05, 
the column for the 2.5% significance level is applicable; and for a = 0.02, 
the column for the 1 % significance level applies. 
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If the suspect observation is on the low side, the test statistic is 

r a = ^ (2.94) 

Example 2.L 

For the data of example 2.F in Sec. 2.7.2, assume that the fourth obser
vation is suspect. Perform the outlier test at the a = 0.02 level (two-sided 
test). 

For this example, from the previous calculations, 

i = 87.625 and j = 0.0313 

Also, for the ordered data, Ari = 87.571 (the smallest value) so that the 
test statistic, T j , is given by Eq. 2.94. This observation will be detected as 
an outlier if Ti> 1.75, from Appendix E (n = 5; 1% significance level). 

87 .625-87.571 

' ~ 0.0313 

= 1.725 

Since 7"! < 1.75, the critical value, the observation in question is not 
detected as an outlier. 

2.9.2 Tests for Randomness 

Any set of data is ordered with respect to time, i.e., xi is the first 
observation drawn, X2 is the second, etc. If the population from which 
the samples are drawn is not stable over time, or if the sample selection 
method does not produce a random sample, there may be significant evi
dences of nonrandomness in the data. I t is important to have some means of 
detecting nonrandomness because all statistical inference is built on the 
idea of a random sample. 

As with tests for outliers, there are a large number of available statistical 
tests that can be used to test for nonrandomness. One difficulty here is 
that the alternative hypothesis is not a simple one; i.e., there are many 
ways in which data could be nonrandom. The best test to use in any in
stance depends partly on the kind of nonrandomness that might be present. 
I t is not possible to discuss all such tests that have been proposed. Only 
two very simple ones are covered here, both of which are " runs" tests. 

Before discussing the tests, however, we should note that a simple 
plot of the ordered data can be very instructive in identifying nonrandom
ness. The cusum plot of Sec. 2.8.3 might also be used profitably. On 
occasion, a plot will be so revealing that more objective tests are not needed. 



TESTING DISTRIBUTIONAL ASSUMPTIONS 73 

If the plot is not conclusive, however, we can resort to one of the following 
tests or to others that have been proposed. 

(a) Runs Above and Below fAedian 

The median is calculated for the data in question. The number of 
runs, r, above and below the median is counted. (If the data are plotted 
and the data points connected by straight-line segments, then r is one more 
than the number of times the median line is intersected.) Under the hy
pothesis that the data are random, r has mean and variance given by 

£( r )=0.5n+l (2.95) 

where n is the total number of data points. For n>25, it can be assumed 
with validity that r is normally distributed. 

The significance test is two-sided, since either too few or too many 
runs give evidence of nonrandomness. For given a, the critical values 
ci and C2 can be found from 

Pr ( r<c i |Hot rue)=^ (2.97) 

Pr ( r> t2 | / /o t rue)=^ (2.98) 

where "Ho true" means that E(r) and <r? are given by Eqs. 2.95 and 2.96, 
respectively. Thus C2 is that value which is exceeded by the observed number 
of runs with a probability of a/2 when, in fact, the data are random, and 
Ci is similarly defined. 

Example 2.M 

Diffusion plant monthly MUF data are given in Table 2.1. Apply the 
Runs Above and Below Median test to these data to test for nonrandomness. 
Use a = 0.05. 

Here n= 144 so that under the hypothesis, HQ, we compute E{r) and 
o-r. From Eq. 2.95, 

and from Eq. 2.96, 

so that 

£(r) = (0.5)(144)-f 1=73 

, _ (144)042) _ 
"'' (4)(143) ^^-'^ 

(r, = v'35.75 = 5.98 
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The value of fi is determined from Eq. 2.97. Once again the random vari
able is transformed to the standardized normal by subtracting the mean 
and dividing the difference by the standard deviation. 

' y ^ < ~ ^ 1=1 = 0.025 

From Appendix A, 

c i - 7 3 

This last equation follows since the area under the standardized normal 
curve from — x to —1.96 is 0.025. 

The solution for a is 

f, = 73- (1 .96) (5 .98)=61 .28 

Similarly, 

C2 = 73-t-(1.96)(5.98)=84.72 

The decision rule then is to reject Ho (conclude the data are nonrandom) 
if r < 6 1 or if r > 8 5 runs. 

The number of runs, r, is counted. From Sec. 2.1, it was found earlier 
that the median for this set of data is 188.5. This median line is crossed 87 
times, as the reader can verify, so the observed r is 88. Since this exceeds 
the critical value of 85, it is concluded that the M U F data are nonrandom. 
The reason for this in this example is discussed in Chap. 7. 

(b) Runs Up and Down 

The second run test discussed does not require determining the median. 
Rather, for the ordered data, if x,+i>x,, a "- ( - ' ' is recorded, and, if X ,+I<A-„ 
a " —" is recorded. A run then consists of a sequence of -f-'s or —'s. 

Let the number of runs of this type be denoted by U. Then, under 
the hypothesis of randomness. 

2 ^ - 1 
E(u) = 

and 

E{u)=^- (2.99) 

, 1 6 n - 2 9 
' '" = " " 9 ^ (2.100) 

Again, normality may be assumed for large n, say n > 2 5 , and the test is 
set up as for the other run test. The test is again two-sided. 
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Example 2.N 
Consider the diffusion plant M U F data. With this run test, 

OOQ _ „ 1 

E{u) = — ~ — = 95.67 (from Eq. 2.99) 

and 

Therefore 

(16) (144) -29 
^ ^ gQ = 25.28 (from Eq. 2.100) 

o-,. = \ /25 .28 = 5.03 

The lower critical value, ci, is determined. Again, setting a = 0.05, 
this gives 

<;i-95.67 

Similarly, 

ci = 95.67-(1.96)(5.03) =85.81 

C2 = 95.67+(1.96)(5.03) = 105.53 

The decision rule is to reject Ho if « < 8 5 or if w> 106 runs. 
The number of runs is now counted. The first few counts are shown to 

demonstrate the procedure. 

MUF Sign of successive difference 

- 358 
-3287 
5798 + 

-4115 -
616 -1-

-2825 
1287 + 

-1619 
394 -I-

(There are 8 runs for these observations.) 
For the entire data set, the number of runs is 104, as we can verify. 

Since 104<106, the hypothesis of randomness is not rejected with this 
particular run test. 
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Although the two run tests are similar with respect to the types of 
nonrandomness they detect, they are not identical. It is not surprising, 
therefore, that one test should reject the hypothesis, while the other fails 
to reject it, although with these data the critical value was just barely 
exceeded in the first instance and was almost exceeded in the second. 

In actual application, more than one test of randomness can be used. 
This introduces the problem of what is the actual significance level of the 
test procedure. It is difficult to calculate this since the various tests are not 
independent. Since the significance level is somewhat arbitrary in many 
instances anyway, this concern is not usually a major practical one. 

2.9.3 Test for Normality 

Again, a large number of tests have been suggested to test whether or 
not the population in question is normal. As with other tests of validity of 
distributional assumptions, the best test to use depends in part on the nature 
of the alternative hypothesis, i.e., on the type of nonnormality that may 
exist. 

One test is discussed here, the " W test" for normality. This test is 
chosen because it is effective against different types of nonnormality. The 
W test may be used for sample sizes less than 50. 

The IV test is applied as follows: 

Step 1. Order the data so that *i <X2 . . . <x„. 

Step 2. Compute (n—\)s^ with s^ given by Eq. 2.53 or Eq. 2.61, and 
where n is the sample size. 

Step 3. Compute 

b=aniXn — Xl)-'ran-l(Xn-l — Xi)+ . . . 
-\-a„-k+iixn-k+i — Xk) (2.101; 

where k = n/2 for even n and k= {n—l)/2 for odd n and where 
the a, coefficients are given in Appendix F. 

Step 4. Compute the test statistic 

A2 
W=-, ^ ^ (2.102 

{n—l)s' 

Step 5. Reject the hypothesis of normality if W is less than the criticj 
value given in Appendix G at a given a( = P) level. 
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Example 2.0 

Percent uranium values for 17 cans of ADU (ammonium diuranate) 
scrap are as follow: 

35.5 
79.4 
35.2 
40.1 
25.0 
78.5 

78.2 
37.1 
48.4 
28.6 
75.5 
34.3 

29.4 
29.8 
28.4 
23.4 
77.0 

Is there evidence of nonnormality for these data? Use a significance 
level of a = 0.01. 

Let us follow the five previously mentioned steps: 

Step 1. The ordered data are 

23.4 
25.0 
28.4 
28.6 
29.4 
29.8 

).2 = (23.4)2+ . 

= 7625.55 

34.3 
35.2 
35.5 
37.1 
40.1 
48.4 

. . +(79.4)2-

75.5 
77.0 
78.2 
78.5 
79.4 

(23.4+ . . . +79.4)2 
17 

Step 2. in

step 3. i = 0.4968(79.4-23.4)+0.3273(78.5-25.0) 
+0.2540(78.2-28.4)+0.1988(77.0-28.6) 
+0.1524(75.5-29.4)+0.1109(48.4-29.8) 
+0.0725(40.1 -34.3)+0.0359(37.1 -35.2) 

= 77.1796 

c* A w (77.1796)2 
Step 4. W=- — 

^ 7625.55 
= 0.781 

Step 5. A t a = P = 0 .01 , fo r«=17 , the critical value is 0.851. Since 0.781 < 
0.851, reject the hypothesis and conclude that there is evidence 
of nonnormality. 



• 

• 



Chapter 3 

SOURCES OF UNCERTAINTY IN NUCLEAR 
MATERIALS CONTROL 

OVERVIEW 

Measurements form the backbone of a nuclear materials control system. 
For example, when material is transferred from one responsible custodian 
to another, it is measured; when material is inventoried, it is measured; 
and when an audit inspection is made, measurements are performed. 

If a measured value were always equal to the true value of the item 
being measured, there would be no need for a book such as this. This is 
not to say that the problems associated with the control of nuclear materials 
would disappear, because decisions would still be required, for example, 
on the part of management or a regulating agency, as to how much " t r u e " 
material unaccounted for (MUF) is tolerable in a given situation. However, 
against a backdrop of uncertainties due to measurement, the control 
problems are greatly multiplied. This is especially true in the control of 
nuclear materials because the measurement problems are not trivial by 
any means; the "noise level" is moderately high. 

Chapter 3 is concerned with the concept of a statistical "error" 
associated with a measured value. An error of measurement can be defined 
as the magnitude and the sign of the difference between a measured value 
and the corresponding true value. I t is important to distinguish between 
an error and a mistake. A measurement error is committed because of 
limitations of the measurement system. (Although it is standard terminology 
to speak of an error as being committed, there is no intent to disparage the 
operator with this expression, i.e., to imply that the resulting error occurs 
because of poor work or a deliberate act on his part. Rather , an error is 
committed as a result of an inherent property or limitation of the measure
ment process.) A mistake is made when the operator of the system either does 
not use the system properly in a given instance or does not record properly 
the value produced by the system (e.g., he transposes numbers). 

It is very difficult to factor the effects of mistakes into an analysis be
cause of their unpredictability, with respect to both size and frequency. 

79 
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This problem was touched on briefly in Sec. 2.9.1 dealing with the detection 
of outliers that might result from mistakes. Further, in Chap. 9, on inventory 
verification, an important part of the inspection activities is centered around 
ensuring that the frequency of mistakes, evaluated against a background of 
measurement errors, is below a tolerable level. Little else can be done. 
(This is true from point of view of detection and correction of mistakes. 
However, management can take positive steps to minimize the number of 
mistakes. An excessive frequency of human mistakes can render ineffectual 
an otherwise sound system of control based on a solid measurement and 
data-handling system.) 

I t is possible, however, to deal with errors of measurement, measurement 
being used in its broadest meaning to include all sources of error that might 
affect the quality of a final measured value. Except for a bias an error 
can be regarded as an observation on a random variable. This is a simple 
but very important concept to remember. Once understood, the whole 
discussion on measurement errors should become quite clear. (A looseness 
in terminology has contributed to some of the confusion that exists. Thus 
we hear the expression " the measurement error is such and such," which in 
fact means that the standard deviation of the density function for the error 
random variable in question is such and such. Thus it is more appropriate 
to speak of the measurement error standard deviation than simply the 
measurement error, to emphasize that we do not know the value of the 
particular error but only the population density function from which the 
particular error value was drawn.) Thus for each error there is an associated 
population probability density function, with parameters whose values 
may or may not be known. 

A given observation will, in general, be affected by several individual 
errors, each drawn from a different population. Some of these error sources 
are identified; others may not be. The effects of some can be combined 
and described by one broad error source. In modeling to account for the 
various error sources that might affect the value of an observation, ideally 
we endeavor to identify and evaluate the effects of all these sources indi
vidually. However, the ideal goal is, for the most part, a physical impossi
bility. Rather, we group error sources and identify the principal error 
sources, where an error source is classified as principal either because of 
the magnitude of the error standard deviation or because of the importance 
of the operation involved, or for both reasons. Thus the error introduced 
by the weighing operation, for example, although it may not have a great 
effect on the size of the total error variance, is generally included in the 
analysis because of the significance of the weighing operation in nuclear 
materials control measurements. 

This chapter deals specifically with identification of the principal 
error sources considered in this book and with methods for estimating the 
appropriate error variances. Subsequent chapters deal with using the results 
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to make inferences of particular concern and interest in the control of 
nuclear materials. 

Section 3.1 deals with the basic categories, or types, of errors; Sec. 3.2 
identifies the error sources treated in subsequent chapters; Sec. 3.3 discusses 
methods for estimating error variances. 

3.1 BASIC ERROR CATEGORIES 

Many discussions have taken place in the past, and will quite likely 
continue to take place in the future, in attempting to reach agreement on 
the definitions and statistical treatment of different basic types or categories 
of errors. In particular, opinions differ on the meanings of such terms as 
bias, random errors, and systematic errors. The definition presented here 
describes how these terms are used in this book and, by implication, 
indicates the only reasonable way the error effects can be treated statis
tically. The definition is very simple but all inclusive in that all terms are 
included in the same definition. This permits making the distinction among 
the various terms. Basic to the definition is the idea of a reference set of 
data, i.e., the definition is meaningful only with regard to this data set. 
Definition: An error that affects only a single member of a given data set 
is called a random error. If the error affects some, but not all, members of 
the data set, it is called a short-term systematic error. If it affects all members of 
the data set, it is a long-term systematic error or a bias. 

In this definition no distinction is made between a long-term system
atic error and a bias because these quantities differ with respect to how 
they may be treated statistically but not with respect to their basic meanings. 
(In a general sense we can also speak of a short-term bias that affects some 
but not all the members of the data set. This has the same relationship to 
a short-term systematic error as bias has to a long-term systematic error.) 
The statistical treatment depends on the degree of information we have 
about the error. If the magnitude and direction of the error are known, 
the error is a known bias, and the data presumably are corrected accordingly. 
If this information is not known, we can describe the effects of the error 
by regarding it as a random observation from some population of errors. 
This population should normally have a mean of zero and a standard 
deviation related to the expected magnitude of the error. This standard 
deviation is called a long-term systematic-error standard deviation. In a 
more general sense, the population mean might not be zero. This would be 
true if a known bias were present but the data were not corrected for some 
reason, perhaps because of the small size of this bias. 

Example 3.A 

Assume that the data set in question consists of a number of obser-
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vations on percent ^sexj for UO2 powder as measured with a mass spec
trometer. Each measurement consists of the following: 

1. A sample of UO2 powder (all samples at nominally the same en
richment, designated by /x). 

2. A particular mass spectrometer on which to measure the sample. 
3. A particular operator to run the sample. 

Assume the existence of a population density function to describe the 
error due to sampling the UO2, one to describe the differences that exist 
among mass spectrometers, one to describe the differences that exist 
among operators, and one to describe the combined effects of all other errors 
that might affect the reported result. Further, assume that each density 
function has mean zero and that a known mass-discrimination bias, 6, 
affects all observations. (The mass-discrimination bias is an inherent feature 
of many mass spectrometers, and estimation of this bias is a part of the 
calibration procedure.) 

ei = ith error selected at random from the population of sampling 
errors 

?jy=jth error selected at random from the population of mass-spec
trometer errors (i.e., it describes differences among mass spec
trometers) 

^k = ^th error selected at random from the population of operator 
errors (i.e., it describes differences among operators) 

a); = /th error selected at random from the population of all other 
errors 

Denote the variances of the population density functions by trl, IT|, 
ffff, and 0-2, respectively. 

Let the data set in question consist of a single observation, and assume 
an additive model in the sense that the total error in the observation that 
occurs as a result of the individual errors is found by algebraically summing 
these individual errors. This single observation may then be written as 

ynn = fi+e+ii+r,i+l3i+wi (3.1) 

where, by definition, fx is the true percent of ''^^U, ^ is a known bias for the 
the data set, and the errors 61, T/I, ,81, and o>i can be called either random 
errors or long-term systematic errors because they each affect only a single 
member of the set or they also affect all members of the set, whichever 
viewpoint is taken. There is no distinction for this data set consisting of a 
single observation. 

Now let the data set consist of two observations, consisting of two 
separate UO2 samples, both measured on the same mass spectrometer 
by the same operator. Thus we now have selected two observations at 
random from the e and w populations and one from the rj and fi populations. 
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These two data points are written as 

)'uii = M+^+«i+ '? i+ |3 i+aJ i 
(3.2) 

)'2112 = M + ^+f2 + '?l+/3l + C02 

where, by definition, S is a known bias, the errors ei, «2, " i , and 0)2 are 
random errors since each affects only a single member of the set, and TJI 
and |3i are both long-term systematic errors since each affects all members 
of the set. 

As the final illustration, suppose now that there are six total observa
tions in the data set. Each pair of observations consists of measurements 
on the same sample, i.e., there are three UO2 samples with duplicate meas
urements on each. All measurements are made on the same mass spec
trometer, but two operators make the measurements—operator 1 for ob
servations 1, 2, 4, and 6 and operator 2 for measurements 3 and 5. Then 
the six observations appear as follows: 

p 
M 

&̂  
V 
3 
H 

XI 

a 
n 
a c 
6 
0 

-a 
m 
S 

J i m = M + ^ + ei + 171 + ;8i + tJi 

JV1112 = n + d + ei + ni + Pi + (^2 

yixn = M + ^ + «2 + 1/1 + 182 + tos 

2̂114 = M + 6 + €2 + '71 + iSl + 0)4 

^3126 = M + S + 63 + 1?! + /32 + OJs 

3̂116 = M + S + 63 + IJl + /3i + OJe 

In this example, 0 is a known bias; ti, £2, C3, /3i, and /32 are short-term system
atic errors; rn is a long-term systematic error; coi, 02, 0)3, C04, cos, and we 
are all random errors. This example shows that some observations from a 
given error population may be classified as random errors (affecting one 
data point) and some as short-term systematic errors (affecting two or 
more data points). T o avoid the confusion that would result from this, 
adopt the convention that if one (or more) observation from a given popu
lation is a short-term systematic error, then the corresponding population 
variance is called a short-term systematic-error variance. Thus with refer-

a. 

w 

0 
D 

c 

R 
l -H 

• M rt ^ 
a, 
0 

u 

S 
0 

T3 

Ĉ  

(3.3) 
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ence to Eq. 3.2, rather than saying that «i, 62, coi, and C02 are random errors 
whereas rji and /3i are long-term systematic errors, say that crt and o-J are 
random-error variances whereas cr^ and a^ are long-term systematic-error 
variances. Similarly, in Eq. 3.3, o-J is a random-error variance, (xl and cr| 
are short-term systematic-error variances, and o-J is a long-term systematic-
error variance. 

3.2 ERROR SOURCES IN NUCLEAR MATERIALS 
CONTROL APPLICATIONS 

The simple example just concluded suggests that there are many 
error sources which can conceivably affect an observed value. Clearly, 
it is a physical impossibility to identify and account for all potential error 
sources in routine analyses of data. This does not imply that the contribu-
butions from some error sources are ignored but rather that they are com
bined with others to result in principal error sources. 

T o emphasize this point, let us consider a measurement situation 
discussed by R. A. Schneider in a teaching outline used at the Argonne 
School of Safeguards, Argonne National Laboratory (this teaching outline 
has not been documented, and no specific reference can be cited). The 
total uranium in a process tank is to be determined by measuring the volume 
in the tank with a dip-tube manometer system and then measuring the 
concentration for a sample drawn from the tank. In calculating the total 
amount of uranium in this fashion, Schneider identifies seven sources of 
random error and ten sources of systematic error associated with a single 
observation. These are listed in Table 3.1. 

TABLE 3.1 SOURCES OF ERROR IN MEASUREMENT OF TOTAL 
URANIUM IN A PROCESS TANK 

Random-error sources Systematic-error sources* 

Reading the manometer Uncertainty in volume calibration curve 
Measuring the specific gravity Fixed errors in measuring specific gravity 
Distinguishing the titration end point Normality of titration 
Pipetting the sample Pipet calibration 
Reading the buret liquid level Buret calibration 
Sampling the solution (due to imperfect Sampling equipment 

mixing) Consistent sampling errors due to presence 
Sampling the solution (due to presence of solids 

of solids) Titratable impurities in sample 
Persistent temperature effects on mano

meter fluid 
Specific gravity changes in manometer fluid 

* In a given context some of these will lead to short-term systematic errors, and some to 
long-term systematic errors. 
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With so many sources affecting a single measurement and with so 
many measurements affecting quantities of interest in the control of nuclear 
materials, such as M U F , it is evident that we must strike a balance between 
the amount of detail that can be separately identified and included in an 
analysis and what is practical. 

The amount of detail that should be included in a given data analysis 
depends upon the motivation for the analysis. If a study of measurement 
systems is being made to identify and evaluate many error sources, con
siderable detail will obviously be required. On the other hand, if the 
problem is one of testing for the significance of a given M U F , the analysis 
will be less detailed. 

The major interest in this book centers on techniques for routine 
analyses of data, primarily as they affect the interpretation of M U F and 
shipper-receiver data and the verification of inventories. Therefore there 
is a limit on the amount of detailed error analysis that can be performed 
profitably. The amount of detail used in subsequent chapters is described 
in the following paragraph. 

Five basic types of measurement operations are identified: weighing, 
volume determination, sampling, analysis, and nondestructive assay 
(NDA). The sampling and analysis operations are defined separately with 
respect to the element (uranium or plutonium) and the isotope {^^^U or 
fissile plutonium). Associated with each measurement operation is a 
"method" . For the weighing operation, the method refers to the scale or 
balance used; for volume determination, it refers to a given dip-tube 
manometer system or some other system used to measure volume; for sam
pling, it indicates the type of material being sampled in combination with 
the equipment and technique used to draw the sample; for analysis, it is 
the analytical equipment and technique used; and for an NDA measure
ment, the method is identified with the equipment and technique used. 
Finally, for each operation-method combination, three error variances are 
identified: the random-error variance, the short-term systematic-error 
variance, and the long-term systematic-error variance. 

In effect this procedure combines the effects of all random errors 
associated with a given operation-method combination into one random-
error random variable. The same is true of the short-term and long-term 
systematic-error variances. This does not limit the scope of the analysis, 
because it is permissible to combine the effects of the random and long-
term systematic errors in this fashion. With respect to the short-term 
systematic error, we can identify the conditions under which a given 
measurement operation is performed, and all measurements made under a 
fixed set of conditions represent the same observation on the short-term-
error random variable in question. In this sense, it is often meaningful to 
relate "conditions" to " t ime" of the measurement operation, and this is 
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the sense in which the expressions "short term" and "long term" were 

coined. 

Two other points are made with respect to the short-term systematic 

error. First, although only one such error variance is assumed for each 

operation-method combination, there is no reason that more such variances 

cannot be included if desired, the same being true for random-error vari

ances and long-term systematic-error variances; we are always free to 

identify and include several separate sources if we wish. This adds nothing 

to the inherent complexity of the problem except that more computations 

may be required. Second, for some types of measurement operations, e.g., 

sampling, it may be difficult to assign a meaning to a short-term systematic 

error. This poses no difficulties since this source can simply be ignored in 

the analysis. 

3.3 ESTIMATION OF ERROR VARIANCES 

As will be evident as the reader progresses through the book, the 

assumption is frequently made that the various error variances are known 

quantities. In practice this assumption means that the variances have 

been estimated on the basis of previous studies, the estimates being con

tinually reviewed as new data are available. Thus, although the error 

variances may be regarded as known constants or parameters in a given 

framework, they are actually based on estimated quantities. This brings 

up the very basic and important problem of which techniques can be used 

to estimate them. 

Measurement parameters are estimated from data. These data may 

come from special studies designed specifically to provide estimates of 

the parameters, or they may have been generated in the normal course of 

doing business. There are a number of statistical techniques that are used 

to estimate the measurement parameters from a given set of data and from 

other information that might be available. These techniques are discussed 

separately in this section. Although the emphasis is on data analysis, indi

cations are given on how experiments can be designed to provide the data 

needed for analysis. The estimation topics are presented as indicated in 

Table 3.2. 

3.3.1 Paired Data 

Paired data occur frequently in nuclear material control. Paired 

data result from independent measurement of the same item by two 
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TABLE 3.2 ESTIMATION TOPICS 

Topic Section 

Paired data 3 .3 .1 

Use of known standards 3.3.2 
Errors in weighing 3 .3 .3 
Analysis of variance studies 3 .3 .4 
Test for homogeneity of variances 3 .3 .5 
Systematic errors in sampling 3 .3 .6 
Synthetic approach to estimating systematic-error variance 3.3.7 
Linear calibration—independent data 3 .3 .8 
Linear calibration—cumulative data 3 .3 .9 
Curvilinear calibration—independent data 3.3.10 

parties, as in the following nuclear materials control situations: 
1. Shipper-receiver measurements, where both the shipper and the 

receiver make measurements on the same items. 
2. Inventory-verification activities, in which the audit team makes 

measurements on a sample of items previously measured by the 
operator. 

3. Measurements on the same item by two individuals or by two 
measurement methods, e.g., by sampling and wet chemistry and 
by NDA. 

4. Interlaboratory tests involving two laboratories. 

These types of data are very valuable in obtaining realistic estimates of 
the error variances. Because of the importance of paired data, a complete 
chapter. Chap. 8, is included on this topic. Further detailed discussion of 
paired data is deferred until then, but for the present it is worthwhile to 
indicate what types of information can be derived from analyzing paired 
data. 

With paired data, we can obtain answers to the following questions: 
1. What is the estimate of the measurement random-error standard 

deviation for each party? 

(Depending on how the paired data were generated, the term 
"measurement" has different meanings. For example, if both 
parties draw random samples of material from the same item, the 
effect of sampling error would be included, whereas, if both parties 
make measurements on the same sample, this sampling effect 
would not be included. See Chap. 8 for more detailed discussion 
on this point.) 



8 8 SOURCES OF UNCERTAINTY IN NUCLEAR MATERIALS CONTROL 

2. Do both parties have the same true standard deviation? 
3. Each party supplies his own value for this standard deviation. 

Do the data support these values? 
4. One party supplies his own value for this standard deviation, 

whereas the other party does not. Do the data support this value? 
5. Is there a significant bias between the two parties? 
6. If the measurements are made on a known standard, is party 1 

biased? party 2? What is the average for the two parties? 
7. What is the best estimate of the true value for each item? 

3.3.2 Use of Known Standards 

One of the most common ways to estimate random- and systematic-
error variances is through the use of known standards. Several nonstatistical 
difficulties are associated with this practice. Known standards are often 
not completely representative of the types of samples actually being 
measured. This means that there may be factors, such as the degree of 
cleanliness of the standards, which might affect the uncertainty of the 
result for a production sample but would not affect the result for the 
standard or would perhaps affect it less. Also, it is difficult to disguise the 
fact that we are submitting a known standard for analysis. Even the most 
conscientious analyst has problems being completely objective in determin
ing a value for the sample when he knows what the answer should be. This 
is especially a problem when the analyst must exercise considerable personal 
judgment in determining a result. 

Nevertheless, the use of known standards does play an important 
role, especially because it is the only direct means by which we can obtain 
an estimate of the bias or of the systematic-error variance; these parameters 
have meaning only with respect to a " t rue" or known value. 

The following steps are taken to estimate the bias and the random- and 
systematic-error variances with known standards. (Assume in this section 
that the standards data are collected under fixed conditions, i.e., there is 
no shifting measurement bias over the range of the data. Thus the idea of 
a short-term systematic error is not pertinent. The case in which this is not 
true is considered in Sec. 3.3.3.) 

Step 1. Measure the standard n times, designating the measured values 

Xl, X2, • • • , Xn- _ 

Step 2. Compute the sample mean, x, by Eq. 2.56 and the sample vari
ance, 52, by Eq. 2.60 or Eq. 2.61. 

Step 3. With /JO as the value assigned the standard, the estimated bias, 
B, is (x—no). This estimate has variance s^/n. The mean of B 
is assumed to be B, the true bias. 

Step 4. a. If the bias correction is made, the systematic-error variance is 
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estimated by s^/n+sl, where si is the variance that describes the 
uncertainty in na; si is often very small relative to s^/n. 
b. If the bias correction is not made, the systematic-error variance 
is estimated by {x—no)^-\-so. (Some analysts also prefer to use 
s^/n+sl as the systematic-error variance when a bias correction 
is not made. This practice has some merit in the common situation 
in which a bias correction is not made because its estimate is not 
significantly different from zero.) 

Step 5. The random-error variance is estimated by s^. 

Some further discussion is helpful on step 4. During the calibration, a 
measured or observed value, x„ is regarded as the sum of three quantities: 
the standard value no, the bias B, and the random error, which can be 
denoted by 6, in this discussion. The bias, B, is estimated by fi = (x—MO), 
which has variance (x^/n by Eq. 2.58, where o-̂  is the variance of e,. Then, 
in application, a value, y, is observed. If the bias correction is made to this 
value by subtraction of B, then, in addition to the random variance, tr^, 
the J also has a systematic-error variance due to the uncertainty in B. This 
is <7^/n, which is estimated by s^/n. On the other hand, if a bias correction 
is not made, then all future observations not corrected for bias are in error 
by an amount B, and the total variance oi y includes a component, B^, 
which can be regarded as the systematic-error variance. The quantity B'^, 
of course, is not known and can be replaced by its estimate, B^, or {x—no)^. 
Even in this instance, however, when a bias correction is not made, there 
is a basis for preferring s^/n over B^ as the estimate of the systematic-error 
variance. This is true because in the usual case the bias correction is not 
made simply because it is not large relative to its uncertainty, i.e., there is 
little real evidence that a bias correction is actually needed. This being 
the case, we might prefer to use s^/n because it describes the uncertainty 
associated with a bias correction whether the correction is made or not. To 
be on the conservative side, we can use as a reasonable alternative the 
larger of (x—iio)^ and s^/n in the event a bias correction is not made. 

Looking ahead to the application of these results in subsequent 
chapters, we see that a difficulty associated with the problem of systematic-
error variance will arise when we consider the combined effects of several 
random variables. From a purely statistical viewpoint, the preferred 
approach in the sense of the most defensible one is to make the bias correc
tions at all times and, hence, to follow step 4a. The propagation of errors is 
then straightforward and intuitively reasonable. This, however, presents 
practical problems because no laboratory or operations manager reacts 
favorably to the idea of making very small bias corrections, especially 
when they are poorly estimated in a relative sense. In actual fact some 
bias corrections are generally made, and some are not. Thus the clean 
statistical approach to describing the error uncertainty for a total result 
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would consist in first algebraically combining the bias estimates for the 
variables for which bias corrections were not made and then in appro
priately propagating the systematic-error variances for the remaining 
variables by the methods to be discussed. This approach, however, usually 
is awkward and not practical in a real application. I t is far simpler to re
gard all the effects as systematic-error variances, whether the bias correc
tions are made or not. I have treated the latter approach in this book, 
recognizing that in practice, when bias corrections are not made, the reason 
is that they are unimportant in their effects. 

Example 3.B 

Assume that 10 measurements are made on a National Bureau of 
Standards (NBS) standard by a mass spectrometer to estimate the bias and 
the random- and systematic-error variances. The standard is assigned a 
value of 3.046% of ^'^U. The 10 measurements are given in Table 3.3. 

TABLE 3.3 MEASUREMENTS OF PERCENT OF "5u* 
(Example 3.B) 

3.095 3.066 3.082 
3.086 3.090 3.045 
3.058 3.068 3.084 
3.073 

• The standard has an assigned value of 3.046%. 

For example 3.B the procedural steps 2 to 5 to estimate the parameters 
are as follows: 

- 3.095-J-3.086+ . . . +3 .084 
Step 2. x = -|- = 3.075 

„ (3.095)2+ . + ( 3 . 0 8 4 ) 2 - [ ( 3 . 0 9 5 + _ +3.084) VlO] 
s^ = 

9 
= 0.0002442 = 244.2 X10-« 

Step 3. fi = ;c-Mo = 3 .075-3 .046 = 0.029 

Step 4, Assume that j2 = (o.0006)2 = 0.36X10-« is given by a tolerance 
statement associated with the standard. 
a. If the bias correction is made, the estimate of the systematic-
error variance is (244.2/10+0.36)X10-» = 24.78X10-°, which 
gives a standard deviation of V 2 4 . 7 8 X 10"° or 0.00498% of " ^ u . 

b. If the bias correction is not made, this estimate is (0.029) ^ 
+ 0 . 3 6 X 1 0 - « = 841.36X10-«, giving a standard deviation of 
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12.90 
12.99 
12.98 
12.96 
12.97 

13.01 
13.03 
12.99 
13.04 
12.94 

0.0290% of 235U. (In this instance, however, the bias correction 
should clearly be made. It is obvious from the data, with 9 of 
the 10 observations reading high, that a real bias is present.) 

Steps. The random-error variance is estimated by 5̂  = 244.2X10~', 
giving a standard deviation of 0.0156% of ^'^u. 

Example 3.C 
(This example was supplied by R. A. Schneider.) 

In the second example, two analysts make determinations of percent 
of plutonium using a known standard with an assigned value of 13.00% 
of plutonium. The data are given in Table 3.4. 

TABLE 3.4 DETERMINATIONS OF PERCENT OF P L U T O N I U M * 

(Example 3.C) 

Analyst 1 Analyst 2 

13.01 12.97 
13.02 13.01 
12.98 12.95 
13.04 13.01 
13.00 13.04 

* The standard has an assigned value of 13.00%. 

Before estimating the random- and systematic-error variances for the 
analytical method, we must see if there are differences between the two 
analysts. The analysts might conceivably differ because one gives higher 
readings than the other or because the results for one might be more variable 
than those for the other. 

Consider the comparison of the variances first. The variance is com
puted separately for each analyst. If the variances differ significantly, we 
cannot speak of the random variance of the analytical method as such but 
only as it relates to a given analyst. Let sf (i= 1,2) be the sample variance for 
analyst i. From Eq. 2.61, 

2 (12.90)2+ • . . +(12.94)2-[(12.90+ . . . +12.94)710] . _ _ , _ , , 
1̂ = =U.UU1 /43 

„ (13.01)2+ . +(13.04)2-[(13.01+ . . . +13.04)2/10] 
si = '̂  '—^ ^^ — - ^ ——- = 0.000846 

To test the hypothesis that al equals al, where these are the true 
variances estimated by si and si, respectively, use the F distribution, as 
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given in Sec. 2.6.4. If the hypothesis is true, F=sl/s2 will have the F density 
function with 9 degrees of freedom in the numerator and 9 in the denomi
nator. Use a significance level of a = 0.05. This means that, if the analysts 
truly have the same variances, there is a probability of 0.05 that the oppo
site conclusion will be reached. Then, from Appendix D, we can reject the 
hypothesis for a two-sided test of significance if the larger of si and si 
exceeds Fo.976 (9,9) or 4.03. The Fo.976(9,9) value is used rather than the 
^0.95(9,9) value because this is a two-sided test, and the hypothesis can be 
rejected if sl/sl is either too large or too small. Since 51/̂ -2 = 0.001743/ 
0.000846 = 2.06 is less than 4.03, the hypothesis is not rejected. This con
clusion permits us to speak of the measurement variance for the analytical 
method as such, irrespective of who is the analyst. This variance is estimated 
by the average of the variances for both analysts, or j2 = 0.001295. 

The simple average is used in this case because each analyst made the 
same number of determinations. In the general case in which one analyst 
makes mi determinations and the other makes m^, the weighted average is 

(mi-l)sl+{m2-l)sl 
s ^ 

(mi+m2—2) 

Next, does one analyst produce higher readings than the other? 
Letting m be the mean reading for analyst i («'= 1, 2), test the hypothesis 
lii — H2, or, equivalently, MI~A12 = 0 as follows: 

Step 1. Calculate xi and Xi, the sample averages. 

- 12.90+ . . . +12 .94 _ _ , 
xi = • =12.981 

10 

- 13.01+ . . . +13 .04 , „ ^ „ „ 
X2 = = 13.003 

Step 2. Estimate (MI—M2) by (xi—xi), which is a random variable with 
zero mean under the hypothesis. The variance of (xi—Xi) is 
found by summing the variances for xi and X2 (shown in Chap 4) . 
This is .f 2/10-1-^2/10 or (2) (0.001295)/10 = 0.000259.The standard 
deviation of (̂ 1— :̂2) is then v'0.000259 = 0.016. 

Step 3. Reject the hypothesis if (xi—Xi) is either too large or too small, 
i.e., if ixi—X2)>c or if (x2—xi)>c, where c is some constant de
fining the critical region. If a = 0.05, select c such that 

Pr [ ( i i -X2)>c | (Mi -M2)=0]=0 .025 

Equivalently, choose c such that 

Pr [{X2-Xi)>c\(^^^-H2)=0]=0.025 
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The statistic is standardized by subtracting the mean (zero in this 
case) and dividing by the standard deviation, 0.016. The resulting statistic 
has Student's t density function, as given in Sec. 2.6.3. 

Thus 
rOf i - ^2 ) -0 c-L , 

'16J 

from whichc/0.016 = 2.101 o r c = 0.034 from Appendix C. The value 2.101 
is the entry under /O.QVS for 18 degrees of freedom, because 18 degrees of 
freedom are associated with the estimate of the standard deviation, i.e., 9 
degrees of freedom for each analyst. 

Now, ( ^ 2 - ^ 0 = 13.003-12.981 =0.022. Since 0.022 is less than the 
critical value, 0.034, the hypothesis is not rejected; i.e., we conclude that 
there is no evidence of a relative bias between the two analysts. Having 
concluded that the analysts do not differ, we can regard all the 20 observa
tions as having come from the same population, i.e., the one relating to the 
analytical method regardless of which analyst made the determination. 
T o estimate the bias and the systematic- and random-error variances, 
find the mean, x, and the variance, 2̂̂  for the entire set of data. 

_ (12.90)+ . . . +(13.04) , „ _ „ 
x = - ^ = 12.992 

^ ,_ [ (12 .90)2+ . • • + (13 .04)2- [ (12 .90+ . . . + 13 .04)2 /20]_^^^^„^^ 

Then, for example 3.C, procedural steps 3 to 5 to estimate the measurement 
parameters are as follows: 

Step 3. fi=;-Mo= 1 2 . 9 9 2 - 1 3 . 0 0 = - 0 . 0 0 8 

Step 4. a. If the bias correction is made, and if we assume s\ = (0.003) 2 
= 0.000009, the systematic-error variance is 

.f2 „ 0.001354 
- + 4 = — — — + 0 . 0 0 0 0 0 9 = 0.000077 
n 20 

b. If the bias correction is not made, the systematic-error variance is 

( i - M o ) ' + 4 = ( - 0 . 0 0 8 ) 2 + ( 0 . 0 0 3 ) 2 = 0.000073 

(This example represents a borderline case with respect to whether 
or not future data should be corrected for bias by adding 0.008 
to such results. This bias is not statistically significant at some 
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reasonable value for a, as would be found by a test of the hy
pothesis B = Q, but statistical significance is not essential to the 
decision concerning whether or not to make the bias correction. 
It is, of course, one factor in making this decision, but other 
considerations also play a role, e.g., the size of the bias, irrespec
tive of its statistical significance or nonsignificance, and technical 
judgement as to whether or not the method is inherently biased.) 

Step 5. The random-error variance is estimated by ĵ 2 = 0.001354, giving 
a standard deviation of Vo.OOl354 = 0.037% of plutonium. 

Example 3.D 
(This example was supplied by R. A. Schneider.) 
A certain facility applies a bias correction to all uranium analytical 

results on a monthly basis. A standard is run with each process sample 
analyzed to arrive at the correction for certain uranyl nitrate hexahydrate 
transfers. At the end of each month, the recoveries on the standards are 
calculated, and the need for a bias correction is determined on the basis of 
these recoveries. From the set of recovery data in Table 3.5, estimate the 
bias and the appropriate error variances. 

TABLE 3.5 DATA ON PERCENT OF RECOVERY 

(Example 3.D) 

100.36 
100.79 
100.35 
100.57 
100.45 
100.83 
100.87 
100.46 
99.99 

100.19 
100.78 
100.86 
100.99 
100.81 
100.51 
100.55 
100.59 
100.76 

100.41 
100.84 
100.26 
100.52 
101.01 
100.46 
100.65 
100.81 
100.53 

100.47 
100.63 
100.34 
100.07 
101.38 
100.14 
100.56 
100.48 
101.04 

The random variable, X, is defined as the observed percent of recovery 
minus 100%. With this data transformation, no, the standard value, 
becomes zero. The variance component, si, which is the variance of MOJ 
is assumed to be negligible. Then in example 3.D the procedural steps 2 to 
5 are as follows: 

- 0.36+0.79+ . . . +1.04 
Step 2. x = ^ - = 0.592 

36 

2 (0-36)2+ . . . +(i ,o4)2_[(o.36+ . . . +1.04)2/36] ^ ^ ^ „ 
s^ = = 0.0870 

35 



E.STI\rATION OF ERROR VARIANCES 95 

Step 3. 5 = ( ; ( - 0 ) = 0 . 5 9 2 . This has variance 0.0870/36 = 0.002417, or 
a standard deviation of '\/o.002417 = 0.049. Clearly, comparing 
0.049 with 5 = 0.592 reveals that there is no question but that 
the bias is real. Of course, this was evident from the fact that 35 
of the 36 numbers exceeded 100%. 

Step 4. a. The bias correction will be made. Therefore estimate the syste
matic-error variance by s^/n = 0.002417. 

Step 5. Estimate the random-error variance by .r2 = 0.0870. 

3.3.3 Errors in Weighing 

This is treated as a separate topic because two unique aspects are 
associated with measurement errors in weighing. First, particularly in 
this application, errors due to rounding may play a dominant role. Also, 
the role played by tare weights must be factored in. 

The measurement performance of scales and balances is controlled 
by the use of standard weights. The frequency with which such weights 
are applied depends on the use of the particular scale. In some instances 
standards may be used once per shift; in other cases standards may be 
weighed just prior to each use of the scale. Whatever the frequency, it is 
not uncommon for the scale readings to be in very close agreement with 
the known weights of the standards. This could lead to an optimistic ap
praisal of the size of the error variances due to weighing when the methods 
of Sec. 3.3.2 are applied without modification. 

This appraisal may be optimistic for two reasons: (1) in the routine use 
of the scale, the rounding error may dominate and (2) the use of standards 
provides information only on the integrity of the gross weight; the uncertain
ties in the tare-weight determination must also be considered. 

First, consider the random-error variance for a net weight. The effect 
of rounding errors was introduced in Sec. 2.4.4 in a discussion of the uni
form density function. The additional point made here is that the effect 
of rounding must also be included for the tare weight. T o illustrate, with 
reference to the results of Sec. 2.4.4, round the tare weights to the nearest 
25 g and round the gross weights to the nearest 50 g (regardless of which 
scale is used). Then a\ is the random-error variance due to rounding the 
tare weight and is equal to (25) 2/12 = 52.08; <rl is the random-error variance 
due to rounding the gross weight and is equal to (50)2/12 = 208.33; and 
the random-error variance due to rounding for the net weight is (rl-\-a-l = 
52.08+208.33 = 260.41 g2, which gives a standard deviation of 16.1 g. 

Some care must be taken in relating the error variance due to rounding 
to that inherent in the scale in question. Section 3.3.2 was concerned with 
the use of known standards to estimate error variances. With some modi
fications this section is applicable to scales also. If in such experiments the 
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observations on the standards are rounded to the same degree as is done in 
practice and if the rounding is gross relative to scale capability, it is quite 
likely that all weighings of the standard will produce the same result, and 
the data might appear as follows for a 20-kg standard weight rounded to 
the nearest 25 g. 

20.000 20.000 
20.000 20.000 

etc. 

Or, possibly, an occasional observed value might read 20.025 or 19.975. In 
any event this is clearly an instance in which the random-error variance 
for a single weighing is exclusively that due to rounding, and the preceding 
data do not really provide much information except to verify that rounding 
error does indeed dominate. 

In another situation the standards data can be read with extra care 
by the use of finer scale divisions and /o r visual interpolation by the oper
ator, and readings might be made on the standard to the nearest 5 g and 
produce data such as the following: 

20.005 20.005 
20.005 19.995 
20.000 20.010 

etc. 

These data describe the random-error variance inherent to the scale 
plus that due to rounding to the nearest 5 g. From the results of Sec. 3.3.2, 
the variance of the preceding six observations is computed by Eq. 2.60 or 
Eq. 2.61 to give the random-error variance. For simplicity, the data are 
expressed in grams, and 20,000 is subtracted from each observation. This 
gives 

, ( 5 )2+(5 )2+ . . . + ( i o ) 2 _ [ ( 5 + 5 + . . . +10)2 /6 ] 

5 
= 26.67 g2 

This variance includes the effect due to rounding to the nearest 5 g, 
which is (5)2/12 = 2.08 g2. Thus the variance due to the inherent perform
ance of the scale is (26.67 —2.08) =24.59 g2. T o this value, then, must be 
added the error due to rounding to the nearest 25 g in practice, namely, 
(25)2/12 = 52.08 g2. The total random-error variance for a given gross 
weight determination thus becomes (24.59+52.08) = 76.67 g2. If, in turn, 
the tare weight is rounded to the nearest 50 g, its random-error variance 
is {[(50)2/121+24.59) =232.92 g2. Thus the total random-error variance 
associated with a given net weight is (76.67+232.92) = 309.59 g2, giving a 
standard deviation of 17.6 g. 
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To summarize, the steps for determining the random-error variance 
associated with a given net weight are as follows: 

Step 1. Weigh a given standard n times on the scale in question, pref
erably over a period of time. 

Step 2. Compute the variance, s^, of these observed values, using Eq. 
2.60 or Eq. 2.61. 

Step 3. When weighing the standard weights, say the values are rounded 
to the nearest Ai units. Compute [s^—(Ai/\2)] = Ai. 

Step 4. U Ai is negative, call it zero. 
Step 5. Assume that the gross weight is rounded to the nearest A2 units 

and the tare weight to the nearest A3 units. Then the random-
error variance for a net-weight determination is 

F = 2 ^ i + ^ ^ ' (3.4) 

Step 6. If the tare weight is determined on another scale or if different 
standards are used for the gross and tare weights, repeat steps 
1 to 3 for the other scale or for the tare standard, calling the 
result Ai- Then 

V=Ai+A2+-^j^ (3.5) 

Thus far, only the random-error variance due to weighing has been 
covered. Now, consider the systematic-error variance. For a given standard 
weight, the systematic-error variance may be determined by the methods of 
Sec. 3.3.2 except that the effects of rounding must again be taken into 
account. For a given standard weight, tm, the systematic-error variance 
was given by step 4 as (x —/xo) ^-\-sl, where x is the average observed weight 
for the standard. (This was the formula to use if a bias correction is not 
made, which is the usual practice. When real biases are detected, the scales 
are normally adjusted, not the data.) Often, because of rounding, {x—no) 
will be zero. T o account for the rounding error, add the quantity A 2/12, 
where the readings on the standard are rounded to the nearest A units. 
As far as the systematic-error variance is concerned, the extent by which 
the actual observed data for gross and tare weights are rounded has no 
effect (except in the limiting case in which there is very little true variation 
in weights from item to item, relative to the rounding error, and this is 
not considered to be a likely situation in nuclear materials control appli
cations). Thus, for a given standard weight, the systematic-error variance 
for weighing is 

4 = (S-Mo)'+4+~ (3.6) 
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where x = observed average standard weight 
/to = assigned value for the standard weight 
A = amount of rounding for standard weight 
-̂0 = variance associated with /IQ 

This gives the systematic-error variance for either the gross or the 
tare weight but leaves unanswered the question of what is the systematic-
error variance for the net weight. This variance depends on the degree of 
correlation between a systematic error for the gross weight and a systematic 
error for a tare weight. If the tare and gross weights are determined on 
different scales, then this correlation should be near zero, and the syste
matic-error variance for the net weight is found by summing the variances 
for the gross and tare weights. However, when the same scale is used for 
both weight determinations, it is likely that these errors are correlated. A 
positive correlation means that a high reading for the gross weight tends to 
produce a high reading for the tare weight, whereas the correlation is 
negative if a high reading for the gross weight tends to produce a low reading 
for the tare weight. 

Table 3.6 gives the value of the systematic-error variance for the net 
weight as a function of the degree of correlation between the gross and tare 
weights. The correlation coefficient (defined explicitly in Eq. 2.55) ranges 
from —1 (perfect negative correlation) to + 1 (perfect positive correlation). 
In Table 3.6, crj denotes the systematic-error variance for the gross weight, 
af, for the tare weight, and a^, for the net weight. If crl = (T'\ — a', then the 
value for the systematic-error variance for the net weight is denoted by al'. 

TABLE 3.6 SYSTEMATIC-ERROR VARIANCE FOR NET WEIGHT 

Correlation coefficient al erl' 

— 1 (rj,+o-(+2<rB(ri 4o-' 
— 0.5 a-g+(Tt+(rg<rt 3a^ 

0 <r^+a? 2(r2 
+0.5 tTg+<Tt — (ri<Tt <r* 
+ 1 <r2+<rf-2<r„<7, 0 

Unfortunately the correlation coefficient is difficult to evaluate in 
this instance. If the terms of the form {x—no) ^ in Eq. 3.6 are the dominant 
contributors to s^, then the systematic-error variance for the net weight can 
be estimated directly from standards data. Letting Xg, represent the ith. 
reading for the gross standard and xu denote the same quantity for the 
tare standard, with i=\, 2, . . . , n, estimate the net-weight systematic-
error variance by 

[ixo-fi,o)-{xt-m)? (3.7) 
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where Xg and xt are the averages of the Xgi and XH values, respectively, 
and ngo and jU(o are the assigned values for the standard weights. 

In many instances, however, the rounding error, rather than the terms 
of (x—no)^, will tend to dominate. In this case we must speculate on the 
size of the systematic-error variance for the net weight. Since the two system
atic errors are likely to be positively correlated rather than negatively, 
a conservative approach is to assume a correlation coefficient of zero and 
simply sum the systematic-error variances for the gross and tare weights. 

T o summarize, the steps to find the systematic-error variance associated 
with a given net weight are as follows: 

Step 1. Weigh a given standard n times on the scale in question, preferably 
over a period of time. 

Step 2. Compute the systematic-error variance s^^ from Eq. 3.6. 
Step 3. If different scales are used for the gross and tare weight determi

nations, find Sy, separately for each scale and sum the results to 
give the systematic-error variance for the net weight. 

Step 4. If the same scale is used for the gross and tare weight determina
tions and if (x—fio)^ is the dominant term in Eq. 3.6, determine 
the systematic-error variance separately for both the gross and 
tare weights using the appropriate standards, and use Eq. 3.7 
to find the net-weight systematic-error variance. 

Step 5. If the same scale is used for the gross and tare weight determina
tions and if (x—no)^ is not the dominant term in Eq. 3.6, multiply 
j j in Eq. 3.6 by 2 to find the net-weight systematic-error variance. 

Example 3.E 

A given scale is controlled through the use of one standard which 
nominally weighs 20 kg. Assume that the uncertainty in this standard 
weight is expressed as a standard deviation of 1 g. When the standard 
is weighed, the weights are recorded to the nearest 10 g. When used to 
measure actual containers, the gross weights are rounded to the nearest 
50 g and the tares to the nearest 25 g. Both the gross and tare weights 
are determined on this same scale. The results of 20 weighings on this stand
ard are given in Table 3.7. Use these data to estimate the random- and 
systematic-error variances for a given net weight. 

TABLE 3.7 WEIGHT DATA* 

(Example 3.E) 

20010 20020 20000 
20000 20000 20000 
20000 20000 20000 
20000 19990 20000 
20000 20000 20010 

* In granu. 

20000 
20000 
20010 
20000 
20010 
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In example 3.E, first consider the six procedural steps to determine the 
random-error variance: 

Step 2. By Eq. 2.61, after coding the data by subtracting 20000 for 
simplicity, 

,_ (0)2+ . . . + ( l 0 ) 2 - [ ( 0 + . . . +10)2/20] _ 

^ 19 

Step 3. WithAi=10, 

100 
/ii = 40.79 = 32.46 

Step 4. With A2 = 50 and A 3 = 25, 

F=2(32.46) + & ± ^ = 325.34 g2 

the random-error variance for net-weight determination. 

Next, for the systematic-error variance, the appropriate steps to follow 
are as follows: 

Step 2. To use Eq. 3.6, evaluate 

- 0 + 0 + 1 0 + . . . + 1 0 
(x-Mo)= ^ = 2.50 

A=10 

4=1 

.„^= (2.50)2+1 + ^ = 15.58 

Steps. 2^2=31.16 g2 

the systematic-error variance for net-weight determination. 

3.3.4 Analysis of Variance 

The analysis of variance is a very large topic and can be covered only 
very superficially in this book. Four simple but common and useful appli-



ESTIMATION OF ERROR VARIANCES 101 

cations of the technique are made here. For more complicated situations 
the user should consult other books on the subject. 

Analysis of variance is a statistical technique for dividing a total vari
ance into component parts that can be identified with specific factors. The 
technique will be illustrated in the following situations: 

Situation A. In the case of the known standards of Sec. 3.3.2, the 
experiment is repeated routinely, and the data are gathered over a period 
of time. 

Situation B. For an estimate of the random-error variances due to 
sampling and analysis, replicate samples are drawn for a number of items, 
with replicate analyses made on each sample. 

Situation C. Samples are sent to a number of laboratories for analysis 
(interlaboratory tests). 

Situation D. Production data are analyzed to obtain estimates of 
certain error variances. 

Situation A 

The standards data are the same as those in Sec. 3.3.2 except that now 
a time factor has been introduced. The data are given in Table 3.8, where 
the tabular entries represent measured values on a standard whose assigned 
value is fiQ. 

TABLE 3.8 SCHEMATIC OF MEASUREMENTS ON A STANDARD 

Time 1 Time 2 . . . Time k 

Xu Xll 

Xl2 Xl2 

Total Ti Ti 

The data are structured so that the same number of observations 
need not necessarily be made during each block of time. The sum of the 
Ti values over the k columns is denoted by T. The following additional 
calculations are made: 

Step 1. T^/J^, where W is the total number of observations 

Xhi 

Xki 

Xknk 

n 

Step 2. AT = T/JV, the overall average 
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Step 3. 

Step 4. 

Step 5. 

Step 6. 

* 7-2 

k tit 

S2= E Z xi 

M^-tnf 
P '=• 

Si—Si 
M l - ^ 

£(«.-!) 

Step 7. ^^J[-^^-(^V^)] / (^- l ) l -^> 

Ml 2 n\+M2 23 «• 
Steps. M3= " ' ^ , "' 

Then the estimates of the error variances of interest are as follows: 

M\ estimates the random-error variance for the analytical method 

M2 estimates the short-term systematic-error variance 

Mi-\-sl estimates the long-term systematic-error variance if the bias 
correction is made, where {x — n^ is the bias correction and 
j'o is the variance that describes the uncertainty in /xo 

{x—no)^-\-sl estimates the long-term systematic-error variance if the 
bias correction is not made* 

The preceding analysis is known as a one-way analysis of variance 
with unequal numbers of observations. This technique is applied to the 
following data. 

Example 3.F 

This example represents mass-spectrometer measurements of '^^^\J 
on a known standard, with ;uo = 3.046. Given the data in Table 3.9, the 
calculational steps called for in situation A follow. 

* As pointed out earlier in a similar situation, some analysts prefer to use M3 + 5ô  as the 
systematic error variance when a bias correction is not made. 
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TABLE 3.9 MASS SPECTROMETRIC DATA* 

(Example 3.F) 

Time 1 

3.095 
3.086 
3.058 
3.073 

r i = 12.312 

n i = 4 

Time 2 

3.044 
3.078 
3.046 
3.060 
3.023 
3.072 

r j = 18.323 

na = 6 

Time 3 

3.019 
3.045 
3.022 

r8 = 9.086 

08 = 3 

Ti 

"4 

Time 4 

3.090 
3.073 
3.053 
3.081 

= 12.297 

= 4 

7' = 52.018 

JV=17 

* The standard has an assigned value o£ 3.046%. 

T^ (52.018)2 
Stepl. — = -——^ = 159.168960 

- T 52.018 
Step 2. «=—= —-— = 3.0599 

N n 

Step 3. , , = ( l M i 2 ) : + . . . + 0 ^ : ^ ^ 1 3 9 , 7 4 2 4 2 
4 4 

Step 4. 52 = (3.095)2+(3.086)2+ . . . +(3.081)2=159.178232 

(17)2-1(4)2+ . . . +(4)2] 

step 6. M.= '^HZgE^l|p!?.o.0OO3O69 

, [(159.174242-159.168960)/3]-0.0003069 
Step 7. Mi= , ^ = 0.0003497 

4.157 

^ „ ^ (0.0003069)(16+36+9+16) + (0.0003497)(4+6+3+4) 
Steps. M, = — 

= 0.0001023 

Then, 
Ml = 0.0003069 estimates the random-error variance for the analytical 

method 
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A/2 = 0.0003497 estimates the short-term systematic-error variance 

( i -Mo) = 3 . 0 5 9 9 - 3 . 0 4 6 = 0.0139 estimates the bias 

^0 = 0.36X 10"'', input data from the example of Sec. 3.3.2 

M,+5,2 = 0.0001023+0.00000036 = 0.0001027 estimates the long-term 
systematic-error variance if the bias correction is made 

(AT—yUo)2+j-o = 0.0001936 estimates the long-term systematic-error 
variance if the bias correction is not made 

Situation B 

In this situation, replicate samples are drawn for a number of items, 
and replicate analyses are made on each sample. This is done to obtain 
separate estimates of the random-error variance due to sampling and of 
the random-error variance due to analysis. Because the true value for the 
item being measured is not known in this instance, we cannot estimate the 
systematic-error variances in this situation. Such information must come 
from other sets of data, as in the previous example. The data are shown in 
Table 3.10. 

TABLE 3.10 SCHEMATIC OF MEASUREMENTS 

(Situation B) 

Item 1 Item 2 . . Item k 

Sample 1 2 . . . m 1 2. . . m 1 2 . . . m 

Analysis 

1 Arm *121 . . . X\m\ XiU . • . Ximl Xl,l\ . . . Xkml 

2 A:II2 Xm . . . . . 

n X\\n Xi2n • • . Ximn X2ln - - . Xzmn -fAln . . . Xkmn 

The data are balanced in this design, i.e., there are m samples and n 
analyses on each sample. This makes for simplicity in analysis, although it 
is not a necessary condition. The analysis in this situation is called an 
analysis for a nested (or hierarchical) design with three classifications 
(items, samples within items, and analyses within samples). For an estimate 
of the random-error variances due to sampling and analysis, only the two 
lower classifications are of interest; the only function of the k items in this 
case is to produce more data and hence better estimates of the error vari
ances. 
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Before estimating the variances from these data, note the following 
definitions: 

7"= sum of all the observations 
jV= total number of observations 
7", = sum of all observations for item i;i=\,2,...,k 

T,j = sum of all the observations for item i, sample j ; , = l , 2 , . . . , m 

Then the following calculational steps are made: 

Step 1. Find T^/N 

Step 2. Find 

V 2 _ r 

Call this ST. The sum indicated is the sum of squared values for 
all the observations. 

Step 3. 

Step 4. 

Find 

n+Ti+...+Ti 7-2 
mn JV 

Call this Si. 

For item 1, find: 

Tli+Ti2+ . ..+T'L 

n mn 

Do the same for items 2,i,...,k. Sum these quantities, and call 
the sum Ss. 

Step 5. Find ST-SI-SS = SA 

Then the random-error variance due to analysis is estimated by 

SA 

km{n—l) 

and the random-error variance due to sampling is estimated by 

Ss SA 

nk(m—l) nkm(n~l) 
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Example 3.G 

These results are applied to a set of data (Table 3.11) that represent 
four samples of ammonium diuranate (ADU) scrap from each of five con
tainers, with two analyses for each sample. An analytical result consists 
of percent of uranium. Here 

^ = 5 items « = 2 analyses per sample 
m=4 samples per item N=kmn = 4Q total observations 

TABLE 3.11 PERCENT OF URANIUM IN ADU SCRAP 

(Example 3.G) 

Container 

ADU-1 

ADU-2 

ADU-3 

ADU-4 

ADU-5 

Analysis 

a-1 
a-2 

a-1 
a-2 

a-1 
a-2 

a-1 
a-2 

a-1 
a-2 

s-1 

44.1 
44.0 

88.1 

24.1 
24.2 

48.3 

76.8 
76.5 

153.3 

79.8 
80.2 

160.0 

26.8 
27.0 

53.8 

Sample 

s-2 

33.8 
33.0 

66.8 

27.3 
26.7 

54.0 

74.3 
74.0 

148.3 

76.5 
76.2 

152.7 

30.0 
30.2 

60.2 

s-3 

42.3 
42.4 

84.7 

22.9 
22.7 

45.6 

76.8 
76.6 

153.4 

77.0 
77.4 

154.4 

28.2 
28.3 

56.5 

s-4 

40.3 
40.1 

80.4 

25.6 
25.9 

51.5 

74.0 
73.8 

147.8 

77.1 
77.3 

154.4 

31.4 
31.9 

63.3 

Total 

Ti =320.0 

r 2 = 199.4 

Ti= 602.8 

Ti= 621.5 

r 6 = 233.8 

r = 1 9 7 7 . 5 

The five steps in the analysis called for in situation B are as follows: 

T^ (1977.5)2 
Stepl. — = ^^—^—^ = 97762.66 

N 40 

Step 2. ST= [(44.1)2+(44.0)2+ . . . +(31.9)2]-97762.66 = 20751.67 

Step 3. ^^^(320-0)-+(199.4)2+ . . . +(233.8)2_^^^^^ ^^^^^^^^ ^^ 
8 
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C. A V Al.TT, (88.1)2+ . . . + ( 8 0 . 4 ) 2 (320.0)2 
Step 4. For ADU-1: =131.05 

(48.3)2+ . . . +(51.5)2 (199.4)2 
For ADU-2: ^̂  '-^ ^^ ' ^̂̂  -= 20.20 

(153.3)2+ . . . +(147.8)2 (602.8)2 
For ADU-3: LJL^_^L1 1—^^ L^ 14.11 

V AT.TT. (160.0)2+ . . . +(154.4)2 (621.5)2 
For ADU-4: = 15.22 

2 8 

For ADU-5: (^M)!± - • • +(^3.3)2 _(233j)_2^ ^^_^^ 

.9s = 206.59 

Steps. .̂ 4 = 20751.67-20543.95-206.59 =1.13 

Then the random-error variance due to analysis is estimated by 

^ = ^ = 0.0.565 (%ofU)2 

and the random-error variance due to sampling is estimated by 

206.59 0.0565 ^ „^ rm c,,^'. 
- ^ 2~=6.86 (%ofU)2 

Example 3.H 

(This example was provided by R. A. Schneider.) 

In the previous example, there were k = 5 items sampled with m = 4 
samples per item and n = 2 analyses per sample. This second example is a 
degenerate case of situation B in that k = n=l. 

A uranium fuel-fabrication plant burns its dry waste in an incinerator. 
The ash consists of about 10% uranium on a weight basis. The ash is ac
cumulated in drums awaiting chemical leaching and recovery. Since the 
material is heterogeneous, it presents a sampling problem. To estimate 
the random-sampling-error variance, obtain ten large samples of the ash 
from a given drum with a core sampler. Totally dissolve each sample and 
measure the uranium by an analytical method having a relative standard 
deviation of 0.2%. From the data for the ten samples (Table 3.12), estimate 
the random-sampling-error variance. 
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TABLE 3.12 W E I G H T PERCENT OF U R A N I U M IN ASH 

(Example 3.H) 

9.8968 13.5076 11.1304 
10.5124 8.5720 11.4592 
9.3664 10.2304 12.0460 
8.2804 

I t should be apparent in this case that the sample variance for the 10 
values in the table estimates the combined effects of sampling and analytical 
random errors. This is, by Eq. 2.61, 

(9.8968)2+ . . . + (12 .0460)2 - [ (9 .8968+ . . . +12.0460)2/10] 
, 2 ^ _ 

= 2.5688 

To obtain the estimate of the random-error variance due to sampling, 
subtract that due to analysis. This standard deviation was given as 0 .2% 
relative or (0.002)(10.50) =0.021 wt. % ; 10.50% is the average of the 10 
numbers in Table 3.12. Therefore the random-error variance due to samp
ling is estimated by 2.5688 —(0.021)2 = 2.5684, giving a standard deviation 
of ^ 2 . 5 6 8 4 = 1.60 wt. % , or (1.60)(100)/10.50= 15.2% relative. 

Example 3.H was a very simple example treated as a special case of 
situation B. We could have applied the formulas of situation B directly and 
arrived at the same answer. 

Situation C 

For the simplest interlaboratory testing situation in which two labora
tories make measurements on the same samples, the data are paired data, 
and reference is made to Sec. 3.3.1. In the more general case, k unknown 
samples are sent to each of m laboratories, with each laboratory making n 
determinations on each sample. Some reflection will make it apparent that 
the resulting data will have the same structure as in situation B with 
"items" replaced by "samples", "samples" by "laboratories", and "analy
ses" the same in each case. In this instance, SA/[km{n—\)\ remains an 
estimate of the random-error variance due to analysis, averaged over the 
laboratories (however, see Sec. 3.3.5 on this point). The quantity Ss/ 
{k{m — \)] becomes a measure of the random-error variance among la
boratories. When interest is centered on a particular laboratory, as is often 
the case, this quantity can be used to describe the systematic-error variance 
due to analysis for that (or any) laboratory. This is an important technique 
for obtaining an estimate of the systematic-error variance. This assumes that 
the average over all the laboratories is an unbiased estimate of the true 
value. 
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Many variations of experimental designs are used in interlaboratory 
testing. We will not discuss these designs other than to mention their ex
istence. Some are very detailed and serve to identify and evaluate the eff"ects 
of many possible sources of error. Such studies are used primarily to gain 
a better understanding of the factors that contribute to measurement-error 
variances. Analysis-of-variance techniques are used, in general, to estimate 
the various effects. Depending upon the complexities of the experimental 
design, the calculational details can become quite involved. However, the 
principle is the same: the total variance is divided into component parts, 
each part being identified with some factor. 

Situation D 

The term production data refers to data collected in the course of 
operating a given facility. They can be collected for such purposes as nuclear 
materials control, quality control, process improvement, or, more than 
likely, with several motivations in mind. Although they are normally not 
collected primarily to obtain estimates of measurement-error variances, 
these data often provide valuable information about such variances. 

Many such sets of data can be analyzed by the techniques of analysis 
of variance. Quite often a simple one-way analysis of variance, as described 
in situation A, is applicable. 

Example 3.1 

Consider measurements made for percent of plutonium on seven 
UO2-PUO2 pellets. Three analyses were made on each pellet. Although 
these particular data may have been collected to demonstrate product 
conformance to specifications, they also provide valuable information on 
random-measurement-error variances. The data, in percent of plutonium, 
are given in Table 3.13. 

TABLE 3.13 PERCENT OF PLUTONIUM 
IN U02-PuOj PELLETS 

(Example 3.1) 

Pellet Analyses, % of Pu Total 

1 2.51 2.53 2.50 7.54 
2 2.46 2.50 2.46 7.42 
3 2.47 2.50 2.47 7.44 
4 2.49 2.53 2.53 7.55 
5 2.51 2.49 2.53 7.53 
6 2.45 2.42 2.50 7.37 
7 2.47 2.45 2.45 7.37 

52.22 
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These data fit the pattern of situation A, with "time" replaced by 
pellets." Now there is a simplification since the numbers of observations 

are the same for each pellet. With the steps given under situation A, we 
get the following: 

7-2 (^2 22) 2 
Stepl. — = ^ • ^ =129.8537 

A' 21 

^ ^ - T 52.22 „ , 
Step 2. ^ = - = - ^ = 2.487 

Step 3. ,^J^-54)-+(7.42)2+.. . +(7.37)2^^^^^^^^ 

Step 4. 52= (2.51)2+(2.53)2+ . . . +(2.45)2=129.8738 

Steps p_(21) ' -(9)(7)_ 
Steps. P- ^2i)(6) - 3 

(When the number of items is the same for all categories, as in 
this example, P is simply this number of items.) 

^ , . 129.8738-129.8663 „ „„^ ^ 
Step 6. Ml = = 0.000536 

14 

^ „ [(129.8663-129.8537)/6]-0.000536 „ „„ „, 
Step 7. Mi = -̂^ —^-^-^ = 0.000521 

Step 8. Not pertinent in this example because there is no true value, MO 

In this example, 

Ml — 0.000536 estimates the random-error variance due to analysis 

M2 = 0.000521 represents the differences among the pellets and can 
be regarded as an estimate of the random-error variance due to 
sampling. In this example the sampling component refers to 
the pellet-to-pellet variation; in other instances it may refer to the 
variation within a given container. We should always keep in 
mind just how the population of interest is defined. 

Example 3.J 

In Sec. 2.8.2, dealing with control charts, an example was given in 
which the percent of uranium factor for UO2 powder was monitored with 
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a control chart. In that example, the random variable was the average 
factor per lot of powder, with each average based on five observations. 
This average was assumed to have a standard deviation of 0.06% in the 
construction of the control limits. The 0 0 6 % value was based on experience 
data and estimated by an anahsis of variance. 

The experience production data used to establish the parameters of 
the control chart are given in Table 3.14. The data are in percent of 
uranium minus 8 7 % , e.g., 0.575 corresponds to 87.575% and 0.580 to 
87.580%, etc. 

TABLE 3.14 PERCENT OF URANIUM 
FOR UOi POWDER * 

(Example 3 J) 

Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6 

Total 

0.575 
0.580 
0.572 
0.586 
0.577 

0.587 
0.600 
0.604 
0.603 
0.609 

0.535 
0.530 
0.538 
0.552 
0.545 

0.539 
0.538 
0.547 
0.533 
0.508 

0.656 
0.682 
0.650 
0.671 
0.677 

0.590 
0.598 
0.593 
0.572 
0.607 

2.890 3.003 2.700 2.665 3.336 2.960 

Lot 7 Lot 8 Lot 9 Lot 10 Lot 11 Lot 12 

Total 

0.719 
0.717 
0.667 
0.721 
0.717 

3.541 

0.613 
0.627 
0.652 
0.659 
0.626 

0.618 
0.610 
0.613 
0.633 
0.610 

0.629 
0.592 
0.628 
0.638 
0.606 

3.177 3.084 3.093 

0.442 
0.499 
0.509 
0.509 
0.480 

2.439 

0.617 
0.614 
0.604 
0.612 
0.612 

3.059 r = 35.947 

* Data are m percent of uranium minus 87%, e g , 0 575 corresponds to 87 575%. 

These data fit the pattern of situation A, as did the previous example. 
Once again, follow the steps given under situation A: 

72 (35.947)2 

_ 7- 35 947 
Step 2. x = -.= — ^ = 0.599 (i.e., 87.599% of uranium) 
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(2.890) 2+(3.003) 2+ . . . +(3.059)2 
Step 3. Si = - ^—^ '--^ ^̂ ^̂  ^ = 21.733749 

5 

Step 4. 6'2= (0.575)2+(0.580)2+ . . . +(0.612)2 = 21.745445 

Steps. P = 5 

21.745445-21.733749 
Step 6. Ml = = 0.000244 

48 
[21.733749-21.536447/11]-0.000244 

Step 7. Mi = — = 0.003539 
5 

Step 8. Not pertinent in this example because there is no true value, MO 

In this example, 

Ml estimates the random-measurement-error variance for a given 
sample. This includes the combined effects of sampling and analysis. 

Mi estimates the variance among lots of powder. This includes the 
effects of real lot-to-lot differences in percent of uranium and the 
short-term systematic-error variance due to analysis. 

The variance of a given lot average is {Mi/5+Mi), or 0.003588, 
giving a standard deviation of V 0.003588 = 0.06% of uranium. (Since 
there are five samples per lot. Mi is divided by 5. The basis for this is de
veloped in Chap. 5.) This is the value used in the control chart construction. 
I t assumes that the data of Table 3.14 represent data collected during a 
state of control; i.e., they represent the usual variation we would expect to 
see from lot to lot under well-controlled process conditions. 

Before we leave the analysis of variance topic, I should emphasize 
that we make some rather important assumptions when we apply this 
method of analyzing data. We assume an additive model, that the various 
effects are statistically independent, and that the error variances are 
the same from one experimental unit to another. (This last characteristic 
is referred to as homogeneity of variance.) The fact that these assumptions 
have not been stressed in this discussion does not detract from their im
portance. The last assumption, which is very important, provides a natural 
introduction to the next topic. 

3.3.5 Test for Homogeneity of Variance 

By now, it should be apparent that there are many ways in which 
we can estimate measurement-error variances. Further, within a given 
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experiment or for a given set of data, there may be several estimates of 
the same variance. The resulting estimate that is to be used in application 
is an average (perhaps weighted) of these individual estimates, where it is 
implicitly assumed that all the quantities are estimating the same parameter. 

As an illustration, consider example 3.G in situation B in the previous 
section, and, in particular, the estimate of the random-error variance due 
to sampling, 13.77 (% of U)2. It is evident from calculation step 4 that 
this variance estimate is an average of five separate estimates, one associated 
with each container of ADU scrap. Each estimate is based on 3 degrees of 
freedom, which explains why the overall estimate is based on 15 degrees of 
freedom. The analysis of variance technique provides the average estimate 
based on the 15 degrees of freedom because of the important assumption 
of homogeneous variance implicit in an analysis of variance. We might, 
however, like to verify the validity of this assumption because, in this 
instance, for example, it may well be that the sampling-error variance is 
not the same for the various containers owing to the different kinds of 
scrap that might be classified as ADU scrap. 

A test that can be used to test the hypothesis that k variances are all 
estimates of the same parameter is known as Bartlett's test. (If k = 2, then 
the F test described in Sec. 2.6.4 can be applied.) Bartlett's test, which 
assumes the underlying population variances have the normal density 
function, consists of the following steps: 

Given the ^-sample variances j j , si, . . ., ^j,, computed by Eq. 2.61 and 
based on vi, Vi, . . . , Vk degrees of freedom, respectively. 

Step 1. Calculate v = vi-\-Vi+ . . . +Vk 

Step 2. Calculate.2 = ' : ^ + ' ' ^ ^ 2 + - - - + - - 4 
v 

k 

Step 3. Find 0,= V In .f2_ ^ ^, in si 
t = 1 

t'-i) 
. = 1 f. " / 

3(A:-1) 

Step S. Compute Q,/5. 

Step 6. If Q,/-6>Xi_„ as defined by Eq. 2.67 for (^—1) degrees of freedom, 
reject the hypothesis that <T\ = a\= . . . =<JI, where si is the 
estimate of a^. The value of xl-a can be read from Appendix B. 
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Example 3.K 

In this example the test for homogeneity of variance, with a = 0.01, 
is applied to the data of example 3.G, Sec. 2.3.4. Here, i', = 3 for all i=l, 
2, . . . , 5. The sf values are, from step 4 of situation B: 

/ i = 131.05/3 = 43.68 54=15 .22 /3 = 5.07 
51 = 20 .20 /3 = 6.73 51 = 26 .01 /3 = 8.67 
5^=14 .11 /3 = 4 .70 

S t e p l . y = 3 + 3 + 3 + 3 + 3 = 1 5 

« . -, 2 3 (43 .68)+3(6 .73)+ . . . +3(8.67) 206.55 
Step 2. 5^ = = =13.770 

15 15 

(Compare this with the value for Ss/[k{m—l)] in example 3.G.) 

Step 3. 

Step 4. 

J* In 5 

E". 

Multi 

5 = 1 

2=15 In 

ln5f = 3 

13.770 = 39.337 

E In 5,' 
In 5i = 

In 52 = 

In 51 = 
In 54 = 

In 55 = 

iply 11.015 by 3: 

^ ( 5 / 3 ) -- ( l / 1 5 ) _ j 

3.777 
1.907 
1.548 
1.623 
2.160 

11.015 

33.045 

.13333 
12 

Step 5. The a = 0.01 critical value is 13.28 from Appendix B. 
Q . /5= 13.770/1.1333= 12.15 

Step 6. Since 12 15 < 13.28, do not reject the hypothesis. Conclude that 
2 2 _ _ 2 

<^l — <^2— • • • — O ' S -

In this particular example it might have been preferable to apply a 
different test for homogeneity of variances. Bartlett's test fits the situation 
in which the alternative hypothesis is not specified except to say that Ho-

2 _ 2 _ _ _ 2 
(7i = 0-2 = al is not true. There are other tests that can be applied if 
the alternative hypothesis is stated more precisely. In particular, if we 
suspect that one of the variances is excessively high or low while the others 
agree among themselves, we can apply a test known as Cochran's test. 
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This appears to be the situation with this set of data in which s^ is con
siderably larger than the other variances. However, the reader is again 
cautioned on the danger of formulating hypotheses after the data are 
collected. Unless we have an a priori reason for specifying the alternative 
hypothesis, it is advisable to apply a generalized test such as Bartlett's. 

There are other situations in which we may wish to apply a test of 
homogeneity of variances. This is often done with interlaboratory testing 
because in this situation it is important to test for equality of random-error 
variances for the laboratories involved. As another instance, when historical 
production data provide information on a given error variance, it is ad
visable to perform routine tests of the hypothesis that this particular error 
variance is remaining constant. 

3.3.6 Systematic Errors in Sampling 

Systematic-error variances due to sampling are perhaps the most 
difficult of all measurement parameters to estimate. Many sources can 
contribute to this error, especially in a facility in which sampling of liquids 
is required. In many instances it is difficult to distinguish between the 
effects of systematic error due to sampling and the effects due to analytical 
factors, and we can only estimate their combined effects. Often, this is 
satisfactory in application, but it provides little insight into the steps that 
should be taken to reduce error variances when they are too large. 

One method of estimating systematic-error variances due to sampling 
is the synthetic method to be discussed in Sec. 3.3.7. However, this method 
is often very difficult because of the problems associated with identifying 
primary error sources on the one hand and of evaluating their variances 
on the other. In general, the synthetic method cannot be considered a 
very satisfactory estimation method for sampling error variances. 

An alternate approach, and perhaps the only reasonable one, is to 
conduct special experimental studies whose primary purpose is to evaluate 
the magnitude of the systematic-sampling-error variance. This is illustrated 
by example 3.L. 

Example 3.L 

(This example was supplied by R. A. Schneider.) 

A chemical processing facility is to conduct cold start-up tests on the 
sampling system used for the input-accountability tank. One aim of the 
test is to determine if the sampling system, which employs an air lift, 
concentrates or dilutes the sample, i.e., creates a systematic sampling error. 
The test consists in filling the tank with a solution of uranyl nitrate with a 
uranium concentration of 300 g/liter. Large-volume samples are then 
dipped from the tank, and parallel samples are taken by means of the air-
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lift system; both samples are sent to the laboratory for analysis of uranium 
concentration. 

It is important to stop at this point and comment on the role of the 
dip samples. We might argue that since the concentration of the tank is 
known the air-lift results can be compared directly with this known stand
ard and the techniques of Sec. 3.3.2 can be applied. This approach has 
some merit and may indeed be the preferred one, but we must recognize 
that the systematic-error variance thus estimated is the combined effects 
of such errors due to sampling and analysis. We could, of course, obtain 
estimates of the systematic-error variance due to analysis by separate 
experimentation and subtract this error variance from the variance pro
duced by the sampling experiment. On the other hand, if the systematic-
error variance for air-lift samples is found by treating the dip-sample 
results as the known standard, then it should be clear that the effects of 
systematic errors due to analysis cancel out and the resulting estimate is a 
direct estimate of the systematic-error variance due to sampling. This 
particular set of data is treated in this fashion. The data for 16 replications 
of the test are given in Table 3.15. 

TABLE 3.15 ANALYSIS OF URANIUM CONCENTRATION 
(Example 3.L) 

Uranium concentration, g/liter 

)lication 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Air-lift sample 

300.5817 
300.1155 
299.6751 
299.9061 
300.1818 
300.2763 
299.5581 
299.7447 
300.0630 
300.3798 
299.8278 
299.8296 
299.9238 
299.7237 
299.6394 
300.0363 

Dip sample 

299.9514 
299.5146 
300.1134 
299.9829 
300.4068 
299.7246 
300.0036 
299.7267 
300.3711 
299.5848 
300.2877 
300.2193 
300.2151 
299.5101 
300.3342 
300.3453 

The steps of Sec, 3.3.2 are applied: 

Step 1. 72= 16 for both the air-lift and dip samples 
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~ (300.5817)+ . . . +(300.0363) 
S t e p l . Airlift: xi=:- -^ -̂̂  ^=299.9664 

16 

Dip: ;c2 = 300.0182 

Airlift: 5i'= {(300.5817)2+ . , . +(300.0363)2-[(300.5817 
+ . . . +300.0363)2/16] | /15 

= 0.082553 

Dip: 52 = 0.101334 

Step 3. 1̂0 = 300.0182 (i.e., X2 plays the role of the standard) 

Airlift: fi = i i - ; c 2 = - 0 . 0 5 1 8 

Air lift: Variance ^i = 5J/w = 0.082553/16 = 0.005160 
Standard deviation ^ = Vo.005160 = 0.0718 

Dip: Variance ^2 = 0.101334/16 = 0.006333 
Standard deviation ^2 = 0.0796 

Step 4. a. If the bias correction is made, i.e., if in application the results 
will be adjusted by adding 0.0518 g of uranium per liter to the 
observed concentrations, then the systematic-error variance due to 
sampling by the air-lift method is estimated by 

4 •> 
- + 5 ^ = 0.005160+0.006333 = 0.011493 
n 

where s\ is the variance assigned the standard value, i.e., the 
average for the dip sample, s\/n in this instance. 
b. If no bias correction is made, then the systematic-error variance 
due to sampling by the air-lift method is estimated by 

(^1-^2) 2+5^ = 0.002683+0.006333 = 0.009016 

Step 5. The random-error variance due to sampling plus analysis is 
estimated by 5i = 0.082553. Note that the estimate of the random-
error variance includes the effects of both sampling and analysis. 
The error variance due to analysis must be estimated sepa
rately. As an alternative, replicate analytical determinations 
could have been made to provide an estimate of this variance 
internal to the experiment. 

(We might wish to regard these data as paired in the sense that 
conditions might change within the tank and /or in the analytical 
laboratory. In this event the methods of Chap. 8 can be used to 
provide added insight.) 
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This is an illustration of how systematic-error variances due to sampling 
can be estimated. The principle should be very clear in any sampling situ
ation: compare sample results obtained by the usual sampling method 
with "the truth." The problem comes in determining the truth. In this 
example the truth was established through the use of a sampling method 
assumed to produce a sample representative of the true contents of the 
container. In other instances the truth may be based on intensive sampling 
of the contents of the container in question. 

3.3.7 Synthetic Approach To Estimating Systematic-Error 
Variance 

The synthetic approach to estimating error variances is another 
approach that can be used to estimate systematic-error variances. This 
method involves identification of all steps that lead to a reported result. 
At each step any factor that would, if in error, affect all results in the same 
way would be a contributor to the systematic-error variance. A technical 
appraisal must be made of the possible magnitude of each such error. These 
individual error effects are then combined appropriately by methods to 
be discussed in the next chapter. 

The details of this approach to error estimation are best presented 
with a simple example. The application to other situations should then be 
obvious in principle. 

Example 3.M 

In Sec. 3.2, I mentioned the measurement situation in which total 
uranium in a process tank is to be determined by measuring the volume in 
the tank and then measuring the concentration from a tank sample. 
Consider the systematic-error variance associated with the determination 
of the uranium concentration. In particular, for illustrative purposes, 
fix attention on the variance attributable to the uncertainties in two 
"constants," the normality of the oxidizing solution (0.2000JV) and the 
volume of the 2.00-ml pipet in the following equation for uranium concen
tration : 

(ml)(equiv. wt. of U) (0.2000jV) 
Ueonc- 2.00 m l ^^-^^ 

Since the 0.2000JV and 2.00-ml values are applied to successive batches, 
any uncertainty in these values will be described jointly by a systematic-
error variance. These two values can be regarded as random variables 
drawn from density functions with standard deviations of o-i and cr-i, re
spectively. The determination of ci and <T2 poses another problem. For 
pipet volume some value can be assigned the standard deviation on the 
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basis of tolerance statements supplied by the manufacturer or perhaps by 
the National Bureau of Standards. The normality of the oxidizing solution 
is determined by repetitive titration of a primary standard, and the value 
of (Ti can be determined by methods of Sec. 3.3.2. Whatever technique is 
used to evaluate cri and 0-2 (including technical judgment) assume that 
these values are known. 

Designate by Cu the systematic-error standard deviation for the uran
ium-concentration determination. Looking ahead to the next chapter, 
and in particular to Eqs. 4.4 and 4.6, we can evaluate Cu- Write 

A-(0.2000+A0 
2.OO+A2 ^ ^ 

where K is the product of (ml) (equivalent wt. of uranium); Ai is a random 
observation from the population with density function having mean zero 
and standard deviation <ri; and A2 is a random observation from the popu
lation having mean zero and standard deviation 0-2. Equation 3.9 is in the 
form of Eq. 4.4 where x is identified with U, xi with Ai, and X2 with A2. 
Then, Eq. 4.6 can be applied. This requires finding the partial derivatives of 
U with respect to Ai and A 2. 

dU K ^ , 
(3.10) aAi (2.OO+A2) 

dU r(0.2000+Ai) 
dA2~ (2+A2)2 

(3.11) 

To apply Eq. 4.6, evaluate these partial derivatives at their means, 
both of which are assumed to be zero. 

dU -K 

dU 0.200A" „ ^ 
.—= =-0.05K 
dAi 4 

Then from Eq. 4.6, 

(r2 = (0.5A") 2,75+(-0.05^) 2<r2 

= ^2(0.25^5+0.0025 al) (3.12) 

This gives the systematic-error standard deviation: 

(r^=^K{Q.25<xl+0.0025al)^'^ (3.13) 
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Assume ^"=3360, (ri = 0.0002, and <T2 = 0.006; then, 

£r„ = 3360[(0.25)(4)(10-8) + (0.0025)(3600)(10-8)]i/2 

= 1.0625 

At this value of K, 

3360(0.2) 
U= ^—^ = 336.0 

from Eq. 3.8, and expressing this systematic-error standard deviation on a 
relative basis gives 

Tu 1.0625 ^ 
t 7 = 3 3 6 : ^ = 0-00316 = 0.316% 

This example was simplified for illustrative purposes. There is no 
intent to imply that the two sources identified are the only ones that con
tribute to the systematic error in the uranium-concentration determination. 

We should note that the synthetic approach is especially valuable as 
a diagnostic tool, i.e., in evaluating the importance of primary error 
sources on the total error variance. From this point of view, it is not essential 
to know precisely the individual standard deviations used in the analysis. 
In application, it is reasonable to require that standards must ultimately 
be used to obtain valid estimates of systematic-error variances, or, at least, 
to confirm that estimates found by other means are reasonably valid. 

3.3.8 Linear Calibration, Independent Data 

In a sense this section can be regarded as an extension of Sec. 3.3.2. 
The distinction is that now, rather than calibrating against a known 
standard, we calibrate against a series of known standards having different 
assigned standard values. 

With this problem a word of caution is in order. Calibration work of 
the type described here is often performed in connection with calibrating 
nondestructive assay (NDA) equipment to measure, for example, the 
amount of ^^^U in a waste barrel. In this particular instance the standard 
is known in the sense that the amount of '^^^U contained in the calibration 
barrel is known precisely, but the number of counts observed will vary 
considerably according to how the uranium is dispersed. Thus, in a very 
real sense, the standard is not really known. 

The creation of valid standards for NDA application poses a very 
real problem. In the example under discussion, one satisfactory approach 
might be to disperse given amounts of 2 3 5U in different ways throughout 
the barrel during the calibration so that this dispersal will describe how 
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uranium might actually be reasonably dispersed in the waste barrels to be 
measured. The resulting scatter in the counts for a given amount of sssy 
then reflects reality, and the corresponding calibration curve with its 
uncertainty is reasonably valid. Another possibility is to calibrate against 
actual waste barrels rather than created standards. This can be done by 
counting a number of barrels and then selecting some whose contents will 
be incinerated and leached and the residue carefully assayed for 2 35u ĵ y 
wet chemistry. The amount of ^^^U found in a given barrel can then be 
considered as the standard value. With both methods suggested, the stand
ards can then be considered to be known in the true sense of the word, 
and the methods discussed in Sec. 3.3.8 can be applied. 

The problem now is to estimate the calibration line and to estimate 
the appropriate random- and systematic-error variances. A very simple 
mathematical model is assumed. In spite of its simplicity, the model 
describes a commonly encountered situation which is applicable to many 
problems likely to occur in the nuclear materials control area. The two 
basic assumptions are (1) that the calibration relation is linear and (2) that 
there is statistical independence between any two observations on the 
random variable. 

There is a unique feature of linear-calibration work that sets it apart 
from the usual problem of fitting a straight line through a set of data. The 
distinction is noted here. In the traditional problem we fix the values of 
some independent variable, X, and do so without error. Corresponding to 
each fixed value of X, a value of a dependent variable, T, is observed. 
The variable ^ îs a random variable and hence is affected by random errors. 
The usual linear model is of the form 

y==a+Px+( (3.14) 

where the parameters a and /3 are estimated by standard least-squares 
procedures, i.e., they are chosen such that the sum of the squared distances 
between the observed values, j ^ , , and the true values, (a+fixi), is minimized. 
The € is called the error term and is generally assumed to have mean 
zero and variance <rl. (If, in addition, e is normally distributed, then the 
least-squares estimates of a and /3 are identical with the maximum-likelihood 
estimates of the parameters. See Sec. 2.7.1 for the definition of maximum-
likelihood estimation.) 

Thus far this situation is identical with that arising in linear-cali
bration applications. However, in calibration applications in which the 
derived model is applied, there is an important difference. Although the 
calibration line is estimated by fixing x and observing 7, in applying the 
calibration line, we observej; and predict the x value that corresponds to it. 
Thus the linear relation is used in the reverse form. 
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x=-^--^ = a'+fi'y (3.15) 

where a' = — a//3 and ,8'= 1//3 relates the two sets of parameters. Various 
investigators have suggested that in this calibration situation the parameters 
a and (3' be estimated by reversing the roles of* andj), i.e., by treating X 
as the dependent variable and Y as the independent variable. This ap
proach, called the inverse model, does have some merit, and the statistical 
properties of the estimates of the resulting parameters are better than 
those found by the traditional approach under certain defined circum
stances. As a general rule, however, it is preferable to follow the direct 
approach, rather than this inverse approach, and then to use the derived 
model, Eq. 3.15. 

The least-squares estimates of a and /3 in Eq. 3.14 are given in many 
texts. If we let the data set be paired values {x„y^ with i=\, 2, . . . , n, 
these estimates are 

n / n n / \ 

E ^t)".—(E •̂ . E J V . / " ) 
1=1 \ i = 1 J=1 I / 

.5''-[(.I;")'/"; 
(3.16) 

and 

a=}~^x (3.17) 

where y and x are the sample means. The parameters a and /3' are then 
estimated from 

3 ' = 1 / ^ (3.18) 

a'=-a/fi (3.19) 

From a measurement-error viewpoint, the errors associated with ^' 
and a' are systematic errors as long as the particular estimated calibration 
line is used. 

As a result, the error associated with a predicted value for X for a 
given known value of T is also a systematic error. Specifically, because e is 
a random variable, in a usual linear least-squares situation, the parameter 
estimates a and ^ have variances 

/?E^f 
2 

o-S = 
(3.20) 

rl = R (3.21) 
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and their covariance (see Sec. 2.5 for definition) is 

o'i,0= — Rx 

where R is defined by 

(3.22) 

R-

and 0-? is estimated by 

or, equivalently, by 

E*?- (Ex.) / « 

.2 V- {y^-a-0X^)' 

,=1 n —^ 

(3.23) 

(3.24) 

EJ'?~« EJ>'»—^ E •*•> 
" 2 * = 1 t = 1 t = 1 (3.25) 

Then, looking ahead to the results of Sec. 4.2.2 (see example 4.E), we 
find the variance of the calibration equation (Eq. 3.15) for a given known 
value of jij^o to be estimated by 

\{t ̂ ^/n 
cl^R L\i = i 

+ [(;;„-a)2/^2]_{[2(j,„-a)x]/3} 

^' 
(3.26) 

This variance is denoted by a^ to emphasize that it is a systematic-
error variance. 

If there are two predictions of X, corresponding to two different known 
values of J, sayjvi and ̂ 2, then these two predictions will be correlated. The 
covariance is designated by a,, and is equal to 

, = /? 
l%A/\ + \ [{y.-'ci){y2-a)]m -! {{yi+y2-2ayx\m 

/32 
-(3.27) 

Equation 3.26 gives the systematic-error variance induced by the 
calibration, assuming that the y value is known. In practice we do not 
know j ; but observe a value for 7. This observed value oiy has a random-
error variance, 0-2, estimated by ir«, and it produces a random-error variance 
in the predicted x of 
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^^l = f, (3.28) 

Let us summarize the results of this section. The following steps are 
performed in a linear-calibration situation: 

Step 1. The observed calibration data {xi,yi) are used to estimate the 
calibration parameters with Eqs. 3.16 and 3.17. * 

Step 2. The parameters for the reverse calibration line (Eq. 3.15) are 
estimated with Eqs. 3.18 and 3.19. 

Step 3. In application a value is observed for T. Call this value JJO- The 
corresponding value for X is, xa and is predicted by using the 
model of Eq. 3.15 withj '=j;o. 

Step 4. The systematic-error variance associated with xo is given by 
Eq. 3.26. 

Step 5. The random-error variance is given by Eq. 3.28. 

Step 6. If two values are observed for T, i.e., yi a.x\d y^, and the values 
of ^ , i.e., xi and Xi, are predicted with Eq. 3.15, then the syste
matic errors in x\ and X2 are correlated. The covariance is given 
by Eq. 3.27. 

Step 7. The systematic-error variance of the sum (*i+*2) can be found 
by evaluating Eq. 3.26 separately for xi and X2 and adding the 
results. This sum is then added to twice the covariance of step 6. 

Step 8. The random-error variance of the sum can be found by multi
plying the result of step 5 by 2. 

Step 9. If there are k items in a sum, i.e., if the given data points are 
y\,y2, • • • ,yk, then the total of the corresponding x's, (xi-\-X2-\-
. . . +Xk), denoted by XT, can be found by using Eq. 3.15 with 
ka' replacing a' and the sum of they's replacing^. 

Step 10. The systematic-error variance of XT is given by multiplying 
Eq. 3.26 by k^ and replacing j o by the average of the ky's. 

Step 11. The random-error variance of XT is given by multiplying 
Eq. 3.28 by k. 

Steps 9 to 11 correspond to a special case of steps 12 to 14 in which 
all the Ci=l. 

Step 12. If the sum of the .x's is a general sum of the form x, = C1X1+C2X2+ 
. . . -\-CkXk, where the c's are arbitrary constants, then x, can be 
found by using Eq. 3.15 with ( a ' E ^ = i ^•) replacing a' and 
( E < = i <̂ i)'«) replacing y. 

file://-/-CkXk
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Step 13. The systematic-error variance of .*» is given by Eq. 3.26 with the 
first term multiplied by (E»=i '^')^ yo replaced by (E^=i '̂>>'«)> 
and a replaced by (a E<=i »̂)-

Step 14. The random-error variance of x, is found by multiplying Eq. 
3.28 by i:*=i cl 

Example 3.N 

Let us now apply these results to a set of calibration data. Let the 
data consist of measurements for total 235u rnade by an NDA instrument 
on 1-gal containers known to contain specified amounts of ^^^U. The X 
and T variables are defined by X= known amount of 235^ in a given con
tainer and T= net counts produced by the NDA instrument. If the random-
error variance in T is affected primarily by counting statistics, then cr, is 
not constant but increases in proportion to the number of counts observed. 
It is assumed here, as is often the case, that the counting-statistics source 
of variation is dominated by other sources of random error and that cr] 
can with reasonable validity be assumed to be constant over the range 
of the data. 

The data are given in Table 3.16. 

TABLE 3.16 MEASUREMENTS FOR TOTAL " ' U 

(Example 3.N) 

^ , g of "5U r , net counts 

10 890 
15 1234 
20 1491 
25 1815 
40 2896 
50 3718 

Let us apply the summary steps 1 to 6. Certain quantities are calcu
lated, as follows, for use in these steps. 

Sjy =12,044 2;c2 = 545o 

S * =160 2 jc 2 = 30,042,502 
2;^' = 404345 n =6 

Stepl. By Eq. 3.16, 

, 404345- (160)(12044)/6 83171.6667 „ 
3 = !̂^ '-^^ = = 70.286 

5450-[(160)2/6] 1183.3333 
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ByEq. 3.17, 

. 12044 (70.286) (160) 
« = - ^ 6 

step 2. ByEq. 3.18, 

i8' = :;;77;;;7:=0-01423 
70.286 

= 133.04 

By Eq. 3.19, 

133.04 

70.286 
= -1.893 

step 3. Assume that a reading is taken on a container whose 23 ̂ u con
tent is not known and that the observed y value,_>»!, is 1000 counts. 
Then the predicted amount of 236u in the container is, by 
Eq. 3.15, 

xi= -1.893+(0.01423)(1000) = 12.34 g of ''''U 

Step 4. The systematic-error variance of xi is given by Eq. 3.26. First, 
R must be evaluated. This requires that cl be estimated. By 
Eq. 3.25, 

-. 2 30,042,502 - (133.04) (12044) - (70.286) (404345) 
<^i- -. 

4 

= 5094 

By Eq. 3.23, 

5094 
R= = 4.305 

1183.3333 
By Eq. 3.26, 

(72 = 4.305{ (5450/6) +[(1000-133.04)2/(70.286) 2] 

- [2(1000-133.04)(26.667)/70.286]l/(70.286)2 

4.305(908.33+152.15-657.86) 

4940.12 

=0.3509 g2 of 236U 
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Step 5. The random-error variance is, by Eq. 3.28, 
5094 

Therefore the total variance for the predicted amount of ^'^u 
in that container is 

0.3509+1.0311 = 1.382 g2 of 236U 

which gives a standard deviation of 1.18 g of 2'5U, or about 10% 
of the amount present. 

Second Container. Now suppose that another container is counted and 
produces a count of 2000. By Eq. 3.15, the predicted amount of 2''U in 
that container is 

;^s=-1.893 + (0.01423)(2000) =26.57 g of 2"U 

so that the total for the two cans is 

7=12.34+26.57 = 38.91 g of 286U 

Step 6. By the application of Eq. 3.27, the covariance between xi and 
Xi is estimated by 

(ri2 = 4.305{ (5450/6) +[(1000-133.04)(2000-133.04)/(70.286) 2] 

-[(3000-266.08)(26.667)/70.286]}/(70.286)2 

4.305 (908.33+327.64-1037.27) 

4940.12 

= 0.1732 g2of286U 

Step 7. For the systematic-error random variance for the total amount 
in the two containers, the systematic-error variance of Xi can 
be found by Eq. 3.26. 

o-.̂2 =4.305 {(5450/6) + [(2000-133.04) 2/(70.286) 2] 

- [2(2000-133.04)(26.667)/70.286]}/(70.286)2 

4.305 (908.33 + 705.56-1416.68) 

4940.12 

= 0.1719 g2of236u 
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Then, with this result plus the results of steps 4 and 6, the syste
matic-error variance of the sum (xi-i-x^) is the variance of each 
term plus twice the covariance, or 

0.3509+0.1719+2(0.1732)=0.8692 g2 of 28*0 

Step 8. The random-error variance for the sum (xi-i-X2) is, from the 
result of step 5, 

2(1.0311) = 2.0622 g2 of 235u 

The total variance of T is 

0.8692+2.0622 = 2.9314 g2 of 236u 

which gives a standard deviation of 1.712 g of ^^^\J, or about 4.4% of the 
total amount. 

Alternatively, for the total 2 36U in the two containers, steps 9 to 11 
can be applied. Here, A: = 2 and Ei=i.>'.= 1000+2000 = 3000; so the aver
age ji value is 1500. 

Step 9. The total amount of ' ' ^ u in the two containers is 

;(j,= (2)(-1.893) + (0.01423)(3000) = 38.91 g of ^'^U 

Step 10. The systematic-error variance associated with XT is 

, _ (2) 2(4.305) 
"' (70.286)2 

r5450 (1500-133.04)2 2(1500-133.04)(160) I 

^ L 6 "*" (70.286)2 (6)(70.286) J 

= 0.003486(908.3333+378.2457-1037.2554) 

= 0.8691 g2of236U 

in agreement with step 7. 

Step 11. The random-error variance associated with XT is 

a,'= 2(1.0311) =2.0622 g2 of 2'5U 

in agreement with step 8. 

Example 3.0 

Suppose there are five containers whose amounts of ^^^V are to be 
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found by using the calibration line estimated in the previous example. Let 
the counts on these five containers be 

^1=1000 
j>'2 = 2000 

73 = 800 
74 = 3400 
76=1300 

Sum = 8500 counts 
- Average = 1700 counts 

Then we apply steps 9 to 11. 

Step 9. The total amount of ^^^V in the five containers is 

Ar7' = 5(-1.893) + (0.01423)(8500) = 111.49 g of 235U 

Step 10. The systematic-error variance associated with xr is 

^ , _ (5) 2(4.305) 
' ' ' (70.286)2 

r5450 (1700-133.04)2 2(1700-133.04)(160)' 

^ L 6 "^ (70.286)2 (6)(70.286) 

= 0.02179(908.3333+497.0249-1189.0163) 

= 4.714 g2of235U 

Step 11. The random-error variance associated with XT is 

o-̂  = 5(1.0311)=5.1555 g2of235U 

For another example see example 6.H. 

3.3.9 Linear Calibration, Cumulative Data 

In the preceding section, we assumed that any two observations on 
the random variable were statistically independent. There is a situation 
in nuclear materials control applications in which this may be a poor 
assumption. 

Consider the calibration of a process vessel. Assume that a linear 
model is applicable, as is generally the case, or nearly so. The tank is cali
brated by adding "known" weights of liquid to the tank and observing the 
manometer reading. In practice, the tank is not emptied between additions; 
therefore any errors associated with early additions of liquid affect later 
total amounts also. Thus the data are cumulative in nature, and the 
cumulative model is used to describe this calibration situation. 
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To be consistent with the previous section, since the amount of liquid 
added at each increment is the controlled variable and the manometer 
reading is the dependent variable during calibration, we should perhaps 
identify the X variable with the total amount of liquid added and the T 

variable with the manometer reading. However, most writers on this 
subject make the opposite identification, i.e., 2^is identified with the amount 
of liquid and X with the manometer reading. This is done because it is 
generally assumed that the manometer reading is not subject to error 
(i.e., it can be read exactly), whereas the amounts of liquid added at each 
step have random errors associated with them. By identifying X with the 
manometer reading and T with the liquid weight, we thereby estimate 
the calibration model directly without requiring the inverse relationship 
since, in application of the calibration line, the manometer is read and the 
corresponding weight predicted. 

It develops that both identifications will give the same result in working 
with the cumulative model; i.e., we can either call ^ t h e manometer reading 
and T the weight and use the resulting calibration curve directly, or we 
can call X the weight and T the manometer reading and use the inverse 
of the calibration curve. This freedom of choice does not exist in the previous 
section, where the actual estimates for the parameters depend on which 
variable is regarded as the independent variable and which the dependent. 
Since this is not a consideration for the model under discussion, we choose 
to be consistent with most workers in the process vessel calibration area 
and to let X refer to the manometer reading and T to the cumulative weight. 

It should be noted that among workers in the field there is not universal 
agreement that the cumulative model is the appropriate one to use in 
process tank calibration work. Some workers argue that the amount of 
liquid added at each step is known precisely, contrary to the assumptions 
of this model, while the manometer reading is subject to random error. 
If this is the case, the model of Sec. 3.3.8 is applicable. Others argue that, 
although the amounts of liquid added may be known, not all the liquid 
actually reaches the tank through the piping with each addition, and hence 
this has the same effect as if the amounts added were not known precisely. 
In this latter case there is a concern that the random errors associated 
with the additions of liquid are not independent, which would violate 
another assumption of the cumulative model. It should be noted that in 
any modeling situation we attempt to model reality as well as is reasonable, 
but we recognize that there are often discrepancies between reality and 
the mathematical models used to describe it. The cumulative model has 
received sufficient emphasis in process tank calibration work to warrant 
inclusion in this book. The user is cautioned to exercise his own technical 
judgment on the validity of the assumptions in any given application. 
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On the surface the cumulative model appears identical to Eq. 3.14. 
For the j'th point, 

7 . = a+/3*, + e, (3.29) 

For the cumulative model, however,7, is actually the sum of a number 
of liquid additions: 

7 , = A7i+A72+ . . . +A7 . (3.30) 

Assume that 

CAy, = <rlx-{x, — x,~i)(r^ (3.31) 

Tha t is, the random-error variance associated with a given addition of 
liquid is proportional to the amount of liquid added. Because of this error 
structure, the successive 7 , values are not statistically independent, i.e., 
they have a nonzero covariance. Therefore the assumptions required for a 
least-squares fit are violated, and a and /3 cannot be estimated with validity 
by the methods of the previous section. 

There are two ways to proceed with the estimation. One involves 
application of the so-called "generalized least-squares" approach to esti
mation, which takes into account the covariance between any two 7„7^ 
values. This approach is beyond the scope of this book. The other approach, 
which yields equivalent results, involves estimating the parameter /3 by 
successively differencing the7 , values and thus creating statistical independ
ence. Specifically, it is easy to see that 

y2~yi-l3ix2—xi)+S2 
(3.32) 

73 —72 = ;8(.V3 — X2) + 83 

etc. 

where the 5, observations on the random error associated with these differ
ences are statistically independent of one another. However, they have 
different variances unless {x,—x,-i) is the same for all t, i.e., unless equal 
increments of liquid are added. This does not create a problem since a 
weighted least-squares approach can be used to give the estimate for ;3. 
Upon simplification this is 

$=^-^^^=^ (3.33) 
Xn — Xl 

Thus for this cumulative model the estimate of the slope is found by 
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simply fitting the straight line through the first and last points."* The 
corresponding estimate for a is 

a =71-^^1 (3.34) 

These parameter estimates have variances given by 

(3 35) 
* n —.*•! 

and 

al = (3.36) 
J f » — A T I 

The covariance between a and /3 is 

The quantity s^ 

Xn 

is obtained from 

s^x, 
- A T I 

(3.37) 

E [(7.-J.-i)V(*-^.-i)]-3'(^n-;^i) (3.38) 
n-\ 

As in the previous section, the uncertainties in the estimates of a and 
fi create a systematic-error variance for a predicted weight when the 
calibration curve is used. For this model the predicted weight,7o, is directly 
related to an observed manometer reading, x^, by 

7o = a+3*o (3.39) 

Then the systematic-error variance for 70 is simply, by application of 
Eq. 4.3, 

<7.'. = <r|+*?<r|+2*o<r:; (3.40) 

with o-|, o-j, and era,J given by Eqs. 3.35 to 3.37. 
For the assumed model, since the manometer reading is observed 

• It may bother some readers that, with the cumulative model, only the first and last points 
are used to estimate the slope and intercept of the calibration curve One wonders, perhaps, 
why the intermediate two points are even required in the calibration exercise These points serve 
a twofold purpose (1) to verify that the cahbration curve is indeed linear and (2) to provide 
s' in Eq. 3 38, needed to find the variance of the parameters and of estimated amounts of 
liquid in the vessel. 
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without error, there is no random-error variance associated with the true 
weight of liquid in the vessel. A random error is introduced, however, 
when converting the weight to a volume through a specific-gravity de
termination. 

As with the previous model, there is a covariance between the weights 
of liquid determined from two manometer readings, xi and X2. This co-
variance, designated by an, is given by 

<^i2 = (ri+xiXt(Tl+{xi+X2)cri,B (3.41) 

In application, transfer weights of the form (72—71) are of interest. 
In this instance the systematic-error variance of (72—71) is 

(^"^ (vi—vi) = <rsixi+xl —2x1X2) +2aa,g(xi+X2—xi~ X2) = {x2 — xi)'^<TJ (3.42) 

Note that the variance of the transfer weight depends only on the 
uncertainty in the slope estimate, as is intuitively reasonable. 

Let us summarize the results of this section. The following steps are 
performed in a linear-calibration situation based on the cumulative model. 

Step 1. Using the observed calibration data (x„7,), estimate the cali
bration parameters using Eqs. 3.33 and 3.34. 

Step 2. In application, a value is observed for the manometer reading, X. 
Call this xo- The corresponding value for the weight of liquid in 
the tank, designated by7o, is given by Eq. 3.39. 

Step 3. The systematic-error variance associated with 70 is given by 
Eq. 3.40. The random-error variance is zero. 

Step 4. If two values are observed for X, i.e., xi and X2, and the values of 
T, i.e., 71 and72, are predicted by using Eq. 3.39, then the syste
matic errors in 71 and 72 are correlated. The covariance is given 
by Eq. 3.41. 

Step 5. The systematic-error variance for the weight of a transfer amount 
is given by Eq. 3.42. 

Step 6. The systematic-error variance for the total weight of k transfers 
is found by replacing (xi—xi)^ in Eq. 3.42 by the square of the 
sum of these differences in x values for the k transfers. 

Example 3.P 

The vessel-calibration data are given in Table 3.17. Estimate the 
calibration curve, assuming a cumulative model. The summary steps are 
applied. 
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TABLE 3.17 DATA ON VESSEL CALIBRATION 
(Example 3.P) 

T (weight, arbitrary units) X (manometer reading) 

1 5.78 
2 9.22 
3 13.66 
4 17.31 
5 20.97 
6 25.26 
7 28.90 
8 32.92 
9 37.77 

10 42.27 

Step 1. From Eq. 3.33, 

3 = ^ =0.2466 

'^ 42 .27 -5 .78 

From Eq. 3.34, 

a = 1 - (0 .2466) (5.78) = - 0 . 4 2 5 

Step 2. With a given manometer reading assumed to be 30.00, the esti
mated weight of the liquid is, by Eq. 3.39, 

7 o = -0 .425+(0 .2466) (30) =6 .973 units 

Step 3. For the systematic-error variance for this estimate, some prelimi
nary calculations are required. The term s' is given by Eq. 3.38. 
Since (7,—7,_i) is constant for all i in this example, Eq. 3.38 can 
be written 

J2 ( ; c . -x ,_ i ) - i - (0 .2466) 2(36.49) 
2 • = 2 

, 2 = _ 

^ ( 2 . 2 4 8 1 0 - 2 . 2 1 9 0 1 ) ^ ^ ^ ^ 3 ^ 3 ^ 

9 

Then, from Eqs. 3.35 to 3.37, 

= 0.02164 
2 (0.003232)(5.78)(42.27) 

36.49 
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(0.003232)^ 
" 36.49 

_ -(0.003232)(5.78) „ _ ^ _ 
- - ^ = 36.49 =-Q-00Q^^^9 

Then, from Eq. 3.40, 

<r2 = 0.02I64+(30)2(0.00008857) + (60)(-0.0005119) 

= 0.02164+0.07971-0.03071=0.07064 (units)2 

which gives tr, = 0.266 units. 

step 4. Not pertinent in this example. 

Step 5. Some liquid is now removed; the manometer reading now gives 
a value oi x= 10.00. What are the estimated weight of the liquid 
removed and its systematic-error variance? At x=10, the esti
mated weight is 

71= -0.425+(0.2466)(10) =2.041 units 

Therefore the estimated amount removed is 6.973 — 2.041 =4.932 
units. 
The variance of this quantity is given by Eq. 3.42: 

<̂ '(1/2-1/1) = (30-10)2(0.00008857) =0.03543 (units) 2 

which gives a standard deviation of 0.188 units. 

Step 6. Not pertinent in this example. 

If three transfers are involved with the following pairs of manometer 
readings: 

Before After 
transfer transfer Difference 

30 10 20 
33 7 26 
41 8 33 

then the estimate of ihe total weight of liquid removed is 

(0.2466)(20+26+33) = 19.48 units 
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The systematic-error variance associated with this total transfer weight 
is, by step 6, 

(20+26+33)2(0.00008857) =0.5528 (units) 2 

Notice that the percent standard deviation associated with the weight 
of the liquid removed is constant for a given calibration line. This quantity 
is (100)(<rJ/J)%, which is 3.82% in this example. 

3.3.10 Curvilinear Calibration, Independent Data 

The same problem as in Sec. 3.3.8 is structured here, except that the 
relation between 7 and x is now presumed to be curvilinear rather than 
linear. This complicates the problem considerably. 

There are several alternative approaches that might be used in this 
situation. One possibility is that within the range of practical interest 
the relation may be linear, or nearly so, and we can use the method of 
Sec. 3.3.8, the analysis being restricted to the region where this linear 
relation is valid. Another possibility is to apply some simple data trans
formation that will produce a linear relation and to use the methods in 
Sec. 3.3.8 on the transformed data. For example, the curvilinear relation 
7 = OAT' can be transformed to In7 = In a-\-b In x, which is now linear when 
In 7 is related to In x. Other relations can also be transformed to achieve 
a linear model. 

On occasion, however, the calibration data may have some curvature 
that no transformation can adequately remove. In this instance we can fit 
a polynomial curve of the form 

7 = (2o+aiAf+a2*2+ . . . (3.43) 

This problem becomes difficult very quickly because the calibration 
curve must be applied in reverse, i.e., by expressing AT as a function of7. It 
is difficult to handle any case beyond a quadratic, but fortunately a quad
ratic model is adequate for many calibration curves likely to be encountered. 
This quadratic model is considered here, with e,- defined as the random-
error term and generally assumed to have mean zero and variance cr,. 

yi = tL'+^'xi+y'xl+u (3.44) 

First, the estimates of the parameters and their variances and co-
variances must be found. This problem is still not very simple unless the 
Xi values are equally spaced. Fortunately, in calibration work the Ar,-
values are chosen by the experimenter, and he is free to select them so 
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that they are equally spaced. In this case the method of orthogonal poly
nomials can be applied, and this is done in this section. 

The approach is as follows: The Xi values are equally spaced, with xi 
the first point, with X2 the second, etc., and with i=\,2, . . . , n. Let the 
median x be Xm, and transform the AT'S to a's by the relation 

« * = ^ ^ ^ ^ (3.45) 

w 

where w is the constant difference between any two x values. 

Also introduce the variable 

^i = « ? - ^ ^ (3.46) 

The quadratic expression in Eq. 3.44 can now be written equivalently 
as 

7< = a+^«<+70i+«< (3.47) 

With this transformation the parameters are now easily estimated, 
and, more important, the estimates are statistically independent of one 
another, i.e., all covariances between the pairs of estimates are zero. The 
estimates and their variances are as follows: 

(3.48) A 

a. -

h-

A 

7 

n 

'•y- n 

t U^i 

E"? 
i - 1 

E vv>. 
n 

E^? 
« - i 

^'-'i 

(3.49) 

(3.50) 

(3.51) 
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E«f 
1 = 1 

(3.52) 

Ê ^ 
(3.53) 

where af is estimated by 

- ( i : V . ) ' / E ",' }/(»-3) (3.54) 

After the direct relation, Eq. 3.47, is estimated, the calibration curve 
is used in reverse to estimate x^ for a given7o. This can be done in terms of 
uo, and then xa is calculated by 

X(, = x^-\-wuo (3.55) 

Equation 3.47 can be written in its equivalent form (by dropping the 
random error term, e,, and replacing the parameters by their estimates). 

or 

7o = a+(aMo+7l «o ^ I 

7 M 5 + ^ « O + ( a —<̂ 7 —7o) = 0 (3.56) 

where c is («2—1)/12. This is a quadratic equation in Uo which yields the 
solution 

" 0 
27 

(3.57) 

I t will be obvious in application whether the + or the — sign should be 
used. The systematic-error variance induced by the estimated calibration 
curve is then found by noting that the uncertainties in a, ;8, and 7 create 
this variance. The methods of Chap. 4, and in particular Sec. 4.2.2, are used 
to find the systematic-error variance in «o, designated by c]. This is ap
proximated by 

, /5uo\2 2 /5«o\2 2 /5«o\2 „ 

•=U) ̂ 'Aw) "̂ +(̂ ) -' ^'-''^ 
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where the partial derivatives are evaluated at a, ^, and y. These partial 
derivatives are 

dud ± 1 

da \/^^—4y{a~cy-yo) 
(3.59) 

a«o_ _1_ $ 

d^ -~2y'^2yV0^-^y(a-cy^) ^ ' 

duo _ 
dy 

y[±{-2a+4:cy+2yo)/V^i-4y{a-cy-j>o)]-{-^±^$^-4y{a-cy-yo)] 

(3.61) 

The random-error variance in «o, designated by cr^, is estimated by 

al=., ^.y . -, (3.62) 

The systematic- and random-error variances in xo are found by 

multiplying al and o-̂  by w^. 

Let us summarize the results of this section. The following steps are 

performed in a curvilinear calibration situation in which a quadratic 

calibration curve is used. Steps 10 to 12 cover the case in which the general 

sum of X values is considered. 

Step 1. Choose the jr. values such that they are equally spaced when the 
calibration is performed. (z= 1, 2, . . . , n) 

Step 2. Find the median value of these Xi values. If n is odd, this median 
value, Xm, is the middle value; if n is even, the median value is 
the average of the two middle values. 

Step 3. Letting w = {xx—Xt-\) for any /, calculate a, corresponding to 
each Xx by Eq. 3.45. 

Step 4. Calculate &, corresponding to each A:, by Eq. 3.46. 

Step 5. Find the estimates for the calibration parameters by using 
Eqs. 3.48 to 3.50. 

Step 6. In application, a value is observed for Y. Call thisjvo- Find the 
corresponding value for ATQ by using Eq. 3.57 to find MQ and then 
using Eq. 3.55 to find xo. 
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Step 7. The systematic-error variance associated with MQ is given by 
Eq. 3.58, where the quantities in the equation are given in 
Eqs. 3.51 to 3.54 and Eqs. 3.59 to 3.61. 

Step 8. The systematic-error variance for ATO is found by inultiplying 
the result of step 7 hy w^. 

Step 9. The random-error variance for «o is given by Eq. 3.62, and the 
corresponding value for xo is found by multiplying the result by 

Step 10. If there are k items in a general sum, i.e., if the given data 
points arej'1,^2, . . . , j t , then the general sum of the correspond
ing x's, {ciXi-\-CiX«+ . . . -\-CkXk)=x„ is found by the formula 

X, = Xm X Ci + WU, (3.63) 
1 = 1 

where 

1=1 »=l (3.64) 
k -0 Z <̂ .+ Z <̂ .r. 

.=1 ^y 

and where 

^> = ̂ 0^-4y(a-cy-y.) (3.65) 

Step 11. The systematic-error variance of x, is w^ times the systematic 
variance of «,. The systematic-error variance of «, is given by 
Eq. 3.58 with u, replacing uo and the following partial derivatives 
defined as 

k 

y c-
du,_ ,t1 ' (3.66) 
da Ti 

k k 

d}h_ -T.ci+^0 Z t./r.] 

^̂  ^ •" 2^ ^'-''^ 

,u.jt,^^-'''^tu^-2cy-y.)/V.]-tc.V. (3^3^ 
dy 27^ 
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Step 12. The random-error variance oix, isw^ times the random variance 
of «j. The random-error variance of u, is 

'*='•,?,(?;)' (3.69) 

Example 3.Q 

Let the calibration data consist of measurements of total ^'^U made by 

a nondestructive assay instrument on 5-gal containers known to contain 

specified amounts of ^'^U. The X and T variables are defined by Z = known 

amount of ^'^U in a given container and 2^= net counts produced by the 

NDA instrument. The data are given in Table 3.18. 

TABLE 3.18 MEASUREMENTS OF TOTAL ^"U 

(Example 3.Q,) 

x„ g of ^"U j!„ net counts 

20 595 
30 867 
40 1180 
50 1389 
60 1627 
70 1813 
80 2093 

Let us apply the summary steps: 

Step 2. Xm = 50 

Step 3. w = 10 

By Eq. 3.45, 
« i=(20-50) /10 = 
«2=(30-50)/10 = 

a 3 = - l 
K4 = 0 

By Eq. 3.46, 

z ' i = ( - 3 ) 2 - 4 = 5 
„j = 4 _ 4 = 0 
» 3 = l - 4 = - 3 
„, = 0 - 4 = - 4 

- 3 « 6 = + l 
- 2 «,= + 2 

U 7 = + 3 

» 6 = - 3 
vt = 0 
vi = 5 
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Step 5. The parameters are estimated by Eqs. 3.48 to 3.50: 

^ 5954-867+ . . . +2093 
oi = —^ = 1366.29 

7 

.^(-3)(595)+ ... +(3) (2093) 

^ (-3)2+ ... +(3)^ 

= 6833/28 = 244.04 

._(5)(595) + (0)(867)+ . . . +(5) (2093) 

^ (5)2+(0)2+ ... +(5)2 

= -537/84=-6.39 

step 6. The calibration curve is now used. A net count of 1000 is ob
served for^o. What is the estimated amount of ^'^u in the con
tainer? From Eq. 3.57, 

-244.04±V'(244.04)2-4(-6.39)[1366.29-4(-6.39)-1000] 

2(-6.39) 

-244.04±263.76 
= r r = -1.543 

-12.78 

since the " + " sign need clearly be used. The corresponding 
value for the amount of "'^u, ATO, is given by Eq. 3.55, 

A: = 5 0 + 1 0 ( - 1 . 5 4 3 ) = 3 4 . 5 7 g of " ^ U 

Step 7. For c\, the systematic-error variance associated with uo, the 
variances of the parameter estimates are found from Eqs. 3.51 
to 3.54, and the partial derivatives are found in Eqs. 3.59 to 
3.61. First, <j\ is evaluated by Eq. 3.54. 

. , 14742182-[(9564)V7]-[(6833) V(28)]- [ ( -537) V84] 
, . = — ^ 

= 1024.11 

Then, 

^1=1024.11/7=146.30 

^1=1024.11/28 = 36.58 

^1=1024.11/84=12.19 
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In the evaluation of the partial derivatives, the " + " sign is used 
where " ± " appears since this was used in finding «o. Note that 

•N/;32-47(a-c7-_);o) = 263.76 

as was determined when «o was found. This radical appears in 
all the partial derivatives. Then, 

duo 1 
-+^ = —=0.0037913 
da 263.76 

5«o 1 244.04 
a/3 2(-6.39) 2(-6.39) (263.76) 

duo 

= 0.0058502 

= { (-6.39) [2(-1366.29-51.12+1000)/233.76] 
dy 

- (-244.04+263.76) l/2(-6.39)2 

= 0.0061817 

Then, a] is, from Eq. 3.58, 

a,^=10-«[(3.7913)2(146.30) + (5.8502)2(36.58) + (6.1817)2(12.19)] 

= 0.003821 

Step 8. In terms of grams squared of ^^^u^ the systematic-error variance 
is 

(10)2(0.003821) =0.3821 g^ of ^'"\J 

Step 9. ^l is, from Eq. 3.62, 

ff^= 1024.11/(263.76)2=0.01472 

which corresponds to 1.472 g2 of 23 5u after it is multiplied by w^. 
The total variance associated with the estimated amount of 2'5U 
for the container in question is 

0.3821 + 1.472=1.854 g2 of 236u 

which gives a standard deviation of 1.36 g of ^^^U or 3.9% of 
the estimated amount in this example. 

Two Additional Containers. Suppose that two additional containers are 
counted yielding counts of 800 and 1800. Steps 10 to 12 are followed to 
estimate the total amount of 2say j ^ the three cans and its systematic- and 
random-error variances. 
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step 10. Use71= 1000, j2 = 800, and >'3 = 1800. Then, by Eq. 3.65, 

r i = V(244.04)2-(4)(-6.39)[1366.29-4(-6.39)-1000] 
= 263.76 

r2 = 273.28 

r3 = 221.64 

Thus, by Eq. 3.64, with all the Ci=l, 

-3(244.04) + (263.76+273.28+221.64) 

" ' = 2^^ :39) = - 2 - ° ' 

and, by Eq. 3.63, 

.«:, = (3)(50) + (10)(-2.08) = 129.2 g of 236U 

Step 11. The partial derivatives are evaluated from Eqs. 3.66 to 3.68: 

du, 

da 

Us / \ 1 1 \ 
- = - ( -\ h I = -0.01196 
a V263.76 273.28 221.64/ 

dus -3+(244.04) (0.01196) 
-X- = ^^ ~ = 0.00636 
a/3 -12.78 

"417.41 . 617.41 382.59" 
3(244.04) + 12.78 

du. .263.76 273.28 221.64. 
-758.68 

37 81.664 
= 0.00585 

Then the systematic-error variance of a, is, by Eq. 3.58, 

0-2= (0.01196)2(146.30) + (0.00636)2(36.58) + (0.00585) 2(12.19) 

= 0.02282 

The systematic-error variance of A:, is 102 times this value, or 
2.282 g2 of 235U, which gives a standard deviation of 1.51 g of 
2'^U. 

Step 12. The random-error variance of u, is, by Eq. 3.69 

J 1 1 
.(263.76) 2"^ (273.28) 2"^ (221.64) 2 ( 1 0 2 4 . 1 1 ) [ p ; ^ , + 7 ; ; ^ ^ ^ ^ , + 7 ; ^ ; ; ; ^ , [ = 0.04928 

The random-error variance of AT, is then 4.928 g2 of '^^^XJ, which 
gives a standard deviation of 2.22 g of ^^^U. 



Chapter 4 

MEAN AND VARIANCE OF FUNCTIONS OF 
RANDOM VARIABLES 

OVERVIEW 

In Chapter 2 the concept of a random variable was introduced, along 
with its probability density function. I t was indicated that the moments 
provide considerable information about the density function. In par
ticular, if a random variable has a normal probability density function, 
the first moment about the origin (the mean) and the second moment about 
the mean (the variance) completely specify this function. Even for a non-
normal density function, knowledge of the mean and the variance provide 
considerable information about the central tendency and spread of the 
random variable in question, and in many applications higher ordered 
moments are not required. 

In most applications of interest in nuclear materials control, the 
random variable is a function of other random variables, and its density 
function is required. As just pointed out, the mean and the variance often 
provide satisfactory information about this function. Thus it is important 
to be able to find the mean and the variance for a random variable that 
is a given function of other random variables. 

Commonly the random variable in question is a linear combination 
of other random variables; this case is treated in Sec. 4.1. Other, more 
general, functions are considered in Sec. 4.2. In both instances a knowledge 
of the moments for the original random variable is required. In practice 
these means and variances may not be known quantities but rather estimates 
of them. The problem of accounting for this lack of knowledge about the 
parameters is treated in Sec. 4.3. 

4.1 MEAN AND VARIANCE FOR LINEAR 
COMBINATIONS 

4.1.1 Problem and Assumptions 

A random variable is a known linear combination, or an algebraic 
sum, of other random variables. The problem is to find its mean and vari-

145 
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ance. Assume that the means and variances of the random variables com
prising the linear combination and the covariances between pairs of them 
are known and finite. Contrary to what is sometimes thought, it is not neces
sary to assume that the random variables in question are normally 
distributed. 

4.1.2 Solution 

Let the random variables xi, xi, . . . , Xn have means /Ji, yU2, . . . , Hn 
and variances CTJ, (T\, . . . , er^. Let the covariance between Xt and Xj be a,, 
and the linear combination of interest be 

x = aiXi+a2X2+ . . . +a„Xn (4.1) 

where the a's are arbitrary constants. Then the mean of x, n^, is 

n 

;Ux = aiMi+a2M2+ . . . +a7iMn= Z ' ^ J M I (4-2) 
t = 1 

The variance of A:, O'^, is 

(Tl = a\a\-{-al<Tl+ . . . -\-al<Tl-]r2aiai.(Tn+ . . . +2aia„(Tin 
+ 2a2a3C23+ . . • +2a2anC2n 

+ ... + 

-{-2an-ianCrn-l,n 
n " " ' 

= Z a , V H 2 Z a,a,<j„ (4.3) 
' = > l<j 

When all covariances are zero, the second summation in Eq. 4.3 is 
zero, and the variance of the sum is equal to the sum of the variances. In 
this situation, the random variables in the linear combination are said to 
be independently distributed. 

Equations 4.2 and 4.3 give the mean and the variance of x but not 
its density function. If all ATJ'S in the summation are independently normally 
distributed, then x will also be normally distributed. Furthermore, as a 
result of the important central-limit theorem, the density function for the 
sum of a sufficient number of random variables is approximately normal 
regardless of the density functions for the variables in the sum. The defi
nition of what constitutes a sufficient number of variables depends on 
several factors, e.g., the shapes of the density functions of the original vari
ables. Happily, in most nuclear materials control applications in which a 
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given random variable of interest is the sum of other random variables, 
the normal density function is an adequate approximation to the density 
function for the sum in question. 

4.1.3 Examples 

Example 4.A 

The total weight of a fuel rod is the sum of the cladding, end-plug, 
spring, and fuel weights. If the means and variances of the component 
weights are as listed in Table 4.1, find the mean and the variance for the 
total weight of the fuel rod, assuming that all covariances are zero. 

TABLE 4.1 WEIGHTS OF COMPONENTS OF FUEL ROD (GRAMS) 

C o m p o n e n t 

C ladd ing 
P lug 

Spr ing 
Fuel 

M e a n weight 

Mi= 554 89 

M2= 10 64 

M3= lb 07 
M 4 = 1 8 1 4 . 8 5 

S t a n d a r d 

devia t ion 

o- ,=4 10 

<r2 = 0 04 

CT3 = 0 06 
<rj=2 45 

V a r i a n c e 

o-; = 16 8100 

al= 0 . 0 0 1 6 
<r^= 0 0036 

c\= 6 0025 

If AT in Eq. 4.1 is the weight of the fuel rod and the Ar,'s are the weights 
of the component parts, the mean of AT, from Eq. 4.2, is 

M. = 554.89+10.64+16.07+1814.85 = 2396.45 g 

From Eq. 4.3, since all a,= 1, the variance of AT is simply the sum of the vari
ances of the ATi's. 

0-;= 16.8100+0.0016 + 0.0036 + 6.0025 = 22.8177 g2 

The standard deviation is 

(7x = v ' 22 .8177=4 .78g 

Note that the variances for the plug and spring weights are negligible 
contributors to the variance of the total rod weight. 

Example 4.B 

Of a large number of containers in inventory, 3 0 % weigh 10 units, 
2 0 % weigh 15 units, 15% weigh 20 units, and 3 5 % weigh 30 units. If five 
containers are selected at random: 

1. What is the expected total weight of the five containers? 
2. What is the variance of this total weight? 
3. What is the variance of the average weight? 
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Let the observed weight for the ?th container in the sample be x„ and 
let X be the sum of the five weights. To find MI and al, we must first find 
/i, and 0-, for any i. (Assume that the random variables in the sum are 
independently distributed so that <;•„ is zero for all i andj.) These values 
were found in one example in Sec. 2.3 to be /i,= 19.5 units and erf = 69.75. 
Then, in answer to question 1, from Eq. 4.2, 

Mx= 19.5+19.5+19.5+19.5+19.5 = 97.5 units 

In answer to question 2, from Eq. 4.3, 

(7̂  = 69.75+69.75+69.75+69.75+69.75 = 348.75 units2 

<T., = \/348.75 = 18.67 units 

In answer to question 3, since the average weight is A:/5, the linear 
combination is 

X 
~ = 0.2{XI + X2 + Xi+Xi + Xi) 
5 

i.e., all a,'s in Eq. 4.1 are equal to 0.2. From Eq. 4.3, the variance for the 
average weight, o-j, is 

<r|= (0.2)2(69.75+ . . . +69.75) = 13.95 units2 
V. J 

V 

5 terms 

That (TI is one-fifth of erf illustrates that the variance of an average 
for n items, each having the same variance, a\, is al/n, whereas the standard 
deviation of the average is (Ti/\/n. Also, question 2 illustrates that the 
variance of the tptal of the observations for these n items is nc\ and the 
standard deviation is \/«a-,. 

Example 4.C 

Successive MUF's (materials unaccounted for) are correlated since 
the ending inventory for one time period is identically the beginning 
inventory for the next time period. If the ending inventory is in error on 
the high side for period i, the MUF for that period tends to be correspond
ingly low, and the MUF for time period «'+1 tends to be high. For a given 
material balance area, let 

j ' . = ending inventory for period ;, or beginning inventory for period 
e+1 

Arj= (inputs —outputs) for period i (Inputs are commonly called 
receipts, and outputs include shipments and measured discards.) 

Then, for the first three time periods, the successive MUF's, M„ can 
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be written 

Mi=y(,+xi—yi 

M2=yi+x2—y2 

M3-y2+X3—y3 

Assume that all the inventories have the same mean, fiy, and the same 
variance, o-̂ , and that all (inputs —outputs) have the same mean, /Ui, and 
the same variance, <TI. Further, assume that all covariances between and 
among the x, andjv, are zero. Let M be the sum of the A/,'s (i.e., the cumu
lative M U F ) . Then, from Eq. 4.3, 

''•j\f = <''jl/l~t~<''il/2 + '''M3"l~2o-j\/lJl/2+2a-ji/jji/3 + 2cril/2A/3 

where (rM,M, denotes the covariance between M U F ' s for periods i and j . 
Apply Eq. 4.3 to find the variance of an individual M U F : 

'^L = 4+<^l+<^l = 2<^«+'̂ ' for all i 

Since the covariance arises in this example because the ending in
ventory for one period is identically the beginning inventory for the next, 
<^MiM] is zero unless j = ; ' + 1 . F o r 7 = ; + l , the covariance is found from 
Eq. 2.54; note that E(M,) =Hy+Hi — fiy, or simply ixx, for all i. 

a MxMr+\ = E{M ,M ^+l) — E{M,) E{M ,+l) 

= E[{y^_x+x^—yi){yi-\-x^+x—yx+i)] — til 

= Eiy,^iyt+y,^iX,+i—y,-iy,+i+x,y,+XtXt+i — Xty,+i 
—yl—ytx,+i+y,y,+i)—nl 

We find the expected value of this algebraic sum by finding the ex
pected value of each term in the sum and adding them. In finding the 
expected value of each term, we use the fact that, if two random variables 
are independently distributed, the expected value of their product is equal 
to the product of their expected values. This follows immediately from the 
definitive of a covariance in Eq. 2.54, by letting the covariance be zero, 
as is the case when two variables are independently distributed. 

<7 M,Mi+l = lil + l^yHx — fiy + tJ-xlJ.y + fil — IJtxI^y — Eiy'') — llyll^ + Hy — Hl 

= -[£(;;2)_^2j 

2 

by Eq. 2.27. 
Thus, for the simple model used in this example, the covariance 

between successive M U F ' s is the negative of the variance of the inventory. 
Therefore the variance of the cumulative M U F (Af = M i + M 2 + A / 3 ) is, 
by Eq. 4.3, three times the variance of Af, plus twice the covariance be-
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tween Mi and M2 plus twice the covariance between M2 and M3 (the 
covariance between Mi and Ms is zero). 

<rĵ  = 3(2(r2+,rJ)+2(-<r2) + 2 ( - 0 = 2 < r ^ + 3<rf 

Note in passing that the same result can be found by summing the 
three Mj's directly before finding the variance; i.e., M can be written 

M=yo+xi+X2+X3—y3 

and its variance follows immediately from Eq. 4.3, with all the covariances 
being zero. This approach was not used in this example, because the ex
ample is intended to illustrate how covariances enter into the formula for 
the variance of a linear combination. 

Example 4.D 

Equations 2.57 to 2.59 are derived by using Eqs. 4.2 and 4.3. 
Equation 2.57 indicates that the expected value of the sample mean, 

X, is fi. To prove this, write 

- A-I + A : 2 + . . . +Xn ^1 , •<'2 , , X„ 
x= • =—H h . . . +— 

n n n n 

Then, applying Eq. 4.2 directly with a , = l /« and Hi = n gives 

E{x)= 2 . ^ a . M t = " + ~ + • • . + - = Ai 
,=1 n n n 

which completes the proof. 
Equation 2.58 indicates that the variance of .*• is a'^/n when the sample 

is from a population of infinite size. As a consequence of the infinite-
population-size assumption, the covariance between x, and Xj, a-,,, is zero 
for all i and J. Then Eq. 4.3 is applied (again note that a , = l /« for all t 
and a-f = a^ for all i): 

^ " ^ ^ <r2 <7̂  <r2 <72 
<^^— z^a a,— „ + , + . . . + , = 

,=1 «2 „2 „2 „ 
which completes the proof. 

When the population is of finite size, Eq. 2.59 indicates that this vari
ance, <r2/«, must be multiplied by a correction factor, [{JV—n)/{N—l)]. 
This occurs because, for a finite population, <r,j is not zero but is rather 
— (72/(JV—1). Then, applying Eq. 4.3, in which the first summation was 
already shown to be <T^/n, yields 

n •=• n' 
t<: 

There are [n(«—l)]/2 terms in this second summation. Each term is 
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— <r2/[«2(jV—I)j. Thus, when multiplied by 2, the summation is 

_n{n-\W _{n~\W 
«2(JV-1)~ n{N-\) 

Therefore 

2 0-2 {n—\)a" 

''^"7~n(JV-l)' 

<72/ « - l \ 

0-2 j V - « 

~ n N-l 

which completes the proof. 

4.1.4 Basis 

Equation 4.2 follows directly from the definition of a mean in Eq. 2.24. 
Equation 4.3 is derived for the simple case of n = 2. The generalization to n 
random variables follows directly from this derivation. 

If A; = aiAri+a2^2, then, from Eq. 2.27, the variance of A; is 

cl = E{x^)-t,l 

= E{alxl-\-alxl+2aiaiXiX2) — {a\iJ.\+aliil+2aia2iJ.iH2) 

Since the expected value of a sum is the sum of the expected values, 
the first term can be paired with the fourth, the second with the fifth, and 
the third with the sixth. Then 

<jl = al[E{x';)-y.\]+al[E{x''^-y.\] + 2am[E{xiX2)-yiiy.2\ 
2 2 I 2 2 I o 

= diC i+a^^T ^ + 2.aia2(Ti2 

where the last step follows from the definition of a variance in Eq. 2.27 
and of a covariance in Eq. 2.54. 

4.2 MEAN AND VARIANCE FOR GENERAL FUNCTIONS 

4.2.1 Problem and Assumptions 

In this section a given random variable of interest is an arbitrary 
function of the other random variables. The problem is to find its mean 
and variance. The following assumptions are made; 

1. The random variables have finite means and variances. 
2. The standard deviations are small relative to the means. (See the 

discussion following Eq. 4.6 on this point.) 
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As was true for the linear case in Sec. 4.1, it is not necessary to assume 
that the random variables are normally distributed, although this is some
times erroneously stated to be a requirement. 

4.2.2 Solution 

Let the random variables xi, Xi, . . . , x„ have means MII M2, • • . , Mn 
and variances (TJ, (r|, . . . , a-'. Let the covariance between Xi and Xj be 
cry, and denote the arbitrary function by 

X = (j){xi, X2, • . . , Xn) (4.4) 

where 0 will be defined specifically in any given application. 
Then the mean of A;, HX, is approximated by 

AIX^<^(MI, . • . , Mn) (4.5) 

That is, as an approximation the mean of a function of random vari
ables is equal to the function evaluated at the means. 

The variance of x, a]., is approximated by 

\dxi)\dx'i) ' ' • • • \dxj\dxn/ 

+ ... + 

\dXn-J\dXn/ "^''" 

In Eq. 4.6 all the partial derivatives must be evaluated at the mean values 
of the random variables. 

The adequacy of these approximations depends on a number of 
factors, which interact in their importance. For example, assumption 2 
in Sec. 4.2.1 requires that the random variables in the function have small 
standard deviations relative to their means. How small is "small" depends 
on the importance of each particular random variable as it affects the 
random variable of interest. Experience shows that, in most applications 
of primary interest in the control of nuclear materials, Eqs. 4.5 and 4.6 
provide satisfactory approximations. Further, the random variables of 
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interest may generally be assumed to be normally distributed with reason
able validity. In spite of this assurance, the user is cautioned to be aware 
that Eqs. 4.5 and 4.6 are only approximations. If there is some concern in 
a given application that the approximations may not be valid, an indication 
is given in Sec. 4.2.4 how a judgment can be made as to their validity. 

4.2.3 Examples 

Example 4.E 

Reference is made to Eq. 3.26, the derivation of which requires 
application of Eq. 4.6. The calibration equation for a given value of j),70, 
was of the form 

xu = a'+fi'yo 

where 

a = —~ 

and 

The estimates a and ff are derived from the calibration data and have 
variances and covariances given by 

c r | = i ? Z -n 

Cfafi = —Rx 

The problem is to find the variance of ATO by using this information. 
We apply Eq. 4.6; this requires taking the partial derivatives of the function 
Afo with respect to a and ^. [These partial derivatives are to be evaluated at 
the means of a and /§. Since these means, being the true values of the a and 
/3 parameters, are not known, their best estimates are used (i.e., a and 0).] 
First, Xo is written as a function of a and ^ rather than of a and j8'. 

_—a Vo_ a+ya ya~a 

^"-T+r~ ^ " h 
The partial derivatives are 

3£o_ 2 
da~ 3 

dxo yo~a 



154 MEAN AND VARIANCE OF RANDOM-VARIABLE FUNCTIONS 

Equation 4.6 can now be applied to give the variance of xo, denoted 
by cr.2 in Eq. 3.26: 

2 f^'^oY 2 r / ^ M " 2 , o/^^A/^^" 

R T.xl R(yo-ay 2(yo-&)x 

/?{( £ xfA) + [ ( ; ; o - a ) 2 / ^ ^ ] - [ 2 ( ^ o - a ) x / ^ ] | 

which is Eq. 3.26 and completes the exercise. 

Example 4.F 

The amount of ^'^U in a container of UO2 powder is measured by 
determining the net weight of the powder and drawing a sample of powder 
for analysis of percent uranium and percent ^^^U. The random variables 
are: 

w = net weight of UO2 powder, with mean Hu, and measurement 
variance tr̂  

« = ratio of uranium to UO2 (proportion of uranium), with mean /i„ 
and measurement variance erf 

i; = ratio of '^^^U to uranium, with mean fi, and measurement variance 

A: = estimated amount of •'̂ ^U in the container, with mean Hx and 
variance due to measurement of cr] 

The function <̂  of Eq. 4.4 is 

x = (t>{w, u, v) =wuv 

Assume the following parameter values: 

M̂  = 2 0 . 0 k g 0-̂  = 0.05 

M„= 0.876 (T„ = 0.001 

/.!,= 0.0425 (r„ = 0.0002 

and further assume that all covariances are zero. Then the mean of x is 
approximated by Eq. 4.5: 

M,^(20.0) (0.876) (0.0425);^0.7446 kg ^^'U 
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or 
2 2 2 2 

t r , <j,„ tTu tr 
2 " ^ 2 1 2 1 2 

MI M«, M„ M, 

When writing the variance in this form, we see that the variance of a 
product of random variables on a relative basis is equal to the sum of the 
variances of the random variables, where these are also expressed on 
relative bases. If we replace /if with its approximate equivalent, /li^^f/u,, 
we see that a'^ reduces to exactly the same result as in example 4.F. 

4.2.4 Basis 

Formulas 4.5 and 4.6 are derived by approximating the function </> 
by the linear terms of a Taylor's series expansion around the mean values 
of the random variables. (The Taylor's series expansion is given in most 
calculus textbooks.) Using the same notation as in Sec. 4.2.2, we can 
approximate 0 by 

A d^ 
4>{X[, Xl, . . . , Xr,)^4>{tll, M2, . . . , Mr.)+ 2-, ^ (*. —Mi) (4.7) 

,=1 axi 

Since E{x,) is ji,, by definition, when the expected value of </> is found 
by using Eq. 4.7, all terms in the summation become zero, and only 
0(MI, M2, . • • , Mn) is left. This is the basis for Eq. 4.5. The variance of 4> 
is also found quite easily by noting that the Taylor's series approximation 
in Eq 4.7 is linear in the random variables. This permits direct application 
of Eq. 4.3 to give Eq. 4.6. 

The adequacy of approximations 4.5 and 4.6 depends on how closely 
the summed linear terms of the Taylor's series expansion approximates 
the exact function, </>, over the range of the variables in question. As indi
cated in Sec. 4.2.2, this depends on a number of factors, but, when the 
standard deviations of the landom variables are small relative to the means, 
the approximation is quite satisfactory. 

In most applications to problems in nuclear materials control, there 
IS little need to be concerned about the adequacy of these approximations. 
Quite often only estimated values of the parameters are available anyway, 
and the eirors introduced by using these estimates normally overshadow 
the errors that might be introduced bv an inadequate approximation of 
the function </>. Even if this were not the case, approximate results are 
often in ver\ close agreement with exact results. 

Nevertheless, in some instance the user may be concerned about the 
validity of applying Eqs. 4.5 and 4.6. In this case we can obtain at least a 
qualitative check on the adequacy of the approximation by comparing 
values of the exact function evaluated at selected points with those given by 
the Taylor's series expansion. 
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To find crl, we evaluate the partial derivatives at the mean values of 
the random variables. 

d<b 
•:^ = uv= (0.876) (0.0425) = 0.03723 
dw 

dd> 
- ^ = i<;j, = (20.0) (0.0425) =0.850 

dip 
- ^ = a;M=(20.0)(0.876) = 17.52 
dv 

Then, from Eq. 4.6, 

<TI^ (0.03723) 2(0.05) 2+ (0.850) 2(0.001) 2+ (17.52) 2(0.0002) 2 

^10-8(3 .465+0.723+12.278)?^16.466X 10-8 kg2 235U 

(Tx%Vl6.466X10-«;^0.0041 kg 2 3i.u 

Example 4.G 

An alternative approach can be used for the situation in example 4.F: 
Write the relation in its equivalent form. In Ar = ln w + l n M+ln v, which 
then becomes a linear combination. This permits us to apply the methods 
of Sec. 4 .1. The function is linear in the logarithms, however. The means 
and variances of the logarithmically transformed random variables must 
be found first by the methods of Eqs. 4.5 and 4.6. 

For any arbitrary random variable y, with mean /x̂  and variance 
a I, we can apply Eqs. 4.5 and 4.6 to give the approximations 

E{\ny)^ln txy 

which, when we evaluate at the mean of j , gives 

„2 

This result is used in finding the mean and variance of In x. The 
mean is found by applying Eq. 4.2: 

£( ln A:) = £'(ln w) + £( ln «) + £( ln v) 
or 

In M x ^ l n Mw + ln M u + l n AI„ 

According to the definition of a logarithm, this is equivalent to /iî yu^yUuMo 
as in example 4.F. The variance of In x is found by applying Eq. 4.3: 

"^In x — 0-]n K'-r<'^ln u + crin i 
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To illustrate, in example 4.F a set of values for the parameters that 
could reasonably occur is 

w = 20.1 « = 0.878 j; = 0.0429 

(These values of w, u, and v are all two standard deviations away from 
their respective means. To choose values much further removed from their 
means is not reasonable, because such a set of values would be unlikely to 
occur.) The exact value for x for this set of values is 

X = (20.1) (0.878) (0.0429) = 0.75709 

The corresponding value is found by the Taylor's series approxima
tion by using the values for the partial derivatives found for example 4.F. 

dx dx dx 
Ar̂ Mu.Mt<Mr + 7 ~ ( » — M t » ) + ^ ( " —Mu) + r - ( l ' —M.) dw du dv 

^ (20.0) (0.0876) (0.0425) + (0.03 723) (20.1 - 20.0) 
+ (0.850)(0.878-0.876) + (17.52)(0.0429-0.0425) 

= 0.744600+0.003723 + 0.001700 + 0.007008=0.75703 

Since this value agrees quite well with the exact value of 0.75709, 
reassurance is provided that the approximation is adequate in this instance. 

4.3 USE OF ESTIMATED MEANS AND VARIANCES 

4.3.1 Problem and Assumptions 

Thus far in this chajjtcr the means and variances of random variables 
that are functions of other random variables have ijeen expressed as func
tions of known parameter values. In practical application the means, 
variances, and covariances involved are often estimated values rather thau 
known values. In this section we consider the eff"ect on the analysis of 
using estimated values rather than known values. It is assumed that all the 
variances are finite, that estimates of these quantities are given, along with 
their associated degrees of freedom, and that the covariances are all zero. 
Further, the random variables are now required to Ije normally distributed; 
this was not a required assumption in previous discussions. 

The techniques for finding the mean and the variance for the random 
variable in question are identical to those given in the previous sections. 
The only difference is that now the known means and variances are re
placed by estimates. 

If the analysis were not carried on beyond this point (i.e., if only 
estimates of the means and variances are required), there would l:)c no need 
to carry this discussion any further. However, the resulting parameter esti-
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mates are often used to construct probability intervals. As discussed in 
Sec 2 7 2(a), knowledge of the degrees of freedom associated with the 
estimate of the variance is required * The determination of these degrees 
of freedom is the specific problem considered here, f 

4.3.2 Solution 

The solution is given in general terms. Let an estimated variance, 
si, be expressed as an algebraic sum of ^ independently distributed sample 
variances, si, jf, . . . , si, where s] is based on n, degrees of freedom. Express 
this sum as 

So=aisl+a2sl+ , . . +ai,sl (4.8) 

Then the approximate degrees of freedom for si, no, is calculated by 

"'^ialst/ni) + ialst/n2)+ . . . +{a',s^/m) ^"^'^^ 

4.3.3 Examples 

Example 4.H 

In example 4.A assume that the standard deviations given, cr,, are 
replaced by estimated values, s,, based on n, degrees of freedom. Given 
the data in Table 4.2, how many degrees of freedom are associated with 

- J ? 

TABLE 4.2 ESTIMATED STANDARD DEVIAFIONS 
AND DEGREES OF FREEDOM 

si=5 08 ni = 6 
J2 = 0 032 n2 = 50 
Js = 0.083 r!3 = 30 
s, = 3 11 n4 = 100* 

•Before you tontinite with the exampit, what is your guess as to the answer' 

The solution for no is given by Eqs 4.8 and 4.9 (each a ,= 1) since in 
this problem the variance of x, the total weight of the fuel rod, is simply 
the sum of the variances of the component parts. 

„̂2 = (5.08) 2+ (0.032) 2+ (0.083) 2+ (3.11) 2 = 35.4864 

• I n particular, the problem discussed here reduces to case 2 of Set 2 7 2(a) , whtrt.is 
previously case 1 of Sec 2 7 2(a) was implied. 

t The Overview to Chap 5 emphasizes the practical necessity of taking into account the 
fact that parameters may be estimated rather than known in a given situation 
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• 

Then 
(35.4864)2 

""•"[(5.08)V6]+[(0.032)V50]+[(0.083)V30]+[(3.11)V100] 

1259.28 
= 111.00+0.00+0.00+0.94 = ^ • -2 ^'^'''' °f f'-̂ ^̂ "'" 

Note that the number of degrees of freedom is heavily dominated by 
the small number of degrees of freedom associated with si and that si 
is the dominant term in the calculation of si, accounting for about 73% 
of the total variance. 

Example 4.1 

In example 4.F assume that the standard deviations are replaced by 
the estimated values given in Table 4.3. How many degrees of freedom are 
associated with cr|? (Again, what is your guess?) 

TABLE 4.3 SAMPLE MEANS, STANDARD DEVATIONS, 
AND DEGREES OF FREEDOM 

a) = 20.02 
u= 0.8758 
v= 0.0428 

j„ = 0.048 
j„ = 0.0017 
j, = 0.00014 

n„=15 
«,. = 24 
n.=4 

To find si, we use Eq. 4.6 in the form of Eq. 4.8. It is necessary to use 
the sample means because the population means are not known. Replacing 
the population means by sample means does not affect the calculation of 
the degrees of freedom for the variance, except to the extent that it affects 
the values of the a,. The a, values are calculated from the partial derivatives 
evaluated at the observed sample means rather than the population means 
as follows: 

dd) 
r ^ = Sii = (0.8758) (0.0428) =0.03748 
aw 
d<t> 
-i- = wv= (20.02) (0.0428) = 0.8569 
ou 
dd) 
-7^ = ^ = (20.02)(0.8758) = 17.534 
ov 

Then, from Eq. 4.6, when we replace parameters by their estimates (in 
the notation of Eq. 4.8, ci is 0.001405, .fi is 0.048, 02 is 0.7343, etc.), 

^2^(0.03748) 2(0.048) 2+ (0.8569) 2(0.0017) 2+ (17.534) 2(0.00014) 2 

;=K0.001405(0.048) 2+0.7343(0.0017) 2+307.44(0.00014) 2 

;^(3.24+2.12 + 6.03)X10-«;5il 1.39X10-' 
The corresponding value was 16.47X10-° in example 4.F. 
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The number of degrees of freedom for s^ is calculated from Eq. 4.9: 

(11.39)2xi0->2 
rix 10-12J [(0.001405)2(48) V15]+[(0.7343)2(1.7) V24]+[(307.44)2(0.14)74]) 

129.73 

"0.6986+0.1876+9.0776 

Example 4.J 

'13.0 degrees of freedom 

One common situation in which we may be required to calculate the 
degrees of freedom using Eq. 4.9 is that in which variances are estimated 
from an analysis-of-variance table. Consider the following data. 

Six lots of UO2 powder are characterized for percent uranium by 
sampling from five containers for each lot, a total of 30 observations. The 
resulting one-way analysis-of-variance table (see Sec. 3.3.4) provides 
estimates of the "within" (o-„,) and "between" (a-l) lot variance com
ponents as follows: 

1. Si estimates (o-̂  + 5(rj) based on 5 degrees of freedom (its value is 
0.009231). 

2. ^2 estimates (crj) based on 24 degrees of freedom (its value is 
0.000885). 

Assume that the variance of interest is that associated with the percent 
uranium of a sample of powder drawn from a container selected at random 
from a randomly selected lot. This variance is (o-„+(rj), which is estimated 
by (o-^+S-^). From these data, 

7,2 = 0.000885 

0.009231-0.000885 
0'6 = •2^ — =0.001669 

5 

'?^'+^? = 0.002554 

Note that (o-u,+S-j) can be written in the form of Eq. 4.8: 

2 2 

a^+cl = sl+'-^ = 0.2sl+0.8sl 

Then Eq. 4.9 can be applied directly to find no, the degrees of freedom 
associated with (o-„+o-j). Here fli is 0.2 and 02 is 0.8. 

(0.002554) 2 
no [(0.2) 2(0.009231)2/5]+ [(0.8) 2(0.000885) 2/24] 

6.5229X10-" 

10-8(0.0209+0.6817) 
= 9.3 degrees of freedom 

# 
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4.3.4 Basis 

Formula 4.9 is commonly referred to as Satterthwaite's formula for 
degrees of freedom. With the notation of Eq. 4.8, it is derived by noting 
that, when sampling is from a normal distribution, the variance of a sample 
variance, s^, is 2a\/ni, where <j^ is the corresponding population variance 
(from Eq. 2.64.). When the variances of both sides of Eq. 4.8 are equated, 
the result is 

2at_2aht^2ay,^ ^2a^ 
no ni n2 ' ' ' nu 

Solving this for no gives the solution of Eq. 4.9 when the o-.'s are re
placed by the sis: 

{ayi/ni) + {ayJn2)+ . . . +{alat/m) 





Chapter 5 

LIMITS OF ERROR ON INDIVIDUAL ITEMS 

OVERVIEW 

In this chapter the results of Chaps. 3 and 4 are applied to determine the 
limits of error for the special nuclear material (SNM) content of an indi
vidual item of SNM-bearing material. The term "item" applies to a given 
container (e.g., a cylinder of UFe, a can of PUO2 powder, a fuel rod, a 
process vessel, or a barrel of solid waste) or to a discrete, uncontained quan
tity, such as a transfer volume in a reprocessing plant. The SNM in question 
may be total uranium, total plutonium, total ^^^V, etc. In Chap. 6 the 
results are extended to include the total SNM content for several items 
and, more generally, the algebraic sum of these SNM values. 

In the vernacular of nuclear materials control practitioners, the term 
"limits of error" (LE) is defined to mean the end points of a 95% confidence 
interval on a population mean. Here the population mean in question is 
the true amount of SNM for the item. As discussed in Sec. 2.7.2, the method 
of construction of the confidence interval depends on the degrees of freedom 
associated with the estimate of the variance used in the construction. Since 
the variance in question is often comprised of several variances, all of which 
may be based on different numbers of degrees of freedom, an exact calcula
tion of the limits of error based on the appropriately determined number of 
degrees of freedom (see Sec. 4.3) can be laborious. In many situations 
it is questionable whether such exactness is required. 

In routine applications the variances used in the calculation are 
commonly treated like known constants rather than estimated parameters 
to permit calculation of limits of error without an undue ainount of effort. 
In this case, assuming that the measured SNM content is a normally 
distributed random variable, the limits of error can be found by adding to 
or subtracting from the estimated amount 1.96 times the standard deviation. 
(The 1.96 factor comes from Appendix A. It is the ^p value that is exceeded 
by the standardized normal random variable with a probability of 0.025. 
For a two-sided 95% confidence interval, there is 0.025 probability in 
each tail.) The calculation is often simplified further by use of the factor 2 
rather than 1.96. It is also common practice to define the limit of error as 
being twice the standard deviation, thereby denoting half the length of 

163 
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the interval rather than the end points. This causes no confusion in com
munication. 

The use of the factor 1.96 (or 2) to transform a standard deviation to 
LE is defensible on two important grounds. First, it greatly simplifies the 
calculations; of course, this in itself is scarcely a defensible argument. A 
second, more compelling motivation is the argument that input variances 
are often based, at least in part, on data from years of experience, and, even 
though data are continually revised and updated to reflect current experi
ence, they may be regarded more as known constants than as estimated 
quantities. 

Nevertheless, a situation may arise in which a given variance should 
be regarded as an estimate rather than a known quantity. This occurs when 
we have limited knowledge about the sizes of one or more important 
measurement error variance. By applying the results of Sec. 4.3, we can 
calculate the appropriate number of degrees of freedom required in such an 
instance and can construct the confidence interval by the methods of 
Sec. 2.7.2. 

With these thoughts in mind and without loss of generality, we can 
focus our attention in this chapter on finding the variance and standard 
deviation, rather than the limits of error, for the SNM in question. In this 
approach the input parameters can be regarded as known quantities and 
can be replaced by their estimates as necessary in application. The method 
of conversion from standard deviation to limits of error is then left open. 
Technical bases were provided in Sec. 2.7.2 to accomplish this conversion, 
depending on whether the standard deviations in question are regarded as 
estimates or as known parameters. 

The specific aim of this chapter is to provide methods for combining 
the effects of errors resulting from bulk determination, sampling, and 
analysis to produce the variance of the reported amount of SNM in a 
given container. Thus this discussion is restricted to the wet-chemistry 
approach to determining the amount of SNM in a container. The alternate 
use of nondestructive assay methods is not overlooked, however, and the 
methods of Sees. 3.3.8 and 3.3.10 are applicable in this instance. 

Bulk determination refers to determining the net weight or volume of 
the SNM-bearing material in a given container. In most applications net 
weight is measured directly on a scale, with the net weight of the contents 
being the difference between the observed gross weight and the tare weight 
of the container. The volume of contents in a process vessel can be measured 
by alternate approaches, e.g., by the use of a weigh tank together with a 
specific gravity determination or by the board manometer-specific gravity 
approach. Alternately, specific gravity determination can be avoided by 
performing the analysis on the basis of percent element by weight rather 
than percent element by volume. 
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The preceding paragraph illustrates that a reported bulk determina
tion result is affected by several error sources, depending on the measure
ment methods and procedures in use. The same is true of an analytical 
determination, in which case even more primary-error sources can be 
identified. Identifying and evaluating all of them in routine practical 
applications is an impossible task and is not really considered necessary. 
Here we will characterize each measurement by a single random-error 
component made up of all sources, identified or not, which contribute to 
the total random error, by a single short-term systematic-error com
ponent, and by a single long-term systematic-error component, where 
the systematic errors may also include contributions from several error 
sources. (The distinction between the short-term systematic-error compo
nent and the long-term component is described in detail in Sec. 3.1.) 

We are in no way limited by defining the error sources this way. Thus, 
if we wish, when treating the random-error component for a net volume 
determination of the contents of a process vessel, for example, we can 
separately identify the component resulting from the manometer reading 
and that from the specific gravity determination rather than evaluating 
their combined effects. This introduces no additional complication con
ceptually but does, of course, require an additional step in application. 

Regardless of how detailed the identification and evaluation of primary 

error sources is, it is emphasized that evaluation of each given error com

ponent must include the effects of all potential sources that contribute to 

it. For example, if several analysts routinely perform a given analysis, the 

possible differences among analysts must be included because they may 

affect the values assigned the short-term systematic- and /or the random-

error variances. Contrariwise, if only one analyst performs the analysis, 

the differences among analysts would affect the size of the long-term 

systematic-error variance. There is always the danger of understating the 

size of error variances because they may have been estimated under ideal 

laboratory conditions when attempts were made to hold conditions con

stant rather than to vary them purposely to include all error sources that 

will normally affect a given analysis. 

Keeping these remarks in mind, in the next two sections we discuss 

the determination of the measurement variance associated with the SNM 

content of a given item. Section 5.1 deals with the additive model in which 

the various errors are expressed on an absolute basis, and Sec. 5.2 deals 

with the treatment of relative errors. In application the result will be the 

same, and it is largely a matter of preference as to which model is used. 

Finally, Sec. 5.3 contains a brief discussion of the interpretation of 

assigned limits of error as they are associated with the SNM content of 

a container. 
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5.1 ADDITIVE MODEL (ABSOLUTE ERRORS) 

5.1.1 Problem and Assumptions 

The amount of element (uranium or plutonium) in a given container 
is determined by the wet-chemistry approach; i.e., a bulk determination 
is made which gives a net weight (or volume) of the container contents. 
This is then multiplied by an element factor to give the total amount of 
element calculated for the container. The product, in turn, is multiplied 
by an isotope factor to give the total amount of isotope (e.g., ^'^U or 
fissile plutonium) calculated for the container. The element factor is the 
ratio of the amount of element to the total contents, and the isotope factor 
is the ratio of the amount of isotope to the amount of element. 

The following assumptions are made: 
1. A single bulk determination is made. 
2. The element factor is an average factor based on m samples and d 

total analyses made either on the composite or with d/m analyses per sample. 
This factor may be unique to the container in question, or it may represent 
an average factor that applies to several containers. The m samples, there
fore, may all be drawn from one container or may be drawn from several 
nominally similar containers, all of which will be assigned this element 
factor. The interpretation of the variance due to sampling changes ac
cordingly. 

3. With respect to the short-term systematic error due to sampling for 
the element factor, Si samples are drawn under short-term sampling con
ditions ;; J = I, 2, . . . , S, with 

s 

• = i 

4. With respect to the short-term systematic error due to the element 
factor analysis, a, analyses are performed under short-term analytical 
conditions i; i = I, 2, . . . , A, with 

A 

2 J ai = d 
• = i 

5. The isotope factor is an average factor based on p samples and k 
total isotopic analyses. 

6. With respect to the short-term systematic error due to sampling for 
the isotope factor, r, samples are drawn under short-term sampling con
ditions i; i = 1 , 2 , . . . , / ? , with 

R 
Y,ri=p 

1 = 1 

7. With respect to the short-term systematic error due to the isotope 
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factor analysis, 6, analyses are performed under short-term analytical 
conditions i; i=l, 2, . . . , B, with 

B 

»-i 

8. All error-component random variables are unbiased; i.e., they are 
distributed with zero means. This means that, if any known measurement 
biases exist, the data are appropriately corrected. 

9. All error components are uncorrected; i.e., all covariances between 
the error-component random variables are zero. 

The standard deviations are defined in Table 5.1. Each is expressed 
in absolute units, i.e., in the same units as the related measurement. 

TABLE 5.1 DEFINITION OF STANDARD DEVIATIONS 

Operation 

Bulk measurement 
Sampling, 
Analytical, 
Sampling, 
Analytical, 

element 
element 

isotope 
, isotope 

Long-term 
systematic 

<T> 

"t. 

as 
(TK 

<ry 

Type of error component 

Short-term 
systematic 

"* 
<T4, 

ag 

"T 

^a 

Random 

<r. 
"TI 

ffu 

Of. 

<rr 

The problem is to find the variances associated with the calculated 
amount of element and isotope in the container in question. 

5.1.2 Solution 

The standard deviations, given in Table 5.1, are in absolute units. 
In addition: 

w = observed net weight (or volume) of container contents 
p = element factor applied to the contents 
?= isotope factor applied to the contents 

m = number of samples on which p is based 
rf = number of analytical determinations on which/) is based 
Sx = number of samples drawn under condition i for element analysis, 

with 2Zf=i St = m. 
a, = number of element analyses made under condition i, with 

p = number of samples on which t is based 
k = number of analytical determinations on which 7 is based 
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r, = number of samples drawn under condition i for isotope analysis, 
with Xlf=i ' ' .=/ ' 

A, = number of isotope analyses made under conditions i, with 
Zf= i K=k 

Then the variance of the calculated element weight for the container 
in question, Fg, is 

^ £ = W^( I 

where 

and 

cl + al+c^l+c^al+^^+^-^^+p^icl+cl+a':) 

S J.2 

(5.1) 

(5.2) 

(5.3) 

The result of Eq. 5.1 is no doubt familiar to many readers, except for 
the inclusion of the short-term systematic-error variances a^ and o-̂ . The 
equation indicates that the long-term systematic-error variances are 
independent of the number of determinations made, whereas the random-
error variances decrease in direct proportion to the number of determi
nations. 

The variance of the calculated isotope weight for the container in 
question, Vj, is 

Vi = {wp) ^^d+a^y+g^l+g^al+^j+^-f^ 

+ (uTt) '(<rl + cl+Coa^+ci,7l+^+Y) + (pt) K^l+<^!+<^^) (5.4) 

where co and ci are as defined in Eqs. 5.2 and 5.3 and where 

« = i li 

and 

R 2 

B J,2 

^ x = i : ? . (5-6) 

5.1.3 Examples 

Example 5.A 

Find the standard deviation on the total amount of plutonium cal
culated for a dissolver batch in a chemical reprocessing facility. The volume 
is based on a single determination, and the percent plutonium is determined 
from a duplicate sample with a single analysis per sample. After the first 
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sample is drawn, the vessel contents are thoroughly mixed before the second 
sample is taken. The two samples are therefore regarded as having been 
drawn under two sets of conditions. Both analyses are performed under the 
same set of conditions. Thus 

m=2 ^ = 2 fli=2 
Jl = 1 52 = 1 

In this application the bulk determination consists of a volume rather 
than a weight. Assume the following values for the observed data and for 
the various standard deviations: 

w = 4542 liters 

<7j = 15 a 4, 
(7A= 0.005 <r̂  
ae= 0 .005 <r̂  

From Eqs. 5.2 and 5.3, 

1 1 4 

^0 = 4 + 4 = ^-^^ " ' = 4 = ^ 

Then Fg is calculated from Eq. 5.1: 

F£=(4542)2(10-«)(25-{-25-h4.5+25-f 50+288) 
- | -(3.09)2(225- |-64+400)=8613-F6579= 15192 g^ of Pu 

The standard deviation is V F^ = 123 g of plutonium. This is 0 .88% 
of the calculated amount [(4542)(3.09) = 14.035 kg of Pu.] 

Example 5.B 

Find the standard deviation on the total amount of uranium and on 
the total amount of ^^'U in a can of UO2 powder. The net contents are 
based on a single weighing. The uranium factor is the average of five 
samples with one analytical determination per sample. The samples are 
all drawn by using the same sampling technique and are assumed to have 
been drawn under the same set of conditions. The analyses are performed 
under two sets of conditions (this may refer to two operators, two sets of 
equipment, two periods of time, etc.), with two analyses under condition 1 
and three under condition 2. The isotopic factor is based on two samples, 
with one mass spectrometric determination per sample. Both samples are 
drawn and both determinations are made under the same sets of conditions. * 
This gives rise to the following parameter values: 

m = 5 k = 2 ai = 2 
/) = 2 si = 5 02 = 3 
d=5 M = 2 bi = 2 

* Samples might be considered drawn under different sets of conditions if an average 
isotope factor is based on sampling different forms of the material (UFB, powder, pellets). 

p = 3.09 g/liter 

= 8 o-. = 20 
= 0.003 <r,= 0.010 
= 0.005 <7„= 0.024 
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Assume the following values for the observed data and for the various 
standard deviations: 

M; = 2 0 . 0 2 k g ^ = 0.8758 7 = 0.0428 
trj= 0.005 (x^ = 0 tr, = 0.015 
(7^= 0.00015 0-̂  = 0.00005 (r, = 0.0002 
o-«= 0.0001 (7̂  = 0.00025 (Ta, = 0.0003 
<7x= 0.000008 (r, = 0.00001 a^ = 0.00001 
<Ty= 0.00003 (r„ = 0.00005 a, = 0.0002 

To find VE, we first calculate co and ci from Eqs. 5.2 and 5.3: 

_ 2 5 _ 4- f9 13 

' " ~ 2 5 " ' ''~ 25 " 2 5 

Then, from Eq. 5.1, 

F £ = (20.02) 2 ( 1 0 - " ' ) ( 2 2 5 + 1 0 0 + 2 5 + 3 2 5 + 8 0 + 1 8 0 ) 
+ (0.8758) 2(10-6)(25+0+225) 

F£ = 0.00003747+0.00019176 = 0.00022923 kg^ofU 

Therefore the standard deviation is V F E = 0 . 0 1 5 1 kg of uranium. 
This is 0.086% of the calculated amount [(20.02) (0.8758) = 17.53 kg of U] . 

To find F j , we first note that ^o from Eq. 5.5 and ^ i from Eq. 5.6 
are both 1. Then, from Eq. 5.4, 

F7=[(20 .02) (0 .8758)]2(10-w)(0 .64+9+1+25+0.5 + 200) 
+ [ (20.02)(0 .0428)]2(10-" ' ) (225+100+25+325+80+180) 
+ [(0.8758)(0.0428)]H10-8)(25+0+225) 

Vi= 10-«(7.2595+0.0686+0.3513) = 7.6794X 10-« kg^ " s y 

Therefore the standard deviation is V Fj- = 0.00277 kg of ^^^U. This 
is 0.37% of the calculated amount [(20.02)(0.8758) (0.0428) =0.7504 kg 
of " 6 U ] . 

5.1.4 Basis 

When each error standard deviation is expressed on an absolute basis, 
the descriptive model can be developed as follows: Let w be the average 
net weight (or net volume) determined by a single determination, which is 
common practice. (The model will be developed in terms of weights, but 
volumes can be substituted for weights with no essential changes in the 
development.) Write 

uj^W+8+(t>+e (5.7) 

where J4^=true net weight of the container contents in some arbitrary 
unit (lb, g, kg, etc.) 

5 = long-term systematic error due to weighing 
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<t> = short-term systematic error due to weighing 
e = random error due to weighing 

In this model the 5, 4>, and e erfors are expressed in the same units as 
the net weight. Each error was selected at random from its corresponding 
population density function. All population density functions have a 
mean of zero, and their standard deviations are crs, "•«, and cr,. No subscripts 
are used on these errors because only a single weight determination was 
made. Clearly in this instance we could combine the 5 and 0 components 
to achieve an overall systematic error. However, they are kept separate 
to permit the transition to the results of Chap. 6. 

To continue, let p represent the average element factor expressed as 
the ratio of the amount of element (uranium or plutonium) to the total 
amount of material in the container. Depending on the material, this factor 
may apply to several items in a given category, in which case it will prob
ably be based on several determinations. (Even if it applies only to a given 
container, it could also, of course, be based on several determinations.) 
Specifically, let the factor be based on drawing m samples with d total 
analyses. It is assumed that these d analyses either are made on the com
posite of the m samples or are the result oi d/m analyses per sample. Further, 
to account for the short-term systematic sampling and analytical errors, 
we assume that s, samples are drawn under sampling conditions t, with 
i=\, 2, . . . , S and 2Zf=i Si = m, and that a, analyses are performed under 
short-term analytical conditions i, with 2 = 1 , 2 , . . . , ^ , and X/»*=i o, = d. 
Then the model can be written 

j^= P+A+lpiS) +v{m) +9+'^iA) +w(<f) (5.8) 

true element factor 
systematic error due to sampling for element 
average short-term systematic error due to sampling for 
element, determined over Ŝ" sets of sampling conditions 
average random error due to sampling for element, based 
on m samples 
long-term systematic error due to element analysis 
average short-term systematic error due to element analysis, 
determined over A sets of analytical conditions 
average random error due to element analysis, based on d 
analyses 

Note that 17 (m), the random error due to sampling, includes the error 
due to sampling from within a container plus that due to sampling from 
different containers, as applicable. The latter source exists only when an 
average element factor is used to apply to a number of items of a given type. 

The errors in Eq. 5.8 are assumed to have been sampled from popula-

where P= 
A = 

nim) = 

6 = 

w{d) = 
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tions with zero means. Also, the standard deviations of these population 
density functions are tr^, a-^, cr,,, erg, a^, and o-„. 

The amount of element determined for the item in question is now 
calculated from Eqs. 5.7 and 5.8 as the product wp: 

wp= {W+S+<l>+e)[P+A+^{S)+v{m)+d+'^{A)+'^{d)] (5.9) 

This is multiplied out, and the variance of the sum is found by applying 
Eqs. 4.3 and 4.6. I t is assumed that all the random variables denoting the 
error components have zero covariances. Further, in finding the variance 
of the sum, we ignore second-order terms, e.g., the product of al and o-̂ . 
These are normally very small relative to the terms that are retained. 

The variance of wp is then found to be 

<r:-p= WK<rl + 4+<^l+<^l+<^l+<ri)+PK<r', + 'rl+'rl) (5.10) 

where 

2 2 2 _J! 

2 _ 

d 

_ 2 
2 " " 2 2 

<^5 = " 7 (T^-CltTg 

with 
S f2 A 2 

^ 2 C\— 2^ 

It is helpful to see how crj is derived. From Eq. 5.8, considering only 
the ^(S) contribution to p, we can write 

P = [ ( ^1+^1+ . . . +\f'i) + {^p2+^h+ • • • + W + . . . 

Si terms S2 terms 
+ (^.+lA.+ • • • +^,)]/m 

' V ' 

s, terms 
Sl^l + S2^2+ . . . +Ss4', 

m 

Then, by Eq. 4.3, 
t 2 l ( . 2 1 I 2 S 2 

Similar derivations apply to a-, cr̂ , a-, etc. 
Equation 5.10 and its defining relations (Eq. 5.11) give the variance of 

element weight expressed in squared units; these units are the same as 
those used to express the net weight of the contents for the container in 
question. Since W and P are not known, they are replaced by w and ^ in 
the evaluation. 

The extension to calculate the variance of the isotope weight is 
straightforward. If wji is the calculated element weight, then wpt is the 
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calculated weight of the isotope, where 7 is the average isotope factor ex
pressed as the ratio of the amount of isotope to the amount of element. 
Let 7be based on drawing/) samples with k total isotope determinations. In 
practice, k will often equal p since one determination is usually made per 
sample; this is not a necessary requirement, however. T o account for the 
short-term systematic errors associated with the isotope determination, we 
assume that r, samples are drawn under sampling condition i, with i=\, 
2, . . . , R and ^ f = i r, =j&, and that i , analyses are made under short-term 
condition i, with i=\,2, . . . , B and ^ , = i b, = k. Then t is expressed as 

7= r + X + x ( / ? ) + M ( / ' ) + T + a ( 5 ) + K ^ ) (5.12) 

where 7"= true isotopic factor 
X = long-term systematic error due to sampling for isotope 

T(if) = average short-term systematic error due to sampling for 
isotope, determined over R sets of sampling conditions 

n(p) = average random error due to sampling for isotope, based on 
p samples 

7 = long-term systematic error due to isotope analysis 
a(B) = average short-term systematic error due to isotope analysis, 

determined over B sets of analytical conditions 
v{k) = average random error due to isotope analysis, based on k 

analyses 

Again assuming zero means, standard deviations of cr„ a-^, a^,, <ry, Ca, 
and a,, and uncorrelated random variables and again ignoring second-
order and higher terms, we find the variance of the calculated amount of 
isotope, wpt, by applying Eqs. 4.3 and 4.6 to the product: 

wpt = ( P F + 5 + 0 + 6 ) [ P + A + ^ ( 5 ) +j{m) + 0 + ^ ( ^ ) +c7(rf) ] 

X [ r + X + 7 r ( / ? ) + M ( ^ ) + 7 + « ( f i ) + K^)] (5.13) 

The resulting variance is 

+ {WT)\cl+4+<T\-^cl+cl+<r^ + {PT)\cl+,jl^c^d (5.14) 

where <rj, o-|, a^, and a^ are as defined in Eq. 5.11 and where 

^ 2 
2 2 2 '^f 

<^li=gO(^r '^^^~p 

2 
2 _ >• ^ 2 _ 2 

"̂ =̂7 crl=gi4 (5.15) 

with 
R 2 B L2 

t=iP 1 = 1 ^ 



174 LIMITS OF ERROR ON INDIVIDUAL ITEMS 

Equation 5.14 and its defining relations (Eqs. 5.11 and 5.15) give the 
variance of isotope weight expressed in squared units; these units are the 
same as those used to express the net weight of the contents for the container 
in question. Again, W, P, and T arci replaced by w, J, and 7, respectively, 
in application. 

5.2 MULTIPLICATIVE MODEL (RELATIVE ERRORS) 

5.2.1 Problem and Assumptions 

The presentation in Sec. 5.1.1 for the additive model is also generally 
applicable for the multiplicative model. The only difference is in the in
terpretation of the o-'s in Table 5.1. In this section the o-'s are all expressed 
on a relative basis. For example, a standard deviation of 0.3% would be 
written 0.003; this means that the standard deviation is 0.3% of the true 
value for the measurement in question. No confusion should result from 
the use of the same notation for both the relative and absolute-error models. 
Asterisks or some other distinguishing mark could be used, however, to 
designate relative errors as opposed to absolute errors, but this introduces 
complexity in the notation which is not really needed. 

5.2.2 Solution 

The quantities w, p, t, m, d, Si, a, p, k, n, and bi are as defined in Sec. 
5.1.2. 

The variance of the calculated element weight for the container in 
question, VE, is found by application of the following steps (formula 5.1 
for the absolute error model could have been presented as a set of steps 
similar to these but somewhat more complicated): 

Step 1. Sum the variances for the long-term systematic-error components 
and for the short-term systematic-error component associated 
with the bulk determination. (The short-term systematic-error 
variance for the bulk determination is included because only a 
single bulk determination is assumed to have been made. In this 
circumstance the short-term error has the same effect as a long-
term error.) 

Step 2. Multiply the variance for the short-term systematic sampling 
component by Co=23f=i (^</'"^)-

Step 3. Multiply the variance for the short-term systematic analytical 
component by ci = 2^f=i {a\/d'^). 

Step 4. Divide each variance for the random-error components by the 
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appropriate number of determinations (samples or analyses), 
and sum the results. 

Step 5. To obtain the variance, VE, sum the quantities in steps 1 to 4 and 
multiply by the square of the observed element weight. [If the 
variance of element (or isotope) weights is to be expressed on a 
relative basis also, this variance is simply the sum of the quantities 
in steps 1 to 4. The relative standard deviation is then the square 
root of this sum. ] 

The error components identified in these steps include only those 
associated with the bulk measurement and the sampling and analytical 
components for the element determination. T o find the variance of the 
observed isotope weight, we include in steps 1 to 4 the sampling and 
analytical components for the isotope determination, and we replace 
element weight in step 5 by isotope weight. 

If formulas are preferred to words, these are 

where 

and 

VE={wpyLl+al+<Tl+,T^+co4+ci<T'^+a^+^+^j (5.16) 

5 

= T,zk (5.17) =1 m 

Cl 
"" a\ 

1= E ^ (5.18) 
.=1 d 

Vi={wpl}''L\-V<jl-\-a\Aral-\-a^-\-<jl-Vc^al-\-cvrl^-g!pl-^g',a, 

\ , 2 2 2 2\ 

m dp k I 
where co and c\ are as defined in Eqs. 5.17 and 5.18 and where 

f d 
hp^ 

50= E B (5.20) 
and 

5 1 = 1 : ^ (5.21) 
» = 1 "• 

5.2.3 Examples 

The first two examples in this section parallel those in Sec. 5.1.3 
except that error standard deviations are now expressed on a relative basis. 

Example 5.C 

See example 5.A. The values for the parameters are: 

m = 2 d=2 01 = 2 
S\=\ Si=\ 
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The observed data are: 

w =4542 liters ^=3.09 g/liter 

On the relative basis, the standard deviations corresponding to those 
given in example 5.A are: 

o-j= 15/4542 = 0.00330 <r, = 0.010/3.09 = 0.00324 
0-*= 8/4542 = 0.00176 (79 = 0.005/3.09 = 0.00162 
<T, = 20/4542 = 0.00440 cr̂ , = 0.005/3.09 = 0.00162 
(rA = 0.005/3.09 = 0.00162 (r<, = 0.024/3.09 = 0.00777 
0-̂  = 0.003/3.09 = 0.00097 

Compute VE from the steps of Sec. 5.2.2: 

Step 1. (0.00330)2+(0.00162)2+(0.00162)2+(0.00l76)2=19.2364X10-« 

step 2. fo= 1/4+1/4 = 0.50 
(0.50) (0.00097) 2 = 0.4705 X 10-« 

Step 3. ci = (2)7(2)2=1 
(0(0.00162) 2 = 2.6244 X10-« 

Step 4. (0.00440)2 ^ (0.00324)^ ^ (0.00777)2_^^ ^^^^^ ^^_^ 

Step 5. (element weight)2= [(4542)(3.09)]2= 196.975X10« 

F£ = (196.975)(19.2364+0.4705+2.6244+54.7953) = 15192 g^ 
ofPu 

This agrees with the value found 

Example 5.D 

in example 5.A. 

See example 5.B. The values for the parameters are: 

m — 5 
d=5 
si = 5 

The observed data are: 

w = 20.02 p 

ai = 2 
02 = 3 

p = 2 

= 0.8758 

k = 2 
ri = 2 
-̂1 = 2 

7 = 0.04 

On a relative basis the standard deviations corresponding to those 
given in example 5.B are: 

o-j = 

<rA = 

0.005 
= 0.00025 

20.02 

0.00015 
- — — - = 0.00017 

0-̂  = 0 

<7̂  = 0.000057 

(r. = 0.00075 

<7, = 0.00023 
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0.0001 
(7« = =0.00011 (r« = 0.00029 (r„ = 0.00034 

0.8758 

0.000008 
o-x= = 0.00019 <7, = 0.00023 <r„ = 0.00023 

0.0428 

0.00003 
a . = =0 .00070 o-„ = 0.00117 (r. = 0.00467 

^ 0.0428 

Compute VE from the steps in Sec. 5.2.2: 

Step 1. 10-"'[(25)2+(17)2+(ll)2+(0)2]=1035X10-i» 

Step 2. co=(5)V(5)2=l 
(l)(5.7)2X10-" = 32X10-i<> 

Step 3. (2) 2+(3) 2 13 

' ' ' (5)2 ~25 
(13/25)(29)2xiO-i'' = 437X10-" 

•{^ 
Step 4. /(75)2 (23)2 (34) 2\ 

v io-io(l_L + ! ^ ^ + ! ^ ^ J = 5962xiO-i» 

Steps. (Uranium weight) 2 =[(20.02) (0.8758) ]2 = 307.42 kg2 of U 

F£=(307.42)(1035+32+437 + 5962)(10-i») =0.000229 kg^ 
ofU 

This agrees with the value found in example 5.B. 

Next, compute F/ from the steps of Sec. 5.2.2. In step 5, isotope 
weight replaces element weight. 

Step 1. 10-i°[1035 + (19)2+(70)2] = 6296X10-i» 

Step 2. ^0= (2)7(2)2=1 
10-"[32+(l)(23) 2] = 561X10-'° 

Step 3. g i= (2)7(2)2=1 
10-"'[437 + (l)(l 17)2] =14126X10-1" 

Step 4. 10-"[5962 + (23)2/2 + (467)2/2] = 115271X10-i'' 

Step 5. ( 2 "u weight)2= [(20.02)(0.8758)(0.0428)]2 

= 0.5632 kg2of235U 

F/=(0.5632)(6296+561 +14126+115271)(10-") 
= 7.67X10-« kg2of236u 

This agrees with the value found in example 5.B. 
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The values of the first terms in the sums in steps 1 to 4 were calculated 
when VE was found. Additional terms are now included to account for the 
uncertainties in the isotope factor. 

Example S.E 

A fuel rod contains PUO2-UO2 pellets. Given the following informa
tion, find the relative standard deviation associated with the amount of 
fissile plutonium in the rod. The relative standard deviations are: 

(7j = 0.000I (7̂  = 0 o-, = 0.0002 
(7̂  = 0.0032 £7̂  = 0.0014 (7, = 0.0090 
(T« = 0.0010 (7̂  = 0.0008 <7„ = 0.0075 
t7x = 0.0001 (7, = 0.0001 (7̂  = 0.00005 
(7̂  = 0.0003 (7„ = 0.0002 (7, = 0.00012 

A single weighing is made of the net weight of the pellets in the rod. 
The plutonium factor is based on 12 samples with three analyses per sample. 
The 12 samples consist of two pellets from each of six batches, and each 
batch can be considered as corresponding to a given sampling condition. 
The 36 analyses are performed under analytical conditions 1, 2, and 3, 
with 9, 6, and 21 analyses, respectively, made under each condition. 
The fissile plutonium factor is based on seven samples, with one analysis 
per sample. Three samples are drawn from the PUO2 powder (sampling 
condition 1), two from the PUO2-UO2 powder (condition 2), and two from 
the PUO2-UO2 pellets (condition 3). All seven analyses are performed 
under the same set of analytical conditions. 

This information can be summarized by the following parameter 
values: 

Sl = S2 = S3=^Si = Si = Si = 2 

m=\2 
d=m 

0 1 = 9 

(22= 6 
03 = 21 

P= 1 

ri = 3 

r2 = 2 

r3 = 2 

k = l 
6 1 = 7 

The steps in Sec. S.2.2 are applied: 

Step 1. (0.0001)2+(0.0032)2+(0.0010)2+(0.0001)2+(0.0003)2 

= 1135X10-8 

Step 2. co = 6(2)2/144 = 0.1667 

(0.1667)(0.0014)2 = 33X10-8 

(3) 2+(2) 2+(2) 2 
^ 0 = =0.3469 

(0.3469)(0.0001)2 = 0X10-8 
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Step 3. (9) 2+(6) 2+(21) 2 
Cl = • = 0.4306 

1296 

(0.4306) (0.0008) 2 = 28 X10-8 

^1= (7)2/49=1 

(l)(0.0002)2 = 4X10-8 

Step 4. (0.0002) 2 (0.0090)2 (0.0075)2 (0.0005) 2 (0.00012)2 

i ' 12 ^ 36 ' ' 7 '" 7 
= 835X10-8 

Therefore, on a relative basis, 

V[ 
-J = 1 0 - 8 ( 1 1 3 5 + 3 3 + 0 + 2 8 + 4 + 8 3 5 ) = 2 0 3 5 X 10-8 

The relative standard deviation is V F 7 / / = 0.0045, or 0.45%. 

5.2.4 Basis 

When the error standard deviations are expressed on a relative basis, 
the model can be developed as follows: Let the notation be the same as 
that used in Sec. 5.1.4 in the sense that 5 refers to the long-term systematic 
error due to bulk determination, 0 to the corresponding short-term syste
matic error, etc. However, the density functions for these random variables 
will differ from those in the previous development. 

For the additive model in Sec. 5.1.4, which applies when errors are 
expressed on an absolute basis, each error random variable has a mean of 
zero and a standard deviation expressed in the same units as the correspond
ing measured value. For the multiplicative model, used when errors are 
expressed on a relative basis, each error random variable has either a mean 
of zero or a mean of one, depending on how the model is written, and a 
standard deviation expressed in relative units. For example, a 0 . 3 % 
relative standard deviation is written as (7 = 0.003. 

Using notation analogous to that in Sec. 5.1.4, we can model the 
observed bulk measurement with relative errors as 

w=W+8lV+(t>W+elV=W{l+8+^+e) (5.22) 

where 5, 4>, and e have zero means. Alternately, we could write 

w=WS<l>e (5.23) 

where 8, 4>, and e have means of one. 
Although these models are not equivalent, they will yield equivalent 

results when used to find the variance of w by application of Eq. 4.6. 
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Application of Eq. 4.6 assumes that the relative variances are small, * and 
this is a situation in which Eqs. 5.22 and 5.23 yield essentially equivalent 
results. 

To illustrate, consider the following equivalent values for the three 
random variables under the two models. 

TABLE 5.2 ERRORS FOR TWO MULTIPLICATIVE MODELS 

Model of Eq. 5.22 Model of Eq. 5.23 

J = 0.04 a = 1.04 
(j> = - 0 . 0 1 <l> = 0.99 
c = 0.03 e = 1.03 

The resulting value for w, from Eq. 5.22, is 

a; =W/(1+0.04-0.01+0.03) = 1.06 Ŵ  

From Eq. 5.23, it is 

w = H (̂l .04) (0.99) (1.03) = 1.060488 PF 

These values are essentially the same for all practical purposes. 
Further, equivalence is demonstrated by application of Eq. 4.6 to 

find the variance of w in each case. For the model of Eq. 5.22, 

cr^=H^2(^l+<r|+<^') 
This follows since 

dw dw dw 

For the model of Eq. 5.23, 

<r^=^K4+<Tl+<r';) 

an identical result. This follows since 

dw 

which, when evaluated at the mean values (̂  = e = 1, is simply W. Similar 
results hold for dw/d4> and dw/dt. 

Equivalence also holds for the product wp. The first model gives 

wp=WP{l+8+<t>+e){\+A+ip+V+e+0+^) (5.24) 

The second model is written 

wp = WP8(l>eAyl/v6fiw (5.25) 
* See the discussion following Eq. 4.6. 
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Again, applying Eq. 4.6 to find the variance of wp yields equivalent 
results for both models: 

"1} = i.WP)\a]+al^al+al+al+c\+a]+4+al) (5.26) 

where a^, <T-, (7J, and <T^ are defined as in Eq. 5.11. 

This follows from the model of Eq. 5.22 since dwp/d8= WP(\_+A+ 
^+7j+5+;8+co), which, when evaluated at the mean values (A = ^̂  = I? = 
0 = j3 = co = O), is simply WP. Similar results hold for dwp/dA, dwp/d\l/, etc. 
This also follows with the model of Eq. 5.23 since dwp/d8= WP<i>iA . . . co, 
which, when evaluated at the mean values (A = </>= . . . =a j= l ) , is simply 
WP. Similar results hold for dwp/dA, dwp/d\j/, etc. 

Finally, applying Eq. 4.6 to find the variance of wpt yields 

(7:--= (PFPD 2((72 + <72+(72+(72 + (r|+<7|+C7|+(7|+<7^+(72 
+ <r|+(7| + <7H<̂ S + <72) (5.27) 

where cr-, <T^, and r-y are defined as in Eq. 5.15. 

As a final note, a logarithmic model could also be used when error 
standard deviations are expressed on a relative basis. This was demon
strated in example 4.G. Although this approach is suitable for a single item, 
it is awkward to handle in the common nuclear materials control applica
tion in which algebraic sums of SNM contents are of interest. Thus, although 
Eq. 5.25 could be written as an additive model. 

In {w~p) =ln Pf+ln P + l n 5+ . . . + ln ^ (5.28) 

this is not helpful in summing wp values over several items; the model 
would have to be retransformed to that of Eq. 5.25 to accomplish this. 

5.3 INTERPRETATION OF ASSIGNED LIMITS OF ERROR 

The limits of error assigned the SNM content of a given container 
should be carefully interpreted. They are meaningful only as applied to 
the container in question, and we must take care when we combine limits 
of error for several containers. 

For example, the variance of the sum of SNM in two containers, or 
of the difference, generally cannot be found by simply summing the 
variances for the contents of both containers. The measured SNM values 
may be correlated for one or more reasons, thereby invalidating this pro
cedure. For example, both containers may have identically the same 
element factor applied. If this factor is in error on the high side, the re
sulting sum of element weights will be high by that amount (excluding 
the combined effects of other errors). This error would cancel when the 
difference in weights was the quantity of interest. Even if the factors in 
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question are different, they may be related by virtue of having been de
termined by use of the same analytical technique, or, if the same scale 
was used for both containers, its systematic error would affect both net 
weight determinations. There are other ways in which correlations can be 
introduced. 

With these points in mind, we must consider the calculation of variances 
or of limits of error for groups of items, taking into account the various 
ways in which the calculated SNM values can be correlated. This is the 
subject of Chap. 6. 

One additional point should be made. We should emphasize that the 
practice of taking multiple samples from a container or group of containers 
and basing the limits of error on the scatter observed in the results is not 
valid in general. The reason for this is that observed variation often reflects 
only the effects of the random-error components. In nuclear materials 
control applications, it is often the effects of the systematic errors which 
tend to be of dominating importance. Although these error variances are 
sometimes difficult to evaluate, their effects cannot be ignored. 



Chapter 6 

LIMITS OF ERROR FOR GENERAL ALGEBRAIC SUMS 

OVERVIEW 

In Chap. 5, limits of error were found for the special nuclear material 
(SNM) content of an individual item. This is of limited practical interest 
in nuclear materials control applications, where attention is focused more 
on such quantities as shipper-receiver differences, total amounts of SNM 
in inventory, and material unaccounted for (MUF) than on the SNM 
content of a single item. The primary interest in Chap. 5 is that it provides 
a basis on which the more useful results of this chapter can be developed. 

The quantities just mentioned are all related in the sense that all are 
algebraic sums, or linear combinations, of SNM contents for individual 
items. Thus it is not necessary to develop separate methods for determining 
limits of error for total amounts in inventory, for example, and for material 
unaccounted for. Rather, a general method is developed which applies to 
both these quantities, as well as to others of interest. 

In this chapter, we assume that the SNM contents of individual items 
are determined by the wet-chemistry approach involving a bulk determina
tion, a percent element measurement, and a percent isotopic measurement. 
If nondestructive assay measurements are made on some or all of the items 
comprising the algebraic sum, they can be included in the analysis by 
methods given in Sees. 3.3.8 and 3.3.10. Example 6.H illustrates this. 

To establish the motivation for the approach to calculating limits of 
error used in this chapter, consider this calculation for MUF. The fact that 
MUF is an algebraic sum of SNM contents for individual items has generally 
been used in finding the MUF variance. First, the variances of the MUF 
components (beginning and ending inventories, inputs, and outputs) are 
found; these are then combined to give the variance of MUF by applica
tion of Eq. 4.3. However, the covariance terms in Eq. 4.3 are generally 
either ignored completely or are only partially accounted for. This is under
standable because it is difficult to identify and account for all the covari
ances since they are caused by one or more of several factors. For example, 
covariances occur because of such factors as the commonality of percent 
element factors, the existence of identical items in inputs and ending 
inventories, and biases in measurements that affect several items. 

Proper accounting for all such covariances is obviously a formidable 
task. However, we can circumvent this problem by calculating the vari-

183 
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ances attributed to all the individual, uncorrelated primary error sources 
instead of finding and combining the variances for individual groups of 
items in the algebraic sum. (These primary error sources were identified in 
Chap. 5.) Equation 4.3 can then be used to calculate the variance of the 
algebraic sum directly without being concerned about the covariance 
terms; these are all zero if the model is properly constructed. Of course, 
if there is a separate interest in the components of M U F , such as the in
ventories, inputs, and outputs, the associated variances can also be found 
by applying the methods of this chapter. However, these variances will not 
generally sum to give the variance of M U F . 

In addition to circumventing the problem of accounting for covari
ances, the approach given in this chapter to finding the variance of the 
algebraic sum also pinpoints those areas in which corrective action may be 
required to reduce the uncertainty associated with the quantity in question. 
I t does this by evaluating the contribution to the total uncertainty for 
each primary source of error. 

In this chapter we again assume that the various standard deviations 
are known quantities that can be replaced by their estimates in application. 
Further, we restrict our attention to finding variances or standard devia
tions rather than limits of error to avoid the problem of making the transi
tion from one to the other. For further discussion on this point, see the 
overview in Chap. 5. 

The multiplicative model based on a structure of relative-error 
standard deviations is assumed to apply. This model was chosen because 
the applicable-measurement standard deviations are generally expressed 
on a relative basis. This is not always true, however. With scales and 
balances, for example, absolute-error standard deviations are usually 
quoted, but, since in application a given scale is generally used to weigh 
items within a relatively restricted range of values, the absolute-error 
standard deviations are readily expressible on a relative basis. The multi
plicative model can therefore be used. This approach is considered prefer
able to the use of a mixed model in which some errors are expressed on an 
absolute and some on a relative basis. 

Because of the important practical significance of the results of this 
chapter, the application of the results to specific examples is heavily 
emphasized. The intent is to cover most types of applications likely to be 
encountered in practice. 

6.1 VARIANCE OF AN ALGEBRAIC SUM OF SNM 

6.1.1 Problem and Assumptions 

Each container included in a given algebraic sum has associated with 
it a calculated amount of SNM determined on the bases of a bulk measure
ment and the application of a percent element and a percent isotopic 
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factor, as appropriate. If the SNM in question is an element (uranium or 
plutonium), the isotopic factor does not apply, of course. "Container" 
refers in general to any discrete quanti ty that has associated with it a 
calculated amount of SNM. Examples include a batch of liquid waste, a 
transfer batch in a chemical reprocessing facility, a tray of sintered UO2 
pellets, a UFe cylinder, etc. 

All error standard deviations are expressed on a relative basis. For 
example, a 0 . 3 % relative error is expressed as (7 = 0.003. The notation used 
to define each primary-error standard deviation is given in Table 5.1. 
Note that there may be several error components of each type. For ex
ample, there is a long-term systematic error, a short-term systematic error, 
and a random error associated with each weigh scale. Similarly, sampling 
errors depend on the type of material being sampled, and analytical errors 
depend on the analytical method used. Thus, from Table 5.1, although 
there are only 15 types of error components, there are generally many 
more separately identified components in a given application. All primary-
error random variables are assumed to be independently distributed; i.e., 
the covariances are zero. 

The problem is to find the variance of the SNM which represents the 
algebraic sum of SNM contents for the individual containers. All reasonably 
conceivable error sources are included in this formulation. In practice, 
experience will indicate in a given situation which sources, if any, are of 
negligible importance and can reasonably be ignored in a given applica
tion. 

6.1.2 Solution 

As indicated in Table 5.1, there are five basic types of measurement 
operations: bulk determination, sampling for element, analysis for element, 
sampling for isotope, and analysis for isotope. With each type of measure
ment, a number of specific operations are identified as set forth in Table 6.1. 

TABLE 6.1 SPECIFIC MEASUREMENT OPERATIONS 

Type of operation Specific operation 

Bulk determination Weighing performed on scale i, or volume of vessel i; 

(vk'eighing or volume) 1 = 1, 2, . . . , «, 
Sampling for element Sampling from material typej or by method _/; 

7 = 1,2, . . . , Hj 

Analysis for element Analytical method k; 

k = \,2,...,nk 

Sampling for isotopic factor Sampling from material type / or by method I; 

' = 1,2 ni 

Analysis for isotopic factor Analytical method m; 
m = l,2, . . . , n„ 
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I n t h e m o d e l e a c h specific o p e r a t i o n h a s associa ted w i t h it a l o n g - t e r m 

sys temat ic , a s h o r t - t e r m sys temat ic , a n d a r a n d o m e r ro r . (Th i s is for 

genera l i ty . I n some app l i ca t i ons c o r r e s p o n d i n g s t a n d a r d dev ia t ions m a y 

b e ass igned t h e v a l u e zero . ) E a c h c o m b i n a t i o n of a specific o p e r a t i o n a n d a 

t ype of e r r o r c o n t r i b u t e s a t e r m to t h e overal l v a r i a n c e of t he S N M in t h e 

a lgeb ra i c sum. T h i s t e r m consists of a coefficient t imes a n a p p r o p r i a t e 

v a r i a n c e . F r o m t h e n o t a t i o n of T a b l e s 5.1 a n d 6 . 1 , t he t e r m s a r e of t h e 

fol lowing form: 

/-. 2 ^ 2 . _ i~, 2 
lvj , (7j , , U,^,C70j, . . . , Of„ (7 , „ 

w i t h t h e r a n g e s for i, j , k, I, a n d m given in T a b l e 6 . 1 . 

T h e p r o c e d u r e for finding t h e v a r i a n c e of t h e S N M in q u e s t i o n is t h e n 

r e d u c e d to finding these C coefficients. S i m p l e rules for d o i n g this a r e g iven. 

T h e resu l t ing t e rms , of t he form Ca'^, a r e t h e n s u m m e d to give t he des i red 

resul t . 

Firs t , ru les a r e given for t h e case in w h i c h e l e m e n t w e i g h t is of in te res t . 

T h e n a d d i t i o n a l rules a r e g iven for t he case w h e r e isotope we igh t s a r e 

invo lved . All sums refer red to in t h e rules in T a b l e 6.2 a r e a lgeb ra i c sums . 

Le t m e e m p h a s i z e t h a t t he sign of e a c h t e r m in t h e s u m is t a k e n in to ac 

c o u n t ; this p o i n t is of c ruc ia l i m p o r t a n c e . 

TABLE 6.2 RULES FOR FINDING THE COEFFICIENTS NEEDED IN 
CALCULATING T H E VARIANCE OF T H E ALGEBRAIC SUM 

OF ELEMENT WEIGHTS 

Rules J, 2, and 3 relate to bulk measurements. The operation may refer to weighing 
on scale i or to finding the volume for vessel i, whichever is appropriate. The rules 
are given m terms of the weighing operation to avoid excessive repetition, but they 
may also be expressed in terms of volume. 

Rule 1. Long-term systematic error. 
Step a. Sum the element weights for all items weighed on scale i. 
Step b. Square this sum. This is Cs,. 

Rule 2. Short-term systematic error. 
Step a. Sum the element weights for all items weighed on scale i under a given set 

of conditions. (A "set of conditions" may refer to a given calibration 
period, a given operator, etc. If the result is independent of such factors, 
the corresponding systematic-error variance is zero.) 

Step b. Square each sum in step a. 
Step c. Sum these squares over all sets of conditions. This is C*,. 

Rule 3. Random error. 
Step a. Square each element weight for items weighed on scale i. 
Step b. Divide each square by the number of weighings made to determine the 

element weight. (This is normally one, in which case step b is eliminated.) 
Step c. Sum the terms in step b over all items. This is C , . 
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TABLE 6.2 (Continued) 

Rules 4, 5, arui 6 relate to sampling for the element factor. 

Rule 4. Long-term systematic error. 
Step a. Sum the element weights for all items with element factors based on 

sampling from material type 7. 
Step b. Square this sum. This is C4,. 

Rule 5. Short-term systematic error. 
Step a. Sum the element weights over all items for each element factor based on 

sampling from material type7. 
Step b. For each factor, find the fraction of total samples drawn under a given set 

of conditions. (A "set of conditions" may refer to samples drawn by the 
same sampling technique or perhaps may relate to replicate samples 
draviTi from a container with no remixing of contents.) These fractions 
must sum to 1 over all conditions for each factor. 

Step c. Multiply the sums in step a by the fractions in step b, and sum the products 
over all factors for each set of sampling conditions. 

Step d. Square each sum in step c. 
Step e. Sum the squares in step d over all sets of sampling conditions. This is C^,. 

Rule 6. Random error. 
Step a. Sura the element weights for all items that have a common element 

factor based on sampling from material type ;'. There may be more than 
one sum. 

Step b. Square each sum in step a. 
Step c. Divide each result in step b by the number of samples on which the cor

responding element factor is based. 
Step d. Sum the terms in step c over all groups of items which have element 

factors based on sampling from material type ;. This is C, . 

Rules 7, 8, and 9 relate to analysis for the element factor. 

Rule 7. Long-term systematic error. 
Step a. Sum the element weights for all items with element factors determined 

using analytical method k. 
Step b. Square this sum. This is Cjj.. 

Rule 8. Short-term systematic error. 
Step a. Sum the element weights over all items for each element factor deter

mined using analytical method k. 
Step b. For each factor, find the fraction of total analyses performed under a given 

set of analytical conditions. These fractions must sum to 1 over all condi
tions for each factor. (Rule 8 can be applied more than once to account 
for different kinds of analytical conditions. For example, analytical con
ditions might relate to the use of different operators, different pieces of 
analytical equipment, etc. In this case the various effects can, if one 
wishes, be accounted for separately by repeated application of Rule 8. 
See example 6.D in this regard. Similar remarks apply to other short-term 
systematic-error rules.) 

Step c. Multiply the sums in step a by the fractions in step b, and sum the products 
over all factors for each set of analytical conditions. 
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TABLE 6.2 (Continued) 

Step d. Square each sum in step c. 

Step e. Sum the squares in step d over all sets of analytical conditions. This is C^^. 

Rule 9. Random error. 

Step a. Sum the element weights for all items that have a common element factor 

determined using analytical method k. 

Step b. Square each such sum in step a. 

Step c. Divide each result in step b by the number of analyses on which the 

corresponding element factor is based. 

Step d. Sum the terms in step c over all groups of items which have element 
factors determined using analytical method k. This is Cak-

The rules of Table 6.2 apply for element weights. If isotope weights 

are involved, rules 1 to 9 still apply except that isotope weights are used in 

place of element weights throughout. Also, there are other rules that mQst 

be applied as well. These are given in Table 6.3 as rules 10 to 15. 

Unlike common element factors, common isotopic factors may logically 

be based on sampling from different material types. For example, in a fuel 

fabrication plant, samples may be drawn from UO2 powder and from UO2 

pellets with the average isotopic factor then applied to both types of mate

rial. This possibility is most conveniently handled by defining only one 

"material type" for the isotopic factor. (Rules 10 and 11, however, include 

the possibility of there being more than one material type for generality.) 

Then the different materials sampled to establish a given factor may be 

regarded as different sampling conditions, with their effect reflected in the 

short-term systematic error (see footnote to example 5.B, Sec. 5.1.3). This 

approach is considered valid because sampling errors for isotopic factors 

are often of minor importance. 

6.1.3 Examples 

Example 6.A 

A shipper ships five containers of PuOa- Before placing the Pu02 in 

containers, he draws three samples and performs one analytical determina

tion per sample for percent plutonium. He determines the net weight for 

each of the five containers by a single weighing of each container and applies 

the same percent plutonium factor to all containers. This average factor is 

0.8718. Table 6.4 gives the net weights of Pu02 and the calculated amounts 

of plutonium. 
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TABLE 6 3 ADDITIONAL RULES FOR FINDING T H E COEFFICIENTS 
NEEDED IN CALCULATING T H E VARIANCE OF T H E 

ALGEBRAIC SUM OF ISOTOPE WEIGHTS 

Rules 10, 11, and 12 relate to sampling for the isotopic factor 

Rule 10. Long-term systematic error. 
Step a Sum the isotope weights for all items with isotope factors based on samplmg 

from the given material type 
Step b Square this sum This is C\ 

Rule 11. Short-term systematic error. 
Step a Sum the isotope weights over all items for each isotope factor based on 

samplmg from material type / 
Step b For each factor, find the fraction of total samples drawn under a given set 

of conditions These fractions must sum to 1 over all conditions for each 
factor 

Step c Multiply the sums in step a by the fractions in step b, and sum the products 
over all factors for each set of sampling conditions 

Step d Square each sum in step c 
Step e Sum the squares in step d over all sets of sampling conditions This is Ci, 

Rule 12. Random error. 
Step a Sum the isotope weights for all items that have a common isotope factor 

based on sampling from material type / 
Step b Square each sum in step a 
Step c Divide each result in step b by the number of samples on which the cor

responding isotope factor is based 
Step d Sum the terms in step c over all groups of items which have isotope factors 

based on sampling from material type / This is C;,, 

Rules 13, 14, and 15 relate to analysts for the isotopic factor. 

Rule 13. Long-term systematic error. 
Step a Sum the isotope weights for all items with isotope factors determined 

using analytical method m 
Step b Square this sum This is C^„ 

Rule 14. Short-term systematic error. 
Step a Sum the isotope weights over all items for each isotope factor determined 

using analytical method m 
Step b For each factor, find the fractions of total analyses performed for each 

factor under a given set of analytical conditions These fractions must 
sum to 1 

Step c Multiply the sums m step a by the fractions in step b, and sum the products 
over all factors for each set of analytical conditions 

Step d Square each sum in step c 
Step e Sum the squares in step d over all sets of analytical conditions This is C<,„ 

Rule 15. Random error. 
Step a Sum the isotope weights for all items that have a common isotope factor 

determined using analytical method m 
Step b Square each sum in step a 
Step c Divide each result in step b by the number of analyses on which the 

corresponding isotope factor is based 
Step d Sum the terms in step c over all groups of items which have isotope factors 

determined using analytical method m This is C, 
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TABLE 6.4 SHIPPER DATA 

(Example 6.A) 

Container Net weight of Pu02, kg Weight of plutonium, kg 

1 1.3632 1.1884 
2 1.4197 1.2377 
3 1.3861 1.2084 
4 1.3914 1.2130 
5 1.4022 1.2224 

Total 6.9626 6.0699 

Average 1.3925 

The shipper quotes a systematic-error and a random-error standard 
deviation due to weighing of 0.5 and 1.0 g, respectively. He does not quote 
sampling errors. His analytical-error standard deviations are 0.05 and 
0.25% relative for the systematic and random errors, respectively. For 
both the weighing and the analytical determinations, no distinction is 
made between the long-term and the short-term systematic errors. 

The receiver also determines the net weight of each container, using a 
scale with systematic- and random-error standard deviations of 0.3 and 
0.5 g, respectively. He opens one can at random, draws a single sample, 
and performs duplicate analyses on that sample, performing both analyses 
under nominally the same conditions. He assumes sampling-error standard 
deviations of 0.02 and 0.03% relative for the systematic and random 
components. His analytical method is different from that used by the 
shipper, and his quoted relative standard deviations are 0.03, 0.02, and 
0.15% for the long-term systematic, short-term systematic, and random 
errors, respectively. 

The receiver's average factor is 0.8731, and his weights are listed in 
Table 6.5. 

TABLE 6.5 RECEIVER DATA 
(Example 6.A) 

Container Net weight of PuOj, kg Weight of plutonium, kg 

1 1.3625 1.1896 
2 1.4192 1.2391 
3 1.3850 1.2092 
4 1.3915 1.2149 
5 1.4016 1.2237 

Total 6.9598 6.0765 

Average 1.3920 
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The shipper-receiver difference is (6.0699 — 6.0765) = —0.0066 kg of 
plutonium. What is the standard deviation of this difference? (Chapter 8 
gives a thorough discussion of shipper-receiver differences, with attention 
centered on making inferences about stated uncertainties by using the 
actual shipper and receiver data. In the example here, however, accept the 
stated values in finding the standard deviation of the shipper-receiver 
difference.) 

The shipper-receiver difference is an algebraic sum that can be 
written as (1.1884+1.23774- . . . -1.2149-1.2237). The variance of the 
algebraic sum is found by applying the rules of Sec. 6.1.2. 

The preceding input data can be summarized as follows: 

Bulk Determination 

Shipper's scale: 

0.0005 
^ ' - r ^ 5 -'•''''' 

Receiver' 

o-«a = 

( T . j = 

s scale: 

0.0003 
1.3920 " 

0.0005 
" 1,3920 

= 0.00022 

= 0.00036 
0.001 

Sampling for Plutonium 

Both parties sample from the same material and will have the same 
sampling-error standard deviations as quoted by the receiver. 

(7A 1 = 0.0002 (r„ = 0.0003 

Analysis 

Shipper's method: Receiver's method: 

0-91 = 0.0005 (7«2 = 0.0003 

(7;3i = 0 (r̂ 2 = 0.0002 

(7„i = 0.0025 o-„2 = 0.0015 

Let us apply the rules. Only the rules of Table 6.2 are applicable, 
since the plutonium (element) weight, rather than fissile plutonium 
(isotope), is the quantity of interest. 

Rulel: Cji = (6.0699)2 = 36.8437 

Ci2 = (-6.0765)2 = 36.9239 

Rule 2: (Not applicable) 

Rule 3: C.i=(1.1884)2+ . . . +(1.2224)^ = 7.3701 

C.2=(-1.1896)2+ +(-1.2237)2=7.3861 
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Rule 4: CAI = (6.0699-6.0765)2= (-0.0066)2 

= 0.000044 

Rule 5: (Not applicable) 

Rule 6: Step a. Sum 1=6.0699 

Sum 2=-6 .0765 

Step b. (6.0699)2 = 36.8437 

(-6.0765)2 = 36.9239 

Stepc. 36.8437/3 = 12.2812 

36.9239/1=36.9239 

Step d. C,i= 12.2812+36.9239 = 49.2051 

Rule?:* C9i = (6.0699)2 = 36.8437 

C92 = (-6.0765)2 = 36.9239 

Rule 8: (Do not calculate C$i since tr̂ i is zero) 

For CjSj, steps a to f of rule 8 will be applied, although the exercise is trivial 
in this instance. 

Step a. Sum= —6.0765 
Step b. Fraction =1 
Step c. (-6.0765)(1) = -6.0765 
Step d. Only one factor—'•sum =—6.0765 
Step e. ( - 6.0765)2 = 36.9239 
Step f One set of conditions^sum = 36.9239 = C/j 

Rule 9: C„i= (6.0699)2/3 = 12.2812 

^ 2 = (-6.0765)2/2= 18.4619 

These coefficients are then applied to the given variances. 

Bulk Determination 

Csi(7si2=(36.8437)(0.00036)2 = 4.77X10-' ' 

Ca2V=(36.9239)(0.00022)2=1.79X10-« 

C.io-.i2=(7.3701)(0.00072)2 = 3.82X10-« 

C<2tr,22=(7.3861)(0.00036)2 = 0.96X10-6 

• Note the distinction between application of rules 4 and 7. Both parties use the same 
sampling method, but different analytical methods are used. 
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Sampling 

C A I ( 7 A I 2 = ( 0 . 0 0 0 0 4 4 ) ( 0 . 0 0 0 2 ) 2 = 0 . 0 0 X 1 0 - 6 

C„<T,i2=(49.2051)(0.0003)2 = 4.43X10-« 

Analysis 

Ce,<7«,2=(36.8437)(0.005)2 = 9 . 2 l X l 0 - « 

Ci^ce^^ = (36.9239) (0.0003)2 = 3.32 X 10"^ 

Cfl.,0-̂ 2' = (36.9239)(0.0002)2 = i .48 x lO"* 

C„i(r„,2 = (i2.2812)(0.0025)2=76.76X10-« 

a2cr„22= (18.4619) (0.0015)2 = 41.54X10-6 

Total variance 148.08 g2 of Pu 

Standard deviation 12.2 g of Pu 
Example 6.B 

(The data for this example were provided by R. D. Smith.) 

At the conclusion of a campaign, a facility has on inventory seven 

batches of material which contain uranium. To measure the uranium 

content, two scales were used, two types of material were sampled, and 

three analytical methods were employed. The short- and long-term 

systematic errors are combined and labeled long-term errors since all 

analyses of a given type were performed under one set of conditions. Each 

of the seven batches has its own percent uranium factor, each factor being 

based on a single sample and a single analysis. Assume a single bulk 

determination for each batch. Tables 6.6 to 6.8 give all the data and 

measurement parameters. 

TABLE 6.6 MATERIAL IN INVENTORY 

(Example 6.B) 

Net weight, g 

90,347 
94,122 
35,091 
4,332 
4,106 
3,893 

257,071 

Uranium factor 

0.0814 
0.0639 
0.0777 
0.2795 
0.2801 
0.2866 
0.0086 

Total 

Uranium, g 

7354 
6014 
2727 
1211 
1150 
1116 
2211 

21,783 
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TABLE 6.7 METHODS USED* 

(Example 6.B) 

Batch Weighing Sampling Analysis 

' Scale, material type, analytical method. 

TABLE 6.8 E R R O R STANDARD DEVIATIONS 

(Example 6.B) 

Operation 

Weighing 

Sampling 

Analysis 

Method 

1 
2 

1 
2 

1 
2 
3 

Systematic error 

(781 = 0.00025 
(7J2 =0.000025 

(Ti,=0.0011 
0-42=0 00005 

o-s, =0.0015 
(782=0.0005 
(7(3 = 0.0075 

Random error 

(7,1=0.00025 
(7,2 = 0.000025 

(7,1=0.0060 
(7,2=0.0001 

(7„i =0.0095 
(7„2=0.0015 
(7„3=0.016 

To find the standard deviation associated with the total amount of 
uranium in inventory, let us apply the rules of Table 6.1. In this application, 
an item corresponds to a batch. 

Rule 1 
Cji= (7354+6014+2727+2211)2 

= 335,109,636 X (0.00025)2 

Cj2 = (1211 + 1150+1116)2 
= 12,089,529 X (0.000025)2 

Rules 

C.i=(7354)2+(6014)2+(2727)2+(2211)2 
= 102,574,562 X (0.00025)2 

C.2=(1211)2+(1150)2+(1116)2 
= 4,034,477 X (0.000025)2 

Product: 
C<72, g2 

20.94 

0.01 

6.41 

0.00 
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Rule 4 

CA, = (7354+6014+2727)2 
= 259,049,025 X (0.0011)2 

C A 2 = (1211 + 1150+1116+2211)2 

= 32,353,344 X (0.00005)^ 

Rule 6 

C,j = (7354)2+ (6014)2+ (2727)2 
= 97,686,041 X (0.0060)2 

C,2 =(1211)2+(1150)2+(1116)2+(2211)2 
= 8,922,998 X (0.0001)2 

Rule? 

C9i= (7354+6014)2 
= 178,703,424 X (0.0015)^ 

C«2 = (2727+1211 + 1150+1116)2 
= 38,489,616 X (0.0005)2 

C,3 = (2211)2 
= 4,888,521 X (0.0075)2 

Product: 
G(T , g 

313.45 

0.08 

3516.70 

0.09 

402.08 

9.62 

274.98 

Rule 9 

C(.i = (7354)2+(6014) 
= 90,249,512 

|2 

X (0.0095)2 

^ 2 = (2727)2+(1211)2+(1150)2+(1116)2 
= 11,471,006 X (0.0015)2 

a , = (2211)2 
= 4,888,521 X (0.016)2 

Total variance 

Total standard deviation 

8145.02 

25.81 

1251.46 

13966.65 g2 of U 

118gofU 

It is'immediately apparent that (T„, is the dominant source of variation. 
Its effect can be reduced by replicate analyses of the first two batches. 

Example 6.C 

This somewhat artificially contrived example is included to illustrate 
application of rules 1 to 9 in their more complex forms. Consider an 
algebraic sum of 10 items whose element weights are depicted by 6"!, 
Si, . . . , Sio. The algebraic sum S is 

'S'=5'l + 6'2 —-Ss-5'4+'S'6 —^e + 'S'y + .S'g+iS'g + ^lc 
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Assumptions. Make the following assumptions about how the Si's 
were determined: 

1. Each item is weighed once, with three scales in use. 

• Scale 1 for items 1, 2, and 8. 
• Scale 2 for items 3 and 10. 
• Scale 3 for items 4, 5, 6, 7, and 9. 

2. Scale 3 was recalibrated after items 4, 5, and 6 were weighed. 

3. Three element factors are used. 

• Factor 1 for items 1, 2, 5, and 6. 
• Factor 2 for items 3 and 9. 
• Factor 3 for items 4, 7, 8, and 10. 

4. The numbers of samples and analyses used to calculate each factor 
are as follows: 

• Factor 1 is based on four samples with two analyses per sample. 
• Factor 2 is based on 20 samples with each group of four samples 

composited and two analyses performed on each composite. 
• Factor 3 is based on 20 samples with one analysis per sample. 

5. The factors are based on sampling from three types of material. 

• Factor 1 from material type 1. 
• Factors 2 and 3 from material type 2. 

6. The first 12 samples drawn to establish factor 2 utilize one sampling 
technique; a different technique is used for the last eight samples. The latter 
technique is used for all samples drawn to establish factor 3. 

7. Two analytical methods are used. 

• Factors 1 and 2 use method 1. 
• Factor 3 uses method 2. 

8. For each analytical method, analyses are performed under different 
sets of conditions. 

• Analytical method 1 
Factor 1 based on three analyses under condition 1 and five 

under condition 2. 
Factor 2 based on two analyses under condition 2 and eight 

under condition 3. 

• Analytical method 2 
Factor 3 based on eight analyses under condition 1, two 

under condition 2, and 10 under condition 3. (Conditions 
1, 2, and 3 for analytical method 2 are, of course, not the 
same as conditions 1, 2, and 3 for method 1.) 
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Let us now apply the rules of Table 6.2 to give the following com
ponents of variance. Again it is emphasized that the signs in the algebraic 
sum must be preserved. 

Rule 1 

Scale 1 

Scale 2 

Scale 3 

Rule 2 

Scale 1 

Scale 2 

Scale 3 

Rule 3 

Scale 1 

Scale 2 

Scale 3 

(5l + 52 + 58)2cr5,2 

i-S^ + SloYcs,^ 
{-s,+s,-s,+S7+s,yas^' 

(Si+Si+SsYc^^' 

(—Sz+Sioyff^,^^ 

\i-S,+S,-Sey+(S,+S,)^]a,,^ 

(Sl' + S,^ + Ss')<7„^ 

iSs^+Sio^)a,,^ 

{S,'+S,'+S,^+Sj'+S,')a,,' 

Rule 4 

Material type 1: (Si+S^+Si-SiYai,,-' 

Material type 2: i-Si+S9-Si+Sj+S,+Sio)''<T^„' 

Rules 

Step a. Material type 1: 

Factor 1 sum= (5i+5'2+i'6->S'6) 

Material type 2: 

Factor 2 sum =( -^3+^9) 

Factor 3 sum = (-.S'4+57+5'8+5io) 

Step b. Material type 1: 

Factor 1 fraction = 1 

Material type 2: 

Factor 2 fractions = 12/20 (for condition 1) 

= 8/20 (for condition 2) 

Factor 3 fraction = 0 (for condition 1) 

= 1 (for condition 2) 
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Step c. Material type 1: 

l(Si+S,+S,-S,)(l)] 

Material type 2: 

Condition 1: ( - ^8+5 , ) (12/20) 

+ {-Si+S,+Ss+Sio)(0) 

Condition 2: (-S»+S>)(8/20) 

+ ( - ^ 4 + ^7 + ^8+i ' l0)( l ) 

Step d. Material type 1: 

(Si+Si+s,-s,y 
Material type 2: 

Condition 1: [(-6'3+59)(12/20)]2 

Condition 2: [ ( -53+i '9 ) (8 /20) + ( -54+57+ i ' 8+5 i2 ) ] ' ' 

Step e. Material type 1: 

(Si+s,+s,-s,ya,^,' 
Material type 2: 

{ [ ( - 5 3 + >S'9)(12/20)12+[(-5'3 + ^9)(8/20) 

+ (-S,+S7+S,+Siom<rti' 

Rule 6 

iSi+s,+Si-s,y , 
Material type 1: 

Material type 2: 

'11 

'(-Si+s,y , i-s,+s,+Ss+s 
20 ^ 20 ' " ' 2 ' 

10)^1 

R u l e ? 

Method 1: (Si+Si+Si-Se-Ss+Styaf^^ 

Method 2: (-i'4+i'7+^8+'S'io)2(r92' 

Rule 8 

Method 1: {[(5i+5 '2+55-56)(3/8) + (-6'3+i'9)(0)]2 

+ [(^l + 52 + 55-^6) (5 /8 ) + (- .y3 + ^9)(2/10)]2 

+ [{Si+S2+S,-S,)i0) + i-S3+S,)(8/l0mc^,' 

Method 2: {[(-^4+^7+>S'8+i'io)(8/20)]2 

+ [ ( - 5 4 + 57 + ^8 + ^10)(2/20)]2 

+ [ ( - 5 4 + 57 + i's + >yio)(10/20)]2!<Ts/ 

( - 5 4 + ^7 + i'8 + ^10)2 

400 (64+4+100)<7^2' 
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Rule 9 

x^ .V, ^ 1 [(Si+Si+s.-s.y (-s,+s,y-\ 
Method 1: ^ ~ + J (r„j« 

. . . . . ( -54+^7 + ^8+.yi0)' , 
Method 2: — (r„j' 

These various quantities are then summed to give the variance of the 
algebraic sum S. 

Example 6.D 

In example 6.C, for analytical method 1 three different analytical 
conditions were specified; these affect the coefficient for the short-term 
systematic-analytical-error component, a^,^. The conditions were not 
specified further, but they could refer to some time-associated variable, 
with the analyses being performed in three different blocks of time, such as 
shifts or half-shifts. 

Situations may arise in which a further specification can be made of 
such conditions. It is then possible to apply rule 8 more than once to 
account for whatever specification is made. This is illustrated in this 
example. 

For the data of example 6.C and for analytical method 1, assume that 
condition 1 refers to operator 1 on instrument 1, condition 2 to operator 2 
on instrument 1, and condition 3 to operator 2 on instrument 2. Further, 
replace c^j^^ by two components, one describing the variance between 
operators (ao^) and the other describing the variance between instruments 
(ci^). Rule 8 is then applied twice, once to account for the short-term 
systematic error due to operators and once to take into account this error 
source for instruments. The long-term systematic-error variance remains 
unchanged. 

From rule 8 and the data of example 6.C, the coefficient for <rô  is 
found by replacing "analytical condition" by "operator"; this gives 

[iSi+Si+S,-S,)(,3/8) + (-S3+S,mY 
+ [iSi+S2+S,-S,)i5/8) + (-Sz+S>)ilO/lO)f 

Similarly, the coefficient for (TI^, which describes the between-instru-
ment variance, is 

[iSx+S2+S,-S,)i8/8) + (-Sz+S»)i2/\0)r 

+ [(Si+S2+St-S,m + {-Si+S,)(8/lO)Y 

Clearly, this can be extended to include any number of short-term 
systematic-error components. 



TABLE 6.9 MATERIAL BALANCE DATA 

(Example 6.E) 

Type of materiEil 
M U F 

component 3 . 3 % "6U 4.2% 2"U 

0 
•11 
w 
n 
o 

*1 
O 

o w z 
M 

> r 
> 
o 
w 
63 
7i 
> 
n 
i/i 

c 

1 UFe cylinders 

(U-factor = 0.6760) 
2 Cans of UO2 powder 

(U-factor = 0.8760) 
3 Boats of sintered pellets 

(U-factor = 0.8807) 
4 Cans of hard scrap 

(U-factor = 0.8807) 
5 Cans of green scrap 

(U-factor=0.8760) 
6 Cans of dirty powder 

BI 
R 
EI 
BI 
EI 

BI 
EI 

BI 
EI 

BI 
EI 

BI 

EI 

DP-1: 
DP-2: 
DP-1: 
DP-2 
DP-3-

9.942 
6.576 
3.310 
2.035 
5.478 

0 
7.443 

0 
0.161 

0.418 
0.622 

0.121 
0.148 
0.121 
0.148 
0.096 

(3)* 
(2) 
(I) 
(5) 
(14) 

(37) 

(1) 

(2) 
(3) 

(0.8727) 
(0.8738) 
(0.8727) 
(0.8738) 
(0.8694) 

8.384 (2)* 
21.055 (5) 
4.203 (1) 
4.108 (8) 
10.396 (21) 

0 
15.020 (60) 

0 
0.434 (1) 

DP-4 
DP-5 
DP-4 
DP-5 
DP-6 

0.732 (3) 
1.166 (4) 

0.156 (0.8702) 
0.129 (0.8688) 
0.156 (0.8702) 
0.129 (0.8688) 
0.187 (0.8724) 



7 Cans of grinder sludge 

8 Cans of ADUf scrap 

Total 
Total 
Total 

BI 
EI 
BI 

Elt 

BI 
R 
EI 

0 
SL-1: 0.023 (0.685) 
A-1: 0.231 (0.501) 
A-2: 0.417 (0.770) 
A-3: 0.186 (0.242) 
A-4: 0.401 (0.798) 
A-5: 0.387 (0.610) 

A-6: 0.315 (0.743) 
A-7: 0.155 (0.286) 
A-8: 0.287 (0.318) 
A-9: 0.130 (0.240) 
A-10: 0.118 (0.226) 
A-U: 0.224 (0.383) 
A-12: 0.216 (0.511) 
A-13: 0.333 (0.763) 

14.286 
6.576 

20.802 

0 
SL-2: 0.041 (0.560) 
A-14: 0.287 (0.477) 
A-15: 0.315 (0.722) 
A-16: 0.192 (0.249) 

A-17: 
A-18: 
A-19: 
A-20: 
A-21: 
A-22: 
A-23: 
A-24: 
A-25: 
A-26: 

0.184 (0.220) 
0.277 (0.419) 
0.190 (0.342) 
0.315 (0.693) 
0.362 (0.741) 
0.299 (0.512) 
0.301 (0.322) 
0.114 (0.214) 
0.380 (0.532) 
0.284 (0.286) 

14.303 
21.055 
35.232 

< > 
2 > z 
n w 
o 
> 
z 
> r o w 
» 
> 

2 

* Numbers in parentheses are the number of discrete items for material types 1 to 5, and uranium factors for material types & to 8. vi 
f ADU is ammonium diuranate. ^ 
tThe EI for 3.3% ""U includes A-1 to A-5 and A-6 to A-13; EI for 4.2% ™U includes A-14 to A-16 and A-17 to A-26. S 

INO 

O 
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Example 6.E 

Consider the ^"U M U F across a small-scale fuel fabrication facility 
for a 1-month time period. The material is at two nominal enrichments, as 
indicated. The data are classified by material type. The abbreviations 
BI and EI are beginning and ending inventories, respectively, and R is 
receipts. Assume no shipments and no measured discards, so M U F = BI + 
R - E I . 

The material balance data are given in Table 6.9. For the main
stream items (UFe cylinders, UO2 powder cans, and boats of sintered 
pellets) and for hard and green scrap, the numbers in parentheses in the 
table are the numbers of discrete items involved. It is assumed that the 
discrete items in each class have equal amounts of ^'^U. This is a reasonable 
assumption for this type of analysis since a moderate amount of item-to-
item variation in isotope weight has little effect on the result. The factors 
used to convert net weight to total uranium are given in the table for each 
of these categories. 

For the scrap items, assume that a separate factor is established for 
each discrete item. These items are listed individually in the table, and the 
parenthetical values are the uranium factors established for each item. 

The ^'°U isotopic factor is 0.03311 for all items at the nominal enrich
ment of 3 .3% and 0.04189 for all items at 4 .2%. Tabular entries are given 
in kilograms of ^"U. 

The two UFe cylinders in ending inventory are both identical to 
those in receipts. For the UO2 powder, the beginning and ending inventory 
items are all physically different. One new container of green scrap was 
created for each enrichment, with the five containers in beginning in
ventory still being in ending inventory. In such an instance the common 
items will drop out of the algebraic sum before the variance of the sum is 
found. This is an important point to keep in mind. If a new determination 
were made for a given item in ending inventory, however, and the value 
changed accordingly, then the item would be carried in the algebraic sum 
as both a phis and a minus and the rules would be applied as if they were 
different items. 

Assume the values given in Table 6.10 for the error parameters, with 
cr^, = 0 for all i and cr^j = 0 for all 7. 

The uranium factors are based on the following data: 

UFe: three samples with one analysis per sample (all under same 
conditions). 

UO2 powder: 20 samples with one analysis per sample under four 
sets of conditions (five analyses per set). 

UO2 pellets: 16 samples with one analysis per sample under two sets 
of conditions (eight analyses per set). 
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TABLE 6.10 MEASUREMENT E R R O R STANDARD DEVIATIONS 

(Example 6.E) 

Scale Type of material 

UFe cylinders 
U O j powder-f scrap items 
Sintered pellets 

0.0005 0.0001 
0.00034 0.00047 
0.0001 0.0001 

Uranium sampling, material types 

UFe 
UO2 powder 
UO2 pellets 
Dirty powder 
Sludge 
ADU scrap 

0.00025 
0.00018 
0.00018 
0.003 
0.049 
0.022 

0.0006 
0.00016 
0.00006 
0.023 
0.170 
0.076 

Uranium analysis, methods "H "^k 

(UFe) 
(UO2 powder) 
(UO2 pellets) 
(Scrap items) 

0.00029 0.00032 0.0006 
0.00028 0.00032 0.00032 
0.00028 0,00028 0.00011 
0.00038 0.00045 0.0020 

235U sampling, material type 

UFe; UO2 powder; UO2 pellets 

2"U Analysis 

<rx , 

0.00019 

"•>,. 

0.0007 

"-i 

0.0002 

" " m 

0.0011 

"^l 

0.0003 

"'v^ 

0.0050 

Scrap items: one analysis per sample with one, two, or four samples 
per item as indicated below: 

Material 

DP-1, 2, 4, 5 
DP-3, 6 
SL-1, 2 
A-1, 2, 14, 16 
A-3, 4, 5, 15 
A-6, 8, 9, 11, 13, 18 
A-7, 10, 17, 19, 22 
A-12, 20, 21, 23, 26 
A-24, 25 

Analytical condition 

1 2 3 

1 

1 
1 

1 

1 
1 
1 

1 

1 
1 

2 
1 
1 
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The 235U factors are each based on five samples with one analysis per 
sample. For each factor one sample is drawn from the UFe and two each 
from the UO2 powder and the VOi pellets. All analyses are performed 
under the same set of analytical conditions. 

The data are now complete, and rules 1 to 15 can be applied. All 
variances are multiplied by IC"' to convert kilograms squared to grams 
squared. 

Product: 
Ca\ ĝ  

Rule 1 

Csi = (9.942 + 6 .576-3 .310+8 .384+21 .055-4 .203)2 

= (38.444)2=1477.94 X (0.5)^ = 369.49 

Cs2= ( 2 . 0 3 5 - 5 . 4 7 8 + 4 . 1 0 8 - 1 0 . 3 9 6 - 0 . 1 6 1 

- 0 . 4 3 4 + 0 . 4 1 8 - 0 . 6 2 2 + 0 .732-1 .166 

28.84 

5.05 

403.38 

R u l e s 

C.i = (9.942/3)2(3) + (3.266)2 
+ (8.384/2)2(2) + (16.852/4)2(4) 

= 149.76 X(0.10)2 = 1.50* 

C.2 = (2.035/5)2(5) + ( -5 .478 /14)2(14)+ . . . 
+ ( - 0 . 1 6 1 ) 2 + . . . + ( - 0 . 2 0 4 ) 2 + . . . 

= 11.96 X (0.47)2 = 2.64 

C.3=(-7 .443/37)2(37) + (-15.020/60)2(60) 
= 5.26 X (0.10)2 = 0.05 

Total 4 .19 

Rule 4 

CAI = 1477.94 (SameasCj i ) X (0.25)2 = 92.37 

- 0 . 0 9 6 - 0 . 1 8 7 - 0 . 0 2 3 - . 

= (-15.795)2 = 249.48 

Cj., = ( - 7 .443 -15 .020 )2 

= 504.59 

. . -0.284)2 

X (0,34)2 

X (0.10)2 

Total 

* The second term in the sum, (3.266)^, relates to the cyHnder that is included as a 
receipt but is not in ending inventory. A similar statement applies to the four cylinders whose 
total ^^V weight is 16.852 kg. 
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• 

C A 2 = ( 2 . 0 3 5 - 5 . 4 7 8 + 4 . 1 0 8 - 1 0 . 3 9 6 - 0 . 2 0 4 - 0 . 4 3 4 ) 2 

= 107.52 

CA,, = ( - 7 . 4 4 3 - 1 5 . 0 2 0 - 0 . 1 6 1 - 0 . 4 3 4 ) 2 
= 531.67 

C A 4 = ( - 0 . 0 9 6 - 0 . 1 8 7 ) 2 

= 0.08 

CA 5 = ( - 0 . 0 2 3 - 0 . 0 4 1 ) 2 
= 0.004096 

C A J = ( - 0 . 3 1 5 - 0 . 1 5 5 - . . 

= 20.106 

X (0.18)2 

-0.434)2 
X (0.18)2 

X(3.0)2 

X (49)2 

0.284)2 
X (22)2 

Total 

= 

= 

= 

= 

= 

3.48 

17.23 

0.72 

9.83 

9731.43 

9855.06 

Rule 6 

C,j = (1477.94)/3 
= 492.65 X (0.6)2 

C,^= (107.52)/20 
= 5.38 X (0.16)2 

C,3=(531.67)/16 
= 33.23 X (0.06)2 

C,^= ( - 0 . 0 9 6 ) 2 / 1 + (-0 .187)2/1 
= 0.0419 X (23)2 

C , j = ( - 0 . 0 2 3 ) 2 / 1 + (-0.041)2/1 
= 0.00221 X (170)2 

C , ^ = ( - 0 . 3 1 5 ) 2 / l + ( - 0 . 1 5 5 ) 2 / 4 + . . . 
= 1.01249 X (76)2 

Rule? 

C«j= 1477.94 (SameasCsj) X(0.29)2 

C92= 107.52 (Same as CA^) X (0.28)2 

C93 = 531.67 (SameasCAj) X(0.28)2 

C94 = ( 0 . 0 9 6 - 0 . 1 8 7 - 0 . 0 2 3 - 0 . 0 4 1 - 0 . 3 1 5 - . . .)2 
= 23.34 X (0.38)2 

Total 

= 

= 

= 

= 

= 

= 

Total 

= 

= 

= 

= 

177.35 

0.14 

0.12 

23.38 

63.87 

5848.14 

6113.00 

124.29 

8.43 

41.68 

3.37 

177.77 

* The 0.204 and 0.434 values relate to the cans of green scrap created during the month 
and carried at the same factors as the UO2 powder. 
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Rules 
C B I = [ ( 3 8 . 4 4 4 ) ( 1 ) ] 2 = 1477.94 X(0.32)2 = 151.34 

C ĵ =[(-10.369)(l/4)]2(4) = 26.88 X(0.32)2 = 2.75 

C«,= [(-23.058)(1/2)P(2) = 265.84X (0.28)2 = 20.84 

Condition 1: 

[(-0.155)(l/4) + (-0.118)(l/4) 
+ (-0.184)(l/4) + (-0.190)(l/4) 
+ (-0.299) (l/4)]2 = 0.055932 

Condition 2: 

f ( -a315)( l ) + (-0.287)(l) + (-0.130)(l) 
+ (-0.224)(l) + (-0.333)(l) + (-0.277)(l) 
+ (-0.155)(l/4) + (-0.118)(l/4) 
+ (-0.184)(l/4) + (-0.190)(l/4) 
+ (-0.299)(l/4) + (-0.114)(] /2) 
+ (0.380)(l/2)]2 

= 4.200450 

Condition 3: 

[(-0.096)(l) + (-0.187)(l) + (-0.023)(l) 
+ (-0.041)(l) + (-0.155)(l/2) 
+ (-0.118)(l/2) + (-0.184)(l/2) 
+ (-0.190)(l/2) + (-0.299)(l/2) 
+ (-0.216)(l) + (-0.315)(l) + (-0.362)(l) 
+ (-0.301)(l) + (-0.284)(l) 
+ (-0.114)(l/2) + (-0.380)(l/2)]2 

= 6.446521 

By step e, Qj^ = 0.055932+4.200450+6.446521 
= 10.7029 

Rule 9 

C„i= (38.444)2/3 = 492.65 
C„2=(-10.369)2/20 = 5.38 
C„3 = (-23.058)2/16 = 33.23 

X (0.45)2 

X (0.6)2 
X (0.32)2 
X(0.11)2 

= 

2.17t 

177.10 

177.35 
0.55 
0.40 

• DP-1, 2, 4, 5, A-1 to A-5, and A-14 to A-16 will not enter in because they cancel out in 
the MUF calculation before LE-MUF is found. 

t As a check, the sum of all the multipliers over all conditions must equal the total numbers 
of factors based oh the method in question. In this case this is 22. 
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C„4* = (-0.096)2/l + (-0.187)2/l+ . . . 

= 1.05889 X (2.0)2 = 424 

Total 182.54 

Rulf lot 
C^iJ= (14.286+14.303+6.576+21.055 

-20.802-35.232)2 
= (0.186)2 = 0.034596 X (0.19)2 0-00 

Rule 11 

Condition 1 (UFe): 
[(0.060) (1 /5) + (0.126) (1 /5) ]2 = 0.001384§ 
Condition 2 (UO2 powder): 
[(0.060) (2/5) + (0.126) (2 /5) I2 = 0.005536 

Condition 3 (UO2 pellets): 
[(0.060) (2/5) + (0.126) (2/5) ]2 = 0.005536 

C,j = 0.001384+0.005536+0.005536 
= 0.012456 X (0.2)2 = Q.OO 

Rule 12 

C^j= (0.060)2/5+(0.126)2/5 
= 0.003895 X (0.3)2 = 0.00 

Rule 13 

C^i= (0.060+0.126)2 = 0.034596 X (0.7)2 = o.02 

Rule 14 

C„i= (0.060+0.126)2(1) =0.034596 X(l.1)2 = 0.04 

Rule 15 

C,i= (0.060)2/5+(0.126)2/5 
= 0.003895 X (5.0)2 = Q.IO 

The error components for the 15 rules are summarized in Table 6.11. 
It is apparent from this table that the uncertainties in the percent 23̂ xj 

• c„ =c, +c, +c,. 
4 4 R e 

t There is only one material type, by definition. See last paragraph in Sec. 6.1.2. 
X L'HC the totals at the bottom of Table 6.9. 
§0,060 = 14.286+6.576-20.802 for 3.3% »»U and 0.126 = 14.303+21.055-35.232 for 

4.2% '»U, 
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factors have negligible effect on the variance of M U F . The reason for this is 
that in this example the same factors are used for beginning inventories, 
receipts, and ending inventories. In effect, the uranium M U F , which is 
close to zero, is multiplied by the 2"U factor for a given enrichment. It is 
intuitively clear that even large uncertainties in this factor would contribute 
very little additional to the variance of the ^^^\J M U F . This would not be 
the case, of course, if one factor were used for receipts and another for 
product. Different factors are clearly required if any blending of different 
enrichments takes place, and the variance of M U F would increase accord
ingly. 

Before continuing with the next example, we should comment at this 
point on the amount of computational effort required to calculate the 
standard deviation of M U F as just exemplified. Although the computa
tional process may seem unwieldy, a number of arguments can be made to 
answer the objection that a simpler approach is needed. 

1. Many systems of nuclear material accountability are computerized, 
at least to some degree. Calculations that seem unwieldy when performed 
on a desk calculator are no challenge to a computer. Further, the computa
tional rules are easily programmed. 

2. Even if a computer is not available, a number of shortcuts can be 

TABLE 6.11 SUMMARY OF VARIANCE COMPONENTS 

(Example 6.E) 

Rule 

1 
2 
3 

4 
5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 

Operation 

Weighing 

Sampling (uranium) 

Analysis (uranium) 

Sampling ( " s u ) 

Analysis ("^U) 

Error type * 

LTS 
STS 
R 

LTS 
STS 
R 

LTS 
STS 
R 

LTS 
STS 
R 
LTS 
STS 
R 

Variance, 

403.38 
0.00 
4.19 

9855.06 
0.00 

6113.00 

177.77 
177.10 
182.54 

0.00 
0.00 
0.00 
0.02 
0.04 
0.10 

Total 

g2 2 36U 

407.57 

15,968.06 

537.41 

0.00 

0.16 

16,913.20 g2 

= V l 6 , 9 1 3 . 2 0 
= 130go f "6U 

* LTS, long-term systematic; STS, short-term systematic; R, random. 
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taken For example, for a given system certain error sources contribute a 
negligible amount to the overall uncertainty m M U F and can be ignored m 
routine calculation In the example just completed, the experienced in
dividual will recognize immediately that rules 10 to 15 can be ignored 

3 Tha t a correct analysis requires some effort is no basis for analyzing 
data in a simpler but incorrect fashion This is not necessarily true when the 
degree of correctness is largely of academic importance In nuclear materials 
control applications, however, the simpler methods sometimes used not 
only are incorrect in principle but also may lead to results that are grossly 
in error and misleading 

Example 6.F 

(The data for this example are extracted from Capability of a Typical 
Material Balance Accounting System for a Chemical Processing Plant, by R A 
Schneider and D P Granquist, Report BNWL-1384, Battelle-Northwest, 
Richland, Wash , Pacific Northwest Laboratory, May, 1970 The authors 
quote "capabil i ty" and "performance" values for the measurement 
system The capability model represents the best performance that the 
measurement system is theoretically capable of achieving in an operating 
environment The performance model represents what might more generally 
be expected in practice from a high-quality measurement system The 
performance values are used m this example ) 

Consider the plutonium M U F in a chemical reprocessing facility 
for a given campaign The facility in question processes material at the 
rate of 1 tonne of uranium per batch, with one batch processed per day 
The campaign consists of 40 tonnes of uranium A plutonium content of 
10,000 g of plutonium per tonne of uranium is assuined The pertinent 
material balance data are summarized in Table 6 12 

Cladding waste is not included in this table Since it is treated in the 
accounting system as plant input and subtracted as plant waste, it cancels 
out in the M U F algebraic sum 

The pertinent measurement methods are given in Table 6 13 

TABLE 6 12 MATERIAL BALANCE DATA 
(Example 6 F) 

Material balance c 

Input dissolver solution 
Product Pu(N08)4 
Salt waste 
Inventory (in-process) 

;omponent 
Batch size, 
kg of Pu 

10 
22 

0 25 
0 20 

Batches per 
campaign 

40 
18 
16 
10 * 

Total, 
kg of Pu 

400 
396 

4 
2 

* These 10 batches refer to 10 process vessels 
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TABLE 6 13 MEASUREMENT METHODS 

(Example 6 F) 

Process vessel Volume or weight Sampling Analysis 

Accountability tank 

Pu product receiver 

Acid waste tank 

10 process vessels 

Dip-tube manometer and Circulating Isotopic 
specific gravity sampler dilution 

Weight-specific gravity Circulating Volumetric 
sampler titration 

Dip-tube manometer Circulating Alpha 
or recorder sampler counting 

Dip-tube manometer Circulating Various 
or recorder sampler 

Using the notation of this chapter and the data of Schneider and 
Granquist, we find the parameter values given in Table 6 14 No short-
term systematic-error components are given, they are assumed to be 
included m the long-term components 

TABLE 6 14 E R R O R STANDARD DEVIATIONS 

(Example 6 F) 

Bulk Measurements 

Input 
Product 
Salt waste 
Inventory 

Input 
Product 
Salt waste 
Inventory 

Input 
Product 
Salt waste 

Inventory 

<r!j=0 0030 
<r5j=0 0010 
<rs3=0 03 

'r..* = 

<rii=0 0020 
<r4j=0 0020 
0-4, = 0 06 

-^,* = 

<7«,=0 0025 
CT«j = 0 0030 
ff(3=0 10 

^ » . * = 

Sampling 

Analysis 

<r,,=0 0030 
(7,2=0 0010 
o-.3=0 02 
(r , ,=0 05 for all I =4 , 

<T,j=0 0030 
o-,2=0 0050 
o-,3=0 06 
<7„=0 05 for all J =4 , 

r„j=0 01 
r „2=0 0070 

r„3 = 0 20 

, t = 0 05 for all/t =4 , 

13 

13 

13 

* The values of trĵ  (ŷ  , and {rê  for the in process vessels are immaterial The algebraic 
sums m question will be zero when rule 1 is applied to the in process vessels assuming these 
vessels have the same amounts of material in beginning and ending inventories 

t One comment on the analytical methods is in order The analytical methods used to 
measure the percent plutonium in the process vessels are no doubt the same for some different 
vessels For example â  may equal a^ This poses no problems since the o^ s are random 

4 11 I 

components It would create a problem for the systematic components as but their effects cancel 

anyway Thus it is acceptable to treat Q^ values as distinct qualities for / = 4 13 (i e , 

for the process vessels) 
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This example is much simpler than the one for the fuel fabrication 
facility. The principal reason for this is that, with a chemical reprocessing 
facility, there are far fewer instances in which assigned values are correlated. 
Common element factors, which are a major cause of correlations in a fuel 
falDrication plant, do not normally exist in a chemical reprocessing facility 
since each batch is measured. Also, in this particular example diff'erent 
analytical methods are assumed used for the major material balance com
ponents and all short-term systematic-error variances are included in the 
long-term variances. The rules for finding the variance of M U F are still 
applicable, of course, but are far simpler in application. 

Let us now use these rules as appropriate to calculate the variance of 
the plutonium M U F . 

Rule 1 

C j i = (400)2= 160,000 

a „ = (396)2 =156,816 

083= (4)2= 16 

Rules 

C<i= (10)2(40) =4000 

C, , = (22)2(18)=8712 

C.3= (0.25)2(16) = 1 

For each process vessel, 

C . ,= (0.20)2(2)* = 0.08 

For all 10 process vessels, 

(10) (0.08) =0.80 

Rule 4 

C A I = (400)2= 160,000 

CA2 = (396)2 =156,816 

C A 3 = ( 4 ) 2 = 1 6 

X (0.0030)2 

X (0.0010)2 

X (0.03)2 

X (0.0030)2 

X (0.0010)2 

X (0.02)2 

(; = 4, 5, . . . , 13) 

X (0.05)2 

Ca\ 

= 

= 

= 

Total 

= 

= 

= 

= 

Product: 
kg2 of Pu 

1.4400 

0.1568 

0.0144 

1.6112 

0.0360 

0.0087 

0.0004 

0.0020 

X (0.0020)2 

X (0.0020)2 

X (0.06)2 

Total 

Total 

0.0471 

0.6400 

0.6273 

0.0576 

1.3249 

* The 2 factor is a result of the measurement being made on both the beginning and the 
ending inventory. 
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Rule 6 

C,i = (10)2(40) =4000 

C,2 = (22)2(18) =8712 

C , , = (0.25)2(16) = 1 

C,̂ . = (0.20)2(2) =0 .08 

For all /, 

(10) (0.08) =0.80 

Rule 7 

Cei = (400)2= 160,000 

C92= (396)2= 156,816 

C», = (4)2=16 

Rule 9 

C.i = (10)2(40) =4000 

C„2= (22)2(18) =8712 

C„3= (0.25)2(16) = 1 

C„j^= (0.20)2(2) =0 .08 

For all k. 

(10) (0.08) =0 .80 

X (0.0030)2 

X (0.0050)2 

X (0.06)2 

i = 4 , 5 , . . . , 1 3 

X (0.05)2 

X (0.0025)2 

X (0.0030)2 

X (0.10)2 

X (0.01)2 

X (0.0070)2 

X (0.20)2 

^ = 4 , 5 , . . . , 1 3 

X (0.05)2 

C<r2, 

= 

= 

= 

= 

Total 

= 

= 

= 

Total 

= 

= 

= 

= 

Total 

kg2 of Pu 

0.0360 

0.2178 

0.0036 

0.0020 

0.2594 

1.0000 

1.4113 

0.1600 

2.5713 

0.4000 

0.4269 

0.0400 

0.0020 

0.8689 

The results are summarized in Table 6.15. 

TABLE 6.15 SUMMARY OF VARIANCES 

(Example 6.F) 

Rule Description Variance, kg^ of Pu Percent of total 

1 
3 
4 
5 
7 
9 

Systematic bulk measurement 
Random bulk measurement 
Systematic sampling 
Random sampling 
Systematic analysis 
Random analysis 

1.6112 
0.0471 
1.3249 
0.2594 
2.5713 
0.8689 

24.1 
0.7 

19.8 
3.9 

38.5 
13.0 

Total 6.6828 100.0 

, 7 „ „ = 2 . 5 9 k g o f P u 
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In this particular example, in view of the statistical independence of the 
various components of the material balance, it is also possible to break down 
the variance in other ways. For example, see Table 6.16. 

TABLE 6.16 COMPONENTS OF VARIANCE OF M U F 

(Example 6.F) 

Material balance component 
Systematic error, 

kg'' of Pu 
Random error, 

kg2 of Pu 

Input 
Product 
Waste 
Inventory 

3.0800 (46.1%) 
2.1954 (32.9%) 
0.2320 (3 .5%) 
0 

Total 5.5074 (82.4%) 

Total = 6.6828kg2ofPu 

0.4720 (7.1%) 
0.6534 (9.8%) 
0.044O (0.7%,) 
0.0060 (0.1%) 

1.1754 (17.6%) 

Example 6.G 

(This example was provided by R. A. Schneider.) 

In a given plutonium-scrap-recovery facility, the month-end inventory 
holdings in seven process vessels are determined. The volume of the con
tents of each tank is measured, and each tank is sampled and analyzed for 
percent plutonium. The total plutonium inventory is calculated from these 
data. 

In Table 6.17 the calculated plutonium in each tank is given, along 
with the random-error standard deviations due to the volume determina
tion, sampling for percent plutonium, and percent plutonium analysis. 
Find the random-error standard deviation of the total plutonium inventory 
of 3415 g. 

TABLE 6.17 PLUTONIUM INVENTORY DATA 

(Example 6.G) 

Process vessel 

1 
2 
3 
4 
5 
6 
7 

Plutonium, g 

100 
200 

10 
1800 
1000 

5 
300 

"'x 

0.01 
0.02 
0.05 
0.005 
0.005 
0.10 
0.03 

"', 

0.01 
0.01 
0.07 
0.001 
0.001 
0.10 
0.00 

"-l 

0.02 
0.02 
0.05 
0.005 
0,005 
0.10 
0.04 

Total 3415 
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The rules of Table 6.2 are applied. Since the problem is concerned 
only with random-error variances, only rules 3, 6, and 9 are pertinent. 
Further, because single determinations are made throughout, Ct = C^ = Cu 
for each process vessel. Therefore the calculations are conveniently pre
sented in tabular form (Table 6.18). 

TABLE 6.18 CALCULATION OF VARIANCE O F INVENTORY 

(Example 6.G) 

Process vessel 

1 
2 
3 
4 
5 
6 
7 

C«— C,, — Cw 

(100)2 
(200)» 

(10)' 
(1800)2 
(1000)2 

(5)» 
(300)2 

/ 2 1 2 1 2> 

0.0006 
0.0009 
0.0099 
0.000051 
0.000051 
0.03 
0.0025 

Variance Pu MUF 

(TMUF 22.Og 

Product 

6.00 
36.00 

0.99 
165.24 
51.00 
0.75 

225.00 

484.98 g2 

Example 6.H 

Reference is made to example 6.E, which dealt with the ^"U MUF 
in the fuel fabrication facility. Suppose now that the '̂̂ U content in the 
ADU scrap containers is measured by a nondestructive assay (NDA) 
instrument rather than by wet chemistry. How does the calculation of 
the variance of MUF change? Assume that a linear calibration curve 
describes the relation between counts observed and '̂̂ U content for the 
NDA instrument and that the same calibration curve is used for all ADU 
containers. 

First, note that the ADU values will not be included in application of 
rules 1 to 15 in Tables 6.2 and 6.3. Rather, the methods of Sec. 3.3.8 will 
be applied to find the systematic- and random-error variances that must 
be added to those found by application of rules 1 to 15 to the other items 
in the MUF equation. 

In applying the methods of Sec. 3.3.8, assume that the equation for the 
calibration curve relating predicted grams of ^'^U, x, to counts observed,,)', 
is 

.x=100-f0.05y 

In the notation of Eq. 3.15, this means a ' = 100 and /3' = 0.05. 
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Also, assume that the following values were calculated during the 
calibration: 

<r? = 20,160 

/? = 0.048 

-Lxl _ 2,040,000 

n ~ 8 

(from Eq. 3.24) 

(from Eq. 3.23) 

= 255,000 

;«- = 450 

^ = 1 / 3 ' = 1/0.05 = 20 

a= - a ' ^ = - (100) (20) = - 2 0 0 0 

(from Eq. 3.18) 

(from Eq. 3.19) 

The y values (total counts) corresponding to the amounts of ^^^U in 
the ADU containers are required as final input. ADU cans AD-1 to AD-5 
and AD-14 to AD-16 are ignored since they were all in both beginning and 
ending inventories. Table 6.19 gives the required data. (All values affect 
the M U F equation as negative values since all are in ending inventory 
only. The sign is ignored in this calculation.) 

With these data we can apply rules 10 and 11 of Sec. 3.3.8 to find the 
systematic- and random-error variances for the sum of the ^^^U contents 
in the ADU containers. (If some of the containers were in beginning 
inventory but not in ending inventory, then rules 13 and 14 would apply, 
with some of the c, being + 1 and some being — 1.) 

Rule 10 

From Eq. 3.26, with y = 29Q2 replacing j o and multiplying the expression 
by)t2 = 324, 

j _ (0.048)(324) 

400 

= 3610g2of 235U 

255,000 + 
(2982 + 2000)2 2(2982+2000) (450)' 

400 20 

TABLE 6.19 OBSERVED COUNT DATA FOR ADU CANS 
(Example 6.H) 

Can No. 

A-6 
A-7 
A-8 
A-9 
A-10 
A-11 
A-12 
A-13 
A-17 

J),, counts 

4300 
1100 
3740 
600 
360 
2480 
2320 
4660 
1680 

.«r„gof236U 

315 
155 
287 
130 
118 
224 
216 
333 
184 

Can No. 

A-18 
A-19 
A-20 
A-21 
A-22 
A-23 
A-24 
A-25 
A-26 

7„ counts 

3540 
1800 
4300 
5240 
3980 
4020 
280 

5600 
3680 

*., gof2"U 

277 
190 
315 
362 
299 
301 
114 
380 
284 
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Rule 11 

Multiplying Eq. 3.28 by A: = 18 gives the random-error variance. 

. „ (18)(20,160) 
< r | = ^QQ ~ = 9 0 7 g2 of 235U 

In comparing the variance of M U F with that found by the wet-
chemistry approach, note (with reference to example 6.E) that most of the 
variance attributable to ADU scrap came from C^^at^^ and C,,^c-^^ because 
of sampling of the containers for percent uranium. The total variance due 
to these sources was (9731+5848) = 15,579 ĝ  of ^^^U. This variance would 
now be excluded and would be replaced by (3610+907) or 4517 ĝ  of ^^^U. 

Finally, if more than one calibration curve were involved, each would 
be handled separately by the methods of Sec. 3.3.8 or 3.3.10 and the vari
ances added. This assumes independence of the curves, which is a reason
able assumption if they relate to different NDA instruments and if the 
calibrating standards are well defined. In other situations this assumption 
may be violated to some degree, and the estimated parameters for the 
calibration curves may not be statistically independent of one another. The 
situation is analogous to a long- and short-term systematic error, with the 
short-term error related to the systematic-error variance associated with 
each calibration and the long-term error to a persistent systematic error 
that affects all calibration curves. The long-term error variance is difficult 
to estimate in the calibration situation, however. It is affected by uncertain
ties in the standards and by persistent biases in the NDA instrument 
involved. In the modeling done in Sees. 3.3.8 and 3.3.10, we assumed that 
the calibrating standards are assigned known values and this problem is 
avoided. If we have some real concern about the validity of this assumption 
in a given application, we can, by technical judgment, assign additional 
variances to the parameter. These variances would then affect all calibra
tion curves as a long-term systematic-error variance, whereas the short-term 
error variances would be estimated separately for each calibration. This 
problein area requires further study. 

Example 6.1 

A number of the preceding examples have been concerned with 
calculating the variance of M U F for specific facilities. In particular, 
example 6.E deals with a UO2 fabrication facility, 6.F with a chemical 
reprocessing facility, and 6.G with a plutonium scrap recovery plant. 

This final example relates to a single campaign in a PUO2-UO2 
fabrication plant. It differs from the preceding examples primarily in that 
it represents the type of analysis that would be performed before the 
campaign to anticipate measurement problems that might arise and to 
identify actions that could be taken to alleviate their effects. 
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Because of the difference in motivation, this analysis is more detailed 
than one performed simply to assess the significance of a given observed 
MUF. In particular, the frequency of material balance closings is studied 
with respect to effects on the variance of MUF. In this connection, attention 
is directed to both the incremental MUF for a given time period and the 
MUF accumulated from the start of the campaign. In addition, although 
not shown here, in an a priori analysis such as this, we would perform 
parametric studies to investigate the effects of different measurement in
tensities on the variance of MUF. This amount of detail is helpful when we 
are performing studies for the purpose of guiding future actions. 

Note that, although this is considerably more detailed than the 
previous examples cited, no additional statistical techniques are involved. 

The campaign under study involves the processing of 32 batches of 
3.65% Pu02-96.35% UO2 pellets, each batch containing 312 g of PUO2. 
The 32 containers of PUO2 powder are characterized prior to blending 
with UO2 powder. The campaign lasts 10 weeks. During the first week all 
receipts are characterized, sealed, and stored in the vault for quality-
control hold. During the second week all 32 batches are processed through 
blending and slugging and are again stored in the vault as individual 
batches. Pellet pressing begins during the third week, and thereafter the 
processing proceeds at a rate of five batches per week. 

Material Flow. Table 6.20 summarizes the material status at the end 
of each week of this campaign. 

Generation of Scrap. For this campaign, scrap is accumulated as 
indicated in Table 6.21. No further green scrap is generated after week 3, 
because all operations on green powder and pellets will have been com
pleted. In this discussion we assume that all the scrap listed in Table 6.21 
is contained and stored and is not recycled. 

TABLE 6.20 MATERIAL STATUS BY WEEK (EXCLUDING SCRAP) 

(Example 6.1) 

Location 

Vault (PuOj) 
Vault (prepress) 
Vault (presinter) 

Line 2 (furnace) 
Line 3* (grinding, 

inspection) 
Vault (preloading) 

Rod form 

1 

32 

2 

32 

Equivalent 

3 

28 
1 

1 
2 

4 

23 
1 

1 
7 

batches at end of week 

5 

18 
1 

1 
7 
5 

6 7 8 

13 8 3 
1 1 1 

1 1 1 
7 7 7 

10 15 20 

9 

1 
5 

26 

10 

32 

' Two boat loads are ready for grinding, and three trays are ready for inspection-pretreatment. 
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Error Structure. The error structure assumed in this analysis is given 
in Table 6.22. The entries are percent standard deviations. In this table 
the short-term and long-term systematic-error standard deviations are 
identified to permit valid analysis in the situation in which the biases may 
shift. In this particular analysis, however, it is assumed that the biases 
remain constant over the course of the campaign. 

Calculations for LE-MUF (Plutonium). To illustrate how LE-MUF 
is calculated, we show the steps in this calculation for LE-MUF accumu
lated from the start of the campaign through the end of week 4. Calculation 
of LE-MUF requires that each component in the MUF equation be 
identified by the scale on which the net weight is determined and by the 
plutonium factor used to convert net weight to grams of plutonium. The 
first figure in the third colum of Table 6.23 indicates the number of weigh
ings made to arrive at the total net weight for each MUF component, 
and the last column of that table shows the number of analyses associated 
with each calculated plutonium factor. It is assumed that each analysis is 
made on a different sample so that the number of analyses equals the 
number of samples. 

To illustrate the calculation of LE-MUF by applying the rules of 
Table 6.2, we will consider four typical error sources: Scale 2, systematic 
and random, and sampling of MO pellets, systematic and random. 

Rules from Table 6.2 

Scale 2 

Systematic (Rule 1): 
Find the algebraic sum of plutonium weight for all components 
weighed on scale 2, square the sum, and multiply by the square of the 
appropriate Table 6.22 entry. 

TABLE 6.21 ACCUMULATED SCRAP (GRAMS OF PuOj) 

(Example 6.1) 

of week 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Green 

0 
50 
100 
100 
100 
100 
100 
100 
100 
100 

Grinder swarf 

0 
0 
37 
100 
162 
225 
287 
349 
400 
400 

Hard 

0 
0 

134 
357 
580 
803 
1026 
1249 
1428 
1428 

Dirty 

0 
3 
8 
14 
20 
26 
32 
38 
44 
50 
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TABLE 6.22 ERROR STRUCTURE* (PERCENT STANDARD DEVIATION) 

(Example 6.1) 

Operation 

Weighing 
Scale type 

1. Mettler P 160 
2. Mettler P 1200 
3. Mettler P 11 
4. Mettler P 11 

Sampling for percent of plutonium 

Material 

1. PuOz powder 
2 M O powder 
3. M O peUets 
4. Swarf 
5. Dirty scrap 

Analysis for percent of plutonium 

Method 

1. Ceric sulfate titration (PuOj) 
2. Controlled potential coulometry 

(main stream) 
3. Controlled potential coulometry 

(scrap) 

Sampling for fissile isotope 

Material 

1. PuOj powder 
2. M O powder 
3. M O pellets 

Analysis for fissile isotope 

Method 

1. Mass spectrometer 

Systematic (S) 

0.01 
0.01 
0.01 
0.01 

Systematic (A) 

0.05 
0.03 
0.03 
0.3 
5 

Short-term 
systematic (0) 

0.06 
0 06 

5 

Type of error 

Random («) 

0.01 
0.01 
0.01 
0.01 

Random (rj) 

0.15 
0.08 
0.10 
1 

15 

Long-term 
systematic {$) Random (oj) 

0.04 
0.04 

2 .5 

Systematic (X) 

0.015 
0.015 
0.015 

Short-term 
systematic (a) 

0.022 

Long-tern 
systematic (• 

0.031 

0.25 
0.25 

20 

Random (/») 

0.005 
0.008 
0.002 

y) Random (v) 

0.10 

* See Table 5.1 for the error notation. 

(-0.088-0.005-0.271-6.284)2(l)(10-8) =44(10-8) kg2 ^f p^ 

Random (Rule 3): 
Square each net plutonium weight for all weighing performed on scale 
2, sum the squares, and multiply by the square of the appropriate 
Table 6.22 entry. 

[4(0.022)2+l(0.005)2+8(0.0399)2-)-23(0.2732)2](l)(10-8)=2(10-«) 
kg^ of Pu 
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TABLE 6 23 ACCUMULATED M U F COMPONENTS AT T H E END OF WEEK 4 

(Example 6 1) 

Component * 

Receipts 
Green scrap 
Swarf 
Hard scrap 
Dirty scrap (green) 

Dirty scrap (hard) 
Boats in furnace 
Boats in line 3 
Trays in line 3 
In vault (presinter) 
In vault (preload) 

Scale 

1 
2 
3 
3 
2 

3 
2 
4 
3 
2 
3 

Pu, kg t 

32(0 2749) = 8 796 
4(0 022) = 0 088 
2(0 044) = 0 088 

14(0 0225) = 0 315 
1(0 005) = 0 005 

1(0 007) = 0 007 
8(0 0339) = 0 271 
2(0 0339) = 0 068 

3(0 068) = 0 204 
23(0 2732) = 6 284 
21(0 0690) = 1 448 

M U F = 0 018 kg of Pu 

Factor 

1 
2 
3 
4 
5 

6 
2 
4 
4 
2 
4 

Basis t 

6 
32 

2 
7 
1 

1 
32 

7 
7 

32 
7 

• All entries except receipts are in ending inventory 
t The first figure indicates the number of weighings made to arrive at the total net weight 

for each MUF component 
X Number of analyses associated with each calculated plutonium factor 

Sampling MO Pellets (Factor 4) 

Systematic (Rule 4) 
Find the algebraic sum of all plutonium weights for components based 
on factor 4, square the sum, and multiply by the square of the ap
propriate Table 6 22 entry 

( - 0 3 1 5 - 0 0 6 8 - 0 2 0 4 - 1 448)^9(10-8) = 37(10-^) kg^ of Pu 

Random (Rule 6) 
Find the algebraic sum as for the systematic error, square the sum, 
divide by the number of samples used in estimating plutonium factor 4, 
and multiply by the square of the appropriate Table 6 22 entry 

[ ( - 0 3 1 5 - 0 0 6 8 - 0 2 0 4 - 1 448)V7](100)(10-*) =60(10-8) ^gZ ^f p ^ 

Further detailed calculations are not shown, because the application of 
the rules of Table 6 2 has been thoroughly illustrated in this chapter 

LE-MUF Components by Week. The L E - M U F components ac
cumulated through the end of each week in the campaign are shown in 
Tables 6 24 and 6 25 Table 6 24 gives the systematic components and 
Table 6 25 the random components The entries underlined are those just 
calculated 

Note that, as of the end of week 9, the accumulated M U F exceeds L E -
M U F This occurs because no hoods have been cleaned out, and no solid 



TABLE 6 24 ACCUMULATED L E - M U F SYSTEMATIC-VARIANCE COMPONENTS (GRAMS" OF PLUTONIUM) 

(Example 6 I) 

Operation 

Weighing 
Scale 1 
Scale 2 

Scale 3 
Scale 4 

Sampling 
PuOz powder 
M O powder 
Swarf 
M O pellets 

Dirty scrap (green) 
Dirty scrap (hard) 

Analysis 
Pu02 powder 
M O (clean) 
M O (dirty) 

Total 

1 

0 
0 

0 
0 

0 
0 
0 
0 

0 
0 

0 
0 
0 

0 

2 

0 
0 

0 
0 

19 
6 
0 
0 

0 
0 

40 
40 

0 

108 

77 
77 

34 
94 

23 
11 

16 

3 

0 77 
0 64 

0 00 
0 00 

19 34 
5 77 
0 01 
0 05 

0 06 
0 

40 23 
39 97 

0 08 

106 92 

4 

0 77 
0 44 

0 04 
0 00 

19 34 
3 97 
0 07 
0 37 

0 06 
0 12 

40 23 
39 88 

0 45 

105 74 

End of week 

5 

0 77 
0 28 

0 12 
0 00 

19 34 
2 51 
0 18 
1 00 

0 06 
0 36 

40 23 
39 78 

0 90 

105 53 

6 

0 77 
0 15 

0 23 
0 00 

19 34 
1 38 
0 35 
1 93 

0 06 
0 81 

40 23 
39 68 

1 65 

106 58 

7 

0 77 
0 07 

0 38 
0 00 

19 34 
0 58 
0 58 
3 17 

0 06 
1 32 

40 23 
39 65 

2 45 

108 60 

8 

0 77 
0 01 

0 56 
0 00 

19 34 
0 13 
0 85 
4 71 

0 06 
1 96 

40 23 
39 56 

3 40 

111 58 

9 

0 77 
0 00 

0 74 
0 00 

19 34 
0 00 
1 12 
6 16 

0 06 
2 72 

40 23 
39 49 

4 51 

115 14 

10 

0 77 
0 00 

0 75 
0 00 

19 34 
0 00 
1 12 
6 15 

0 06 
3 80 

40 23 
39 43 

6 05 

117 70 
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TABLE 6 25 ACCUMULATED L E - M U F RANDOM-VARIANCE COMPONENTS (GRAMS' OF PLUTONIUM) 
(Example 6 1) 

ro 
K3 

Operation 

Weighmg 
Scale 1 
Scale 2 

Scale 3 
Scale 4 

Samplmg 
PuOj powder 
M O powder 
Swarf 
M O pellets 

Dirty scrap (green) 
Dirty scrap (hard) 

Analysis 
PuOj powder 
M O (clean) 
M O (dirty) 

Total 

Random-f-Systematic, g ' 
Standard deviation, g 
Accumulated M U F , g 
M U F , % of receipts 
L E - M U F (2ff) 
L E - M U F , % of receipts 

1 

0 
0 

0 
0 

0 
0 
0 
0 

0 
0 

0 
0 
0 

0 

0 
0 
0 
0 
0 
0 

2 

0 02 
0 02 

0 
0 

29 
4 
0 
0 

0 
0 

80 
48 

0 

162 

270 
16 
9 
0 

33 
0 

01 
94 

59 
21 

79 

95 
5 

10 
0 
38 

3 

0 02 
0 02 

0 00 
0 00 

29 01 
1 
0 
0 

0 
0 

80 
14 

1 

127 

233 
15 
16 
0 

28 
11 
26 

56 

59 
18 
00 

03 

95 
3 

18 
30 6 
0 35 

4 

0 02 
0 

0 
0 

02 

00 
00 

29 01 
0 
0 
0 

0 
1 

80 
12 
2 

128 

234 
15 
18 
0 

30 
0 

88 
39 
60 

56 
10 

59 
32 
96 

45 

19 
3 

20 
6 
35 

5 

0 
0 

End of week 

02 
01 

0 00 
0 

29 
0 
0 
0 

0 
3 

80 
11 
6 

133 

238 
15 
22 

0 
31 
0 

00 

01 
56 
51 
92 

56 
24 

59 
25 
76 

43 

96 
5 

25 
0 
35 

6 

0 02 
0 01 

0 00 
0 00 

29 
0 
0 
1 

0 
7 

80 
10 
13 

144 

250 
15 
25 

01 
31 
49 
26 

56 
29 

59 
90 
96 

40 

98 
8 

0 28 
31 
0 

6 
36 

7 

0 02 
0 01 

0 
0 

29 
0 
0 
1 

0 
11 

80 
11 
21 

157 

265 
16 
28 

0 
32 
0 

00 
00 

01 
13 
53 
60 

56 
90 

59 
35 
36 

06 

66 
3 

32 
6 
37 

8 

0 
0 

0 
0 

29 
0 
0 
1 

0 
8 

80 
12 
16 

150 

262 
16 
32 

0 
32 
0 

02 
00 

00 
00 

01 
03 
59 
94 

56 
82 

59 
49 
68 

73 

31 
2 

36 
4 
37 

9 

0 
0 

0 
0 

02 
00 

01 
00 

29 01 
0 
0 
2 

0 
12 

80 
13 
22 

161 

276 
16 
35 
0 

33 
0 

00 
77 
14 

56 
25 

59 
50 
76 

61 

75 
6 

40 
2 
38 

10 

0 02 
0 

0 
0 

29 
0 
0 
2 

0 
17 

80 
13 
31 

174 

292 
17 
35 
0 

00 

01 
00 

01 
00 
62 
14 

56 
11 

59 
50 
40 

96 

66 
1 

40 
34 2 
0 39 
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wastes have been measured. In view of the slight amount by which M U F 
exceeds L E - M U F and in anticipation of the end of the campaign in another 
week (which calls for hood cleanout), no action would be taken except to 
begin hood cleanout in those operations which will process no additional 
material and to obtain measurements of the scrap thus accumulated. It is 
anticipated that an estimated 13 g of plutonium will be found in the hood 
sweepings; this would reduce the M U F to 22 g and increase L E - M U F to 
34.5 g. It is also assumed that later measurement of solid waste discards by 
NDA assay will further reduce the M U F to 14 g and will increase L E - M U F 
to 35.4 g. (The increase in L E - M U F is not large in spite of the large 
measurement-error variance associated with the measurement of solid 
wastes. This is due to the very small amount of plutonium in these wastes.) 

Table 6.23 gives the number of samples and analyses on which the six 
plutonium factors were based as of the end of week 4. These data accumu
late as the campaign proceeds, and Table 6.26 gives the number of samples 
and analyses on which the plutonium factors are based throughout the 
campaign. A time lag of a few days in analytical results is included. 

LE-MUF for Fissile Plutonium. There is no reason to believe that the 
percent of fissile plutonium will change during the campaign if hoods are 
cleaned out thoroughly before the start of the campaign. This assumption is 
checked for validity by analyzing the material at the receipt point, after 
blending, and after sintering. In anticipation that the assumption is valid, 
we apply a common fissile plutonium factor. Then we calculate the M U F 
for fissile plutonium by multiplying the M U F for total plutonium by this 

TABLE 6.26 NUMBERS OF SAMPLES AND 
ANALYSES ON PLUTONIUM FACTORS 

THROUGHOUT THE CAMPAIGN 
(Example 6.1) 

Plutonium factor 

End of week 1 2 3* 4 5 6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

6 
6 
6 
6 
6 
6 
6 
6 
6 

10 
32 
32 
32 
32 
32 
32 
32 
32 

1 
2 
4-3 
8-4 
12-5 
16-6 
16-6 
20-7 

2 1 
7 1 
12 1 
17 1 
22 1 
27 1 
32 1 
32 1 

1 
1 
1 
2 
2 
2 

"After week 4, samples are composited. In hyphenated entries (e.g., 4-3), the first figure 
is the number of samples and the second figure is the total number of analyses. 
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common factor. Propagation of errors in this situation shows that the error 
in estimating the common fissile plutonium factor has negligible effect on 
the L E - M U F : thus, on a percentage basis, the L E - M U F is essentially the 
same for fissile plutonium as for total plutonium. 

LE-MUF on an Incremental Basis. Thus far, L E - M U F has been 
calculated for accumulated M U F over the campaign. We may also wish to 
calculate M U F and L E - M U F on an incremental basis. The results of such 
an analysis are presented here. Details of the analysis are not shown since it 
is similar to that performed on accumulated M U F . The results pertain to 
an equilibrium period of operation, e.g., during weeks 4 to 8, as seen in 
Table 6.20. 

The M U F and L E - M U F are shown for a 1-week, 2-week, 3-week, and 
4-week basis in Tables 6.27 and 6.28. In Table 6.27 it is assumed that 
constant plutonium factors apply to all material processed during the 
equilibrium period. In this event, the random errors affecting the uncer
tainties in the common plutonium factors behave like systematic errors as 
they affect the L E - M U F . In Table 6.28 it is assumed that a separate 

TABLE 6.27 M U F AND L E - M U F DURING EQUILIBRIUM 
ASSUMING C O M M O N P L U T O N I U M FACTORS 

(GRAMS OF P L U T O N I U M ) 

(Example 6.1) 

Time interval 

1 week 
2 weeks 
3 weeks 
4 weeks 

sy. 
Long-term 

stematic error 
(LE) 

1.5 
2.9 
4 .3 
5.8 

Random error 
(LE) 

2.7 
5.5 
8.3 

11.0 

L E - M U F 

3.1 
6.2 
9.3 

12.4 

M U F 

3.5 
7.0 

10.5 
14.0 

TABLE 6.28 M U F AND L E - M U F D U R I N G EQUILIBRIUM 
ASSUMING DIFFERENT P L U T O N I U M FACTORS FOR 

EACH BATCH (GRAMS OF PLUTONIUM) 

(Example 6.1) 

Time interval 

1 week 
2 weeks 
3 weeks 
4 weeks 

Long-term 
systematic error 

(LE) 

1.5 
2 .9 
4 .3 
5.8 

Random error 
(LE) 

5.2 
7.3 
9.0 

10.4 

L E - M U F 

5.4 
7.8 

10.0 
11.9 

M U F 

3.5 
7.0 

10.5 
14.0 
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p l u t o n i u m factor is c a l c u l a t e d for e a c h b a t c h processed , a n d t h e e r ro r s 

t ru ly b e h a v e as r a n d o m er rors . T h e effects of b o t h p r o c e d u r e s a r e seen in 

t h e t ab les . 

6.T.4 Basis 

T h e rules for finding the v a r i a n c e for t h e g e n e r a l a lgeb ra i c s u m a r e 

de r ived by a p p l i c a t i o n of t h e results of C h a p s . 4 a n d 5. R a t h e r t h a n a t 

t e m p t i n g to de r ive t he rules for a c o m p l e t e l y g e n e r a l case, w e de r ive t h e 

resul ts for e x a m p l e 6 .C to i l lus t ra te t h e basis for t he rules . T h i s e x a m p l e w a s 

chosen b e c a u s e it inc ludes t he v a r i o u s k inds of s i tua t ions t h a t m i g h t exist. 

W i t h reference t o t h e e x a m p l e , t h e s u m S, whose v a r i a n c e is to be found , 

is i ' = 3 ' i + 5 2 - 5 3 - > S ' 4 + 6 ' 6 - 5 6 + ^ 7 + ' S ' 8 + 5 ' 9 + i ' i o . U s i n g t h e m u l t i p l i c a t i v e 

m o d e l of Sec. 5.2, we c a n wr i t e t he 10 observed e l e m e n t we igh t s as follows: 

-S'i= ( y i 5 l 0 l i e i l ^ l Si=W653(t>31i33pl 

S2= W2Sl4>nenpl S7= WTS3(t>32fHp3 

»S'3= ^^3^2021621^2 Ss= WsSl4>n(l3p3 

Si= W4S3(t>3liilp3 •Sg = Wg 5 3(̂ 3263 6^2 

Si— WiS3<t>3li32pl ^10— WloS2<t>2l(22p 

T h e p's a r e observed e l e m e n t factors . F r o m the d a t a of t he e x a m p l e , 

w e c a n w r i t e pi as follows (no t ing t h a t it is t he a v e r a g e of e igh t ana lyses ) : 

/)ii = PiAiei^iir; i i /3ncoii / ' i5 = /'iAieii/'ii7)i3(3i2C0i6 

/)i2 = PiAi5ii/'iir;ii/3iiWi2 / ' i6 = ^iAiSi^iir;i3|Si2Ui6 

pl3 = PlAi9l^li7)i2/3iiWl3 pl7 = •PlAl6j^lir;i4/3i2COi7 

/)l4 = PlAl&l^lir;i2/3l2COl4 ^18 = /'lAlSl^ll7;i4/3l2COl8 

T h e n 

P i A i ^ i ^ u 
pl = o {'?ll(/3llWll+;SllC0l2) + r)l2(j3llC0l3+|Sl2Wl4)+ . . . 

+ 17l4(/3l2Wl7+(3l2COl8) ) 

S imi la r ly , p2 is de r ived . T h i s is based on 20 samples , w i t h e a c h g r o u p 

of four samples compos i t ed a n d w i t h t w o ana lyses pe r fo rmed on e a c h 

compos i t e , for a to ta l of 10 analyses . W i t h / ) 2 i r ep r e sen t i ng t he first four 

samples , first analysis on compos i t e ; P22 r ep r e sen t i ng t h e first four samples , 

second analysis on c o m p o s i t e ; andj!i2 3 r ep re sen t ing t he second four samples , 

first analysis on compos i t e , e tc . , these 10 resul ts a r e w r i t t e n : 

/ ' ? 2 1 + ' ; 2 2 + T ; 2 3 + T ; 2 4 \ ^ 
p2i = riA^OifpiA — Jpi20i9 

n A o , / ' ? 2 1 + ' ; 2 2 + » ? 2 3 + 1 7 2 4 \ 
/)22 = r'2A20l^2ll 7 jPnOll,10 
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n A /) / / '726+»;26+»;27+'728\ 
/)2 3 = r'2A20l^2ll T Ipi3'0l,ll 

T h e n , 

S imi la r ly , 

n A /I > M2,17+172,18 + »;2,19+»?2,2o\^ 
j62,10 = r'2A2C'lV'22l T IpisWl.lS 

P2A2^1 
p1= 7 j ^ {^2l('?21+'722+'723+1724)(^12Wl9|8l2COl,lo)+ • • • 

+ fe('?2,17+'?2,18+'/2,19+'72.2o)(/3l3'<)l,17+^13'<'l,18) f 

P3^262^22 ̂  
p3= ^ jP2l(772,2ia)21 + • • . +'72,28(^28) 

+/322('72,29W29+'72, 3 0'«>2,lo) 

+ ^23('72,3lW2,ll+ • • . +172,400)2,20)1 

Le t us now a p p l y E q . 4 .6 . T h e p a r t i a l de r iva t ives w i t h respect to e a c h 

r a n d o m v a r i a b l e m u s t be e v a l u a t e d a t t h e m e a n s of t h e r a n d o m va r i ab l e s , 

w h i c h a r e all one . S ince t he va lues of IV, a n d Pi , w h i c h a r e cons t an t s a n d 

n o t r a n d o m va r i ab les , a r e no t k n o w n t h e y will be r e p l a c e d b y t he i r est i 

m a t e s (no te t h a t t he e s t ima te of H^,P, is S,). 

Basis for Rule-+' 

^ = (5x+52 + ^8) 
OOl 

dS__ 
at — ( —'̂ 's + 'S'io) 
002 

r^ = i-Si+S,-S,+S7+S,) 
063 

Basis for Rule 2 

dS ^ ^ 
T—=(Sl+S2 + Ss) 
a<Pu 
•\ r> 

- - - = ( - ^ 3 + i'l0) 
0021 

dS 
T, — ( —i'4+0'6 —'S'e) 
a<P3i 

0032 
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Basis for Rule 3 

^ - 5 
0«11 

^ - 5 
, - 0 2 

^ - 5 
. - O S 
0 6 1 3 

. — 03 
oezi 

. —>39 
0 6 3 6 

Basis for Rule 4 

f^ = (5i+52+56-56) 
O ^ l 

r-r' = (—53—54+57+58+59+5io) 
0A2 

Basis for Rule 5 

J ^ = (5i+52+56-56) 
0^11 

3^21-40^-'^'+^'^ 

n o 1 c 

d^22 4U 

Basis for Rule 6 

n P 9 

-— = -(51+52+56-56) (;•= 1, 2, . . . , 4) 

OT/li O 

no 2 
^ . = i5(-^3+59) (. = 1 , 2 , . . . , 20) 

= ^ ( -54+57+58+5 io ) (t = 21, 22, . . . , 40) 
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Basis for Rule 7 

^^=(51+52-53+56-56+5 , ) 

^ = (-54+57+58+5io) 

Basis for Rule 8 

dS 3 
ao o('̂ l~l~'̂ 2 + 56 —56) 
opil o 

| ^ = | ( 5 l + 5 2 + 5 6 - 5 6 ) + ^ ( - 5 3 + 59) 

a^ i3~40^ ^'+^'> 

T3~ =;i;^(~'5 '4+57+58+5io) 
Op21 <cU 

35 2 
TTP — or>(~~'^*"'"'^''^"'^8+5io) 

op22 ^y} 

3 ^ 3 ^ 2 0 ^ " ' ^ * + ' ^ ' + ' ^ ' + ' ^ " ^ Basis for Rule 9 

— = - ( 5 i + 5 2 + 5 6 - 5 6 ) (i = 1, 2, . . . , 8) 

= ^ ^ ( - 5 3 + 5 9 ) (e = 9, 10, . . . , 1 8 ) 

J - = — ( - 5 4 + 5 7 + 5 8 + 5 i o ) (r = 1 , 2 , . . . , 20) 

This development illustrates the bases for rules 1 to 9. The bases for 
rules 10 to 15 can be illustrated similarly. Because rules 10 to 15 so closely 
parallel 4 to 9, there is little need to discuss their derivation. The only 
point to note is that, when we deal with isotope weights rather than 
element weights, the various partial derivatives have means of the form 
WiPiTi rather than WiPi {T, is the true isotopic factor). This is why 
"element weights" are replaced by "isotope weights" in the rules. 



Chapter 7 

INTERPRETATION OF MUF AND LE-MUF 

OVERVIEW 

In Chap. (), lules were gi\en tor finding the variance of material un
accounted tor (MUF), which can then be translated to limits of error-
material unaccounted for (LE-MUF). (The results of Chap. 6 can be 
applied to any general sum, including MUF. In this chapter attention 
is restricted to MUF.) The two quantities MUF and LE-MUF are 
generally regarded as important indexes of material control per
formance. This chapter is concerned with the statistical interpretation 
of MUF as it relates to LE-MUF. (The term LE-MUF is not used in 
the succeeding discussion; rather, attention is focused on variance of 
MUF.) 

Some claiification in terminology is helpful. First, a distinction 
must be made between an observed MUF and a true MUF. (When the 
term MUF is not pieceded by the adjective "true," it is understood to 
be observed MUF). The observed MUF is a random variable that is 
an estimate of the true MUF. It is a random variable because its value 
is aftected by errors of measurement. By properly combining the effects 
ot these enors, we can calculate the measurement variance of MUF by 
the methods ot Chap. 6. When we speak ot the variance of MUF, we 
mean the measurement variance unless specifically stated otherwise. 
The variance is comprised ot random and systematic components, and, 
it only the etiects ot one or the other type of error component is in
volved, the variance is referred to as either the random variance oi 
the systematic vaiiance ot MUF. 

The true MUF, on the other hand, is the actual amount ot 
material unaccounted for, excluding the effects of measurement errors 
(i.e., in the absence of measurement errors, the obseived MUF and the 
true MUF are identical). The true MUF is zero in an ideal situation. 
In actual practice, however, a nonzero true MUF may occur for a 
number of leasons, e.g., because of unmeasured inventory or process 
losses, stolen or diverted material, or operator mistakes in measurement 
or lecording ot data. If there were no measurement errors, the true 
MUF's might still vary somewhat from one material balance period to 
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the next because of these factors. This variation will be called the 
variance of the true MUF. 

In an ideal situation the observed MUF and its variance are both 
zero. At the next level of idealism, the variance of MUF is zero, which 
means that the observed MUF represents exactly the true MUF, in 
which case there is proof positive that some real amount of material 
is unaccounted for. Whether this is an excessive amount is not 
primarily a problem in- statistics. It has statistical overtones only if 
the criterion for making this judgment is based, in part at least, on 
experience data that sheds some light on the variance of the true MUF. 
The experience data are useful in this context only to the degree to 
which they were generated during operating periods in which accept
able control was exerted. The degree of control, of course, is a judg
ment that is devoid of statistical considerations. 

Thus the significance of a given MUF is based on both statistical 
and nonstatistical considerations. To place in perspective the impor
tance of the variance of MUF due to errors of measurement, we note 
that, although a zero variance does not negate the need for further 
judgments on the practical significance of an observed MUF value, if 
this variance is unduly large, there is little basis on which further 
judgment can be made. If the variance is large, we can only conclude 
that any true MUF that might exist is completely obscured by the 
inability to obtain a sufficiently good estimate of it. Thus it is impor
tant to exercise control over the variance of MUF. This may be done 
by the operator of a facility, who must maintain adequate control over 
his nuclear materials, or by an inspectorate agency, which must be satis
fied that effective control does indeed exist. 

The significance of a single, isolated MUF is considered in Sec. 7.1. 
In Sec. 7.2 attention is directed at combinations or sequences of MUF's, 
either over material balance areas (MBA's) or over time within a 
given MBA, or both. The concept of minimum variance MUF, al
though perhaps logically a part of Sec. 7.2, deserves special attention 
and is treated in Sec. 7.3. Finally, in Sec. 7.4 some thought is given 
to the role of material balance closings, unaccompanied by actual 
physical inventories, as they may relate to MUF calculations. 

7.1 SIGNIFICANCE OF A SINGLE, ISOLATED MUF 

7.1.1 Problem and Assumptions 

For a given MBA the amount of some specified special nuclear 
material (SNM) in beginning inventory at some point in time is esti
mated by measurements. Similarly, at the end of an arbitrary time 
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period, the amount in ending inventory is also estimated by measure
ments. Inputs to the MBA are measured within the time interval, as 
are certain outputs from the system. (In common terminology the in
puts are called receipts, and the outputs are called shipments and 
measured discards.) By algebraically summing, with the appropriate 
signs, the estimates of the amounts of material in beginning and end
ing inventories, inputs, and outputs, we can calculate the MUF. Simi
larly, by using the methods of Chap. 6, we can find the measurement 
standard deviation of this quantity. The problem, in general terms, is 
to examine the statistical significance of the observed, or estimated, 
MUF. 

A number of specific questions within this general problem area 
are listed here and are answered, in turn, in Sec. 7.1.2. 

Question 7.A. Given an observed MUF and its variance, is there 
evidence that the true MUF is greater than some specified value? 

Question 7.B. Given an observed MUF and its variance, within 
what interval does the true MUF lie with a specified degree of con
fidence? 

Question 7.C. What intensity of measurements must be per
formed to detect a given true MUF with a specified probability? 

It is assumed that the MUF random variable is normally dis
tributed and is unbiased in the sense that its expected value is the 
true MUF. It is also assumed that the error variances used in calculat
ing the variance of the estimated MUF are known quantities. These 
assumptions, although often not strictly valid in practice, are judged 
to be reasonably valid in most applications. If there is real concern 
about treating some poorly estimated error variance as a known con
stant in a given application, we can use Satterthwaite's formula (Eq. 
4.9) to calculate the degrees of freedom for the variance of MUF. In 
this event we apply the Student's t distribution rather than the normal 
distribution. The approach to judging the significance of MUF is 
very much the same as that used assuming normality. (See example 
7.E.) 

7.1.2 Solution 

Let the observed MUF be denoted by the random variable X and 
its standard deviation by a. Denote the true MUF by M. The random 
variable X is assumed to be normally distributed with mean M and 
standard deviation a. The three questions posed in Sec. 7.1.1 are con
sidered individually. 

Question 7.A. This is a question in statistical hypothesis testing 
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(see Sec. 2.8). In that terminology the question can be restated as 
follows: Find a constant, c, such that, if an observed MUF, x, exceeds 
c, the hypothesis H(,: M < Mg is rejected. Rejection of Ho is equiv
alent to concluding that the true MUF is greater than A/o by some 
amount not specified. (The inequality sign indicates that this is a 
one-sided test of significance. This is reasonable since we are usually 
interested in detecting positive MUF's, which indicate real unaccounted 
for material. The observance of too large a negative MUF is quite a 
different matter and implies that some statistically significant amount 
of material was "created," possibly as the result of some mistake. An 
isolated case of a significant negative MUF is of no real concern 
unless it is quite large in absolute value, in which case steps should be 
taken to identify the reasons for it.) 

Answer 7.A. A significance level, a, is chosen (« is also called 
the probability of committing a type I error, i.e., of rejecting the 
hypothesis when it is true). From Table 7.1, a constant, c , is found 
as a function of a- The hypothesis H„ is- rejected if x > (M„ -f- C„CT) . 

TABLE 7.1* c„ VERSUS a 

a 

0,50 
0.25 
0.10 

0 
0 
1 

'"a 

68 
29 

a 

0.05 
0.025 
0.01 

Ca 

1.65 
1.96t 
2.33 

a 

0.005 
0.0025 
0.001 

Ca 

2.58 
2.81 
3.09 

• This table is extracted from Appendix A. 

+ A decision rule often used is to reject Ho if MUF > LE-MUF (i.e., if x > 2a). This 
is equivalent to setting A/o ~ 0 and a ~ — 0.025. Tlius, operating under this rule, we would 
declare that some true amount of material is unaccounted for about 2.5% of the time with no 
real basis; i.e., the significantly large MUF would be caused solely by errors of measurement 
with this expected frequency. 

Question 7.B. This is a question in confidence-interval estima
tion (see Sec. 2.7). In that terminology the question can be restated 
as follows: Construct a 100 (1—2a)% confidence interval on the pa
rameter M. 

Answer 7.B. The confidence coefficient 100(1 —2a) % is chosen. 
The desired confidence interval is then (x ± Ca<j), where €„ is related 
to a in Table 7.1. (Note that a confidence interval of the form 
MUF ± LE-MUF is equivalent to a 95% confidence interval on M.) 

Question 7.C. This question is also related to hypothesis testing. 
The null hypothesis is H^: M < MQ. An alternative hypothesis is also 
specified, Hii M = M^. In addition to specifying a, we also specify a 
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value of p, where (1 —j8) is the probability of rejecting Hg when H^ 
is true. The problem is to find the value for or which results in the 
specified value of p. (Note that a given value for a can be attained in 
many different ways. Thus a solution for u will not uniquely determine 
how many measurements of each type should be made. Within a given 
system, sensitivity studies are required to determine the effects of 
varying measurement intensities on a.) 

Answer 7.C. The required value for a is 

Ml—Mo ,- ,-. 
a = : (7.1) 

For this value of a, H^ is rejected when x > c, where 

_ Moc^-\rMiCa 

Ca + Cs 
(7.2) 

In these equations c„ comes from Table 7.1; c^ also comes from this 
table with a replaced by /3. 

7.1.3 Examples 

Example 7.A 

In a fuel-fabrication-facility MBA, the calculated MUF for a given 
time period is 12 kg of uranium. Its standard deviation, c, is 5 kg of 
uranium. At the 1% level of significance, do we have reason to believe 
that some true amount of material is unaccounted for? 

This is question 7.A, with a = 0.01, x = 12, o- = 5, and Mo = 0. 
From answer 7.A and Table 7.1, the decision rule is to reject the hy
pothesis if X is greater than 2.33<j. Since 12 is greater than (2.33)(5), 
H„ is rejected, and it is concluded that M is greater than zero, i.e., 
that some true amount of material is unaccounted for. 

Example 7.B 

For the data of example 7.A, what is the best estimate of the true 
amount of MUF, and what are the 95% confidence limits on this true 
amount? 

The fiest estimate is x = 12 kg of uranium. From answer 7.B, the 
95% confidence limits are found from (x ± Caa), where a = 0.025,* 
which gives c„ = 1.96 (from Table 7.1). 

The required confidence interval is 

12±(1.96)(5) = 12±9.8 

• This follows from setting 100(l-2a)% = 95% and solving for a. 
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Thus, with 95% confidence, between 2.2 and 21.8 kg of uranium 
are unaccounted for. 

Example 7.C 

For the data of example 7.A, at the 10% level of significance, is 
there statistical evidence that an amount in excess of 6 kg of uranium 
is actually unaccounted for? 

This is question 7.A, with « = 0.10, x = 12, o- = 5, and Mg = 6. 
From answer 7.A, the decision rule is to reject the hypothesis if x is 
greater than [6 -(- (1.29) (5)] or 12.45. Since 12 is less than 12.45, 
we conclude that there is no statistical evidence of missing material in 
excess of 6 kg of uranium. 

Example 7.D 

The process in the previous examples is expected to yield a true 
MUF of 4 kg of uranium per unit time interval. This is considered 
tolerable over some period of time between thorough plant cleanouts 
and measurement of solid wastes. If the true MUF for a given time 
interval exceeds 10 kg of uranium, however, it is considered important 
to detect this and to investigate the causes. The following risks are 
established: 

a = 0.025 = probability of concluding that the true M U F > 4 kg of 
uranium when in fact it is 4 kg of uranium 

/3 = 0.05 = probability of concluding that the true M U F < 4 kg of 
uranium when in fact it is 10 kg of uranium 

How small must or be to meet these risk criteria, and what is the 
rule for deciding When a true MUF exceeds 4 kg of uranium? 

This is question 7.C, with M„ = 4, M^ = 10, c„ = 1.96, and 
cp = 1.65. 
Then, from Eq. 7.1, 

1 0 - 4 

"^^ 1.96+1.65 =^-^^ 

and, from Eq. 7.2, 

, = [(4)(1.65)]+[(10)(1.96)] ^ g 
1.96+1.65 

Thus sufficient measurements of the right kind must be performed 
to produce a value for a less than or equal to 1.66 kg of uranium. 
The rule is to conclude that M is greater than 4 if the observed MUF 
exceeds 7.26 kg of uranium. 
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Example 7.E 

In the previous examples we assumed that o- is a constant value 
rather than a random variable. In most applications this is considered 
a reasonable approach. There may be instances, however, when it is 
advisable to relax this assumption, as this example will illustrate. 

Reference is made to example 6.E. The variance of M U F , a"^, was 
found to be 16,913 g^ of ^^^U. Of this total variance, 9731 g^ was due to 
the systematic error in sampling ammonium diuranate (ADU) and 5848 
g^ to the random error in this sampling process. Suppose that these error 
variances are poorly estimated, having been based on an experiment in which 
only 2 degrees of freedom were associated with CTJ, = (22) ^ and 6 degrees 
of freedom with a\^= (76)^. Let o-̂  denote the estimated variance of M U F 
and <A, based on an infinite number of degrees of freedom, designate the 
sum of all other variances exclusive of the A D U sampling error variances. * 
Then 0-2 can be calculated from 

ff 2 = 20.106 ^ ^ , + 1.01249 a^+o-? 

The coefficients 20.106 and 1.01249 are the values for C^j and Ci.j, re
spectively. 

Formula 4.9 is applied to give the degrees of freedom, no, associated 
with 0-2. 

^ (16913)2 

"° [(20.106)2(22) V2]+[(1.01249)2(76) V6] + (<r.V«) 

Suppose that the 1% level of significance is chosen, how large 
must the observed M U F be to conclude that the true M U F exceeds 
zero? By analogy with question 7.A, we conclude that M is greater 
than zero if x is greater than Cj, „j<r. For known a, Co.oi is 2.33 (from 
Tab le 7.1). For estimated a, based on 5.4 degrees of freedom, Co.oi is 
read from a table of Student's t distr ibution (Appendix C ) . At 5 
degrees of freedom, c„ „! is 3.36 and, at 6 degrees of freedom, 3.14. 
Then , by linear interpolation, which is adequate for this approximate 
solution, Co.oi is 3.27 at 5.4 degrees of freedom. T h u s , if x > 3.27 X 
V 16913, or 425 g of '^^^M, it is concluded that the true M U F exceeds 
zero. 

It may be advisable to regard the standard deviation of M U F as an 
estimate rather than a known value when the dominan t sources of 
variation correspond to error variances that are poorly estimated or 
characterized. Both of these conditions must exist. Of course, if most 
or all of the error variances are poorly characterized regardless of their 

* That there is no caret ( * ) on â  indicates that this term is regarded as a known constant 
rather than an estimated value. 
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individual impacts on the variance of MUF, an analogous situation 
would exist. 

7.1.4 Basis 

T h e bases for solutions to the specific questions of Sec. 7.1.2 are 
developed in the framework of statistical hypothesis testing and interval 
estimation (see Sees. 2.7 and 2.8). These bases are considered for the 
questions raised in Sec. 7.1.2. 

Question 7.A. T h e null hypothesis is Hg-. M < Mg, and the one
sided alternative hypothesis is H^: M>Mg. 

A type I error is committed if Hg is rejected when M = Mg. This 
error is committed with a probabil i ty a. T h u s the decision rule is to 
reject Hg when x, the observed MUF, exceeds c', where c' is determined 
from 

Pr (x>c' \M = Mo)=a 

T h e observation, x, is transformed to a normally distributed vari
able with zero mean and uni t s tandard deviation by subtraction of the 
mean, Mg, and division by the standard deviation, o-. This permits the 
use of a table of the normal distr ibution to determine c'. 

which gives 

c'-Mo 
d 

where Za comes from a table of the normal distr ibution (Appendix A ) . 
Therefore the rule is to reject Hg when 

x — Mi> . , , , . . 
>Ca or X>[Mo+Ca<r) 

a 

Question 7.B. Th i s is a problem in interval estimation in which 
a 100 (1 — 2a) % confidence interval is constructed on the true M U F 
M. T w o values, c^ and c^, are chosen such that 

Pr(ci<M<C2) = (l-2a) 

wheie fi and c, are random variables. There are an infinite number of 
combinations of ĉ  and c^ which will satisfy the equation. It is con-
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ventional to select a unique set by the equal tail probability approach; 
i.e., the probability equation is rewritten as two equations: 

Pr{M<Ci)=a and Pr(Af>C2) = a 

This indicates that there is a probability in each tail. 
Returning to the original equation, we use the fact that (x—M) ju 

is normally distributed with zero mean and unit standard deviation. 
Then 

( x—ci x — M x~c-\ 
(7 C O' / 

which gives 

X — Cl , X — Ci 
=Ca a n d = —Ca 

<j a 

with Ca as defined in Table 7.1. Therefore 

ci = x~Ca<r a n d C2 = x-\-Cacr 

so that the confidence interval is 

x—Cair<M<x-\-Ca<T or M=(x±c<,o-) 

Question 7.C. This problem is concerned with the power of a 
statistical test, i.e., with the probability of rejecting the null hypothesis 
when it is false. The null hypothesis is Hg-. M < Mo. With an « sig
nificance level, Hg is rejected when true with probability «. If c de
notes the critical value which, if exceeded by x, results in rejection of 
Hg, 

Pr {x>c\M = Mo)=a 

Also, at some specified alternative value, Mj, H„ is rejected with proba
bility (1 — j8). Stated equivalently, accept Hg with probability j8 
where j8 is the probability of committing the type II error, i.e., of 
accepting Hg when H^ is true. 

This leads to the equation 

Pr (x>c | M = Mi) = ( l - /3) 

This and the previous equation must be solved simultaneously for 
c and (T. When we transform to random variables with zero means and 
unit standard deviations, the equations become 

P r h ^ > ' - ^ \ = a and Pr ( ' ^ > ^ ^ ) = ( 1 - ^ ) 
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The value of (1 — ̂ 8) will normally exceed 0.50, in which case the 
light-hand side of the second inequality will be a negative number. 
This can be written conveniently as —c^, which is numerically equal 
to Ca of Table 7.1 when a is replaced by /?. Thus the equations reduce 
to 

c — Mo , c — Mi 
=Cc, and =—cg 

a a 
Solving them for c and a gives 

Ml —Mo , Moc^+Mic„ u= and c= 
Ca + f(3 Co + f̂  

which are Eqs. 7.1 and 7.2, respectively. 

7.2 COMBINATIONS AND SEQUENCES OF MUF'S 

7.2.1 Problem and Assumptions 

Thus far attention has been restricted to making inferences using a 
single observed MUF. The resulting information is somewhat limited 
since the inferences are restricted to one point in space and at one 
point in time. 

In practice, for a given MBA a sequence of MUF's is generated, 
with the MUF being calculated each time a material balance is closed. 
Also, at a given point in time or as a sequence over time, MUF's from 
different MBA's can be summed algebraically to reflect total experi
ence over these MBA's. This section is concerned, in general terms, 
with making inferences using sequences of MUF's over time or using 
a single MUF formed by summing MUF's over different MBA's and/or 
different material balance periods. 

In particular, the following problems are considered. 

Question 7.D. When individual MUF's are summed, what is the 
\ariance of the resulting sum? 

Question 7.E. What information can be deduced about errors of 
measuiement and about the behavior of the true MUF's by observing 
a sequence of MUF's? 

Question 7.F. How can a given observed MUF for one time 
peiiod be used to predict the MUF for the next time period? How 
c<in the result be used in constructing a control chart for MUF's? 

Question 7.G. With what frequency should material balances be 
closed to effect the "best" control over SNM? 

file:///ariance
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The assumptions for an individual MUF are the same as those in 
Sec. 7.1.1. Each observed MUF is regarded as the sum of three com
ponents: a beginning inventory, an ending inventory, and a difference 
between measured inputs to and outputs from the MBA in question. 
In this section, the error model can be simplified. Each component is 
assumed to be comprised of three parts: a true value, a systematic 
error, and a random error. It is further assumed that, for the sequence 
of MUF's, the systematic-error structure does not change over time 
throughout the data set and that an equilibrium condition exists in 
the sense that inventory levels and throughputs per unit time remain 
reasonably constant. These latter assumptions are somewhat idealistic, 
but in many instances they may be reasonably valid. In making in
ferences from sequences of MUF's, we are often more interested in 
the macrostructure than in the microstructure, and even moderate 
departures from the assumptions may have little effect on the macro-
structure. 

7.2.2 Solution 

The four questions are considered in turn. 

Question 7.D. When individual MUF's are summed, what is 
the variance of the resulting sum? 

Answer 7.D. This question is important because of the interest 
(1) in calculating an overall MUF either over MBA's (when combin

ing MUF's over different MBA's, we must include shipper-receiver 
differences) or over material balance periods for a single MBA and 
(2) in using the methods of Sec. 7.1 to make inferences about the 

corresponding true MUF. To make the inferences, we must know the 
variance of the combined MUF. The variance in question cannot be 
found by summing the variances of the individual MUF's comprising 
the sum. This is true because the individual MUF's are likely to be 
correlated for a number of reasons. Rather than attempt to identify and 
evaluate all the possible correlations, we simply regard all the MBA's 
as a single master MBA and all the material balance periods as a 
single period. All movements of material into this master MBA are 
then regarded as inputs and all movements out as outputs. In calculat
ing the variance of the overall MUF, we are not concerned about move
ments of material between the individual MBA's within the master 
MBA, Further, the only inventories affecting the variance in question 
are the beginning inventory for all MBA's for time period 1 and the 
corresponding ending inventory for the last time period. The rules of 
Chap. 6 for finding the variance of an algebraic sum are then applied 
to these data for the master MBA over the entire material balance 
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period. T h u s no new results beyond those given in Chap. 6 are 
required to find the solution to this problem. 

Question 7.E. Wha t information can we deduce about errors 
ol measurement and about the behavior of the true MUF's by observ
ing a sequence of MUF'-)? 

Answer 7.E. T h e observed M U F data are of the form x„ x,, 
. . . , x„, with Xj being the M U F for t ime period ;'. Under the assump
tions stated in Sec. 7.2.1, each x,, with mean A/,, has the same random-
error variance associated with determining an inventory, CT,,^, and the 
same random-error variance associated with the difference (inputs 
minus ou tpu ts ) , a^^. (Note that the Greek letters are assigned mean
ings different from those in Chap. 6.) These random-error variances 
are assigned \ allies by the methods of the previous chapters, taking 
into account the random errors of measurement due to bulk determi
nation, sampling, and analysis. Let (TM'^ denote the variance between 
the t rue MUF's, i.e., between the Mj values. Let au <M +I denote the 
covariance between any two successive true MUF's. (It is common for 
successive true MUF's to be negatively correlated. This is because 
hidden inventory items in one period of time can be measured during 
the next t ime period. Also, mistakes committed dur ing one time period 
can be detected and corrected subsequently. I t is noted that, if a^^ 
is zero, so is an M i ) T h e n these parameters can be estimated by 

- 2 _ M ^ , . , + i - 4 ) + ( « ^ + 2 ) 4 „ 2 , . _ „ . 

n\n — I) 

% _ ^ ' + "^»;+l I . 2 (n.-. 
(TMJ.MJ+1 hff, {/A) 

n — z 
where 

._!''-[(.?.")'/'.' 
n-\ 

[which is the variance of the Xj values (see Eq. 2.61)] and 

v2 

(7.5) 

«-i (x)-^0 
^ ; . . + i = E - ^ - ^ ^ ^ T - ^ (7-6) 

If the true M U F is assumed constant from one interval to the next 
(i.e., a Mj = M for a l l ; ) , then the sequence of M U F data can be used 
to obtain estimates of <T,,̂  and as^ which can be compared with estimates 
derived by the methods of Chap. 6. A significant discrepancy would 
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indicate that either the values assigned to a-q'^ and/or ae'^ are incorrect or 
the assumption of a constant true MUF is invalid. Under the assump
tion of a constant true MUF, a,;̂  and <Te^ are estimated by 

2 I 

ffi= — s y'-'i 
2-n 

{n''+2)sl+2n(n+l)s,,,+i (7.8) 
n(n-2) 

Question 7.F. How can a given observed MUF foi a given time 
period be used to predict the MUF for the next time period? How 
can the result be used in constructing a control chart tor MUF's? 

Answer 7.F. This question is meaningful because there is a 
correlation between successive observed MUF's whether the true MUF's 
are correlated or not and has pertinence it we want to construct a 
control chart on MUF's (see Sec. 2.8.2.). Because of this correlation, 
the expected value for a given MUF is not zero. Therefore it is difficult 
to construct a meaningtul standard control chart on MUF's because 
the mean will shift from one time period to the next as a result of 
the correlation. 

If p is the correlation coefficient between Xj and x^+i, then 

P= - 2 , 9 2 , 2 , 2 (.''•9) 

where, in addition to the quantities already defined, as" is the systematic-
error variance of a given difference between inputs and outputs. 

For a given value of p, the conditional expected value of x,+i is 
related to the observed value x^ by 

E{x,+i\x,)=p{x-M) + M (7.10) 

In application M can be replaced by its estimate, (2"j=i '<^;)/"- Since 
the mean of Xj^^ depends on the value for Xj, the construction of a 
standard control chart for MUF's clearly leads to difficulties because 
the center control line is not constant. This problem can be circum
vented by plotting x̂ ^̂  — £(X;+i|x^) rather than x̂ +j since this differ
ence statistic will have zero mean. The variance of this difference is 
given by 

<r',=,TMl+p')-2p<TM,.M,+i+2aKl+p+p') + ai{l-py+a^{l+p') (7.11) 

where p and M are regarded as known constants. 
In application, we can base OM^ and <Tjf M ^ on experience data, 

using Eqs. 7.3 and 7.4, and assuming that the data were collected over 
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a period of time during which acceptable control was exerted. Deem
ing this control acceptable requires making a judgment devoid of 
statistical considerations. If the degree of control is judged unaccept
able, an alternative is to assign values to the parameters on the basis of 
what is judged to be attainable in an adequate control system. 

Once o-rf is calculated, the standard control chart, say at So- limits, 
would have limit lines at ± Saa with a central line at zero. 

Question 7.G. With what frequency sliould material balances be 
closed? 

Answer 7.G. This is related to question 7.D. From point of view 
of sensitivity of detection of a true MUF over a given interval of time, 
the frequency of closing material balances within that interval has no 
effect on the variance of MUF over the entire interval. Thus, over a 
1-year ])eriod, for example, the variance of the annual MUF is the same 
whether one physical inventory or twelve inventories are taken. 

This is the statistical answer to question 7.G, and it relates only 
to the error variance of the MUF over the entire interval of time. 
There is another consideration, however, which enters in. It deals with 
the timeliness of detection and subsequent correction of a situation 
that may be producing an unacceptably large MUF. If a material 
balance is closed only after a lengthy period of operation, it may be 
too late to take meaningful action. In the same sense, even though 
measuiements made on movements of material within a given MBA 
in no way affect the size ot the variance of tlie MUF for that MBA, 
they may be very helpful in isolating the sources creating a MUF. Thus 
nonstatistical considerations are the ones ot greater imjx)rtance when 
we are making decisions about how often to close material balances 
and how many measurement |X)ints should exist within an MBA. 

7.2.3 Examples 

Example 7.F 

Monthly MUF data in grams of -^'U for a small-scale fuel fabrica
tion facility are reported in Table 7.2. 

TABLE 7.2 MONTHLY MUF DATA 

(Example 7.F) 

Month, / 

1 
2 
i 

MUF, Xj 

149 
lb2 
11 

Month, J 

4 
5 
b 

MUF, X, 

178 
10 
107 

Month, 7 

7 
8 
9 

MUF, X, 

-12 

,) 
354 
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Assuming that the true MUF is the same from month to month, 
what are the estimates of o-i;̂  and erê ? These estimates are given by Eqs. 
7.7 and 7.8. First jj.^ and Sjj^.^ must be calculated from Eqs. 7.5 and 7.6. 

From Eq. 7.5, 

,2= (149)^-f (162)^-f • . . +(354)^-[(149+162+ . . . -f354)V9] ^ ^^ ^54 
8 

From Eq. 7.6, 

(149)(I62) + (162)(11)+ . . . +(5)(354) 

8 

(149+162+ . . . +354)2 
81 

Then, 

. , (14,254)+ (9) (-7579) , , = _ 

= - 7579 

= 7708 g^of^^u 

>._ (83)(14,254) + (180)(-7579) _ ,^^^ g2 ^f 235u 
63 

The estimate of oe:-, the variance of a given difference between 
inputs and outputs, is zero. Clearly a variance cannot be negative, al
though an estimate of a variance, being a random variable, could be. 

One conclusion at this point might be that the measurement 
random variance of an inventory, <r,-, is the dominant contributor to 
the variance of MUF, with ac" close to zero. Another possibility is that 
the assumption of a constant true MUF is not valid; i.e., there is a 
true MUF that varies from month to month. Assuming that values are 
assigned to O-T,- and <T£- based on the methods of Chap. 6, obtain estimates 
(T.,,- and (rj,.,j,. I from Eqs. 7.3 and 7.4. If a,, = 40 g of -''•"̂ U and 
ac = 20gof'-^-^U, then, 

. , 18(-7579-14,254)+83(14,254) 
<TA/ = ^ '-— ^ _ l _ i _ 3200 - 400 = 8941 

06 

or (7J, = 95 g of -*"'U, which is tlie estimate of the standard deviation 
between true MUF's. Also 

14,254+9(-7579) 
(̂ .v/;,M,+ i= :r ^+1600= -6108 

Given these results, what is the estimate of the MUF for the next 
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month? This is given by Eq. 7.10, with p given by Eq. 7.9. Assume that 
(Ts = 15gof =̂ =U. Then 

-6108-1600+225 „ , „ 
p = J -= —0 59 

8941+3200+225+400 

The true monthly MUF, M, is estimated by 
« 

^^^—=107 g o f " ' U 
n 

Therefore, by application of Eq. 7.10, the expected value for the 
observed MUF for the next month would be 

£(xio |x9) = -0.59(354-107) + 1 0 7 = - 3 9 g of "«U 

A control chart on MUF is calculated to illustrate how it would 
apply to future observed MUF's, assuming that the data of Table 7.2 
were generated during an acceptable period of control. To construct 
the chart, we calculate OP/ from Eq. 7.11: 

trj=(8941)(1.35) + (1.18)(-6108) + (2)(1600)(0.76) 

+ (225)(2.53)+ (400)(1.35) =8404 g« of " s u 

which gives 

<Td = 92 g o f » 5 u 

The 3cr control hmits are then 0 ± 3 (92) = 0 ± 276 g of ^''U. 
Consider how this would be applied to the last three months' data of 
Table 7.2. For month 7, 

E{x^ |x6) = -0.59(107-107) + 107=107 

X 7 = - 1 2 

x•,-E{x^ |x,) = - 1 2 - 1 0 7 = - 1 1 9 

(the plotted point, which lies between —276 and -1-276, and is hence in 
control). 

For month 8, 

E{xi |x7) = - 0 . 5 9 ( - 1 2 - 1 0 7 ) + 1 0 7 = 1 7 7 

X8 = 5 

x8-£(x8 I x,) = 5 - 1 7 7 = - 1 7 2 
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(tlie plotted point, which lies lietween —276 and -1-276, and is hence in 
control). 

For month 9, 

£(x9 |x8) = -0 .59(5-107) + 107 = 167 

X9 = 354 

X9-£(x9 |x8)=354-167=187 

(again in control). 

Example 7.G 

The monthly MUF data for a diffusion plant, given in Table 2.1, 
Chap. 2, are analyzed to provide estimates of the parameters. For a 
diffusion plant the assumption of a constant true MUF from month to 
month is not valid. Because of condensation of UF^ in a cold spot in 
the cascade, for example, a significant portion of an inventory may not 
be measured in a given month, but it would be in measurable form at 
the next month's inventory. This is an excellent example of a variance 
in true MUF from month to month and a corresponding strong nega
tive correlation between successive monthly MUF's. 

The problem is to obtain estimates of an- and au M.+I- T O do this, 
we must assign values to a-q and <re. Assume for purposes of this 
example that a, = 1000 units and at = 400 units. Then, to evaluate 
au and <rif, if.^j, we must calculate s^^ and S;,+i from Eqs. 7.5 and 7.6 

sl= (-358)2+ . , , 4 . (36 i8)2- [ ( -358+ . . . +3618)7144] ^9^432,042 

^ ( -358) ( -3287)+ . . . +(-376)(3618) ( - 3 5 8 + . . . +3618)' 
''''^^ 143 (144)2 

= -3,599,163 

Then, from Eqs. 7.4 and 7.5, 

, , 288(-3,599,163-9,422,042)+20,738(9,422,042) 
<rM= - ^ gQ443 ' -̂̂  '- ^-2,000,000-160,000 

= 7,212,271 <Tji/ = 2686 units 

9,422,042+144(-3,599,163) 
auiMi^x = '- ~ — ^ '—^ +1,000,000 = - 2,583,503 

units^ 
To estimate the MUF for the next month, we apply Eq. 7.10. First, 

replace M by its estimate, the average monthly MUF of 156 units (this 
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value was found in Sec. 2.1). Assume that as, the systematic-error 
standard deviation for a difference between inputs and outputs, is 100 
units. Then calculate p from Eq. 7.11: 

^ - 2,583,503 - 1,000,000+10,000 ^ _ 
'' 7,212,271+2,000,000+10,000+160,000 ~ 

Then £(x,,-,|x,,,) = - 0.38(3618 - 156) -|- 156 = - 1160 units. 

A control chart for MUF is calculated assuming that the base data 
were collected during a state of satisfactory control and that the 
parameter values assigned to a-q, as, and <rg are correct. The variance of 
a plotted difference between an observed MUF and its expected value 
is oif', from Eq. 7.11, 

o-j=(7,212,271)(1.1444) + (0.76)(-2,583,503) + (2,000,000)(0.7644) 

+ (225)(1.9044) + (160,000)(1.1444) =8,002,593 

which gives 

(7d = 2829 units 

The appropriate 3or control lines on the difference statistic are 
then ± 8487 units. Apply these limits to the data for year 7 from 
Table 2.1, Chap. 2. Results are given in Table 7.3. 

TABLE 7.3 C O N T R O L CHART DATA FOR DIFFUSION PLANT MUF 

(Example 7.G) 

Xj+\ Within 
Month, y + 1 xi Xj+i E{xi+i\xj)* -Ei,Xj^i\xj)^ ±8487? 

73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

- 5 , 3 1 7 
- 6 9 4 

933 
- 1 , 3 5 0 

637 
- 1 , 3 0 5 

1,318 
- 7 7 9 
- 3 5 1 
2,354 

11,311 
- 1 3 , 7 7 5 

- 6 9 4 
933 

- 1 , 3 5 0 
637 

- 1 , 3 0 5 
1,318 
- 7 7 9 
- 3 5 1 
2,354 

11,311 
- 1 3 , 7 7 5 

1,384 

2236 
479 

- 1 3 9 
728 

- 2 7 
711 

- 2 8 6 
511 
349 

- 6 7 9 
- 4 0 8 3 

5450 

- 2 , 9 3 0 
454 

- 1 , 2 1 1 
- 9 1 

- 1 , 2 7 8 
607 

- 4 9 3 
- 8 6 2 
2,005 

11,990 
- 9 , 6 9 2 
- 4 , 0 6 6 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
No 
Yes 

• From Eq. 7.10. 
t These values would be plotted on the control chart. 
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7.2.4 Basis 

The model forming the basis lor the results is written as follows: 
Let )'̂ .i be the beginning inventory for time period / and jj be the 
ending inventory. Let w, be the difference, inputs minus outputs. 
Then, the observed MUF, x,, is 

Xi=yi-v\-ui-y, (7.12) 

Assume that y^ is comprised of a true inventory, p,, a systematic 
measurement error, y (the same for all ; ) , and a random measurement 
error, t]) (the Greek letters are assigned meanings different from those 
in the previous chapters) : 

J»'J = A ' J + 7 + ' 7 J (7.13) 

Similaily, w, is written: 

w, = v,+ h^t, (7.14) 

In these models the facts that y and 8 are assumed to be constants 
lor all 7 imply that the amounts of material in inventory are reason
ably constant throughout the total time period involved, as are the 
amounts of mateiial represented by the differences between inputs and 
outputs. In an equilibrium environment these are reasonable assump
tions. 

From Eqs. 7.12 to 7.14, 

•V; = ( M J - 1 - M J ) + > ' J + ( ' ; ; - ! -» ; , ) + 5 + € ; (7.15) 

Each error random variable is assumed to have zero mean. The 
variance of 8 is denoted by as"^, the variance by r\j by o-,' for all ;', and 
the variance of ĝ  by ut^ for all /. Note that x, does not involve y, the 
bias in estimating an inventory. 

For this model the expected value o/ x, is 

£(X, ) = (M,_ I -M; ) + ^ , = A / , (7.16) 

and the exjjected value ot tlie mean, x, is 

£(x)= ^ ^ i ^ ^ + i 7 (7.17) 
n 

wlieie V is tlie aveiage ditteience between inputs and outputs over the 
n time periods. If the true inventory at the beginning of the sequence. 
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[lo, is equal to that at the end of the sequence /t„, the average of the 
observed MUF's is simply the average value of the inputs minus the 
outputs for a unit time period. Since /xo and p^ will be nearly equal in 
an equilibrium operating situation, a situation assumed to exist, it is 
reasonable to regard x as an estimate of the average true difference 
between inputs and outputs for a given unit time period. In any event, 
X approaches v as n gets large, regardless of the size of the difference. 

Next, consider the sample variance, s/, defined by Eq. 2.61. The 
expected value of s- is found by application of Eq. 4.2. The derivation 
is simpler if .ŝ  is written in an equivalent form. 

(n—l) ^ xJ —2 X XjXk 
sl= 1 ^<* (7.18) 

n(n— 1) 

where there are n terms in the first sum and n (n — 1) /2 terms in the 
second. To find E(Sx^), we must evaluate £ ( x / ) . First, from Eqs. 7.15 
and 7.16, 

E(x^)=E{M^) + 2al+ai+a; (7.19) 

Also, 

E{x,x,)=E(M,M,)-al+al {k=j+l) 

= E(M,M,)+al {k>j+\) (7.20) 

The expected value of s/ in Eq. 7.18 is found in Eqs. 7.19 and 
7.20: 

E(sl)=E(^t^\ +2a:+al+a:-2E 

= c^+2cl ( l + i ) + a ^ - ? M 2 ± l (7.21) 

where au^ denotes the variance among the true MUF's, and auj u,^^ is 
the covariance between successive true MUF's. 

Next consider the sample covariance between successive MUF's, 
denoted by 5̂ _̂ +i. This is defined as follows in this application: 

y^ MjMk 

. !<*"(«- 1). 
, 2(r? 

n 
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This can also be written 

M ~ 1 n n —2 n 

(„'-2n+2)'£x,x,+r 23 X? 2 23 T,^^^" 
^ - + 1 = U - ^ , _ ^ _ . = i . ^ . + 2 ( 7 2 3 ) 

where there are [{n — 1) (n — 2)]/2 terms in the double summation. 
Using Eqs. 7.19 and 7.20, we find the expected value of .?,,;+!• 

£ (ij,j+i) reduces to 

{n^-2n-\'2)<^M,M,,, («2+2) 2 <r; a 
E{Si,i+\) = •—I ; — 0 - , ( ' -24) 

Equations 7.21 and 7.24 are solved simultaneously for au' and 
<^tijM,^^ to give Eqs. 7.3 and 7.4. 

Now, assume that the true MUF is constant for all time periods, 
so that M, — M for all ;'. Then au and au u are both zero, and Eqs. 
7.21 and 7.24 can be solved simultaneously for arj' and ae^ to give their 
estimates based on the experience MUF data. 

Solving 

and 

gives the solutions 

[ = 2cl(\+^^+a: 

{n^+2)al a] 
• f ; . j + l - — 1 

"'- 2-n 

( « 2 + 2 ) ^ ^ + 2 n ( n + l ) 5 , , , + i 
0'e = 

nin-2) 

(7.25) 

(7.26) 

where the carets (") denote that these are estimated quantities. These 
are Eqs. 7.7 and 7.8. 

Next, consider the basis for p in Eq. 7.9. The correlation coefficient 
between two random variables is defined by Eq. 2.55 to be the ratio of 
their covariance and the product of their standard deviations. In this 
instance, since both the random variables x, and x,+i have the same 
standard deviation, the denominator is simply the variance of x,. This 
is given by Eq. 7.19. Also, the covariance between x, and x,+i is given 
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by Eq. 7.20, and p in Eq. 7.9 follows immediately. Equation 7.10 is a 
direct consequence of the relation between the means of two random 
variables with a correlation coefficient p. 

Finally, the variance of [x^ ,̂ — £(x^^,|x^)] is found. This reduces 
to finding the variance of (x,+i — px,) if p and M can be regarded as 
known constants. Write, from Eqs. 7.15 and 7.16, 

x^+i —px, = ( M j + i — p A f , ) + (T;,—ij^^j—p,^_i+p,^) + (5 —p5) + (€j+i—p,^) 

(7.27) 

and the variance, ad^, follows immediately by application of Eq. 4.3: 

<Tl = <r!i(l+p')-2paM,.M3+i+<rl[(l +p)'+ 1 +P'] + <TI(1 -PY+TKI +P') 

(7.28) 

which is formula 7.11. 

7.3 THE MINIMUM VARIANCE MUF 

7.3.1 Problem and Assumptions 

As shown in the previous section, for a given material balance period, 
the uncertainty in MUF is directly affected by the uncertainties in the 
measured beginning and ending inventories. Inventories are very diffi
cult to measure, especially in some types of facilities. When this is 
true and when, in addition, the uncertainty in the inventory is a 
major contributor to the uncertainty in MUF, it may be enlightening 
to complement the traditional MUF with another MUF-like statistic. 
This statistic replaces the measured beginning inventory by a weighted 
average of previously measured inventories plus totaled inputs to and 
outputs from the MBA in question. (This idea, originally suggested by 
C. A. Bennett several years ago, was thoroughly developed by K. B. 
Stewart in a series of papers on the subject. His results have been ex
tended to include the possibility of nonzero true MUF's and of a non
zero systematic-error variance. To my knowledge there has been little 
application of the method in practice, and its practicality has not been 
demonstrated for routine use.) 

The problem is stated specifically as follows: Given a series of 
measured inventories plus inputs and outputs, how can these data be 
combined to provide the estimate of the inventory having minimum 
variance, and how can this estimate be used to estimate the MUF? 
This problem is solved by use of the model given in Sec. 7.2. 
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7.3.2 Solution 

The notation is the same as in Sec. 7.2.4; i.e., y,_^ is the measured 
beginning inventory for time period ;, y^ is the ending inventory, and 
w, is the difference (inputs minus outputs). Let / , be the minimum 
variance estimate of the ending inventory for time period ;. Then 1, is 
given by the recursion formula: 

/ , = P,_i7,+ ( l -P ,_i ) ( / ;_ i+j^ , ) (7.29) 

with /„ = yo, where 

\ p,-i+C/ \ / ' - i = l / 

where the limiting value of Fj-iasj—*00 is [—c+v'((;+2)^—4]/2 and where 

c= 4 (7.31) 

Application of the results requires a knowledge of c, which would 
be an estimate based on past data. A perfect knowledge is not neces
sary. 

The random-error variance of /,, denoted by Vj, is 

V,^p,-,a\ (7.32) 

The minimum variance MUF for period /, denoted by x',, is 
defined as in Eq. 7.12, except that the beginning inventory, y^.j, is 
replaced by / ,- i . 

x', = I,^i+w-y, (7.33) 

The random-error variance of x'̂  is 

F.(x',)=<r5(l+/,,_2)+(r: (7.34) 

The systematic variance of x'̂  is given by the recursion formula: 

V,{x,)=L]al 

where 

L ,= l + (l-j(-,_2)L,_i 

In addition to having minimum variance, x', has another property 
ot some interest and practical importance. As shown earlier in Eq. 7.20, 



252 INTERPRETATION OF MUF AND L E - M U F 

when all true MUF's are constant, the covariance between two suc
cessive MUF's is (— ar,^ + aa^), where aq^ is the random-error variance 
for a given inventory and as^ is the systematic-error variance for a 
given difference ( input minus o u t p u t ) . When aa^ is assumed to be zero or, 
more realistically, to be small relative to ari^, this covariance is given by 
— (7,2 For the min imum variance MUF, x',, the covariance in question is 
zero when as^, the systematic-error variance, is zero. T h u s successive 
min imum variance MUF's have more meaning when viewed individu
ally under these assumptions since each such M U F is statistically in
dependent of the preceding and succeeding MUF's. For nonzero as^ 
the covariance between x, and x,^-^ is given by L,Lj^i as'-

When the true M U F for each time period is zero, x'j has an expected 
value of zero. Suppose, however, that the true M U F for period / is M,. 
Then the minimum variance M U F , x'j, has an expected value given by the 
lecursion formula: 

£(x;) = M , + (1 -/.,_2)£(x',_i) (7.36) 

T h e covariance between successive MUF's then becomes 

cov(xj, x'j+i) = cruj.Uj^^+LjLj+ial (7.37) 

7.3.3 Examples 

Example 7.H 

Given the data in arbitrary units tor 10 months of operation, find 
the min imum variance MUF's and their random-error variances when 
o-£- = 0.10 and o-,- = 1.0. Compare these results with the MUF's cal
culated by Eq. 7.12. Data are given in Tab le 7.4. 

TABLE 7.4 DATA FOR EXAMPLE 7 H 

Month, ; 

1 
2 
J 
4 
5 
6 
7 

a 
9 

10 

Beginning inventory, 

yi-' 

20 51 
19 85 
20 88 
20 16 
19 41 
18 87 
17 96 
19 78 
19 54 
20 49 

Inputs —Outputs, X, 

- 0 02 
0 11 

- 0 44 
0 02 

- 0 . 1 8 
- 0 10 
- 0 28 

0 51 
- 0 10 
- 0 . 3 0 

Ending inventory. 

Jj 

19 85 
20 88 
20 16 
19.41 
18 87 
17 96 
19 78 
19 54 
20 49 
19 03 
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T h e standard MUF's are computed first by use of Eq. 7.12: 

xi = 20.51+ ( - 0 . 0 2 ) - 1 9 . 8 5 = 0.64 

x 2 = 1 9 . 8 5 + ( 0 . 1 1 ) - 2 0 . 8 8 = - 0 . 9 2 

X3 = 2 0 . 8 8 + ( - 0 . 4 4 ) - 2 0 . 1 6 = 0.28 

X4 = 0.77 

X6 = 0.36 

X6 = 0.81 

x 7 = - 2 . 0 0 

X8 = 0.75 

X 9 = - 1 . 0 5 

xio= 1.16 

For a constant true MUF, each M U F has a random-error variance 

of (<T£= -1- 2 V ) = 0.10 + 2.00 = 2.10 and a standard deviation ofV2rT0 = 

1.45 units. Because CT,^ is large relative to ae', there is a large negative 

correlation between successive MUF's. These are plotted in Fig. 7.1. 

5 6 
MONTH 

FicuRE 7.1 Plot of standard MUF data. 

T h e tendency toward nonrandomness is apparent in the figure, 

especially for the last few months. Th i s pat tern is caused by the nega

tive covariance, —ar,-, between successive observed MUF's (this assumes 

that as' = 0). 

Next, consider the min imum variance estimates of each month 's 

ending inventory and the min imum variance MUF's. We must cal

culate the p values from Eq. 7.30 recognizing that c in Eq. 7.31 is 

0.10/1.0 or 0.1: 
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p,= 

pl = 

pi = 

1 
1 + [1 / (1+0.1)] 

1 

1 + [1 / (0 .5238+0 .1 ) ] 

1 

= 0.5238 

= 0.3842 

= 0.3262 
1 +[1 / (0 .3842+0 .1 ) ] 

/'3 = 0.2988 

/;4 = 0.2851 

/>6 = 0.2780 

/)6 = 0.2743 

jfe7 = 0.2724 

^ = 0.2713 

^ = 0.2708 

inventory estimates, /y, are then given by Eq. 7.29: 

/o = 20.51 

/ i = (0.5238)(19.85) + (0.4762)(20.51-0.02) =20.15 

/2=(0.3842)(20.88) + (0.6158)(20.15+0.11) =20.50 

/3=(0.3262)(20.16) + (0.6738)(20.50-0.44) =20.09 

74=19.90 

/ 6 = 19.48 

/«= 18.98 

77=19.00 

78=19.52 

79 = 19.26 

Then , from Eq. 7.33, the min imum variance MUF's are: 

x'i = 2 0 . 5 1 - 0 . 0 2 - 1 9 . 8 5 = 0.64 

x; = 2 0 . 1 5 + 0 . 1 1 - 2 0 . 8 8 = - 0 . 6 2 

x'3 = 2 0 . 5 0 - 0 . 4 4 - 2 0 . 1 6 = - 0 . 1 0 

x4 = 20 .09+0 .02 -19 .41 =0 .70 

x; = 0.85 

X6 = 1.42 
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X7=-1.08 

x8=-0.03 

x;=-1.07 

xio= -0.07 

These have random-error variances and standard deviations as 
follows (from Eq. 7.34) : 

rr(x'i) = 1.0(1+ 0+0 .1=2 .10 0-4=1.449 

F,(x;) = 1.0(1+0.5238)+0.1 = 1.6238 0-/,= 1.274 

r,(x'3) = 1.0(l+0.3842)+0.1 = 1.4842 0-/,= 1.218 

F.(x'4) = 1.0(l+0.3262)+0.1 =1.4262 a/,= lA94 

F,(xio) = 1.0(l+0.2713)+0.1 = 1.3713-* (7/..= 1.171 

By comparison, the standard MUF has a standard deviation of 
1.449 units. Thus, under the conditions of this example, the minimum 
variance MUF is more sensitive to detecting real losses. 

Example 7.1 

Assume that the true MUF's for n = 4 time pericxis are all M = 1 
unit. Further assume that ^5^ = 0.10, <TĈ  = 0.10, and «7.,^=1.0. Compare 
the standard MUF, Xj, with the minimum variance MUF, x'j. 

First, consider the standard MUF, which has a mean of 1 unit and 
a variance of var(x,) = 2<r,̂  -f o-ŝ  + o-ê  = 2.20, or a standard deviation 
of 1.48 units. The minimum variance MUF, x', has a mean value given 
by Eqs. 7.36, 7.30, and 7.31. By use of the recursion formulas, 

£(x' i)=Mi=1.0 

£(x;)=Af2+(l-/'o)(1.0) = 1.0+(0.4762)(1.0) = 1.4762t 

JE;(X'3) =Af3+(l-/'i)(1.4762) = 1.0+(0.6158)(1.4762) = 1.9090 

£(x'4) =M4+(1 -jftj) (1.9090) = 1.0+(0.6738) (1.9090) =2.2863 units 

The variance of x\ is given by Eqs. 7.34 and 7.35. First, consider 
the random-error variance: 

F,(x'4) = 1.0(1+0.3262)+0.10 =1.4262 

• T h e limiting value o£ pi-i as ; -> oo is t —0.1 + VCZ.l)^ -41/2=0.270, which yields a 
limiting variance of 1.370. 

t / » , pit etc., are taken from example 7.H since c has the same value in both examples. 
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The systematic variance must be calculated recursively. From Eq. 
7.35, 

Lx= \-^V,{x\) = (1)2(0.10) =0.10 

Z,2= 1+0.4762= 1.4762->F,(x;) = (1.4762)2(0.10) =0.218 

1.3= l + (0.6158)(1.4762) = 1.9090->F,(x'3) = (1.9090)2(0.10) =0.364 

14= l + (0.6738)(1.9090)=2.2863^n(x;) = (2.2863)2(0.10) =0.523 

Therefore the total variance of x\ is (1.4262 -I- 0.523) = 1.949, 
which gives a standard deviation of 1.40 units. 

To recapitulate, for this example: 
Standard MUF has a mean of 1.2 units and a standard deviation 

of 1.48 units. 
Minimum variance MUF has a mean of 2.74 units and a standard 

deviation of 1.40 units. 
It is apparent that, for this particular set of data, the minimum 

variance MUF is much more sensitive in detecting the true un
accounted for material, since it has a much larger mean value and a 
smaller standard deviation. Lest the wrong impression is left, however, 
we should note that, if the standard MUF were accumulated in this 
example, its mean would be 4(1.0), or 4.0 units, and its standard de
viation would be V2(r,;̂  -f- 4<T£̂  -I- l&as'^ = 2.00 units, which compares 
very favorably with the results for the minimum variance MUF. 

Example 7.J 

Consider the diffusion plant data of example 7.G. For these data, 
and assuming the true MUF's were constant, c of Eq. 7.31 is 

2,205,265 _ ^ , -
c= =0.615 

3,583,503 
The minimum variance MUF has a random-error variance given 

by Eq. 7.34. This requires determination of p„.., for month n. The 
limiting value ot p„„^ as n approaches infinity is 

-c+V{c+2r—4 ^ -0 .615+\ /2 .8382 ^ ^ ^^^ 
2 2 

(see definition following Eq. 7.30). 
Thus, by Eq. 7.34, the random-error variance of the minimum 

variance MUF is 

Vr(x'} = 3,583,503(1.535) + 2,205,265 = 7,705,942 units2 
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which gives a standard deviation of 2776 units, as compared with the 
3061 units found for the standard MUF. Although this reduction is not 
large, in this application the real benefit comes from the fact that 
successive MUF's are now uncorrelated and a control chart can be 
easily constructed. (This assumes that as', the systematic-error variance 
of a given inputs-minus-outputs value is negligibly small and that 
successive true MUF's are uncorrelated.) For such a chart the mean 
is 156 units for all months and the limits are of the form ±^(2776). 

7.3.4 Basis 

The results of Sec. 7.3 are derived by use of the model of Sec. 7.2, 
and specifically Eqs. 7.13 and 7.14. 

The basic idea behind the minimum variance inventory and mini
mum variance MUF is that under certain conditions each ending in
ventory can be estimated from some previous ending inventory plus 
additions to and removals from the process since that date. For 
example, at some starting pwint, with y„ designating beginning in
ventory, with a series of inventory estimates ()'i, y.,, . . . , y,) , and with 
a series of inputs minus outputs (Wj w^, • • • , Wn), we can define a 
corresponding series of z's: 

Zn=J>n 

Zn-l=yn-l-\-W„ 

Zn-2=yr,-i-\-W„^l+Wn 

(7.38) 

Za=yo-\-Wi+w>+ . . . +Wn 

If the process is stable, with no true MUF's and with negligible 
biases, each Zj is an estimate of the ending inventory for time period 
Ti. Calling this /„, we can write 

h=j:,a,z, (7.39) 

where the a/s sum to 1 and are chosen to minimize the random 
variance of /„. 

It is convenient to develop the formula tor /„ with a recursion 
relation since the a/s clearly depend on how many terms are included 
in the sum. Consider the data for the initial few periods of operation: 
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Beginning inventory 

^00=70 

Period 1 

zio=yo+!tn 

Zn=yi 

Period 2 

Z2o=yo-\-wi+W2 (7.40) 

^21=71 + ^2 

Zn =yi 

At the end of period 1, there are two estimates of the ending in
ventory, Zio and 2]J. A weighted average to give / j can be written: 

/ i=/ 'o^ii+(l- / 'o)^io=/ 'oJ>' i+(l—/'o)0 'o+zti i) (7.41) 

where p„ is chosen to minimize the random-error variance of / , , 
designated by F,. From Eqs. 7.13 and 7.14, and including only the 
random-en or variances, 

V,=p\a\+{\~p,na\+a':) (7.42) 

Let 

.= "A (7.43) 

Then 

Vx = al{pl-\-{\-p,)\\^-c)\ (7.44) 

We can minimize V^ with respect to p„ by equat ing the partial 
derivative ot F, witli respect to p,, to zero and solving for p„\ 

For this value ot p,,, Fj is found to be 

Equations 7.41, 7.45, and 7.46 form the bases for Eqs. 7.29, 7.30, 
and 7.32, respectively, for n = \. 
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Having demonstrated that Eq. 7.29 holds for n = 1, we will prove 
by induction that this equation holds for any value of n. Proof by 
induction requires demonstrating that, if some statement holds for n, 
it also holds for n -t- 1. Since Eq. 7.29 is known to hold for n = I, 
once we demonstrate that it holds for n + 1, it will then follow that 
it holds for n = 2, n = 3, etc. (i.e., for any n). 

Thus in the inductive proof assume that 

In=pn-iyn-\-{l-pn-l)(In-l + W„) (7.47) 

where 

^ " - ' ^ . I f . / /^^ I M (7-48) 
l + U/(/'»-2+c)l 

with 

c= ^ (7.49) 

and the random variance of /„, F„, is given by 

Vn=pn-i<rl (7.50) 

Given these results, we are then required to show that 

In+l=pnyn+l-^i\ -J&n) (/n+W„+l) (7.51) 

where 

1 
l + [l/(p„_i+c)] 

(7.52) 

Proof: Assume that /„̂ î is in the form of Eq. 7.51 and prove that 
the solution for p„ is given by Eq. 7.52: 

h+l=pnyn+l-{-(.l —pn)[pn-iyn-\-(.\ —jbn-l) (7n-l+Wn)+W«+l] 

The random-error variance of /„+i is given by 

F„+i=/,„V:+/-Ll(l - / '„)2<TH(1 -pn-iyPn-2il -PnYcl, 

+ (1 -J&n)2(l -/>„_l)2c<7,'+(l -PnYcal 

Then, equating {dVn+i/dpn) to zero, using the fact (from Eq. 7.48) 
that 

{l—pn-l) 
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and solving for pn yields 

= (r,2{2j&„-2(l -pn)[pLl-^(^ -Pn-l)(cpn-l-^pn-l-c) ^ ^ " + 1 - „ 2 ( 0 A — 0 / 1 _ i , M/.2 

dp„ 

+ c(l-J&„_l)2+^]}=0 

or 

pn-{l-pn)(p„-l-hc)=0 

from which 

^" /-.-l + f + l l + [l/(/)n-l+f)j ^ • ' 

which is identical to Eq. 7.52 and completes the proof. 
Also, it was asserted that, when as" = 0 and Mj = M for all /, then 

x'„ and x'„+i have zero covariance. This is proved as follows: 

x'„=In-l-i-Wn—yn 

x^+i = I„-\-w„+i—yn+i 

=pn-iyn-\-i^—pn-l)(In-l-hw„)+W„+i—y„+l 

The covariance is 

cov(xi, x^+i) = (1 —p„-i) F„_i+ (1 —pn-i) var(w„) —pn-i var{y„) 

= (7̂ [(1 —J&„_l)/>„_2+c(l —p„-l)—pn-l] 

But 

^ jfen-S + C + l 

Therefore 

/ , , ^ pn-i + C—pn-i—C ^ 
cov(x„, x;+i) = ^̂ — /^ = 0 

pn-i-f-C-hl 
which completes the proof. 

Finally, consider the effect on /„ and x'„ when the assumption of a 
stable process is not valid. Specifically, suppose that the true MUF for 
period ;' is not zero and that as' and ay', the systematic-error variances, 
are not zero. Then, consider the ending inventory estimates, 

Ii=poyi-h(l —po)(yo+wi) 
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h=piyi-\-(l —pi)[poyi-{-(l —po)i)'o-{-wi)+Wi] 

l3=piyi-{-(.l~p2){piy2-{-{l—pi)[poyi-\-il—po){yo-\-wi)+w2]+w3\ 

etc. 

T h e corresponding min imum variance MUF's are 

xi=yo-{-wi—yi x'3 = /2+W3—73 

X2=/l+IX'2—J'2 X4 = /3 + Zf4—74 

etc. 
Then , from Eqs. 7.13 and 7.14, with the error random variables all 

having zero means, the expected value of x'j is 

E(x\) = (MO+»'I—Ml) =Mi 

T o find E{x2), write 

xi=p(syi-\-{\—po){yo-\-W])-{-w2—yi 

=/'oj)'i+(l —pi){x\-\-y^-^Wi—yi 

Then, 

£'(x2) =j&oMi+(1 —/"o) (A/i+Mi) + »'2 —M2 

= M2+(1- j ! 'o )Mi = M2+(1-j&„)£(x'i) 

Similarly, 

£(X'3)=M3+(1-J&1)£(X2) 

Clearly, for general n, 

£(x'„) = M „ + (1 -pn-,)E(x'n-i) (7.56) 

which is Eq. 7.36. 
By comparison with the standard M U F (which has expected value 

M „ ) , note that, when there are nonzero true MUF's the x'j estimate of 
the M U F has an expected value that moves further and further from 
zero. Th i s is not necessarily a poor characteristic since we would like to 
detect such conditions. 

Even though £ (x'„) may deviate from zero by a value greater than 
E (x„), however, its variance is also larger. From Eq. 7.50, its random-
error variance is 

Fr(x'n) =pn-2(7li + al + (Tl = a\ + al{l+pn^i) (7.57) 
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This is Eq. 7.34. 
The systematic variance, Vg (x'„), is expressed by the recursion 

formula: 

V,(x'„)=L\al 

where 

Ln=l+(l- j6„_2)I„_l (7.58) 

This follows when we note that, retaining only the nonrandom-error 
terms, we can write x'j, x'j, etc., as follows: 

x'i = Mi+5 

X2 = Mi+5[il-po)-\-\] 

x'3 = Mz+S[(\~pi)(\-po) + (l-pi) + l] 

x\=Mi+5[(\-p2)(\-plKl-po) + (l-p2){l-pO + (l-p2)+l] 

or x'i = M\+LiS 

x'2 = M2+[(l-po)Ll+l]d = M2 + L2d 

x'3 = Mz+[(l-pi)L2+l]S = Ms+L3S 

x'4 = M4+[(1-^)Z.3+1 ]5 = M4+L45 

Further, the covariance between x'„ and x'„̂ î is easily seen to be 

C0v(x'„, x'n+l) =<rM„,Mn+l'^LnLn+l<rl (7.59) 

which is zero only if the covariance between successive true MUF's is 
zero and if as' is zero. 

7.4 MATERIAL BALANCE CLOSINGS 

7.4.1 Problem and Assumptions 

Thus far in the discussion of MUF's an essential requirement has 
been that the applicable time period over which the MUF is calculated 
be closed on both ends by physical inventories. Conceptually this is 
a necessary requirement since it can be argued that, without taking 
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a physical inventory, we cannot know the amount of material in in
ventory. However, situations exist in which the need for a complete 
physical inventory in the traditional sense may be mitigated. 

Consider the situation in which items are measured as they 
are placed in inventory. This occurs in a fuel fabrication facility, for 
example. The entire inventory of the plant, of course, does not consist 
of such measured quantities, because of hidden inventories, such as 
hood hold-ups. Whenever a physical inventory is taken, it is the prac
tice to containerize and measure as much of the hidden inventory as 
possible, with production necessarily being interrupted in the process. 

Suppose, now, that hidden inventories represent a relatively small 
part of the total inventory and suppose that it has been verified that 
the items as measured and placed in inventory were accounted for 
on a piece-count basis and their contents have not been disturbed (this 
can be verified through the use of tamper-indicating seals). Verifica
tions can be made on a spot-check basis when inventory listings are 
produced on the basis of floor transactions. Spot checks can be made 
on randomly selected portions of the inventory occasionally to assure 
that the inventory listings are valid. (The need for timeliness in this 
instance would probably require a computerized accounting system, 
except in very small facilities.) Under these conditions it may be 
technically feasible to effect control over the material by closing the 
material balance on the basis of measured additions to the process, 
measured removals from the process, and measured items in inventory, 
where this last information is derived from the floor-transaction data. 

The resulting MUF-like quantity is not MUF in the accepted sense 
of the term since it includes hidden unmeasured inventories to a 
larger extent than does the MUF calculated as the result of a physical 
inventory. With relatively small hidden inventories, however, it can 
provide assurance that gross unaccounted-for losses are not occurring. 
Such a material balance closing could be effected frequently, and the 
build-up of this MUF-like quantity could be evaluated against the 
combination of known measurement errors plus reasonable expected 
accumulations of hidden inventories. With proper guidelines it could 
be used to trigger the need for a partial or a complete physical 
inventory. 

In this section we consider the problem of how to judge objectively 
whether a given material balance closing indicates a satisfactory state 
of control. 

7.4.2 Solution 

For time period / the MUF-like quantity referred to in the 
previous discussion is designated x,*, which is identical with the 
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traditional MUF, x^, only if there are no known hidden inventories 

involved. Otherwise, x* is the sum of x, and these h idden inventories. 

By way of clarification, a hidden inventory item is an unmeasured 

inventory item, not one whose presence is unknown or undetected. In 

a chemical reprocessing facility, for example, it is known that at any 

point in time the various vessels and pipes contain material and are 

part of the inventory. Unless they are measured, they are a par t of the 

h idden inventory. Since such material collectively represents a major 

par t of the inventory in a chemical reprocessing facility, the concept 

under discussion in this section does not appear to be applicable to 

this type of facility. 

A reasonable decision is to trigger action when x,* exceeds some 

critical quanti ty. T h e action could range from cleanout of the suspect 

hood and recomputat ion of x* after including the contents as part of 

the measured inventory to a complete physical inventory. T h e specific 

action to take would depend on the circumstances of the given situa

tion; e.g., a gradual bu i ldup in x* over successive balance periods 

would tend to indicate the need for a complete inventory, whereas a 

sudden blip, traceable to a given step of the process, might call at least 

for a hood cleanout as the initial course of action. 

Let the critical quant i ty be c* such that, when x,* exceeds c,*, 

some (unspecified) action is taken. I t is reasonable to write c,* in the 

form 

c';=A,+c„{a\,^-cl;)^'^ (7.60) 

where ^ j = an assigned constant, dependent on total throughput through 
the various stages and representative of the material expected 
to become hidden 

Ca = a constant that depends on the probability of calling for action 
when, in fact, it is not warranted, {ca depends on the significance 
level, a, or the probability of committing a type I statistical 
error) 

(7i'= variance oi x,* attributed to measured quantities 

<i2j = variance of A, 

These quantit ies are determined as follows: A^ is based on a com

pilation of past data for various segments of the hidden inventory 

tempered by engineering judgment on the reasonableness of the data. 

In T a b l e 7.1 c„ is found for given a. W e can calculate a^ - by the 

methods of Chap. 6 for finding the variance of an algebraic sum and 

can evaluate o-j - when A^ is found by assigning a value to the variance 
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of each segment of the hidden inventory and summing. These assigned 
values are also based on past data tempered by engineering judgment. 

7.4.3 Examples 

Example 7.K 

During a 4-week period, six material balance closings were made in 
a fuel fabrication facility. During this interval less than 0.003% of the 
inventory was shipped out of the MBA, and there were no receipts. 
Therefore x,* is simply the difference in measured inventory from one 
time period to the next. 

The data and pertinent calculations are shown in Table 7.5. Details 
leading to the calculation of the A^, ui , and o-j are not shown. We 
chose Ca = 1-96, corresponding to « = 0.025. 

TABLE 7.5 DATA FOR MATERIAL BALANCE CLOSINGS 

(Example 7.K) 

Date 

7-1 
7-10 
7-17 
7-19 
7-20 
7-21 
7-26 

Measured 
inventory, 
kgof"6U 

213.617 
213.439 
211.232 
211.202 
209.984 
212.687 
213.318 

0.178 
2.207 
0.030 
1.218 

- 2 . 7 0 3 
- 0 . 6 3 1 

A, 

0.4 
1.2 
0.2 
1.0 
0.1 
0 .3 

<"! 

0.3 
0.6 
0.2 
0.1 
0.7 
0.8 

0-2J 

0.10 
0.40 
0.08 
0.15 
0.03 
0.10 

4 

1.020t 
2 .613t 
0.622 
1.353 
1.473 
1.880 

X? >c* 1 

No 
No 
No 
No 
No 
No 

tci* = 0.4 -|- 1.96 V (0.3)2 + (0.10)- = 1.020 
t c3 ' = 1.2 -f 1.96 V (0.6)2 + (0.40)2 = 2.613 

On an individual Xj* basis, since in no instance is x^* greater than 
c*, there is no cause for concern or action. The data should also be 
analyzed on a cumulative basis, however, to see if an excessive leakage 
of material has resulted. These calculations are shown in Table 7.6. The 
A/s sum directly to form the cumulative sum. The cumulative value 
for (7,. is found by extracting the square root of the sum of squares 
for the individual w, values, but this is not the case for a,., which 
reflects the uncertainties in the measured inventories. Rather, tri. is 
found by always regarding the 7-1 inventory as the beginning in
ventory and the inventory for the closing date as the ending inventory, 
as appropriate, and disregarding the inventories within the balance 
period. The methods of Chap. 6 are again applied. 

f 
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TABLE 7.6 CUMULATIVE DATA 

(Example 7.K) 

Balance period 

7-1 to 7-10 
7-1 to 7-17 
7-1 to 7-19 
7-1 to 7-20 
7-1 to 7-21 
7-1 to 7-26 

>cl 

0.178 
2.385 
2.415 
3.633 
0.930 
0.299 

Ai 

0.4 
1.6 
1.8 
2 8 
2.9 
3.2 

eri, 

0.30 
0.55 
0.50 
0.52 
0.75 
0.83 

ai. 

0.10 
0.41 
0.42 
0.45 
0.45 
0.46 

c*, 

1.020 
2.945 
3.080 
4.148 
4.614 
5.060 

^?>^;(?) 

No 
No 
No 
No 
No 
No 

That Xj* in no case exceeds the critical value for the cumulative 
case indicates that the hidden inventories are under control. The in
crease in the measured inventory between 7-20 and 7-21 and again 
between 7-21 and 7-26 is attributed to a partial cleanout at various 
stages in the process and the corresponding transfer of material from a 
hidden to a measured inventory status. 

7.4.4 Basis 

No new statistical concepts are presented in Sec. 7.4. Refer to 
Chap. 6 to determine ci • The basis for the test criterion, x*y'C*, is 
found in Sec. 7.1.4. 



Chapter 8 

ANALYSIS OF PAIRED DATA 

OVERVIEW 

In Chaps. 6 and 7, attention is focused on material unaccounted for 
(MUF), an important index of performance that measures the effec
tiveness of a nuclear materials control system within a given material 
balance area (MBA) or within a facility. It is also important to pro
vide assurance that nuclear materials moving between facilities are 
properly accounted for. This is not really a separate and distinct prob
lem, because errors associated with measuring inputs to a facility and 
outputs from it lead directly to errors in MUF. In fact, over an ex
tended period of time, the errors in input and output measurements 
are of controlling imjxjrtance, as compared with errors in measuring in
ventories, in determining the errors of MUF. (This point is made in 
Chap. 7.) 

To a degree dependent upon the particular material involved, in 
addition to other factors, facility inputs and outputs are measured by 
two parties—the one who ships the material and the one who receives 
it. For a given shipment of materials, the shipper's value will tend to 
disagree with the receiver's value because of measurement uncertainties 
associated with both values, if for no other reason. This difference is 
commonly called a shipper-receiver difference. 

This chapter is concerned with statistical significance of a shipper-
receiver difference, i.e., with resolving the question of whether or not 
an observed difference can be explained by measurement errors. If it 
cannot, there are a number of possible explanations; e.g., one or both 
parties may have intentionally or unintentionally biased his results, or 
the material may have been altered en route. Perhaps the most common 
explanation, however, is that the pertinent measurement-error variances 
are understated by either the shipper or the receiver, or both. Whatever 
the explanation, detection of a significant shipper-receiver difference 
is an indication that some kind of investigaton as to its cause is in 
order. 

Up to this point in the discussion, it would seem that the chapter 
should properly be entitled "Analysis of Shipper-Receiver Data." 

267 
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The subject matter is broader than this, however, not only its 
statistical aspects but also as applied to other nuclear materials control 
problems. Shipper-receiver data consist of measurements reported by 
two parties on the same items, where the parties may or may not use 
the same analytical techniques. In its broader aspects, any time two 
measurements are made on samples of the same material, the data are 
of the same type as shipper-receiver data. For example, a container of 
uranium-bearing scrap can be sampled and measured for ^ '̂U content 
by wet-chemistry techniques, and the same container can be measured by 
a nondestructive assay instrument. Or, during an audit inspection, the 
inspector produces a result for a given item which can be compared 
with the facility's value for that item. Therefore, even though this 
chapter is motivated primarily by the need to analyze shipper-receiver 
data, the statistical techniques have broader application, as will be 
illustrated in some of the examples. Thus it is appropriate to indicate 
this generality of application in the chapter title. (For convenience in 
exposition, the topic is dealt with in the shipper-receiver frame of 
reference. The reader should keep in mind the broader aspects of the 
problem.) 

With actual shipper-receiver data, the primary interest is generally 
in the average difference between the shipper and the receiver values. 
The same is often true for other data of this type; biases between 
measurement methods, between a facility and an audit measurement, 
etc., are of concern. This topic is treated in Sec. 8.2. To make this 
evaluation, we must know the measurement-error variances. Although 
some of this information may be supplied with the data, its validity is 
on occasion open to question. In this connection the data themselves 
can be used to make inferences about the random components of the 
measurement variances. This is of particular interest in analyzing all 
kinds of paired data because it suggests still another method of attack
ing the very important materials control problem, that of estimating 
measurement-error variances. This is the subject of Sec. 8.1. Finally, 
Sec. 8.3 is concerned with evaluating shipper-receiver data over several 
shipments or, in the broader aspects, with making inferences from 
paired data collected under more than one set of conditions. 

8.1 INFERENCES ON MEASUREMENT VARIANCES 

8.1.1 Problem and Assumptions 

It is assumed that the data are paired, with values being reported 
for each of the n items by two parties (parties may be shipper and re
ceiver, analytical methods 1 and 2, analysts A and B, facility and audit 
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teams, sampling methods 1 and 2, etc.). For modeling purposes the 
parties are called the shipper and the receiver although, as was pointed 
out in the Overview, the results have wider applicability. Each reported 
value is made up of three components, the true value for the item in 
question, the systematic-error component, and the random-error com
ponent. The error components are, in turn, made up of contributions 
from various sources, which may or may not be identified. To interpret 
the results of the analysis properly, we must make this identification, 
at least to some degree. This point is best illustrated by an example. 
Supjxjse that a shipment consists of containers of plutonium oxide with 
an assigned value of total plutonium associated with each container. 
There is no way of telling from the data alone how these values were 
assigned to the containers. Was each container weighed, sampled, and 
analyzed for percent plutonium? Or was the entire shipment of powder 
characterized for percent plutonium by drawing and analyzing samples 
and assigning the average percent plutonium to the shipment? In the 
former case, the variance due to sampling and analysis manifests itself 
as the random-error variance although the systematic error still plays a 
role. In the latter case, however, the uncertainty in the average percent 
plutonium factor appears as a systematic error, and, as a result, there 
is less scatter in the data themselves. Any scatter in the data would be 
explained by the random error in determining the net weights. The 
systematic errors are assumed to be constant for both parties for this 
entire set of n items; this assumption is very important (see example 
8.A). It is further assumed that the random variables are normally dis
tributed. 

In equation form, if we let s, be shipper value for item i and 
fj be the receiver value, the model is 

5i = Xi+5+€.- (8.1) 

ri = Xi+A+vi (?= 1, 2, . . . , n) (8.2) 

where x̂  is the true value of item i, having a variance of a/, which 
represents the random variance between the true amounts for the 
items; S and A are the systematic errors for the shipper and receiver, 
respectively (they are assumed to have been drawn from distributions 
having zero means and variances of o-â  and o-̂ -, respectively); and «; 
and r]i are the random errors, each normally distributed with zero means 
and variances of CTÊ  and o-j,̂ , respectively. If S and/or A have nonzero 
means, then we can speak of a bias between the two sets of data, a bias 
which perhaps is introduced intentionally. 

The data are used to make inferences about uc^ and tr̂ .̂ Some 
specific questions are posed: 
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Question 8.A. Do the random measurement-error variances differ 
for the shipper and the receiver? 

Question 8.B. A value is assigned to the sum of the variances 
cTê  + arf. Do the data support this value as being valid? 

Question 8.C. The shipper and the receiver assign values to at^ 
and (7),̂  respectively. Do the data support these values jointly as being 
valid? 

Question 8.D. The receiver assigns a value to a-^^, but the shipper 
does not assign a value to a^^. Do the data support this value for <7),̂  
as being valid? (It is a simple matter to reverse the roles of <jz^ and 
,r,=.) 

In the terminology of statistical hypothesis testing, the preceding 
questions can be regarded as tests of the hypotheses: 

Question 8.A. HQI: <rê  = o-,̂  against the alternative that <j^^ =/L 

Question 8.B. Ha^: {ae^ 4- CT^^) = omo^ against the alternative 
that (CTE' -f (r,2) r^ am„2 

Question 8.C. //o.v ^e" = <̂EÔ  ^"d CTI,^ = o-ijô  against the alterna
tive that (TE^ r^ ata^ or o-,̂  ^ <r,fô  or both 

Question 8.D. H04: o-,̂  = (T,O^ against the alternative that 
Or,'' ^ (T,o^ 

Depending on the answers to these questions, the remaining question is: 

Question 8.E. What values should be used for <7ê  and on^ in 
making inferences about the mean difference? 

8.1.2 Solution 

In answering any of these questions, we first calculate the variances 
among the i, values and among the r̂  values by Eq. 2.61 and the 
covariances between the 5j and rj values. (The covariance is given by 
( 2 •̂ i*"; ~ [ (2 î 2 *"i) l^]]l (n "" 1) > where each sum runs from 1 to n.) 
Designate these quantities by S^^, Sr^ and S„, respectively. The an
swers to the specific questions are then found by making the calcula
tions indicated in the following steps. 

Question 8.A 

Step a. Calculate 

Sl = :S',+Sl+2S,r (8.3) 

Sl = S\+Sl-2S.r (8.4) 

Ou» = >J« — Sr (8.5) 
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Step b. 

Step c. 

Calculate 

O u t 

Calculate 

(8.6) 

; = r V ( « - 2 ) / ( l - r 2 ) (8.7) 

Step d. If t exceeds in absolute value the critical value of Student's 
t distribution with (n — 2) degrees of freedom, ii.(a/2). at the 
a significance level, conclude that o-ê  and cr,,̂  are not equal 
(from Appendix C; this is set up as a two-sided test of the 

hypotheses.) 

Question 8.B 

Step a. Calculate S„̂  from Eq. 8.4. 

Step b. Form the ratio 

RJ-!^- (8.8) 

where trmo^ is the hypothesized value for the sum (<TB^ + a-q') 

Step c. At the a level of significance, reject the hypothesis if i? < y^^/^ 
or if 72 > xi-(a/2)'. where ^a/^ and xi-(a/2)^ are read from Ap
pendix B with (n — 1) degrees of freedom. 

Question 8.C. (The solutions to this question and to question 
8.D are both based on large-sample theory. The question of how 
large the sample size must be to result in tests that are reasonably valid 
has not been investigated.) 

Step a. Denoting the hypothesized values by ae.^ and o-,)ô  calculate 

Step b. Calculate 

In List) = - n - 0 . 5 n ln(i'5>S'?-i1,) (8.10) 

Step c. Calculate 

In Li^i) = —0.5n ln(ff|a-(0+ff|a'|p+o-«oo-?o) 

" L 2(^i<r^.„+^Xo+<^5o<7?o) J ^ ^^^ 
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Step d. F ind 

X3 = 2 [ l n I ( n ) - l n L ( i 3 ) ] (8.12) 

Step e. If A3 exceeds A3"", conclude that either o-ê  =^ aeo^ or (T,,̂  =7̂  <7,,ô  
or both. T h e value of As*"* depends on the significance level, 
a, and is given for various values of a in Tab le 8.1. 

TABLE 8.1 CRITICAL VALUES OF X3<"> FOR TEST OF H„i* 

a X3<"> 

0.10 4.61 
0.05 5.99 

• These values are taken from Appendix E 

Question 8.D 

a 

0.025 
0.01 

with 2 degrees of freedom. 

X3'«' 

7.38 
9.21 

Step a. Solve Eqs. 8.13 and 8.14 simultaneously for w / and Se!^. (They 
can be solved most simply by assigning a value to o-ĝ  in Eq. 
8.13, solving this for ^x^, using this value in Eq. 8.14 to solve 
for CTe^, using this in Eq. 8.13 to solve for a/, etc., unt i l the 
values of ^e^ and a/ n o longer change. Experience indicates 
that convergence is qui te rapid.) 

^_5Xo+25.,a^<7^,o+5?^t ^ V , 0 
0-1 = 

^?= 
{<^1,V^IY 2 I 2 

(8.13) 

(8.14) 

Step b. Find In L(n) from Eq. 8.10. 

Step c. Find In L (^4), using Eq. 8.11 with ^^^ fj-om Eq. 8.14 replacing 

<T£0 • 

Step d. F ind 

X4 = 2 [ l n L ( f i ) - l n L ( i 4 ) ] (8.15) 

Step e. If A4 exceeds A4"", conclude that o-,,- does not equal its stated 
or hypothesized value, a-qo^- T h e value of A4"" depends on the 
significance level, «, and is given for various values of « in 
Tab le 8.2. 
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TABLE 8.2 CRITICAL VALUES OF X4<«) FOR TEST OF Hu* 

a X4<") 

0.10 2.71 
0.05 3.84 

a. X4<«> 

0.025 5.02 
0.01 6.63 

* These values are taken from Appendix B with 1 degree of freedom. 

Question 8.E. The several possible situations that may arise in 
choosing the values to assign to <je- and â ^ are detailed in Table 8.3. 

TABLE 8.3 POSSIBLE SITUATIONS LEADING 
TO DIFFERENT ESTIMATES 

OF <j\ AND al 

Situation Assigned values * Hypothesis tested f Result of test 

None 

None 

None 

Sum 

Sum 

Sum 

Sum 

<rl or a'l t 

2 2 + 
<r, or ffj X 

Both 

Both 

None 

Hoi 

Hoi 

zizoi and Ho 2 

Hoi and 
Ho 2 

Hoi and 
Ho 2 

Hoi and Ho 2 

Ho4 

Ho4 

Ho 3 

Ho 3 

Rejected 

Not rejected 

Rejected 

Rejected 
Not rejected 

Not rejected 
Rejected 

Not rejected 

Rejected 

Not rejected 

Rejected 

Not rejected 

•"Sum" denotts (ffi--p (J/?-). "Both" denotes (a-,- and ar) 
t Hypotheses are as follows Hm uc- = Uq-. Ho. (ffc'+O/j-) = omir. Hoj ar ~ <7i«-. 

X The case where the roles of oe^ and a^- are reversed is straightforward. 

In Table 8.4 values are assigned os^ and ^̂ ^ corresponding to each 
situation (in some instances, as indicated, one situation can lead back 
to another). 

• 

A 

B 

C 

D 

E 

G 

H 

I 

J 

K 
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TABLE 8 4 ACTIONS CORRESPONDING T O EACH SITUATION IN TABLE 8.3 

Situation Action 

A .T^Sl-S.r (8 16) 

<rl=S;-S,r (8 17) 

If either is negative, call it zero, and the other is S' (from Eq 8 4) 
If 5 , , IS negative, then 

<r1-5l (8.18) 

<T-,=Sl (8.19) 

<r;=.7T=6'?/2 

< r ^ = 4 o ^ ^ (8 20) 

B 

C 

D 

Same as A 

Same as A 

F 

G 

H 

Same as C 

Same as A * 

(821) 

•> _ 2 2 / o 

I 2 _ 2 

(T1 from Eq 8 14 

J Calculate /?. = In (o-V-r^o) (8.22) 

and ft,= ln (^2Al„ ) (8.23) 

where <r", and o-^come from Eqs 8 lb and 8 17 If j /?, | < | ^^ | or if 
a, is negative, revert to situation H or I (i e , ask question 8 D) If 
1 /?, I > I /?, ' or if (T̂  IS negative, revert to situation H or I with the 
roles of a', and a', reversed 

i ^ 2 _ 2 
Is . <̂  < — "• <o 

o'J —""io 

• Situation R or C may possibly apply if there is reason to behcve that Of- and cr̂ j" might be 
CtlM 11 



INFERENCES ON MEASUREMENT VARIANCES 275 

8.1.3 Examples 

Because of the wide variety of paired-data applications likely to be 
encountered, several different examples are given. 

Example 8.A 

(This example was provided by R. A. Schneider.) 
When nitrate solution is being loaded into a recovery plant for 

further purification, samples are drawn from each container and 
analyzed for percent plutonium with two different analytical tech
niques. One analytical method is a direct assay, and the other requires 
that a correction factor be applied. Samples from 20 containers are 
analyzed in this way. Using the resulting data (given in Table 8..'5) at 
the a = 0.05 significance level, test the hypothesis that the analytical 
random-error variances are the same for both analytical methods. 

TABLE 8.5 P L U T O N I U M CONCENTRATION DATA (% OF Pu) 
(Example 8.A) 

Container, 
I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Method 1, 
Si 

13.11 
15.14 
13.22 
13.67 
10.48 
15.37 
12.37 
12.50 
11.46 
14.28 

Method 2, 

n 

13.00 
14.90 
13.01 
13.65 
10.61 
15.11 
12.40 
12.63 
11.71 
14.21 

Container, 
i 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Method 1, 
.fi 

13.26 
11.00 
12.74 
13.69 
10.43 
11.38 
12.26 
12.89 
13.33 
11.88 

Method 2, 
ri 

13.01 
11.06 
12.75 
13.69 
10.40 
11.30 
12.27 
12.70 
13.30 
11.90 

The question asked of the data is question 8.A, and the hypothesis 
is Hoi: <Te^ = <TTI^. The steps to the solution of question 8.A are followed. 
First, calculate the variances, Sg- and S/ and the covariance, S,,. From 
Eq. 2.61, 

Sl = 

55= 

(13.11)'+ • • . -f (11.88)''-[(13.11-t- • • • +11.88)720] 
19 

(13.00)'+ . • . +(11.90)"-[(13.00+ . . • +11.90)720] 
19 

= 1.891696 

= 1.666079 
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From Sec. 8.1.2 (page 270), 

i'.r={(13.11)(13.00)+ . . . +(11.88)(11.90) 

- [ (13.11+ . . . +11.88) (13.00+ . . . + 1 1 . 9 0 ) / 2 0 ] ! / l 9 

= 1.769446 

Then, 

Question 8.A 

Step a. 

Si = 1.891696+1.666079+2(1.769446) = 7.096667 

5"„= 1.891696+1.666079-2(1.769446) =0.018883 

5'u.= 1.891696-1.666079 = 0.225617 

Step b. 

Step c. 

0.225617 „ ^ , ^ 
= 0.616 \/(7.096667)(0.018883) 

/ = 0.616Vl8/0.6205 = 3.318 

Step d. The critical value of Student's t distribution with 18 degrees 
of freedom is !„ 975 = 2.101 (from Appendix C) with a = 0.05. 
Since 3.318 exceeds 2.101, the hypothesis of equal random 
analytical-error variances is rejected. 

With respect to the estimates of ae" and <T,,-, situation B of Table 8.3 
applies. From Eqs. 8.16 and 8.17, 

ae- = 1.891696 - 1.769446 = 0.122250 
<r,2 = 1.666079 - 1.769446 = - 0.103367 

Since o-,,̂  is negative, it would be assigned the value zero, and O-E" would 
be estimated by S^^. 

ae^ = 0.018883 

This completes the steps of the analysis. A disturbing note is indi
cated by the large negative estimate for <7,,̂  —0.103367. The reason for 
this becomes evident when the data of Table 8.5 are plotted. An im
portant assumption in the analysis is that, if there is a bias between 
the values given by the two parties, it is constant over the data set in 
question. This is the result of the assumption that S and A in Eqs. 8.1 
and 8.2 are constants. This assumption can be checked for validity by 
plotting (jj — rA vs. r̂  (or vs. ij or the average of r̂  and ^4). If the 
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assumption is true, this plot should indicate no relation between 
(Si — rj) and r,. The data are plotted in Fig. 8.1. 

_ l 

— 

""' 

1 

• 

• 

1 

• 

1 

• 

1 

• 

• 1 

• • 

• 

1 
. •k 

• 

• 

1 

• • • 

•1 -
• 

Zero bias 

1 
10 11 12 13 14 15 

FicijRE 8.1 Plot of data in Table 8.5. 

The relation between (Si — r,) and r, is evident. The Si values 
(Table 8.5, Method 1) are relatively high at high plutonium concen
trations and low at low concentrations. This accounts for the large 
negative estimate of ur,^. In view of this apparent nonconstant relative 
bias, the statistical analysis is not valid because the assumption of a 
constant bias is grossly violated. Physically the nonconstant bias might 
be explained as being due to the use of a wrong correction factor 
applied for Method 2. Perhaps the correction factor should be a 
function of the concentration. 

For illustrative purposes the calculations for this example have 
been carried to completion even though the results are not valid. This 
was done to show how the calculations are made and, more important, 
to demonstrate the need to be aware of the assumptions made in the 
analysis. If there is any question at all about the validity of the assump 
tions, the first step should be to plot the data. Had this been done in 
this instance, the analysis would not have proceeded beyond that point. 
For further discussion of these data, see Example 8.J. 

Example 8.B 

In a Gulf report (R. L. Bramblett et al.. Applications of Photo-
induced Reactions to Nuclear Materials Safeguards Problems, Quarterly 
Progress Report, July 1-Sept. 30, 1971, USAEC Report GULF-RT-A-
10914, Gulf Radiation Technology, Dec. 17, 1971), data are given for 
total amounts of -^^V for Power Burst Facility (PBF) UOj powder in 
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2-quart polyethylene bottles as reported by the manufacturer and as 
measured by the Isotopic Source Assay System (ISAS) unit. Omitting 
a few of the values with smaller amounts of -^^U to reduce the size of 
o•J,̂  and hence enhance the test sensitivity, we obtain the data listed 
in Table 8.6 for 22 bottles. 

TABLE 8.6 " ' U IN PBF UO2 POWDER (GRAMS) 
(Example 8.B) 

Container 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Manufacturer 
value 

613 
639 
661 
652 
658 
640 
661 
645 
646 
627 
602 

ISAS 

618 
633 
655 
648 
660 
653 
676 
654 
636 
633 
622 

Container 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Manufacturer 
value 

623 
630 
645 
655 
648 
605 
645 
624 
666 
622 
637 

ISAS 

628 
634 
646 
653 
650 
606 
640 
638 
656 
619 
630 

Suppose the manufacturer states that his random-error standard 
deviation is 3.2 g of ^̂ ^U (this was not stated in the document but is 
put forth for illustrative purposes only). Do the data substantiate this 
as valid? Operate at the a = 0.05 level of significance. (We can verify 
that a plot of the data discloses no nonconstant bias between the two 
measurement methods, so the analysis can proceed.) 

This is question 8.D. For simplicity, identify ISAS as the shipper 
and the manfacturer as the receiver, so that ar)" is related to the manu
facturer. The hypothesis, HQ^: a-rf- = (3.2)^ = 10.24, is tested for sig
nificance by application of the steps under question 8.D. First, we must 
calculate S,̂ , Ŝ ,̂ and S,,. 

^ (618)"+(633)'+ . . . +(630)"- [ (618+633+ . . . +630)V22] 
S.- 21 

= 271.96 

^ (613)"+(639)"+ . . . +(637)"-[(613+639+ . . . +637)722] 
Sr- 21 

= 329.19 

5'.,= {(618)(613) + (633)(639)+ . . . +(630)(637) 

- [ ( 6 1 8 + . . . +630)(613+ . . . +637)/22] 1/21=265.58 
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Then apply the steps of question 8.D with afio — ^-2. 

Question 8.D. 

Step a. Solve simultaneously for o-/ and ae^ in Eqs. 8.13 and 8.14. 

- 2 . 
271.96(3.2)^+2(265.58)(3.2)"ff'<+329.19Jt 10.24^'. 

"' (^.'+10.24)" ^^+10.24 

28,517.07+5439.08^'.+329.19fft 10.24^'. 
(10.24+^0" "^^+10.24 ^̂ -̂ "̂ ^ 

. , 329.19^^-2(265.58)ff|(^I+10.24)+271.96(g|+10.24)" 
' ' * " (10.24+^^)" 

10.24a' 

10.24+0-^ 
(8.25) 

To solve, assign an initial value of 20 to tfe" (this value is 
selected arbitrarily but is judiciously based on some knowl
edge of what the value might be) and work iteratively on Eqs. 
8.24 and 8.25 as follows: 

In Eq. 8.24, let ff« = 20 and solve for al This gives 
ff^ = 294.14-6.77 = 287.37 

In Eq. 8.25, let ^x = 287.37 and solve for P.. This gives 
^^ = 66.00-9.89 = 56.11 

In Eq. 8.24, let ^, = 56.11 and solve for at This gives 
^i = 311.22-8.66 = 302.56 

In Eq. 8.25, let ^1 = 302.56 and solve for a]. This gives 
ff^ = 66.18-9.90 = 56.28 

In Eq. 8.24, let ff^ = 56.28 and solve for al This gives 
ffi = 311.26-8.66 = 302.60* 

In Eq. 8.25, let ^1 = 302.60 and solve for al This gives 
^'. = 66.18-9.90 = 56.28* 

Since this is the same value as in the previous iteration to four 
significant figures, the values marked with an asterisk are the 
solutions to Eqs. 8.24 and 8.25. Proceed to step b. 

Step b. From Eq. 8.10, 

In U(l) = -22-U ln[(271.96)(329.19)-(265.58)"] = -130.37 
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Step c. From Eq. 8.11, with (T?O replaced by a^, =56.28, 

lnZ,(i4) = - l l In [(302.60)(56.28) + (302.60)(10.24) + (56.28)(10.24)] 

[(302.60+10.24)(271.96)-2(302.60)(265.58) ] 
-22-^ +(302.60+56.28)(329.19) I 

l2[(302.60)(56.28) + (302.60)(10.24) + (56.28)(10.24)]J 

= -109.32-22 .57=-131.89 

Step d. From Eq. 8.15, 
A,4 = 2 (-130.37 -+- 131.89) = 3.04 

Step e. From Table 8.1, at « = 0.05, A4<"> = 3.84. Since 3.04 is less 
than 3.84, conclude that a-qa = 3.2 g of -̂ '̂ U is consistent with 
the data. (The solution to question 8.D is based on large-
sample-distribution theory. In this example n is 22. There is 
no intent to imply that this value of n is large enough to per
mit application of the large-sample theory. The question of 
how large n must be has not been investigated. A similar dis
claimer is attached to other examples in this book involving 
application of the results of questions 8.D and 8.E.) 

To continue with this example, what would be the values to use 
for CTe" and â ?̂ This is question 8.E and situation I in Table 8.3. 
Therefore, from Table 8.4, the values are 

cr5 = ff",0=10.24 g"of"'^U (T, = 3.20 g of "'^U 

0-'. = 56.28 g" of"«U a. = 7.50 g of "»*U 

Example 8.C 

In this example, use the same data as in example 8.B but operate at 
the a = 0.10 significance level. The calculations are the same as in 
example 8.B up to step e of question 8.D. 

Question 8.D 

Step e. From Table 8.2, at « = 0.10, \,<«) = 2.71. Since 3.04 is 
greater than 2.71, conclude that arĵ  does not equal its stated 
value of 10.24 ĝ  of "'su. 

With this conclusion, what would be the values to assign to CTE" 
and CT,^? This is question 8.E and situation H, which proceeds as situa
tion A since there is no a priori reason to believe that ac" and o-̂ ^ would 
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be equal in this example, the methods being quite different. The values 
for ae^ and <r,ĵ  are then given by Eqs. 8.16 and 8.17: 

(r̂  = 271.96-265.58 = 6.38 a. = 2.53 g of "«U 

(7̂  = 329.19-265.58 = 63.61 (7,= 7.98 g of "'^U 

The almost complete reversal of results between these two 
examples illustrates the influence of a priori knowledge on the final 
estimates. The conclusion is quite different whether one uses the data to 
confirm a prior estimate or to provide an estimate exclusive of any 
prior knowledge. 

Example 8.D 

Assigned uranium weights in kilograms for ten cylinders of UFg 
are given in Table 8.7. 

TABLE 8.7 N E T WEIGHTS OF U R A N I U M IN U F , CYLINDERS (KG) 

(Example 8.D) 

Cylinder 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Shipper value (.r,) 

1471.22 
1470.98 
1470.82 
1470.46 
1469.42 
1468.98 
1469.10 
1470.22 
1470.86 
1470.38 

Receiver value (r,) 

1468.12 
1469.52 
1469.22 
1469.26 
1462.96 
1470.80 
1467.89 
1472.28 
1469.02 
1470.16 

First, consider the question of whether the shipper and receiver 
have different random-error-measurement variances. This is question 
8.A, Sec. 8.1.1, with the solution given under question 8.A of Sec. 8.1.2. 
Before following the steps of this solution, we find the values of S,", 
5,", and S,,: 

^ (1471.22)"+ . . . +(1470.38)"-[(1471.22+ . . . +1470.38)710] 

5j = - ^ m : 

= 6.0177 

9 
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6'.,= {(1471.22)(1468.12)+ . . . +(1470.38)(1470.16) 
-[(1471.22+ . . .)(1468.12+ . . . ) /10]}/9 

= 0.4189 

Then, 

Question 8.A 

Step a. From Eqs. 8.3 to 8.5, 

51 = 0.6507+6.0177+2(0.4189) = 7.5062 

6'', = 0.6507+6.0177-2(0.4189) =5.8306 

^u^=0.6507-6.0177= -5.3670 

Step b. From Eq. 8.6, 

r= , -'•'''' = -0 .811 
V(7.5062) (5.8306) 

Step c. From Eq. 8.7, 

Step d. At the 5% two-sided level of significance, the critical value of 
Student's t distribution with 8 degrees of freedom is t^, 975 = 
2.306. Since —3.92 exceeds this in absolute value, conclude 
that (TL" and <jr,^ are not equal. (The reasons for this signifi
cant difference cannot be discerned from the data themselves; 
additional information is required. As one possible explana
tion, suppose the shipper assigned an average percent uranium 
to all ten cylinders, and the receiver drew a sample from each 
cylinder, analyzed it for percent uranium, and applied a 
different factor to each cylinder. Then the uncertainty in the 
factor would not be reflected in o-ê  for the shipper but would 
affect the value of o-,,- for the receiver. If this is the case, it 
does not mean the shipper's values are necessarily better. 
Rather, the shipper's values would tend to have a larger 
systematic-error variance due to the common percent uranium 
factor. Thus the shipper's actual error may well be larger than 
the receiver's even though it appears to be smaller because 
only random errors are estimable from the data.) What, then, 
would be the values to use for CTE" and cn,^} This is question 
8.E, situation B, with the estimates given by Eqs. 8.16 and 
8.17: 
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0-̂  = 0.6507-0.4189 = 0.2318 

<T? = 6.0177-0.4189 = 5.5988 

Example 8.E 

Using the data of example 8.D, suppose the shipper and the re
ceiver assert that their random-error standard deviations are 

a,0=1.0 (7-,o=1.5 

Do the data support these values taken jointly? This is question 
8.C of Sec. 8.1.1, with the solution given in Sec. 8.1.2 under question 
8.C. 

Question 8.C 

Step a. From Eq. 8.9, 

. , (0.6507)(1.5)^+2(0.4189)(1.0)"(1.5)"+(6.0177)(1.0)^ 
""' (1.0+2.25)" 

(1.0)(2.25) 
- j ^ 3 p ^ ^ = 1.0601-0.6923 = 0.3678 

Step b. From Eq. 8.10, 

In L(^) = - 1 0 - 5 ln[(0.6507)(6.0177)-(0.4189)"] = -16.596 

Step c. From Eq. 8.11, 

In Z.(i3) = -51n[(0.3678)(1.0) + (0.3678)(2.25) + (1.0)(2.25)] 

[(0.3678 + 2.25)(0.6507)-2(0.3678)(0.4I89) 1 
- 1 0 J +(0.3678+1.0)(6.01I7)l 

[2[(0.3678)(1.0) + (0.3678)(2.25) + (1.0)(2.25)]l 

= -20.155 

Step d. From Eq. 8.12, 

X3 = 2(-16.596+20.155) = 7.118 

Step e. Choose « = 0.05 so A,*"' = 5.99 from Table 8.1. Since 7.118 
> 5.99, conclude that a,'^ ^ 1.0 or o-,̂  ^ 1.5, or both. That 

is, the joint hypothesis / /„, : ae" = o-£o" and <r,- = (J•q^,- is re
jected. 
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To continue with this example, what values should be used for 
(je^ and (T,2p This is question 8.E and situation J. Then, from Eqs. 8.22 
and 8.23, since CTE" and a," were calculated from example 8.D to be 
0.2318 and 5.5986, respectively. 

„ , /0.2318\ _ „ , /5.5898\ „ „ 

Since R,, is smaller than Re in absolute value, ask question 8.D, 
with uriQ- = (1.5)". The hypothesis, aj,- = 2.25 is tested. Follow the 
steps of question 8.D (see solution in Sec. 8.1.2) : 

Question 8.D 

Step a. From Eq. 8.13 and 8.14, solve simultaneously. 

<7x = " 

(0.6507)(1.5)^+2(0.4189)(1.5)"a;+(Q.0177)at 2.25^^ 
(0-5+2.25)" <r".+2.25 

3.2942+1.8851^?+6.0177ffJ 2.25^' 
(2.25+<7?)" 2.25+^^. 

and 

,„ (6.0177)aJ-2(0.4189)^I(aJ+2.25) + (0.6507)(^|+2.25)" 
{2.25+aiy 

2.25al 
"2 .25+a 

To solve, assign an initial value of 0.5 to CTE", and work iter
atively on the two equations as follows: 

In the CTj." equation, let <7E" = 0.5 and solve for CTE". This gives 
&/ = 0.7592 - 0.4091 = 0.3501 

In the (TÊ  equation, let â " = 0.3501 and solve for ^E"- This 
gives ^E" = 0.6470 - 0.3030 = 0.3440 

In the a/ equation, let CTE^ = 0.3440 and solve for o-j". This 
gives a/ = 0.6918 - 0.2984 = 0.3934 

In the CTe" equation, let ax" = 0.3934 and solve for CTE". This 
gives ae' = 0.6593 - 0.3349 = 0.3244 

Using this in the a/ equation, we find 
(? 2 = 0.6849 - 0.2835 = 0.4014 
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Using this in the CTE" equation, we find 
ae^ = 0.6618 - 0.3406 = 0.3212 

Use CTE" = 0.32 and a,:'- = 0.40 as the solutions. 

Step b. From Eq. 8.10, 

In Z.(n) = - 1 0 - 5 ln[(0.6507)(6.0177)-(0.4189)"] = -16.596 

Step c. From Eq. 8.11, with 0.32 replacing <r".o. 

In L (<:,) = - 5 ln[ (0.40) (0.32) -f (0.40) (2.25) -f (0.32) (2.25) ] 

"(0.40+2.25)(0.6507)-2(0.40)(0.4189) 
_jQ +(0.40+0.32)(6.0177) 

L 2[(0.40)(0.32)+ (0.40) (2.25)+ (0.32)(2.25)] 

= -2.7924-16.3672= -19.160 

Step d. From Eq. 8.15, 

A* = 2 (-16.596 4- 19.160) = 5.128 

Step e. From Table 8.2, at « = 0.05, 

A4'"' = 3.84 and A4>A4"" 

Therefore, reject the hypothesis that ar)" = 2.25. 

To recapitulate, thus far in the analysis, we have demonstrated 
that neither of the error parameter values supplied by the two parties 
are supported by the data. This is situation H, which corresponds to 
situation A. Since this was the situation in example 8.D the estimates 
of the error variances are the same as in that example, 

<r' = 0.2318 (7̂  = 5.5988 

Example 8.F 

From the data in Table 8.8, which show percent of ^̂ Û measured 
by two mass spectrometers, obtain estimates of the random-error 
variances for each instrument. 
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TABLE 8.8 PERCENT " ' U VALUES 

(Example 8.F) 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Instrument A (s,) 

1.0054 
1.0154 
0.9889 
4 967 
5 025 
4.926 
2.064 
2.007 
4.987 
0.9988 
4.932 
3.471 
2.026 
1.0084 

Instrument B (r,) 

1.0116 
1.0070 
0.9907 
4.880 
5.063 
4.892 
2.055 
2.029 
4.974 
1.0003 
5.006 
3.508 
2.014 
0.9977 

(s,-r,) 

- 0 . 0 0 6 2 
0.0084 

- 0 . 0 0 1 8 
0.087 

- 0 . 0 3 8 
0.034 
0.009 

- 0 . 0 2 2 
0.013 

- 0 . 0 0 1 5 
- 0 . 0 7 4 
- 0 . 0 3 7 

0.012 
0.0107 

When we inspect these results, we see that the differences in read
ings for the two mass spectrometers depend on the p>ercent ^̂ °U values. 
To illustrate, at about 1% "^sy, the five differences (in absolute value) 
are 0.0062, 0.0084, 0.0018, 0.0015, and 0.0107. At about 5% "'=U, the 
differences are 0.087, 0.038, 0.034, 0.014, and 0.074, which are clearly 
larger than those at 1% ^^^15. The implication is that the random-error 
standard deviations probably should be expressed on a relative basis 
rather than an absolute basis. This is accomplished by transforming 
the data to logarithms before proceeding with the analysis (Table 8.9). 

TABLE 8.9 LN PERCENT " ' U VALUES 

(Example 8.F) 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Instrument A (j.) 

0.0054 
0.0153 

- 0 . 0 1 1 2 
1.6028 
1.6144 
1.5945 
0.7246 
0.6966 
1.6068 

- 0 . 0 0 1 2 
1.5957 
1.2444 
0,7061 
0.0084 

Instrument B (r,) 

0.0115 
0.0070 

- 0 . 0 0 9 3 
1.5851 
1.6220 
1.5876 
0.7203 
0.7075 
1.6042 
0.0003 
1.6106 
1.2550 
0.7001 

- 0 . 0 0 2 3 

(s.-r,) 

- 0 . 0 0 6 1 
0.0083 

- 0 . 0 0 1 9 
0.0177 

- 0 . 0 0 7 6 
0,0069 
0.0043 

- 0 . 0 1 0 9 
0.0026 

- 0 . 0 0 1 5 
- 0 . 0 1 4 9 
- 0 . 0 1 0 6 

0.0060 
0.0107 
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Note that, with these transformed data, the differences appear to 
be independent of the percent "'^U values. A data plot would confirm 
this conclusion. 

The analysis then proceeds with the transformed data. The prob-
lein is to obtain estimates of (TE" and a,,". Neither parameter has an 
assigned value. Although there is no reason to believe that the variances 
are truly different, the data are interrogated to test the hypothesis //oj. 
(In this example the test of /foi is not strictly valid because x is not 

normally distributed with variance a^. The estimates of the parameters 
CTE" and ut)^ are valid, however.) Ask question 8.A, Sec. 8.1.1. 

First, 

C 2 -
(0.0054)"+ . . . +(0.0084)"-[(0.0054+ . . . +0.0084)"/14] 

13 
= 0.508963 

, (0.0115)"+ • . . +(-0.0023)"-[(0.0115+ . . . -0.0023)"/14] 
^'~ 13 

= 0.510309 

5ar= {(0.0054) (0.0115)+ . . . +(0.0084) (-0.0023) 
-[0.0054+ .. .)(0.0115+ . . . ) / 1 4 ] l / l 3 

= 0.509591 

Then, 

Question 8.A 

Step a. From Eqs. 8.3 to 8.5, 

,S'l = 0.508963+0.510309+2(0.509591) = 2.038454 

5', = 0.508963+0.510309-2(0.509591) =0.000090 

>S'„, = 0.508963-0.510309 =-0.001346 

Step b. From Eq. 8.6, 

0.001346 
= = - 0 . 0 9 9 

V'(2.038454) (0.000090) 

Step c. From Eq. 8.7, 

t = -0.099V(12)/[1-(0.099)"] = - 0.34 

Step d. Since the absolute value of t does not exceed t-^.^afz) = 2.179 
for a. = 0.05 and n = 14, conclude that there is no reason to 
believe that O-E" differs from o-,". 
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To proceed then with question 8.E, situation C, the estimates of 
o-E- and ar," are identical and are both 5^72 ^ 0.000090/2 or 0.000045, 
as indicated by Table 8.4. Expressed as standard deviations, these 
estimates are 

(T. = 0-, = VO.000045 = 0.0067 

This result applies to the logarithmically transformed data. As was 
seen in example 4.G, Chap. 4, the standard deviation of a logarithm is 
approximately equal to the relative standard deviation. Thus the rela
tive random-error standard deviation of either instrument is estimated 
to be 0.0067 or 0.67% of the percent "̂ ^̂ U value. 

8.1.4 Basis 

The bases for the solutions of Sec. 8.1.2 are considered for each of 
the five questions raised. 

Question 8.A 

The mathematical model can be written 

Si=^Xi+S+ei (8.26) 

n^Xi+A+rii (8.27) 

where Si and r^ are the observed shipper and receiver values, respec
tively, for item i; X; is the true value for item i; S and A are the 
systematic-error comf)onents; and EJ and rji are the random-error com
ponents. All random variables are assumed to be normally distributed 
with zero means (except that X; has mean value /xj, and 8 and/or A may 
have nonzero means as indicated previously) and variances of a/, aa^, 
•TE". O'A". a n d (Tri^. 

Since 8 and A are constants for a given set of data, they will not 
affect the observed variances of s and r, respectively. These observed 
variances, Ŝ ^ and S/, are estimates of ox^, ae^, and a,," as follows: 

S/ estimates (a/ + O-E") S^" estimates (o-j," 4- .r,") 

Also, the covariance, 

Sgr estimates o-i" 

since X; is common to both s, and rj and ei and TJI are assumed to be 
independently distributed. 

Since S,- estimates (a/ + O-E-) and .S,.- estimates (tr/ + a-r)"), it 
follows that (S,- — S,'-) estimates (o-j'- — a-q-). But, by Eq. 8.5, 
(Sj- — S/) is identically S^^, and steps b, c, and d of question 8.A are 
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the Steps taken to test for significance of a correlation coefficient. The 
hypothesis p^v = 0 is equivalent to the hypothesis <rê  = <7,j2 where pu» 
is the true correlation coefficient between u and v. Since p„„ = 0 is the 
hypothesis formally tested, rejection of this is tantamount to rejection 
of the hypothesis that <re' = <rij2. 

Question 8.B 

The statistic used in testing the hypothesis that (orê  + CTT;^) is 
equal to some specified value is the difference (Si — r^). From Eqs. 8.26 
and 8.27, it is evident that this difference is independent of Xj, the true 
value of the item being measured. The variance of (Sj — r^), which is 
equivalent to S/ of Eq. 8.4 is therefore the estimate of (o-£- + <T,,̂ ) . In 
testing whether or not this estimate is significantly different from the 
hypothesized value, (jmô . we apply the chi-square test based on Sec. 2.6.2. 

Question 8.C 

Equation 8.9 is the likelihood equation (see Sec. 2.7.1.) for a/ with 
cTeo^ and CTTJO' given as hypothesized values. The terms L (n) and L (̂ 3) 
in Eqs. 8.10 and 8.11 are the likelihood functions maximized over the 
entire sample space and over the restricted space in which the 
hypothesis is true, respectively. The test of significance detailed by steps 
d and e is based on the likelihood ratio test and large-sample theory. 
An exact test of this hypothesis for small samples has not been 
developed, nor have studies been made to evaluate the adequacy of 
this large-sample test for smaller sample sizes. 

Question 8.D 

Equations 8.13 and 8.14 are the likelihood equations for ox" and 
o-f- with o-̂ fl- given as the hypothesized value. Again L (n) and L (̂ 4) 
are the likelihood functions maximized over the appropriate spaces. 
Large-sample theory is again applied, with the same caution noted as in 
question 8.C. 

Question 8.E 

In sorting through the various best estimates of <Te^ and o-,̂ , we 
note that, if both o-eô  and â ô  are given and if the hypothesis test does 
not reject them as being invalid, then these given values can be used. 
(Otherwise, there would be little point in testing the hypothesis to 
begin with. If we have little faith in the a priori values, we should not 
regard them as given values.) If only one value is given and accepted 
by the statistical test as valid, or if both are given but only one is 
accepted as valid, then that value, say crr,o^, is used, and CTE', given in 
Eq. 8.14, is used for O-Ê . This is the maximum likelihood estimate of 
o-f ̂  for given o-,ô -



290 ANALYSIS OF PAIRED DATA 

If neither value is given, or if given values are rejected as invalid, 
the maximum likelihood estimates (given by Eqs. 8.16 and 8.17) are 
used. These estimates are averaged to give the same estimate for both 
parameters when there is no reason to believe that the values differ 
(special cases are included to avoid negative estimates of the variance 
components). The estimates given by Eqs. 8.20 and 8.21 are used when 
the sum (CTÊ  + a-q-) is fixed at omo' but when OE'^ and o-,- are believed 
to be different. The estimates are Eqs. 8.16 and 8.17, respectively, 
adjusted to sum to umo^. 

8.2 INFERENCES ABOUT MEAN DIFFERENCES 

8.2.1 Problems and Assumptions 

The model and assumptions of Sec. 8.1.1 apply. Now, however, 
the problem is to make inferences about the population means rather 
than the measurement variances. Specifically, letting ^^ be the true 
mean for the shipper and jâ  for the receiver, we consider the follow
ing questions: 

Question 8.F. Are these mean values significantly different? That 
is, test the hypothesis i^oi'^ Ms "̂  Mr against the alternative jUs 7^ Mr-

Question 8.G. What is the best estimate of ixx, the true average 
value represented by the data, and what is the variance of this estimate? 
(Assume that the items measured represent the entire population of 
interest and not items sampled from this population. This question is 
particularly appropriate for actual shipper-receiver data.) 

8.2.2 Solution 

The answers to these questions are considered in turn. 

Question 8.F 

Step a. Determine values for o-£- and o-,,- by the analysis given in 
Sec. 8.1 and, specifically, in answer to question 8.E of Sec. 
8.1.2. 

Step b. Assuming that a^"^ and CTA^, the systematic error variances, are 
given, calculate 

<^\={cl+<rl)+-^ (8.28) 

where n is the number of items with paired measurements. 
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If trs^ and (TÂ  are not given, let them be zero (see the discussion 
following T a b l e 8.10). If one value is given bu t not the other, ei ther 
equate the second value to the given value, if it is reasonable to assume 
they have comparable systematic-error variances, or equate it to zero. 

Step c. Calculate s and r, the average values for the shipper and 
receiver. 

Step d. Form the statistic z = (s — r) /ag and conclude that jUs ^ Mr 
if the absolute value of z exceeds the tabulated value Zi-(a/2) 
at the « level of significance. 

T h e values in Tab le 8.10 are extracted from Appendix A by using 
a two-sided test of significance; as'^, <TA". <T£-, O-T;̂  are assumed to be con
stants. If we have no a priori knowledge about the values of <TE'- and 
o-T,̂  and if the estimates are based on very few data points, this is a 
poor assumption. However, it is difficult to use Satterthwaite's formula 
(Eq. 4.9) and the t distr ibution because the effective degrees of freedom 
associated with estimates of ue' and <T,̂  derived from the methods of 
analysis used in this chapter are difficult to develop. They depend not 
only on the number of observations but also on the size of (TX~ relative 
to o-£- a n d / o r a-,,-. If we are concerned about using a poor estimate of 
one or both of these parameters, the simplest way to allow for this con
cern is to use a smaller value of « when applying the test. Th i s is 
ra ther subjective but should be a satisfactory approach in practice. 

TABLE 8.10 CRITICAL VALUES FOR TEST OF HYPOTHESIS ,ji, = ii, 

a 

0.10 
0.05 
0.025 
0.01 

Zl-{«/2) 

1.645 
1.960 
2.242 
2.576 

In answering question 8.F, we should keep in mind just what is 
implied by rejection or acceptance of the hypothesis that ^.^ = /j.^. If 
as" and (7A- are not known and are equated to zero, rejection of the 
hypothesis indicates that the two means are further apart than expected 
based on the knowledge about the random errors. T h e resulting signifi
cant difference is then explained by a combination of measurement 
biases and real differences in the material being measured, but there is 
no way to distinguish between these causes from the data. On the other 
hand, if known values of o-â  and O-Â  are included in the analysis, a 
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significant difference in the means implies that a real difference exists 
in the materials being measured (or that the assigned values of or«̂  and 
<7Â  are not valid). Alternately, if it is known for certain that both 
parties are measuring the same quantities (i.e., that no changes have 
taken place in the material between the times of drawing the two 
samples or making the two measurements), then the mean difference 
provides information on the value of the combined systematic-error 
variances over and above that due to the effects of the random errors. 

Question 8.G. The solution for question 8.G follows. 

Step a. Determine values for <T£-, Q-,J^, a^^, and CTA^ in question 8.F. 

Step b. The estimate of û, is 

^ - •^+" ' '^ (8.29) 

(8.30) 

Step c. 

M I - I 

where 

..-{,.f)' 
and 

»-=('Hv-)"' 
/Ij, has variance {w^ + w^)"'. 

(8.31) 

8.2.3 Examples 

Example 8.G 

For the data of example 8.B, is there a significant relative bias be
tween the two measurement methods at the a = 0.01 level of signifi
cance? This is question 8.F with the systematic-error variances not 
specified. The question is concerned with whether one or both measure
ments have s)stematic-error variances that are nonnegligible relative 
to the random errors. 

Question 8.F. To answer this question, follow the steps to the 
solution of question 8.F in Sec. 8.2.2. 

Step a. From example 8.B, the values derived from a priori informa
tion and from the data are 

<7'. = 56.28 <r',= 10.24 
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Step b. With crl=-al = 0, (i\ is given by Eq. 8.28: 

56.28+10.24 
<^^ = — ^ ^^•^^'^ 

_ 613+639+ . . . +637 ^„„ „^ 
Step c. ^ = • — • = 638.36 

. 618+633+ . . . +630 .^^ ^^ 
r = ^ = 640.36 

Step d. From Table 8.10, for a = 0.01, ^i_(„/2) = 2.576, 

638.36-640.36 

V3.024 -1 .15 

Since 1.15 is less than 2.576, conclude that the relative bias be
tween the methods is not significantly different from zero. 

Example 8.H 

For the data of example 8.D, what is the best estimate of the total 
uranium in the shipment? Assume that the stated values for the sys
tematic-error standard deviations are as = 0.80 and O-A = 1-20. The 
steps that comprise the solution to question 8.G of Sec. 8.2.2 are fol
lowed. 

Question 8.G 

Step a. Given values are 

<r\=OM and <rA'=1.44 

From example 8.D 

<j\ = 0.2Z and a\ = 5.m 

I 0 23\- i 
Step b. j^ ,= f 0 . 6 4 + — 1 =1.51 

/ 5.60\- ' 
wr= ( 1 .44+- jy j =0.50 

. 1.5h+0.50f , _ 
^ -= 1.51+0.50 =0-755^+0-245r 

This gives the estimate of the average content per cylin
der. For the ten cylinders, the estimate of the total content is 
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10M.= 1 0 ( 0 . 7 5 5 J + 0 . 2 4 5 F ) = 0 . 7 5 5 2^.f.+0.245 X)'-. 

From the data, 

13 i ,= 1471.22+ . . . +1470.38=14,702.44 

23 ' ' .= 1468.12+ . . . +1470.16=14,689.23 

Then, the estimate of the total uranium content is 

10Mx=(0.755)(14,702.44) + (0.245)(14,689.23) 

= 14,699.20 kgofU 

Step c. fi^ has variance (w, + w^)-i = (1.51 + 0.50)-^ = 0.4975. 
Therefore, the total uranium, lOjlj., has variance (10) ^ 
(0.4975) = 49.75 kg= of uranium, giving a standard deviation 
of V 49.75 = 7.05 kg of uranium. 

Example 8.1 

In example 8.H, is there a significant difference at the « = 0.025 
level between the shipper and receiver values? This is question 8.F, 
with the steps in the solution as follows: 

Question 8.F 

Step a. From example 8.H, 

(T2, = 0 .23 and 0-̂  = 5.60 

Step b. <TI = (0.64+1.44)+^"-^^^^'^"^ =2.666 

Step c. 7=1470.24 and r = 1468.92 

1470.24-1468.92 
Step d. z = 7 = =0.81 

V27663 

which is less than the critical 2i_,„/o, value of 2.242. Conclude 
that the difference is not significant. If, however, the differ
ence had been statistically significant, what would be the ex
planation? In this particular example, because of the nature 
of the material involved, it would be reasonable to suspect 
that one or both parties had understated the size of their 
systematic-error variance. Another possibility, discounting any 
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alteration of the cylinder contents during shipment, is that 
some or all of the values at either end were inadvertently, or 
deliberately, altered for some reason. Or, as with all statistical 
tests, a type I error could have been committed in this in
stance. Whatever the explanation, the significant difference 
detected should lead to some type of action which, ideally, 
should be decided upon prior to the shipment. If no such 
action is taken, the statistical hypothesis test becomes little 
more than an exercise. 

8.2.4 Basis 

The basis for the solution to question 8.F in Sec. 8 2.3 is as 
follows: From the model (Eqs. 8.1 and 8.2), s and r both have ex
pected values ixj. under the hypothesis that both parties are measuring 
the same quantities and that £ (8) = E (A) = 0. Further, assuming 
that the items being measured represent the entire population of in
terest,* as will normally be the case in a shipper-receiver situation, s 
and r have variances 

<.| = <T?+^* (8.32) 

and 

cr| = (rA+-- (8.33) 
n 

Therefore, with independently distributed error random variables, 
the variance of the difference, d — s — r, is simply the sum of the 
variances: 

< r 2 = W + 0 + ^ ^ ^ ' (8-34) 
n 

This is Eq. 8.28. From this point on, the statistical test is simply 
a test for the significance of the difference between two means with 
known variances. 

• For question 8 F it is not really necessary to assume that the sampled items represent the 
entire population If they do not Eqs 8 32 and 8.33 would each include a term of the form 
cax^, where c is the finite population correction factor, which is unity for infinite population size 
However, od^ will have the same variance as given in Eq 8 34 because the covanance between 
J and r is also cox'^ in this instance. Since ad^ = aa^-\'yt-~2 oxr, it is clear that cox^ cancels out 
Of course, this is the motivation behind the pairing—to remove the effect of the process variance 
In question 8 G, the assumption in question is required 
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The basis for the solution to question 8.G is as follows: There 
are two estimates of /x̂ ., namely, s and r. A weighted average of these 
two quantities will provide the estimate of /i^. Write this weighted 
average 

fix = as+(l-a)r (8.35) 

where a is chosen to minimize the variance of j!,., which is 

<rl = ̂ '<^l+0-^)'<^-r (8.36) 

The minimization is accomplished by equating to zero the partial 
derivative of a^- with respect to a and solving for a. 

^-^' = 2aal-2{l-aWr^0 

This gives the solution 

4 <rl+(<rl/n) 

Then, letting 

i"-r 
and 

r 2 \ - l - i'^-'-!)-
we find that the value for a is 

l/Wr W, 

( l /«; ,) + (l/zt)r) W. + Wr 

Also, 

(8.37) 

(8.38) 

(8.39) 

(8.40) 

( l - < 2 ) = - ^ (8.41) 

If we use these values for a and 1 — a in Eq. 8.35, the weighted 
average, /Ij,, becomes 

Mx= 7 8.42 
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where w, and w^ are as defined in Eqs. 8.38 and 8.39. This is result 
8.29. (It can be shown that this weighting is independent of a^^, 
regardless of whether the sample represents only a part of the popula
tion or all of it.) 

The variance of fit comes directly from Eqs. 8.32, 8.33, 8.35, and 
8.38 to 8.41. 

.i,= ^ ^ ^ ( 1 ) + _ ^ ^ (1) = - ^ (8.43) 
(W.+ Wry \W,/ {W, + Wrr \Wr/ {w,+Wr) 

8.3 EVALUATION OF PAIRED DIFFERENCES OVER 
SEVERAL GROUPS OF DATA 

8.3.1 Problem and Assumptions 

Thus far we have assumed that 8 and A, the measurement biases 
for the shipper and the receiver, remain constant. Although this is 
often a reasonable assumption for a given shipment (or, more gener
ally, for a given set of paired data), when data from several shipments 
are analyzed collectively, we can expect that the measurement bias may 
have changed for one or both parties. At least, this possibility should 
be kept in mind when the analysis is performed. 

In this section the problem of analyzing sets of data to make 
inferences about measurement variances is considered. The assump
tions are as given in Sec. 8.1.1 except that 8 and/or A may now depend 
on the data set. For a given measurement technique, it is assumed that 
CTe" and arj- are constants over the entire set of data. 

8.3.2 Solution 

Given the shipper-receiver data over a number of shipments (or 
given paired data over a number of data sets), the first step is to per
form the analysis separately for each shipment. (Subsidiary informa
tion may suggest different breakdowns of the data. For example, it 
may be known that the N cans of PuO, powder in a shipment are 
based on k different percent plutonium factors, with each factor relat
ing to several cans. The shipment would then be redefined to relate to 
all cans based on a given factor. In this case the random measurement 
variances are the weighing errors, and the different percent plutonium 
factors affect the size of the systematic-error variance. The interpreta
tion of each set of results depends on the given situation even though 
the same mathematical treatment may cover a number of situations.) 
For each shipment inferences are made on the random-error variances 
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according to the methods of Sec. 8.1.2. Then the results over the entire 
data set are combined. 

The method for combining the data over the entire set depends 
on the type inference being made. If the problem is one of testing some 
hypothesis, either H^^, H^,, or //04 specified in question 8.C, Sec. 8.1.1, 
then this should be tested over the entire set of data. [It is difficult to 
test Hfl3 over the entire data set since the ways in which the hypothesis 
may not be true are so numerous. Test hypotheses for ae' and â ^ 
separately (//04) or for their sum {H^^ ] The possibility exists that for 
any given shipment some hypothesis may not be rejected at a specified 
significance level but over all shipments sufficient evidence may have 
been accumulated to lead to its rejection. On the other hand, if the 
problem is one of estimation, some kind of averaging process should 
be made over the estimates for all shipments. Since these estimates will 
not have the same variances, a weighted average of some kind is 
indicated. 

First, consider the hyjx)thesis testing problem. The steps are 
indicated for H,,,, Hg„, and Hg^. Assume that in each instance there are 
m shipments or data sets. 

(a) Hypothesis Testing 

Consider Hg^: ae' ^ ari^ vs. the one-sided alternative, ae~ > o-r,̂ . 

Step a. For data set i, calculate <, from Eq. 8.7. 

Step b. Find p, corresponding to f, using Appendix C with (w, — 2) 
degrees of freedom. This process is illustrated in Table 8.11 
by giving the relation between /, and p, for n, = 10 or for 8 
degrees of freedom. On the basis of this table, it should be 
apparent how Appendix C can be used for any given value 
of n,. If t, is negative for any i, use (1 — p,) rather than p,. 

TABLE 8.11 RELATION BETWEEN^, AND t, FOR 8 DEGREES OF FREEDOM 

t, 

0 
0.262 
0 546 

P^ 

0.50 
0 40 
0.30 

t. 

0 889 
1.397 
1.860 

P^ 

0.20 
0 10 
0 05 

t. 

2.306 
2.896 
3.355 

/>. 

0.025 
0.01 
0.005 

Step c. Calculate 

m 

P=-2 ElniC. 
« = i 
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Step d. If i^oi is true, P is distributed as the chi-square distribution 
with 2m degrees of freedom. Reject //oi if P is too large. The 
critical value for a given level of significance is read from 
Appendix B with 2m degrees of freedom. 

Consider H^o: {txe^ + <r,)̂ ) ^ 0^0^ vs. the one-sided alternative, 
(o-£^ + (T,^) > (T„,o-. 

Step a. From data set i, calculate Ri from Eq. 8.8. 

Step b. Find the sum over the m data sets: 

TO 
R= Z Ri 

» = 1 

Step c. If Ha2 is true, R is distributed as the chi-square distribution 
with 2i=i'" ("j ~ 1) degrees of freedom. Reject //„„ if R is too 
large. If the alternative is in the other direction, H^^ is re
jected if R is too small. Again, the critical value may be read 
from Appendix B. 

Consider //04: <yi)' ^ OTJO^ vs. the one-sided alternative, ur,'^ > 
a-qa' (or <r,,- < ar,o') • It is assumed that the data will tend to support 
one alternative or the other if H„i is not true. The A4, value is zero 
if //o4 is true and increases in value as aq- differs from <rj,ô  in either 
direction. 

Step a. For data set i, calculate \^i from Eq. 8.15. 

Step b. Find the sum over the m data sets, 

TO 

i=\ 

Step c. If Hg^ is true, then A4 is distributed as the chi-square distribu
tion with m degrees of freedom. [ (Again, note that this result 
is based on large-sample-distribution theory, and no investiga
tion has been made as to how large a sample size is required 
to permit valid application of this test.) Reject H^^ if A4 is 
too large (read the critical value for a given level of signifi
cance from Appendix B).] 

(b) Estimation of Random-Error Variances 

The steps for solving the estimation problem are given here. As
sume that for each shipment o-£- and o-,- are estimated from Eqs. 8.16 
and 8.17 (i.e., that no prior knowledge about tliese parameters is avail
able and that they are not equal). For convenience the steps are de
tailed with reference to o-c'; the corresponding steps for o-r,- are obvious. 
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Step a.. For each shipment, find o-̂ - from Eq. 8.16. Call this (ra^ for 
shipment i. 

Step b. For each shipment, calculate 

2<Tt SgS^ o,r 

m—1 m—1 

Sl(2Sl-4S„+Sl)+Slr 
m— 1 

(8.44) 

(The i subscript is omitted from this formula to avoid un
necessary complexity in the calculation.) For shipment i, call 
this quantity V^. 

Step c. Over the m shipments, the estimate of oe^ is 

TO 

a]= i ^ (8.45) 

1 = 1 

If this is negative, use ue^ = 0. 

(c) Estimation of Sysfemafic-Error Variances 

Information about the systematic-error variances can also be found 
over a number of shipments, assuming that both parties are measuring 
the same quantities (i.e., that all the discrepancies that occur are due 
to measurement errors). This information is found by the following 
steps: 

Step a. For each shipment, i, compute rf; = i, — ''i 

Step b. Calculate the variance of dj. Under the problem assumption 
that the mean of d is zero, this is simply 

sl=Z~ (8.46) 
.=1 m 

Step c. With given values of a,,'-' and o-t,̂  (either known or estimated 
from the data), the estimate of (as- + CTÂ ) is 

Wl+<rl)-sl~^^±^Z^ (8.47) 
m ,-=1 m 

which reduces to 

^2 J_„2 

Sj (ii all m are equal) 
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There is no way to obtain separate estimates of as^ and O-Â  from 
the data unless, of course, either ag- or CTA" is given. 

8.3.3. Examples 

Example 8.J 

Consider the data of example 8.A as tabulated in Table 8.5. The 
plot of these data in Fig. 8.1 indicated a relation between the relative 
bias between the two methods and the actual value for the plutonium 
concentration. This relation invalidated the analysis. 

However, suppose the data are divided into two groups on the 
basis of the data plot, with all pairs of observations corresponding to 
r, < 12.03% in one group and all other data in the second group. 
Then the same hypothesis is tested as before (namely, ac^ = orf). This 
is tested separately for each of the two groups, and then the reSults are 
combined by the methods of the previous section. The one-sided alter
native hypothesis is given by o-t- > o-,,-. 

For group 1, with r, < 12.63%, the following results are found: 

« = 9 

,,_(10.48)^+ . . . +(11.88)^-[(10.48+ . . . + ' l -88)V9]_o c;333(3 

, (10.61)2+ _ _ +( i i .90)2-[ ( I0 .61+ . . . +11.90)79] 
S\ = ^̂  '—^ ^̂ -̂^ ^—z^ -̂̂ — = 0.631500 

o 

5'.,= {(10.48)(10.61)+ . . . +(11.88)(11.90) 

-[(10.48+ . . .)(1061+ . . . )/9]) /8=0.618508 

Then, the steps of Question 8.A are followed: 

Question 8.A 

Step a. 5„' = 0.615336+0.631500+2(0.618508) =2.483852 

5 ; = 0.615336+0.631500-2(0.618508) =0.009820 

^-u. = 0.615336-0.631500= -0.016164 

, 0.016164 
Step b. r= , — = -0.103 

V (2.483852) (0.009820) 

Step c. t= -0.103^7/0.9894= -0.27 

This is the result called for in step a of Sec. 8.3.2 (a). Use it to 
calculate p, in step b. 
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From Sec. 8.3.2(a) 

Step b. From Appendix C with 7 degrees of freedom, find pi 
corresponding to t^ = —0.27. The negative sign on t^ is re
tained because this result is contrary to what the alternative 
hypothesis would specify. Thus it tends to supjxjrt the null 
hypothesis rather than the alternative, and p^ will exceed 
0.50. Specifically from Appendix C, pi ;=; 1 - 0.40 = 0.60. 

The same calculations are now performed for the 11 remaining 
pairs of data comprising group 2. 

n=n 

.2 (13.11)2+., 
Os-

. , (13.00)2+. 

. . +(13.33)2-[(13.11+ . , 
10 

. . +(13.30)2-[(13.00+ . 

..+13.33)V1I] „.„^__ 

••+'^-^0^^/'^Lo.702487 
10 

5',r={(13.11)(13.00)+ . . . +(13.33)(13.30) 

-[(13.11+ . . .)(13.00+ . . . ) / l l ] ) / 10 = 0.729790 

Question 8.A. From the steps of question 8.A, Sec. 8.1.2: 

Step a. 6-̂  = 0.768660+0.702487+2(0.729790) =2.930727 

5'2 = 0.768660+0.702487-2(0.729790) =0.011567 

5„, = 0.768660-0.702487 = 0.066173 

c, . 0.066173 
Step b. r = , .̂  = 0.359 

V(2.930727) (0.011567) 

Step c. t2 = 0.359V9/0.8711 = 1.154 

From Appendix C with 9 degrees of freedom, pr, ~ 0.15. With 
pi = 0.60 and p2 = 0.15, steps c and d of Sec. 8.3.2(a) can now be 
followed: 

From Sec. 8.3.2(a) 

Step c. P = - 2 [ l n (0.60)+ In (0.15)] =4.82 

Step d. At a = 0.05, the critical value for P is found from Appendix 
B with 2m = 4 degrees of freedom. This is 9.49. Since 4.82 
is less than 9.49, the hypothesis CTC" = CTT,- is not rejected. 
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Recall that when the data were not grouped, the hypothesis 
was rejected, but, as was pointed out in example 8.A, that 
conclusion was not valid. 

Example 8.K 

(These data were extracted from D. E. Christensen, Application of 
Isotopic Correlation Safeguard Techniques to Verify the Plutonium 
Content of Humboldt Bay Spent Fuel, USAEC Report BNWL-SA-
4274, Battelle Pacific Northwest Laboratory, Mar. 20, 1972.) 

Chemical reprocessing plant dissolver batches were sampled, and 
duplicate samples were sent to two different laboratories for analysis. 
Among the analyses performed was a mass spectrometric analysis for 
percent = '̂Pu. The data are given in Table 8.12. 

TABLE 8.12 PERCENT ^iipu ANALYSES BY T W O LABORATORIES 

(Example 8.K) 

Batch No. Lab. 1 Lab, 2 (Lab. 1 - L a b . 2) 

12 
13 
14 
15 
16 

17 

18 
19 
20 
21 

22 

2 3 * 

25 
26 
27 

28 

29 

4.937 

4.729 
4.526 

4.632 
4.215 

3.743 
8.557 
8.274 
7.892 

7.333 
7,217 

6.229 

3.238 
3.417 

3.504 
3.171 

2.919 

4,899 
4,688 
4,505 

4,623 
4.200 

3,759 

8,615 
8,260 
7,910 

7,329 
7,234 

6.285 

3.210 
3.377 

3.492 
3,127 

2,897 

0,038 
0,041 
0,021 

0,009 
0,015 

- 0 , 0 1 6 

- 0 , 0 5 8 
0,014 

- 0 , 0 1 8 
0,004 

- 0 , 0 1 7 
- 0 , 0 5 6 

0.028 
0,040 

0.012 
0.044 

0.022 

* Batch number 24 was a flush batch. 

Before any hypotheses about (TE' and ar)' are tested, the data of 
Table 8.12 are plotted to check for nonrandom behavior. If the data 
in the last column are plotted against the batch number, Fig. 8.2 is the 
result. 
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BATCH NUMBER 

FIGURE 8,2 Analysis of % siiPu; data from Laboratory 1 minus data from Labora
tory 2 vs, batch number. 

The plot suggests that there may be some shifts in the relative bias 
between the laboratories. On this basis, divide the data into three 
groups as follows: 

rrri—\—\ I \ m K I 
— • — 
— • • • — 

— • • — 

Group 1: 
Group 2: 
Group 3: 

Batches 12 to 16 
Batches 17 to 23 
Batches 25 to 29 

(« i=5) 

(«2 = 7) 

("3=5) 

For the data as grouped, test the null hypothesis, <Tê  =<Tr,̂ , vs. the 
alternative hypothesis, ae' > CTT;-, for a = 0.10. First, the appropriate 
variances and covariances must be computed. 

Group 1: 
Group 2: 
Group 3: 

5^ = 0.071158 
5^ = 2.699147 
5^ = 0.052088 

5? = 0.066314 
5? = 2.696713 
5', = 0.052927 

5,^=0.068636 
5, . = 2.697555 
5,, = 0.062422 

Question 8.A Then steps a to c of question 8.A, Sec. 8.1.2, are 
followed: 

Step a. Group 1: 

5^ = 0.071158+0.066314+2(0.068636) =0.274744 

5? = 0.071158+0.066314-2(0.068636) =0.000200 

5„. = 0.071158-0.066314 = 0.004844 

Group 2: 
5^=10.790970 

Group 3: 
5^=0.209859 

5? = 0.000750 5„„ = 0.002434 

55 = 0.000171 5„,=-0.000839 
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c . , 0.004844 
Step b. Group 1: r = , = = 0.653 

V (0.274744) (0.000200) 
Group 2: r = 0.027 

Group 3: r = - 0 . 1 4 0 

Step c. Group 1: /, = 0.653V3/0.5736 = 1.49 

Group 2: 2̂ = 0.06 

Group 3: / 3 = - 0 . 2 4 

From Sec. 8.3.2(a) 

Step b. Group 1: /)i = 0.11 (from Appendix C with 3 degrees of 

freedom) 

Group 2: /)2 = 0.49 

Group 3: /)3 = 0.59 

Step c. P = - 2 [ l n (0.11) -f In (0.49) -I- In (0.59)] = 6.90 

Step d. At a = 0.10 the critical value for P is found from Appendix 

B with 6 degrees of freedom. Th i s is 10.64. Since 6.90 is less 

than 10.64, the hypothesis a^- = a-q- is not rejected. 

(The reader can verify that, if the data are not grouped, 

r = —0.632 and t = —3.16, which would result in rejection 

of the hypothesis if the test were two sided. Th i s result, of 

course, is not valid in view of the nonrandomness of the 

data.) 

These data may now be used to estimate the systematic-error 

variance associated with a percent ^^^Pu determinat ion. Using Eqs. 8.46 

and 8.47, we can calculate: 

^ ^ ^ 0 . 0 3 8 + 0 . 0 4 1 + . . . + 0 . 0 1 5 ^ ^ ^ ^ ^ ^ 

5 

- 0 . 0 1 6 - 0 . 0 5 8 + . . . - 0 . 0 5 6 
di = 1~ = - 0 . 0 2 1 0 

0 .028+0 .040+ . . . +0 .022 
di = • { = 0.0292 

5 
From Eq. 8.46, 

, (0.0248)^+(-0.0210)^+(0.0292)' n ono«^<. 
5rf= r̂ = U.UUUDob 
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From Eq. 8.47, 

(al+al) =0.000636-(cl+al) 0 + ^ + 0 ^ 

To evaluate this, we must assign a value to (ae^ + o-,;̂ ). Since it 
has been accepted that o-ê  = o-,,̂ , then (O-Ê  -t- a,,̂ ) is estimated by 
S/ for each group. (See Sec. 8.1.2, question 8.E, situation C.) 

Group 1: o-̂ +0-2 = 0.000200 

Group 2: <r'+o-', = 0.000750 

Group 3: tr^+(r2, = 0.000171 

Use ((Tf- -I- (7̂ -) averaged over the three groups [ (<jc- + <r-q') = 
0.000374]. Inserting this value in Eq. 8.47 provides the estimate of the 
sum of the systematic-error variances for both mass spectrometers. 

/d^. r. .. (0.000374)(0.5429) 
(cr|+<r̂ 2) =0.000636—=^ -^ ^ = 0.000568 

Example 8.L 

Using the same data as in the previous example, at the a = 0.025 
level, test the hypothesis that {CTE" + <Tq-) = 0.0002 against the alter
native (o-g- -I- tr,,-) > 0.0002. In the notation of Sec. 8.3.1, this is //„,. 

First, refer to Sec. 8.1.2, question 8.B. Steps a to b are followed 
for each of the three groups defined in example 8.K. 

Question 8.B 

Step a. Group 1: 5 / = 0.000200 

Group 2: Ŝ ^ = 0.000750 

Group 3: 5 / = 0.000171 

(These values were calculated in example 8.K, step a.) 

. ^ , „ (4) (0.000200) 
Stepb. Group 1: R.= ' '^^^^^^^ ^=4.00 

(4) (0.000171) 
^••°"P3^ ^ - - ( 0 . 0 0 0 2 ) -'•'' 

In these calculations o-„,o- = 0.0002, the hypothesized value for 
{(Te- + (T-q~) • 

This comprises step a of Sec. 8.3.2 (a). Steps b and c of that section 
are now followed. 
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From Sec. 8.3.2(a) 

Step b. R = 4.00 + 22.50 + 3.42 = 29.92 

Step c. The critical value for R is read from Appendix B with 
( 4 + 6 - 1 - 4 ) or 14 degrees of freedom. For a = 0.025 this 
critical value is 26.12. Since 29.92 exceeds 26.12, reject the 
hypothesis that (CTÊ  -f ar,^) = 0.0002. 

Example 8.M 

Three separate shipments of PuOj powder each involved ten con
tainers of powder. The PuOj was thoroughly characterized by both 
the shipper and the receiver, with a separate determination of percent 
plutonium made for each container. The data are given in Table 8.13. 

TABLE 8.13 MEASUREMENTS O F PERCENT 
PLUTONIUM IN THREE SHIPMENTS 

OF PuOj POWDER 

(Example 8.M) 

Shipment 1 Shipment 2 Shipment 3 

it 

87. 
87, 
87, 
87, 
87, 

86, 
87 
86, 
87, 
87 

,039 

,088 

,107 

,330 

,023 

,988 

.003 

,910 

,123 

.111 

87. 
87 
87 
87. 
87 

87. 
87 
86 
87. 
87 

r, 

.071 

.103 

.080 

.367 

,100 

.083 

.050 

.835 

.087 

.144 

86 

Si 

.935 

86.837 

87 
87 
87 

86 
86 
86 
86 
86 

.054 

.023 

.064 

.935 

.895 

.828 

.868 

.979 

86. 

ri 

.973 

86,848 

87. 
86. 
86 

86. 
86 
86. 
86. 

.019 

.970 

.977 

.889 

,872 

.770 

.769 

87,018 

87. 
87 
87 
87 
87 

86 
86 
87 
87 
87 

Si 

.004 

.074 

.053 

.158 

.079 

.984 

.845 

.002 

.016 

.068 

86. 
86 
87. 
87. 
87 

86. 
86 
86. 
86. 
87 

ri 

913 
.049 

.220 

.183 

.068 

.995 

.854 

.925 

.999 

.011 

These data are used to examine the following questions: 

Question 8.H. At the a = 0,10 level of significance, do the data 
support the hypothesis that ce' and (j-q^ are equal against the alterna
tive that (Te^ is less than cr,̂ ? 

Question 8.1. What is the estimate of cr̂ p̂ 

Question S.J. The hypothesized value for a-q is 0.075. Do the data 
support this at the « = 0.01 significance level against the one-sided 
alternative that <7„ < 0.075? 
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Question 8.K. What is the estimate of (aa^ + <TÂ ) . the combined 
systematic-error variances? 

Question 8.H is a problem in hypothesis testing, with Hoi: 
CTÊ  = (7i)- being the hypothesis. Following the steps of the solution, we 
must first calculate the sample averages, variances, and covariances. 
The results are: 

Shipment 1 

} = 87.072 
F = 87.092 

S]= 0.012635 
Sl= 0.016335 

S.r= 0.013119 

n=10 

Then, the steps of question 

Question 8.A 

Steps a to c. 

Shipment 1: 

5^ = 0.055208 

5^ = 0.002732 

5„=-0 .003700 

r i= -0 .301 

«i= -0 .89 

Shipment 2: 

5̂2 = 0.0030583 

5.̂  = 0.002299 

5„=-0 .001517 

Shipment 3: 

5^ = 0.034697 

5^ = 0.005197 

5„,=-0.006467 

Then, the steps of HQI [Sec. 

From Sec. 8.3.2(a) 

Shipment 2 

} = 86.942 
? = 86.911 

S]= 0.007462 
5 '= 0.008979 

S,r= 0.007071 

n=lO 

8.A, Sec. 8.1.2, are 

(from Eq. 8.3) 

(from Eq. 8.4) 

(from Eq. 8.5) 

(from Eq. 8.6) 

(from Eq. 8.7) 

r2=-0.181 

<2=-0.52 

r3=-0 .482 

<3=-1.56 

Shipment 3 

J = 87.028 
r = 87.022 

5^= 0.006740 
Sl= 0.013207 

5.r= 0.007375 

n=10 

followed: 

8.3.2 (a) ] are followed: 

# 
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Step b. Since there are 8 degrees of freedom for each shipment, by 
interpolation in Table 8.11, 

/)i = 0.20 (for 1(1=-0.89) 
j&2 = 0.31 (for <2=-0.52) 
/>3 = 0.077 (graphical interpolation) (for t3= —1.56) 

The one-sided alternative is ere ̂  < ar,^, whereas the table was 
constructed for <re^ > ff,,^- Therefore, the sign of ti is changed 
before determining the pi value. 

Step c. p= -.2(ln 0.20+ln 0.31 + ln 0.077) 
= - 2 ( - 1 . 6 1 - 1 . 1 7 - 2 . 5 6 ) = 10.68 

Step d. At a = 0.10, from Appendix B, with 2m = 6 degrees of 
freedom, f/oi is rejected if P > 10.64. Since P = 10.68, / /«! 
is rejected, and it is concluded that ^E^ is smaller than o-i;̂ . 

Question 8.1. What is the estimate of tr,,̂ ? Steps a to c of Sec. 
8.3.2 (b) are followed. 

From Sec. 8.3.2(b) 
Step a. From Eq. 8.17, 

(r;i = 0.016335-0.013119 = 0.003216 

0-2,2=0.008979-0.007071 =0.001908 

^'3=0.013207-0.007375=0.005832 

Step b. In applying Eq. 8.44, note that the roles of S,^ and S/ are 
reversed because the equation applies to estimation of oe^, but 
the problem under discussion is the estimation of a,^. 

0.016335(0.032670-0.052476+0.012635)+0.000172 

= 0.00000610 

0.008979(0.017958-0.028284+0.007462)+0.0000500 
V,= -

= 0.00000270 

0.013207(0.026414-0.029500+0.006740)+0.0000544 

=0.0000114 

Step c. F7i=163,934 K^i = 370,370 F7i = 87,719 

_, (163,934)(0.0O3216) + (370,370)(0.0O19O8)+(87,719)(Q.0O5832) 
""' 163,934+370,370+87,719 

= 0.002806 



310 ANALYSIS OF PAIRED DATA 

[If we had determined that ue^ and tr,,̂  were not different, we 
could find the overall estimate of the random variance to ap
ply to either the shipper or the receiver. According to Table 
8.4, situation C, this is simply S,,=/2 for each shipment: 

Shipment 1: OE^ = (T,̂  = 0.002732/2 = 0.001366 

Shipment 2: a.^ = cr,̂  = 0.002299/2 = 0.001149 

Shipment 3: ^E^ = a,^ = 0.005197/2 = 0.002598 

Averaged over all shipments, the straight average is a reason
able estimate since all are based on the same number of de
grees of freedom, and the estimates are independent of o-/, 
the process variance. In a more general situation, a weighted 
average would be calculated, with the weights being the 
degrees of freedom. Overall, the estimate of ae^ = <Tr,^ is 
0.001704 for these data.] 

Question 8.J. Test the hypothesis that a,, = 0.075 against the 
alternative, a, < 0.075 [this is H^^ of Sec. 8.3.2 (a) ]. The first step in
volves calculating A41, A42, and A4,, from Eq. 8.15. To do this, we follow 
steps a to d of question 8.D, Sec. 8.1.2. The detailed calculations are 
shown only for Shipment 1. 

Step a. 

Shipment 1: Solve simultaneously Eqs. 8.13 and 8.14: 

, , 0.0000003998+0.00014759J2+0.016335^t 0.005625^'. 
"'' (a2+0.005625)2 "^ '+0.005625 

, 2 _ 0.016335a^-0.026238ff|(0.005625+ffI)+0.012635(0.005625+^^)2 
' ' ' ' ' (al+0.005625)2 

0.005625 al 
~^|+0.005625 

Using the iteration procedure (see example 8.B), we find the 
solutions to be 

ff| = 0.0160 J?=-0.00200 

For Shipments 2 and 3 the solutions are 

Shipment 2: a/ = 0.0101 ae^ = -0.00153 

Shipment 3: CT/ = 0.0073 ae" = -0.00056 
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Step b. 

Shipment 1: In L (n) = - 1 0 - 5 In (0.00020639 - 0.00017211) 

= 41.405 

Shipment 2: In L (n) = 44.911 

Shipment 3: In L (n) = 41.355 

Step c. 
10(0.00008211) 

Shipment 1: In L („^) = - 5 In (0.00004675) - (;o0009350) 

= 41.072 

Shipment 2: In L(^,) = 43.777 

Shipments: In L (̂ 4) = 41.351 

Step d. 

Shipment 1 

Shipment 2 

Shipment 3 

A41 = 2(41.405 - 41.072) = 0.67 

A42 = 2.27 

A43 = 0.01 

With these values for Aji, A42, and A43, steps b and c of H04, Sec. 
8.3.2 (a), can now be followed. 

From Sec. 8.3.2(a) 

Step b. A4 = 0.67 -f 2.27 -1-0.01 = 2.95 

Step c. The critical value for a = 0.01 is found from Appendix B 
with m = 3 degrees of freedom. The hypothesis H^^ is re
jected if A4 exceeds the critical value, 11.34. Since 2.95< 11.34, 
do not reject the hypothesis. Conclude that ar; = 0.075 is con
sistent with the data over the three shipments. 

Question 8.K. Find the estimate of (as^ + (TA^) • Follow the steps 
for estimating the systematic-error variance in Sec. 8.3.2 (c). 

From Sec. 8.3.2(c) 

Step a. di = 87.072 - 87.092 = -0.020 

d, = 86.942 - 86.911 = 0.031 

da = 87.028 - 87.022 = 0.006 

Stepb. ^2j-0.020)-+(0-031)'+(0.006)2^^_^^^^^^ 
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Step c. With o-£̂  = 0 (which is the overall estimate of ae^ as would 
be determined by repeating question 8.1 for ae") and ar,^ = 
0.002806, from Eq. 8.47, 

This is the estimated sum of the systematic-error variances. 

8.3.4 Basis 

(a) Hypothesis Testing 

For hypothesis H,^ the solution is based on combining probabilities 
from different indep>endent tests of the same hyjxithesis. Each pi found 
in step a is the probability under the null hypothesis that the test 
statistic takes on a value of ti or worse (worse in the sense that it offers 
even less support to the truth of the hypothesis). To combine the 
probabilities over the m sets of data, we use the fact that under the 
null hypothesis —2 2i=i"' 'n Pi is distributed as chi-square with 2m 
degrees of freedom. Critical values for the test statistic are, therefore, 
read from a table of this distribution. Appendix B. 

For hypothesis //Q2, (ae" + aq") is estimated by the variance of the 
difference {s — r) for each data set. Since the difference between 
the shipper and receiver value is a random variable assumed to be 
normally distributed, its sample variance multiplied by (n; — 1) and 
divided by the hypothesized variance (wcô  + ar^o^) is distributed as 
the chi-square distribution with (w; — 1) degrees of freedom for the 
ith data set. The sum of independently distributed chi-square random 
variables also is distributed as chi-square, with the degrees of freedom 
being the sum of the degrees of freedom for the individual chi-square 
variables. This is the basis for the test of significance for the R 
statistic given in step c, //„,, Sec. 8.3.2 (a). 

For hypothesis H04 we use large-sample-distribution theory. Since 
A41 in Eq. 8.15 is distributed as chi-square with 1 degree of freedom for 
each data set, i, it follows that the sum of the A41 over all m data sets 
is also distributed as chi-square with m X 1 or m degrees of freedom. 
This is the basis for the test of significance for the A4 statistic given in 
step c, Ho4, Sec. 8.3.2 (a). 

(b) Estimation of Random-Error Variances 

It is assumed that for a given shipment aE^ is estimated from Eq. 
8.16 and a-q^ from Eq. 8.17. The basis for the estimation procedure is 
established for aE^, with similar steps applying to a-q^. 



EVALUATION OF PAIRED DIFFERENCES 313 

For the i shipment, let Fj be the sampling variance of the 
estimate ae'. We will drop the i subscript for simplicity and calculate 

n—\ 

This is a function of the two random-measurement variances, 
(Tê  and <7,j2. Qf the process variance, ax^; and of number of paired 
observations, n. Since the variance parameters are not known, they are 
replaced by their estimates: 5,, is used for ax"; 5,^ — 5,^ is used for ae"; 
and Sr" — S,r is used for arj^. Then, Eq. 8.48 reduces to 

This is Eq. 8.44. 

Having found the variance of ae-^ for the ith shipment, we find 
the overall estimate of ae^ by weighting the individual shipment 
estimates inversely as their variances. This is result 8.45. If it can be 
assumed that the process variance, a/, is constant over the data, Eq. 
8.48 indicates that a simple weighted average, with the weights being 
the degrees of freedom, is suitable for finding the overall average of 
ae"- This is so because the numerator of V is then a constant. 

We noted in example 8.M that we might wish to obtain an 
estimate of ae" = arr," when there is no evidence to indicate that these 
two parameters are different. In this case, for a given shipment, the 
estimate is simply Sx,."/2. The sampling variance of this estimate does 
not depend on ax", and so a simple weighted average over the ship
ments, with the degrees of freedom providing the weights, is called for. 

(c) Estimation of Systematic-Error Variances 

The basis for the key estimation equation (8.47) is straightforward. 
The difference di = Si — r-, has variance (as" + OA") + [ {oe" + ari") jn] 
from Eq. 8.34. Equation 8.47 then also follows immediately, the only 
complicating factor being that the different d; can be based on different 
numbers of observations, Wj. 





Chapter 9 

INVENTORY VERIFICATION 

OVERVIEW 

The general situation treated is the inventory verification in which an 
audit team wishes to verify that the total physical inventory for a given 
facility, or for a given material balance area, is as represented by the 
operator of the facility. The term "audit t eam" is defined in general terms 
and would include a national agency such as the U.S. Atomic Energy 
Commission, an international agency such as the International Atomic 
Energy Agency, and a management audit team. Although the different 
groups have different motivations for verifying the physical inventory, 
the statistical problems are similar. 

I t is important to distinguish between performing a physical inventory 
and verifying an inventory. A facility operator performs a physical inventory 
of his nuclear material holdings with some given frequency. In general 
terms this involves physically accounting for all items whose special nuclear 
material (SNM) contents were measured when placed in inventory, 
reducing to measurable form the previously unmeasured items to the 
extent feasible, and obtaining measurements for such items. On the other 
hand, verification of a physical inventory is performed by an audit team 
and consists, again in general terms, in demonstrating that the items in 
the inventory are indeed locatable and, further, that they contain the 
amounts of SNM purported by the operator. As a matter of convenience, 
the operation and the audit team commonly carry on the two tasks simul
taneously. 

Chapter 9 is concerned with the latter task, that of inventory veri
fication. In a sense the statistical problems associated with performing a 
physical inventory have been discussed in Chaps. 6 and 7, where it was 
shown how the measurement variance associated with the estimate of the 
total inventory affects the variance of material unaccounted for (MUF) 
to a degree that can be determined. The size of the inventory variance is 
affected by inventory practices, e.g., which analytical methods are used, 
to what extent common element and isotopic factors are applied, etc. 
Thus, in performing a physical inventory, the operator is guided in his 

315 
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actions by the importance of the inventory variance as it affects the variance 
of MUF, the primary index of nuclear-materials-control performance. 

What is the function of the inventory verification? In essence its role 
is to instill a degree of confidence in the integrity of the MUF value re
ported by the facility operator. There is no reduction in the measurement 
variance of MUF because of the activities of the audit team; in that sense 
the verification has accomplished nothing. If the audit team is a manage
ment team, however, this statement may not be strictly true, because 
measurements for audit purposes might also be used to obtain better esti
mates of the amount of SNM in inventory. But, unless intensive audit-
inspection measurements are performed, the effect on the measurement 
variance of MUF will be negligible. Nevertheless, through verification we 
create some assurance that the inventory value used by the facility operator 
in the MUF calculation is valid. This degree of assurance can be calculated 
for certain verification activities, and audit inspection activities can be 
formulated to attain the specified degree of assurance. In general terms 
this is the statistical problem discussed in this chapter. 

Of course, verification of an inventory is not equivalent to verification 
of the corresponding MUF, because MUF includes inputs and outputs in 
addition to inventories. In fact, in a facility that is not inventory dominated, 
verification of an inventory at some point in time might be of questionable 
importance. Although this limitation is recognized, it is common practice 
to verify inventories because it is feasible to do so and because it does serve 
as one checkpoint, while to verify inputs and outputs poses very real oper
ational problems. Mathematically the results of this chapter on inventory 
verification can be extended to MUF verification by requiring that inputs 
and outputs also be audited. The problem is not mathematical but, rather, 
operational. 

In broad terms two quite different verification activities are involved. 
On the one hand, the effort is directed at verifying that the frequency of 
gross discrepancies between the operator's stated values and the audit 
values is kept below a specified level. This can be called a step 1 activity 
and involves inspection on an attributes basis. For example, an item is 
weighed and a discrepancy is noted if the weight differs from the stated 
weight by more than a given amount. 

Inspection on an attributes basis having been demonstrated with an 
acceptable degree of confidence, the next step is to draw a finer picture 
through variables inspection of the quality of the assigned inventory values 
that collectively comprise the entire inventory. 

In an honest environment in which no diversion of SNM occurs, the 
step 1 verification activity is designed to detect operator mistakes (in the 
terminology of the Overview, Chap. 3); whereas the step 2 activity evalu
ates the validity of the stated measurement-error variances. On the other 
hand, in an audit situation in which the purported inventory may be 
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falsified to cover diversion of SNM, the two types of inspection activities, 
i.e., attributes and variables, will tend to react to different diversion 
strategies. For example, complete emptying of a few containers is combatted 
by attributes inspection, whereas partial emptying of a larger number of 
containers is more likely to be detected by the step 2 variables inspection. 
Whatever the diversion strategy, decisions on what actions to take should 
significant discrepancies be found by the audit team are complicated by 
the inability to distinguish, on the basis of the data alone, between honest 
mistakes and understated measurement-error variances on the one hand 
and diversions on the other hand. I t is beyond the scope of this book to 
delve deeper into the problem of how to develop inspection strategies to 
counter diverter strategies. Rather, the emphasis is on determining the 
types of verification activities and the intensities that are needed to detect 
specified frequencies and kinds of discrepancies between inventory listings 
and actual inventories. Any given audit inspection strategy developed 
from this viewpoint can, of course, be evaluated against given diverter 
strategies. 

The audit team must make a number of decisions as they design their 
verification effort and analyze the resulting data. One critical decision 
concerns specifying an unacceptable level of performance at step 1 and 
determining the probability that this unacceptable performance will be 
detected. If the audit indicates that actual performance at step 1 is worse 
than the specified tolerable level, whatever that level was decided to be, 
there may be little point in proceeding with the step 2 variables effort. 
Rather , the audit team may logically conclude that the frequency of dis
crepancies is such that the audit must be declared unsatisfactory regardless 
of the results of the variables inspection. In this sense the transition to 
step 2 occurs only when the step 1 performance is satisfactory. In mathe
matical terminology we might say that an acceptable step 1 audit is a 
necessary condition for an overall acceptable audit but not a sufficient 
condition. 

In the verification activities in this chapter, the problem is structured 
to apply to facilities in which the inventory is kept in discrete containers 
that are accessible to the audit team. A container is defined in general terms 
to include a process vessel in a chemical reprocessing facility, for example, 
and in that sense the results of this chapter also apply to the production 
line in such a facility. In an audit inspection of certain types of containers 
there is a problem in that the audit team must in some instances rely on 
the sampling equipment of the operator and on the operator's bulk-de
termination equipment, although the team can still make its own inde
pendent analytical determination on the sample. In principle this chapter 
applies to all types of facilities, the only caution being that in some cases 
there is a question as to the degree of independence between measurement 
of the operator and that of the audit team. 
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To place the variables discussion in its proper framework, let me 
emphasize that here attention is focused on the total physical inventory as 
opposed to the inventory for a single class of items. If interest is restricted 
to a single class, the methods of Chap. 8, using paired comparisons, can 
be used for the variables data. Chapter 8 also gives some results on how 
information from several statistical tests can be combined to give an 
overall assessment of the validity of some hypothesis. This approach is not 
used here to combine information from the various strata, because the 
strata differ in their importance to the total inventory. Instead, for the 
variables data a single hypothesis test on the total inventory is performed. 
Material is classified into strata primarily to help define the verification 
effort. 

Further, for the variables data a known error structure for both the 
plant and the inspector is assumed in this chapter. This assumption is 
essential in designing the inventory and is also used in the analysis unless 
the data indicate that some of the error variances estimated from the actual 
data differ significantly from the variances assumed. The validity of this 
assumption can be investigated for random-error variances by the methods 
of Chap. 8 within each class or stratum prior to the analysis indicated in 
Sec. 9.3. 

There are compelling reasons for recommending that we assume 
known error variances. Often systematic-error variances dominate, and 
information about such errors cannot be derived from the inspection data 
unless we are willing to assume that the observed average differences are 
wholly explained by systematic errors. This clearly defeats the whole 
purpose of an audit, where the intent of the variables inspection is to detect 
measurement biases or small diversions against a backdrop of known 
systematic-error variances. Also, the use of known error variances counter
acts the diverter strategy, which consists in intentionally inflating the ran
dom-error variances by removing differing amounts from a large number 
of containers. If the difference between the operator and audit measure
ment varies by a considerable amount over the data because of this strategy 
and if we must depend on the variation of this difference variable to esti
mate the random errors, the ability to detect real discrepancies is clearly 
reduced. Finally, as industrial experience continues to accumulate, the 
error variances will become better and better characterized. In this en
vironment it is a waste of information to reestimate the error variances 
with each new set of data and to disregard previous experience. 

In Sees. 9.1 and 9.2, the step 1 verification effort involving attributes 
inspection is treated first for a single class and then for all classes combined. 
Section 9.3 deals with the analysis of step 2 variables data on a paired 
comparison basis in which the audit measurement for a given item is com
pared with the corresponding facility result. Finally, Sec. 9.4 is concerned 
with the design of the variables verification from the viewpoint of optimal 
allocation of resources. 
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9.1 STEP 1 VERIFICATION ON AN ATTRIBUTES BASIS, 
SINGLE CLASS 

9.1.1 Problem and Assumptions 

For a given type of step 1 audit, .A'" items in the total class or popula
tion are to be verified. A random sample of n of these items is selected by 
the audit team. Each item sampled is classified either as a defect or as 
being acceptable, the classification depending upon the size and nature 
of the discrepancy between the result of the operator and that of the audit 
team. The criteria for making this judgment are predetermined. In the 
population of N items, some unknown number, D, are truly defects. It is 
assumed that the audit team will not make errors of classification. That is, 
if the item in question is truly acceptable, the audit team will always reach 
this decision; if it is a defect, the team will always detect it. 

The problem is to determine the sample size, n, and the critical value 
dd such that, if the number of defects in the sample equals or exceeds dn, 
the audit result is considered to be unacceptable. 

9.1.2 Solution 

In solving this problem, we assign values to some input parameters. 
The value of N, of course, is known. Values must be chosen for Do, D\, a, 
and /3, where these quantities are defined as follows: 

1. If Do defects occur in the population of TV items, conclude that the 
sample results are unsatisfactory with probability a. 

2. If D\ defects occur in the population of N items, conclude that the 
sample results are satisfactory with probability /3 or are unsatisfactory with 
probability (1 —18). 

In the terminology of statistical hypothesis testing (Sec. 2.8), the null 
hypothesis is Ha: D = Do, and the alternative hypothesis is He D = Di, 
with Di>Do- The value of a is the significance level or the probability of 
committing a type I error, and 0 is that of committing a type II error. 
For readers familiar with the terminology of acceptance sampling. Do can 
be regarded as an acceptable quality level (AQL) and Di as a rejectable 
quality level (RQL). In this context a is generally fixed at 0.05. In the spe
cial case of /3 = 0.10, the RQL and the lot tolerance percent defective 
(LTPD) are identical. 

Having specified N, Do, Di, a, and /3, we can then determine the sample 
size n, the n items can be inspected, and the number of defects in the sample, 
d, can be counted. lid>do, Ho is rejected, i.e., the audit result is considered 
unacceptable. [The quantity {do—\) is commonly called the acceptance 
number.] 

The parameters n and d are the solutions to the following two equations. 
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The reader will recognize that these equations are based on the hyper-
geometric probability density function (see Sec. 2.4.2 and Eq. 2.90). 

(9.1) 

(9.2) 

These equations are difficult to solve. In practice, n and do can be 
chosen by using published tables or approximate formulas. However, 
because of the many parameters involved, tabulation sufficiently extensive 
to meet all requirements is a physical impossibility. Tables designed spe
cifically to meet the requirements of nuclear materials control applications 
have been published (Theodore S. Sherr, Attribute Sampling Inspection 
Procedure Based on the Hypergeometric Distribution, USAEC Report 
WASH-1210, Division of Nuclear Materials Security, May 1972). These 
tables provide solutions for 16 different combinations of a, 13, AQL, and 
RQL. 

If tables are not available or do not cover a particular case of interest, 
an approximation can be used. For large samples an approximate solution 
that may be useful follows. (This approximation was supplied by K. B. 
Stewart.) Define 

j6o = Do/TV and pi = Di/M 

Then n and do have approximate solutions: 

JVG 

iN-\)ipi-poy+G 
(9.3) 

and 

where 

do^npo+Zi-aJnpoil -po)(\ -^^j+0.5 (9.4) 

G = [^i_„Vi! 'o( l - / 'o)+^i-^V>i( l - / ' i ) ] ' (9-5) 

and where Zp is defined by Appendix A for/) = (1 —a) and p = {l—0). 
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The solutions for n and d will not be integers, but integral solutions 
are required in application, of course. Stewart suggests that, when do 
is rounded down to doi or up to do2, then n can also be rounded down or 
up according to doin/do or do^n/do- A reasonable approach then is to round 
do in both directions and determine the corresponding exact values of a 
and /3 from Eqs. 9.1 and 9.2. This not only provides information about the 
effect of rounding do up or down but also indicates how well the approxi
mation applies in the particular case being treated. 

A different approximation is preferred in the common situation in 
which the audit team requires an acceptance number of zero defects and 
wishes to determine the sample size necessary to provide a specified value 
of 0 for a given Di. Then the sample size n is given by 

« = 0 .5 ( l - /3 i / -Oi ) (2^ ' -Di -h l ) (9.6) 

For this sample size and an acceptance number of 0, the a probability 
corresponding to a given Do can then be found from 

Note that when Do = 0, 'a = 0. Clearly there is zero probability of finding 
any defects in the sample when there are none in the population. 

If the a probability is judged to be too large in a given application, 
the audit team may choose to use an acceptance number of 1, i.e., to con
clude that the results are unsatisfactory if 2 or more defects are found in 
the sample. Then n can be found by solving Eq. 9.8 by trial and error: 

/ 2n \ ^ i / , «Di \ 

This equation is solved rather easily. The a probability corresponding 
to a given Do is then calculated from Eq. 9.8 with (1—a) replacing /3 
and Do replacing Di. 

In summary, the solution to choosing the appropriate attributes in
spection procedure for a given population of TV items is as follows: 

Step 1. Select values for a, 0, Do, and Di. 

Step 2. Use a table such as in USAEC Report WASH-1210 to determine 
the sample size and the acceptance number. 

Step 3. If a table is not available or does not cover the situation of interest 
and if an acceptance number of 0 is desired, find n from Eq. 9.6. 
The a probability corresponding to a given Do then is found by 
Eq. 9.7. 
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Step 4. If an acceptance number of 1 is desired, find n from Eq. 9.8. 
The value of a for given Do is then found by Eq. 9.8 with (I—a) 
replacing /3 and Do replacing Di. 

Step 5. If an acceptance number of 2 or more is desired, find n and do 
from Eqs. 9.3 to 9.5. Round do to integers doi and do2 in both direc
tions, and adjust n accordingly by doin/do or do2n/do, respectively. 
Evaluate the quality of the approximation and the effect of 
rounding do up or down by calculating a and /3 from Eqs. 9.1 
and 9.2. 

9.1.3 Examples 

Example 9.A 

An inventory of cans containing UO2 powder lists 400 items. A sample 
of n of these items is to be selected at random and weighed. If the weight 
disagrees by more than 100 g from that on the listing, this is called a defect. 
Four or fewer such defects in the listing are considered to be an acceptable 
performance, and the probability of reaching the opposite conclusion in 
this situation is set at 0.025. If there are 20 or more such defects, the proba
bility of failing to detect the performance as unacceptable is set at 0.05. 
Determine n and the rejection number do such that if the number of defects 
is greater than or equal to do the performance is labeled unacceptable. 

The parameters are 

TV =400 a = 0.025 
D o = 4 (3 = 0.05 
D i = 20 

This particular combination of parameter values is not contained in 
USAEC Report WASH-1210. (Since the audit team is free to select the 
parameter values, they can often choose values such that the tables in 
USAEC Report WASH-1210 will apply. The document also contains 
examples of how to apply the tables.) Since the acceptance number of 0 
or 1 is not specified, step 5 is followed. 

Step 5. First find po, pi, Zi-a, and zi-$-

po = Do/N=Om 
j&i = Di/TV=0.05 

^i-<i = ^0.976= 1.960 (from Appendix A) 
^i-(S = ^o.9 6= 1.645 (from Appendix A) 

Then, from Eq. 9.5, 

G = [ 1 . 9 6 0 A / ( 0 . 0 1 ) ( 0 . 9 9 ) + 1.645^(0.05) (0 .95)1 ' = 0.3064 
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From Eq. 9.3, 

(400) (0.3064) 
""(399) (0.04) 2+(0.3064) 

From Eq. 9.4, 

= 129.7 

<fo=(129.7)(0.01)+1.960.^(129.7)(0.01)(0.99)^l-^Vo.5 

= 3.63 

Then evaluate a and 0 for the two decision rules: 

Rule 1. Choose «= [(3)(129.7)/3.63]= 108 and label the performance 
unacceptable if there are > 3 defects in the sample. (Acceptance 
number = 2.) 

Rule 2. Choose n= [(4)(129.7)/3.63] = 143, with a reject criterion of 
> 4 defects. 

For rule 1, with </oi = 3 and n= 125, find a from Eq. 9.1 and /3 from 
Eq. 9.2. In the evaluation of a by Eq. 9.1, if Do is considerably larger than 
do, i.e., if do is small relative to (Do —do), it will be simpler to evaluate 
(1 —a) as the summation from do = Otodo—\. 

_ (:)(?::),(:)C) 
/400\ "^ /400\ 
\108/ \ 108 / 

4! 396! 108! 292! 3961 108! 292! 
~ 3 ! 1! 105! 2911400! 104! 292! 400! 

= 0.0567+0.0051=0.0618 

(3© (X?) ( » 
/400\ "̂  /400\ "̂  /400\ 

Vl08/ VlOS/ Vl08J 

/3 = 

= 0.0015+0.0122+0.0452 = 0.0589 

A table of logarithms of factorials is helpful in this calculation. 

For rule 2, rfo2 = 4 and n= 143. Then 

/400\ 

Km) 
=0.0159 
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/3 = 

/20\/380\ /20\/380\ 
WV143/, A 3A14O/ 

/400\ + • • • + /400\ 
\143/ Vl43/ 

= 0.0001+0.0013+0.0074+0.0261=0.0349 

Thus, to summarize with rule 1: 

a = 0.0618 /3 = 0.0589 

and to summarize with rule 2: 

a = 0.0159 /3 = 0.0349 

These values are compared with the design value for a and 0 of 0.025 
and 0.05, respectively, and the choice is then made as to which rule to 
use, depending on the emphasis placed on the importance of attaining the 
design values, or better, for a and 0. It is impossible to select a plan that 
will produce exactly the design values for a and 0. 

Example 9.B 

An inventory of bottles of plutonium nitrate lists 300 items in various 
locations. A sample of n of these is to be selected at random and an attempt 
made to locate them. If even one item in the sample cannot be located, 
the performance will be declared unacceptable. If, in fact, as many as 2 
items on the list cannot be found, the audit team wishes to detect this 
condition with a probability of 0.90. How many items should be checked? 

In this example, since the acceptance number is set at 0, step 3 applies, 
and the sample size n is given by Eq. 9.6. The parameter values are JV= 300, 
Di = 2, and ;3= 1-0.90 = 0.10. Then 

Step 3. « = 0.5[l-(0.10)' '-s](600-2+l)=204.8 = 205 

To evaluate the a probability at Do= 1, apply Eq. 9.7: 

/ 410 \ i 

^ - « = 0 - 6 O O : = H T ) = O - 3 1 ^ «=0-^«3 

Example 9.C 

Using the information in example 9.B, assume that the 0 error proba
bility is set at 0.10 when there are 4 defects rather than 2 defects in the 
population of size 300. Then, from Eq. 9.6, the sample size n is 

n = 0 .5 [ l - (0 .10)»«] (600-4+l ) = 130.6= 131 
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Evaluate a at Do = 2 defects. By the application of Eq. 9.7, 

Suppose this error probability is larger than desired. It can be reduced 
by increasing the sample size and changing the acceptance number from 
0 to 1 to retain the same 0 probability. For an acceptance number of 1, the 
sample size n is calculated from Eq. 9.8. 

0.10 = fl-^Vfl + ̂ !^^ 
\ 597/ V 297-n/ 

By trial and error, n is easily found as follows: 

At n equal to The expression is 

180 0.178 
200 0.110 
210 0.082 
205 0.095 
204 0.098< Value for n to give /3 = 0.10 

The corresponding a error probability for Do = 2 is given by Eq. 9.8, 
with (1 —a) replacing 0 and Do replacing Di, 

-«=(-^)t'^^) 1 

= 0.538 a = 0.462 

In this example, since do is so small relative to Do and in fact they are equal, 
it would be simpler to calculate a directly by Eq. 9.1 than to use the ap
proximation (Eq. 9.8). To three decimals, the results are equivalent. 

9.1.4 Basis 

Equations 9.1 and 9.2 are based on the hypergeometric probability 
distribution discussed in Sec. 2.4.2. The left-hand side of Eq. 9.1 is the 
probability of finding do or more defects in a sample of size n selected 
from a population of size TV when there are Do defects in the population. 
This occurrence of do or more effects results in rejection of the hypothesis 
D = Do when in fact the hypothesis is true and is to occur with probability 
a. The left-hand side of Eq. 9.2 is the probability of finding less than do 
defects in this sample when there are Di defects in the population. This 
is a type II error and is to occur with probability 0. 
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Equations 9.3 to 9.5 provide approximate solutions to Eqs. 9.1 and 
9.2. Use is made of the normal approximation to the hypergeometric 
distribution. If X is the random variable that is the number of defects in 
a sample of size n, we know that the random variable has a mean and vari
ance given by 

E(x) = np 

••.pii-p){^-0) 

where p = d/N and d is the true number of defects in the population. (See 
Eqs. 2.37 and 2.39.) Then a and 0 are given by 

a = Pr (x>do \p^ and ;3 = Pr (x<do \p\) 

where the null hypothesis is 

and the alternative is 

Ho: p —po 

Hx: p=pi 

Assume that x is approximately normally distributed, and make a 
correction for continuity; i.e., replace Pr (x'>do} with Pr (x>do—0.^), 
and replace Pr (xKdo) with Pr (x<do — 0.^)- Then the equations for a 
and 0 reduce to Eqs. 9.9 and 9.10 after standardization of the variables by 
subtracting the means and dividing by the standard deviations. 

do-0.5-npo 

Vnpo(\-po)[\-{n-\)/(N-\)\ '" 

and 

do—0.5—npi 
Vnpi(\-pi)[\-(n-\)/(N-\)] 

where 

= -^i_3 (9.10) 

/ V 00 

I i(x)dx=\-p 

defines a and 0, where/(AT) dx is the standardized normal density function. 
Then Eq. 9.4 is found by solving Eq. 9.9 for do- Also, Eq. 9.3 is found 

by using this value for do in Eq. 9.10 and solving for n. For simplicity in 
notation, G is defined as in Eq. 9.5 in writing the solution for n. 
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Finally, consider the basis for Eqs. 9.6 to 9.8. With an acceptance num
ber of 0, 0 in Eq. 9.2 is evaluated at do=\. This is 

/ D I V T V - D A 

\Q ) \ n I (TV-Di)!n! (TV-n)! 
^ ~ (N\ ~n\(N-Dx-n)\N\ 

(N-n){N-n-\)(N-n-2) . . . ( T V - « - D i + l ) 
TV(TV-l)(TV-2) . . . (TV-Di+1) 

-('-i)('-}^)(-]v^)-('-J^riTT) 
There are Di factors in this expression. The "middle" factor is 

y 2N-Di+\J 

Therefore 0 can be written approximately 

/ 2n \ ^ i 

^-0-2T^=D^) ^'-''^ 
That is, all the Di factors are assumed to have the same value as the middle 
factor; therefore the product is this middle factor raised to the Di power. 

Solving this for n gives 

n = O.5(l-/3i/^0(2TV-Di+l) (9.12) 

which is the result, Eq. 9.6. Equation 9.7 is derived by the same reasoning 
and is, in fact, Eq. 9.11 with 0 replaced by (1 —a) and Di replaced by Do-

To derive Eq. 9.8, we find the probability of obtaining zero or one 
defect and equate this to 0. The probability of obtaining zero defects is 
given by Eq. 9.11. The probability of obtaining one defect is 

{DA{M-Di\ 
\ 1 A n-\ ) _ Di(N-Di)\n\ {N-n)\ 

~ ( n - l ) ! (TV-Di-n+l)!TV! (f) 
This expression is exactly [nDi/(TV—Di—n+1)] times the corresponding 
probability for zero defects. 
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Therefore for an acceptance number of 1, |8 can be written 

2n V i nDx / 2n V i 
2TV-D1+I/ "*"(TV-D,-n+l)V 2TV-D1+I/ 

which is Eq. 9.8. 

9.2 STEP 1 VERIFICATION ON AN ATTRIBUTES BASIS, 
SEVERAL CLASSES 

9.2.1 Problem and Assumptions 

In Sec. 9.1, only a single population or class of TV items was con
sidered. In an actual audit several classes normally are involved, and a 
decision is made as to the acceptability of each class on the basis of attributes 
data. When this is done and when it is required that all the classes produce 
acceptable results before the step 1 verification is accepted as satisfactory, 
the overall significance level is smaller than the significance level of any 
one of the individual tests. Since a very small significance level implies that 
the operator has little chance of successfully meeting the audit requirements, 
it is important to take into account the multiplicity of individual signifi
cance tests made during the course of the audit. 

Specifically, suppose the step 1 attributes inspection consists of m 
separate classes, with a decision made as to acceptability of the results 
for each class. Further, suppose that each class must produce a satisfactory 
result (i.e., no hypotheses can be rejected) for the overall step 1 audit 
results to be satisfactory. The problem is to choose the a,- (?'= 1, 2, . . . , m) 
to produce a given value for a for the entire attributes inspection. Here, 
a, is the significance level for the z'th class or for the ?th test of hypothesis, 
whereas a is the probability of declaring that the overall step 1 audit re
sults are unsatisfactory when, in fact, they do meet the requirements for 
satisfactory performance. 

9.2.2 Solution 

In application some attributes analyses may be much more important 
than others, the importance depending on the material involved and/or 
the nature of the defect. This section is concerned only with the control 
of the a value, and, except for the possibility that different a values can 
apply to the different tests of significance, all tests are comparable in the 
sense that each must produce a satisfactory result before the entire attributes 

< 
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verification audit is judged satisfactory. The relative importance of the 
various analyses can be taken into account by controlling the size of the 0 
probability for a given Di value, rather than by controlling the size of a. 

Select a value for a for the overall step 1 audit. Also select a'l, a'2, . . . , 
a'm values for each significance test, initially disregarding the fact that m 
such tests will be performed. Then the values of ai, as, . . . , am to use in 
application are given by solving Eq. 9.15 for c and using the relation 

ai = cai' (9.14) 
m 

n (l-<ra/) = l - a (9.15) 
« = i 

In the event all the a / are equal, the solution for a, = ca/ becomes 

a< = c a / = [ l - ( l - a ) " ' » ] (9.16) 

When this situation does not obtain, since the a's are normally small 
quantities, an approximate solution for c in Eq. 9.15 is 

«! '+« /+ . . . +a™' 
(9.17) 

9.2.3 Examples 

Example 9.D 

In a step 1 verification activity, five different attributes tests are to be 
made, and all tests must produce satisfactory results before the step 1 
verification audit is deemed satisfactory. The overall a value selected is 
0.05. Other significance tests being disregarded, the a value for each 
analysis would be the same, 0.10. (The solution is independent of this 
value and depends only on the requirement that all a, values be the same.) 
What values of a, should be used for each analysis, i, to achieve the overall 
a value of 0.05? The solution is Eq. 9.16 with a = 0.05 and m = 5. 

a,= 1 - (0.95) >/« = 0.0102 

Thus an a value of 0.0102 should be used in each analysis. 

Example 9.E 

In example 9.D suppose the a priori a values for the five analyses are 
set at 

a i ' = 02' = 0.025 a / = 05 '= 0.10 

as '= 0.05 

file:///TTRIBUTES
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Then, by Eq. 9.17, 

0.05 
(0.025+0.025+0.05+0.10+0.10) 

= 0.167 

By Eq. 9.14, the values assigned to the a, are then 

ai = a2 = (0.167) (0.025) ±=0.0042 
a3= (0.167) (0.05) =0.0084 
a4 = a5=(0.167)(0.10) =0.0167 

As a check on this approximation, the true a corresponding to these values 
of the a, is given by Eq. 9.15. 

a = 1 -(0.9958)(0.9958)(0.9916)(0.9833)(0.9833) =0.0493 

which is a satisfactory approximation. 

9.2.4 Basis 

The situation is as follows: For test of significance i, the null hypothesis 
is designated by Hoi'. number of defects <Do,. Assign a,' such that 

a,' = Pr (Hoi is rejected |//oi is true) (9.18) 

Here, a,' is chosen without regard to the number of attributes tests 
that will be made. When there are m such tests, with an overall a corre
sponding to the probability that Hot is rejected for one or more i when in 
fact Hot is true for all i, it is reasonable to multiply each a / value by some 
constant, c, to attain this value of a. The fundamental relation is 

a = I - ( I - a i ) ( l - a 2 ) . . . ( l - a „ ) = l - H (1-ca. ' ) 

or 

n (\-cai') = \~a 
» = i 

which is Eq. 9.15. 

If all the a, are equal, Eq. 9.15 becomes 

(1-<:«/)"= ( 1 - a ) 
or 

< ; « / = l - ( l - a ) i ' ' » 

which is Eq. 9.16. 
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If the a, ' values differ, Eq. 9.15 becomes 

In ( l - < ; a i ' ) + In ( l - c a 2 ' ) + . . • + In ( l - < ; a „ ' ) = In ( 1 - a ) (9.19) 

For small values of the a's, which usually obtain, these logarithms are 
approximated by the relation 

In (l-x)^-x 

so that Eq. 9.19 becomes 

—c(ai+a2'+ . . . + a „ ' ) ~ —« 

or 

a 
' ' ~ a i ' + a 2 ' + . . . +0iJ 

which is Eq. 9.17. 

9.3 VERIFICATION ON A VARIABLES BASIS, PAIRED 
COMPARISONS 

9.3.1 Problem and Assumptions 

Having verified that the frequency of gross discrepancies is below a 
tolerable level on the basis of the step 1 attributes inspection, the inspection 
team moves to step 2 for a closer investigation of the quality of the facility's 
assigned values. This involves verifying that the total inventory is as stated 
by the facility within known errors of measurement. 

Although the attributes inspection has demonstrated that the frequency 
of gross discrepancies is below a tolerable level, it is conceivable that during 
the step 2 variables inspection one or more instances of a gross discrepancy 
between the facility and the audit team value may be noted. Although it 
is not reasonable to simply ignore such a result, it is less reasonable to in
clude it in the variables data analysis, which is aimed at evaluating the 
general quality of the facility data exclusive of the gross discrepancies. 
We assume in this section that any such discrepancy noted during the step 
2 inspection effort is not included in the variables analysis. 

In this section the verification is assumed to be with respect to the 
amount of element (uranium or plutonium). But, if interest is centered on 
the amount of isotope, the results can easily be extended to accomplish 
this. 
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We further assume that the entire inventory can be divided into 
strata such that within each stratum the items are comparable with respect 
to their nuclear material accountability characteristics; i.e., within a 
given stratum the items are of similar material form and have about the 
same weight and element concentration. Although there may be a certain 
degree of arbitrariness in defining the strata in a given situation, this does 
not pose any serious problem in application. This assumption of similarity 
within a given stratum makes it natural to compare operator results with 
audit team results within a given stratum by the method of paired differ
ences, discussed in Chap. 8. In this section the emphasis is on total inven
tory, whereas in Chap. 8 it is on a single stratum. If the analysis discloses 
a significant discrepancy between the facility and audit team total inven
tory values, then an analysis on a per stratum basis would help isolate the 
cause or causes for the discrepancy. Also note that the methods of Chap. 8 
can be applied to verify that the random-error variances are as stated by 
the operator. With the method of paired differences, measurement-error 
standard deviations can more conveniently be expressed on an absolute 
basis than on a relative basis. This is possible because of the uniformity of 
items within a given stratum such that a relative error of 0.3%, for example, 
associated with a given measurement can readily be expressed in absolute 
terms by taking 0.3% of an average value within the stratum for the 
measurement in question. 

The data are as follows: Each item in inventory is assigned a value of 
total element weight by the operator. For the items within a given stratum, 
this can be accomplished in one of three ways: 

Method 1. The element weight is determined uniquely for each item in 
the stratum by bulk determination plus sampling and analysis 
for the element factor. The element factor is the ratio of the 
amount of the element (uranium or plutonium) to the total 
amount of material comprising the net weight (or volume) 
for the item in question. 

Method 2. The element weight is determined uniquely for each item in 
the stratum by nondestructive assay (NDA). 

Method 3. The material net weight (or volume) is determined uniquely 
for each item, but an average element factor is used to apply 
to all items in the stratum in determining the element weight. 

Measurements between the various strata may not be statistically 
independent of one another. For example, a given scale may be used in 
more than one stratum, or the same analytical technique may be used in 
different strata, or, possibly, the same NDA instrument may be used. This 
information can be supplied by filling out a table such as Table 9.1. 
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TABLE 9.1 MEASUREMENT METHODS FOR VARIOUS STRATA 

Stratum 

1 
2 
3 
4 

Method ' 

1 
1 
3 
2 

Scale t 

2 
1 
2 

Analytical 
technique 

1 
1 
3 

NDA 
equipment 

1 

• Method 1, 2, or 3 as defined in text. 

t In the case of volume determinations, the scale would be replaced by the equipment used 
to determine the volume. 

The final information required from the operator is his stated error 
standard deviations, both random and systematic. (No short-term syste
matic-error variances are defined; if such are identified, they are included 
in the long-term component.) These standard deviations are identified as 

<̂% Systematic-error standard deviation due to weighing on 
scale k 

(T^i^ Random-error standard deviation due to weighing on 
scale k 

(Tpp Systematic-error standard deviation due to determining 
element factor with technique p; includes the effects of 
errors introduced by sampling the materials 

(Trp Random-error standard deviation due to determining 
element factor with technique p; includes the effects of 
errors introduced by sampling the materials 

<7A, Systematic-error standard deviation due to making NDA 

measurement with equipment t 

Tfj Random-error standard deviation due to making NDA 
measurement with equipment t 

In the verification activity, the audit team uses the same method as 
the operator in eiach stratum. (The term "method" refers to methods 1, 
2, and 3, previously defined in this section. This does not mean that the 
operator and facility necessarily use the same analytical technique.) This 
assumption is not as restrictive or unreasonable as may appear at first 
glance. Verification on a variables basis is under discussion, and any wide-
scale use of relatively crude NDA instruments, for example, by the audit 
team would likely be on zn attributes basis, i.e., in the step 1 inspection 
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effort. With variables measurements the audit team would be inclined to 
make fewer measurements but use the best means available for analysis. 

As a further assumption the measurements made by the audit team 
are independent of those made by the operator. This independence is 
achieved (1) by the use of different scales (or at least a different set of stand
ard weights to use with the operator's scales) and NDA instruments and 
(2) by submitting samples to a different laboratory for analysis (see Ex
ample 9.H to indicate the effect of a failure in this assumption). The audit 
team also prepares a table similar to Table 9.1 identifying the method, 
scale, and analytical technique, or NDA equipment, used in each stratum 
and associating the appropriate error standard deviations with each type 
of measurement. There is no overlap between the operator's identification 
and that of the audit team. Even if the same analytical technique is used 
in a given stratum for both parties, this is done in two different laboratories 
and hence is identified as separate techniques. 

Given this background information and data consisting of the oper
ator's inventory listing plus the results of measurements by the audit team, 
the problem is to determine whether or not the total inventory is as stated 
by the operator within the stated measurement errors. 

9.3.2 Solution 

The total inventory to be verified is divided into q strata. For each 
stratum the available information is given as in Table 9.1 for the operator, 
with a similar table for the audit team. In addition, the following values 
are given: 

Ni = the number of items in stratum i 

Methods 1 and 2. nj = the number of items measured by the audit team. 

Method 3. «, = number of items weighed by the audit team. 
Mi = number of samples used (assume one analysis per sample) 

to determine the element factor for the operator. 
mi = number of samples used (assume one analysis per sample) 

to determine the element factor for the audit teain. 

The sample sizes «,• and w,- are assumed given in this section 
(see Sec. 9.4 for their optimal selection in designing the 
audit). 

In addition to the preceding information, the error standard deviations 
are supplied by the operator for his measurements, and the audit team 
has similar information about its error standard deviations. 

The following notation is used: 

Method 1. rij = operator element weight, stratum i, itemj. 
V,, = audit team element weight, stratum i, item j . 
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Method 2. ^i,, Zii similarly defined for NDA measurements. 

Method 3. H^,j, Wi, similarly defined for net item weight, as opposed to 

element weight. 

L ,̂ = operator average element factor, stratum i. 

Ui = audit team average element factor, stratum i. 

Then the estimated total discrepancy, or difference, between the audit 
team's estimate of the total inventory and that of the operator is found as 
follows: 

Step 1. For each stratum using method 1, sum the diflFerences {yx, — Ti,) 
from J = 1 to n,. In this step and in all subsequent discussions in 
this chapter, it is convenient to index the items in each stratum 
such that the items sampled by the inspector are the first m 
of the Ni total items. 

Step 2. Multiply each sum of step 1 by Nt/n,. 

Step 3. Sum these quantities over all strata using method 1. Call this 
sum Di . 

Step 4. For each stratum using method 2, sum the differences (Ztj—Zii) 
ixomj=\ to ni. 

Step 5. Multiply each sum by Ni/ni. 

Step 6. Sum these quantities over all strata using method 2. Call this 
sum D2. 

Step 7. For each stratum using method 3, sum the differences ( » „ — W,j) 
f romj = l to n,. 

Multiply each sum by Njm. 

Sum the W,j from j = 1 to Ni. 

Add the quantities of steps 8 and 9, and multiply by a,. 

Multiply each sum in step 9 by t/,. 

Subtract each quantity in step 11 from the quantity in step 10 
for each stratum. 

Sum the results of step 12 over all strata using method 3. Call 
this sum D3. 

Find D = D i + D 2 + D 3 . This is the estimated total difference 
between the audit team's estimate of the total inventory and 
that of the operator. A positive value of D indicates the audit 
team's estimate is higher. 

Step 8. 

Step 9. 

Step 10. 

Step 11, 

Step 12. 

Step 13. 

Step 14. 
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The statistical significance of D is judged by knowing its variance, 
denoted by V(D). There are six types of error variances- CTQ , a^i^, a-r , (rl , 
al^, and a^^. The F(D) is given by the formula 

K K p p 

V(D) = E Amh,+ Z A2kcl+ E 3̂p<r̂  + E A.^rp 
k=i k=i p=i '^ p=i 

T 

I 
1=1 

+ E ^6«T1,+ E Au<rl^ 
T 

E 
1=1 

(9.20) 

where K is the total number of scales for both the operator and the audit 
team and P and T are similarly defined for analytical techniques and 
NDA instruments, respectively. 

Table 9.2 gives the rules for calculating the A coefficients in Eq. 9.20. 
Once D and V(D) are calculated, D can be tested for statistical 

significance. The hypothesis is D = 0 against the two-sided alternative, 

TABLE 9.2 RULES FOR CALCULATING THE COEFFICIENTS IN EQ, 9.20 

Rule Description Calculation steps * 

A Systematic-error variance, 
scale At 

B Random-error variance, 
scale k 

C Systematic-error variance, 
Emalytical technique/) 

D Random-error variance, 
analytical technique/i 

E Systematic-error variance, 
NDA instrument t 

F Random-error variance, 
NDA mstrument ; 

(1) 
(2) 
(3) 
(1) 
(2) 
(3) 
(4) 
(1) 
(2) 
(3) 
(1) 
(2) 
(3) 

(4) 
(1) 
(2) 
(1) 
(2) 
(3) 

Multiply JV by average element factor 
Sum over the strata 
Square the sum; this is ^ i t 
Multiply JV by average element factor 
Square this quantity 
Divide by n 
Sum over the strata; this is An 
Multiply JV by average item net weight 
Sum over the strata 
Square the sum; this is Asp 
Multiply N by average item net weight 
Square this quantity 
Divide by n if a method 1 stratum 
Divide by A/ if a method 3 stratum, 
operator measurement 
Divide by m if a method 3 stratum, audit 
team measurement 
Sum over the strata; this is Aip 
Sum the N values over the strata 
Square the sum; this is An 
Square N 
Divide by n 
Sum over the strata; this is Aa 

* In each case the calculation is performed for all strata using scale k, analytical technique 
p, or NDA instrument ( This is done for both the operator and the audit team 

t This development is in terms of bulk determination by weight rather than by volume 
The same type of rules would apply to volume determinations 
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D^O, since both understatements and overstatements of inventory by the 
operator are to be detected. The test consists in forming the statistic 

D 
D*= , (9.21) 

and concluding that the difference is not zero if D* exceeds the critical 
value. Da, in absolute value. The value D„ depends on the significance level 
of the test, and values of particular interest are extracted from Appendix A 
and appear in Table 9.3. 

TABLE 9.3 CRITICAL VALUES OF D, 

a Da 

0.10 1.645 
0.05 1.960 
0.025 2.242 
0.01 2.576 

9.3.3 Examples 

Example 9.F 

An inventory in a fuel fabrication facility is verified by using variables 
data. The definition of the strata and other appropriate information are 
given in Table 9.4. The pertinent data are as follows: 

Stratum 1 (UO2 Powder) 
40 

E ( " ' I - ^ u ) = -0.062 kg 
j = i 

300 

E M̂ iy = 6030.60 kg 
j = i 

Average net item weight = 6030.60/300 = 20.102 kg 
Operator uranium factor = 0.8760= Ui 
Audit team uranium factor = 0.8754 = «] 

Stratum 2 (Sintered UO2 Pellets) 
26 

E («^2;- Ŵ 2;) = -0 .29 kg 
J=i 

180 
E Pr2j = 1102.320 kg 
i = i 
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Average net item weight = 1102.320/180 = 6.124 kg 
Operator uranium factor = 0.8810= 0% 
Audit team uranium factor = 0.8807 = ̂ 2 

Stratum 3 (ADU Scrap) 

1 ^ ( 7 3 ; - ^ , ) = - 2 . 1 3 6 kg 
j = i 

Average net item weight = 18.214 kg 
Average uranium factor = 0.527 

Stratum 4 (Grinder Sludge) 

E (74i-r4;) =+0.413 kg 
i=l 

Average net item weight = 5.907 kg 
Average uranium factor = 0.664 

Stratum 5 (Solid Waste) 

12 

E (^6;-^6y) = - 0 . 0 4 8 kg 
; = 1 

The error standard deviations supplied by the operator and the audit 
team are shown in Table 9.5. 

TABLE 9.4 INVENTORY VERIFICATION DATA 

(Example 9.F) 

Stra
tum Material Ni Method rn rrti Mi 

Operator 

Scale Anal. NDA 

Audit team 

Scale Anal. NDA 

1 UOj powder 300 3 40 5 22 1 1 4 4 

2 Sintered 180 3 26 8 30 2 1 4 4 
UO2 
pellets 

3 ADU scrap 15 1 6 3 2 4 5 

4 Grinder 30 1 4 3 3 4 5 

sludge 

5 Solid waste 75 2 12 1 
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TABLE 9.5 MEASUREMENT-ERROR STANDARD DEVIATIONS 

(Example 9.F) 

Operator 

Audit team 

Operator 

Audit team 

Operator 

Audit team 

Scale (k) 

1 
2 
3 

4 

Analytical 
technique (p) 

1 
2 
3 

4 
5 

NDA 
instrument (t) 

1 

2 

Systematic (trok) 

0.0010 
0.0006 
0.005 

0.002 

Systematic (rr^ ) 

0.0003 
0.020 
0.006 

0.0004 
0.015 

Systematic (in ^ 

0.002 

0.003 

Random (v(i^) 

0.0015 
0.0010 
0.010 

0.005 

Random ((TTJ,) 

0.0005 
0.028 
0.022 

0.0007 
0.020 

Random (fff ^ 

0.009 

O.OIO 

This is all the information required to evaluate the audit results. First, 
D, the difference in the estimates of the total inventory, is found from the 
14 steps of Sec. 9.3.2. 

From Sec. 9.3.2: 

Stepl 
6 

Stratum 3: J^ {yij-Yz,) = -2.136 kg of U 
i = i 

4 

Stratum 4: X) iyn-^ii) = +0.413 kg of U 
j = i 

Step 2 

Stratum 3: (15/6)(-2.136) = - 5 . 3 4 0 kg of U 

Stratum 4: (30/4) (0.413) = + 3.098 kg of U 

Steps 

Z>i=-5.340+3.098=-2.242 kg of U 
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Step 4 
12 

Stratum 5: JZ {Zi,-Z^i) = -0.048 kg of U 
j = i 

Steps 

Stratum 5: (75/12)(-0.048) = -0.300 kg of U 

Step 6 

£)2=-0.300 kgofU 

Step? 
40 

Stratum 1; X ( w u - W^,) = -0.062 kg of UO2 

26 

Stratum 2: X ("'2. - ^2,) = - 0.029 kg of UO2 
; = i 

Steps 

Stratum 1: (300/40) (-0.062) = -0.465 kg of UO2 

Stratum 2: (180/26)(-0.029) = -0.201 kg of UO2 

Step 9 
300 

Stratum 1: X) Ŵ u = 6030.60 kgofU02 
j = i 

180 

Stratum 2: Y. W'z; = 1102.320 kg of UO2 
j = i 

Step 10 

Stratum 1: (-0.465+6030.60)(0.8754) =5278.780 kg of U 

Stratum 2: (-0.201-fl 102.320)(0.8807) =970.636 kg of U 

Step 11 

Stratum 1: (6030.60) (0.8760) = 5282.806 kg of U 

Stratum 2: (1102.320)(0.8810) =971.144 kg of U 

Step 12 

Stratum 1: 5278.780-5282.806= -4.026 kg of U 

Stratum 2: 970.636-971.144=-0.508 kg of U 

Step 13 

Z)3=-4 .026-0 .508=-4 .534 kg of U 
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Step 14 

/ )= -2 .242-0 .300-4 .534 = -7 .076 kg of U 

The audit team's estimate of the inventory is 7.076 kg of uranium less than 
the operator's value. 

To find V(D), the variance of £), apply the appropriate rules of Table 
9.2. 

From Table 9.2: 

Rule A 

Scale 1: (1) 7ViI7i = (300) (0.8760) = 262.80 

(It is convenient to use C/i rather than an average of 
Ui and «i, and this makes no essential difference in 
the results.) 

(2) ^•iZ7i = 262.80 

(Scales 1 and 2 are each used in only one stratum; so 
the sum of step 2 is only over the one term.) 

(3) (262.80)2 = 69064 = ^11 

Scale 2: (1) ^"2f72=(180)(0.8810) = 158.58 

(2) NiU2= 158.58 

(Scales I and 2 are each used in only one stratum; so 
the sum of step 2 is only over the one term.) 

(3) (158.58)2 = 25148 = ^12 

Scale 3: (1) (7\̂ 3f73) = (15) (0.527) = 7.905 

(NiUi) = (30) (0.644) = 19.920 

(2) 7.905-f 19.920 = 27.825 

(3) (27.825)2= 774 = yl 13 

Scale 4: (1) 7ViI7i = 262.80 NiU2=i58.58 

NiUi = 7.905 JVjJi = 19.920 

(2) 262.80+158.58+7.905+19.920 = 449.205 

(3) (449.205)2 = 201785 = ^14 
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RuleB 

Scale 1: (1) Mt / i = 262.80 

(2) (262.80)2 = 69063.84 

(3) 69063.84/40=1726.60 

(4) 1727 = ^21 

Scale 2: (1) JV2Ui=\58.58 

(2) (158.58)2 = 25147.62 

(3) 25147.62/26 = 967.22 

(4) 967 = ̂ 22 

Scale 3: (l) NdJ3 = 7.905 7V4t74= 19.920 

(2) (7.905)2 = 62.49 (19.920)2 = 396.81 

(3) 62.49/6=10.42 396.81/4 = 99.20 

(4) 10.42+99.20=110 = ^23 

Scale 4: (1) A"iC/i = 262.80 #21/2=158.58 

J^zUi =7.905 fidJi = 19.920 

(2) (262.80)2 = 69063.84 
(158.58)2 = 25147.62 

(7.905)2 = 62.49 
(19.920)2 = 396.81 

(3) 69063.84/40=1726.60 
25147.62/26 = 967.22 

62.49/6=10.42 
396.81/4 = 99.20 

(4) 1726.60+967.22+10.42 + 99.20 = 2803 = ^ 

Rule C 

Technique 1: (1) JViTJ/i= (300) (20.102) =6030.600 

#2W>2=(180)(6.124) = 1102.320 

(2) 6030.600+1102.320 = 7132.920 

(3) (7132.920)2 = 50878548 = ^31 
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Technique 2: (1) #-3^3= (15)(18.214) = 273.21 

(2) 273.21 

(3) (273.21)2= 74644 = .̂ 32 

Technique 3: (1) J^Jv^= (30){5.907) = 177.21 

(2) 177.21 

(3) (177.21)2 = 31403=^33 

Technique 4: (1) JVITKI = 6030.600 

A"2W 2̂= 1102.320 

(2) 6030.600+1102.320=7132.920 

(3) (7132.920)2 = 50878548 = ^34 

Techniques.- (1) .Â3Ŵ3 = 273.21 

#•4^4= 177.21 

(2) 273.21 + 177.21=450.42 

(3) (450.42)2 = 202878 = ^36 

RuleD 

Technique 1: (1) A'iTfi = 6030.600 

JV2#2= 1102.320 

(2) (6030.600)2 = 36368136 
(1102.320)2=1215109 

(3) 36368136/22 = 1653097 
1215109/30 = 40504 

(4) 1653097+40504= 1693601 =.^41 

Technique 2: (1) #-3Tp3 = 273.21 

(2) (273.21)2 = 74643.70 

(3) 74643.70/6=12441 

(4) 12441=^42 

Technique 3: (1) #'4'F4= 177.21 

(2) (177.21)2 = 31403.38 

(3) 31403.38/4 = 7851 

(4) 7851=^43 



344 INVENTORY VERIFICATION 

Technique 4: (1) JVITKI = 6030.600 

#"2Tr2= 1102.320 

(2) (6030.600)2 = 36368136 
(1102.320)2=1215109 

(3) 36368136/5 = 7273627 
1215109/8 = 151889 

(4) 7273637+151889 = 7425516 = ^44 

Techniques; (l) JV3Wi = 273.21 

JVjV,= 177.21 

(2) (273.21)2 = 74643.70 
(177.21)2 = 31403.38 

(3) 74643.70/6=12441 
31403.38/4 = 7851 

(4) 12441 + 7851=20292 = ^46 

RuleE 

Instrument 1: (1) 75 

(2) (75) 2 = 5625 = .4 61 

Instrument 2: (1) 75 

(2) (75)2 = 5625 = ^62 

RuleF 

Instruments (1) (75)2 = 5625 

(2) 5625/12 = 468.75 

(3) 468.75 = ^61 

Instrument 2: (1) (75)2 = 5625 

(2) 5625/12 = 468.75 

(3) 468.75 = ^62 

The variance of D, V(D), is now given by Eq. 9.20, the data in Table 
9.5, and the coefficients just calculated from the rules of Table 9.2. 

V{D)= 69064(0.0010)2= o.069 
+ 25148(0.0006)2= o.009 
+ 774(0.005)2 = 0.019 

Systematic-scale-operator 
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+ 201785(0.002)2 = 

+ 1727(0.0015)2 = 
+ 967(0.0010)2 = 
+ 110(0.010)2 = 

+ 2803(0.005)2 = 

+ 50878548(0.0003)2 = 
+ 74644(0.020)2 = 
+ 31403(0.006)2 = 

+50878548(0.0004)2 = 
+ 202878(0.015)2 = 

+ 1693601(0.0005)2 = 
+ 12441(0.028)2 = 
+ 7851(0.022)2 = 

+ 7425516(0.0007)2 = 
+ 20292(0.020)2 = 

+ 5625(0.002)2 = 

+ 5625(0.003)2 = 

+ 469(0.009)2 = 

+ 469(0.010)2 = 

F(Z)) = 

0.807 

0.004 
0.001 
0.011 

0.070 

4.579 
29.858 

1.131 

8.141 
45.648 

0.423 
9.754 
3.800 

3.639 
8.117 

0.023 

0.051 

0.038 

0.047 

16.239 

Systematic-scale-audit 

Random-scale-operator 

Random-scale-audit 

Systematic-analytical-operator 

Systematic-analytical-audit 

Random-analytical-operator 

Random-analytical-audit 

Systematic-NDA-operator 

Systematic-NDA-audit 

Random-NDA-operator 

Random-NDA-audit 

If, recalling that D = 
statistic D* is 

-7.076 kg of U, we apply Eq. 9.21, the test 

D*= -7 .076 / \ / l 16.239= -0 .66 

Let Q; = 0 .05 , so i )„= 1.960 from Table 9.3. Since 0.66< 1.960, we 
conclude that the discrepancy between the operator's and the audit team's 
estimates of the inventory is not statistically significant. Thus we consider 
the operator's inventory to be verified. 

9.3.4 Basis 

The determination by the operator of the element weight for items 
within a given stratum is made by one of three methods described in Sec. 
9.3.1. During the step 2 variables audit, it is assumed that the audit team 
uses the same method as the operator in each stratum. 

Consider the model for each of the three methods. An additive error 
model is assumed to apply. This is reasonable in this application, even 
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though error standard deviations are commonly expressed on a relative 
basis, because the classification of the inventory into strata tends to make 
the items within each stratum similar with respect to weights and element 
factors. This permits making comparisons between the operator results 
and those of the audit team by paired differences. With a relative error 
structure, this comparison would more logically be done by paired ratios 
than by differences. For a method 1 type of measurement, the following 
quantities are defined. In this notation the letters in parentheses indicate 
that the net weight was determined on scale k by analytical technique p. 
Primes are used on p and k for the audit team measurements to emphasize 
that the scales and analytical techniques are not the same as those used by 
the operator. In this chapter analytical technique includes the effects both 
of sampling and of analysis. 

2",j(ifep) = operator's element weight for itemj in stratum i;j= 1, 
2, . . . , TV. 

Ttj(*'»') = audit team's element weight for itemj in stratum i;]=\, 
2, . . . , n, (For convenience in notation assume that 
the items are the first «, of the total JV, items in that 
stratum) 

M.J = true item weight for itemj in stratum ?;_; = 1, 2, . . . , JV", 
T,j = true element factor for itemj in stratum i\]=\, 2, . . . , 

Ot = systematic-error deviation due to use of scale k 
J,j(t) = random-error deviation for j th weighing on kih. scale 

in stratum i 
Fp = systematic-error deviation due to use of analytical 

technique p 
''•J (j>) = random-error deviation forjth analytical determination 

in stratum i with analytical technique p 

The model for the operator then becomes 

Tr,(,kp)= [Mtj + iit+?.j(lk)][T„+rp + T„(p)] 
^M.;T.,+M.,[rp+r„(p)]+T„[fi;i+?.j(,)] (9.22) 

A similar model holds for the audit team measurements: 

JV.,(*'p')f^M.jT.j+M.;[rp' + T„(p')] + T„[n*' + ?.jC*')] (9.23) 

The quantity of interest is the difference between the audit team's 
estimate of the total element inventory in this stratum and that of the 
operator. This is the average difference times the number of items in the 
stratum. 

£)i. = JV. i:y^'^"'"''-^^"^"^' (9.24) 
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Assume that the strata are defined in such a manner that yu.̂  is reason
ably constant over thej items and can be replaced by /z, for allj. Similarly, 
replace T.̂  by T, for all j . Upon application of Eqs. 9.22 and 9.23, Eq. 
9.24 becomes 

DU^NJ{T,,-Y,)+ t ^"'"''"^"'"-1 
L j = i « . J 

+^,Tlin,.-Q,)+ t ll£<̂ 2ZlHi«1 (9.25) 
L j = i « . J 

A similar result is found for a stratum with method 2 measurements. 
Let 

-^.j(() = operator's element weight for item ; in stratum j , 
based on NDA instrument t 

•C.J ((') = audit team's element weight for item ; in stratum i, 
based on NDA instrument t' 

A ( = systematic-error deviation due to use of NDA in
strument t 

^1^(0 = random-error deviation forjth item in stratum i due 
to use of NDA instrument t 

Then the difference between the estimate of the audit team and that 
of the operator for the inventory in a method 2 stratum is 

V ^ • ^ • j ( ( ' ) \ , ' ! ( I ) 

JU 

N. 

j = i 

(A,-

n. 

A,)+ 2 . 
j = i « t 

(9.26) 

Finally, for method 3, let 

^.j(i) = operator's item weight forjth item in stratum !, 
with scale k 

».;(*')= audit team's item weight forjth item in stratum i, 
with scale k' 

^.(p) = operator's average element factor for stratum i, 
based on Af, determinations using analytical tech
nique p 

«.(p') = audit team's element factor for stratum i, based 
on m, determinations using analytical technique p' 

The difference in inventory estimates can be written 

^3.= E H/.j(*,[«.(p',-c7.(p,]+^,«. i : ^'^^^<*:i^^^^ (9.27) 
J = l , = 1 n. 
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where, for a method 3 stratum, n, refers to the number of items weighed by 
the audit team. 

To write Z)3. in terms of its basic error structure, first rewrite Eq. 
9.27 as follows, by collecting terms in a.(p'): 

i)3.=w,U.i:^^^'+(i--)i:^^.(*)+ £ w„,J 
_ N, 

-t/.(p) E W î.w (9.28) 
j = i 

Then, if we write 

Z ^»J+Fp' + T.,(p') 
(9.29) 

; = 1 '". 

define U,(p) in a similar way, and assume that T.j can be replaced by T. 
for all J, Eq. 9.28 becomes approximately 

z)3.^^^.T.^(Q.>-o.)+1 '̂̂ '̂ ''~ -̂̂ '̂ n 
L j=i n, J 

+NJ (rp,-rp)+ E ^ - Z ^ (9.30) 
L ^-1 "J. j=i Az. J 

Equations 9.25, 9.26, and 9.30 are now used to find the variance of £). 

/ ) = Z ^1 .+ E £'2.+ Z ^ 3 . (9.31) 

where the first summation is over all strata employing method 1, the second 
is over all strata using method 2, and the third is over all strata based on 
method 3. 

Equation 4.6 is used to find the variance of D. This variance is of the 
form 

K K p p 

V{D) = E Au<Tk+ E A2u4k+ E ^3p^r%+ E ^^P-^'P 
k=l k=\ p=\ i>=l 

T T 

+ E Aucl-\- E Auc\t (9.32) 
(=1 (=1 

where K is the total number of scales for both the operator and the audit 
team, P is the total number of analytical techniques, and T is the total 
number of NDA instruments. In this summation, the terms in k', p', and t' 
are included in the various sums. The primes are used only to differentiate 
between the results for the operator and those for the audit team. 
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From Eq. 4.6, Au is the squared partial derivative of D with respect 
to Qic, evaluated at the means of all the variables (all the error-random 
variables have zero means in the additive model); /l2yt is the squared partial 
derivative of D with respect to ^k, etc In particular, from Eqs. 9.25 and 
9.30, 

dD 
r r - = — JV.T. (for the strata in which scale k is used) 
oUic 

dD 
.7—= JV.T, (for the strata in which scale k' is used) 
dilic' 

Since scales k and k' are not used in the same stratum (the operator 
and audit team use different scales), since the partial derivative is negative 
for all operator scales and positive for all audit team scales, and since the 
square of the negative number is positive, it follows that 

^ u = ( E . ^ . T . ) 2 (9.33) 

where the summation is over all strata in which scale k is used. This result 
is the basis for the calculational rule A in Table 9.2. 

Similarly, 

dP _ _ . y . T . 

for t h e j t h error in a stratum in which scale k is used. 
This partial derivative is the same for all f.j(*). In stratum t, there 

are n. such derivatives. Each is squared to give NlTl/nl- Since there are 
n. such factors multiplying trtj, 2 in the !th stratum, the coefficient of aif^"^ in 
that stratum is (TV.T.) 2/n,. This is then summed over all strata using scale 
k to give 

^ 2 * = E ^ ^ ^ ^ ' (9.34) 
1 n . 

The same result is found for scale k', and so Eq. 9.34 is the basis for 
calculational rule B in Table 9.2. 

A similar development leads to the values for Azp, Aip, An, and A^t. 

^3p=(E.Ar.M.)2 (9.35) 

where the summation is over all strata in which analytical technique p 
is used. This is the basis for rule C of Table 9.2. 
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A.p = E ^ - ^ (9.36) 

where /. = «, in a method 1 stratum 
/, = m, in a method 3 stratum involving an audit team measurement 
l, = M, in a method 3 stratum involving an operator measurement 

and where the summation is over all strata in which analytical technique 
p is used. Equation 9.36 is the basis for rule D of Table 9.2. 

A,t = CZJ^,)' (9-37) 

where the summation is over all strata in which NDA instrument t is used. 
This is the basis for rule E of Table 9.2. 

Finally, 

^ 6 « = E — (9.38) 
» n, 

where the summation is over all strata in which NDA instrument t is used. 
This is the basis for rule F of Table 9.2. 

With D and V(D) given, the test of significance is the usual one applied 
to test the hypothesis MZ> = 0, where fio is the expected value of D. The 
test is based on an assumed known error structure, with the random vari
able, D, normally distributed. A two-sided test of significance is used since 
the hypothesis of a zero difference may logically be violated in either direc
tion. 

9.4 OPTIMIZATION OF STEP 2 VARIABLES 
INSPECTION EFFORT 

9.4.1 Problem and Assumptions 

Let me emphasize that the optimization of inspection effort considered 
in this section is only with respect to the variables inspection. The problem 
of how to allocate total effort between the step 1 attributes inspection and 
the step 2 variables inspection is another matter and one that is not easily 
solved in a quantitative fashion. 

In the preceding section the analysis of variables inspection data was 
considered. In that analysis the sample sizes used by the audit team in 
the 2th stratum were given. In application, the audit team must first decide 
how many measurements of each kind to make. This section discusses the 
basis for making that decision. 
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The goal of the audit team is to perform the inspection in such a way 
as to maximize the probability of detecting a given discrepancy between the 
two estimates of the total inventory. This is equivalent to minimizing V(D), 
the variance of the overall difference statistic, D. In practice, the audit 
team has limited resources, and there are constraints placed upon the team 
members in the sense that they must limit the effort devoted to this phase 
of the audit. Thus the problem is to minimize V(D) subject to specified 
constraints. 

This problem can be approached from a different viewpoint, which 
involves determining the variables inspection effort required to detect a 
given discrepancy with a specified probability. That is, a maximum value 
for V(D) is established, and the amount of effort required to attain a value 
of V{D) that small or smaller is determined. The problem is in essence no 
different from that of the previous paragraph. It is a question of emphasis. 
On the one hand, the emphasis is on maximizing test sensitivity for a given 
amount of resources; on the other hand, the emphasis is on determining 
what resources are needed to achieve a given test sensitivity. 

Whichever emphasis is preferred, in application the audit team will 
wish to examine the relation between test sensitivity related to V(D) and 
total cost, or effort. It is convenient to examine this by fixing total effort 
at different levels and calculating V{D) for the corresponding optimum 
allocation of effort. 

The audit team might wish to include other criteria in addition to 
cost of inspection for optimization in a given situation. For example, the 
value of the material, measured by enrichment (2'*U enrichment or 
plutonium), might well be a factor, with greater attention to the ma
terials with higher enrichment. Further, depending on the nature of the 
inspection, the audit team might wish to take into account the accessibility 
of material to a potential diverter and/or the form of the material. A method 
of factoring these and other criteria into the optimization scheme is also 
considered. 

The models and assumptions are the same in this section as in Sec. 9.3. 

9.4.2 Solution 

Define a cell as a stratum for methods 1 and 2 (the methods are defined 
in Sec. 9.3.1). For method 3, a cell is either a stratum in which a bulk 
measurement is made or a stratum in which an analytical determination 
is made, i.e., there are two cells defined for each stratum. Thus, if »< strata 
employ method i ( J = 1 , 2, 3), then the total number of cells is (»i+02+ 
2z;3)=^. 

For each cell j , define r,- to be the number of measurements in cell j . 
(For a method 1 cell, a measurement consists of both a bulk and an ana
lytical determination; for a method 2 cell, it consists of an NDA measure-
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ment; for a method 3 cell, it consists of either a bulk or an analytical 
determination.) Then ry is selected as follows: 

1. In cell j , choose the sample size, r,, proportional to 

aj/\/c,h^j . . . =<j>, (9.39) 

2. For a given total effort, measured by S Cjr, = <t>, compute V(D) 
from the methods of Sec. 9.3.2. The r, must, of course, be integers in appli
cation. Each Tj must equal at least 1. 

3. Examine the relation between V(D) and </>, and select the sample 
sizes either by fixing ^ or by fixing V(D) and choosing 0 to achieve this 
value of V(D). 

The quantities in Eq. 9.39 are defined as follows: The quantity CTJ is 
the random-error variance of a given difference in cell j and is defined in 
one of four ways, the definition depending on the type of cell in question. 

Definition 1. If cell j is a stratum based on method 1, then 

'r] = ^lrl(al+'ri,)+M',l^l(<rl,+al,.) (9.40) 

where cell j corresponds to stratum /, jV, is the number of items in stratum 
i, T.- is the average element concentration factor for stratum i, and /u,-
is the average item net weight for stratum i. In this stratum the operator 
uses scale k and analytical technique p, whereas the inspector uses scale k' 
and analytical technique p'. 

Deflnition 2. If cell j is a stratum based on method 2, then 

<rl = Nl(al+<rl) (9.41) 

where cell j corresponds to stratum i. In this stratum the operator uses 
NDA instrument t, and the inspector uses NDA instrument t'. 

Definition 3. If cell j relates to the bulk measurement in a stratum 
based on method 3, then, 

cr] = MTK<Tl+cl,) (9.42) 

with the quantities defined following Eq. 9.40. 

Definition 4. If cell j relates to an analytical determination in a 
stratum based on method 3, then, 

a]^Nl^y.^, (9.43) 

with the quantities defined following Eq. 9.40. 
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Let us define the other quantities in Eq. 9.39. The Cj is the cost of 
making a measurement in cell j . This can be expressed on some arbitrary 
scale to measure cost, or effort, on a relative basis. Actual dollar costs are 
not required. 

Finally, the quantities hjd, . . . represent other factors that the audit 
team might introduce into the optimization process. These factors are 
scaled in such a way that the higher the value assigned a given factor, the 
fewer the measurements. This is to be consistent with the c, factor since 
the higher the cost of a given measurement, the fewer the measurements of 
that type. 

For example, h, might be the factor that takes the value of the material 
into account, defined by 

A, = 1 /(2 ' 'U enrichment) 2 for uranium-bearing items 

= 1 for plutonium-bearing items 

where 235u enrichment is measured on the scale from 0 to 1, e.g., hj = 
1/(0.05)2 = 400 for 5% enriched material. 

The factor dj might be used to describe the potential for diversion 
within a given cell, taking into account such factors as the form of the ma
terial, the accessibility to diversion, etc. In essence, d, might be a measure 
of the relative emphasis the audit team would like to give to certain seg
ments of the inventory because discrepancies are more or less likely to 
occur in that cell in their judgment. As with c, and hj, the scale chosen to 
describe this potential for diversion might be arbitrary. 

Other factors might be introduced. Alternatively, the audit team might 
choose to disregard such factors as h, and d,. As a minimum, however, the 
cost factor, c,, should be retained. 

9.4.3 Examples 

Example 9.G 

Example 9.F is reconsidered with a different viewpoint. Here the 
problem is to select the «,• and rrii in an optimal way. 

With reference to Table 9.4, there are five strata, two based on method 
1, one on method 2, and two on method 3. Thus i'i = 2, ^2= 1, 03 = 2, and 
the total number of cells, s, is {vi-\-Vi-\-2vi), or 7. These 7 cells are identified 
in Table 9.6. 



354 INVENTORY VERIFICATION 

TABLE 9.6 DEFINITION OF CELLS 

(Example 9.G) 

Cell Stratum Method Measurement 

1 1 3 Bulk: scale 1 for operator; 
scale 4 for audit team 

2 1 3 Analysis: technique 4 for audit team * 
3 2 3 Bulk: scale 2 for operator; 

scale 4 for audit team 
4 2 3 Analysis: technique 4 for audit team * 
5 3 1 Bulk-analysis: scales 3 and 4; techniques 2 and 5 
6 4 1 Bulk-analysis: scales 3 and 4; techniques 3 jmd 5 
7 5 2 NDA: instrument, 1 and 2 

* The technique used by the operator does not enter into the optimization procedure with 
method 1. The average element factor, Ut, has already been estimated based on the Mt deter
minations. 

The <Tj values are calculated by Eqs. 9.40 to 9.43, the equation used 
depending upon the type of cell. The values for the error parameters are 
in Table 9.5. The values for the Nt, T., and m needed to compute cry, 
given in Table 9.4 and the following text, are repeated here. 

JVi = 300 Ti = 0.8760 MI = 20 .102 
Ni=l80 T2 = 0.8810 M2= 6.124 
jV3=15 T3 = 0.527 M3=18.214 
A'4 = 30 T4 = 0.664 tn= 5.907 
JV6=75 

The values for cry are found as follows: 

Cell 1. From Eq. 9.42, 

<7? = (300) 2(0.8760) 2[(0.0015) 2+ (0.005) 2] = 1.8820 

0-1=1.37 

Cell 2. From Eq. 9.43, 

0-2 = (300) 2(20.102) 2(0.0007) 2 = 17.8204 

(r2 = 4.22 

Cell 3. From Eq. 9.42, 

0-1= (180)2(0.8810)2[(0.0010)2+(0.005)2] = 0.6538 

0-3 = 0.81 

Cell 4, From Eq. 9.43, 
0-4 = (180) 2(6.124) 2(0.0007) 2 = 0.5954 
(74 = 0.77 
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Cell 5. From Eq. 9.40, 
<7|=(15)2(0.527)2[(0.010)2+(0.005)2] 

+ (15) 2(18.214) 2[(0.028) 2+(0.020) 2] = 88.3860 

cr6 = 9.40 

Cell 6. From Eq. 9.40, 
ere = (30) 2(0.664) 2[(0.010) 2+(0.005) 2] 

+ (30)2(5.907)2[(0.022)2+(0.020)2] = 27.8102 

(76 = 5.27 

Cell 7. From Eq. 9.41, 
(7?=(75)2[(0.009)2+(0.010)2] = 1.0181 

C77=1.01 

Finally, assume that the enrichment is the same for all the materials 
so that hj, which measures material value, is constant and does not enter 
into the optimization. Assume further that c„ the cost of a measurement, 
and d„ the measure of the potential for diversion, are given as follows on 
arbitrary scales. (The values for Cj and d, are for illustration only; the user 
should not infer any validity beyond this.) 

c:i = 2 C6=15 di = 2 di = 3 

(72=10 C6=15 (/2 = 8 ^6 = 2 

C 3 = l <;7 = 20 dz=\ di = 5 

Ci=\0 di=\0 

With values for a,, Cj, and dj now given, ^, can be calculated by Eq. 
9.39. 

(^1=1.37/\/(2) (2) = 0.69 (/>6 = 9.40/V'(15)(3) = 1.40 

(̂ 2 = 4.22/V(10)(8)=0.47 <̂6 = 5.27/^/(15) (2) =0.96 

<̂3 = 0.81/V(1)(1)=0.81 0 7 = 1 . O 1 / A / ( 2 O ) ( 5 ) = O . 1 O 

.̂ 4 = 0.77/V(10)(10)=0.08 

The r, should then be selected proportional to these <t>] values. This 
does not indicate how many total measurements should be made. To de
termine this, consider three inspection levels in which TJ are chosen pro
portional to the <i>j, and compute V{D) for each inspection level by the 
methods of Sec. 9.3.3. The three inspection levels are indicated in Table 
9.7. 
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TABLE 9.7 NUMBERS OF MEASUREMENTS FOR DIFFERENT 
INSPECTION LEVELS 

1 
2 
3 
4 
5 
6 
7 

Total number of 
Total number of 

Cell 

ri =ni = 
ri=mi = 
r 3 = « 2 = 

ri=m'i = 
Ti^n, = 

r, = ni = 
ri=ni = 

• weighings * = 
• analyses t = 

Total number of NDA measurements = 
Total "cost" t 

Level 1 

3 
2 
3 
1 
6 
4 
1 

16 
13 

1 
209 

Level 2 

5 
3 
6 
1 

10 
7 
1 

28 
21 

1 
331 

Level 3 

7 
5 
8 
1 

14 
10 

1 

39 
30 

1 
462 

* Total number of weighings = (ni+n2+n3+n4). 
t Total number of analyses = lmi-\-m2-\-n3-\-rn). 

7 
J Total cost = S Cjrj. 

In finding V{D) for the three levels of inspection, we can use some of 
the results of example 9.F. In particular, the systematic-error variances 
are not affected by the inspection level, nor is the random-error variance 
due to analysis for technique 1, that used by the operator in the method 
3 strata. These results are given in Table 9.8. 

TABLE 9.8 VARIANCES FOR ERROR SOURCES N O T 
AFFECTED BY INSPECTION INTENSITY 

Source Variance, kg' of U 

Scales-systematic 
Analytical techniques-systematic 
NDA-systematic 
Analytical technique 1-random 

0.904 
89.357 
0.074 
0.423 

90.758 

To calculate the variances due to the other sources, follow the perti
nent steps of example 9.F. (The " d a t a " in this example are such as would 
appear on an a priori inventory listing rather than from the actual in
ventory.) Only the steps affected by the particular in, rrii are shown in the 
following calculations (refer to the calculations in example 9.F). The rules 
are those of Table 9.2. The levels refer to the inspection levels of Table 9.7. 



OPTIMIZATION OF STEP 2 VARIABLES INSPECTION 

RuleB 

Scale 1: 
(3) Level 1 

Level 2 
Level 3 
Level 1 
Level 2 
Level 3 

(4) 

Scale 2: 
(3) Level 1 

Level 2 
Level 3 
Level 1 
Level 2 
Level 3 

(4) 

Scale 3: 
(3) Level 1: 

Level 2: 

Level 3: 

(4) Level 1 
Level 2 
Level 3 

Scale 4: 
(3) Level 1: 

Level 2: 

Level 3: 

(4) Level 1 
Level 2 
Level 3 

69063.84/3 = 23021.28 
69063.84/5=13812.77 
69063.84/7= 9866.26 
23021 =^21 

13813 =^21 

9866 =^21 

25147.62/3 = 8382.54 
25147.62/6 = 4191.27 
25147.62/8 = 3143.45 
8383 =^22 

4191 =^22 

3143 =^22 

62.49/6 
396.81/4 
62.49/10 
396.81/7 
62.49/14 

396.81/10 
10.42+99.20 
6.25+56.69 

= 10.42 
= 99.20 
= 6.25 
= 56.69 
= 4.46 
= 39.68 

109.62 = ^23 
62.94 = ^23 

4.46+39.68= 44.14 = /l23 

69063.84/3 =23021.28 
25147.62/3 = 8382.54 

62.49/6 = 10.42 
396.81/4 = 99.20 

69063.84/5 =13812.77 
25147.62/6 = 4191.27 

62.49/10= 6.25 
396.81/7 = 56.69 

69063.84/7 = 9866.26 
25147.62/8 = 3143.45 

62.49/14= 4.46 
396.81/10= 39.68 

23021+8383+10+99 = 31513 = 1̂24 
13813+4191+ 6+57=18067 = ^24 
9866+3143+ 4+40=13053 = ^24 
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RuleD 

Technique 2: 
(3),(4) Level 1 

Level 2 
Level 3 

Technique 3: 
(3),(4) Level 1 

Level 2 
Level 3 

Technique 4: 
(3) 

(4) 

Level 1: 

Level 2: 

Level 3: 

Level 1 
Level 2 
Level 3 

74643.70/6 =12441=^42 
74643.70/10= 7464 = ̂ 42 
74643.70/14= 5332 = ̂ 42 

31403.38/4 =7851=/l43 
31403.38/7 =4486 = /l43 
31403.38/10 = 3140 = ^43 

36368136/2 =18184068 
1215109/1 =1215109 
36368136/3 =12122712 
1215109/1 =1215109 
36368136/5 =7273627 
1215109/1 =1215109 
18184068+1215109=19399177 = ^44 
12122712+1215109=13337821=^44 
7273627+1215109 =8488736 =^44 

Technique 5: 
(3) (See results of techniques 2 and 3) 
(4) From techniques 2 and 3, 

Level 1 
Level 2 
Level 3 

12441 + 7851=20292 = ^46 
7464+4486 =11950 = ^46 
5332+3140 =8472 =^45 

Rule F. (Level 1 = level 2 = level 3) 

Instrument 1: 
(3) 468.75/1=468.75 = ^6, 

Instrument 2: 
(3) 468.75/1=468.75 = ^62 

The F(Z)) is then calculated for the three inspection levels. The 
calculations are shown in Table 9.9. 

The limiting value of \^V{D) is V'90.758 = 9.53 kg of U. It is doubtful 
on this basis whether inspection intensity beyond level 1 is necessary in 
this instance. 

Example 9.H 

In a scrap recovery plant, the plutonium inventory in a certain 
material balance area is to be verified. The inventory is contained in 26 
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TABLE 9.9 CALCULATION OF V{D) FOR T H R E E INSPECTION LEVELS 

Fixed variance 

Scales: 
AiKT^ii 
A2ia'(i 
Ai3<r'(3 
An<r'n 

Analyses: 
Ati>r\2 
Ai}<r\3 
Ai4<r\t 
Aua'tb 

NDA: 
A 2 

Aiifftl 

* 

^V{D), 

V(D) = 

kg of U = 

Costt = 

Level 1 

90.758 

0.052 
0.008 
0.011 
0.788 

6.155 
3.800 
9.506 
8.117 

0.038 
0.047 

119.280 

10.92 

209 

Variance, kg^ of U 

Level 2 

90.758 

0.031 
0.004 
0.006 
0.452 

5.852 
2.171 
6.536 
4.780 

0.038 
0.047 

110.675 

10.52 

331 

Level 3 

90.758 

0.022 
0.003 
0.004 
0.326 

4.180 
1.520 
4.159 
3.389 

0.038 
0.047 

104.446 

10.22 

462 

• From Table 9.8. 
t From Table 9.7. 

process vessels that can be classified into four strata on the basis of the 
plutonium concentration and the ability to sample and analyze the con
tents. Verification method 1 is to be used in each stratum. That is, the 
plutonium content is to be determined uniquely for each vessel by de
termining the volume of the vessel contents and the plutonium factor for 
those contents. 

The data required to design the inventory verification procedure are 
given in Table 9.10. The problem is to determine the optimum allocation of 
verification effort. Since method 1 applies to all strata, the number of 
cells equals the number of strata. 

The cost of sampling and analysis is assumed to be similar for all 
process vessels. Further, Ay, measuring material value, is assumed constant 
in all strata. It is considered important to verify with greater intensity the 
contents of the tanks containing the more concentrated plutonium. This 
is accomplished by including the variable dj, where dj measures potential 
for diversion. Assume the following specific values are assigned. 

c/i = 4 

di=l0 
dz=l 
c/4 = 4 
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•U,* 

6 

9 

4 

7 

T.t 

5 

0.01 

50 

6 

TABLE 9.10 

Mtt 

20 

1000 

20 

50 

PARAMETER VALUES 

(Example 

<'(J 

0.20 

15 

0.10 

1.5 

9.H) 

<^'P 

0.12 

0.0015 

0.25 

0.22 

"(k' 

0.20 

15 

0.10 

1.5 

"'P-

0.16 

0.002 

0.20 

0.24 

* Number of process vessels in each stratum. 

f Average plutonium factor for each stratum (gof Pujliter). 

^Average volume of process vessel in each stratum (liters). 

§ In this example, a. relates to the volume measurement rather than to a weight measure 
ment. ^̂  

It is important to remember that all the factors used in the optimization 
procedure are to be inversely proportional to the intensity of the measure
ment effort; i.e., a high value for dj implies fewer measurements. 

The values for 4>j can now be calculated from Eq. 9.39. First, <T, must 
be calculated. Since all strata are based on a method 1 measurement, 
Eq. 9.40 is used to calculate a,. 

Cel l l : <7i = (6)2(5)2[(0.20)2+(0.20)2]+(6)2(20)2[(0.12)2+(0.16)2] = 648 
(71 = 26 

Cell 2: (7̂  = (9)2(0.01)2[(l5)2+(15)2]+(9)2(l000)2[(0.0015)2+(0.002)2] 
= 510 

(72 = 23 

Cell 3: (7i = (4)2(50)2[(0.10)2+(0.10)2]+(4)2(20)2[(0.25)2+(0.20)2]=1456 
(73 = 38 

Cell 4: (7̂  = (7) 2(6) 2[(1.5) 2+ (1.5) 2] + (7) 2(50) 2[(0.22) 2+ (0.24) 2] = 20923 
(74=145 

Then, from Eq. 9.39, 

(̂ i = 26/V4=14 (^3-38/Vr=38 

(̂2 = 23/-s/rO = 7 <^4=145/V4 = 72 

The number of tanks whose contents should be verified in each 
stratum is then proportional to </>;. Two possible inspection levels are 

n i = l ni = 2 
ni=l «2=1 
n3 = 2 n3 = 4 

rn = 4: «4 = 7 

The total amount of inspection is chosen to attain the desired value 
for ViD), the variance of the difference in inventory estimates between 



OPTIMIZATION OF STEP 2 VARIABLES INSPECTION 361 

the audit team and the operator. The solution in Sec. 9.3.2 is generally 
applicable. Note one caution, however. Since both the operator and audit 
team use the same equipment for measuring the volume of the vessel con
tents, the systematic-error variance due to bulk determination is zero. 
Thus rule A in Table 9.2 does not apply; i.e., ^ u = 0 for all k. Also, if the 
systematic-error variance due to the analysis for plutonium concentration 
is dominated by sampling errors, as opposed to analytical errors, A^p will 
also tend to be 0, since the same sampling equipment is used by both 
parties. 

9.4.4 Basis 

From the results of Sec. 9.3.4, the variance of the difference statistic, 
ViD), is expressible as a sum of the form 

F(Z))= E A,,cl^+ E A2,a\+ i ; Azpcl^+ E A,P<T'^^ 
k=\ k=l p=\ p=\ 

T T 

I 
(=1 

+ L A„<rl+ E ^6«7^, (9.44) 

where K is the total number of scales (operator+inspector), P is the total 
number of analytical techniques, and T is the total number of NDA 
instruments. The A coefficients are themselves summations of quantities, 
ivhere the summations are over the strata in which the given scale, analytical technique, 
or NDA instrument applies. In particular, the ^'s are defined in Eqs. 9.29 
to 9.34. 

In choosing the «i and mi (Mi is already determined) to minimize 
ViD), we see that Ai^, Asj,, and A^t are independent of the ni and m,-. 
The reason for this is that they relate to the systematic-error variances, 
which are not reduced as a result of additional measurements. Thus the 
problem reduces to minimizing V'iD), 

K P T 

V'iD) = E A2,<rl+ E Aip<r' + E A,t<rl (9.45) 
k=i p=i ' t=\ ' 

From Eqs. 9.30, 9.32, and 9.34, we see that V'iD) is of the form 

^ ' ( i ) ) = E - (9-46) 

where ry is the number of measurements, n.- or mi, depending on the method 
used in the stratum in question. To determine the range onj , assume there 
are vi strata employing method 1, v^ employing method 2, and vi employing 
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method 3. Then the total number of sample sizes that must be selected is 
(z'i+»2+2z)3), and this is the number of terms in Eq. 9.46. 

Each term in Eq. 9.46 is related to a cell such that there are (z'i+e'2+ 
2e:'3) cells. The c, must be determined for each cell. For a cell based on 
method 1 (this involves terms of the form 2̂*:<'̂ fj. and AtpCrp involving the 
operator plus corresponding terms for the audit team), 

c',=N'X(al+al,)+N',^l(al+al') (9.47) 

where the cell in question consists of measurements made on stratum i 
with scales k and k' (operator and audit team) and analytical techniques 
p and p' (operator and audit team). There are vi values of a^ of the form 
Eq. 9.47. 

For a cell based on method 2, 

<^' = Mi<rf,+al.) (9.48) 

where the j th cell consists of measurements made on stratum i with NDA 
instruments t and t' (operator and audit team). There are &2 values of 
a] of the form Eq. 9.48. 

For a cell based on method 3, bulk measurement, 

(72 = A?T.2((7|^ + (7JV) (9.49) 

where the j th cell consists of bulk measurements made on stratum i with 
scales k and k' (operator and audit team). There are vs values of <T] of the 
form Eq. 9.49. 

For a cell based on method 3, analytical determination, 

c-'^^Nlu.Wrp' (9.50) 

where the jxh cell consists of analytical measurements made by the audit 
team on stratum ; with analytical technique p'. There are v^ values of a, 
of the form Eq. 9.50. 

The problem is to minimize V'iD) in Eq. 9.46, subject to some con
straint. Initially assume that this constraint is the very simple one in which 
E r, = r is fixed. (This case is treated only for mathematical reasons at 
this point. The constraint is unreasonable in that we would hardly equate 
a simple weighing with a sampling and analysis with respect to either cost 
or information.) This minimization is a simple procedure if the method of 
Lagrange multipliers is used. On the assumption that this technique is 
beyond the ken of many readers of this book, a more familiar approach is 
used. This approach consists in equating the partial derivatives of V'{D) 
with respect to r, to zero and solving the system of equations for the r,. 
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The constraint is taken into account by writing r, = r— E j = i ^i^ where 
j= (o i+»2+2o3) . Then V'iD) is written 

s - l 
.2 E <^^ 

F ' ( Z ) ) = ^ ^ ' + ^ ^ (9.51) 

r— E '•j 
i = i 

Consider dV'iD)/dr, forj = 1, 2, . . . , ( i - l ) . 

dr, 

which gives 

( r - E r.)(7. 

= 0 

Then, for a n y j , k9^s. 

cr. 

rk (Tk 

(9.52) 

which indicates that E j = i ^i in Eq. 9.52 can be replaced by 

[('•j E*=i<^'fc)Aj] to give 

ri = -

j - i 

r<ri~r] E c* 
* = i 

Solving this for r, gives 

r(7. 

E "̂ i 
* = i 

(9.53) 

Thus optimal sampling and measurement in the sense that V'iD) 
is minimized for fixed r consists in choosing r, proportional to a,. 

Now suppose, as is likely, that additional constraints are imposed on 
the system. One rather obvious constraint is the cost of making a given type 
of measurement. Denote this by c,, and, if this were the only constraint, r, 
would simply be replaced by rjc,. The problem would then be to minimize 
V'iD) subject to a fixed total cost rather than a fixed total number of 
measurements. 
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Other factors might be introduced. For example, we might wish to 
sample more heavily the strata in which the material has higher value. 
Value can be expressed in terms of (enrichment)^, ranging from 0 to 1 
(for plutonium). On this scale an item containing 5% ^'^U has a value of 
(0.05)2 = 0.0025, whereas the value of an item containing 90% ^^'U is 
(0.90)2 = 0.81. Of course, other value scales can be used. For convenience 
insert the value factor into the analysis by defining /(""'= (enrichment) ̂  
such that the higher the enrichment, the lower the value of h. Then r,c, 
in the previous paragraph is replaced by rjCjhj. 

The audit team might also wish to take into account the diversion 
potential of the material in a given stratum in a certain application. This 
is a measure of the likelihood that diversion of a given type would occur, 
with consideration given to such factors as the form of the material, its 
accessibility, the static nature of the material, etc. A divertibility index 
using an arbitrary scale can be introduced. Let this value be d, such that 
a low value of d, corresponds to a high potential for diversion. (This refers 
to the diversion strategy of making small changes in a large number of 
containers. Diversion strategies in which large changes are made for few 
items are countered by the step 1 attributes inspection.) Then TjCjh, of 
the preceding paragraph can be replaced by rjCjhjd,. 

It is clear that, depending on the application, many or few factors 
can be introduced into the optimization. By proper definition, the factors 
become simple multipliers of r_,, the number of measurements. Thus the 
additional factors introduce no complexity in the optimization process. 
The rj can simply be replaced by 

t] = rjCjh,dj • • • (9.54) 

and the analysis proceeds as before. Then V'{D) in Eq. 9.46 can be written 

r(/?)= t'^'^^^f^--- (9.55) 

which is of the form 
s J 

where 

V'{D)= 'Z- (9.56) 
j=i h 

g] = c]c,hA . . • (9.57) 

Then, with the constraint being ^ j = i t, = t fixed, t, is simply, by 
Eq. 9.55, 

h= - r ^ (9.58) 
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In turn then, by Eqs. 9.54 and 9.57, 

r, = . (9.59) 

Vcjhjd, . . .J^ gk 

Thus the optimal strategy calls for choosing r, proportional to a,/ 

vCjhjd] . . . =<^j. 

In practice, <̂ , is calculated for several cases of total inspection effort 
by choosing the r, proportional to the <pj. The V(D) in Eq. 9.44 is then 
computed for each case, and the total inspection effort is selected which 
corresponds to an acceptable value for V(D), i.e., to an acceptable test 
sensitivity. Alternatively, the total inspection effort can be fixed, in which 
case only the single set of calculations corresponding to this fixed effort 
need be made. 



• 

• 



Chapter 10 

INTEGRATED APPLICATIONS 

OVERVIEW 

Most of the statistical methods presented in this book can be applied to 
several types of nuclear facilities. For this reason it is logical to organize 
the book by type of application rather than by type of facility to 
minimize needless repetition. 

Nevertheless, it is also helpful to organize the material by type of 
nuclear facility so that the reader who prefers to concentrate on 
examples of greatest personal interest can avoid making the transition 
from one type of facility to another. This is the principal purpose of 
this chapter. 

In all types of facilities, the statistical contents of the problems of 
nuclear materials control are similar in kind, if not in degree of 
importance. Thus, in all facilities there are the problems of estimating 
measurement-error variances, analyzing shipper-receiver data, verifying 
an inventory, calculating the variance of the special nuclear material 
(SNM) content of an individual item or of the algebraic sum of SNM 
for groups of items, and analyzing accumulated material unaccounted 
for (MUF) data. Therefore, the material in this chapter is organized 
along topical lines, and within each section examples are identified 
which illustrate the application of a given statistical method to a 
particular type of facility. 

The five topics treated in this chapter include estimation of 
measurement-error variances, analysis of shipper-receiver data, verifica
tion of inventories, calculation of variances [which can then be 
expressed as limits of error (LE) ] of SNM contents (single item or 
algebraic sum), and analysis of MUF data. Within each topic each 
example presented in the previous chapters is listed under the type of 
facility on which it is based. (Since Chapter 2 is introductory in nature, 
examples presented there are not included). Some examples are identi
fied as general in nature and apply equally well to several types of 
facilities. This is not to say that examples of problems associated with 
fuel fabrication facilities, say, are not general in nature either. Thus, 

367 
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even though the reader may wish to concentrate his attention on 
examples identified as being appiopriate to his type of facility, he 
should not exclude entirely those tategori/ed under other types. (It is 
rather evident in what follows that the greatest attention has been 
given to conveision and fabrication plants. This is a natural result of 
the author's greater amount of experience in that type of facility. This 
emphasis should not seriously lessen the utility ol the book in applica
tions to pioblems of otlier t)pes of facilities since such problems are 
similar in statistical content.) 

The chapter is structured as follows: For each of the five statistical 
topics identified, eacli example presented in the earlier chapters is listed 
in a table under the type of facility on which the example is based. If 
the example itself is general in nature, it is so designated. The examples 
listed in each table aie described briefly. Included in this description 
is an indication of the degiee of generality of application of the 
statistical methods illustrated by the example in question. 

10.1 ESTIMATION OF MEASUREMENT-ERROR VARIANCES 

Table 10.1 gives the examples of methods that can be used to 
estimate measurement-error variances, and each example is described 
briefly. 

TABLE 10.1 EXAMPLES OF MEASUREMENT-ERROR-VARIANCE 
ESTIMATION LISTED BY FACILITY TYPE 

Conversion and 
fabrication 

Example 

3.G 
3.H 
3.1 

3 J 
3.K 
4.A 
4.H 
4.1 

4J 
8.B 
8.C 
8.G 

Section 

3.3.4 
3.3.4 
3.3.4 
3.3.4 
3.3.5 
4.1.3 
4.3.3 
4.3.3 
4.3.3 
8.L3 
8.L3 
8.2.3 

Chemical 
reprocessing 

Example 

3.D 
3.L 
3.M 
3.P 
8.K 
8.L 

Section 

3.3.2 
3.3.6 
3.3.7 
3.3.9 
8.3.3 
8.3.3 

Scrap 
recovery 

Example Section 

8.A 8.1.3 
8.J 8.3.3 

General 

Example 

3.B 
3.C 
3.E 
3.F 
3.N 
3 .0 
3.Q 
8.F 

Section 

3.3.2 
3.3.2 
3.3.3 
3.3.4 
3.3.8 
3.3.8 
3.3.10 
8.1.3 
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10.1.1 Conversion and Fabrication 

Example 3.G. This is an analysis-of-variance example illustrating 
how the random-error variances of sampling and analysis can be 
estimated separately. The example pertains to the jjercent uranium in 
scrap ammonium diuranate (ADU), but it is applicable to any type 
of facility for situations in which samples are drawn and analyzed for 
percent element and/or percent isotope. 

Example 3.H. This example shows how the random-error variance 
due to sampling can be estimated. It pertains to the percent uranium 
in dry waste that has been burned, with the ash stored in drums await
ing chemical leaching and recovery. The methcxl of estimation is 
applicable to any situation in which samples are drawn and analyzed 
for percent element and/or percent isotope. The resulting estimate 
measures the combined random effects of sampling and analysis, but 
for this particular example the sampling variance is dominant. 

Example 3.1. This analysis-of-variance example is similar in 
statistical content to example 3.G and deals with obtaining separate 
estimates of the random-error variances due to sampling and analysis 
for percent plutonium in fuel pellets. Like example 3.G, this one is 
also of general interest. 

Example 3.J. This example shows how the random-error variance 
for the combined effects of sampling and analysis and the short-term 
systematic-error variance can be estimated. It pertains to replicate 
samples of UO2 powder drawn from production lots, with each group 
of samples corresponding to a given lot analyzed for percent uranium 
under the same analytical laboratory conditions. The statistical method 
is applicable whenever groups of samples are analyzed individually, 
with the samples comprising each group being analyzed under similar 
conditions. 

Example 3.K. This example illustrates Bartlett's test of the 
hypothesis that several variances are equal, where these variances are 
separately estimated. This particular example deals with the random 
errors due to sampling ADU scrap for percent uranium, but the test 
is applicable in any situation in which several estimates of population 
variances are available and the question is whether or not these popu
lation variances are equal. This problem is of special interest because 
error parameters are constantly being re-estimated on the basis of 
recent data, and it is important to know whether the more recent data 
are indicative of real changes in the corresponding true error variances. 

Example 4.A. This example shows how the variance in the weight 
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of a fuel rod is affected by the variances in the weights of the com
ponents of the assembled rod. This illustrates any situation in which 
the variance of a sum is to be found. Emphasis is given to classifying 
the components in the sum with respect to their effect on the overall 
variance, thus indicating where improvements in the sense of tighter 
specifications might be required. 

Example 4.H. This example is similar to example 4.A, except 
that the variances of the component parts are now regarded as estimates 
rather than known quantities. It illustrates how to calculate the degrees 
of freedom for a variance that is a linear function of estimated vari
ances and is applicable to any situation of this kind. 

Example 4.1. This is another example of how to calculate the 
degrees of freedom for a variance that is a function of estimated 
variances. This example involves finding the variance associated with 
the amount of -' U in a container, when the amount is calculated by 
measuring the net weight, the percent uranium, and the percent ^̂ '̂ 'U. 
The example illustrates situations encountered in any type of facility. 

Example 4.J. The problem situation is identical to that of 
example 3.J. In this instance, however, the problem is to calculate the 
degrees of freedom for the various estimated error variances. This is of 
general interest and especially is directly applicable to situations in 
which the estimates are derived from an analysis-of-variance table. 

Example 8.B. Samples of UO, powder are measured for total =̂"̂U 
content by two methods. The twofold problem specifically treated 
involves testing the hypothesis that the random analytical-error variance 
for one method is as stated and then obtaining separate estimates of 
this variance for each method. The method is applicable to any situa
tion in which paired measurements are made. 

Example 8.C. This is a continuation of example 8.B. The level 
of significance is changed to demonstrate the effect on the estimates. 

Example B.C. This is a continuation of example 8.C. The ques
tion now is to determine whether or not there is a significant bias 
between the two measurement methods. 

10.1.2 Chemical Reprocessing 

Example 3.D. This example involves measurements made on a 
known standard. The problem deals with uranium nitrate hexahydrate 
(UNH) transfer measurements in which bias is controlled by running 
a known standard each time a process sample is analyzed. The statistical 
analysis produces an estimate of the bias and of the systematic- and 
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random-error variances due to analysis. It is applicable to any situation 
in which measurements are made on known standards. 

Example 3.L. This example involves an experiment designed to 
estimate the systematic-error variance due to sampling the contents of 
an input accountability tank using an air-lift sampler. The air-lift 
samples are compared with companion dip samples. An estimate of the 
random-error variance due to the combined effects of sampling and 
analysis is also found. The problem is generally applicable in any 
situation in which the systematic-error variance due to sampling is to 
be estimated. 

Example 3.M. Total uranium in a process tank is determined by 
measuring the volume of the tank and then measuring the concentra
tion from a tank sample. The problem is to estimate the systematic-
error variance associated with determining the uranium concentration. 
This example illustrates the synthetic approach to estimating error 
variances and is applicable in principle to any measurement situation. 

Example 3.P. A process vessel is to be calibrated. This example 
shows how the calibration data can be analyzed using a cumulative-
error model to estimate the random- and systematic-error variances 
associated with the weight of the contained liquid. This example is 
restricted in materials control applications to the calibration of process 
vessels. 

Example 8.K. Paired samples from dissolver plant batches are 
analyzed for percent ^^'Pu by different mass spectrometers. The problem 
is to test the hypothesis that both mass spectrometers have the same 
analytical random-error variance. Because of nonrandom behavior over 
the batches, an estimate of the analytical systematic-error variance is 
also derived from the data. The statistical techniques illustrated are 
applicable whenever there are paired data involving measurements 
made on the same samples by two instruments, laboratories, operators, 
etc. 

Example 8.L. The problem situation is the same as in example 
8.K, but now the hypothesis is that the sum of the random-error 
variances equals some given value. Again, this has general application. 

10.1.3 Scrap Recovery 

Example 8.A. Samples of nitrate solution are drawn from each 
container being loaded into a recovery plant for purification and are 
analyzed for percent plutonium using two different analytical tech
niques. The problem is to test the hypothesis that the analytical 
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random-error variances are the same for both methods. The analysis is 
complicated by the fact that the relative bias between the two methcKis 
depends on the plutonium concentration, which invalidates the anal
ysis. Whenever paired data are available, the statistical techniques 
illustrated here are applicable. 

Example 8.J. This is the same problem situation as in example 
8.A, but the statistical analysis is altered to account for the nonrandom 
relative bias between the two methods. The method of allowing for 
this nonrandomness is generally applicable whenever the two measure
ment methods exhibit a relative bias that is nonrandom over the data 
set. 

10.1.4 General 

Example 3.B. This example deals with mass spectrometer 
measurements of percent " '̂'U on known standards. The data permit 
estimation of the bias and of the systematic- and random-error vari
ances due to analysis. Although based on mass spectrometer data, the 
statistical methods are applicable whenever measurements of some kind 
are made on known standards. 

Example 3.C. In this example percent plutonium measurements 
on a known standard are made by two analysts. As in example 3.B, 
the bias and the analytical systematic- and random-error variances can 
be estimated for the analytical method. In addition, the two analysts' 
results are compared to determine if there is a bias between them and 
to see if one produces more variable results than the other. The appli-
tion is very general in nature. 

Example 3.E. This example also deals with measurements made 
on a known standard. In this case the measurements consist of weights, 
with the standard being a standard weight. There are two unique 
aspects to this problem. For one thing, the effects on the error variances 
due to rounding must often be included when weight measurements are 
made. Also, net weights are determined by subtraction of a tare weight 
from a gross weight; the errors introduced by both weighing operations 
must he factored into the analysis. For these two reasons this particular 
example is generally restricted in application to net weight measure
ments. 

Example 3.F. This is an example of an analysis of variance in 
which the data consist of percent -̂ =U measurements on known stan
dard samples. The example is similar to example 3.B except that now 
the data are collected over an extended time interval, thus permitting 
estimation of the short-term systematic error due to analysis. 
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Example 3.N. This example involves linear calibration. In par
ticular, it concerns the calibration of a nondestructive assay (NDA) 
instrument used to measure solid waste. The method of calibration is 
discussed, and techniques are presented to estimate the random- and 
systematic-error variances for a single measurement and for the sum of 
a number of measurements. The methods are applicable in any linear 
calibration case except when the error model is cumulative, as may 
be the case in process vessel calibration work (see example 3.P). 

Example 3.O. This is a second example involving linear calibra
tion. The same situation obtains as in example 3.N, except that the 
total amount of '̂ '̂̂ U in five containers is determined, along with the 
corresponding systematic- and random-error variances. 

Example 3.Q. The situation is identical to that of examples 3.N 
and 3.0, except that the calibration relation is curvilinear. The same 
comments apply. 

Example 8.F. Two mass spectrometers are used to measure 
samples of uranium for percent '̂̂ '''U. The data are paired. The 
problem is to obtain estimates of the random-error variance due to 
analysis for each mass spectrometer. In this particular example this 
variance is a function of the percent ^'^U, which must be taken into 
account in the analysis. The methods are applicable whenever paired 
measurement data are given. 

10.2 ANALYSIS OF SHIPPER-RECEIVER DATA 

Shipper-receiver data, as a by-prcxiuct, contain useful information 
about errors of measurement. Because of this, the five examples cited 
in this section should also be referred to when the problem is to 
estimate measurement-error variances. 

All the examples are based on data relating to shipments to a 
conversion and fabrication facility. Receipts at a reactor are based 
on item counts and verification of rod identifications. At a chemical 
reprocessing facility, shipments from a reactor have no direct shipper 
measurements but rather only predictions based on reactor experience. 
Likewise, the receipt measurement is made at the input accountability 
tank. Shipper-receiver problems at a scrap recovery plant are similar 
in statistical content to those at a conversion and fabrication facility, 
and the methods of statistical analysis discussed in these examples are 
applicable there also. 

Table 10.2 lists the examples dealing with the analysis of shipper-
receiver data. 



374 INTEGRATED APPLICATIONS 

TABLE 10.2 EXAMPLES OF SHIPPER-RECEIVER DATA 
ANALYSIS FOR A CONVERSION AND FABRICATION 

FACILITY 

Example Section 

6,A 6.1.3 
8.D 8.1.3 
8.E 8.1.3 
8.H 8.2.3 
8.1 8.2.3 
8.M 8.3.3 

10.2.1 Conversion and Fabrication 

Example 6.A. This example involves a shipment of PuO„ powder 
in which the problem is to find the standard deviation of the difference 
in the measured amounts of plutonium for the shipper and the receiver. 
Each party provides information about his pertinent measurement-
error variances and the manner in which the plutonium content is 
calculated for each container. The variances provided by the shipper 
and receiver are accepted as being valid. 

Example 8.D. This example involves a shipment of UF^ cylinders 
in which the net weight of uranium per cylinder is the statistic. The 
random-error variances for the shipper and receiver are tested for 
equality, and estimates of these variances are found depending on the 
result of the significance test. 

Example 8.E. The situation is the same as in example 8.D. In 
this instance the shipper and receiver both assign values to their error 
variances, and these are tested for validity by using the shipper-receiver 
data. The test is made jointly and then individually. Values that should 
be assigned to the error variance for each party are determined based 
on the results of the statistical tests of significance. 

Example 8.H. For the data of example 8.D, the problem is to 
find the best estimate of the total uranium in the shipment, where this 
estimate is best in the sense of having minimum variance among all 
unbiased estimates. 

Example 8.1. This is a continuation of example 8.H. The ques
tion of whether or not there is a significant difference between the 
shipper and receiver value for total uranium is considered. 

Example 8.M. This example consists of shipper and receiver 
measurements of percent plutonium in three shipments of PuOa 
powder. The problems of how to make the various tests of significance 
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for the combined data from the three shipments are considered. 
Further, tlie data are used to estimate the combined systematic-error 
variances for the two parties, assuming that both parties are, in fact, 
measuring tlie same quantities. 

10.3 VERIFICATION OF INVENTORIES 

Table 10.3 lists examples of methods that can be used in verifying 
inventory holdings, and the examples are briefly described. 

TABLE 10.3 EXAMPLES OF INVENTORY VERIFICATION BY TYPE OF 
FACILITY 

Conversion and 
fabrication 

Example 

9.A 
9.F 
9.G 

Section 

9.1.3 
9.3.3 
9.4.3 

Chemical 
reprocessing 

Example 

9.B 
9.C 

Section 

9.1.3 
9.1.3 

Scrap 
recovery 

Example Section 

9.H 9.4.3 

General 

Example Section 

9.D 9.2.3 
9.E 9.2.3 

10.3.1 Conversion and Fabrication 

Example 9.A. This example is concerned with verifying the 
operator's gross weights assigned to 400 containers of UOj powder. 
The audit is on an attributes basis, with each container being either 
accepted or rejected on the basis of the size of the discrepancy between 
weight measurement of the operator and the audit team. The situation 
is perfectly general, the techniques being applicable to any attributes 
inspection situation involving a single population. 

Example 9.F. This problem involves verification of the entire 
inventory of uranium in a material balance area (MBA) on the basis 
of variables measurements. The inventory is divided into strata, and 
different methods of measuring the uranium contents are used depend
ing on the stratum. Although the example is presented for a fuel fabri
cation facility, the statistical methods have broader applicability and 
can be used in other types of nuclear facilities as well. 

Example 9.G. The situation is the same as in example 9.F. Now, 
however, the emphasis is on designing the verification effort by select
ing the various sample sizes, rather than on analyzing the data that 
result from the verification measurements. 
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10.3.2 Chemical Reprocessing 

Example 9.B. This is an example of attributes inspection involv
ing bottles of plutonium nitrate, where failure to locate a particular 
bottle appearing on the inventory listing constitutes a defect. The 
problem is to determine the sample size. The situation is perfectly 
general and is applicable to any attributes inspection for a single 
population. 

Example 9.C. This is a continuation of example 9.B with the 
parameter values changed. In this example, one defect is permitted in 
the sample of n bottles, whereas in the previous example, as soon as 
one defect is located, the inventory must be 100% verified. Again the 
problem is to determine the sample size. 

10.3.3 Scrap Recovery 

Example 9.H. The problem involves designing the inspection 
effort to verify the plutonium inventory in a soap recovery facility 
MBA through variables inspection. The inventory is contained in 
prcx;ess vessels, and strata are formed on the basis of vessel size and 
concentration of the contents. The statistical methods are not limited 
to this type of facility. 

10.3.4 General 

Example 9.D. This example illustrates an attributes insf>ection 
involving several classes, and the problem is to control the significance 
level for the entire audit. This shows test procedures that can be 
applied in any type of facility in which attributes inspection is per
formed. 

Example 9.E. This is a continuation of example 9.D. In this case 
the significance levels of the individual tests are presumed to differ 
depending on the class of items and the relative importance of detect
ing defects. 

10.4 CALCULATION OF VARIANCES OF SNM CONTENTS 

Table 10.4 lists examples that illustrate how to calculate the 
variance of the measured SNM content either for an individual item 
or for the algebraic sum for groups of items. The algebraic sum is 
perfectly general and can represent such quantities as total amounts 
in a part or all of an inventory, a shipper-receiver difference, or MUF 
for some MBA. Since MUF is an especially important index of nuclear 
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materials control, it receives most attention in the examples. The 
examples listed in Table 10.4 are described briefly. 

TABLE 10.4 EXAMPLES OF CALCULATING SNM VARIANCES BY TYPE OF 
FACILITY 

Conversion and Chemical Scrap 
fabrication reprocessing recovery General 

Example Section Example Section Example Section Example Section 

5.B 5.1.3 5.A 5.1.3 6.G 6.1.3 6.B 6.1.3 
5.D 5.2.3 5.C 5.2.3 6.C 6.1.3 
5.E 5.2.3 6.F 6.1.3 6.D 6.1.3 
6.E 6.1.3 
6.H 6.1.3 
6.1 6.1.3 

10.4.1 Conversion and Fabrication 

Example 5.B. The problem is to find the standard deviation on 
the total amount of uranium and of ^^^u jn a can of UOj powder. 
This example is of general interest in other types of facilities. 

Example 5.D. This is a companion example to example 5.B. The 
difference is that now the error standard deviations are expressed on a 
relative basis as opjxjsed to an absolute basis as in example 5.B. 

Example 5.E. This is another illustration of how to find the 
standard deviation for the SNM content of an individual item. In this 
case the item is a fuel rcxi containing PuOj-UO. pellets and the SNM 
is fissile plutonium. This example is also of general applicability. 

Example 6.E. In this example the standard deviation of the 
235U MUF for a small-scale fuel fabrication facility is computed. This 
example is one of the more important ones in the book and is repre
sentative of calculations to be performed in any such facility. 

Example 6.H. This is a continuation of example 6.E, the dif
ference being that now a part of the inventory is measured by non
destructive assay methods. 

Example 6.1. This is a detailed example of a material balance 
analysis for a PuOj-UO, fabrication facility. The analysis is performed 
before the start of a campaign and is motivated by the need to antici
pate measurement-control problems in advance so that corrective action 
can be taken. Incremental and cumulative MUF's are considered. 
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10.4.2 Chemical Reprocessing 

Example 5.A. The standard deviation is calculated for the total 
amount of plutonium in a dissolver batch. The statistical methods 
illustrated in the example are applicable in a wide variety of situations. 

Example 5.C. This is a companion example to example 5.A. The 
difference is that now the error standard deviations are expressed on a 
relative basis rather than absolutely. 

Example 6.F. In this example the standard deviation of the 
plutonium MUF over a single campaign is computed. This has the 
same importance to a chemical reprocessing facility as example 6.E 
has to a fabrication facility. 

10.4.3 Scrap Recovery 

Example 6.G. The month-end inventory holding of plutonium 
is determined and its variance is found. In this case the algebraic sum 
represents the total amount of plutonium in inventory. Interest in this 
problem is not limited to scrap recovery facilities. 

10.4.4 General 

Example 6.B. At a given point in time, an unidentified type of 
facility has on inventory seven batches of uranium-bearing materials. 
The problem is to find the variance of the total amount of uranium in 
inventory. The statistical methods used are applicable to any type of 
facility. 

Example 6.C. This example is artificially contrived but is in
cluded because it applies all the rules for finding the variance of an 
algebraic sum of SNi\f in their more complex forms. It is a good 
example to refer to if the application of certain computational rules 
is not clear in other examples. 

Example 6.D. This is a continuation of example 6.C. It illus
trates how more than one short-term systematic-error variance due to 
analysis can be included. 

10.5 ANALYSIS OF MUF DATA 

Table 10.5 lists the examples how MUF data can be analyzed. Some 
examples relate to interpreting a single, individual MUF, and others 
illustrate how information can be extracted from a series of MUF's. 
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Since MUF is common to all types of facilities, no effort was made to 
present examples sp>ecific to eacli type. The examples are described 
briefly. 

TABLE 10.5 EXAMPLES OF H O W T O ANALYZE M U F DATA BY TYPE OF 
FACILITY 

Conversion and fabrication 

Example Section 

General 

Example Section 

7.E 
7.F 
7.K 

7.1.3 
7.2.3 
7.4.3 

4.C 
7.A 
7.B 
7.C 
7.D 
7.G 
7.H 
7.1 

7-J 

4.1.3 
7.1.3 
7.1.3 
7.1.3 
7.1.3 
7.2.3 
7.3.3 
7.3.3 
7.3.3 

10.5.1 Conversion and Fabrication 

Example 7.E. When the error variances are regarded as known 
constants, the test of significance and/or the construction of confidence 
intervals for MUF are based on the normal density function. If this 
assumption of known variance is f)oor, then Student's t distribution 
must be used. This example illustrates this for the MUF in a fabrication 
facility when the sampling-error variances for ADU scrap are f>oorly 
estimated (the data are otherwise the same as in example 6.E). The 
method is applicable to other similar situations. 

Example 7.F. Monthly -̂ ^U MUF's are given for a fuel fabrica
tion facility. These data are analyzed to obtain estimates of the variance 
of an inventory and of a given difference tietween inputs and outputs. 
It is assumed that the true MUF is constant from month to month. 
The statistical analysis is applicable to any situation in which sequences 
of MUF's are given if the underlying assumptions are valid. 

Example 7.K. This example illustrates how material balance 
closings can be made at intervals of time even though complete physical 
inventories are not taken. This can t)e done for any facility in which 
the major portion of the inventory has been measured when placed in 
inventory, i.e., in which the unmeasured or hidden inventory is small 
relative to the measured inventory. 
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10.5.2 General 

Example 4.C. This example shows how successive MUF's are 
correlated by virtue of the fact that the beginning inventory for one 
time period is identically the ending inventory for the prior period. 

Example 7.A. This is a test of significance for a given observed 
MUF. The hypothesis is that MUF is zero units. The standard devia
tion of MUF is assumed to be known. 

Example 7.B. With the data of example 7.A, this example 
illustrates how confidence limits are found for the true MUF, given an 
observed MUF and its known standard deviation. 

Example 7.C. This is identical with example 7.A except that the 
hypothesis is now that the true MUF is some given positive value. 

Example 7.D. A hypothesized value and a larger alternative 
value are established for MUF. With given probabilities of rejecting 
the hypothesis when true, on one hand, and of accepting it when the 
alternative hypothesis is true, on the other hand, the value is found for 
the standard deviation of MUF required to meet these criteria. This 
can then be related to measurement effort needed to result in this value 
of the standard deviation. 

Example 7.G. This example is based on monthly MUF data for 
12 years of ojjeration of a diffusion plant. These data are used to 
estimate the variance of the true MUF and the covariance between any 
two successive true MUF's. The measurement-error variances are 
assumed known. Also, a control chart is constructed to provide a visual 
picture of the state of control. The methods are applicable whenever 
sequences of MUF's are given. 

Example 7.H. The so-called minimum-variance MUF differs 
from the standard MUF in that the beginning inventory is a weighted 
average of prior inventories plus the sum of the differences between 
inputs and outputs. This is calculated for data over ten time periods 
and compared with the standard MUF. The degree to which the 
minimum-variance MUF concept can be applied in practice, and under 
what circumstances, is not known. 

Example 7.1. This is another example of the minimum-variance 
MUF for an arbitrary facility. 

Example 7.J. The diffusion plant data of example 7.G are 
analyzed by the minimum-variance MUF technique, and a control 
chart is constructed. 
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Appendix C 

PERCENTILES OF THE t DISTRIBUTION 

tp 

df 

10 

23 

29 
30 

40 
60 
120 
OO 

'.6 0 

325 
289 
277 
271 
267 

265 
263 
262 
261 
260 

260 
259 
259 
258 
258 

258 
257 
257 
257 
257 

257 
256 
256 
256 
256 

256 
256 
256 
256 
256 

255 
254 
254 
253 

t.TO 

727 
617 
584 
569 
559 

553 
549 
546 
543 
542 

540 
539 
538 
537 
536 

535 
534 
534 
533 
533 

532 
532 
532 
531 
531 

531 
531 
530 
530 
530 

529 
527 
526 
524 

^80 

1 376 
1 061 
978 
941 
920 

906 
896 
889 
883 
879 

876 
873 
870 
868 
866 

865 
863 
862 
861 
860 

859 
858 
858 
857 
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855 
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848 
845 
842 

'.9 0 

3 078 
1 886 
1 638 
1 533 
1 476 

1 440 
1 415 
1 397 
1 383 
1 372 

1 363 
1 356 
1 350 
1 345 
1 341 

1 337 
1 333 
1 330 
I 328 
1 325 

1 323 
1 321 
1 319 
1 318 
1 316 

1 315 
1 314 
1 313 
1 311 
1 310 

1 303 
1 296 
1 289 
1 282 

'.9 5 

6 314 
2 920 
2 353 
2 132 
2 015 

1 943 
1 895 
1 860 
1 833 
1 812 

1 796 
1 782 
1 771 
1 761 
1 753 

1 746 
1 740 

1 734 
1 729 

1 725 

1 721 
1 717 

1 714 
1 711 
1 708 

1 706 
1 703 
1 701 
1 699 

1 697 

1 684 
1 671 

1 658 

1 645 

'.975 

12 706 
4 303 
3 182 
2 776 
2 571 

2 447 
2 365 
2 306 
2 262 
2 228 

2 201 
2 179 
2 160 
2 145 
2 131 

2 120 
2 110 
2 101 
2 093 
2 086 

2 080 
2 074 
2 069 
2 064 
2 060 

2 036 
2 052 
2 048 
2 045 
2 042 

2 021 
2 000 
1 980 
1 960 

'.9 9 

31 821 
6 965 
4 541 
3 747 
3 365 

3 143 
2 998 
2 896 
2 821 
2 764 

2 718 
2 681 
2 650 
2 624 
2 602 

2 583 
2 567 
2 552 
2 539 
2 528 

2 518 
2 508 
2 500 
2 492 
2 485 

2 479 
2 473 
2 467 
2 462 
2 457 

2 423 
2 390 
2 358 
2 326 

'.995 

63 657 
9 925 
5 841 
4 604 
4 032 

3 707 
3 499 
3 355 
3 250 
3 169 

3 106 
3 055 
3 012 
2 977 
2 947 

2 921 
2 898 
2 878 
2 861 
2 845 

2 831 
2 819 
2 807 
2 797 
2 787 

2 779 
2 771 
2 763 
2 756 
2 750 

2 704 
2 660 
2 617 
2 576 

Adapted by permission from W.J, Dixon and F.J. Massey, Jr , Introduction to 
Statistical Analysis (2nd ed,), McGraw-Hill Book Company, Inc., New York, 1957 
Originally from R. A. Fisher and F. Yates, Statistical Tables, Oliver and Boyd, Ltd , 
London, 1938. 

383 



Appendix D 

PERCENTI LES OF THE F DISTRIBUTION 

-P 

F.90 (nu"2) 

til - degrees of freedom for numerator 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

IS 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 
120 
OO 

1 

39 86 
8 53 
5 54 
4 54 

4 06 
3 78 
3 59 
3 46 
3 36 

3 29 
3 23 
3 18 
3 14 
3 10 

3 07 
3 05 
3 03 
3 01 
1 99 

1 97 
1 96 
1 95 
2 94 
2 93 

2 92 
2 91 
2 90 
2 89 
2 89 

2 88 
2 84 
2 79 
2 75 
2 71 

2 

49 50 
9 00 
5 46 
4 32 

3 78 
3 46 
3 26 
3 11 
3 01 

2 92 
2 86 
2 81 
2 76 
2 73 

2 70 
2 67 
2 64 
2 62 
2 61 

2 59 
2 57 
2 56 
2 55 
2 54 

2 53 
2 52 
2 51 
2 50 
2 50 

2 49 
2 44 
2 39 
2 35 
2 30 

3 

53 59 
9 16 
5 39 
4 19 

3 62 
3 29 
3 07 
2 92 
2 81 

2 73 
2 66 
2 61 
2 56 
2 52 

2 49 
2 46 
2 44 
2 42 
2 40 

2 38 
2 36 
2 35 
2 34 
2 33 

2 32 
2 31 
2 30 
2 29 
2 28 

2 28 
2 23 
2 18 
2 13 
2 08 

4 

55 83 
9 24 
5 34 
4 11 

3 52 
3 18 
2 96 
2 81 
2 69 

2 61 
2 54 
2 48 
2 43 
2 39 

2 36 
2 33 
2 31 
2 29 
2 27 

2 25 
2 23 
2 22 
2 21 
2 19 

2 18 
2 17 
2 17 
2 16 
2 15 

2 14 
2 09 
2 04 
1 99 
1 94 

5 

57 24 
9 29 
5 31 
4 05 

3 45 
3 11 
2 88 
2 73 
2 61 

2 52 
2 45 
2 39 
2 35 
2 31 

2 27 
2 24 
2 22 
2 20 
2 18 

2 16 
2 14 
2 13 
2 11 
2 10 

2 09 
2 08 
2 07 
2 06 
2 06 

2 05 
2 00 
1 95 
1 90 
1 85 

6 

58 20 
9 33 
5 28 
4 01 

3 40 
3 05 
2 83 
2 67 
2 55 

2 46 
2 39 
2 33 
2 28 
2 24 

2 21 
2 18 
2 15 
2 13 
2 11 

2 09 
2 08 
2 06 
2 05 
2 04 

2 02 
2 01 
2 00 
2 00 
1 99 

1 98 
1 93 
1 87 
1 82 
1 77 

7 

58 91 
9 35 
5 27 
3 98 

3 37 
3 01 
2 78 
2 62 
2 51 

2 41 
2 34 
2 28 
2 23 
2 19 

2 16 
2 13 
2 10 
2 08 
2 06 

2 04 
2 02 
2 01 
1 99 
1 98 

1 97 
1 96 
1 95 
1 94 
1 93 

1 93 
1 87 
1 82 
1 77 
1 72 

8 

59 44 
9 37 
5 25 
3 95 

3 34 
2 98 
2 75 
2 59 
2 47 

2 38 
2 30 
2 24 
2 20 
2 15 

2 12 
2 09 
2 06 
2 04 
2 02 

2 00 
1 98 
1 97 
1 95 
1 94 

1 93 
1 92 
1 91 
1 90 
1 89 

1 88 
1 83 
1 77 
1 72 
1 67 

Adapted with permission from E. S. Pearson and H. 0 . Hartley (Eds.), 
Biometnka Tables for Statisticians, Vol. I (2nd ed.), Cambridge University Press, 
New York, 1958. 
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9 

59.86 
9.38 
5.24 
3.94 

3.32 
2.96 
2.72 
2.56 
2.44 

2.35 
2.27 
2.21 
2.16 
2.12 

2.09 
2.06 
2.03 
2.00 
1.98 

1.96 
1.95 
1.93 
1.92 
1.91 

1.89 
1.88 
1.87 
1.87 
1.86 

1.85 
1.79 
1.74 
1.68 
1.63 

10 

60.19 
9.39 
5.23 
3.92 

3.30 
2.94 
2.70 
2.50 
2.42 

2.32 
2 .25 
2.19 
2.14 
2.10 

2.06 
2.03 
2.00 
1.98 
1.96 

1.94 
1.92 
1.90 
1.89 
1.88 

1.87 
1.86 
1.85 
1.84 
1.83 

1.82 
1.76 
1.71 
1.65 
1.60 

12 

60.71 
9.41 
5.22 
3.90 

3.27 
2.90 
2.67 
2.50 
2.38 

2.28 
2.21 
2.15 
2.10 
2.05 

2.02 
1.99 
1.96 
1.93 
1.91 

1.89 
1.87 
1.86 
1.84 
1.83 

1.82 
1.81 
1.80 
1.79 
1.78 

1.77 
1.71 
1.66 
1.60 
1.55 

15 

61.22 
9.42 
5.20 
3.87 

3.24 
2.87 
2.63 
2.46 
2.34 

2.24 
2.17 
2.10 
2.05 
2.01 

1.97 
1.94 
1.91 
1.89 
1.86 

1.84 
1.83 
1.81 
1.80 
1.78 

1.77 
1.76 
1.75 
1.74 
1.73 

1.72 
1.66 
1.60 
1.55 
1.49 

20 

61.74 
9.44 
5.18 
3.84 

3.21 
2.84 
2.59 
2.42 
2.30 

2.20 
2.12 
2.06 
2.01 
1.96 

1.92 
1.89 
1.86 
1.84 
1.81 

1.79 
1.78 
1.76 
1.74 
1.73 

1.72 
1.71 
1.70 
1.69 
1.68 

1.67 
1.61 
1.54 
1.48 
1.42 

24 

62.00 
9.45 
5.18 
3 .83 

3.19 
2.82 
2.58 
2.40 
2.28 

2.18 
2.10 
2.04 
1.98 
1.94 

1.90 
1.87 
1.84 
1.81 
1.79 

1.77 
1.75 
1.73 
1.72 
1.70 

1.69 
1.68 
1.67 
1.66 
1.65 

1.64 
1.57 
1.51 
1.45 
1.38 

30 

62.26 
9.46 
5.17 
3.82 

3.17 
2.80 
2.56 
2.38 
2.25 

2.16 
2.08 
2.01 
1.96 
1.91 

1.87 
1.84 
1.81 
1.78 
1.76 

1.74 
1.72 
1.70 
1.69 
1.67 

1.66 
1.65 
1.64 
1.63 
1.62 

1.61 
1.54 
1.48 
1.41 
1.34 

40 

62.53 
9.47 
5.16 
3.80 

3.16 
2.78 
2.54 
2.36 
2.23 

2.13 
2.05 
1.99 
1.93 
1.89 

1.85 
1.81 
1.78 
1.75 
1.73 

1.71 
1.69 
1.67 
1.66 
1.64 

1.63 
1.61 
1.60 
1.59 
1.58 

1.57 
1.51 
1.44 
1.37 
1.30 

60 

62.79 
9.47 
5.15 
3 .79 

3.14 
2.76 
2.51 
2.34 
2.21 

2.11 
2.03 
1.96 
1.90 
1.86 

1.82 
1.78 
1.75 
1.72 
1.70 

1.68 
1.66 
1.64 
1.62 
1.61 

"i.59 
1.58 
1.57 
1.56 
1.55 

1.54 
1.47 
1.40 
1.32 
1.24 

120 

63.06 
9.48 
5.14 
3.78 

3.12 
2.74 
2.49 
2.32 
2.18 

2.08 
2.00 
1.93 
1.88 
1.83 

1.79 
1.75 
1.72 
1.69 
1.67 

1.64 
1.62 
1.60 
1.59 
1.57 

1.56 
1.54 
1.53 
1.52 
1.51 

1.50 
1.42 
1.35 
1.26 
1.17 

OO 

63.33 
9.49 
5.13 
3 .76 

3.10 
2.72 
2.47 
2.29 
2.16 

2.06 
1.97 
1.90 
1.85 
1.80 

1.76 
1.72 
1.69 
1.66 
1.63 

1.61 
1.59 
1.57 
1.55 
1.53 

1.52 
1.50 
1.49 
1.48 
1.47 

1.46 
1.38 
1.29 
1.19 
1.00 

(Appendix D continues on next page) 
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Appendix D (Continued) 

PERCENTILES OF THE F DISTRIBUTION 

^.9 5 (ni,n2) 

n, = degrees of freedom for numerator 

" 2 \ 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

2 0 
21 
22 
2 3 
2 4 

25 
26 
27 
28 
2 9 

3 0 
4 0 
6 0 

120 
O O 

1 

161.4 
18.51 
10.13 
7.71 

6.61 
5.99 
5.59 
5.32 
5.12 

4.96 
4.84 
4.75 
4.67 
4.60 

4.54 
4.49 
4.45 
4.41 
4.38 

4.35 
4.32 
4.30 
4.28 
4.26 

4.24 
4.23 
4.21 
4.20 
4,18 

4.17 
4.08 
4.00 
3.92 
3.84 

2 

199.5 
19.00 
9.55 
6.94 

5.79 
5.14 
4.74 
4.46 
4.26 

4.10 
3.98 
3.89 
3.81 
3.74 

3.68 
3.63 
3.59 
3.55 
3.52 

3.49 
3.47 
3.44 
3.42 
3.40 

3.39 
3.37 
3.35 
3.34 
3.33 

3.32 
3.23 
3.15 
3.07 
3.00 

3 

215.7 
19.16 
9.28 
6.59 

5.41 
4.76 
4.35 
4.07 
3.86 

3.71 
3.59 
3.49 
3.41 
3.34 

3.29 
3.24 
3.20 
3.16 
3.13 

3.10 
3.07 
3.05 
3.03 
3.01 

2.99 
2.98 
2.96 
2.95 
2.93 

2.92 
2.84 
2.76 
2.68 
2.60 

4 

224.6 
19.25 
9.12 
6.39 

5.19 
4.53 
4.12 
3.84 
3.63 

3.48 
3.36 
3.26 
3.18 
3.11 

3.06 
3.01 
2.96 
2.93 
2.90 

2.87 
2.84 
2.82 
2.80 
2.78 

2.76 
2.74 
2.73 
2.71 
2.70 

2.69 
2.61 
2.53 
2.45 
2.37 

5 

230.2 
19.30 
9.01 
6.26 

5.05 
4.39 
3.97 
3.69 
3.48 

3.33 
3.20 
3.11 
3.03 
2.96 

2.90 
2.85 
2.81 
2.77 
2.74 

2.71 
2.68 
2.66 
2.64 
2.62 

2.60 
2.59 
2.57 
2.56 
2.55 

2.53 
2.45 
2.37 
2.29 
2.21 

6 

234.0 
19.33 
8.94 
6.16 

4.95 
4.28 
3.87 
3.58 
3.37 

3.22 
3.09 
3.00 
2.92 
2.85 

2.79 
2.74 
2.70 
2.66 
2.63 

2.60 
2.57 
2.55 
2.53 
2.51 

2.49 
2.47 
2.46 
2.45 
2.43 

2.42 
2.34 
2.25 
2.17 
2.10 

7 

236.8 
19.35 
8.89 
6.09 

4.88 
4.21 
3.79 
3.50 
3.29 

3.14 
3.01 
2.91 
2.83 
2.76 

2.71 
2.66 
2.61 
2.58 
2.54 

2.51 
2.49 
2.46 
2.44 
2.42 

2.40 
2.39 
2.37 
2.36 
2.35 

2.33 
2.25 
2.17 
2.09 
2.01 

8 

238.9 
19.37 
8.85 
6.04 

4.82 
4.15 
3.73 
3.44 
3.23 

3.07 
2.95 
2.85 
2.77 
2.70 

2.64 
2.59 
2.55 
2.51 
2.48 

2.45 
2.42 
2.40 
2.37 
2.36 

2.34 
2.32 
2.31 
2.29 
2.28 

2.27 
2.18 
2.10 
2.02 
1.94 
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9 

240.5 
19.38 
8.81 
6.00 

4.77 
4.10 
3.68 
3.39 
3.18 

3.02 
2.90 
2.80 
2.71 
2.65 

2.59 
2.54 
2.49 
2.46 
2.42 

2.39 
2.37 
2.34 
2.32 
2.30 

2.28 
2.27 
2.25 
2.24 
2.22 

2.21 
2.12 
2.04 
1.96 
1.88 

10 

241.9 
19.40 

8.79 
5.96 

4.74 
4.06 
3.64 
3.35 
3.14 

2.98 
2.85 
2 .75 
2.67 
2.60 

2.54 
2.49 
2 .45 
2 .41 
2.38 

2 .35 
2.32 
2.30 
2.27 
2.25 

2.24 
2.22 
2.20 
2.19 
2.18 

2.16 
2.08 
1.99 
1.91 
1.83 

12 

243.9 
19.41 
8.74 
5.91 

4 .68 
4.00 
3.57 
3.28 
3.07 

2 .91 
2.79 
2.69 
2.60 
2.53 

2.48 
2.42 
2.38 
2.34 
2.31 

2.28 
2.25 
2.23 
2.20 
2.18 

2.16 
2.15 
2.13 
2.12 
2.10 

2.09 
2.00 
1.92 
1.83 
1.75 

15 

245.9 
19.43 

8.70 
5.86 

4.62 
3.94 
3.51 
3.22 
3.01 

2.85 
2.72 
2.62 
2.53 
2.46 

2.40 
2 .35 
2 .31 
2.27 
2.23 

2.20 
2.18 
2.15 
2.13 
2 .11 

2.09 
2.07 
2.06 
2.04 
2.03 

2 .01 
1.92 
1.84 
1.75 
1.67 

20 

248.0 
19.45 
8.66 
5.80 

4.56 
3.87 
3.44 
3.15 
2.94 

2.77 
2.65 
2.54 
2.46 
2.39 

2.33 
2.28 
2.23 
2.19 
2.16 

2.12 
2.10 
2.07 
2.05 
2.03 

2.01 
1.99 
1.97 
1.96 
1.94 

1.93 
1.84 
1.75 
1.66 
1.57 

24 

249.1 
19.45 
8.64 
5.77 

4 .53 
3.84 
3.41 
3.12 
2.90 

2.74 
2 .61 
2 .51 
2.42 
2 .35 

2.29 
2.24 
2.19 
2 .15 
2 .11 

2.08 
2.05 
2.03 
2.01 
1.98 

1.96 
1.95 
1.93 
1.91 
1.90 

1.89 
1.79 
1.70 
1.61 
1.52 

30 

250.1 
19.46 

8.62 
5.75 

4.50 
3.81 
3.38 
3.08 
2.86 

2.70 
2.57 
2.47 
2.38 
2.31 

2 .25 
2.19 
2 .15 
2 .11 
2.07 

2.04 
2.01 
1.98 
1.96 
1.94 

1.92 
1.90 
1.88 
1.87 
1.85 

1.84 
1.74 
1.65 
1.55 
1.46 

40 

251.1 
19.47 

8.59 
5.72 

4.46 
3.77 
3.34 
3.04 
2.83 

2.66 
2.53 
2.43 
2.34 
2.27 

2.20 
2 .15 
2.10 
2.06 
2.03 

k 9 9 
1.96 
1.94 
1.91 
1.89 

1.87 
1.85 
1.84 
1.82 
1-.81 

1.79 
1.69 
1.59 
1.50 
1.39 

60 

252.2 
19.48 
8.57 
5.69 

4 .43 
3.74 
3.30 
3.01 
2.79 

2.62 
2.49 
2.38 
2.30 
2.22 

2.16 
2.11 
2.06 
2.02 
1.98 

1.95 
1.92 
1.89 
1.86 
1.84 

1.82 
1.80 
1.79 
1.77 
1.75 

1.74 
1.64 
1.53 
1.43 
1.32 

120 

253.3 
19.49 
8.55 
5.66 

4.40 
3.70 
3.27 
2.97 
2,75 

2.58 
2 .45 
2.34 
2 .25 
2.18 

2.11 
2.06 
2.01 
1.97 
1.93 

1.90 
1.87 
1.84 
1.81 
1.79 

1.77 
1.75 
1.73 
1.71 
1.70 

1.68 
1.58 
1.47 
1.35 
1.22 

OO 

254.3 
19.50 
8.53 
5.63 

4,36 
3.67 
3.23 
2.93 
2.71 

2.54 
2.40 
2.30 
2.21 
2.13 

2.07 
2.01 
1.96 
1.92 
1.88 

1.84 
1.81 
1.78 
1.76 
1.73 

1.71 
1.69 
1.67 
1.65 
1.64 

1.62 
1.51 
1.39 
1.25 
1.00 

(Appendix D continues on next page) 
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6056 
99.40 
27.23 
14.55 

10.05 
7.87 
6.62 
5.81 
5.26 

4.85 
4.54 
4.30 
4.10 
3.94 

3.80 
3.69 
3.59 
3.51 
3.43 

3.37 
3.31 
3.26 
3.21 
3.17 

3.13 
3.09 
3.06 
3.03 
3.00 

2.98 
2.80 
2.63 
2.47 
2.32 

12 

6106 
99.42 
27.05 
14.37 

9.89 
7.72 
6.47 
5.67 
5.11 

4.71 
4.40 
4.16 
3.96 
3.80 

3.67 
3.55 
3.46 
3.37 
3.30 

3.23 
3.17 
3.12 
3.07 
3.03 

2.99 
2.96 
2.93 
2.90 
2.87 

2.84 
2.66 
2.50 
2.34 
2.18 

15 

6157 
99.43 
26.87 
14.20 

9.72 
7.56 
6.31 
5.52 
4.96 

4.56 
4.25 
4.01 
3.82 
3.66 

3.52 
3.41 
3.31 
3.23 
3.15 

3.09 
3.03 
2.98 
2.93 
2.89 

2.85 
2.81 
2.78 
2.75 
2.73 

2.70 
2.52 
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2.19 
2.04 
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99.45 
26.69 
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7.40 
6.16 
5.36 
4.81 

4.41 
4.10 
3.86 
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3.51 

3.37 
3.26 
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3.00 
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2.74 

2.70 
2.66 
2.63 
2.60 
2.57 

2.55 
2.37 
2.20 
2.03 
1.88 

24 

6235 
99.46 
26.60 
13.93 

9.47 
7.31 
6.07 
5.28 
4.73 
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4.02 
3.78 
3.59 
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3.08 
3.00 
2.92 
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2.66 
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2.52 
2.49 
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1.95 
1.79 

30 

6261 
99.47 
26.50 
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7.23 
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5.20 
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3.51 
3.35 

3.21 
3.10 
3.00 
2.92 
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2.72 
2.67 
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2.58 
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2.41 
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1.59 
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2.33 
2.29 
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1.47 
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2.35 
2.31 

2.27 
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2.17 
2.14 
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1.92 
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1.53 
1.32 
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99.50 
26.13 
13.46 

9.02 
6.88! 
5.65 
4.86 
4.31 

3.91 
3.60 
3.36 
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3.00 

2.87 
2.75i 
2.651 
2.57 
2.49 

2.42 
2.36 
2.31 
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2.21 

2.17 
2.13 
2.10 
2.06 
2.03 

2.01 
1.80 
1.60 
1.38 
1.00 





Appendix E 

TABLE OF CRITICAL VALUES FOR T (ONE-SIDED TEST) 
WHEN STANDARD DEVIATION IS CALCULATED 

FROM THE SAME SAMPLE 

Number of 5% 2.5% 1% 
Observations Significance Significance Significance 

n Level Level Level 

3 1.15 1.15 1.15 
4 1.46 1.48 1.49 
5 1.67 1.71 1.75 
6 1.82 1.89 1.94 
7 1.94 2.02 2.10 
8 2.03 2.13 2.22 
9 2.11 2.21 2.32 
10 2.18 2.29 2.41 
11 2.23 2.36 2.48 
12 2.29 2.41 2.55 
13 2.33 2.46 2.61 
14 2.37 2.51 2.66 
15 2.41 2.55 2.71 
16 2.44 2.59 2.75 
17 2.47 2.62 2.79 
18 2.50 2.65 2.82 
19 2.53 2.68 2.85 
20 2.56 2.71 2.88 
21 2.58 2.73 2.91 
22 2.60 2.76 2.94 
23 2.62 2.78 2.96 
24 2.64 2.80 2.99 
25 2.66 2.82 3.01 
30 
35 
40 
45 
50 
60 
70 
80 
90 

100 

^"—r-
r, = 1 jt i<jt , < . . . < jc„ 

1.15 
1.46 
1.67 
1.82 
1.94 
2.03 
2.11 
2.18 
2.23 
2.29 
2.33 
2.37 
2.41 
2.44 
2.47 
2.50 
2.53 
2.56 
2.58 
2.60 
2.62 
2.64 
2.66 
2.75 
2.82 
2.87 
2.92 
2.96 
3.03 
3.09 
3.14 
3.18 
3.21 

fx(xi-x)'X^ 

1.15 
1.48 
1.71 
1.89 
2.02 
2.13 
2.21 
2.29 
2.36 
2.41 
2.46 
2.51 
2.55 
2.59 
2.62 
2.65 
2.68 
2.71 
2.73 
2.76 
2.78 
2.80 
2.82 
2.91 
2.98 
3.04 
3.09 
3.13 
3.20 
3.26 
3.31 
3.35 
3.38 

\ n(n-l) J 

From Frank E. Grubbs, Procedures for Detecting Outlying Observations in Samples, 
Technometrics, 2( 1): 4 (1969). 
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Appendix F t£> 

TABLE OF COEFFICIENTS {fln_/+i} USED IN H^TEST FOR NORMALITY, FOR n = 3(1)50 

\ " 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

X 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0.7071 

PI 

0.4808 
0.3232 
0.2561 
0.2059 
0.1641 
0.1271 
0.0932 
0.0612 
0.0303 

4 

0.6872 
0.1677 

20 

0.4734 
0.3211 
0.2565 
0.2085 
0.1686 
0.1334 
0.1013 
0.0711 
0.0422 
0.0140 

5 

0.6646 
0.2413 

21 

0.4643 
0.3185 
0.2578 
0.2119 
0.1736 
0.1399 
0.1092 
0.0804 
0.0530 
0.0263 

6 

0.6431 
0.2806 
0.0875 

22 

0.4590 
0.3156 
0.2571 
0.2131 
0.1764 
0.1443 
0.1150 
0.0878 
0.0618 
0.0368 
0.0122 

7 

0.6233 
0.3031 
0.1401 

23 

0.4542 
0.3126 
0.2563 
0.2139 
0.1787 
0.1480 
0.1201 
0.0941 
0.0696 
0.0459 
0.0228 

8 

0.6052 
0.3164 
0.1743 
0.0561 

24 

0.4493 
0.3098 
0.2554 
0.2145 
0.1807 
0.1512 
0.1245 
0.0997 
0.0764 
0.0539 
0.0321 
0.0107 

9 

0.5888 
0.3244 
0.1976 
0.0947 

25 

0.4450 
0.3069 
0.2543 
0.2148 
0.1822 
0.1539 
0.1283 
0.1046 
0,0823 
0.0610 
0.0403 
0.0200 

10 

0.5739 
0.3291 
0.2141 
0.1224 
0.0399 

26 

0.4407 
0.3043 
0.2533 
0.2151 
0.1836 
0.1563 
0.1316 
0.1089 
0.0876 
0.0672 
0.0476 
0.0284 
0.0094 

11 

0.5601 
0.3315 
0.2260 
0.1429 
0.0695 

27 

0.4366 
0.3018 
0.2522 
0.2152 
0.1848 
0.1584 
0.1346 
0.1128 
0.0923 
0.0728 
0.0540 
0.0358 
0.0178 

12 

0.5475 
0.3325 
0.2347 
0.1586 
0.0922 
0.0303 

28 

0.4328 
0.2992 
0.2510 
0.2151 
0.1857 
0.1601 
0.1372 
0.H62 
0.0965 
0.0778 
0.0598 
0.0424 
0.0253 
0.0084 

13 

0.5359 
0.3325 
0.2412 
0.1707 
0.1099 
0.0539 

29 

0.4291 
0.2968 
0.2499 
0.2150 
0.1864 
0.1616 
0.1395 
0.1192 
0,1002 
0.0822 
0.0650 
0.0483 
0.0320 
0.0159 

14 

0.5251 
0.3318 
0.2460 
0.1802 
0.1240 
0.0727 
0.0240 

30 

0.4254 
0.2944 
0.2487 
0.2148 
0.1870 
0.1630 
0.1415 
0.1219 
0.1036 
0.0862 
0.0697 
0.0537 
0.0381 
0.0227 
0.0076 

15 

0.5150 
0.3306 
0.2495 
0.1878 
0.1353 
0.0880 
0.0433 

31 

0.4220 
0.2921 
0.2475 
0.2145 
0.1874 
0.1641 
0.1433 
0.1243 
0.1066 
0.0899 
0.0739 
0.0585 
0.0435 
0.0289 
0.0144 

16 

0.5056 
0.3290 
0.2521 
0.1939 
0.1447 
0.1005 
0.0593 
0.0196 

32 

0.4188 
0.2898 
0.2463 
0.2141 
0.1878 
0.1651 
0.1449 
0.1265 
0.1093 
0.0931 
0.0777 
0.0629 
0.0485 
0.0344 
0.0206 
0.0068 

17 

0.4968 
0.3273 
0.2540 
0.1988 
0.1524 
0.1109 
0.0725 
0.0359 

33 

0.4156 
0.2876 
0.2451 
0.2137 
0.1880 
0.1660 
0.1463 
0.1284 
0.1118 
0.0961 
0.0812 
0.0669 
0.0530 
0.0395 
0.0262 
0.0131 

18 

0.4886 
0.3253 
0.2553 
0.2027 
0.1587 
0.1197 
0.0837 
0.0496 
0.0163 

34 

0.4127 
0.2854 
0.2439 
0.2132 
0.1882 
0.1667 
0.1475 
0.1301 
0.1140 
0.0988 
0.0844 
0.0706 
0.0572 
0.0441 
0.0314 
0.0187 
0.0062 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0 4096 
0 2834 
0 2427 
0 2127 
0 1883 
0 1673 
0 1487 
01317 
0 1160 
0 1013 
0 0873 
0 0739 
0 0610 
0 0484 
0 0361 
0 0239 
00119 

36 

0 4068 
02813 
0 2415 
02121 
0 1883 
0 1678 
0 1496 
0 1331 
0 1179 
0 1036 
0 0900 
0 0770 
0 0645 
0 0523 
0 0404 
0 0287 
0 0172 
0 0057 

37 

0 4040 
0 2794 
0 2403 
02116 
0 1883 
0 1683 
0 1505 
0 1344 
0 1196 
01056 
0 0924 
0 0798 
0 0677 
0 0559 
0 0444 
0 0331 
0 0220 
00110 

38 

0 4015 
0 2774 
0 2391 
02110 
0 1881 
0 1686 
01513 
0 1356 
01211 
0 1075 
0O947 
0 0824 
0 0706 
0 0592 
0 0481 
0 0372 
0 0264 
00158 
0 0053 

39 

0 3989 
0 2755 
0 2380 
0 2104 
0 1880 
0 1689 
0 1520 
0 1366 
0 1225 
0 1092 
0 0967 
0 0848 
0 0733 
0 0622 
00515 
0 0409 
0 0305 
0 0203 
00101 

40 

0 3964 
0 2737 
0 2368 
0 2098 
0 1878 
0 1691 
0 1526 
0 1376 
0 1237 
0 1108 
0 0986 
0 0870 
0 0759 
0 0651 
0 0546 
0 0444 
0 0343 
0 0244 
0 0146 
0 0049 

41 

0 3940 
0 2719 
0 2357 
0 2091 
0 1876 
0 1693 
0 1531 
0 1384 
0 1249 
0 1123 
0 1004 
0 0891 
0 0782 
0 0677 
0 0575 
0 0476 
0 0379 
0 0283 
00188 
0 0094 

42 

0 3917 
0 2701 
0 2345 
0 2085 
0 1874 
0 1694 
0 1535 
0 1392 
0 1259 
0 1136 
0 1020 
0 0909 
0 0804 
0 0701 
0 0602 
0 0506 
0 0411 
00318 
0 0227 
0 0136 
0 0045 

43 

0 3894 
0 2684 
0 2334 
0 2078 
0 1871 
0 1695 
0 1539 
0 1398 
0 1269 
0 1149 
0 1035 
0 0927 
0 0824 
0 0724 
0 0628 
0 0534 
0 0442 
0 0352 
0 0263 
00175 
0 0087 

44 

0 3872 
0 2667 
0 2323 
0 2072 
0 1868 
0 1695 
0 1542 
0 1405 
0 1278 
0 1160 
0 1049 
0 0943 
0 0842 
0 0745 
0 0651 
0 0560 
0 0471 
0 0383 
0 0296 
0 0211 
0 0126 
0 0042 

45 

0 3850 
0 2651 
0 2313 
0 2065 
0 1865 
0 1695 
0 1545 
0 1410 
0 1286 
0 1170 
0 1062 
0 0959 
0 0860 
0 0765 
0 0673 
0 0584 
0 0497 
0 0412 
0 0328 
0 0245 
0 0163 
0 0081 

46 

0 3830 
0 2635 
0 2302 
0 2058 
0 1862 
0 1695 
0 1548 
0 1415 
0 1293 
0 1180 
0 1073 
0 0972 
0 0876 
0 0783 
0 0694 
0 0607 
0 0522 
0 0439 
0 0357 
0 0277 
0 0197 
00118 
0 0039 

47 

0 3808 
0 2620 
0 2291 
0 2052 
0 1859 
0 1695 
0 1550 
0 1420 
0 1300 
0 1189 
0 1085 
0 0986 
0 0892 
0 0801 
00713 
0 0628 
0 0546 
0 0465 
0 0385 
0 0307 
0 0229 
0 0153 
0 0076 

48 

0 3789 
0 2604 
0 2281 
0 2045 
0 1855 
0 1693 
0 1551 
0 1423 
0 1306 
0 1197 
0 1095 
0 0998 
0 0906 
0 0817 
0 0731 
0 0648 
0 0568 
0 0489 
00411 
0 0335 
0 0259 
00185 
0 0111 
0 0037 

49 

0 3770 
0 2589 
0 2271 
0 2038 
0 1851 
0 1692 
0 1553 
0 1427 
01312 
0 1205 
0 1105 
0 1010 
0 0919 
0 0832 
0 0748 
0 0667 
0 0588 
0 0511 
0 0436 
0 0361 
0 0288 
0 0215 
0 0143 
0 0071 

50 

0 3751 
0 2574 
0 2260 
0 2032 
0 1847 
0 1691 
0 1554 
0 1430 
0 1317 
0 1212 
0 1113 
0 1020 
0 0932 
0 0846 
0 0764 
0 0685 
0 0608 
0 0532 
0 0459 
0 0386 
0 0314 
0 0244 
0 0174 
0 0104 
0 0035 
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From Gerald J. Hahn and S. S. Shapiro, Statistical Models in Engineering, John Wiley & Sons, Inc , New York , 1967. 
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Appendix G 
PERCENTAGE POINTS OF W TEST 
FOR NORMALITY FOR n = 3(1)50 

n 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1 

0.753 
0.687 
0.686 
0.713 
0.730 
0.749 
0.764 
0.781 
0.792 
0.805 
0.814 
0.825 
0.835 
0.844 
0.851 
0.858 
0,863 
0.868 
0.873 
0.878 
0.881 
0.884 
0.888 
0.891 
0.894 
0.896 
0.898 
0.900 
0.902 
0.904 
0.906 
0.908 
0.910 
0.912 
0.914 
0.916 
0.917 
0.919 
0.920 
0.922 
0.923 
0.924 
0.926 
0.927 
0.928 
0.929 
0.929 
0.930 

2 

0.756 
0.707 
0.715 
0.743 
0.760 
0.778 
0.791 
0.806 
0.817 
0.828 
0.837 
0.846 
0.855 
0.863 
0.869 
0.874 
0.879 
0.884 
0.888 
0.892 
0.895 
0.898 
0.901 
0.904 
0.906 
0.908 
0.910 
0.912 
0.914 
0.915 
0.917 
0.919 
0.920 
0.922 
0.924 
0.925 
0.927 
0.928 
0.929 
0.930 
0.932 
0.933 
0.934 
0.935 
0.936 
0.937 
0.937 
0.938 

5 

0.767 
0.748 
0.762 
0.788 
0.803 
0.818 
0.829 
0.842 
0.850 
0.859 
0.866 
0.874 
0.881 
0.887 
0.892 
0.897 
0.901 
0.905 
0.908 
0.911 
0.914 
0.916 
0.918 
0.920 
0.923 
0.924 
0.926 
0.927 
0.929 
0.930 
0.931 
0.933 
0.934 
0.935 
0.936 
0.938 
0.939 
0.940 
0.941 
0.942 
0.943 
0.944 
0.945 
0.945 
0.946 
0.947 
0.947 
0.947 

10 

0.789 
0.792 
0.806 
0.826 
0.838 
0.851 
0.859 
0.869 
0.876 
0.883 
0.889 
0.895 
0.901 
0.906 
0.910 
0.914 
0.917 
0.920 
0.923 
0.926 
0.928 
0.930 
0.931 
0.933 
0.935 
0.936 
0.937 
0.939 
0.940 
0.941 
0.942 
0.943 
0.944 
0.945 
0.946 
0.947 
0.948 
0.949 
0.950 
0.951 
0.951 
0.952 
0.953 
0.953 
0.954 
0.954 
0.955 
0.955 

50 

0.959 
0.935 
0.927 
0.927 
0.928 
0.932 
0.935 
0.938 
0.940 
0.943 
0.945 
0.947 
0.950 
0.952 
0.954 
0.956 
0.957 
0.959 
0.960 
0.961 
0.962 
0.963 
0.964 
0.965 
0.965 
0.966 
0.966 
0.967 
0.967 
0.968 
0.968 
0.969 
0.969 
0.970 
0.970 
0.971 
0.971 
0.972 
0.972 
0.972 
0.973 
0.973 
0.973 
0.974 
0.974 
0.974 
0.974 
0.974 

From Gerald J. Hahn and S. S. Shapiro, Statistical Models 

in Engineering, John Wiley & Sons, Inc., New York, 1967. 



INDEX 

A priori analysis, 217 
Acceptable quality level (AQL) , 319 
Acceptance number, 319 
Acceptance sampling, 319 
Accounting system, computerized, 263 
Additive model, 82, 112, 165 
Air-lift samples, 115 
Alpha probability, 63 
Alternative hypothesis, 63 
Analysis of variance, 369, 372 

classifications in, 104 
with known standards, 101 
one way, 102, 109 

Analysts, differences between, 91, 165 
Argonne Center for Educational 

Affairs, 5 
Argonne School of Safeguards, 84 
Assay, nondestructive, 164, 373 
Assay system, isotopic source, 278 
Atomic Energy Commission, 315 
Attributes inspection, 375 
Audit 

inspection, 28, 268 
team, 315 

Balanced data, 104 
Bartlett's test, 113, 369 
Battelle Northwest, 209, 303 
Bennett, C. A., 250 
Beta density function, 28 
Beta probability, 63 
Bias, 81, 370 

correction, 94 
nonrandom, 372 

Binomial density function, 28 
approximation to hypergeometric, 34 
maximum-likelihood estimate of, 52 
mean and variance of, 30 

Bivariate density function, 42 
Bramblett, R. L., 277 
Bulk determination, 164 

Calibration 
cumulative model in, 129, 371 

curvilinear, 136, 139, 373 
general sum in, 140 
linear, independent data, 120, 373 
of nondestructive assay equipment, 

120 
of process vessel, 129 
of tank, 129 
variance ot equation, 123 

Cauchy density function, 28 
Cell 

boundaries, 7 
in inventory verification, 353 

Central limit theorem, 45, 146 
Central tendency, 9, 25 
Chi-square, 28, 47, 289, 299 
Christensen, D. E., 303 
Cladding waste, 210 
Class 

mark, 10 
width,10 

Classical probability, 14 
Cleanout of hood, 223 
Cochran's test, 114 
Coefficient (see specific coefficient) 
Combinations, 31 
Common element factors, 211 
Composited samples, 225 
Computerized accounting system, 263 
Conditional density functions, 42 
Conditional probability, 17 
Confidence interval, 5.4, 61 

estimation, 232 
Confidence limits 

on mean, 54 
for MUF, 380 
on variance, 55 

Constraints in inventory verification, 
351 

Control chart, 67, 110 
for MUF, 241 

Control limits, 67 
Correction, finite population, 34, 45, 150, 

295 
Correlation 

coefficient, 43, 289 

397 
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between gross and tare weights, 98 
isotopic, safeguard techniques, 303 
between MUF's, 148 
among SNM values, 181 

Cost of measurement, 353 
Counted data, 23 
Covariance, 43, 123 

between minimum-variance MUF's, 
252 

between successive MUF's, 240, 248 
Critical region, 63 
Cumulative-error model, 371 
Curvilinear calibration, 136, 139, 373 
Cusum plot, 69 
Cylinders of UFg, 281 

Data 
analysis of, for MUF, 378 
balanced, 104 
counted, 23 
diffusion plant, for MUF, 7, 256, 380 
grouped, mean for, 10 
material balance, 202 
measured, 23 
paired, 87, 372 

See also Paired data 
plot of, 277 
production, 109 
shipper-receiver, 373 
transformation ot, 136 

Degrees ot freedom, 46, 235, 370 
for sum of variances, 158 

Density function 
beta, 28 
binomial, 28 
bivariate, 42 
Cauchy, 28 
chi-square, 28 
conditional, 42 
exponential, 28 
f, 28 
gamma, 28 
geometric, 28 
hypergeometric, 28, 320 
joint, 42 
log normal, 28, 45 
marginal, 42 
multinomial, 28 
negative binomial, 28 
normal, 28, 37 
Poisson, 28 
Student's t, 28, 93 

uniform, 28, 40 
Weibull, 28 

Descriptive statistics, 6 
Design 

experimental, in interlaboratory 
testing, 109 

hierarchical, 104 
nested, 104 

Differences 
between analysts, 91, 165 
paired, 346 
shipper-receiver, 191, 267, 282, 294 

Diffusion plant MUF data, 7, 256, 380 
Dip samples, 116 
Dispersion, 9, 25 
Distribution frequency, 6 
Distribution function, 23 
Distribution theory, large sample, 271, 

280, 299, 312 
Diversion 

potential, 353 
strategies, 364 

Element factor, 166. 171, 188, 211 
Empirical probability, 18 
Engineering judgment, 264 
Equilibrium environment, 247 
Error 

combining effects of, 164 
cumulative, model, 371 
estimates of, 102 
known structure, 318 
limits ot, 163 
long-term systematic, 81, 186 
measurements, 79 
primary sources of, 165, 184 
propagation of, 89 
random, 81, 105, 186 
relative, 165, 332 
rounding, 41, 95 
sampling, 115 
short-term systematic, 81, 166, 186, 369 
sources ot, 84, 165 
systematic (see Systematic error) 
types I and II, 63 
weighing, 97 

Estimation 
confidence interval, 232 
of error variances, 102 
of inventory, 251 
maximum likelihood (see Maximum-

likelihood estimate) 



INDEX 

parameter, 51 
point, 51 
of random variances, paired data, 273 
synthetic, 118, 371 
of systematic variances, paired data, 

300 
unbiased, 52 

Events, independent, 17 
Expected value, 25 

of average MUF, 247 
Experimental design in interlaboratory 

testing, 109 
Exponential density function, 28 

F distribution, 28 
F ratio, 49 
Fabrication plant, mixed oxide, 216 
Factor 

element, 166, 171, 188, 211 
isotope, 166, 188 

Finite population correction, 34, 45, 150, 
295 

First moment, 25 
Fourth moment, 27 
Frequency 

ot closing material balances, 217, 242 
distribution, 6 

Fuel fabrication facility, inventory in, 
337 

Function (See specific function) 

Gamma density function, 28 
Generalized least squares, 131 
Geometric density function, 28 
Granquist, D. P., 209 

Hidden inventories, 263, 379 
Hierarchical design, 104 
Histogram, 8, 23 
Homogeneity of variance, 112 
Hood cleanout, 223 
Hypergeometric density function, 28, 

320 

maximum-likelihood estimate of, 52 
mean and variance of, 34 

Hypothesis 
alternative, 63 
test ot, 51 
testing, 231, 270, 298 

Independent events, 17 
Inspection, audit, 28, 268 

Inspection plan, 30 
attributes, 375 
optimization, 350 
with several classes, 376 

Interlaboratory tests, 87, 108, 376 
International Atomic Energy Agency 

(IAEA), 315 
Interval 

confidence, 54, 61 
prediction, 61 
tolerance, 61 

Inventories 
hidden, 263, 379 
variance of difference in, 336 

Inventory 
constraints in verification ot, 351 
estimate ot, 251 

variance of, 379 
in fuel fabrication facility, 337 
function ot verification of, 316 
physical, 315 
strata, 332 
verification of, 30, 87, 315, 375 
verification method tor, 332 

Inverse model, 122 
Isotope factor, 166, 188 
Isotopic correlation safeguard tech

niques, 303 
Lsotopic source assay system (ISAS) , 

Joint density function, 42 

Keller, C. A., 6 
Known error structure, 318 
Known standards, 88, 371-372 
Kurtosis, 27 

Lagrange multipliers, 362 
Large sample 

distribution theory, 271, 280, 299, 
test, 289 

Least squares, 121, 131 
generalized, 131 
weighted, 131 

Level oi significance, 62 
Likelihood 

function, 289 
ratio test, 289 

Limits of error, 163 
Linear calibration, 120, 373 
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Linear combination, mean and variance 
ot, 146 

Logarithmic transformation, 155 
Log normal density function, 28, 45 
Long-term systematic error, 81, 186 
Lot tolerance percent defective (LTPD), 

319 

Manometer, 129 
Marginal density functions, 42 
Mass spectrometer, 285 
Material balance 

closings, 262, 379 
data, 202 
frequency of closing, 217, 242 

Material unaccounted for (see MUF) 
Maximum-likelihood estimate, 51, 121, 

289 
binomial density function, 52 
normal density function, 52 
uniform density function, 52 

Mean 
confidence limits on, 54 
definition of, 9 
for grouped data, 10 
of linear combination, 146 
variance of, 150 

Measured data, 23 
Measurement 

costs, 353 
error, 79 
method, 85 
operations, 85, 185 
optimal, 363 
paired, 370 
shipper-receiver, 87 
weight, 372 

Median, 9, 11, 28 
Method, inventory verification, 332 
Minimum variance 

estimate of ending inventory, 251 
MUF, 250 

Mistake, 79 
See also Error 

Mixed model, 184 
Mixed-oxide fabrication plant, 216 
Mode, 9, 11, 28 
Model 

additive, 82, 112, 165 
cumulative error, 371 
inverse, 122 
logarithmic, 181 

mixed, 184 
for MUF, 247 
multiplicative, 179, 184 
for paired data, 269 
quadratic, 136 

Moment 
first about origin, 25 
fourth about mean, 27 
second about mean, 12, 26 
third about mean, 27 

MUF (material unaccounted for) 
acciunulated, 217 
algebraic sum ot SNM, 183 
analysis of data tor, 378 
arguments tor calculation ot, 208 
in chemical reprocessing facility, 209 
components ot, 183 
confidence limits tor, 380 
control chart tor, 241 
covariance for minimum variance, 

252 
covariance between successive, 240, 248 
diffusion plant data tor, 7, 256, 380 
expected value ot average, 247 
in fuel fabrication facility, 202 
incremental, 217 
incremental and cumulative, 377 
over material balance areas, 239 
minimum variance, 250 
model tor, 247 
observed, 229 
sequence of, 238 
true, 229 

MUF's 
correlation between, 148 
variance between true, 240 

Multinomial density function, 28 
Multiple samples, 182 
Multiplicative model, 179, 184 
Mutually exclusive outcomes, 14 

National Bureau ot Standards (NBS) , 
90, 119 

Negative binomial density function, 28 
Negative estimate of variance, 276 
Nested design, 104 
Nondestructive assay (NDA) , 164, 373 
Normal density function, 28, 37 

approximation to hypergeometric, 326 
maximum-likelihood estimate of, 52 

Normality, test for, 76 
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Observed MUF, 229 
One-way analysis of variance, 102, 109 
Optimal sampling and measurement, 

363 
Optimization of inspection effort, 350 
Orthogonal polynomial, 137 
Outcomes, mutually exclusive, 14 
Outlier, 70 

Paired data, 87, 372 
estimates of variance for, 273, 300 
model for, 269 
from several shipments, 297 

Paired differences, 346 
Paired measurements, 370 
Paired ratio, 346 
Parameter estimation, 51 
Physical inventory 

performance of, 315 
verification of, 315 

Plutonium scrap recovery plant, 213, 358 
Point estimates, 51 
Poisson density function, 28 
Polynomial, orthogonal, 137 
Population correction, finite, 34, 45, 150, 

295 
Potential for diversion, 353 
Power Burst Facility (PBF) , 277 
Power curve, 63 
Power of statistical test, 237 
Prediction interval, 61 
Primary error sources, 165, 184 
Prior knowledge, 281 
Probability 

alpha, 63 
beta, 63 
classical, 14 
conditional, 17 
density function, 22 
empirical, 18 
subjective, 18 
See also Likelihood 

Process improvement, 109 
Production data, 109 
Proof by induction, 259 
Propagation of errors, 89 

Quadratic model, 136 
Quality control, 109 

Random error, 81, 105, 186 
Random samples, 43 
Random variable, 21 

continuous, 23 
discrete, 23 

Range, 9, 12, 28 
Recovery plant, 275 

See also Scrap recovery plant 
Rejectable quality level (RQL), 319 
Relative errors, 165, 332 
Replicate analyses, 104 
Replicate samples, 104 
Robust, 38 

Safeguard techniques, isotopic correla
tion (ICSC), 303 

Sample size determination, 376 
Sample space, 21 
Samples 

air lift, 115 
composite, 225 
dip, 116 
large (see Large sample) 
multiple, 182 
random, 43 
replicate, 104 

Sampling 
acceptance, 319 
error, 115 
optimal, 363 
variance, 313, 369 

.Satterthwaite's formula, 161, 231, 291 
Schneider, R. A., 84, 91, 94, 107, 115, 209, 

213, 275 
Scrap recovery plant, 213, 358 
Seals, 263 
Second moment, 12, 26 
Second-order terms, 172 
Sherr, T. S., 320 
Shipper-receiver data, 373 
Shipper-receiver difference, 191, 267 

explanations for, 282, 294 
Shipper-receiver measurements, 87 
Short-term systematic error, 81, 166, 186, 

369 
Significance level, 62 
Skewness, 27 
Smith, R. D., 193 
SNM (special nuclear material) values, 

correlation among, 181 
Standard deviation, 9, 12 
Standard weights, 95 
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Standardization of variables, 326 
Standards 

for calibration of NDA equipment, 
120 

known, 88, 371-372 
Step 1 activity, 316 
Step 2 activity, 316 
Stewart, K. B., 250, 320 
Strata, imcntory, 332 
Student's (, 28, 48, 93, 271, 379 
Subjective probability, 18 
Synthetic estimation, 118, 371 
Systematic error 

long term, 81, 186 
short term, 81, 166, 186, 369 
variance, 371 

Tamper-indicating seals, 263 
Tank calibration, 129 
Tare weights, 95 
Taylor's series, 156 
Test 

Bartlett's, 113, 369 
Cochran's, 114 
power ot statistical, 237 

Tests 
for correlation coefficient, 289 
of h\pothesis, 51 
interlaboratory, 87, 108, 376 
for normality, 76 
for outliers, 71 
for randomness, 72 
for runs above and below median, 

73 
Third moment, 27 
Time trends, 9 
Tolerance interval, 61 
Transformation 

data, 136 
logarithmic, 155 

Transformed data, 287 
True MUF, 229 
Type I and type II errors, 63 

UFfi, cylinders of, 281 

Unbiased estimate, 52 

Uniform density function, 28, 40 

Validity of assumptions, 130 
^'alue 

expected, 25 
of average MUF, 247 

of material, 353 
A'ariable, random, 21 
Variables 

measurement, 375 
standardization of, 326 

Variance, 9, 12 
of calibration equation, 123 
confidence limits on, 55 
of difference in inventories, 336 
of element weight, 168, 174 
homogeneity of, 112 
of inventory estimate, 379 
of isotope weight, 168, 175 
of linear combination, 146 
among lots, 112 
of mean, 150 
of measured SNM content, 376 
minimum, 250-252 
negative estimate of, 276 
of s2, 46 
sampling, 313, 369 
of sum, 181, 370 
systematic error, 371 
between true MUF's, 240 
of weighted average, 297 
See also Analysis of variance 

Variances 
degrees of freedom for sum ot, 158 
estimate of random, 273 
estimate of systematic, 300 

\'erification of inventory, 30, 87, 315, 
330, 375 

W test for normality, 76 
Waste, cladding, 210 
Weibull density function, 28 
Weighing error, 97 
Weight measurements, 372 
Weighted average, 92, 296-297, 313 
Weighted least squares, 131 
Weights 

correlation between gross and tare, 98 
standard, 95 

Wet-chemistry approach, 164 
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