U.S.T.H.B. 2014-2015 Semestre 1 Faculté de Mathématiques

Nom:.....

Fonctions de plusieurs variables $3^{\rm \`eme}$ année LAC

Durée: 1 heure 30 minutes

Matricule:

T 0 1 001 1 001F	214 1 - 1 - 4	
Examen final - 08 janvier 2015.	هواري بومدين	-
<u> </u>	112010157110	a a to

Prénom :
Exercice 1 (4 pts.) : Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = x^2 + 1 + xe^y - y$.
a) Écrire le développement de Taylor à l'ordre 2 de f au voisinage du point $(0,0)$.
b) Montrer que $f(x,y) = 0$ définit implicitement y en fonction de x au voisinage du point $(0,1)$.
c) Former le développement de Taylor à l'ordre 1 au voisinage de 0 de la fonction $\varphi: x \mapsto y(x)$.

Exercice 2 (4 pts.) : Soit $f: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}$ une fonction de classe C^1 .

a) En posant $x = r \cos \theta$ et $y = r \sin \theta$, exprimer $\frac{\partial f}{\partial r}$ en fonction de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.

- **b)** En déduire l'expression de $\frac{x}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial x} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial y}$.
- c) Déterminer toutes les fonctions qui vérifient $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \sqrt{x^2 + y^2}$.

Exercice 3 (3.5 pts.):

Déterminer les extrema locaux de la fonction définie par $f(x,y)=2x^2+2y^2-x^4-y^4$.

Exercice 4 (4,5 pts.) : Soit $D = \{(x,y) \in \mathbb{R}^2 \ / \ x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$ et ∂D est son bord orienté.

Calculer puis comparer les intégrales suivantes.

a)
$$I_1 = \iint_D (2x - 2y) dxdy$$
, b) $I_2 = \iint_{\partial D} (x^2 + y^2) dx + (x^2 - y^2) dy$.

Exercice 5 (4 pts.) : On considère l'équation différentielle : $y' = 1 + t^2 + \cos y$.

- a) Justifier l'existence et l'unicité d'une solution maximale qui vérifie y(0) = 0.
- b) Montrer que y est une fonction impaire. c) Étudier la monotonie et le signe de y.