Série d'exercices n° 3 : Théorèmes généraux du calcul différentiel

Exercice 1:

On dit qu'une fonction f d'un ouvert U de \mathbb{R}^n dans \mathbb{R} est harmonique sur U si $f \in \mathcal{C}^2(U)$ et

$$\Delta f(x) \equiv \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}(x) = 0$$
 pour tout $x = (x_{1}, x_{2}, ..., x_{n}) \in U$.

Montrer que la fonction $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par $f(x,y) = \text{Log}(x^2 + y^2)$

est harmonique sur $\mathbb{R}^2 \setminus \{(0,0)\}.$

Exercice 2:

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}.$$

Comparer
$$\frac{\partial^2 f}{\partial x \partial y}(0,0)$$
 et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.

Exercice 3:

À l'aide du changement $\xi = x + \lambda_1 y$, $\eta = x + \lambda_2 y$ transformer l'équation

$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = 0, \ b^2 - ac > 0,$$

en une équation de la forme $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$.

Exercice 4:

Écrire le développement de Taylor à l'ordre 3 au voisinage du point a pour f.

1)
$$f(x,y) = \sin x \sin y$$
, $a = (0,0)$,

2)
$$f(x, y, z) = x^4 + y^4 + z^4$$
, $a = (1, 1, 1)$.

Exercice 5:

Étudier l'existence des extrema locaux des fonctions suivantes :

1)
$$f(x,y) = x^3 + y^3 - 3xy$$
, 2) $f(x,y) = x^4 + y^4 - 4xy$, 3) $f(x,y) = (x-y)e^{xy}$,

4)
$$f(x,y,z) = x^2 + y^2 + z^2 - 2xyz$$
, 5) $f(x,y,z) = x^4 + y^4 + 3z^3 - 4x - 4y - z$.

Exercice 6:

Montrer que la relation f(x,y) = 0 définit implicitement y en fonction de x au voisinage du point (a,b) et former le développement de Taylor à l'ordre 3 au voisinage de a de la fonction $\varphi: x \mapsto y(x)$.

1)
$$f(x,y) = x^3 + y^3 - 3xy - 1$$
, $(a,b) = (0,1)$ 2) $f(x,y) = e^{x+y} + y - 1$, $(a,b) = (0,0)$.

Exercice 7:

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = y^5 + (x^2 + 1)y + 1$.

Montrer que la relation f(x,y) = 0 définit implicitement y en fonction de x sur \mathbb{R} et que la fonction $\varphi : x \mapsto y(x)$ est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Exercice 8:

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ la fonction définie par $f(x, y, z) = x^3 + y^3 + z^3 - xz - x + y - 2z + 1$.

Montrer que la relation f(x, y, z) = 0 définit implicitement z en fonction de (x, y) au voisinage du point (0, 0, 1) et former le développement de Taylor à l'ordre 2 au voisinage de (0, 0) de la fonction $\varphi: (x, y) \mapsto z(x, y)$.

Exercice 9:

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ la fonction définie par $f(x, y, z) = x^4 + z^4 + y^2 - 2x^2 - 2z^2$.

- 1) Déterminer les extrema de f.
- 2) Déterminer les extrema de f sachant que x, y, z sont liées par la relation x + y + z = 0.

Exercice 10:

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ la fonction définie par f(x, y, z) = xyz.

1) Montrer que la restriction de f à l'ensemble

$$A = \left\{ (x, y, z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 = 1, \ x + y + z = 0 \right\}.$$

2) Déterminer les points où f atteint ses extrema.

Exercice 11:

Déterminer le minimum de la fonction $f: \mathbb{R}^3 \to \mathbb{R}$ définie par $f(x, y, z) = x^2 + 2y^2 + z^2 - z$ sur l'ensemble $A = \{(x, y, z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 \le 1\}.$