Série n°4 (Suites numériques réelles)

Exercice 1.

Calculer la limite (si elle existe) de la suite (u_n) dans les cas suivants :

1.
$$u_n = \frac{(-1)^n}{2^n}$$
; **2.** $u_n = \sqrt{n(n+1)} - n$; **3.** $u_n = \frac{1+2+3+...+n}{n^2}$;

4.
$$u_n = \frac{n}{2} \sin \frac{n\pi}{2}$$
; **5.** $u_n = \frac{n + (-1)^n}{\sqrt{n}}$; **6.** $u_n = \frac{\cos \sqrt{n}}{n}$.

Exercice 2.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ où $u_n = \frac{n^2}{n!}$.

- a) Montrer que $(u_n)_n$ est décroissante.
- b) En déduire que $(u_n)_n$ converge. Calculer sa limite.

Exercice 3.

Montrer que la suite (u_n) définie par

$$u_1 = \sqrt{2}, \ u_{n+1} = \sqrt{u_n + 2}, \ \forall n > 1$$

est croissante majorée. En déduire qu'elle est convergente et calculer sa limite.

Exercice 4.

Soit (u_n) définie par

$$u_0 = 3$$
, $u_{n+1} = \frac{2}{3}u_n + \frac{8}{3(u_n)^2}$, $\forall n \ge 0$.

Montrer que $u_n > 2$, $\forall n \in \mathbb{N}$ puis étudier la monotonie de cette suite.

Exercice 5.

On considère les deux suites récurrentes suivantes :

$$0 < u_0 < v_0$$
, $u_{n+1} = \frac{1}{4} (3u_n + v_n)$, $v_{n+1} = \frac{1}{4} (3v_n + u_n)$.

- a) Montrer que : $\forall n \in \mathbb{N}, u_n \leq v_n$. Indication : Considérer la suite $h_n = u_n v_n$.
- b) Montrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.
- c) En déduire que les deux suites (u_n) et (v_n) sont adjacentes.