U.S.T.H.B. 2013-2014 Semestre 1

Faculté de Mathématiques

Math 3: Séries

 $2^{\rm \`eme}$ Lic, ST-GP, Section D

Examen final - 16 janvier 2014. Durée: 1h 30 minutes

Nom:	Matricule:
Prénom:	Groupe:
Exercice 1 (5 points): Quelle est la nature des séries numériques suivantes :	
$1) \sum_{n=1}^{+\infty} 3^{-n} \left(\frac{n+1}{n} \right)^{n^2}$	2) $\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!}$ 3) $\sum_{n=0}^{+\infty} e^{-\sqrt{n}}$

Exercice 2 (5 points):

a) Étudier la convergence et la convergence absolue de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}}$, $\alpha \in \mathbb{R}$.

b) Calculer les sommes partielles $S_{2n} = \sum_{k=2}^{2n} \operatorname{Log}\left(1 + \frac{(-1)^k}{k}\right)$ et $S_{2n+1} = \sum_{k=2}^{2n+1} \operatorname{Log}\left(1 + \frac{(-1)^k}{k}\right)$, puis en déduire la nature de la série $\sum_{n=2}^{+\infty} \operatorname{Log}\left(1 + \frac{(-1)^n}{n}\right)$.

Exercice 3 (5 points):

a) Calculer le rayon de convergence R de $\sum_{n=0}^{+\infty} (n^2 + n + 1) x^n$ et étudier sa convergence en $x = \pm R$.

b) Calculer les sommes $\sum_{n=0}^{+\infty} nx^n$ et $\sum_{n=0}^{+\infty} n^2x^n$. <u>Indication</u>. Noter que $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}, x \in]-R, R[$.

c) En déduire la somme $\sum_{n=0}^{+\infty} (n^2 + n + 1) x^{2n}.$

Exercice 4 (5 points) : Soit f la fonction 2π -périodique définie par

$$f(x) = \begin{cases} 0 & \text{si} \quad x \in]-\pi, 0], \\ x & \text{si} \quad x \in]0, \pi]. \end{cases}$$

- a) Tracer le graphe de la fonction f pour $x \in [-3\pi, 3\pi]$.
- **b)** Calculer les coefficients de Fourier a_n et b_n puis en déduire a_{2n}, a_{2n+1}, b_{2n} et b_{2n+1} .
- c) Écrire la série de Fourier σf associée à f et étudier sa convergence en $x=0,\frac{\pi}{2},\pi$.
- d) En déduire les sommes des séries numériques $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$ et $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.
