U.S.T.H.B. 2012-2013 Semestre 1

Faculté de Mathématiques

Math 3 : Séries

2^{ème} Lic, ST-GP, Section F

Examen final - 13 janvier 2013. Durée : 90 minutes

Nom:	Matricule:
Prénom:	Groupe :
Exercice 1 (5 points) : Quelle est la n	ature des séries numériques suivantes :
$1) \sum_{n=1}^{+\infty} \frac{1}{2^{-n}}$	$\frac{1}{n+1}$ 2) $\sum_{n=0}^{+\infty} \frac{n^n}{n!}$ 3) $\sum_{n=0}^{+\infty} ne^{-n}$
Réponse.	

Exercice 2 (5 points):

a) Calculer le rayon de convergence R de $\sum_{n=0}^{+\infty} (n^2+1) 2^{n+1} x^n$ et étudier sa convergence en $x=\pm R$.

b) On pose
$$f(x) = \sum_{n=0}^{+\infty} (n^2 + 1) 2^{n+1} x^n$$
 et $g(x) = \sum_{n=0}^{+\infty} x^n, x \in]-R, R[.$

Montrer que $f(x) = 8x^2g''(2x) + 4xg'(2x) + 2g(2x)$.

c) En déduire la somme
$$\sum_{n=0}^{+\infty} (n^2+1) \, 2^{n+1} x^n$$
. Indication. Noter que $g\left(x\right) = \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$.

n=0 n=0

Réponse.

Exercice 3 (5 points) : On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = e^x \sin x$.

- a) Montrer que la dérivée $n^{i\grave{e}me}$ de f est $f^{(n)}\left(x\right)=\left(\sqrt{2}\right)^ne^x\sin\left(x+n\frac{\pi}{4}\right),\,n\geq 1.$ <u>Indication</u>. Noter que $\sin a+\cos a=\sqrt{2}\sin\left(a+\frac{\pi}{4}\right).$
- b) En déduire le développement en séries entières de f et donner son domaine de convergence.

Réponse.

Exercice 4 (5 points) : Soit f la fonction 2π -périodique définie par

$$f(x) = \begin{cases} -2 & \text{si} \quad x \in]-\pi, 0], \\ 2 & \text{si} \quad x \in]0, \pi]. \end{cases}$$

- a) Tracer le graphe de la fonction f pour $x \in [-3\pi, 3\pi]$.
- **b)** Écrire la série de Fourier σf associée à f et étudier sa convergence sur $]-\pi,\pi[$.
- c) En déduire la somme de la série numérique $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.
- **d)** En appliquant l'égalité de Parseval $\frac{a_0^2}{2} + \sum_{n=1}^{+\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx$, calculer $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$.

Réponse.