Chapitre 6 Séries infinies, séries de Taylor, séries de Laurent

Séries de fonctions

À partir d'une suite de fonctions $\{u_n(z)\}$, nous formons une nouvelle suite $\{S_n(z)\}$ définie par

$$S_n(z) = u_1(z) + u_2(z) + ... + u_n(z)$$

où $S_n(z)$ appelée la $n^{i\grave{e}me}$ somme partielle est la somme des n premiers termes de la suite $\{u_n(z)\}$. La suite $S_n(z)$ est représentée par

$$u_1(z) + u_2(z) + \dots =$$

appelée série infinie. Si $\lim_{n\to\infty} S_n(z) = S(z)$, la série est dite et S(z) est sa somme ; dans le cas contraire la série est dite .

Théorème: Une condition nécessaire et suffisante pour que $\sum_{n=1}^{\infty} (a_n + ib_n)$ converge, a_n et b_n

étant réels, est que et convergent.

Convergence absolue. Une série $\sum_{n=1}^{\infty} u_n(z)$ est dite absolument convergente si la série des

valeurs absolues, i.e. , converge.

<u>**Théorème**</u>: Si $\sum_{n=1}^{\infty} |u_n(z)|$ converge alors converge. Autrement dit une

série absolument convergente est

<u>Séries entières</u>

Une série de la forme

(1)

est appelée série entière en z-a.

Rayon de conv	v ergence. Il e	xiste un nombre positif	R tel que (1) converge R	pour	
et diverge pour		, cependant	que pour	elle peut	
ou non converge	er.				
Géométriquement si Γ est le cercle de rayon R centré en $z=a$, alors la série (1) converge en tous					
		à Γ et diverge e	en tous		
; elle peut ou no	on converger		Γ.		
Les valeurs spéciales et		et	correspondent aux c	eas où (1) converge	
uniquement en		ou converge pour tou	ite valeur (finie) de z .		
Le nombre R est souvent appelé de (1) et				de (1) et le cercle	
z-a =R est appelé					
<u>Théorème</u> : Nous pouvons obtenir le rayon de convergence de la série entière $\sum_{n=0}^{\infty} a_n (z-a)^n$					
n=0					
critère de d'Alembert : $R =$					
, , , , , , , , , , , , , , , , , , ,					
ou par					
	critère	de Cauchy : $R =$			
		- J	,		
si les limites exi	istent.				
Exemple: Trouver les rayons de convergence pour les séries suivantes.					
$\mathbf{a)}\sum_{n=0}^{\infty}z^n,$					

$$\mathbf{a)} \sum_{n=0}^{\infty} z^n,$$

$$\mathbf{b)} \sum_{n=0}^{\infty} \frac{z^n}{n},$$

Théorème:

Pour

- a) Une série entière peut être terme à terme dans tout ouvert connexe situé à l'intérieur du cercle de convergence.
- b) Une série entière peut être terme à terme sur toute courbe C située entièrement à l'intérieur du cercle de convergence.

Séries de Taylor

Soit f une fonction holomorphe à l'intérieur d'une courbe fermée simple C et sur C. Alors

$$f\left(a+h\right)=$$

ou en posant . z = a + h, h = z - a,

série converge quel que soit z.

$$f\left(z
ight) =% {\displaystyle\int\limits_{z}^{z}} {\int\limits_{z}^{z}} {\int\limits_{z}^{z}}$$

Ceci est appelé le théorème de Taylor et les séries précédentes sont appelées séries de Taylor ou développement de Taylor de f(a+h) ou f(z).

Le domaine de convergence de la dernière série est défini par le rayon

de convergence R étant égal à la distance de a à la singularité de f(z) la plus proche.

la série diverge.

Sur la série peut ou non converger.

Si la singularité la plus proche est à l'infini, le rayon de convergence i.e. la

Quelques séries particulières. La liste qui suit contient quelques séries particulières avec leurs domaines de convergence.

1.
$$= 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots$$
 $|z| < \infty$.

2.
$$= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!} + \dots \qquad |z| < \infty.$$

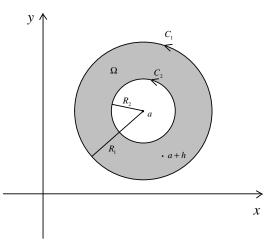
4.
$$= z - \frac{z^2}{2} + \frac{z^3}{3} - \dots (-1)^{n-1} \frac{z^n}{n} + \dots \quad |z| < 1.$$
5.
$$= z - \frac{z^3}{3} + \frac{z^5}{5} - \dots (-1)^{n-1} \frac{z^{2n-1}}{2n-1} + \dots \quad |z| < 1.$$
6.
$$= 1 + pz + \frac{p(p-1)}{2!} z^2 + \dots + \frac{p(p-1)\dots(p-n+1)}{n!} z^n + \dots \quad |z| < 1.$$

Si $(1+z)^p$ est multiforme le résultat est valable pour la branche de la fonction qui prend la valeur 1 pour z=0.

Séries de Laurent

οù

Soit C_1 et C_2 des cercles concentriques, de centre a et de rayons respectifs R_1 et R_2 , voir figure ci-contre. On suppose que f est uniforme et C_1 sur C_1 et C_2 et également dans la couronne Ω [ou région annulaire Ω] limitée par C_1 et C_2 et ombrée dans la figure ci-contre. Les courbes C_1 et C_2 étant décrits dans le sens positif par rapport à leurs intérieurs.



Soit a + h un point quelconque de Ω , on a alors

et $C=C_1$ ou C_2 . Avec le changement de notation z=a+h, on peut écrire

Ceci est appelé le théorème de Laurent et la formule ci-dessus est appelée une série de Laurent ou un développement de Laurent.

La partie $a_0 + a_1 (z - a) + a_2 (z - a)^2 + a_3 (z - a)^3 + \dots$ est appelée la partie de la série de Laurent cependant que le reste de la série formé des puissances négatives de z - a

est appelé la partie est nulle, la série de Laurent					
se réduit à une série de Taylor.					
Exemple : Déterminer le développement en série de Laurent de la fonction					
$f(z) = \frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1} - \frac{1}{z+3} \right)$					
dans la couronne $\Omega = \left\{ \frac{3}{2} < z < \frac{5}{2} \right\}.$					
Si $ z > \frac{3}{2}$, on a					
Si $ z < \frac{5}{2}$, on a					
Alors dans la couronne $\left\{\frac{3}{2} < z < \frac{5}{2}\right\}$ on a					
f(z) =					
Classification des singularités. Il est possible de classer les singularités d'une fonction f					
par l'examen de sa série de Laurent. Dans ce but nous supposerons dans la figure ci-dessus que					
$R_2 = 0$ si bien que f est à l'intérieur de C_1 et sur C_1 excepté en $z = a$ qui					
est une .					
1. Pôles. Si f à la forme (2) dans laquelle la partie principale ne possède qu'un nombre fini					
de termes donnés par					
où $a_{-n} \neq 0$, alors $z = a$ est appelé un .					
Si $n=1$ on a affaire à un .					
Si $z = a$ est un pôle de f alors $\boxed{}$.					

2. Singularités apparentes. Si une fonction uniforme f n'est pas définie en z=a mais si

existe, alors z=a est appelée une . Dans

pareil cas on définit $f\left(z\right)$ pour z=a comme étant égal à $\lim_{z\to a}f\left(z\right)$.

Exemple: Si $f(z) = \frac{\sin z}{z}$ alors

3. Singularités essentielles. Si f est uniforme alors toute singularité qui n'est ni un pôle

ni une singularité apparente est appelée une

Si z = a est une

singularité essentielle de f(z), la partie principale du développement de Laurent possède une

.

Exemple : Le développement de $e^{\frac{1}{z}}$ s'écrivant

4. Singularités à l'infini. En posant $z = \frac{1}{w} \operatorname{dans} f(z)$ on obtient la fonction $f\left(\frac{1}{w}\right) = F(w)$.

Alors la nature de la singularité à $z=\infty$ [le point à l'infini] est définie comme étant la même que celle de .

Exemple:

- a) La fonction $f(z) = z^3$
- **b)** De la même façon $f(z) = e^z$