Chapitre 6 Séries infinies, séries de Taylor, séries de Laurent

Séries de fonctions

À partir d'une suite de fonctions $\{u_n(z)\}$, nous formons une nouvelle suite $\{S_n(z)\}$ définie par

$$S_n(z) = u_1(z) + u_2(z) + ... + u_n(z)$$

où $S_{n}\left(z\right)$ appelée la $n^{i\grave{e}me}$ somme partielle est la somme des n premiers termes de la suite $\{u_n(z)\}$. La suite $S_n(z)$ est représentée par

$$u_{1}(z)+u_{2}(z)+...=\sum_{n=1}^{\infty}u_{n}\left(z\right)$$

appelée série infinie. Si $\lim_{n\to\infty} S_n(z) = S(z)$, la série est dite | CONVERGENTE | et S(z) est sa somme ; dans le cas contraire la série est dite divergente

<u>Théorème</u>: Une condition nécessaire et suffisante pour que $\sum_{n=1}^{\infty} (a_n + ib_n)$ converge, a_n et b_n

étant réels, est que $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$ convergent.

Convergence absolue. Une série $\sum_{n=1}^{\infty} u_n(z)$ est dite absolument convergente si la série des

valeurs absolues, i.e. $\sum_{n=1}^{\infty} |u_n(z)|$, converge.

Théorème: Si $\sum_{n=1}^{\infty} |u_n(z)|$ converge alors $\sum_{n=1}^{\infty} u_n(z)$ converge. Autrement dit une

série absolument convergente est | CONVERGENTE

Séries entières

Une série de la forme

$$a_0 + a_1 (z - a) + a_1 (z - a)^2 + \dots = \sum_{n=0}^{\infty} a_n (z - a)^n$$
 (1)

est appelée série entière en z-a.

Rayon de convergence. Il existe un nombre positif R tel que (1) converge pour |z-a| < R et diverge pour |z-a| > R, cependant que pour |z-a| = R elle peut ou non converger.

Géométriquement si Γ est le cercle de rayon R centré en z=a, alors la série (1) converge en tous

les points intérieurs à r et diverge en tous les points extérieurs

; elle peut ou non converger | sur le cercle | Γ .

Les valeurs spéciales R=0 et $R=\infty$ correspondent aux cas où (1) converge uniquement en z=a ou converge pour toute valeur (finie) de z.

Le nombre R est souvent appelé le rayon de convergence de |z-a|=R est appelé le cercle de convergence.

<u>Théorème</u>: Nous pouvons obtenir le rayon de convergence de la série entière $\sum_{n=0}^{\infty} a_n (z-a)^n$ par

critère de d'Alembert :
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
,

ou par

critère de Cauchy :
$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}},$$

si les limites existent.

Exemple: Trouver les rayons de convergence pour les séries suivantes.

a)
$$\sum_{n=0}^{\infty} z^n$$
, $a_n = 1$ pour tout $n \in \mathbb{N}$,

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{1}{1} \right| = 1.$$

La série converge pour |z| < 1 et diverge pour $|z| \ge 1$.

b)
$$\sum_{n=0}^{\infty} \frac{z^n}{n}$$
, $a_n = \frac{1}{n}$ pour tout $n \in \mathbb{N}$,

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{n}}{\frac{1}{n+1}} \right| = 1.$$

La série converge dans |z| < 1 et diverge en dehors i.e. |z| > 1. Sur le cercle |z| = 1, la série converge en certains points et diverge en d'autres points.

Théorème:

- dérivée a) Une série entière peut être terme à terme dans tout ouvert connexe situé à l'intérieur du cercle de convergence.
- intégrée b) Une série entière peut être terme à terme sur toute courbe C située entièrement à l'intérieur du cercle de convergence.

Séries de Taylor

Soit f une fonction holomorphe à l'intérieur d'une courbe fermée simple C et sur C. Alors

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + ... + \frac{h^n}{n!}f^{(n)}(a) + ...$$

ou en posant . z = a + h, h = z - a,

$$f(z) = f(a) + f'(a)(z - a) + \frac{f''(a)}{2!}(z - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(z - a)^n + \dots$$

Ceci est appelé le théorème de Taylor et les séries précédentes sont appelées séries de Taylor ou développement de Taylor de f(a+h) ou f(z).

Le domaine de convergence de la dernière série est défini par |z-a| < R, le rayon de convergence R étant égal à la distance de a à la singularité de f(z) la plus proche.

Sur
$$|z-a|=R$$
 la série peut ou non converger.
Pour $|z-a|>R$ la série diverge.

Pour
$$|z-a|>R$$
 | la série diverge.

Si la singularité la plus proche est à l'infini, le rayon de convergence $\mid R = \infty \mid$, i.e. la série converge quel que soit z.

Quelques séries particulières. La liste qui suit contient quelques séries particulières avec leurs domaines de convergence.

1.
$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots$$
 $|z| < \infty$.

2.
$$|\sin z| = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!} + \dots |z| < \infty.$$

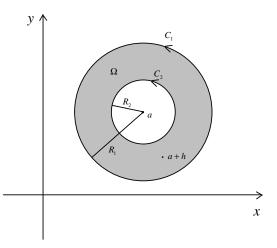
1.
$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots + \frac{z^{n}}{n!} + \dots \qquad |z| < \infty.$$
2. $\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!} + \dots \qquad |z| < \infty.$
3. $\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \dots (-1)^{n-1} \frac{z^{2n-2}}{(2n-2)!} + \dots \qquad |z| < \infty.$

4.
$$\boxed{ \text{Log } z } = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots (-1)^{n-1} \frac{z^n}{n} + \dots \quad |z| < 1.$$
5. $\boxed{ \text{Arctg } z } = z - \frac{z^3}{3} + \frac{z^5}{5} - \dots (-1)^{n-1} \frac{z^{2n-1}}{2n-1} + \dots \quad |z| < 1.$
6. $\boxed{ \left(1 + z \right)^p } = 1 + pz + \frac{p(p-1)}{2!} z^2 + \dots + \frac{p(p-1)\dots(p-n+1)}{n!} z^n + \dots \quad |z| < 1.$

Si $(1+z)^p$ est multiforme le résultat est valable pour la branche de la fonction qui prend la valeur 1 pour z=0.

Séries de Laurent

Soit C_1 et C_2 des cercles concentriques, de centre a et de rayons respectifs R_1 et R_2 , voir figure ci-contre. On suppose que f est uniforme et holomorphe sur C_1 et C_2 et également dans la couronne Ω [ou région annulaire Ω] limitée par C_1 et C_2 et ombrée dans la figure ci-contre. Les courbes C_1 et C_2 étant décrits dans le sens positif par rapport à leurs intérieurs.



Soit a + h un point quelconque de Ω , on a alors

$$f(a+h) = a_0 + a_1h + a_2h^2 + a_3h^3 + \dots$$
$$+ \frac{a_{-1}}{h} + \frac{a_{-2}}{h^2} + \frac{a_{-3}}{h^3} + \dots$$

οù

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz, \qquad n = \dots -2, -1, 0, 1, 2, \dots$$

et $C=C_1$ ou C_2 . Avec le changement de notation z=a+h, on peut écrire

$$f(z) = a_0 + a_1 (z - a) + a_2 (z - a)^2 + a_3 (z - a)^3 + \dots$$

$$+ \frac{a_{-1}}{z - a} + \frac{a_{-2}}{(z - a)^2} + \frac{a_{-3}}{(z - a)^3} + \dots$$
(2)

Ceci est appelé le théorème de Laurent et la formule ci-dessus est appelée une série de Laurent ou un développement de Laurent.

La partie $a_0 + a_1 (z - a) + a_2 (z - a)^2 + a_3 (z - a)^3 + \dots$ est appelée la partie analytique de la série de Laurent cependant que le reste de la série formé des puissances négatives de z - a

est appelé la partie principale. Si la partie principale est nulle, la série de Laurent se réduit à une série de Taylor.

Exemple: Déterminer le développement en série de Laurent de la fonction

$$f(z) = \frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1} - \frac{1}{z+3} \right)$$

dans la couronne $\Omega = \left\{ \frac{3}{2} < |z| < \frac{5}{2} \right\}.$

Si
$$|z| > \frac{3}{2}$$
, on a

$$\frac{1}{z+1} = \frac{1}{z} \left(\frac{1}{1+\frac{1}{z}} \right) = \frac{1}{z} \sum_{n \ge 0} \left(-\frac{1}{z} \right)^n = \sum_{n \ge 1} \frac{(-1)^{n-1}}{z^n} = \frac{1}{z} - \frac{1}{z^2} + \dots$$

Si
$$|z| < \frac{5}{2}$$
, on a

$$\frac{1}{z+3} = \frac{1}{3} \frac{1}{1+\frac{z}{3}} = \frac{1}{3} \sum_{n \ge 0} \left(-\frac{z}{3} \right)^n = \sum_{n \ge 0} \left(-1 \right)^n \frac{z^n}{3^{n+1}} = \frac{1}{3} - \frac{z}{9} + \frac{z^2}{27} - \dots$$

Alors dans la couronne $\left\{\frac{3}{2} < |z| < \frac{5}{2}\right\}$ on a

$$f(z) = \frac{1}{2} \left(\frac{1}{z+1} - \frac{1}{z+3} \right) = \dots - \frac{1}{2z^2} + \frac{1}{2z} - \frac{1}{6} + \frac{z}{18} - \frac{z^2}{54} - \dots$$

Classification des singularités. Il est possible de classer les singularités d'une fonction f par l'examen de sa série de Laurent. Dans ce but nous supposerons dans la figure ci-dessus que $R_2 = 0$ si bien que f est holomorphe à l'intérieur de C_1 et sur C_1 excepté en z = a qui est une singularité isolée .

1. Pôles. Si f à la forme (2) dans laquelle la partie principale ne possède qu'un nombre fini de termes donnés par

$$\frac{a_{-1}}{z-a} + \frac{a_{-2}}{(z-a)^2} + \frac{a_{-3}}{(z-a)^3} + \dots + \frac{a_{-n}}{(z-a)^n}$$

où $a_{-n} \neq 0$, alors z = a est appelé un pôle d'ordre n.

Si n = 1 on a affaire à un pôle simple

Si z = a est un pôle de f alors $\left| \lim_{z \to a} f(z) \right| = \infty$.

2. Singularités apparentes. Si une fonction uniforme f n'est pas définie en z=a mais si $\lim_{z\to a} f(z)$ existe, alors z=a est appelée une singularité apparente. Dans un pareil cas on définit f(z) pour z=a comme étant égal à $\lim_{z\to a} f(z)$.

Exemple: Si $f(z) = \frac{\sin z}{z}$ alors z = 0 est une singularité apparente car f(0) n'est pas défini mais $\lim_{z \to 0} \frac{\sin z}{z} = 1$. On définit $f(0) = \lim_{z \to 0} \frac{\sin z}{z} = 1$. On remarque que dans ce cas

$$\frac{\sin z}{z} = \frac{1}{z} \left\{ z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots \right\} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \frac{z^6}{7!} + \dots$$

3. Singularités essentielles. Si f est uniforme alors toute singularité qui n'est ni un pôle ni une singularité apparente est appelée une singularité essentielle. Si z=a est une singularité essentielle de f(z), la partie principale du développement de Laurent possède une infinité de termes.

Exemple : Le développement de $e^{\frac{1}{z}}$ s'écrivant

$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots,$$

on en déduit que z=0 est une singularité essentielle.

4. Singularités à l'infini. En posant $z=\frac{1}{w}$ dans f(z) on obtient la fonction $f\left(\frac{1}{w}\right)=F(w)$. Alors la nature de la singularité à $z=\infty$ [le point à l'infini] est définie comme étant la même que celle de F(w) en w=0.

Exemple:

- a) La fonction $f(z) = z^3$ a un pôle triple en $z = \infty$ car $F(w) = f\left(\frac{1}{w}\right) = \frac{1}{w^3}$ possède un pôle triple en z = 0.
- b) De la même façon $f(z) = e^z$ possède une singularité essentielle en $z = \infty$ car $F(w) = f\left(\frac{1}{w}\right) = e^{\frac{1}{w}}$ a une singularité essentielle en w = 0.