$c^{h^{a} p_{i}} t_{r_{e}}$

Séries infinies, séries de Taylor, séries de Laurent

Sommaire

4.1	Séries de fonctions	
	4.1.1 Convergence absolue	
4.2	Séries entières	
	4.2.1 Rayon de convergence	
4.3	Séries de Taylor 38	
	4.3.1 Quelques séries particulières	
4.4	Séries de Laurent	
	4.4.1 Classification des singularités	

4.1 Séries de fonctions

À partir d'une suite de fonctions $\{u_n(z)\}$, nous formons une nouvelle suite $\{S_n(z)\}$ définie par

$$S_n(z) = u_1(z) + u_2(z) + ... + u_n(z) = \sum_{k=1}^n u_k(z)$$

où $S_n(z)$ est appelée la $n^{i \in me}$ somme partielle, qui est la somme des n premiers termes de la suite $\{u_n(z)\}$.

La suite $S_n(z)$ est représentée par

$$u_1(z) + u_2(z) + \dots = \sum_{n=1}^{+\infty} u_n(z)$$

appelée série infinie de terme général $u_n(z)$. Si $\lim_{n\to\infty} S_n(z) = S(z)$, la série est dite convergente et S(z) est sa somme ; dans le cas contraire la série est dite divergente.

Proposition 39

Une condition nécessaire et suffisante pour que $\sum_{n=1}^{+\infty} (a_n + ib_n)$ converge, a_n et b_n étant réels, est que $\sum_{n=1}^{+\infty} a_n$ et $\sum_{n=1}^{+\infty} a_n$ convergent.

4.1.1 Convergence absolue

Définition 40

Une série $\sum_{n=1}^{+\infty} u_n(z)$ est dite **absolument convergente** si la série des valeurs absolues, i.e. $\sum_{n=1}^{+\infty} |u_n(z)|$, converge.

Proposition 41

 $Si \sum_{n=1}^{+\infty} |u_n(z)|$ converge alors $\sum_{n=1}^{+\infty} u_n(z)$ converge.

Autrement dit une série absolument convergente est convergente.

4.2 Séries entières

Définition 42

Une série de la forme

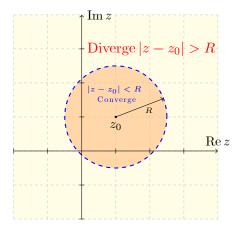
$$a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 (4.1)

est appelée série entière en $z-z_0$.

4.2.1 Rayon de convergence

Il existe un nombre positif R tel que (4.1) converge pour $|z-z_0| < R$ et diverge pour $|z-z_0| > R$, cependant que pour $|z-z_0| = R$ elle peut ou non converger.

Géométriquement si C est le cercle de rayon R centré en z_0 , alors la série (4.1) converge en tous les points intérieurs à C et diverge en tous les points extérieurs ; elle peut ou non converger sur le cercle C.



Les valeurs spéciales R=0 et $R=+\infty$ correspondent aux cas où (4.1) converge uniquement en $z=z_0$ ou converge pour toute valeur (finie) de z. Le nombre R est souvent appelé le **rayon** de convergence de (4.1) et le cercle $|z-z_0|=R$ est appelé le **cercle de convergence**.

Proposition 43

Nous pouvons obtenir le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$ par

critère de d'Alembert :
$$R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 ou celui de Cauchy : $R = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$,

si les limites existent.

Exemple 46

a)
$$\sum_{n=0}^{+\infty} z^n$$
, on a $a_n = 1$ pour tout $n \in \mathbb{N}$ et donc $R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{1}{1} \right| = 1$.

Cette série converge pour |z| < 1 et diverge pour $|z| \ge 1$.

b)
$$\sum_{n=0}^{+\infty} \frac{z^n}{n}$$
, on a $a_n = \frac{1}{n}$, $n \in \mathbb{N}$ et donc $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{n}}{\frac{1}{n+1}} \right| = 1$.

Cette série converge dans |z| < 1 et diverge en dehors i.e. |z| > 1. Sur le cercle |z| = 1, la série converge en certains points et diverge en d'autres points.

Proposition 44

- Une série entière peut être **dérivée** terme à terme dans tout ouvert connexe situé à l'intérieur du cercle de convergence.
- Une série entière peut être **intégrée** terme à terme sur toute courbe C située entièrement à l'intérieur du cercle de convergence.

4.3 Séries de Taylor

Soit f une fonction holomorphe à l'intérieur d'une courbe fermée simple C et sur C. Alors

$$f(z_0 + h) = f(z_0) + hf'(z_0) + \frac{h^2}{2!}f''(z_0) + \dots + \frac{h^n}{n!}f^{(n)}(z_0) + \dots$$

ou en posant $z = z_0 + h$, $h = z - z_0$,

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n + \dots$$

Ceci est appelé le théorème de Taylor et les séries précédentes sont appelées séries de Taylor ou développement de Taylor de $f(z_0 + h)$ ou f(z).

Le domaine de convergence de la dernière série est défini par $|z - z_0| < R$, le rayon de convergence R étant égal à la distance de z_0 à la singularité de f(z) la plus proche.

Sur $|z - z_0| = R$ la série peut ou non converger.

Pour $|z - z_0| > R$ la série diverge.

Si la singularité la plus proche est à l'infini, le rayon de convergence $R=+\infty$, i.e. la série converge quel que soit z dans \mathbb{C} .

4.3.1 Quelques séries particulières

La liste qui suit contient quelques séries particulières avec leurs domaines de convergence.

1.
$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots$$
 $|z| < +\infty.$

2.
$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!} + \dots \qquad |z| < +\infty.$$

3.
$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots (-1)^{n-1} \frac{z^{2n-2}}{(2n-2)!} + \dots \qquad |z| < +\infty.$$

4. Log
$$z = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots (-1)^{n-1} \frac{z^n}{n} + \dots$$
 $|z| < 1$.

5. Arctg
$$z = z - \frac{z^3}{3} + \frac{z^5}{5} - \dots (-1)^{n-1} \frac{z^{2n-1}}{2n-1} + \dots \qquad |z| < 1.$$

6.
$$(1+z)^p = 1 + pz + \frac{p(p-1)}{2!}z^2 + \dots + \frac{p(p-1)\dots(p-n+1)}{n!}z^n + \dots$$
 $|z| < 1$.

Si $(1+z)^p$ est multiforme le résultat est valable pour la branche de la fonction qui prend la valeur 1 pour z=0.

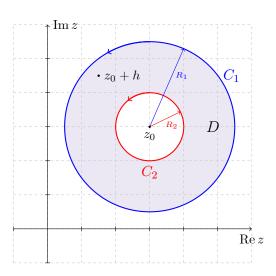
4.4 Séries de Laurent

Soit C_1 et C_2 des cercles concentriques, de centre z_0 et de rayons respectifs R_1 et R_2 .

On suppose que f est uniforme et **holomorphe** sur C_1 et C_2 et également dans la couronne D [ou région annulaire D] limitée par C_1 et C_2 .

Les courbes C_1 et C_2 étant décrits dans le sens positif par rapport à leurs intérieurs.

Soit $z_0 + h$ un point quelconque de D, on a alors



$$f(z_0 + h) = a_0 + a_1 h + a_2 h^2 + a_3 h^3 + \dots$$
$$+ \frac{a_{-1}}{h} + \frac{a_{-2}}{h^2} + \frac{a_{-3}}{h^3} + \dots$$

οù

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz, \qquad n = \dots -2, -1, 0, 1, 2, \dots$$

et $C = C_1$ ou C_2 . Avec le changement de notation $z = z_0 + h$, on peut écrire

$$f(z) = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + a_3 (z - z_0)^3 + \dots$$

$$+ \frac{a_{-1}}{z - z_0} + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-3}}{(z - z_0)^3} + \dots$$
(4.2)

Ceci est appelé le théorème de Laurent et la formule ci-dessus est appelée une série de Laurent ou un développement de Laurent.

La partie

$$a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + a_3 (z - z_0)^3 + \dots$$

est appelée la partie **analytique** de la série de Laurent, cependant que le reste de la série formé des puissances négatives de $z-z_0$;

$$\frac{a_{-1}}{z - z_0} + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-3}}{(z - z_0)^3} + \dots$$

est appelé la partie **principale**.

Si la partie principale est nulle, la série de Laurent se réduit à une série de Taylor.

 $\operatorname{Im} z$

Exemple 47

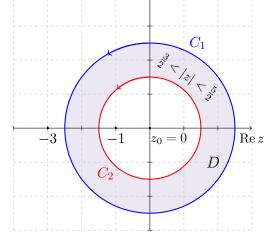
Déterminons le développement en série de Laurent de la fonction $f(z) = \frac{1}{(z+1)(z+3)} = \frac{1}{2} \left(\frac{1}{z+1} - \frac{1}{z+3} \right)$

dans la couronne $D = \{z \in \mathbb{C}, \frac{3}{2} < |z| < \frac{5}{2}\}.$

La fonction f est holomorphe dans D et sur sa frontière, car les singularités -1 et -3 sont à l'extérieur D.

Donc f admet un développement en série de Laurent centré à l'origine $z_0=0$.

centré à l'origine
$$z_0 = 0$$
.
Si $|z| > \frac{3}{2} > 1$, on a



$$\frac{1}{z+1} = \frac{1}{z} \left(\frac{1}{1+\frac{1}{z}} \right) = \frac{1}{z} \sum_{n \ge 0} \left(-\frac{1}{z} \right)^n = \sum_{n \ge 1} \frac{(-1)^{n-1}}{z^n} = \frac{1}{z} - \frac{1}{z^2} + \dots$$

Si
$$|z| < \frac{5}{2} < 3$$
, on a

$$\frac{1}{z+3} = \frac{1}{3} \frac{1}{1+\frac{z}{3}} = \frac{1}{3} \sum_{n>0} \left(-\frac{z}{3}\right)^n = \sum_{n>0} \left(-1\right)^n \frac{z^n}{3^{n+1}} = \frac{1}{3} - \frac{z}{9} + \frac{z^2}{27} - \dots$$

Alors dans la couronne $D = \left\{z \in \mathbb{C}, \ \frac{3}{2} < |z| < \frac{5}{2} \right\}$ on a

$$f(z) = \frac{1}{2} \left(\frac{1}{z+1} - \frac{1}{z+3} \right) = \dots - \frac{1}{2z^2} + \frac{1}{2z} - \frac{1}{6} + \frac{z}{18} - \frac{z^2}{54} + \dots$$

Exemple 48

Développons en série de Laurent la fonction de l'exemple précédent

$$f(z) = \frac{1}{(z+1)(z+3)}$$

mais dans le disque pointé de $z_0 = -1$,

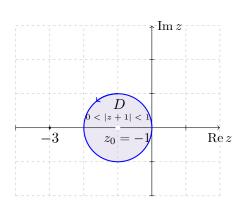
$$D = \{ z \in \mathbb{C}, \ 0 < |z+1| < 1 \}.$$

Notons que pour tout 0 < |z+1| < 1 on peut écrire

$$\frac{1}{z+3} = \frac{1}{z+1+2} = \frac{1}{2} \frac{1}{1+\frac{z+1}{2}} = \frac{1}{2} \sum_{n \ge 0} \left(-\frac{z+1}{2} \right)^n = \sum_{n \ge 0} \frac{(-1)^n}{2^{n+1}} (z+1)^n.$$

D'où

$$f(z) = \frac{1}{(z+1)(z+3)} = \sum_{n>0} \frac{(-1)^n}{2^{n+1}} (z+1)^{n-1} = \frac{1}{2(z+1)} - \frac{1}{4} + \frac{1}{8} (z+1) - \dots \quad \blacksquare$$



Exemple 49

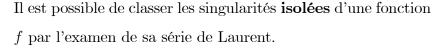
Développons en série de Laurent la fonction $f(z) = e^{\frac{1}{z}}$ dans \mathbb{C}^* .

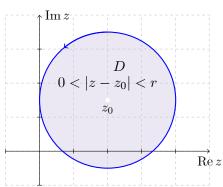
Rappelons que $e^w = \sum_{n \geq 0} \frac{w^n}{n!}, w \in \mathbb{C}$, alors pour $w = \frac{1}{z}$ on a

$$e^{\frac{1}{z}} = \sum_{n \geq 0} \frac{1}{n!z^n} = \dots + \frac{1}{6z^3} + \frac{1}{2z^2} + \frac{1}{z} + 1.$$

4.4.1 Classification des singularités

Le point z_0 est appelé **singularité isolée**, ou **point singulier isolé** de f, si la fonction f est holomophe sur un disque pointé de z_0 , $D = \{z \in \mathbb{C}, \ 0 < |z - z_0| < r\}, \ r > 0$.





Pôles

Si f à la forme (4.2) dans laquelle la partie principale ne possède qu'un nombre fini de termes donnés par

$$\frac{a_{-1}}{z-z_0} + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-3}}{(z-z_0)^3} + \dots + \frac{a_{-n}}{(z-z_0)^n},$$

où $a_{-n} \neq 0$, alors $z = z_0$ est appelé un **pôle d'ordre** n.

Si n = 1 on a affaire à un **pôle simple**.

Si $z = z_0$ est un pôle de f alors $\lim_{z \to z_0} f(z) = \infty$.

Exemple 50

La fonction $f(z) = \frac{1}{(z+1)(z+3)}$ de l'exemple 48 présente un pôle simple au point $z_0 = -1$.

Singularités apparentes

Si une fonction uniforme f n'est pas définie en $z=z_0$ mais si $\lim_{z\to z_0} f(z)$ existe, alors $z=z_0$ est appelée une **singularité apparente**. Dans un pareil cas on définit f(z) pour $z=z_0$ comme étant égal à $\lim_{z\to z_0} f(z)$.

Exemple 51

Si $f(z) = \frac{\sin z}{z}$ alors z = 0 est une singularité apparente car f(0) n'est pas défini mais $\lim_{z \to 0} \frac{\sin z}{z} = 1$. On définit $f(0) = \lim_{z \to 0} \frac{\sin z}{z} = 1$. On remarque que dans ce cas

$$\frac{\sin z}{z} = \frac{1}{z} \left\{ z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots \right\} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \frac{z^6}{7!} + \dots$$

Singularités essentielles

Si f est uniforme alors toute singularité qui n'est ni un pôle ni une singularité apparente est appelée une **singularité essentielle**. Si $z = z_0$ est une singularité essentielle de f(z), la partie principale du développement de Laurent possède une **infinité de terme**.

Exemple 52

Le développement de $e^{\frac{1}{z}}$ s'écrivant

$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots,$$

on en déduit que z=0 est une singularité essentielle. \blacksquare

Singularités à l'infini

En posant $z = \frac{1}{w}$ dans f(z) on obtient la fonction $f\left(\frac{1}{w}\right) = F(w)$. Alors la nature de la singularité à $z = \infty$ [le point à l'infini] est définie comme étant la même que celle de F(w) en w = 0.

Exemple 53

La fonction $f(z) = z^3$ a un pôle triple en $z = \infty$ car $F(w) = f(\frac{1}{w}) = \frac{1}{w^3}$ possède un pôle triple en z = 0.

Exemple 54

De la même façon $f(z) = e^z$ possède une singularité essentielle en $z = \infty$ car

$$F(w) = f\left(\frac{1}{w}\right) = e^{\frac{1}{w}}$$

a une singularité essentielle en w=0.