$\mathrm{c^{h^{a^{p_i}}t_r}e} \mathbf{5}$

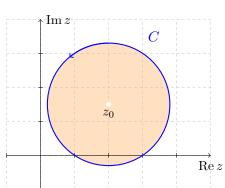
Théorème des résidus

Sommaire

5.1	Rési	${f dus}$	43
	5.1.1	Calcul des résidus	44
5.2	Le t	héorème des résidus	46
5.3	App	lication du théorème des résidus	47
	5.3.1	Théorèmes particuliers utilisés pour le calcul d'intégrales	47
	5.3.2	Application aux transformées de Fourier	48
	5.3.3	Calcul d'intégrales définies diverses	50

5.1 Résidus

Soit f une fonction holomorphe et uniforme à l'intérieur d'un cercle C et sur C, **excepté** au point $z=z_0$ centre de C. Alors f(z) possède un développement en série de Laurent dans le voisinage de $z=z_0$, donné par



$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots + \frac{a_{-1}}{z - z_0} + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-3}}{(z - z_0)^3} + \dots$$
 (5.1)

οù

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz, \qquad n = \dots - 2, -1, 0, 1, 2, \dots$$
 (5.2)

Dans le cas particulier n = -1 on a

$$\oint_C f(z) dz = 2\pi i a_{-1}.$$
(5.3)

Observons que l'intégrale $\oint_C f(z) dz$ s'exprime à l'aide du seul coefficient a_{-1} de (5.1).

On peut obtenir formellement (5.3) à partir de (5.1) par intégration terme à terme en utilisant le résultat

$$\oint_C \frac{1}{(z-z_0)^p} dz = \begin{cases} 2\pi i & p=1\\ 0 & p \in \mathbb{Z}, \ p \neq 1. \end{cases}$$
(5.4)

Définition 45

Avec les notations ci-dessus, le coefficient a_{-1} du développement de Laurent de f au voisinage de z_0 s'appelle le **résidu** de f(z) au point z_0 et se note

Res
$$(f, z_0) = a_{-1} = \frac{1}{2\pi i} \oint_C f(z) dz$$
.

5.1.1 Calcul des résidus

Pour obtenir le résidu d'une fonction f en $z = z_0$ on pourrait croire d'après (5.1) à la nécessité d'écrire le développement de f(z) en série de Laurent dans le voisinage de $z = z_0$. Dans beaucoup de cas on peut déterminer le résidu sans passer par le développement de Laurent.

Pôle simple

Si $z=z_0$ est un pôle simple le calcul du résidu est particulièrement simple

Res
$$(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$
. (5.5)

Exemple 55

Trouver le résidu de $f(z) = \frac{z+1}{(z+2)(z-1)}$ en z=1.

Le point z = 1 est un pôle simple et le résidu en z = 1 est

Res
$$(f,1)$$
 = $\lim_{z \to 1} (z-1) \left\{ \frac{z+1}{(z+2)(z-1)} \right\} = \lim_{z \to 1} \frac{z+1}{z+2} = \frac{2}{3}$.

Remarque 46

Si $z=z_0$ est un pôle simple et f(z) se présente sous la forme

$$f(z) = \frac{P(z)}{Q(z)}, \quad Q(z_0) = 0 \text{ et } Q'(z_0) \neq 0,$$

alors

Res
$$(f, z_0) = \frac{P(z_0)}{Q'(z_0)}$$
. (5.6)

Exemple 56

Trouver le résidu de $f(z) = \frac{e^{z+1}}{z^3 + 1}$ en z = -1.

Le point z = -1 est un pôle simple et le résidu peut être calculé par la formule (5.6):

$$\operatorname{Res}(f,-1) = \frac{e^{z+1}\Big|_{z=-1}}{(z^3+1)'\Big|_{z=-1}} = \frac{e^{z+1}\Big|_{z=-1}}{3z^2\Big|_{z=-1}} = \frac{e^{1-1}}{3(-1)^2} = \frac{1}{3}.$$

Pôle d'ordre $k \geq 2$

Dans le cas où $z=z_0$ est un **pôle d'ordre** $k\geq 2$, le résidu a_{-1} est donné par la formule

Res
$$(f, z_0) = a_{-1} = \lim_{z \to z_0} \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \left\{ (z - z_0)^k f(z) \right\}.$$
 (5.7)

Si k = 2 (**pôle double**) le résultat est

Res
$$(f, z_0) = \lim_{z \to z_0} \frac{d}{dz} \{ (z - z_0)^2 f(z) \}.$$
 (5.8)

Exemple 57

Trouver le résidu de $f(z) = \frac{z}{(z-1)(z+1)^2}$ en z = -1. Le point z = -1 est un pôle double et on a d'après (5.8)

Res
$$(f, -1) = \lim_{z \to -1} \frac{d}{dz} \left\{ (z+1)^2 \left(\frac{z}{(z-1)(z+1)^2} \right) \right\} = -\frac{1}{4}.$$

Point singulier essentiel

Si $z = z_0$ est un **point singulier essentiel**, le résidu peut parfois être trouvé en utilisant des développements en série connus.

Exemple 58

Si $f(z) = e^{-\frac{1}{z}}$, alors z = 0 est un point singulier essentiel et d'après le développement connu

$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \dots$$

avec $u = -\frac{1}{z}$, on trouve

$$e^{-\frac{1}{z}} = 1 - \frac{1}{z} + \frac{1}{2!z^2} - \frac{1}{3!z^3} + \dots$$

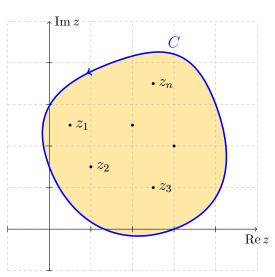
où l'on voit que le résidu en z=0 étant le coefficient de $\frac{1}{z}$ sa valeur est -1.

5.2 Le théorème des résidus

Soit f une fonction uniforme et holomorphe à l'intérieur d'une courbe fermée simple C et sur C, sauf en un nombre fini de singularités $z_1,\,z_2,\,z_3,\,\dots\,z_n$ intérieures à C.

Alors le théorème des résidus établit que

$$\oint_{C} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_{k}).$$



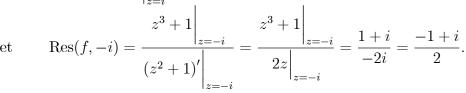
i.e. L'intégrale de f(z) le long de C est égale à $2\pi i$ fois la somme des résidus de f(z) en les singularités contenues dans C. Notons que le théorème de Cauchy et les formules intégrales sont des cas particuliers de ce théorème.

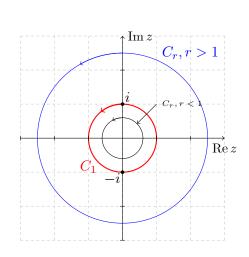
Exemple 59

Calculer $\oint_C f(z) dz$ où $f(z) = \frac{z^3 + 1}{z^2 + 1}$ et C_r le cercle

centré à l'origine et de rayon $r, r \neq 1$. La fonction $f(z) = \frac{z^3+1}{z^2+1}$ possède deux pôles simples $z_1 = i, z_2 = -i \text{ et on a}$

Res
$$(f, i)$$
 = $\frac{z^3 + 1\Big|_{z=i}}{(z^2 + 1)'\Big|_{z=i}} = \frac{z^3 + 1\Big|_{z=i}}{2z\Big|_{z=i}} = \frac{1 - i}{2i} = \frac{-1 - i}{2}$,





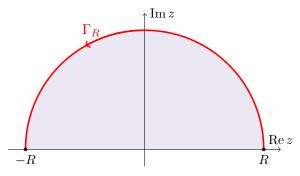
Notons que pour 0 < r < 1 l'intégrale $\oint_{C_r} \frac{z^3 + 1}{z^2 + 1} dz = 0$ car la fonction f(z) est holomorphe à l'intérieur de C_r et sur C_r . Mais, si r > 1 on aura

$$\oint_{C_{r}} \frac{z^{3}+1}{z^{2}+1} dz = 2\pi i \left(\text{Res}\left(f,i\right) + \text{Res}\left(f,-i\right) \right) = 2\pi i \left(\frac{-1-i}{2} + \frac{-1+i}{2} \right) = -2\pi i. \quad \blacksquare$$

5.3 Application du théorème des résidus

5.3.1 Théorèmes particuliers utilisés pour le calcul d'intégrales

Lorsque l'on calcule certaines types d'intégrales, il est souvent nécessaire de montrer que $\int_{\Gamma_R} F(z) dz$ et $\int_{\Gamma_R} F(z) e^{i\alpha z} dz$, $\alpha \in \mathbb{R}^*$ tendent vers zéro quand $\int_{\Gamma_R} F(z) e^{i\alpha z} dz$, où Γ_R est un demi-cercle centré à l'origine et de rayon R.



Les proposition suivantes sont fondamentales.

Proposition 47

Si $|F(z)| \leq \frac{M}{R^k}$ pour $z = Re^{it}$, où k > 1 et M sont des constantes, alors si Γ_R est le demi-cercle de la figure ci-dessus, $\lim_{R \to +\infty} \int_{\Gamma_R} F(z) dz = 0$.

Proposition 48

Si $|F(z)| \leq \frac{M}{R^k}$ pour $z = Re^{it}$, où k > 0 et M sont des constantes, alors si Γ_R est le demi-cercle de la figure ci-dessus, $\lim_{R \to +\infty} \int_{\Gamma_R} e^{i\alpha z} F(z) dz = 0, \alpha \in \mathbb{R}^*$.

5.3.2 Application aux transformées de Fourier

Définition 49

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue telle que $\int_{-\infty}^{+\infty} |f(x)| dx < +\infty$.

Sa transformée de Fourier est la fonction $\hat{f}: \mathbb{R} \to \mathbb{C}$ définie par

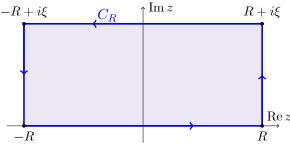
$$\hat{f}(\xi) = \mathcal{F}(f)(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-i\xi x} dx.$$

La transformée de Fourier est un outil essentiel des mathématiques appliquées. Elle peut souvent être obtenue via le calcul des résidus.

Exemple 60

Calculons la transformée de Fourier de la fonction f définie par $f\left(x\right)=e^{-\frac{x^{2}}{2}}.$

Considérons $\int\limits_{C_R}^{\infty}e^{-\frac{z^2}{2}}dz$ où C_R désigne le rectangle d'extrémités $-R,R,R+i\xi$ et $-R+i\xi,\ \xi>0$.



La fonction $z \mapsto e^{-\frac{z^2}{2}}$ n'a aucune singularité à l'intérieur de C_R , alors $\int_{C_R} e^{-\frac{z^2}{2}} dz = 0$, i.e.

$$\int_{-R}^{R} e^{-\frac{x^2}{2}} dx + \int_{0}^{\xi} e^{-\frac{(R+iy)^2}{2}} i dy + \int_{R}^{-R} e^{-\frac{(x+i\xi)^2}{2}} dx + \int_{\xi}^{0} e^{-\frac{(-R+iy)^2}{2}} i dy = 0.$$

On a
$$\left| \int_0^\xi e^{-\frac{(R+iy)^2}{2}} i dy \right| \leq \int_0^\xi \left| e^{-\frac{(R+iy)^2}{2}} \right| dy = \int_0^\xi e^{\frac{-R^2+y^2}{2}} dy \to 0 \text{ quand } R \to +\infty. \text{ De même }$$

$$\int_0^0 e^{-\frac{(-R+iy)^2}{2}} i dy \to 0 \text{ quand } R \to +\infty. \text{ Donc, lorsque } R \to +\infty, \text{ on obtient }$$

$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx - \int_{-\infty}^{+\infty} e^{-\frac{(x+i\xi)^2}{2}} dx = 0,$$

il vient alors

$$\int_{-\infty}^{+\infty} e^{-\frac{(x+i\xi)^2}{2}} dx = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}.$$

On en déduit que

$$\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-i\xi x} dx = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} e^{-i\xi x} dx = e^{-\frac{\xi^2}{2}} \int_{-\infty}^{+\infty} e^{-\frac{(x+i\xi)^2}{2}} dx = \sqrt{2\pi} e^{-\frac{\xi^2}{2}}.$$

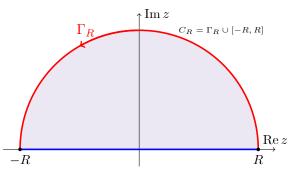
Cas d'une fonction rationnelle

Soit $f(x) = \frac{P(x)}{Q(x)}$ une fonction rationnelle intégrable sur \mathbb{R} et z_k , Im $z_k \neq 0, k = 1, ..., n$ ses pôles.

Pour calculer la transformée de Fourier

$$\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-i\xi x} dx$$

de la fonction f par la méthode des résidus, on considère $\int_{C_R} f(z) e^{-i\xi z} dz$, $\xi < 0$ où C_R désigne la -R



courbe fermée ou le **contour** fermé formé du segment [-R, +R] et du demi cercle Γ_R décrit dans le sens direct.

Si le nombre R est suffisamment grand alors

$$\int\limits_{C_{R}}f\left(z\right) e^{-i\xi z}dz=2\pi i\sum_{\operatorname{Im}z_{k}>0}\operatorname{Res}\left(f\left(z\right) e^{-i\xi z},z_{k}\right) ,$$

i.e.

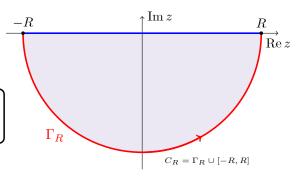
$$\int_{-R}^{R} f(x) e^{-i\xi x} dx + \int_{\Gamma_{R}} f(z) e^{-i\xi z} dz = 2\pi i \sum_{\operatorname{Im} z_{k} > 0} \operatorname{Res} \left(f(z) e^{-i\xi z}, z_{k} \right),$$

Si l'on prend la limite quand $R \to +\infty$ et si l'on utilise le fait que $\lim_{R \to +\infty} \int_{\Gamma_R} f(z) e^{-i\xi z} dz = 0$, on obtient

$$\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-i\xi x} dx = 2\pi i \sum_{\text{Im } z_k > 0} \text{Res} \left(f(z) e^{-i\xi z}, z_k \right), \text{ si } \xi < 0.$$

De même, en choisissant le demi cercle avec des parties imaginaires négatives on obtient

$$\hat{f}(\xi) = -2\pi i \sum_{\operatorname{Im} z_k < 0} \operatorname{Res} \left(f(z) e^{-i\xi z}, z_k \right), \text{ si } \xi > 0.$$



Exemple 61

Calculons la transformée de Fourier de la fonction f définie par $f(x) = \frac{1}{x^2 + 1}$. On a $z^2 + 1 = 0$ pour z = i et z = -i, ces valeurs de z sont les pôles simples de $\frac{1}{z^2 + 1}$ et

$$\operatorname{Res}\left(\frac{e^{-i\xi z}}{z^{2}+1},i\right) = \frac{e^{-i\xi z}\Big|_{z=i}}{(z^{2}+1)'\Big|_{z=i}} = \frac{e^{-i\xi z}\Big|_{z=i}}{2z\Big|_{z=i}} = \frac{e^{\xi}}{2i},$$

$$\operatorname{Res}\left(\frac{e^{-i\xi z}}{z^{2}+1}, -i\right) = \frac{\left. \frac{e^{-i\xi z}}{z^{2}-1} \right|_{z=-i}}{\left. \left(z^{2}+1 \right)' \right|_{z=-i}} = \frac{\left. \frac{e^{-i\xi z}}{z^{2}-1} \right|_{z=-i}}{\left. \frac{e^{-i\xi z}}{z^{2}-1} \right|_{z=-i}} = \frac{\left. \frac{e^{-i\xi z}}{z^{2}-1} \right|_{z=-i}}$$

Alors

$$\hat{f}(\xi) = \begin{cases} 2\pi i \operatorname{Res}\left(\frac{e^{-i\xi z}}{z^2 + 1}, i\right), & \text{si } \xi < 0, \\ -2\pi i \operatorname{Res}\left(\frac{e^{-i\xi z}}{z^2 + 1}, -i\right), & \text{si } \xi > 0 \end{cases} = \begin{cases} 2\pi i \frac{e^{\xi}}{2i}, & \text{si } \xi < 0, \\ -2\pi i \frac{e^{-\xi}}{-2i}, & \text{si } \xi > 0 \end{cases} = \pi e^{-|\xi|}.$$

5.3.3 Calcul d'intégrales définies diverses

Le calcul d'intégrales définies généralisées peut souvent être effectué en utilisant le **théorème** des résidus appliqué à une fonction et à un contour convenables dont le choix peut demander une grande ingéniosité.

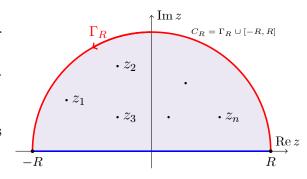
Les types d'intégrales qui suivent sont souvent rencontrées dans la pratique.

Intégrale du type
$$\int_{-\infty}^{+\infty} f(x) dx$$

Soit f(z) une fonction complexe holomorphe dans le demi plan $\operatorname{Im} z \geq 0$ sauf en un nombre fini de points singuliers isolés $z_1, z_2, ..., z_n$ de demi plan $\operatorname{Im} z > 0$. On suppose de plus que $|f(z)| \leq \frac{M}{R^k}$ pour $z = Re^{it}, k > 1$ et M > 0.

On considère $\int_{C_R} f(z) dz$, où C_R désigne le contour fermé formé du segment [-R, +R] et du demi cercle Γ_R décrit dans le sens direct.

Si le nombre R est pris suffisamment grand alors



le théorème des résidus permet d'écrire

$$\int_{C_{R}} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res} (f(z), z_{k}),$$

i.e.

$$\int_{-R}^{R} f(x) dx + \int_{\Gamma_{R}} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res} (f(z), z_{k}).$$

D'après la proposition 47, $\lim_{R\to+\infty}\int_{\Gamma_R}f(z)\,dz=0$. Alors lorsque $R\to+\infty$, on obtient

$$\int_{-\infty}^{+\infty} f(x) dx = 2\pi i \sum_{k=1}^{n} \text{Res}(f(z), z_k).$$

Remarque 50

Si $f(z) = \frac{P(z)}{Q(z)}$ où P et Q sont des polynômes avec $\deg Q \ge 2 + \deg P$, et aucun des zéros de Q n'étant réel, alors la formule précédente est valable, les z_k étant les zéros de Q tels que $\operatorname{Im} z_k > 0$.

Exemple 62

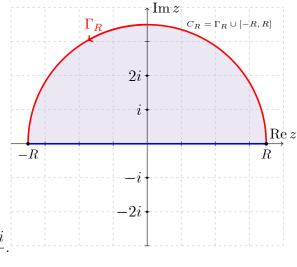
Calculons l'intégrale $\int_{-\infty}^{+\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx.$

Les pôles de $f(z) = \frac{z^2}{(z^2+1)(z^2+4)}$ situés à l'intérieur du contour C_R sont les pôles simples

z = i et z = 2i et on a

Res
$$(f, i) = \lim_{z \to i} \left\{ (z - i) \frac{z^2}{(z^2 + 1)(z^2 + 4)} \right\} = \frac{i}{6},$$

Res
$$(f, 2i)$$
 = $\lim_{z \to 2i} \left\{ (z - 2i) \frac{z^2}{(z^2 + 1)(z^2 + 4)} \right\} = \frac{-i}{3}$



Si R est suffisamment grand alors d'après le théorème des résidus

$$\int_{C_R} \frac{z^2}{(z^2+1)(z^2+4)} dz = 2\pi i \left\{ \text{Res}(f,i) + \text{Res}(f,2i) \right\} = 2\pi i \left\{ \frac{i}{6} - \frac{i}{3} \right\} = \frac{\pi}{3}.$$

i.e.

$$\int_{-R}^{R} \frac{x^{2}}{(x^{2}+1)(x^{2}+4)} dx + \int_{\Gamma_{R}} \frac{z^{2}}{(z^{2}+1)(z^{2}+4)} dz = \frac{\pi}{3}.$$

Comme $\lim_{R\to+\infty} R^2 |f(Re^{it})| = 1$, alors $|f(z)| \leq \frac{M}{R^2}$ pour $z = Re^{it}$, M > 0. Donc d'après la proposition 47,

$$\lim_{R \to +\infty} \int_{\Gamma_R} \frac{z^2}{(z^2 + 1)(z^2 + 4)} dz = 0.$$

Par conséquent, lorsque $R \to +\infty$, on obtient

$$\int_{-\infty}^{+\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx = \frac{\pi}{3}.$$

Intégrale du type $\int_0^{2\pi} R(\cos t, \sin t) dt$

Soit R(x,y) une fonction rationnelle en x et en y qui n'a pas de pôles sur le cercle $x^2+y^2=1$. Si on pose $z=e^{it}, t\in [0,2\pi]$, alors $\sin t=\frac{z-z^{-1}}{2i}$, $\cos t=\frac{z+z^{-1}}{2}$ et $dz=ie^{it}dt$ ou $dt=\frac{1}{iz}dz$. Par conséquent

$$\int_0^{2\pi} R(\cos t, \sin t) dt = \int_{|z|=1}^{\pi} \frac{1}{iz} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) dz.$$

Posons $f(z) = \frac{1}{iz}R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right)$, on a alors d'après le théorème des résidus

$$\int_{0}^{2\pi} R(\cos t, \sin t) dt = 2\pi i \sum_{k=1}^{n} \operatorname{Res} (f(z), z_{k}),$$

où les z_k sont les pôles de la fraction rationnelle f(z) qui appartiennent à l'intérieur du cercle |z|=1.

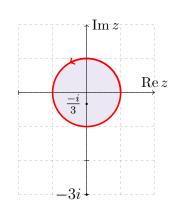
Exemple 63

Calculons l'intégrale $\int_0^{2\pi} \frac{1}{5+3\sin t} dt$.

Pour calculer cette intégrale on va appliquer la méthode

ci-dessus qui consiste à poser $z=e^{it}, t\in [0,2\pi].$ Alors

$$\int_0^{2\pi} \frac{1}{5+3\sin t} dt = \int_{|z|=1} \frac{1}{iz\left(5+3\frac{z-z^{-1}}{2i}\right)} dz = \int_{|z|=1} \frac{2}{3z^2+10iz-3} dz$$
$$= \int_{|z|=1} \frac{2}{(3z+i)(z+3i)} dz.$$



Puisque le nombre $\frac{-i}{3}$ est le seul pôle de $\frac{2}{(3z+i)(z+3i)}$ qui appartient à l'intérieur du cercle |z|=1, alors par le théorème des résidus

$$\int_0^{2\pi} \frac{1}{5+3\sin t} dt = 2\pi i \operatorname{Res}\left(\frac{2}{(3z+i)(z+3i)}, \frac{-i}{3}\right) = 2\pi i \frac{2}{3\left(\frac{-i}{3}+3i\right)} = \frac{\pi}{2}.$$

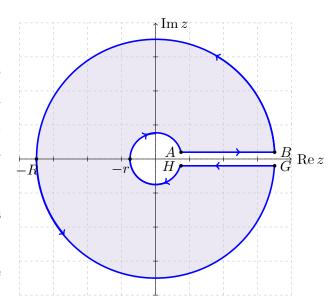
Intégrale du type $\int_{0}^{+\infty} \frac{P(x)}{Q(x)} x^{\alpha-1} dx$

Soit α un réel strictement positif. Soient P et Q deux polynômes avec $\deg Q > \alpha + \deg P$, tels que $P(0) \neq 0$ et aucun des zéros de Q n'étant réel positif ou nul. Si z_k , k = 1, ..., n sont des points singuliers de $\frac{P(x)}{Q(x)}x^{\alpha-1}$, alors $\operatorname{Re} z_k \notin [0, +\infty[$.

On va considérer cette fois la fonction

 $f(z) = \frac{P(z)}{Q(z)} (-z)^{\alpha-1}$, $\operatorname{Arg}(\operatorname{Log} z) \in]-\pi, \pi[$, et le contour $C_{R,r}$ de la figure ci-contre où l'axe réel positif est la coupure et où AB et GH coïncident avec l'axe des x mais sont montrés séparés pour une meilleure compréhension. Le contour $C_{R,r} = [r,R] \cup \Gamma_R \cup [R,r] \cup \Gamma_r$ où Γ_R et Γ_r sont des cercles centrés à l'origine de rayons R et r.

Si R est assez grand et r est assez petit, alors le théorème des résidus permet d'écrire



$$\int_{C_{P}} \frac{P(z)}{Q(z)} (-z)^{\alpha-1} dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res} \left(\frac{P(z)}{Q(z)} (-z)^{\alpha-1}, z_{k} \right).$$

On a

$$\int_{C_{R,r}} \frac{P(z)}{Q(z)} (-z)^{\alpha - 1} dz = \int_{r}^{R} \frac{P(x)}{Q(x)} e^{(\alpha - 1)i\pi} x^{\alpha - 1} dx + \int_{\Gamma_{R}} \frac{P(z)}{Q(z)} (-z)^{\alpha - 1} dz + \int_{\Gamma_{R}} \frac{P($$

Lorsque $r \to 0$, on obtient

$$\lim_{r \to 0} \left| \int_{\Gamma_r} \frac{P(z)}{Q(z)} (-z)^{\alpha - 1} dz \right| = \lim_{r \to 0} \left| \int_{0}^{2\pi} \frac{P(re^{it})}{Q(re^{it})} (-re^{it})^{\alpha - 1} re^{it} dt \right| \le \lim_{r \to 0} K r^{\alpha} = 0.$$

Quand $R \to +\infty$

$$\lim_{R\to +\infty} \left| \int\limits_{\Gamma_R} \frac{P\left(z\right)}{Q\left(z\right)} \left(-z\right)^{\alpha-1} dz \right| = \lim_{R\to +\infty} \left| \int\limits_{0}^{2\pi} \frac{P\left(R \, e^{it}\right)}{Q\left(R \, e^{it}\right)} \left(-R \, e^{it}\right)^{\alpha-1} R \, e^{it} dt \right| \leq \lim_{R\to +\infty} K \, R^{\beta} = 0,$$

où $\beta = \alpha + \deg P - \deg Q < 0$. On en déduit que

$$e^{-(\alpha-1)i\pi} \int_{0}^{+\infty} \frac{P(x)}{Q(x)} x^{\alpha-1} dx + e^{(\alpha-1)i\pi} \int_{-\infty}^{0} \frac{P(x)}{Q(x)} x^{\alpha-1} dx = 2\pi i \sum_{k=1}^{n} \operatorname{Res}\left(\frac{P(z)}{Q(z)} (-z)^{\alpha-1}, z_{k}\right).$$

Par conséquent

$$\int_{0}^{+\infty} \frac{P(x)}{Q(x)} x^{\alpha-1} dx = \frac{\pi}{\sin(\alpha \pi)} \sum_{k=1}^{n} \operatorname{Res}\left(\frac{P(z)}{Q(z)} (-z)^{\alpha-1}, z_{k}\right).$$

Exemple 64

Par application de la formule précédente on a

$$\int_{0}^{+\infty} \frac{x^{\alpha - 1}}{x + 1} dx = \frac{\pi}{\sin(\alpha \pi)} \operatorname{Res}\left(\frac{(-z)^{\alpha - 1}}{z + 1}, -1\right) = \frac{\pi}{\sin(\alpha \pi)}, 0 < \alpha < 1.$$

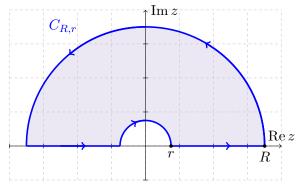
Intégrale du type
$$\int_{-\infty}^{+\infty} \frac{P\left(x\right)}{Q\left(x\right)} \frac{e^{i\alpha x}}{x} dx, \alpha > 0$$

Soit $\frac{P(x)}{Q(x)}$ une fraction rationnelle dont le dénominateur Q(x) ne possède pas des racines réelles et $\deg Q \ge \deg P$.

Considérons la fonction $f(z) = \frac{P(z)}{Q(z)} \frac{e^{i\alpha z}}{z}$ et le contour $C_{R,r}$ de la figure ci-contre,

 $C_{R,r} = [r,R] \cup \Gamma_R \cup [-R,-r] \cup \Gamma_r$ où Γ_R et Γ_r sont des demi cercles centrés à l'origine de rayons

R et r. Donc, d'après le théorème des résidus on obtient



$$\int_{C_{R,r}} \frac{P(z)}{Q(z)} \frac{e^{i\alpha z}}{z} dz = \int_{r}^{R} \frac{P(x)}{Q(x)} \frac{e^{i\alpha x}}{x} dx + \int_{\Gamma_{R}} \frac{P(z)}{Q(z)} \frac{e^{i\alpha z}}{z} dz + \int_{-R}^{-r} \frac{P(x)}{Q(x)} \frac{e^{i\alpha x}}{x} dx - \int_{\Gamma_{r}} \frac{P(z)}{Q(z)} \frac{e^{i\alpha z}}{z} dz$$

$$= 2\pi i \sum_{\text{Im } z_{k} > 0} \text{Res}\left(\frac{P(z)}{Q(z)} \frac{e^{i\alpha z}}{z}, z_{k}\right).$$

Notons que si on procède comme ci-dessus on vérifie que l'intégrale $\int_{\Gamma_R} \frac{P(z)}{Q(z)} \frac{e^{i\alpha z}}{z} dz$ tend vers zéro quand R tend vers $+\infty$.

Pour l'intégrale sur Γ_r on a

$$\lim_{r\to 0} \int_{\Gamma_r} \frac{P\left(z\right)}{Q\left(z\right)} \frac{e^{i\alpha z}}{z} dz = \lim_{r\to 0} \int_{0}^{\pi} \frac{P\left(re^{it}\right)}{Q\left(re^{it}\right)} \frac{e^{i\alpha re^{it}}}{re^{it}} ire^{it} dt = i\pi \frac{P\left(0\right)}{Q\left(0\right)}.$$

Donc si on fait tendre r vers zéro et R vers $+\infty$ on obtient

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \frac{e^{i\alpha x}}{x} dx = i\pi \frac{P(0)}{Q(0)} + 2\pi i \sum_{\text{Im } z_k > 0} \text{Res}\left(\frac{P(z)}{Q(z)} \frac{e^{i\alpha z}}{z}, z_k\right).$$

Exemple 65

Calculons $\int_0^{+\infty} \frac{\sin x}{(x^2+1)x} dx.$

Puisque le nombre i est le seul pôle de $\frac{e^{iz}}{(z^2+1)z}$ avec partie imaginaire strictement positive, alors par application de la formule précédente on obtient

$$\int_{-\infty}^{+\infty} \frac{e^{ix}}{(x^2+1)x} dx = i\pi + 2\pi i \operatorname{Res}\left(\frac{e^{iz}}{(z^2+1)z}, i\right) = i\pi \left(1 - e^{-1}\right).$$

Notons que

$$\int_{-\infty}^{+\infty} \frac{e^{ix}}{(x^2+1)x} dx = \int_{-\infty}^{+\infty} \frac{\cos x}{(x^2+1)x} dx + i \int_{-\infty}^{+\infty} \frac{\sin x}{(x^2+1)x} dx = 2i \int_{0}^{+\infty} \frac{\sin x}{(x^2+1)x} dx.$$

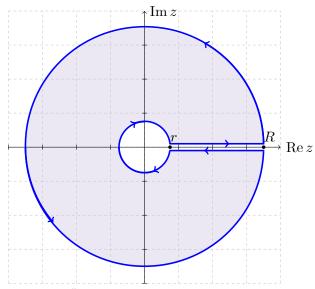
On en déduit que

$$\int_{0}^{+\infty} \frac{\sin x}{(x^2+1)x} dx = (1-e^{-1})\frac{\pi}{2}.$$

Intégrale du type $\int_{0}^{+\infty} \frac{P(x)}{Q(x)} \mathbf{Log} \, x dx$

Soit $\frac{P(x)}{Q(x)}$ une fraction rationnelle dont le dénominateur Q(x) ne possède pas de racines réelles positives ou nulles, $P(0) \neq 0$ et $\deg Q \geq 2 + \deg P$. On considère la fonction $f(z) = \frac{P(z)}{Q(z)} (\operatorname{Log} z)^2$, et le contour $C_{R,r} = [r,R] \cup \Gamma_R \cup [R,r] \cup \Gamma_r$ de la figure ci-contre où Γ_R et Γ_r sont des cercles centrés à l'origine de rayons R et r.

Si R est assez grand et r est assez petit, alors par le théorème des résidus



$$\int_{C_{R,r}} \frac{P(z)}{Q(z)} (\operatorname{Log} z)^{2} dz = \int_{r}^{R} \frac{P(x)}{Q(x)} (\operatorname{Log} x)^{2} dx + \int_{\Gamma_{R}} f(z) dz + \int_{R}^{r} \frac{P(x)}{Q(x)} (\operatorname{Log} x + 2\pi i)^{2} dx - \int_{\Gamma_{r}} f(z) dz$$

$$= 2\pi i \sum_{k=1}^{n} \operatorname{Res} \left(\frac{P(z)}{Q(z)} (\operatorname{Log} z)^{2}, z_{k} \right).$$

Comme précédemment les intégrales sur Γ_r et Γ_R tendent vers zéro lorsque $r \to 0$ et $R \to +\infty$. On obtient alors la relation

$$\int_{0}^{+\infty} \frac{P(x)}{Q(x)} (\operatorname{Log} x)^{2} dx - \int_{0}^{+\infty} \frac{P(x)}{Q(x)} (\operatorname{Log} x + 2\pi i)^{2} dx = 2\pi i \sum_{k=1}^{n} \operatorname{Res} \left(\frac{P(z)}{Q(z)} (\operatorname{Log} z)^{2}, z_{k} \right).$$

D'où

$$-2\int_{0}^{+\infty} \frac{P(x)}{Q(x)} \operatorname{Log} x dx - 2\pi i \int_{0}^{+\infty} \frac{P(x)}{Q(x)} dx = \sum_{k=1}^{n} \operatorname{Res} \left(\frac{P(z)}{Q(z)} \left(\operatorname{Log} z \right)^{2}, z_{k} \right).$$

Alors

$$\int_{0}^{+\infty} \frac{P(x)}{Q(x)} \operatorname{Log} x dx = \frac{-1}{2} \operatorname{Re} \left(\sum_{k=1}^{n} \operatorname{Res} \left(\frac{P(z)}{Q(z)} (\operatorname{Log} z)^{2}, z_{k} \right) \right),$$

$$\int_{0}^{+\infty} \frac{P(x)}{Q(x)} dx = \frac{-1}{2\pi} \operatorname{Im} \left(\sum_{k=1}^{n} \operatorname{Res} \left(\frac{P(z)}{Q(z)} (\operatorname{Log} z)^{2}, z_{k} \right) \right).$$

Exemple 66

Calculons l'intégrale $\int_0^{+\infty} \frac{\log x}{(x+1)^3} dx$.

Ici P(x) = 1 et $Q(x) = (x+1)^3$, toutes les conditions sont vérifiées, d'où

$$\int_{0}^{+\infty} \frac{1}{(x+1)^{3}} \operatorname{Log} x dx = \frac{-1}{2} \operatorname{Re} \left(\operatorname{Res} \left(\frac{1}{(z+1)^{3}} \left(\operatorname{Log} z \right)^{2}, -1 \right) \right),$$

$$\int_{0}^{+\infty} \frac{1}{(x+1)^{3}} dx = \frac{-1}{2\pi} \operatorname{Im} \left(\operatorname{Res} \left(\frac{1}{(z+1)^{3}} \left(\operatorname{Log} z \right)^{2}, -1 \right) \right).$$

Comme -1 est un pôle triple, pour le résidu on a donc

$$\operatorname{Res}\left(\frac{1}{(z+1)^3} (\operatorname{Log} z)^2, -1\right) = \frac{1}{2!} \lim_{z \to -1} \left((z+1)^3 \frac{(\operatorname{Log} z)^2}{(z+1)^3} \right)''$$
$$= \frac{1}{2} \lim_{z \to -1} \left((\operatorname{Log} z)^2 \right)'' = \lim_{z \to -1} \frac{1 - \operatorname{Log} z}{z^2}$$
$$= \frac{1 - \operatorname{Log} (-1)}{(-1)^2} = 1 - (0 + i\pi) = 1 - i\pi.$$

On en déduit que

$$\int_{0}^{+\infty} \frac{\log x}{(x+1)^{3}} dx = \frac{-1}{2},$$

$$\int_{0}^{+\infty} \frac{1}{(x+1)^{3}} dx = \frac{1}{2}.$$