U.S.T.H.B. 2013-2014 Semestre 2

Faculté de Mathématiques

Math 4: Analyse complexe 2^{ème} Lic, ST-GP, Section D

Série d'exercices n° 6: Théorème des résidus

Exercice 1:

Trouver les résidus de **(a)** $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ et **(b)** $f(z) = \frac{e^z}{\sin^2 z}$ en tous les pôles à distance finie.

Exercice 2:

Calculer $\frac{1}{2\pi i} \oint_C \frac{e^z}{z^2(z^2+2z+2)} dz$ le long du cercle C d'équation (a) |z|=3 et (b) |z|=1.

Exercice 3:

Evaluer (a)
$$\int_{0}^{\infty} \frac{1}{x^6 + 1} dx$$
 et (b) $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 1)^2 (x^2 + 2x + 2)} dx$.

Exercice $\underline{4}$:

Evaluer (a)
$$\int_{0}^{2\pi} \frac{1}{3 - 2\cos\theta + \sin\theta} d\theta \text{ et (b)} \int_{0}^{2\pi} \frac{1}{2 + \sin\theta} d\theta.$$

Exercice 5:

Montrer que
$$\int_{0}^{\infty} \frac{\cos(mx)}{x^2 + 1} dx = \frac{\pi}{2} e^{-m}, \ m > 0.$$

Exercice 6:

Montrer que
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
.

Exercice 7:

Montrer que
$$\int_{0}^{\infty} \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin(p\pi)}, \quad 0$$

Exercice 8:

Montrer que
$$\int_{0}^{\infty} \frac{\operatorname{ch}(ax)}{\operatorname{ch} x} dx = \frac{\pi}{2\cos\left(\frac{\pi a}{2}\right)}$$
, où $|a| < 1$.

Exercice 9:

Démontrer que
$$\int_{0}^{\infty} \frac{\log(x^2+1)}{x^2+1} dx = \pi \operatorname{Log} 2.$$