U.S.T.H.B. 2011-2012 Semestre 2 Faculté de Mathématiques Math 4: Analyse complexe 2^{ème} Lic, ST-GP, Section D

Épreuve de TD (interrogation) - 22 avril 2012. Durée : 45 minutes

Nom	:	Matricule:	Forme A	١
10111	•	iviauricaie :	I OI IIIC 1	3

Prénom: Groupe:

Exercice 1 (4 points) : a) Calculer $i \operatorname{Log} i$. b) Résoudre l'équation $e^{-z} + 1 = 0$.

Réponse.

a)
$$i \text{Log } i = i \{ \ln |i| + i \text{Arg } i \}$$

= $i \{ \ln 1 + i \left(\frac{\pi}{2} + 2k\pi \right) \} = -\left(\frac{\pi}{2} + 2k\pi \right), k \in \mathbb{Z}.$

b) L'équation $e^{-z} + 1 = 0$ est équivalente à $e^{-z} = -1$. Si $w = e^u$ on a u = Log w. On obtient alors -z = Log (-1) ou z = -Log (-1), et donc

$$z = -\{\ln|-1| + i\text{Arg}(-1)\}$$

$$= -\{\ln 1 + i(\pi + 2k\pi)\} = -i\pi (1 + 2k), k \in \mathbb{Z}.$$

Autre méthode. En écrivant $e^{-z} = e^{-x-iy} = e^{-x} (\cos y - i \sin y)$, on trouve le même résultat en égalant les parties réelles et imaginaires.

Exercice 2 (2,5 points) : Déterminer u(x,y) et v(x,y) telles que $f(z) = z^2 + i \overline{z} = u + iv$.

Réponse. On a

$$f(z) = z^{2} + i \overline{z} = (x + iy)^{2} + i (x - iy) = x^{2} - y^{2} + 2ixy + ix + y$$
$$= x^{2} - y^{2} + y + i (2xy + x).$$

Alors
$$u(x, y) = x^2 - y^2 + y$$
 et $v(x, y) = 2xy + x$.

Exercice 3 (5 pts): Examiner si la fonction $f(z) = x + e^x \cos y + i (y + e^x \sin y)$ est holomorphe dans \mathbb{C} . Réponse.

Si les dérivées partielles sont continues dans le domaine indiqué, les équations de Cauchy-Riemann $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ sont nécessaires et suffisantes pour que f = u + iv soit holomorphe.

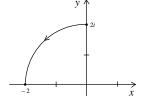
On a
$$u = x + e^x \cos y$$
 et $v = y + e^x \sin y$.
 $\frac{\partial u}{\partial x} = 1 + e^x \cos y$, $\frac{\partial v}{\partial y} = 1 + e^x \cos y$ $\rightarrow \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$.
 $\frac{\partial u}{\partial y} = -e^x \sin y$, $\frac{\partial v}{\partial x} = e^x \sin y$ $\rightarrow \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

Les équations de Cauchy-Riemann sont satisfaites, la fonction f est donc holomorphe sur \mathbb{C} .

Exercice 4 (3,5 points) : Calculer $\int_C (z^3 + \overline{z}) dz$ le long du cercle |z| = 2 de 2i à -2 dans le sens direct.

Réponse.

L'arc de 2i à -2 du cercle |z|=2 peut être paramétré par $z=2e^{it},\ t\in\left[\frac{\pi}{2},\pi\right]$.



Les points 2i et -2 sur C correspondant à $\frac{\pi}{2}$ et à π . L'intégrale curviligne considérée vaut donc

$$\int_{t=\frac{\pi}{2}}^{\pi} \left\{ \left(2e^{it} \right)^3 + 2e^{-it} \right\} \left(2ie^{it}dt \right) = \int_{t=\frac{\pi}{2}}^{\pi} 2ie^{it} \left(8e^{3it} + 2e^{-it} \right) dt$$

$$= \int_{\frac{\pi}{2}}^{\pi} \left(16ie^{4it} + 4i \right) dt = \left[4e^{4it} + 4it \right]_{\frac{\pi}{2}}^{\pi}$$

$$= 4e^{4i\pi} + 4i\pi - \left(4e^{2i\pi} + 2i\pi \right) = 2i\pi.$$

Exercice 5 (supplémentaire):

À l'aide du théorème de Cauchy, calculer $\oint_C z dz$ où C désigne le cercle |z|=1.

Réponse.

Le cercle |z|=1 est une courbe fermée simple et la fonction f(z)=z est holomorphe dans $|z|\leq 1$, donc d'après le théorème de Cauchy $\oint_C z dz=0$.

Nantissement : Sur mon honneur, je n'ai ni donné, ni reçu de l'aide sur ce test. Signé.....