U.S.T.H.B. 2011-2012 Semestre 2 Faculté de Mathématiques Math 4: Analyse complexe 2^{ème} Lic, ST-GP, Section D

Épreuve de TD (interrogation) - 22 avril 2012. Durée : 45 minutes

Nom: Matricule: Forme A

Prénom: Groupe:

Exercice 1 (4 points) : a) Calculer $i \operatorname{Log} i$. **b)** Résoudre l'équation $e^{-z} + 1 = 0$.

Réponse.

 \mathbf{a} $i \operatorname{Log} i = i \{ \ln |i| + i \operatorname{Arg} i \}$ (0,5 pt.)

$$=i\{\ln 1+i\left(\frac{\pi}{2}+2k\pi\right)\}=-\left(\frac{\pi}{2}+2k\pi\right),k\in\mathbb{Z}.$$
 (1 pt.)

b) L'équation $e^{-z} + 1 = 0$ est équivalente à $e^{-z} = -1$. (0,5 pt.)

Si $w = e^u$ on a u = Log w. On obtient alors

$$-z = \text{Log}(-1) \text{ ou } z = -\text{Log}(-1), \text{ (0,5 pt.)} \text{ et donc}$$

$$z = -\{\ln|-1| + i\text{Arg}(-1)\}$$
 (0,5 pt.)

$$=-\{\ln 1+i(\pi+2k\pi)\}=-i\pi(1+2k), k\in\mathbb{Z}.$$
 (1 pt.)

Autre méthode. En écrivant $e^{-z} = e^{-x-iy} = e^{-x} (\cos y - i \sin y)$, on trouve le même résultat en égalant les parties réelles et imaginaires.

Exercice 2 (2,5 points) : Déterminer u(x,y) et v(x,y) telles que $f(z) = z^2 + i \overline{z} = u + iv$.

Réponse. On a

$$f(z) = z^{2} + i \, \overline{z} \stackrel{\text{(0,5 pt.)}}{=} (x + iy)^{2} + i \, (x - iy)$$

$$\stackrel{\text{(1 pt.)}}{=} x^{2} - y^{2} + 2ixy + ix + y \stackrel{\text{(1 pt.)}}{=} x^{2} - y^{2} + y + i \, (2xy + x) \, .$$

Alors $u(x, y) = x^2 - y^2 + y$ et v(x, y) = 2xy + x.

Exercice 3 (5 pts): Examiner si la fonction $f(z) = x + e^x \cos y + i (y + e^x \sin y)$ est holomorphe dans \mathbb{C} . Réponse.

Si les dérivées partielles sont continues dans le domaine indiqué, les équations de Cauchy-Riemann $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ sont nécessaires et suffisantes pour que f = u + iv soit holomorphe.

On a
$$u = x + e^x \cos y$$
 et $v = y + e^x \sin y$.

$$\frac{\partial u}{\partial x} = 1 + e^x \cos y, \text{ (1 pt.)} \quad \frac{\partial v}{\partial y} = 1 + e^x \cos y \text{ (1 pt.)} \quad \rightarrow \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}.$$

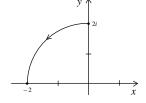
$$\frac{\partial u}{\partial y} = -e^x \sin y, \text{ (1 pt.)} \quad \frac{\partial v}{\partial x} = e^x \sin y \text{ (1 pt.)} \quad \rightarrow \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Les équations de Cauchy-Riemann sont satisfaites, la fonction f est donc holomorphe sur \mathbb{C} . (1 pt.)

Exercice 4 (3,5 points) : Calculer $\int_C (z^3 + \overline{z}) dz$ le long du cercle |z| = 2 de 2i à -2 dans le sens direct.

Réponse.

L'arc de 2i à -2 du cercle |z|=2 peut être paramétré par $z=2e^{it}$, (0,5 pt.) $t\in\left[\frac{\pi}{2},\pi\right]$.(0,5 pt.)



Les points 2i et -2 sur C correspondant à $\frac{\pi}{2}$ et à π . L'intégrale curviligne considérée vaut donc

$$\int_{t=\frac{\pi}{2}}^{\pi} \left\{ \left(2e^{it} \right)^3 + 2e^{-it} \right\} \left(2ie^{it}dt \right) = \int_{t=\frac{\pi}{2}}^{\pi} 2ie^{it} \left(8e^{3it} + 2e^{-it} \right) dt$$

$$= \int_{\frac{\pi}{2}}^{\pi} \left(16ie^{4it} + 4i \right) dt = \left[4e^{4it} + 4it \right]_{\frac{\pi}{2}}^{\pi}$$
(0.5 pt.)

(0,5 pt.)
$$=4e^{4i\pi}+4i\pi-\left(4e^{2i\pi}+2i\pi\right)=2i\pi.$$

Exercice 5 (supplémentaire):

À l'aide du théorème de Cauchy, calculer $\oint z dz$ où C désigne le cercle |z|=1.

Réponse. (+0,5 pt. si l'exercice est parfaitement fait.)

Le cercle |z|=1 est une courbe fermée simple et la fonction f(z)=z est holomorphe dans $|z|\leq 1$, donc d'après le théorème de Cauchy $\oint_C z dz=0$.

Nantissement: Sur mon honneur, je n'ai ni donné, ni reçu de l'aide sur ce test. Signé......