$\mathrm{c^{h^{a}}{}^{p}i_{r_{e}}}\mathbf{1}$

Fonctions Complexes

1.1 Exercices

Exercice 1.1

Déterminer les parties réelles et imaginaires des fonctions complexes suivantes :

a)
$$f(z) = 2z^2 - 3iz$$
, **b)** $f(z) = z + \frac{1}{z}$, **c)** $f(z) = \frac{1-z}{1+z}$, **d)** $f(z) = \overline{z} - iz^2$,

e)
$$f(z) = \frac{\overline{z}}{z}$$
, **f)** $f(z) = z^{\frac{1}{2}}$, **g)** $f(z) = z^2 e^{2z}$.

Exercice 1.2

Trouver les images des axes réel et imaginaire par les transformations :

a)
$$w = \frac{z+1}{z-1}$$
, b) $w = 1 + \frac{1}{z}$.

Exercice 1.3

Soit S un carré du plan de la variable z de sommets A = (0,0), B = (1,0), C = (1,1) et D = (0,1). Déterminer le domaine du plan de la variable w transformé de S par

a)
$$w = z^2$$
, b) $w = 1 + \frac{1}{z}$.

Exercice 1.4

Mettre e^z sous la forme u + iv et calculer $|e^z|$ dans chacun des cas

a)
$$z = 3 + 4i$$
, b) $z = 2i\pi(1+i)$, c) $z = 2 + 3\pi i$, d) $z = \frac{11\pi}{2}i$.

Déterminer la partie réelle et imaginaire des quantités suivantes :

a)
$$f(z) = e^{-\pi z}$$
, **b)** $f(z) = e^{z^2}$, **c)** $f(z) = e^{\frac{1}{z}}$, **d)** $f(z) = e^{z^3}$.

Exercice 1.6

Établir que

a)
$$\frac{e^{z_1}}{e^{z_2}} = e^{z_1 - z_2}$$
, b) $\overline{e^z} = e^{\overline{z}}$, c) $|e^{iz}| = e^{-\operatorname{Im} z}$, d) $|e^z - 1| \le e^{|z|} - 1 \le |z| e^{|z|}$.

Exercice 1.7

Déterminer toutes les valeurs de z telles que

a)
$$e^z$$
 est un réel b) $|e^{-z}| < 1$.

Exercice 1.8

Résoudre dans le plan complexe les équations

a)
$$e^z = 1$$
, b) $e^z = 4 + 3i$, c) $e^z = 0$, d) $e^z = -2$.

Exercice 1.9

Mettre sous la forme u + iv les nombres suivants

a)
$$\sin(2\pi i)$$
, **b)** $\operatorname{Sh}(3+4i)$, **c)** $\operatorname{Ch}(3+4i)$, **d)** $\sin(\pi i)$, **e)** $\cos(\frac{\pi}{2}-\pi i)$.

Exercice 1.10

Montrer que

a)
$$\operatorname{Ch} z = \operatorname{Ch} x \cos y + i \operatorname{Sh} x \sin y$$
,

b) Sh
$$z = \operatorname{Sh} x \cos y + i \operatorname{Ch} x \sin y$$
,

c)
$$\operatorname{Ch}(z_1 + z_2) = \operatorname{Ch} z_1 \operatorname{Ch} z_2 + \operatorname{Sh} z_1 \operatorname{Sh} z_2$$
, d) $\operatorname{Sh}(z_1 + z_2) = \operatorname{Sh} z_1 \operatorname{Ch} z_2 + \operatorname{Ch} z_1 \operatorname{Sh} z_2$,

d)
$$Sh(z_1 + z_2) = Sh z_1 Ch z_2 + Ch z_1 Sh z_2$$
.

e)
$$Ch^2 z - Sh^2 z = 1$$
,

f)
$$Ch^2 z + Sh^2 z = Ch(2z)$$
.

Exercice 1.11

Montrer que pour tout $z, z_0 \in \mathbb{C}$:

a)
$$\cos z = \cos z_0 \iff z = z_0 + 2k\pi \text{ ou } z = -z_0 + 2k\pi, \ k \in \mathbb{Z},$$

b)
$$\sin z = \sin z_0 \iff z = z_0 + 2k\pi \text{ ou } z = \pi - z_0 + 2k\pi, \ k \in \mathbb{Z},$$

c)
$$\cos z = 0 \iff z \equiv \frac{\pi}{2} [\pi],$$

$$\mathbf{d)} \sin z = 0 \Longleftrightarrow z \equiv 0 [\pi].$$

Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$\sin z = 100$$
, b) $\text{Ch } z = 0$, c) $\text{Sh } z = 0$, d) $\text{Ch } z = -1$.

Exercice 1.13

Montrer que toutes les racines des équations $\sin z = a$ et $\cos z = a$ où $-1 \le a \le 1$, sont réelles.

Exercice 1.14

Montrer que pour tout z = x + iy

a)
$$|\operatorname{Sh} y| \le |\cos z| \le |\operatorname{Ch} y|$$
, b) $|\operatorname{Sh} y| \le |\sin z| \le |\operatorname{Ch} y|$.

Que peut-on en conclure?

Exercice 1.15

Déterminer tout les points z de \mathbb{C} qui vérifie $|\cos z| \leq 1$.

Exercice 1.16

Déterminer les valeurs de Log z dans chacun des cas, où Log désigne la détermination principale du logarithme :

a)
$$z = -11$$
, b) $z = 4 + 4i$, c) $z = 4 - 4i$, d) $z = 1 \pm i$, e) $z = ei$.

Exercice 1.17

Déterminer toutes les valeurs de Log z dans les cas suivants :

a)
$$z = e$$
, b) $z = 1$, c) $z = -7$, d) $z = e^i$, e) $z = 4 + 3i$.

Puis montrer que l'ensemble des valeurs de $\text{Log}(i^2)$ est différent de l'ensemble des valeurs de 2 Log(i).

Exercice 1.18

Résoudre les équations suivantes :

a)
$$\log z = -i\frac{\pi}{2}$$
, b) $\log z = 4 - 3i$, c) $\log z = e - \pi i$.

Exercice 1.19

Trouver la valeur principale de

a)
$$(1+i)^{1-i}$$
, b) $(1-i)^{1+i}$, c) $i^{\frac{i}{2}}$, d) $(-1)^{2-i}$, e) $(3+4i)^{\frac{1}{3}}$.

1.2 Solutions

Exercice 1.1

Déterminer les parties réelles et imaginaires des fonctions complexes suivantes :

a)
$$f(z) = 2z^2 - 3iz$$
, **b)** $f(z) = z + \frac{1}{z}$, **c)** $f(z) = \frac{1-z}{1+z}$, **d)** $f(z) = \overline{z} - iz^2$,

e)
$$f(z) = \frac{\overline{z}}{z}$$
, **f)** $f(z) = z^{\frac{1}{2}}$, **g)** $f(z) = z^2 e^{2z}$.

Solution.

a) On a z = x + iy alors

$$f(z) = 2(x+iy)^{2} - 3i(x+iy) = 2x^{2} + 4ixy - 2y^{2} - 3ix + 3y$$
$$= 2x^{2} - 2y^{2} + 3y + i(4xy - 3x).$$

Donc Re $(f(z)) = 2x^2 - 2y^2 + 3y$ et Im (f(z)) = 4xy - 3x.

b)
$$f(z) = z + \frac{1}{z} = x + iy + \frac{1}{x + iy}$$
.

Pour écrire un quotient de deux nombres complexes sous forme algébrique u + iv, on multiplie et on divise par le conjugué du dénominateur.

$$f(z) = x + iy + \frac{x - iy}{(x + iy)(x - iy)} = x + iy + \frac{x - iy}{x^2 + y^2} = x + \frac{x}{x^2 + y^2} + i\left(y - \frac{y}{x^2 + y^2}\right).$$

c)
$$f(z) = \frac{1-z}{1+z} = \frac{1-x-iy}{1+x+iy} = \frac{(1-x-iy)(1+x-iy)}{(1+x+iy)(1+x-iy)} = \frac{1-x^2-y^2}{(1+x)^2+y^2} + i\frac{-2y}{(1+x)^2+y^2}$$
.

d)
$$f(z) = \overline{z} - iz^2 = x - iy - i(x + iy)^2 = x - iy - i(x^2 - y^2 + 2ixy) = x + 2xy + i(y^2 - x^2 - y)$$
.

e)
$$f(z) = \frac{\overline{z}}{z} = \frac{\overline{z}\overline{z}}{z\overline{z}} = \frac{\overline{z}^2}{|z|^2} = \frac{(x-iy)^2}{x^2+y^2} = \frac{x^2-y^2}{x^2+y^2} + i\frac{(-2xy)}{x^2+y^2}.$$

f) En écrivant z sous forme polaire $z = re^{i(\theta + 2k\pi)}, k \in \mathbb{Z}$, alors

$$f(z) = z^{\frac{1}{2}} = \left(re^{i(\theta + 2k\pi)}\right)^{\frac{1}{2}} = \sqrt{r}e^{i\left(\frac{\theta}{2} + k\pi\right)} = \sqrt{r}\cos\left(\frac{\theta}{2} + k\pi\right) + i\sqrt{r}\sin\left(\frac{\theta}{2} + k\pi\right).$$

g)
$$f(z) = z^2 e^{2z} = (x+iy)^2 e^{2(x+iy)} = (x^2 - y^2 + 2ixy) e^{2x} (\cos(2y) + i\sin(2y))$$

= $((x^2 - y^2)\cos(2y) - 2xy\sin(2y)) e^{2x} + i((x^2 - y^2)\sin(2y) + 2xy\cos(2y)) e^{2x}$.

Trouver les images des axes réel et imaginaire par les transformations :

a)
$$w = \frac{z+1}{z-1}$$
, **b)** $w = 1 + \frac{1}{z}$.

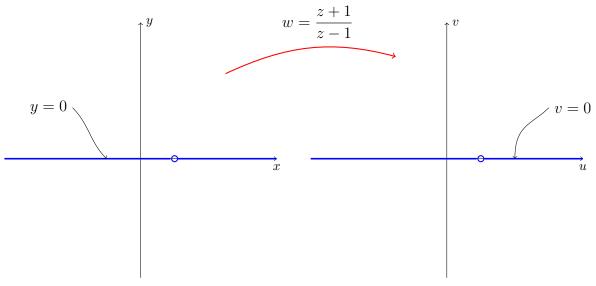
Solution.

a)

• L'équation paramétrique de l'axe des réels est y=0 ou z=x avec $x\in\mathbb{R}$, alors

$$w=\frac{z+1}{z-1}=\frac{x+1}{x-1}, x\in\mathbb{R}\backslash\left\{1\right\}.$$

En tenant compte de w=u+iv, les équations paramétriques de la courbe image sont $u=\frac{x+1}{x-1}, x\in\mathbb{R}\setminus\{1\}$ et v=0. Lorsque x varie en $\mathbb{R}\setminus\{1\}$ on obtient dans le plan de la variable w, l'axe des réels v=0 à l'exception du point (1,0) car pour tout $u\in\mathbb{R}\setminus\{1\}$ il existe $x=\frac{u+1}{u-1}$ solution de $u=\frac{x+1}{x-1}$.



Plan de la variable z = x + iy

Plan de la variable w = u + iv

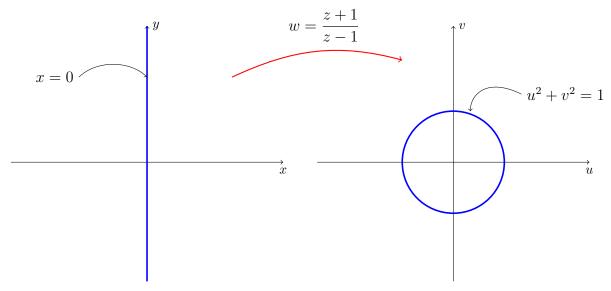
• L'équation paramétrique de l'axe des imaginaires est x=0 ou z=iy avec $y\in\mathbb{R}$, alors

$$w = \frac{z+1}{z-1} = \frac{iy+1}{iy-1} = \frac{y^2-1}{y^2+1} + i\frac{(-2y)}{y^2+1}, y \in \mathbb{R}.$$

Les équations paramétriques de la courbe image sont $u = \frac{t^2 - 1}{t^2 + 1}$, $v = \frac{-2t}{t^2 + 1}$, $t \in \mathbb{R}$. En éliminant t entre ces deux équations, on trouve $u^2 + v^2 = 1$, qui est une équation d'un

5

cercle de centre origine et de rayon 1.

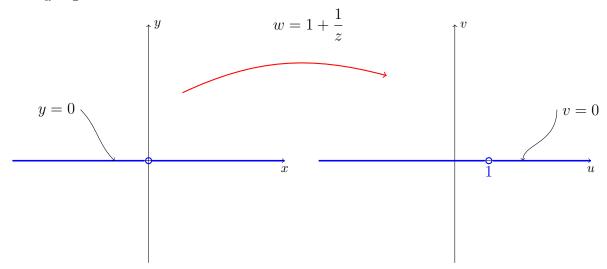


Plan de la variable z = x + iy

Plan de la variable w = u + iv

b)

• Les points z=x+iy dans l'axe des réels correspondent à y=0 ou z=x avec $x\in\mathbb{R},$ alors $w=1+\frac{1}{z}=1+\frac{1}{x}, x\in\mathbb{R}^*.$ Lorsque x varie en \mathbb{R}^* on obtient dans le plan de la variable w, l'ensemble $\{u,u\in]-\infty,1[\,\cup\,]1,+\infty[\}$ car l'équation $1+\frac{1}{x}=u$ admet une solution $x=\frac{1}{u-1}$ lorsque $u\neq 1$.



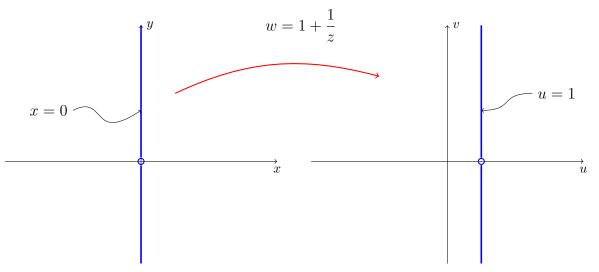
Plan de la variable z = x + iy

Plan de la variable w = u + iv

 \bullet L'axe des imaginaires correspond à x=0 ou z=iy avec $y\in\mathbb{R},$ alors

$$w = 1 + \frac{1}{z} = 1 + \frac{1}{iy} = 1 - i\frac{1}{y}, y \in \mathbb{R}^*.$$

Lorsque y varie en \mathbb{R}^* on obtient dans le plan de la variable w, la droite u=1 exempté le point (1,0) car pour tout $v\in\mathbb{R}$ l'équation $-\frac{1}{y}=v$ admet une solution $y=\frac{-1}{v}$ si $v\neq 0$.



Plan de la variable z = x + iy

Plan de la variable w = u + iv

Exercice 1.3

Soit S un carré du plan de la variable z de sommets A=(0,0), B=(1,0), C=(1,1) et D=(0,1). Déterminer le domaine du plan de la variable w transformé de S par

a)
$$w = z^2$$
, b) $w = 1 + \frac{1}{z}$.

Solution.

Le segment de droite reliant deux points complexes z_0 et z_1 est l'ensemble des points

$$\{z \in \mathbb{C} \ / \ z = (1-t) z_0 + t z_1, \ t \in [0,1] \}.$$

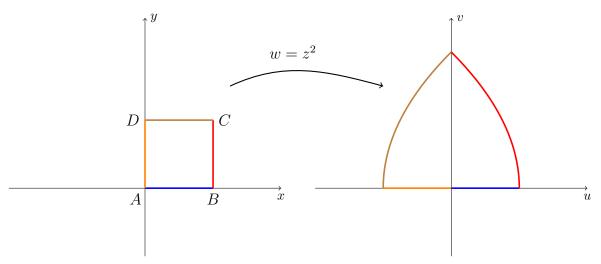
Les équations paramétriques des segments de droites [AB], [BC], [CD] est [DA] sont, respectivement, z=t, z=1+it, z=1-t+i et z=(1-t)i avec $t\in[0,1]$.

a) Les courbes transformées par $w=z^2$ de ces segments de droites ont pour équations, respectivement, $w=t^2, w=1-t^2+2it, w=t^2-2t+(2-2t)i$ et $w=-(1-t)^2$ avec $t\in[0,1]$. En tenant compte de w=u+iv, les équations paramétriques des courbes images sont, respectivement,

$$\{u=t^2, v=0\}, \{u=1-t^2, v=2t\}, \{u=t^2-2t, v=2-2t\} \text{ et } \{u=-(1-t)^2, v=0\}$$

avec $t \in [0,1]$. En éliminant t entre u et v, on trouve, respectivement, les courbes

$$\left\{\left(u,0\right),u\in\left[0,1\right]\right\},\left\{u=1-\tfrac{1}{4}v^2,v\in\left[0,2\right]\right\},\left\{u=\tfrac{1}{4}v^2-1,v\in\left[0,2\right]\right\}\text{ et }\left\{\left(u,0\right),u\in\left[-1,0\right]\right\}.$$



Plan de la variable z = x + iy

Plan de la variable w = u + iv

b) Les courbes transformées par $w = 1 + \frac{1}{z}$ des segments de droites [AB], [BC], [CD] est [DA] ont pour équations, respectivement,

$$w = 1 + \frac{1}{t}, w = \frac{t^2 + 2}{t^2 + 1} - i\frac{t}{t^2 + 1}, w = \frac{(1 - t)^2 + (1 - t) + 1}{(1 - t)^2 + 1} - i\frac{1}{(1 - t)^2 + 1}$$
 et $w = 1 - i\frac{1}{(1 - t)}$

avec $t \in [0, 1]$. En tenant compte de w = u + iv, les équations paramétriques des courbes images sont, respectivement,

$$\left\{u=1+\frac{1}{t},v=0\right\},\ \left\{u=\frac{t^2+2}{t^2+1},v=\frac{-t}{t^2+1}\right\}, \left\{u=\frac{(1-t)^2+(1-t)+1}{(1-t)^2+1},v=\frac{-1}{(1-t)^2+1}\right\}$$
 et
$$\left\{u=1,v=\frac{-1}{1-t}\right\}\ \text{avec}\ t\in [0,1]\,.$$

- La courbe $\left\{u=1+\frac{1}{t},v=0\right\},\,t\in[0,1]$ représente la demi droite $\{u\geq 2,v=0\}.$
- En éliminant t entre u et v dans $\left\{u = \frac{t^2+2}{t^2+1}, v = \frac{-t}{t^2+1}\right\}$ on trouve

$$\left(u - \frac{3}{2}\right)^2 + v^2 = \frac{1}{4} \text{ avec } u \in \left[\frac{3}{2}, 2\right],$$

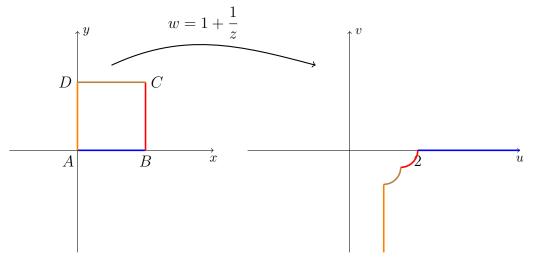
qui est un arc d'un cercle.

• En éliminant t entre u et v dans $\left\{u = \frac{(1-t)^2 + (1-t) + 1}{(1-t)^2 + 1}, v = \frac{-1}{(1-t)^2 + 1}\right\}$ on trouve

$$(u-1)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{1}{4} \text{ avec } u \in \left[1, \frac{3}{2}\right],$$

qui est aussi un arc d'un cercle.

• La courbe $\left\{u=1,v=\frac{-1}{1-t}\right\},\,t\in[0,1]$ représente la demi droite $\{u=1,v\in]-\infty,-1]\}.$



Plan de la variable z = x + iy

Plan de la variable w = u + iv

Exercice 1.4

Mettre e^z sous la forme u + iv et calculer $|e^z|$ dans chacun des cas

a)
$$z = 3 + 4i$$
, b) $z = 2i\pi(1+i)$, c) $z = 2 + 3\pi i$, d) $z = \frac{11\pi}{2}i$.

Solution.

Par définition $e^z = e^x (\cos y + i \sin y)$ où z = x + iy. Donc $|e^z| = |e^x (\cos y + i \sin y)| = e^x$.

a)
$$e^{3+4i} = e^3(\cos 4 + i\sin 4) = e^3\cos 4 + ie^3\sin 4$$
 et $|e^{3+4i}| = e^3$.

b)
$$e^{2i\pi(1+i)} = e^{-2\pi + 2i\pi} = e^{-2\pi} \left(\cos(2\pi) + i\sin(2\pi)\right) = e^{-2\pi} \text{ et } \left|e^{2i\pi(1+i)}\right| = e^{-2\pi}.$$

c)
$$e^{2+3\pi i} = e^2 (\cos(3\pi) + i\sin(3\pi)) = -e^2 \text{ et } |e^{2+3\pi i}| = e^2$$
.

d)
$$e^{\frac{11\pi}{2}i} = e^0 \left(\cos\left(\frac{11\pi}{2}\right) + i\sin\left(\frac{11\pi}{2}\right)\right) = -i \text{ et } \left|e^{\frac{11\pi}{2}i}\right| = 1.$$

Exercice 1.5

Déterminer la partie réelle et imaginaire des quantités suivantes :

a)
$$f(z) = e^{-\pi z}$$
, **b)** $f(z) = e^{z^2}$, **c)** $f(z) = e^{\frac{1}{z}}$, **d)** $f(z) = e^{z^3}$.

Solution.

a)
$$f(z) = e^{-\pi z} = e^{-\pi(x+iy)} = e^{-\pi x}e^{-i\pi y} = e^{-\pi x}(\cos(\pi y) - i\sin(\pi y))$$

= $e^{-\pi x}\cos(\pi y) - ie^{-\pi x}\sin(\pi y)$,

b)
$$f(z) = e^{z^2} = e^{(x+iy)^2} = e^{x^2-y^2+i2xy} = e^{x^2-y^2}\cos(2xy) + ie^{x^2-y^2}\sin(2xy)$$
,

$$\mathbf{c}) f(z) = e^{\frac{1}{z}} = e^{\frac{1}{x+iy}} = e^{\frac{x-iy}{(x+iy)(x-iy)}} = e^{\frac{x}{x^2+y^2}-i\frac{y}{x^2+y^2}} = e^{\frac{x}{x^2+y^2}} \cos\left(\frac{y}{x^2+y^2}\right) + ie^{\frac{x}{x^2+y^2}} \sin\left(\frac{y}{x^2+y^2}\right),$$

d) On a
$$z^3 = (x + iy)^3 = x^3 - 3xy^2 + i(3x^2y - y^3)$$
. Alors
$$f(z) = e^{z^3} = e^{x^3 - 3xy^2} \cos(3x^2y - y^3) + ie^{x^3 - 3xy^2} \sin(3x^2y - y^3).$$

Exercice 1.6

Établir que

a)
$$\frac{e^{z_1}}{e^{z_2}} = e^{z_1 - z_2}$$
, **b**) $\overline{e^z} = e^{\overline{z}}$, **c**) $|e^{iz}| = e^{-\operatorname{Im} z}$, **d**) $|e^z - 1| \le e^{|z|} - 1 \le |z| e^{|z|}$.

Solution.

a) Par définition $e^z = e^x (\cos y + i \sin y)$ où z = x + iy. Donc si $z_1 = x_1 + iy_1$ et $z_2 = x_2 + iy_2$, alors

$$\frac{e^{z_1}}{e^{z_2}} = \frac{e^{x_1} \left(\cos y_1 + i \sin y_1\right)}{e^{x_2} \left(\cos y_2 + i \sin y_2\right)} = e^{x_1 - x_2} \frac{\left(\cos y_1 + i \sin y_1\right) \left(\cos y_2 - i \sin y_2\right)}{\left(\cos y_2 + i \sin y_2\right) \left(\cos y_2 - i \sin y_2\right)}$$
$$= e^{x_1 - x_2} \frac{\cos y_1 \cos y_2 + \sin y_1 \sin y_2 + i \left(\cos y_2 \sin y_1 - \cos y_1 \sin y_2\right)}{\cos^2 y_2 + \sin^2 y_2}$$

Comme $\cos y_1 \cos y_2 + \sin y_1 \sin y_2 = \cos (y_1 - y_2)$, $\cos y_2 \sin y_1 - \cos y_1 \sin y_2 = \sin (y_1 - y_2)$ et $\cos^2 y_2 + \sin^2 y_2 = 1$, alors

$$\frac{e^{z_1}}{e^{z_2}} = e^{x_1 - x_2} \left(\cos \left(y_1 - y_2 \right) + i \sin \left(y_1 - y_2 \right) \right) = e^{x_1 - x_2 + i(y_1 - y_2)}$$
$$= e^{x_1 + iy_1 - (x_2 + iy_2)}$$
$$= e^{z_1 - z_2}.$$

b)
$$\overline{e^z} = \overline{e^x (\cos y + i \sin y)} = e^x (\cos y - i \sin y) = e^x (\cos (-y) + i \sin (-y))$$

= $e^{x+i(-y)} = e^{\overline{z}}$

c)
$$|e^{iz}| = |e^{i(x+iy)}| = |e^{-y+ix}| = |e^{-y}(\cos x + i\sin x)| = e^{-y}(\cos^2 x + \sin^2 x) = e^{-y} = e^{-\operatorname{Im} z}$$
.

d) Nous verrons plus tard que la fonction exponentielle complexe e^z est définie en étendant la série de Taylor de e^x à partir de valeurs réelles de x à des valeurs complexes :

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^4}{4!} + \dots = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

Alors

$$e^{z} - 1 = z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \frac{z^{4}}{4!} + \dots$$

En prenant la valeur absolue (module) de cette identité et en appliquant l'inégalité triangulaire $|z_1 + z_2| \le |z_1| + |z_2|$, nous obtenons

$$|e^{z} - 1| \le |z| + \frac{|z|^{2}}{2!} + \frac{|z|^{3}}{3!} + \frac{|z|^{4}}{4!} + \dots = e^{|z|} - 1.$$

Ainsi

$$\begin{split} e^{|z|} - 1 &= |z| + \frac{|z|^2}{2!} + \frac{|z|^3}{3!} + \frac{|z|^4}{4!} + \dots \\ &\leq |z| + \frac{|z|^2}{1!} + \frac{|z|^3}{2!} + \frac{|z|^4}{3!} + \dots \\ &= |z| \left(1 + |z| + \frac{|z|^2}{2!} + \frac{|z|^3}{3!} + \dots \right) \\ &= |z| \, e^{|z|}. \end{split}$$

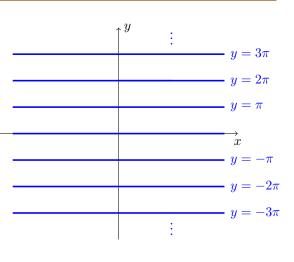
Exercice 1.7

Déterminer toutes les valeurs de z telles que

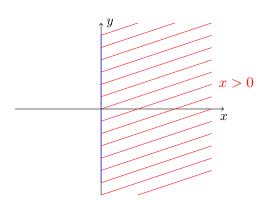
a)
$$e^z$$
 est un réel b) $|e^{-z}| < 1$.

Solution.

a) Par définition $e^z = e^x \cos y + i e^x \sin y$ où z = x + i y. Donc la partie imaginaire de e^z s'annule si $e^x \sin y = 0$, ce qui est équivalent à $\sin y = 0$ car $e^x > 0$. D'où $y = k\pi$, $k \in \mathbb{Z}$. Alors e^z est un réel si et seulement si $z = x + i k\pi$, $k \in \mathbb{Z}$, qui sont des droites $y = k\pi$, $k \in \mathbb{Z}$, parallèles à l'axe des x.



b) On a $e^{-z}=e^{-x}\cos y-ie^{-x}\sin y$. Donc $|e^{-z}|=e^{-x}$. Alors $|e^{-z}|<1$ est équivalent à $e^{-x}<1$ ou bien x>0. D'où les valeurs de z vérifiant $|e^{-z}|<1$ sont situés dans le demi-plan à droite de l'axe des $y:\{z=x+iy\ /\ x>0\}$. Dans la figure ci-contre, c'est la partie hachurée.



Exercice 1.8

Résoudre dans le plan complexe les équations

a)
$$e^z = 1$$
, b) $e^z = 4 + 3i$, c) $e^z = 0$, d) $e^z = -2$.

Solution.

a) Si $e^z = e^x \cos y + i e^x \sin y = 1$, alors on a les deux équations $e^x \cos y = 1$ et $e^x \sin y = 0$. Puisque $e^x > 0$, on aura $\sin y = 0$ ce qui implique que $y = k\pi, k \in \mathbb{Z}$. Donc la première équation devient

$$e^x \cos(k\pi) = 1$$
 ou bien $e^x = \frac{1}{\cos(k\pi)} = \frac{1}{(-1)^k} = (-1)^k$.

Ceci est possible seulement si k est un nombre pair. Dans ce cas x=0. Alors les racines de l'équation $e^z=1$ sont $z_k=i\,(2k)\,\pi, k\in\mathbb{Z}$.

Autre méthode. Si $w = e^z$ on a z = Log w. On obtient alors z = Log w, et donc

$$z = \ln |1| + i \arg (1) = 0 + i (0 + 2k\pi) = i (2k) \pi, k \in \mathbb{Z}.$$

b) L'équation $e^z = e^x \cos y + i e^x \sin y = 4 + 3i$ est équivalente à $e^x \cos y = 4$ et $e^x \sin y = 3$. En prenant le carré des deux dernières équations et en les additionnant, on obtient $e^{2x} = 4^2 + 3^2 = 25$ ou bien $e^x = 5$, ce qui donne $x = \ln 5$. Encore une fois en réarrangeant ces équations, on obtient $\operatorname{tg} y = \frac{3}{4}$, ce qui donne $y = \operatorname{Arctg}\left(\frac{3}{4}\right) + k\pi, k \in \mathbb{Z}$. D'où les solutions sont $z = \ln 5 + i \left(\operatorname{Arctg}\left(\frac{3}{4}\right) + 2k\pi\right), k \in \mathbb{Z}$.

Autre méthode. $e^z = 4 + 3i$ implique

$$z = \text{Log}(4+3i) = \ln|4+3i| + i \arg(4+3i) = \ln 5 + i \left(\text{Arctg}\left(\frac{3}{4}\right) + 2k\pi\right), k \in \mathbb{Z}.$$

c) L'équation $e^z = 0$ n'admet pas de solutions car $e^x \cos y = 0$ et $e^x \sin y = 0$, ce qui implique que $\cos y = \sin y = 0$ et ceci n'est pas possible.

d) L'équation $e^z = -2$ implique $z = \text{Log}(-2) = \ln|-2| + i \arg(-2) = \ln 2 + i (\pi + 2k\pi)$ avec k dans \mathbb{Z} .

Exercice 1.9

Mettre sous la forme u + iv les nombres suivants

a)
$$\sin(2\pi i)$$
, **b)** $\operatorname{Sh}(3+4i)$, **c)** $\operatorname{Ch}(3+4i)$, **d)** $\sin(\pi i)$, **e)** $\cos(\frac{\pi}{2}-\pi i)$.

Solution.

a) Par définition
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
. Alors $\sin(2\pi i) = \frac{e^{-2\pi} - e^{2\pi}}{2i} = i\frac{e^{2\pi} - e^{-2\pi}}{2} = i\operatorname{Sh}(2\pi)$.

b) On a Sh
$$z = \frac{e^z - e^{-z}}{2}$$
. Donc

$$\operatorname{Sh}(3+4i) = \frac{e^{3+4i} - e^{-3-4i}}{2} = \frac{e^3 \cos 4 + ie^3 \sin 4 - e^{-3} \cos 4 + ie^{-3} \sin 4}{2}$$
$$= \operatorname{Sh} 3 \cos 4 + i \operatorname{Ch} 3 \sin 4.$$

c) On a Ch
$$z = \frac{e^z + e^{-z}}{2}$$
. Donc

$$\operatorname{Ch}(3+4i) = \frac{e^{3+4i} + e^{-3-4i}}{2} = \frac{e^3 \cos 4 + ie^3 \sin 4 + e^{-3} \cos 4 - ie^{-3} \sin 4}{2}$$
$$= \operatorname{Ch} 3 \cos 4 + i \operatorname{Sh} 3 \sin 4.$$

d)
$$\sin(\pi i) = \frac{e^{i(\pi i)} - e^{-i(\pi i)}}{2i} = \frac{e^{-\pi} - e^{\pi}}{2i} = i\frac{e^{\pi} - e^{-\pi}}{2} = i\operatorname{Sh}(\pi).$$

e) Par définition
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
. Alors

$$\cos\left(\frac{\pi}{2} - \pi i\right) = \frac{e^{i\frac{\pi}{2} + \pi} + e^{-i\frac{\pi}{2} - \pi}}{2} = \frac{e^{\pi}\cos\frac{\pi}{2} + ie^{\pi}\sin\frac{\pi}{2} + e^{-\pi}\cos\frac{\pi}{2} - ie^{-\pi}\sin\frac{\pi}{2}}{2}$$
$$= \frac{ie^{\pi} - ie^{-\pi}}{2} = i\operatorname{Sh}\pi.$$

Montrer que

a)
$$\operatorname{Ch} z = \operatorname{Ch} x \cos y + i \operatorname{Sh} x \sin y$$
,

b) Sh
$$z = \operatorname{Sh} x \cos y + i \operatorname{Ch} x \sin y$$
,

c)
$$\operatorname{Ch}(z_1 + z_2) = \operatorname{Ch} z_1 \operatorname{Ch} z_2 + \operatorname{Sh} z_1 \operatorname{Sh} z_2$$
, d) $\operatorname{Sh}(z_1 + z_2) = \operatorname{Sh} z_1 \operatorname{Ch} z_2 + \operatorname{Ch} z_1 \operatorname{Sh} z_2$,

d)
$$\operatorname{Sh}(z_1 + z_2) = \operatorname{Sh} z_1 \operatorname{Ch} z_2 + \operatorname{Ch} z_1 \operatorname{Sh} z_2$$
,

$$e) \operatorname{Ch}^2 z - \operatorname{Sh}^2 z = 1,$$

f)
$$Ch^2 z + Sh^2 z = Ch(2z)$$
.

Solution.

a) On a Ch
$$z = \frac{e^z + e^{-z}}{2}$$
. Donc

$$\operatorname{Ch} z = \frac{e^{x+iy} + e^{-x-iy}}{2} = \frac{e^x \cos y + ie^x \sin y + e^{-x} \cos y - ie^{-x} \sin y}{2}$$
$$= \operatorname{Ch} x \cos y + i \operatorname{Sh} x \sin y.$$

b) On a Sh
$$z = \frac{e^z - e^{-z}}{2}$$
. Donc

$$\operatorname{Sh} z = \frac{e^{x+iy} - e^{-x-iy}}{2} = \frac{e^x \cos y + ie^x \sin y - e^{-x} \cos y + ie^{-x} \sin y}{2}$$
$$= \operatorname{Sh} x \cos y + i \operatorname{Ch} x \sin y.$$

c) On a Ch
$$(z_1 + z_2) = \frac{e^{z_1 + z_2} + e^{-z_1 - z_2}}{2}$$
. Comme $e^{z_1 + z_2} = e^{z_1}e^{z_2}$ alors

$$\begin{split} \operatorname{Ch}\left(z_{1}+z_{2}\right) &= \frac{e^{z_{1}}e^{z_{2}}+e^{-z_{1}}e^{z-2}}{2} = \frac{e^{z_{1}}e^{z_{2}}+e^{-z_{1}}e^{z-2}}{4} + \frac{e^{z_{1}}e^{z_{2}}+e^{-z_{1}}e^{z-2}}{4} \\ &= \frac{e^{z_{1}}e^{z_{2}}+e^{z_{1}}e^{-z_{2}}+e^{-z_{1}}e^{z_{2}}+e^{-z_{1}}e^{z-2}}{4} + \frac{e^{z_{1}}e^{z_{2}}-e^{z_{1}}e^{-z_{2}}-e^{-z_{1}}e^{z_{2}}+e^{-z_{1}}e^{z-2}}{4} \\ &= \left(\frac{e^{z_{1}}+e^{-z_{1}}}{2}\right)\left(\frac{e^{z_{2}}+e^{-z_{2}}}{2}\right) + \left(\frac{e^{z_{1}}-e^{-z_{1}}}{2}\right)\left(\frac{e^{z_{2}}-e^{-z_{2}}}{2}\right) \\ &= \operatorname{Ch}z_{1}\operatorname{Ch}z_{2} + \operatorname{Sh}z_{1}\operatorname{Sh}z_{2}. \end{split}$$

d) On a

$$\begin{split} \operatorname{Sh}\left(z_{1}+z_{2}\right) &= \frac{e^{z_{1}}e^{z_{2}}-e^{-z_{1}}e^{z_{-2}}}{2} = \frac{e^{z_{1}}e^{z_{2}}-e^{-z_{1}}e^{z_{-2}}}{4} + \frac{e^{z_{1}}e^{z_{2}}-e^{-z_{1}}e^{z_{-2}}}{4} \\ &= \frac{e^{z_{1}}e^{z_{2}}+e^{z_{1}}e^{-z_{2}}-e^{-z_{1}}e^{z_{2}}-e^{-z_{1}}e^{z_{-2}}}{4} + \frac{e^{z_{1}}e^{z_{2}}-e^{z_{1}}e^{-z_{2}}+e^{-z_{1}}e^{z_{2}}-e^{-z_{1}}e^{z_{-2}}}{4} \\ &= \left(\frac{e^{z_{1}}-e^{-z_{1}}}{2}\right)\left(\frac{e^{z_{2}}+e^{-z_{2}}}{2}\right) + \left(\frac{e^{z_{1}}+e^{-z_{1}}}{2}\right)\left(\frac{e^{z_{2}}-e^{-z_{2}}}{2}\right) \end{split}$$

$$= \operatorname{Sh} z_1 \operatorname{Ch} z_2 + \operatorname{Ch} z_1 \operatorname{Sh} z_2.$$

- e) Si on prend $z_1 = -z_2 = z$ dans l'identité c) on trouve $\operatorname{Ch} 0 = \operatorname{Ch} z \operatorname{Ch} (-z) + \operatorname{Sh} z \operatorname{Sh} (-z)$. Comme $\operatorname{Ch} 0 = 1$, $\operatorname{Ch} (-z) = \operatorname{Ch} z$ et $\operatorname{Sh} (-z) = -\operatorname{Sh} z$ alors on obtient $\operatorname{Ch}^2 z - \operatorname{Sh}^2 z = 1$.
- f) Si on prend $z_1 = z_2 = z$ dans l'identité c) on trouve $Ch(2z) = Ch^2 z + Sh^2 z$.

Montrer que pour tout $z, z_0 \in \mathbb{C}$:

a)
$$\cos z = \cos z_0 \iff z = z_0 + 2k\pi \text{ ou } z = -z_0 + 2k\pi, \ k \in \mathbb{Z},$$

b)
$$\sin z = \sin z_0 \iff z = z_0 + 2k\pi \text{ ou } z = \pi - z_0 + 2k\pi, \ k \in \mathbb{Z},$$

c)
$$\cos z = 0 \iff z \equiv \frac{\pi}{2} [\pi],$$

d)
$$\sin z = 0 \iff z \equiv 0 [\pi]$$
.

Solution.

a) On a
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
. Alors

$$\cos z = \cos z_{0} \iff \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{iz_{0}} + e^{-iz_{0}}}{2}$$

$$\iff e^{iz} - e^{iz_{0}} - e^{-iz_{0}} + e^{-iz} = 0$$

$$\iff e^{-iz} (e^{2iz} - e^{iz + iz_{0}} - e^{iz - iz_{0}} + 1) = 0 \qquad \text{(en factorisant } e^{-iz})$$

$$\iff e^{-iz} (e^{iz - iz_{0}} e^{iz + iz_{0}} - e^{iz + iz_{0}} - e^{iz - iz_{0}} + 1) = 0 \qquad \text{car } e^{2iz} = e^{iz - iz_{0}} e^{iz + iz_{0}}$$

$$\iff e^{-iz} (e^{iz - iz_{0}} - 1) (e^{iz + iz_{0}} - 1) = 0$$

Puisque e^{-iz} ne s'annule pas alors soit $e^{iz-iz_0}=1$ soit $e^{iz+iz_0}=1$, ce qui donne

$$iz - iz_0 = \text{Log } 1 = \ln|1| + i \arg(1) = i(2k\pi) \text{ ou } iz + iz_0 = i(2k\pi), \ k \in \mathbb{Z}.$$

D'où $z=z_0+2k\pi$ ou $z=-z_0+2k\pi,\ k\in\mathbb{Z}.$

b) On a
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
. Alors de même

$$\sin z = \sin z_{0} \iff \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{iz_{0}} - e^{-iz_{0}}}{2i}$$

$$\iff e^{iz} - e^{iz_{0}} + e^{-iz_{0}} - e^{-iz} = 0$$

$$\iff e^{-iz} (e^{2iz} - e^{iz+iz_{0}} + e^{iz-iz_{0}} - 1) = 0 \qquad \text{(en factorisant } e^{-iz})$$

$$\iff e^{-iz} (e^{iz-iz_{0}} e^{iz+iz_{0}} - e^{iz+iz_{0}} + e^{iz-iz_{0}} - 1) = 0 \qquad \text{car } e^{2iz} = e^{iz-iz_{0}} e^{iz+iz_{0}}$$

$$\iff e^{-iz} (e^{iz-iz_{0}} - 1) (e^{iz+iz_{0}} + 1) = 0$$

Puisque e^{-iz} ne s'annule pas alors soit $e^{iz-iz_0}=1$ soit $e^{iz+iz_0}=-1$, ce qui donne

$$iz - iz_0 = i(2k\pi)$$
 ou $iz + iz_0 = \text{Log } 1 = \ln|-1| + i\arg(-1) = i(\pi + 2k\pi), k \in \mathbb{Z}.$

D'où

$$z = z_0 + 2k\pi$$
 ou $z = \pi - z_0 + 2k\pi$, $k \in \mathbb{Z}$.

c) Si on prend $z_0 = \frac{\pi}{2}$ dans l'identité a) on trouve

$$\cos z = 0 \iff z = \frac{\pi}{2} + 2k\pi \text{ ou } z = -\frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$$
$$\iff z = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$
$$\iff z \equiv \frac{\pi}{2} [\pi].$$

d) Si on prend $z_0 = 0$ dans l'identité b) on trouve

$$\sin z = 0 \iff z = 0 + 2k\pi \text{ ou } z = \pi - 0 + 2k\pi, \ k \in \mathbb{Z}$$

 $\iff z = k\pi, \ k \in \mathbb{Z}$
 $\iff z \equiv 0 [\pi].$

Exercice 1.12

Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$\sin z = 100$$
, b) $\text{Ch } z = 0$, c) $\text{Sh } z = 0$, d) $\text{Ch } z = -1$.

Solution.

a) Tout d'abord, nous séparons les parties réelles et imaginaires de la fonction $\sin z$. Nous avons

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} = \frac{e^{-y+ix} - e^{y-ix}}{2i}$$

$$= \frac{e^{-y}(\cos x + i\sin x) - e^{y}(\cos x - i\sin x)}{2i} = \frac{(e^{-y} - e^{y})\cos x}{2i} + \frac{i(e^{-y} + e^{y})\sin x}{2i}$$
$$= i\frac{e^{y} - e^{-y}}{2}\cos x + \frac{e^{y} + e^{-y}}{2}\sin x$$
$$= \operatorname{Ch} y\sin x + i\operatorname{Sh} y\cos x.$$

Alors $\sin z = 100$ entraı̂ne Ch $y \sin x = 100$ et Sh $y \cos x = 0$. Donc d'après la deuxième équation soit y = 0 ou $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. En remplaçant dans la première équation on obtient

$$y = 0$$
 et $\sin x = 100$

ou

$$x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \ \text{et } \operatorname{Ch} y = \frac{100}{\sin\left(\frac{\pi}{2} + k\pi\right)} = \frac{100}{(-1)^k}.$$

Le premier cas n'est pas possible car $|\sin x| \le 1$. Dans le deuxième cas k soit pair car $\operatorname{Ch} y \ge 1$. D'où les racines cherchées sont

$$z_k = \frac{\pi}{2} + 2k\pi \pm i \operatorname{Argch}(100), k \in \mathbb{Z}.$$

Autre méthode. D'après l'exercice précédent 1.11, si on prend $z_0 = \frac{\pi}{2} + i \operatorname{Argch}(100)$, on trouve

$$z = \frac{\pi}{2} + i \operatorname{Argch}(100) + 2k\pi \text{ ou } z = \pi - \frac{\pi}{2} - i \operatorname{Argch}(100) + 2k\pi, \ k \in \mathbb{Z}$$

b) D'après l'exercice 1.10, $\operatorname{Ch} z = \operatorname{Ch} x \cos y + i \operatorname{Sh} x \sin y$. Donc l'équation $\operatorname{Ch} z = 0$ est équivalente à $\operatorname{Ch} x \cos y = 0$ et $\operatorname{Sh} x \sin y = 0$.

Si Sh x = 0, *i.e.* x = 0, on aura

$$\cos y = 0 \implies y = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}.$$

Si $\sin y = 0$ i.e. $y = k\pi, k \in \mathbb{Z}$, on obtient $\operatorname{Ch} x \cos(k\pi) = 0$ ce qui n'est pas possible.

Alors, les racines de l'équation Ch z = 0 sont

$$z_k = i\left(\frac{\pi}{2} + k\pi\right), \quad k \in \mathbb{Z}.$$

Autre méthode. Ch $z = 0 \iff \frac{e^z + e^{-z}}{2} = 0 \iff e^{2z} = -1$. Alors

$$2z = \text{Log}(-1) = \ln|-1| + i \arg(-1) = i(\pi + 2k\pi), \ k \in \mathbb{Z}.$$

ou bien

$$z_k = i\left(\frac{\pi}{2} + k\pi\right), \quad k \in \mathbb{Z}.$$

c) D'après l'exercice 1.10, $\operatorname{Sh} z = \operatorname{Sh} x \cos y + i \operatorname{Ch} x \sin y$. Donc l'équation $\operatorname{Sh} z = 0$ est équivalente à $\operatorname{Sh} x \cos y = 0$ et $\operatorname{Ch} x \sin y = 0$.

Si Sh x = 0, i.e. x = 0, on aura

$$\sin y = 0 \implies y = k\pi, \ k \in \mathbb{Z}.$$

Si $\cos y = 0$ *i.e.* $y = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$, on obtient $\operatorname{Ch} x \sin \left(\frac{\pi}{2} + k\pi\right) = 0$ ce qui n'est pas possible. Alors, les racines de l'équation $\operatorname{Sh} z = 0$ sont

$$z_k = ik\pi, \quad k \in \mathbb{Z}.$$

Autre méthode. Sh $z = 0 \Longleftrightarrow \frac{e^z - e^{-z}}{2} = 0 \Longleftrightarrow e^{2z} = 1$. Alors

$$2z = \text{Log } 1 = \ln|1| + i \arg(1) = i(2k\pi), \ k \in \mathbb{Z}.$$

ou bien

$$z_k = ik\pi, \quad k \in \mathbb{Z}.$$

d) On a $\operatorname{Ch} z = \operatorname{Ch} x \cos y + i \operatorname{Sh} x \sin y$. Donc l'équation $\operatorname{Ch} z = -1$ est équivalente à $\operatorname{Ch} x \cos y = -1$ et $\operatorname{Sh} x \sin y = 0$.

Si Sh x = 0, i.e. x = 0, on aura

$$\cos y = -1 \implies y = \pi + 2k\pi, \ k \in \mathbb{Z}.$$

Si $\sin y = 0$ i.e. $y = k\pi, k \in \mathbb{Z}$, on obtient

$$\operatorname{Ch} x \cos(k\pi) = -1 \Longrightarrow \operatorname{Ch} x = \frac{-1}{\cos(k\pi)} = \frac{-1}{(-1)^k} = (-1)^{k+1}$$

ce qui donne x=0 dans le cas k impair et aucun x si k pair.

Alors, les racines de l'équation Ch z = -1 sont

$$z_k = i (\pi + 2k\pi)$$
 avec $k \in \mathbb{Z}$.

Autre méthode. Ch $z=-1 \iff \frac{e^z+e^{-z}}{2}=-1 \iff \frac{e^{-z}}{2}\left(e^z+1\right)^2=0$. Alors $e^z=-1$ et donc

$$z = \text{Log}(-1) = \ln|-1| + i \arg(-1) = i(\pi + 2k\pi), \ k \in \mathbb{Z}.$$

Exercice 1.13

Montrer que toutes les racines des équations $\sin z = a$ et $\cos z = a$ où $-1 \le a \le 1$, sont réelles.

Solution.

L'équation $\sin z = \frac{e^{iz} - e^{-iz}}{2i} = a$ est équivalente à $(e^{iz})^2 - 2iae^{iz} - 1 = 0$, qui est une équation quadratique en e^{iz} . En la résolvant on obtient

$$e^{iz} = \pm \sqrt{1 - a^2} + ia.$$

Donc

$$iz = \text{Log}\left(\pm\sqrt{1-a^2} + ia\right) = \ln\left|\pm\sqrt{1-a^2} + ia\right| + i\arg\left(\pm\sqrt{1-a^2} + ia\right).$$

Comme $a \in [-1, 1]$, alors $\ln |\pm \sqrt{1 - a^2} + ia| = \ln 1 = 0$, donc

$$z = \arg\left(\pm\sqrt{1-a^2} + ia\right) \in \mathbb{R}.$$

De même l'équation $\cos z=\frac{e^{iz}+e^{-iz}}{2}=a$ est équivalente à $\left(e^{iz}\right)^2-2ae^{iz}+1=0$, ce qui donne

$$e^{iz} = a \pm i\sqrt{1 - a^2}.$$

Comme précédemment $\ln |a \pm i\sqrt{1-a^2}| = \ln 1 = 0$ car $a \in [-1,1]$, donc

$$z = \frac{1}{i} \operatorname{Log} \left(a \pm i \sqrt{1 - a^2} \right) = \operatorname{arg} \left(a \pm i \sqrt{1 - a^2} \right) \in \mathbb{R}.$$

Que peut-on en conclure?

Exercice 1.14

Montrer que pour tout z = x + iy

a)
$$|\text{Sh } y| \le |\cos z| \le |\text{Ch } y|$$
, b) $|\text{Sh } y| \le |\sin z| \le |\text{Ch } y|$.

Solution.

Nous pouvons calculer le module d'un nombre complexe w, soit par définition en identifiant ses parties réelles et imaginaires ou par la propriété $|w|^2 = w\overline{w}$.

Nous allons utiliser la propriété $|w|^2 = w\overline{w}$ ici.

a) On a

$$\left|\cos z\right|^2 = \cos z \overline{\cos z} = \left(\frac{e^{iz} + e^{-iz}}{2}\right) \left(\frac{e^{-i\overline{z}} + e^{i\overline{z}}}{2}\right) = \frac{e^{i(z-\overline{z})} + e^{i(z+\overline{z})} + e^{-i(z+\overline{z})} + e^{-i(z-\overline{z})}}{4}.$$

Puisque $z - \overline{z} = 2iy$ et $z + \overline{z} = 2x$, on aura

$$|\cos z|^2 = \frac{e^{-2y} + e^{2ix} + e^{-2ix} + e^{2y}}{4} = \frac{1}{2} \left(\frac{e^{2y} + e^{-2y}}{2} + \frac{e^{2ix} + e^{-2ix}}{2} \right)$$

$$= \frac{1}{2} \left(\operatorname{Ch} (2y) + \cos (2x) \right).$$

Par les transformations $Ch(2y) = 2Ch^2y - 1$ et $cos(2x) = 1 - 2sin^2x$, on obtient la relation

$$|\cos z|^2 = \frac{1}{2} \left(2 \operatorname{Ch}^2 y - 1 + 1 - 2 \sin^2 x \right) = \operatorname{Ch}^2 y - \sin^2 x.$$

Comme $-1 \le -\sin^2 x \le 0$, alors $\operatorname{Sh}^2 y = \operatorname{Ch}^2 y - 1 \le \operatorname{Ch}^2 y - \sin^2 x \le \operatorname{Ch}^2 y$. D'où le résultat demandé

$$|\operatorname{Sh} y| \le |\cos z| \le |\operatorname{Ch} y|$$
.

b) On a

$$\begin{aligned} |\sin z|^2 &= \sin z \overline{\sin z} = \left(\frac{e^{iz} - e^{-iz}}{2i}\right) \left(\frac{e^{-i\overline{z}} - e^{i\overline{z}}}{-2i}\right) = \frac{e^{i(z-\overline{z})} - e^{i(z+\overline{z})} - e^{-i(z+\overline{z})} + e^{-i(z-\overline{z})}}{4} \\ &= \frac{e^{-2y} - e^{2ix} - e^{-2ix} + e^{2y}}{4} = \frac{1}{2} \left(\frac{e^{2y} + e^{-2y}}{2} - \frac{e^{2ix} + e^{-2ix}}{2}\right) \\ &= \frac{1}{2} \left(\operatorname{Ch}\left(2y\right) - \cos\left(2x\right)\right). \end{aligned}$$

En utilisant les transformations $Ch(2y) = 2Ch^2y - 1$ et $cos(2x) = 2cos^2x - 1$, on trouve

$$|\sin z|^2 = \frac{1}{2} \left(2 \operatorname{Ch}^2 y - 1 - \left(2 \cos^2 x - 1 \right) \right) = \operatorname{Ch}^2 y - \cos^2 x.$$

Comme précédemment $-1 \le -\cos^2 x \le 0$ implique que $|\mathrm{Sh}\,y| \le |\sin z| \le |\mathrm{Ch}\,y|$.

Nous pouvons conclure des inégalités ci-dessus que les fonctions $\cos z$ et $\sin z$ ne sont pas bornées dans le domaine complexe.

Exercice 1.15

Déterminer tout les points z de \mathbb{C} qui vérifie $|\cos z| \leq 1$.

Solution.

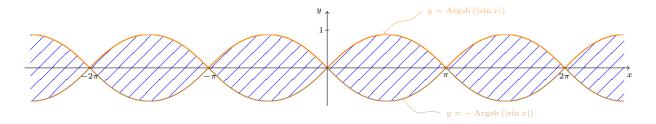
D'après la solution de l'exercice précédent 1.14, on a $|\cos z|^2 = \operatorname{Ch}^2 y - \sin^2 x$. Alors $|\cos z| \le 1$ si et seulement si

$$\operatorname{Ch}^2 y - \sin^2 x \le 1 \iff \operatorname{Sh}^2 y = \operatorname{Ch}^2 y - 1 \le \sin^2 x$$

$$\iff -|\sin x| \le \operatorname{Sh} y \le |\sin x|$$

$$\iff -\operatorname{Argsh}(|\sin x|) \le y \le \operatorname{Argsh}(|\sin x|)$$

Dans la figure ci-dessous, il s'agit de la partie hachurée.



Déterminer les valeurs de Logz dans chacun des cas, où Log désigne la détermination principale du logarithme :

a)
$$z = -11$$
, b) $z = 4 + 4i$, c) $z = 4 - 4i$, d) $z = 1 \pm i$, e) $z = ei$.

Solution.

On rappelle que la fonction $z\mapsto \operatorname{Log} z,\,z\neq 0$ est une fonction multiforme définie par

$$\label{eq:logz} \begin{aligned} \operatorname{Log} z &= \ln |z| + i \operatorname{arg} z \\ &= \ln |z| + i \left(\operatorname{Arg} z + 2k\pi \right), \ k \in \mathbb{Z}, \ \operatorname{où} \ -\pi < \operatorname{Arg} z \leq \pi. \end{aligned}$$

La détermination **principale** ou valeur principale de Log z est souvent définie par

$$\label{eq:logz} \mbox{Log}\, z = \ln|z| + i \, \mbox{Arg}\, z, \ \mbox{où} \ -\pi < \mbox{Arg}\, z \leq \pi \ \mbox{ou} \ 0 \leq \mbox{Arg}\, z < 2\pi.$$
 a) On a Log (-11) = $\ln|11| + i \, \mbox{Arg}\, (-11) = \ln 11 + i\pi.$

b)
$$\text{Log}(4+4i) = \ln|4+4i| + i \operatorname{Arg}(4+4i) = \frac{5}{2} \ln 2 + i\frac{\pi}{4}.$$

c) Log
$$(4-4i) = \ln|4-4i| + i \operatorname{Arg}(4-4i) = \frac{5}{2} \ln 2 - i\frac{\pi}{4}$$
.

d)
$$\operatorname{Log}(1-i) = \ln|1-i| + i\operatorname{Arg}(1-i) = \ln 2 - i\frac{\pi}{4},$$

 $\operatorname{Log}(1+i) = \ln|1+i| + i\operatorname{Arg}(1+i) = \ln 2 + i\frac{\pi}{4},$

e) $\text{Log}(ei) = \ln|ei| + i \text{Arg}(ei) = 1 + i\frac{\pi}{2}$.

Exercice 1.17

Déterminer toutes les valeurs de Log z dans les cas suivants :

a)
$$z = e$$
, b) $z = 1$, c) $z = -7$, d) $z = e^i$, e) $z = 4 + 3i$.

Puis montrer que l'ensemble des valeurs de Log (i^2) est différent de l'ensemble des valeurs de $2 \operatorname{Log}(i)$.

Solution.

- a) $\text{Log}(e) = \ln |e| + i \arg (e) = 1 + 2ik\pi, k \in \mathbb{Z}.$
- **b)** $\text{Log}(1) = \ln|1| + i \arg(1) = 2ik\pi, k \in \mathbb{Z}.$
- c) $\text{Log}(-7) = \ln |-7| + i \arg (-7) = \ln 7 + i (\pi + 2k\pi), k \in \mathbb{Z}.$
- d) $\text{Log}(e^i) = \ln |e^i| + i \arg (e^i) = \ln 1 + i (1 + 2k\pi) = i (1 + 2k\pi), k \in \mathbb{Z}.$
- e) $\log(4+3i) = \ln|4+3i| + i \arg(4+3i) = \ln 5 + i \left(\operatorname{Arctg}\left(\frac{3}{4}\right) + 2k\pi\right), k \in \mathbb{Z}.$

En ce qui concerne la deuxième partie de l'exercice, on a

$$\text{Log}(i^2) = \text{Log}(-1) = \ln|-1| + i \arg(-1) = i(\pi + 2k\pi), k \in \mathbb{Z}$$

et

$$2\operatorname{Log}\left(i\right)=2\left(\ln\left|i\right|+i\operatorname{arg}\left(i\right)\right)=2i\left(\frac{\pi}{2}+2k\pi\right)=i\left(\pi+4k\pi\right),k\in\mathbb{Z}.$$

Notons que l'ensemble des valeurs de $2 \operatorname{Log}(i)$ est strictement inclus dans l'ensemble des valeurs de $\operatorname{Log}(i^2)$.

Exercice 1.18

Résoudre les équations suivantes :

a)
$$\log z = -i\frac{\pi}{2}$$
, b) $\log z = 4 - 3i$, c) $\log z = e - \pi i$.

Solution.

On rappelle que la fonction $z\mapsto \operatorname{Log} z,\ z\neq 0$ est définie comme l'inverse de la fonction exponentielle $e^z:\operatorname{Log} z=w\Longleftrightarrow z=e^w.$ Alors

a)
$$z = e^{-i\frac{\pi}{2}} = \cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2}) = -i$$
.

b)
$$z = e^{4-3i} = e^4 (\cos(-3) + i\sin(-3)) = e^4 \cos 3 - ie^4 \sin 3.$$

c)
$$z = e^{e-\pi i} = e^e (\cos(-\pi) + i\sin(-\pi)) = -e^e$$
.

Exercice 1.19

Trouver la valeur principale de

a)
$$(1+i)^{1-i}$$
, b) $(1-i)^{1+i}$, c) $i^{\frac{i}{2}}$, d) $(-1)^{2-i}$, e) $(3+4i)^{\frac{1}{3}}$.

Solution.

La fonction $z \mapsto z^{\alpha}$, $\alpha \in \mathbb{C}$, est définie par $z^{\alpha} = e^{\alpha \log z} = e^{\alpha(\ln|z| + i(\operatorname{Arg} z + 2k\pi))}$, $k \in \mathbb{Z}$. La valeur principale est $e^{\alpha(\ln|z| + i\operatorname{Arg} z)}$ obtenue en donnant à k la valeur 0. Alors

a)
$$(1+i)^{1-i} = e^{(1-i)\operatorname{Log}(1+i)} = e^{(1-i)\{\ln|1+i|+i\operatorname{arg}(1+i)\}}$$

$$= e^{(1-i)\{\ln\sqrt{2}+i(\frac{\pi}{4}+2k\pi)\}} = e^{\frac{\pi}{4}+\ln\sqrt{2}+2\pi k+i(\frac{\pi}{4}-\ln\sqrt{2}+2\pi k)}$$

$$= \sqrt{2}e^{\frac{\pi}{4}+2\pi k}\left\{\cos\left(\frac{\pi}{4}-\ln\sqrt{2}+2\pi k\right)+i\sin\left(\frac{\pi}{4}-\ln\sqrt{2}+2\pi k\right)\right\}$$

$$= \sqrt{2}e^{\frac{\pi}{4}+2\pi k}\left\{\cos\left(\frac{\pi}{4}-\ln\sqrt{2}\right)+i\sin\left(\frac{\pi}{4}-\ln\sqrt{2}\right)\right\}, k \in \mathbb{Z}.$$

La valeur principale est $\sqrt{2}e^{\frac{\pi}{4}}\left(\cos\left(\frac{\pi}{4}-\ln\sqrt{2}\right)+i\sin\left(\frac{\pi}{4}-\ln\sqrt{2}\right)\right)\simeq 2.8079+1.3179i.$

b)
$$(1-i)^{1+i} = e^{(1+i)\operatorname{Log}(1-i)} = e^{(1+i)\{\ln|1-i|+i\operatorname{arg}(1-i)\}}$$

 $= e^{(1+i)\{\ln\sqrt{2}+i\left(-\frac{\pi}{4}+2k\pi\right)\}} = e^{\frac{\pi}{4}+\ln\sqrt{2}-2\pi k+i\left(-\frac{\pi}{4}+\ln\sqrt{2}+2\pi k\right)}$
 $= \sqrt{2}e^{\frac{\pi}{4}-2\pi k}\left\{\cos\left(-\frac{\pi}{4}+\ln\sqrt{2}+2\pi k\right)+i\sin\left(-\frac{\pi}{4}+\ln\sqrt{2}+2\pi k\right)\right\}$
 $= \sqrt{2}e^{\frac{\pi}{4}-2\pi k}\left\{\cos\left(-\frac{\pi}{4}+\ln\sqrt{2}\right)+i\sin\left(-\frac{\pi}{4}+\ln\sqrt{2}\right)\right\}, k \in \mathbb{Z}.$

La valeur principale est $\sqrt{2}e^{\frac{\pi}{4}}\left(\cos\left(-\frac{\pi}{4}+\ln\sqrt{2}\right)+i\sin\left(-\frac{\pi}{4}+\ln\sqrt{2}\right)\right)\simeq 2.8079-1.3179i$

c)
$$i^{\frac{i}{2}} = e^{\frac{i}{2} \log i} = e^{\frac{i}{2} (\ln |i| + i \arg i)} = e^{\frac{i}{2} (\ln 1 + i (\frac{\pi}{2} + 2k\pi))} = e^{-(\frac{\pi}{4} + k\pi)}, k \in \mathbb{Z}.$$

$$\mathbf{d)} \ (-1)^{2-i} = e^{(2-i)\operatorname{Log}(-1)} = e^{(2-i)\{\ln|-1|+i\operatorname{arg}(-1)\}} = e^{(2-i)i(\pi+2k\pi)}$$
$$= e^{\pi+2k\pi+i(2\pi+4k\pi)} = e^{\pi+2k\pi} \left\{\cos\left(2\pi+4k\pi\right) + i\sin\left(2\pi+4k\pi\right)\right\}$$
$$= e^{\pi+2k\pi}, k \in \mathbb{Z}.$$

La valeur principale est e^{π} .

e)
$$(3+4i)^{\frac{1}{3}} = e^{\frac{1}{3}\operatorname{Log}(3+4i)} = e^{\frac{1}{3}(\ln|3+4i|+i\operatorname{arg}(3+4i))}$$

 $= e^{\frac{1}{3}\left(2\ln 5 + i\left(\operatorname{Arctg}\frac{4}{3} + 2k\pi\right)\right)} = e^{\frac{2}{3}\ln 5 + i\left(\frac{1}{3}\operatorname{Arctg}\frac{4}{3} + \frac{2}{3}k\pi\right)}$
 $= \sqrt[3]{25}\left\{\cos\left(\frac{1}{3}\operatorname{Arctg}\frac{4}{3} + \frac{2}{3}k\pi\right) + i\sin\left(\frac{1}{3}\operatorname{Arctg}\frac{4}{3} + \frac{2}{3}k\pi\right)\right\}, k \in \mathbb{Z}.$

La valeur principale est $\sqrt[3]{25} \left(\cos\left(\frac{1}{3}\operatorname{Arctg}\frac{4}{3}\right) + i\sin\left(\frac{1}{3}\operatorname{Arctg}\frac{4}{3}\right)\right) \simeq 2.7854 + 0.88949i.$