	Année universitaire : 2022-2023
Domaine : Mathématique et informatique	Module : Analyse 5

Série n⁰ 3

Équations aux dérivées partielles

Exercice 1 : Pour chacune des équations aux dérivées partielles ci-dessous, indiquer son ordre, si elle est linéaire ou non, si elle est linéaire homogène ou non.

a)
$$u_{xx} + x^2 u_y = y$$
,

b)
$$(u_x)^2 + u u_y = 1$$
,

a)
$$u_{xx} + x^2 u_y = y$$
, **b)** $(u_x)^2 + u u_y = 1$, **c)** $u_{xxxx} + 2u_{xxyy} + u_{yyyy} = 0$,

d)
$$u_{xx} + 2u_{xy} + u_{yy} = \sin x$$
, e) $u_{xx} + u_x + \sin(u) = e^y$, f) $u_{xx}u_{yy} + u_y + u_x + u = 0$.

e)
$$u_{xx} + u_x + \sin(u) = e^y$$
,

f)
$$u_{xx}u_{yy} + u_y + u_x + u = 0$$
.

Exercice 2: Vérifier que les fonctions $u(x,y) = x^2 - y^2$ et $u(x,y) = e^x \sin y$ sont bien des solutions de l'équation $u_{xx} + u_{yy} = 0$.

Exercice 3: Déterminer la solution générale de l'équation $u_{yy} + u = 0$, où u = u(x, y).

<u>Exercice 4</u>: Déterminer la solution générale de $u_{xx} - u_{yy} = 0$, où u = u(x, y) en utilisant les nouvelles coordonnées : $\xi = x + y$ et $\eta = x - y$.

Exercice 5 : Montrer que l'équation de la chaleur $u_t = k (u_{xx} + u_{yy})$ exprimée en coordonnées polaires : $r = \sqrt{x^2 + y^2}, \ \theta = \text{Arctg } \frac{y}{x} \text{ est}$

$$u_t = k \left(u_{rr} + \frac{1}{r^2} u_{\theta\theta} + \frac{1}{r} u_r \right)$$
 où $u = u\left(x, y, t \right) = u\left(r, \theta, t \right)$.

Exercice 6 : Résoudre le problème à valeur initiale suivant.

$$u_t + cu_x + \lambda u = 0$$
 avec $u(x, 0) = f(x)$,

où $\lambda > 0$, f(x) est une fonction donnée et u = u(x, t).

Exercice 7: Résoudre le problème à valeur initiale suivant.

$$u_t + cu_x = h(x, t)$$
 avec $u(x, 0) = f(x)$,

où c est un nombre réel non nul, h(x,t) est une fonction donnée et u=u(x,t).

Exercice 8: Résoudre le problème à valeur initiale $u_t + e^x u_x = 0$ avec u(x,0) = x, où u = u(x,t).

Exercice 9: Considérer la solution de d'Alembert de l'équation des ondes pour le déplacement initial f(x)et la vitesse initiale g(x) suivants :

a)
$$f(x) = x$$
 et $g(x) = 0$,

b)
$$f(x) = 0$$
 et $g(x) = x$,

c)
$$f(x) = \sin x$$
 et $g(x) = -c \cos x$, d) $f(x) = \sin x$ et $g(x) = c \cos x$.

d)
$$f(x) = \sin x$$
 et $g(x) = c \cos x$

Exercice 10 : Considérer l'EDP linéaire non-homogène

$$u_{tt} - c^2 u_{xx} = h\left(x, t\right),\,$$

avec les conditions initiales

$$u(x,0) = f(x)$$
 et $u_t(x,0) = g(x)$,
 $1/2$

où c est un nombre réel positif, h(x,t), f(x), g(x) sont des fonctions données et u=u(x,t).

a) Montrer que ce problème est équivalent au système

$$\begin{cases} v_t + cv_x = h(x, t), & v(x, 0) = g(x) - cf'(x), \\ u_t - cu_x = v, & u(x, 0) = f(x). \end{cases}$$

b) Déterminer la solution du problème à valeur initiale

$$u_{tt} - c^2 u_{xx} = x + t$$
 avec $u(x, 0) = x$ et $u_t(x, 0) = \sin x$

en procédant comme nous l'avons fait en décrivant la solution de d'Alembert pour l'équation des ondes.

Exercice 11 : Déterminer pour quels points (x, y) du plan, chacune des EDP linéaires d'ordre 2 suivantes est a) hyperbolique, b) parabolique et c) elliptique.

i)
$$xu_{xx} - xyu_{xy} + y^2u_{yy} - 3u_x = 0$$
,

i)
$$xu_{xx} - xyu_{xy} + y^2u_{yy} - 3u_x = 0$$
, ii) $xu_{xx} + xyu_{xy} + yu_{yy} - (x+3)u_y = u$,

iii)
$$e^x u_{xx} + xy u_{xy} - u_{yy} + 5y u_x = e^x$$
, iv) $x^2 u_{xx} + 2(x - y) u_{xy} + u_{yy} = 0$,

iv)
$$x^2 u_{xx} + 2(x-y)u_{xy} + u_{yy} = 0$$
,

v)
$$u_{xx} - 5u_{xy} - (x+y)u_{yy} + 4u_x - xu_y = \sin x$$

Exercice 12 : Pour chacune des EDP linéaires d'ordre 2 suivantes

- a) déterminer les points du plan xy où ces équations sont hyperboliques,
- b) déterminer les coordonnées caractéristiques de ces équations sur le domaine où celles-ci sont hyperboliques,
- c) effectuer le changement de coordonnées pour celles trouvées en b) de façon à obtenir l'équation canonique correspondante.

i)
$$2y^2u_{xx} - xyu_{xy} - x^2u_{yy} + 4yu_x - 3u = 0$$
, ii) $x^2u_{xx} - xyu_{xy} - 6y^2u_{yy} + u_x = 0$.

ii)
$$x^2u_{xx} - xyu_{xy} - 6y^2u_{yy} + u_x = 0.$$

Exercice 13 : Pour l'EDP linéaire d'ordre 2 suivante.

$$x^2 u_{xx} - 2xy u_{xy} + y^2 u_{yy} - u_x = 0,$$

- a) déterminer les points du plan xy où cette équation est parabolique,
- b) déterminer les coordonnées caractéristiques de cette équation sur le domaine où celle-ci est parabolique
- c) effectuer le changement de coordonnées pour les coordonnées trouvées en b) de façon à obtenir l'équation canonique correspondante.

Exercice 14: Pour chacune des EDP linéaires d'ordre 2 ci-dessous, déterminer le type de l'équation, les équations caractéristiques, les coordonnées caractéristiques et ensuite réduire l'équation sous sa forme canonique

a)
$$u_{xx} - 2u_{xy} + 2u_{yy} + u_x - 3u = 0$$
, b) $u_{xx} + 4u_{xy} + 2u_{yy} + u_x = 0$.

$$\mathbf{b)} \ u_{xx} + 4u_{xy} + 2u_{yy} + u_x = 0.$$