$\mathrm{c^{h^{a}}^{p_i}}_{\mathrm{c}}$

Les nombres complexes

Sommaire

0.1 I	L'ens	semble des nombres complexes	1
0.3	1.1	Opérations sur les nombres complexes	2
0.3	1.2	Valeur absolue (ou module)	3
0.2 I	Repr	ésentation graphique des nombres complexes	3
0.5	2.1	Courbes dans le plan complexe	4
0.3 I	Form	e polaire des nombres complexes	4
0.3	3.1	Formule de De Moivre	5
0.3	3.2	Formule d'Euler	5
0.:	3.3	Racines d'un nombre complexe	5
0.4 I	Prop	riétés topologiques de $\mathbb C$	6

0.1 L'ensemble des nombres complexes

Question : Trouver un nombre réel solution de l'équation algébrique $x^2+1=0$.

Réponse : Il n'existe pas de nombre réel x qui soit solution de l'équation $x^2+1=0$.

Pour donner des solutions à cette équation et à des équations semblables, on introduit un ensemble plus grand que celui des nombres réels. On appelle cet ensemble les nombres complexes.

Définition 1

Un nombre complexe z s'écrit sous la forme dite algébrique :

z = x + iy où x et y sont des nombres réels,

et i est appelé l'unité imaginaire, a la propriété $i^2 = -1$.

- Le nombre x est appelée la partie réelle de z, on note x = Re(z).
- Le nombre y est appelée la partie imaginaire de z, on note $y={\rm Im}\,(z).$
- \bullet L'ensemble des nombres complexes est noté $\mathbb C.$

Remarque 2

a) Deux nombres complexes z et z' sont égaux si et seulement si

$$\operatorname{Re}(z) = \operatorname{Re}(z')$$
 et $\operatorname{Im}(z) = \operatorname{Im}(z')$.

- b) Si y = 0 on dit que z est réel, si x = 0 on dit que z est un **imaginaire pur**.
- c) Le nombre complexe $\overline{z} = x iy$ est appelé le conjugué de z.

0.1.1 Opérations sur les nombres complexes

- Addition: (x + yi) + (u + vi) = (x + u) + (y + v)i.
- Soustraction : (x + yi) (u + vi) = (x u) + (y v)i.
- Multiplication : $(x+yi)(u+vi) = xu + xvi + yui + yvi^2 = xu yv + (xv + yu)i$.
- Division : $\frac{x+yi}{u+vi} = \frac{x+yi}{u+vi} \cdot \frac{u-vi}{u-vi} = \frac{xu-xvi+yui-yvi^2}{u^2+v^2} = \frac{xu+yv}{u^2+v^2} + \frac{yu-xv}{u^2+v^2}i$.

Remarque 3

Soient z et w deux nombres complexes. On a les propriétés suivantes :

(1)
$$\overline{z+w} = \overline{z} + \overline{w}$$
 (2) $\overline{zw} = \overline{z} \overline{w}$ (3) $\overline{\overline{z}} = z$ (4) $z + \overline{z} = 2 \operatorname{Re}(z)$ (5) $z - \overline{z} = 2 \operatorname{Im}(z) i$.

0.1.2 Valeur absolue (ou module)

Définition 4

La valeur absolue ou module d'un nombre complexe z=x+iy est définie par

$$|z| = |x + iy| = \sqrt{x^2 + y^2}.$$

Exemple 1

$$|-3+4i| = \sqrt{(-3)^2+4^2} = \sqrt{9+16} = \sqrt{25} = 5.$$

Si z et w sont deux nombres complexes, on a les propriétés suivantes :

(1)
$$|zw| = |z| |w|$$
 (2) $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}, \ w \neq 0$ (3) $|\overline{z}| = |z|$ (4) $z \ \overline{z} = |z|^2$.

(5)
$$|z+w| \le |z| + |w|$$
 (inégalité triangulaire) (6) $|z-w| \ge |z| - |w|$.

Remarque 5

On a les propriétés suivantes :

(1)
$$\sqrt{x^2} = |x|$$
 et $x^2 = |x|^2$ si $x \in \mathbb{R}$ (2) $z^2 \neq |z|^2$ si $\text{Im}(z) \neq 0$.

(3)
$$|z| = 0 \iff z = 0$$
 (4) $z \in \mathbb{R} \iff z = \overline{z}$.

Remarque 6

Si z et w sont deux nombres complexes tels que $w \neq 0$, alors on a :

$$\frac{z}{w} = \frac{z}{w} \cdot \frac{\overline{w}}{\overline{w}} = \frac{z \, \overline{w}}{|w|^2}.$$

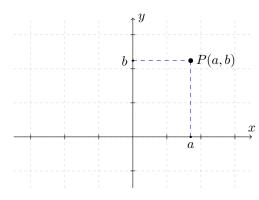
Exemple 2

$$\frac{2+3i}{1-2i} = \frac{(2+3i)(1+2i)}{1^2 + (-2)^2} = \frac{-4}{5} + \frac{7}{5}i. \quad \blacksquare$$

0.2 Représentation graphique des nombres complexes

Un nombre complexe a+ib pouvant être considéré comme un couple ordonné de nombres réels, nous pouvons représenter de tels nombres par des points d'un plan des xy appelé **plan complexe**.

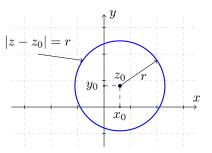
À chaque nombre complexe z = a + ib correspond un point P(a, b) du plan.



0.2.1 Courbes dans le plan complexe

Cercle

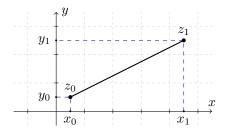
Le cercle de rayon r et de centre $z_0=x_0+iy_0$ est défini par l'équation $|z-z_0|=r$.



Segments

Le segment de droite reliant deux points complexes z_0 et z_1 est l'ensemble des points

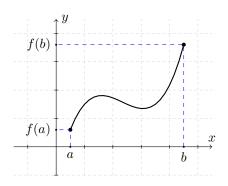
$$\{z \in \mathbb{C} \ / \ z = (1-t) z_0 + t z_1, \ t \in [0,1] \}.$$



Courbes

En général, une courbe $y=f(x)\,,\ x\in [a,b]$ où f est une fonction continue, correspond à l'ensemble de points

$$\{z \in \mathbb{C} \ / \ z = x + if(x) = (x, f(x)), \ x \in [a, b]\}.$$

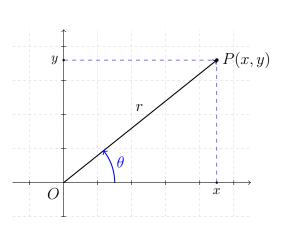


0.3 Forme polaire des nombres complexes

Si P(x,y) désigne un point du plan complexe correspondant au nombre complexe z=x+iy, nous voyons que

$$x = r \cos \theta, \quad y = r \sin \theta,$$

où $r = \sqrt{x^2 + y^2} = |x + iy|$ est le module ou la valeur absolue de z = x + iy, et θ est appelé l'amplitude ou l'argument de z = x + iy, noté arg z, est l'angle que fait le vecteur \overrightarrow{OP} avec le demi-axe positif Ox.



On en tire

$$z = x + iy = r(\cos\theta + i\sin\theta),$$

qui est appelée la forme polaire ou forme trigonométrique du nombre complexe z. Si $-\pi < \theta \le \pi$, alors l'angle θ est appelé l'argument principal, noté par Arg θ . On a

$$\arg z = \operatorname{Arg} \theta + 2k\pi, \ k \in \mathbb{Z}.$$

0.3.1 Formule de De Moivre

Si
$$z_1 = x_1 + iy_1 = r_1 (\cos \theta_1 + i \sin \theta_1), \ z_2 = x_2 + iy_2 = r_2 (\cos \theta_2 + i \sin \theta_2), \text{ alors}$$

$$z_1 z_2 = r_1 r_2 \{\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2)\},$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \{\cos (\theta_1 - \theta_2) + i \sin (\theta_1 - \theta_2)\}.$$
(0.1)

Une généralisation de (0.1) conduit à

$$z_1 z_2 ... z_n = r_1 r_2 ... r_n \left\{ \cos \left(\theta_1 + \theta_2 + ... + \theta_n \right) + i \sin \left(\theta_1 + \theta_2 + ... + \theta_n \right) \right\},$$

ce qui, si $z_1 = z_2 = \dots = z_n = z$, conduit à

$$z^{n} = \left\{ r \left(\cos \theta + i \sin \theta \right) \right\}^{n} = r^{n} \left\{ \cos \left(n\theta \right) + i \sin \left(n\theta \right) \right\},\,$$

qui est appelée formule de De Moivre.

0.3.2 Formule d'Euler

En supposant que le développement en série entière $e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots$ de l'analyse élémentaire conserve un sens quand $x = i\theta$, nous parvenons au résultat $e^{i\theta} = \cos\theta + i\sin\theta$, e = 2,71828..., qui est appelé formule d'Euler. Avec ces notations, la formule de De Moivre se réduit à $\left(e^{i\theta}\right)^n = e^{in\theta}$.

0.3.3 Racines d'un nombre complexe

Un nombre z est appelé racine n-ième d'un nombre complexe a+ib si $z^n=a+ib$, et nous écrivons $z=(a+ib)^{\frac{1}{n}}$ ou $z=\sqrt[n]{a+ib}$. D'après la formule de De Moivre

$$z = (a+ib)^{\frac{1}{n}} = \{r(\cos\theta + i\sin\theta)\}^{\frac{1}{n}}$$
$$= r^{\frac{1}{n}} \{\cos(\frac{\theta + 2k\pi}{n}) + i\sin(\frac{\theta + 2k\pi}{n})\}, \ k = 0, 1, 2, ...n - 1.$$

D'où il résulte qu'il y a n racines n-ièmes différentes de a+ib pourvu que $a+ib\neq 0$.

Exemple 3

Calculer les racines quatrièmes de 1.

On a
$$\sqrt[4]{1} = \{\cos(0 + 2k\pi) + i\sin(0 + 2k\pi)\}^{\frac{1}{4}} = \cos\left(\frac{2k\pi}{4}\right) + i\sin\left(\frac{2k\pi}{4}\right), k = 0, 1, 2, 3.$$

Pour $k = 0, z_0 = \cos 0 + i\sin 0 = 1$; $k = 1, z_1 = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$; $k = 2, z_1 = \cos\pi + i\sin\pi = -1$; $k = 3, z_3 = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} = -i$.

Exemple 4

Calculer $\sqrt[3]{1-i}$.

On a

$$\sqrt[3]{1-i} = (1-i)^{\frac{1}{3}} = \left\{ \sqrt{2} \left(\cos \left(\frac{-\pi}{4} \right) + i \sin \left(\frac{-\pi}{4} \right) \right) \right\}^{\frac{1}{3}} \\
= \sqrt{2}^{\frac{1}{3}} \left\{ \cos \left(\frac{-\pi}{4} + 2k\pi \right) + i \sin \left(\frac{-\pi}{4} + 2k\pi \right) \right\} \\
= \sqrt[6]{2} \left\{ \cos \left(\frac{-\pi}{12} + \frac{2k\pi}{3} \right) + i \sin \left(\frac{-\pi}{12} + \frac{2k\pi}{3} \right) \right\}, \ k = 0, 1, 2.$$
Pour $k = 0, \ z_0 = \sqrt[6]{2} \left\{ \cos \left(\frac{-\pi}{12} \right) + i \sin \left(\frac{-\pi}{12} \right) \right\}; \quad k = 1, \ z_1 = \sqrt[6]{2} \left\{ \cos \left(\frac{7\pi}{12} \right) + i \sin \left(\frac{7\pi}{12} \right) \right\}; \\
k = 2, \ z_2 = \sqrt[6]{2} \left\{ \cos \left(\frac{5\pi}{4} \right) + i \sin \left(\frac{5\pi}{4} \right) \right\}. \quad \blacksquare$

0.4 Propriétés topologiques de $\mathbb C$

Le module d'un nombre complexe z=x+iy est la norme euclidienne du vecteur (x,y) de \mathbb{R}^2 . Cette norme induit sur \mathbb{R}^2 une topologie qui se transporte sans difficulté pour faire de \mathbb{C} un espace topologique. Tous les théorèmes usuels de topologie obtenus en identifiant \mathbb{C} et \mathbb{R}^2 s'appliquent sans modification.

Rappelons ici, quelques définitions et propriétés topologiques fondamentales. Nous renvoyons au cours de topologie pour les démonstrations.

- La distance entre deux nombres complexes z_1 et z_2 est $d\left(z_1,z_2\right)=\left|z_1-z_2\right|$.
- Pour tous z_1, z_2 et z_3 , on a $|z_1 z_2| \le |z_1 z_3| + |z_3 z_2|$.
- $\bullet\,$ Une suite $\{z_n\}$ de nombres complexes converge vers un nombre complexe z si

$$\lim_{n \to +\infty} |z_n - z| = 0.$$

• En vertu des inégalités sup $\{|\operatorname{Re} z|, |\operatorname{Im} z|\} \leq |z| \leq |\operatorname{Re} z| + |\operatorname{Im} z|$ on a $\lim_{n \to +\infty} z_n = z \text{ si et seulement si } \lim_{n \to +\infty} \operatorname{Re} z_n = \operatorname{Re} z \text{ et } \lim_{n \to +\infty} \operatorname{Im} z_n = \operatorname{Im} z.$

En conséquence, les règles de calcul concernant la limite d'une somme, d'une différence, d'un produit ou d'un quotient restent valables.

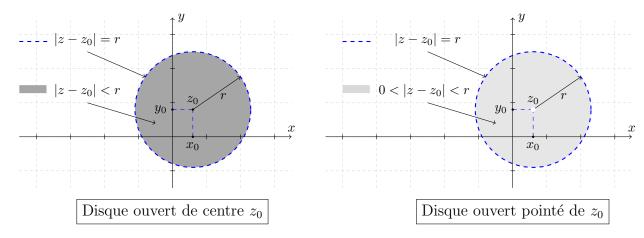
Notations. Soit r un réel positif et z_0 dans \mathbb{C} .

On note $D_r(z_0) = \{z \in \mathbb{C} \text{ tel que } |z - z_0| < r\}.$

 $D_r(z_0)$ est appelé disque ouvert de centre z_0 et de rayon r.

On note $\tilde{D}_r(z_0) = \{z \in \mathbb{C} \text{ tel que } 0 < |z - z_0| < r\}.$

 $\tilde{D}_r(z_0)$ est appelé disque ouvert pointé de z_0 .



- Ensembles ouverts. Un ensemble E de \mathbb{C} est dit ouvert si chaque point z de E peut être entouré par un disque ouvert centré en ce point et tous les points du disque sont contenus dans E.
- Voisinages. Une partie V de \mathbb{C} est un voisinage de z_0 si V contient un disque ouvert $D_r(z_0)$.
- Points limites. Un point z_0 est appelé point limite ou point d'accumulation d'un ensemble $E \subset \mathbb{C}$ si tout disque ouvert $D_r(z_0)$ contient des points de $E \setminus \{z_0\}$.
- Ensembles fermés. Un ensemble $E \subset \mathbb{C}$ est dit fermé si son complémentaire $E^c = \mathbb{C} \setminus E$ est ouvert. Un ensemble fermé contient tous ses points d'accumulation.
- Ensembles bornés. Un ensemble $E \subset \mathbb{C}$ est dit borné si l'on peut trouver une constante M > 0 telle que |z| < M pour tout point z de E.
- Ensembles compacts. Un ensemble qui est à la fois fermé et borné est appelé compact.
- Intérieur et points frontières. Un point z_0 est appelé point intérieur d'un ensemble $E \subset \mathbb{C}$ si l'on peut trouver un disque ouvert $D_r(z_0)$ dont tous les points appartiennent à

- E. Si tout disque ouvert $D_r(z_0)$ contient des points appartenant à E et aussi des points n'appartenant pas à E, alors z_0 est dit point frontière.
- Ensembles connexes. Un ensemble ouvert $E \subset \mathbb{C}$ est dit connexe si deux points quelconques de E peuvent être joints par un chemin formé de segments de droites dont tous les points appartiennent à E.

Les deux théorèmes suivants sont importants dans la théorie des ensembles de points.

Théorème 7 (de Bolzano-Weierstrass)

Un ensemble E de \mathbb{C} est compact si et seulement si toute suite $\{z_n\}$ de points de E contient une sous-suite $\{z_{n_k}, k \in \mathbb{N}\}$ qui converge vers un point de E.

Théorème 8 (de Heine-Borel)

Un ensemble E de \mathbb{C} est compact si et seulement si tout recouvrement de E par des ensembles ouverts $(O_{\alpha})_{\alpha \in A}$ contient un sous-recouvrement fini.