USTHB 2016-2017 Semestre 2 Faculté de Mathématiques

Analyse complexe 2^{ème} année Lic Math

Examen final - 31 mai 2016. Durée : 1 heure et 30 minutes

Nom et Prénom : Matricule :
Exercice 1 (4 pts.) : Soit D un domaine (ouvert connexe) de \mathbb{C} .
Soient f et g deux fonctions holomorphes sur D . On suppose que $g(z) \neq 0$ pour tout $z \in D$.
a) Montrer que si $f(z) \in \mathbb{R}$ pour tout $z \in D$ (Im $f = 0$), alors la fonction f est constante.
b) En déduire que si $f(z)\overline{g(z)} \in \mathbb{R}$ pour tout $z \in D$, alors il existe $c \in \mathbb{R}$ telle que $f(z) = cg(z)$ pour
tout $z \in D$.
Réponse.
1/4

$\underline{\text{Exercice 2 (6 pts.)}}:$
a) Évaluer les intégrales $I = \int_C z^2 dz$ et $J = \int_C \operatorname{Re}(z^2) dz$ le long de la courbe C dans les cas suivants : $\int_C \operatorname{Im} z$
1. du cercle $ z = 1$ de 1 à -1 dans le sens direct,
2. du segment de droite joignant -1 et $-i$,
3. la ligne brisée formée par les segments de droite $-i$ à 0 et 0 à 1. 0
b) Discuter les résultats obtenus.
Réponse.
2/4

Exercice 3 (5 pts.) : Soit Γ le cercle unité $ z = 1$. Soit a un réel tel que $a > 1$.
Posons $z_0 = i(-a - \sqrt{a^2 - 1})$ et $z_1 = i(-a + \sqrt{a^2 - 1})$
a) Évaluer les intégrales $\int_{\Gamma} \frac{1}{z-z_0} dz$ et $\int_{\Gamma} \frac{1}{z-z_1} dz$.
b) Vérifier que $\frac{1}{z-z_0} - \frac{1}{z-z_1} = \frac{c}{z^2 + 2iaz - 1}$ où c est une constante à déterminer.
c) En déduire $\int_{0}^{\infty} \frac{1}{z^2 + 2iaz - 1} dz$ puis en déduire $\int_{0}^{2\pi} \frac{1}{a + \sin t} dt$.
$f{R\'eponse}.$
3/4

Г

Exercice 4 (5 pts.) : On considère la fonction f définie par $f(z) = \frac{\cos(\pi z)}{(z+4)^2(z-2)}$.
a) En utilisant la formule intégrale de Cauchy, calculer $\oint_{ z =1}^{(z+4)} f(z) dz$, $\oint_{ z =3}^{(z+4)} f(z) dz$ et $\oint_{ z =5}^{(z+4)} f(z) dz$.
Indication: $\frac{1}{(z+4)^2(z-2)} = \frac{a}{z+4} + \frac{b}{(z+4)^2} + \frac{c}{z-2}.$
b) Trouver les résidus de f en tous ses pôles.
c) Discuter les résultats obtenus.
Réponse.
4/4